Что такое атермальное остекление: Что такое атермальное остекление

Содержание

Что такое атермальное остекление

Стандартное оконное стекло предназначено для проникновения в помещение солнечного света и одновременной защиты от холода, ветра, пыли, осадков, запахов.

Если же стекло имеет какие-либо особенности – покрытие в виде пленки или напыления, добавки в составе самого стекла, производство по специальной технологии, то оно может выполнять дополнительные функции.

Например, препятствовать потерям тепла или, напротив, защищать от жары. Теплозащитные стекла, поглощающие или отражающие значительную долю солнечной энергии, называются еще атермальными, препятствующими нагреву.

Что такое атермальное остекление

Атермальное остекление – это остекление теплозащитными стеклами с повышенным коэффициентом теплопоглощения.

Такое стекло поглощает не меньше половины тепловой энергии (излучения инфракрасного спектра), в результате сильно нагревается, но постепенно отдает эту энергию назад в окружающую среду, а внутрь помещения поглощенное и отраженное тепло не проникает.

Стекла с атермальной пленкой инфракрасное излучение поглощают, а ультрафиолетовое отражают, что тоже способствует теплозащите.

Технология эта достаточно новая, и часто потребители путают атермальные стекла с тонированными. Технология производства атермальных стекол значительно сложнее и дороже технологии тонирования, это высокотехнологичный процесс, осуществление которого в кустарных условиях невозможно.

Теплозащитные характеристики стекла обуславливаются добавкой в расплавленную стекольную массу особых присадок – ионов серебра, оксида железа. Эти добавки практически незаметны, но дают легкий эффект окрашивания, стекло может приобретать голубоватый или зеленоватый оттенок, а различим он обычно при взгляде под определенным углом. При взгляде через очки с поляризацией такое стекло выглядит фиолетовым.

Есть ряд признаков, позволяющих отличить настоящее атермальное стекло от подкрашенного.

  • Маркировка Overtinted или Tinted.
  • Высокое качество, идеальная обработка кромок – такие стекла выпускают только солидные производители, внимательные к деталям.
  • Слабый оттенок – обязательный признак атермального стекла, но только на него полагаться не следует, он может быть результатом подкрашивания, тонирования в массе.

Разные производители выпускают 2 основных вида атермального стекла, различающихся теплопоглощающими и светопропускными характеристиками:

  • Tinted – стекло с умеренным теплопоглощением, причем лобовое стекло пропускает от 81% света, а переднее боковое не менее 80%.
  • Overtinted – усиленное теплопоглощение, максимальный температурный комфорт, но светопропускная способность немного ниже – от 72% для передних боковых и от 78,5% для лобовых стекол.

Помимо добавления присадок в стекломассу теплозащитный эффект может быть достигнут за счет наклеивания на стекла атермальных пленок, они поглощают больше тепла, но зачастую снижают светопропускную способность стекла сильнее, чем присадки.

Атермальные пленки

Если присадки добавляются в массу стекла в процессе его производства, то атермальные пленки наклеиваются уже на готовое стекло. Это многослойная полиэфирная пленка с диэлектрическим покрытием и металлизированным напылением (частицы золота и серебра), играющим роль селективного зеркала.

Такие пленки являются самоклеящимися и предназначены для наклеивания на стекло изнутри (со стороны помещения или автомобильного салона).

Они пропускают значительную часть излучения видимого спектра (кроме тонирующих), при этом отражают до 100% ультрафиолетового излучения и поглощают значительную часть (41-92%) инфракрасного. Такие пленки могут иметь разный оттенок.

  • AIR 75 Solartek пропускает 75% видимого света, при этом поглощает 90% тепловой энергии и отражает 99% ультрафиолетового излучения.
  • JOHNSON IR 70 – пленка с дымчатым оттенком, пропускает 73% видимого света, поглощает 47% ИК излучения, отражает 100% УФ излучения.
  • Sun Control ICE COOL 70 – пленка голубоватого и зеленоватого оттенка, пропускает 72% видимого света, поглощает 92% ИК излучения, отражает 100% УФ излучения.
  • Sun Control ICE COOL 80 – пленка голубоватого и зеленоватого оттенка, пропускает 78% видимого света, поглощает 78% ИК излучения, отражает 100% УФ излучения.
  • Armolan Spectrum 80 – пленка голубоватого оттенка, пропускает 80 % видимого света, поглощает 41% ИК излучения, отражает 97% УФ излучения.
  • USB Nano Blue 60 – пленка голубоватого оттенка, пропускает 46% видимого света, поглощает 64% ИК излучения, отражает 90% УФ излучения.
  • ULTRA VISION «Хамелеон» – пленка с базовым фиолетовым цветом и богатой гаммой оттенков на выбор, пропускает 73-83% видимого света, поглощает 69% ИК излучения, отражает 100% УФ излучения.

Что такое атермальное остекление в автомобиле

Чаще всего об атермальном остеклении говорят применительно к остеклению автомобилей. Поскольку пространство автомобильного салона ограничено, под воздействием солнечных лучей температура внутри быстро повышается. Это достаточно неприятно по ряду причин:

  • жара и духота в салоне дискомфортна и даже опасна для здоровья водителя и пассажиров, возможен тепловой удар;
  • избыток солнечной энергии приводит к преждевременному износу внутренней отделки – обивка выгорает, отдельные детали при сильном нагреве могут даже расплавиться, деформироваться;
  • повышаются расходы на кондиционирование и нагрузка на кондиционер.

Для минимизации негативных последствий воздействия солнечного света устанавливают специальные стекла, в значительной мере поглощающие тепловую энергию, но пропускающие излучение видимого спектра – атермальные.

Такое стекло обеспечивает умеренное или высокое теплопоглощение в сочетании с достаточно высоким уровнем светопропускания. В первую очередь рекомендуется устанавливать атермальные лобовые и передние боковые стекла, поскольку большая часть тепловой энергии проникает в салон через них.

Атермальные стеклопакеты

Атермальные стекла с присадками используются преимущественно в автомобилях, а в составе стеклопакетов для остекления зданий могут применяться оклеенные атермальными пленками стекла.

Для автомобильных пленок важен коэффициент светопропускания не ниже предусмотренного ГОСТом (минимум 75 % для передних боковых и 80% для лобовых стекол). Многие атермальные пленки даже при наклеивании на белое стекло, а тем более на бутылочное, пропускают меньше света.

Для архитектурных пленок это не столь существенно, владелец помещения может сам определить, какая светопропускная способность стекол ему требуется.

Поэтому ассортимент применяемых в производстве стеклопакетов атермальных пленок значительно шире. В частности, компания Solartek выпускает как автомобильные, так и архитектурные атермальные пленки, остальные вышеперечисленные пленки относятся к архитектурным.

Стеклопакеты с атермальной пленкой относятся к энергосберегающим, как и стеклопакеты с низкоэмиссионным напылением. Атермальное стекло не только летом защищает от жары и вредного для здоровья и для обстановки ультрафиолета, но и снижает потери тепла зимой, обеспечивая экономию на отоплении и кондиционировании.

Поскольку оно поглощает тепловую энергию, то и зимой остается теплым. То есть сводится к минимуму эффект сквозняка за счет разницы температур стекла и воздуха в помещении, такое стекло практически не подвержено промерзанию и образованию конденсата.

Можно заказать оклеивание атермальной пленкой стеклопакетов перед сборкой окон либо осуществить оклейку уже установленных окон, оклеиваться могут стеклопакеты любого бренда, размера и конфигурации.

Атермальное (теплозащитное) остекление – это защита от нежелательных компонентов солнечного света – ИК и УФ излучения. Теплозащитные свойства стекла могут достигаться добавлением в него присадок в процессе производства или оклеиванием атермальной пленкой.

Для автомобилей предпочтительней первый вариант, обеспечивающий защиту от жары без значительного снижения светопропускной способности стекла (в отличие от тонирования), а также специальные автомобильные пленки с высоким коэффициентом светопропускания.

В домах обычно устанавливаются стеклопакеты, в которых на внутреннее стекло наклеена архитектурная атермальная пленка. Такие стеклопакеты обеспечивают комфортный микроклимат, энергосбережение и защиту от разрушительного действия ультрафиолета.

что это такое в машине, преимущества и недостатки, технология изготовления » АвтоНоватор

Ещё несколько лет назад об атермальном остеклении автомобилей знали лишь те, кто интересовался особенностями тюнинга транспортных средств. На данный момент многие производители машин стали вносить такие стёкла в основную комплектацию своих моделей. Вследствие этого существенно возрос соответствующий интерес автомобилистов, порождающий большое количество вопросов. Основной из них заключается в следующем: атермальное стекло – что это такое в машине. В этом необходимо детально разобраться, прежде чем использовать такое изделие на собственном автомобиле.

Что такое атермальное остекление?

Салон автомобиля – это ограниченное пространство, которое очень быстро реагирует не те или иные условия окружающей среды. Прежде всего, это касается высокой температуры воздуха на улице. Она делает пребывание в машине некомфортным, так как внутри и снаружи машины за короткий промежуток времени нагреваются все поверхности. Это влияет на самочувствие как водителя, так и пассажиров транспортного средства.

Атермальное остекление отличается тем, что оно сводит к минимуму неблагоприятное воздействие солнечных лучей посредством впитывания тепловой энергии. К тому же данная технология способствует пропусканию света, зримого для человека типа.

Таким образом, основные свойства атермального остекления автомобиля заключаются в следующем:

  1. Блокировка попадания определённого количества инфракрасных и ультрафиолетовых лучей в салон транспортного средства. Многие из них задерживаются непосредственно в толщине стекла или же отбиваются от него вследствие специального компонентного состава.
  2. Препятствование проникновения большого объёма тепловой энергии в машину. Ввиду этого поверхности приборной панели даже в самые тёплые дни не очень сильно нагреваются при длительном нахождении транспортного средства на солнце.
  3. Затемнение стекла и снижение частоты образования на нём бликов. Последние практически отсутствуют, так как стекло создаёт идеальные условия для того, чтобы блокировать неблагоприятное преломление лучей, способное на некоторое время ослепить водителя.
  4. Обеспечение более стабильного температурного режима в салоне автомобиля. Вследствие этого пассажиры машины могут себя чувствовать максимально комфортно и уютно даже в условиях длительной поездки в самые жаркие летние дни по автостраде.
  5. Более значительная прочность в сравнении с обыкновенными типами стёкол. При попадании небольших камней в машину существует высокая вероятность того, что не образуется трещина или какое-либо иное повреждение.
  6. Защита обшивки от выгорания и выцветания посредством воздействия на неё солнечных лучей. Поэтому салон автомобиля длительное время остаётся как новый.

Кроме пропускающей способности, атермальные стёкла имеют ещё одно преимущество — прочность

Таким образом, атермальное остекление способствует значительному улучшению комфорта, удобства и безопасности эксплуатации автомобиля. Именно вследствие этого всё большее количество производителей используют данную технологию для производства новых моделей транспортных средств. Это касается как зарубежных компаний, так и некоторых отечественных брендов.

Атермальное стекло большинства производителей позволяет пропускать свет в достаточном объёме для того, чтобы водитель в итоге не столкнулся с проблемой лишения прав. Вместе с тем некоторые эксперты советуют проверить перед покупкой, будет ли новое остекление соответствовать установленным в государстве правилам.

Как отличить атермальное стекло от обыкновенного?

В настоящее время спрос на атермальные стёкла, содержащие ионы серебра, всё время растёт. Вследствие этого на рынке появилось большое количество поддельных товаров, которые не обладают соответствующими свойствами и полезными качествами. Нередко продавцы пытаются выдать обычные стёкла, имеющие солнцезащитную полосу вверху, за атермальные. Для того чтобы не приобрести такую продукцию по завышенной цене, необходимо понимать, как отличить разные типы друг от друга. Это можно сделать следующим образом:

  1. Первоначально необходимо тщательно осмотреть стекло. Нужно обратить внимание на его кромку. Она должна быть хорошо отшлифованной и ровной.
  2. Также следует найти маркировку товара. Все производители атермального стекла указывают на ней такие слова, как INTED или же OVERINTED. Разница между первым и вторым типом заключается лишь в коэффициенте светопропускания. В продукции с маркировкой INTED он составляет 81%, а с OVERINTED – 78,5%. В первом случае стекло отличается лёгким зеленоватым оттенков, а во втором – выраженным зелёным цветом.
  3. Необходимо узнать название производителя товара. В настоящее время атермальные стёкла изготовляются лишь на высококачественном и дорогом оборудовании, которое не могут себе позволить малоизвестные компании. Именно поэтому необходимо ориентироваться на бренд.

Только маркировки с обозначениями INTED и OVERINTED указывают на атермальные стёкла

Отличить атермальное стекло от обычного можно следующими способами:

  1. С использованием солнцезащитных очков, имеющих поляризационный эффект. Через них на поверхности остекления будут заметны радужные разводы, такие как на пятнах разлитого бензина в солнечный день. Такой эффект обусловлен преломлением солнечных лучей посредством того, что они сталкиваются с небольшими кристаллами компонентов остекления.
  2. Посредством сравнения тени и самого стекла. Первая должна быть темнее, чем непосредственно само остекление. Этот способ определения подделки сам по себе не помогает выбрать оригинал, так как обеспечить данный эффект можно и другими методиками. Именно поэтому эксперты рекомендуют, прежде всего, пользоваться поляризационными очками. Они позволяют с большей вероятностью выявить подделку.

Таким образом, если пользоваться всеми вышеперечисленными рекомендациями специалистов, можно без проблем отличить атермальное стекло от обыкновенного. Это позволяет существенно сэкономить деньги и свободное время.

Технология изготовления

Многие автомобилисты путают атермальное остекление с другими технологиями, среди которых необходимо выделить тонирование или же покрытие стёкол специальной пленкой. На самом же деле способ изготовления существенно выделяется из методов, которые более известны широкой аудитории.

Технология изготовления атермального стекла отличается своей сложностью. Она требует использования специального высокотехнологичного заводского оборудования, которое не применяется для производства обычных изделий. Именно поэтому в настоящее время лишь небольшое количество компаний занимается выпуском стёкол данного типа.

Не стоит путать атермальное остекление с покрытием стекла плёнкой

Суть изготовления атермального стекла заключается в добавлении к расплавленной массе определённого количества специальных присадок. В них содержатся два главных компонента, которые в итоге и обеспечивают соответствующие свойства и положительные качества. Среди них специалисты выделяют оксиды железа и ионы серебра. Именно поэтому атермальное остекление автомобиля обретает голубоватый или же, что чаще бывает, зеленоватый оттенок. Если же рассматривать его через поляризационные очки, можно увидеть фиолетовый цвет.

Ещё до недавнего времени атермальное стекло не производили. Многие компании занимались изготовлением только лишь специальных атермальных плёнок. Они тоже обладают высокими энергосберегающими свойствами, но имеют совершенно иную технологию формирования. Это связанно с тем, что такие изделия состоят из большого количества слоёв, иной раз достигающих 200 единиц. Каждый из них блокирует определённый процент излучения, вследствие чего к самой поверхности стекла доходит лишь незначительная его часть. Именно поэтому атермальные пленки используются в первую очередь не для тонирования, а для блокировки тепловой энергии, которая способна проникнуть в салон транспортного средства.

Основные преимущества и недостатки

К положительным качествам относятся:

  1. Впитывание большого количества ультрафиолетового и инфракрасного излучения. Вследствие этого около 50% всех лучей не проникают в салон и не воздействуют неблагоприятным образом как на водителя, так и на пассажиров.
  2. Способность менять насыщенность цвета стекла в зависимости от того, какая мощность внешнего освещения дороги. Ввиду этого снижается степень усталости глаз, что крайне важно при длительных поездках на значительные расстояния между городами.
  3. Противостояние процессам запотевания и замерзания. Из-за этого даже в холодный период времени сохраняется высокая степень обзорности. Владельцу машины не приходится дополнительно очищать стекло от образующегося конденсата вследствие перепада температур внутри салона и снаружи.
  4. Создание комфортной атмосферы внутри машины. Атермальное стекло позволяет не пользоваться встроенными кондиционерами. Это, в свою очередь, сказывается на энергопотреблении машины, а также расходе топлива.
  5. Снижение нагревания салона, которое происходит вследствие попадания внутрь прямых солнечных лучшей. Стекло позволяет снизить температуру приборной панели на 2 градуса.
  6. Улучшение показателей безопасности эксплуатации автомобиля в солнечную погоду. Это обусловлено тем, что атермальное остекление препятствует образованию бликов. К тому же водителю не приходится всё время прищуриваться, из-за чего он меньше устает и больше концентрируется на процессе вождения.
  7. Отсутствие выгорания под воздействием прямых солнечных лучей. Это свойство делает остекление более устойчивым к потере цвета, что сказывается на длительности эксплуатации.

Как и любые другие виды остекления автомобилей, атермальное имеет некоторые недостатки:

  1. Высокая стоимость. Цена данной технологии в два раза больше стандартной.
  2. Не на все модели и марки автомобилей атермальное стекло подходит. В последнее время производители включают его в базовые комплектации но далеко не всех транспортных средств.
  3. Негативное влияние на работу навигаторов. Стёкла такого типа способны воздействовать на некоторые функции отдельных устройств внутри салона автомобиля. Водитель может заметить сбои в телефонной связи, сигналах GPS и радиоволновой передаче.

Прежде чем приобрести атермальное стекло, необходимо обратить внимание на его показатели затемнения. Они не должны превышать установленные на законодательном уровне нормы, так как в таком случае водителя могут лишить прав. Если остекление полностью соответствует стандартам, можно смело его покупать. Это обусловлено тем, что оно способно создать действительно комфортные условия для пребывания в салоне в летний период времени. Зимой же такие изделия будут, наоборот, удерживать тепло внутри, снижая нагрузку на отопительные приборы, что отразится и на расходе топлива. Несмотря на то, что атермальные стёкла дорогие, их приобретение представляет собой действительно удачный способ инвестирования денег.

Оцените статью: Поделитесь с друзьями!

Обсуждения закрыты для данной страницы

Преимущества и недостатки атермальных стекол для автомобиля

При виде автомобиля с непривычным оттенком стёкол возникает вопрос – что это? Зеленоватые или голубые оттенки означают атермальное остекление машины.

Атермальное стекло – это обыкновенное стекло, в состав которого при изготовлении добавляют специальные примеси. Добавки в состав придают стеклу способность отражения от него лишнего жара солнца летом, что уменьшает нагрев частей салона. А в зимние периоды атермальное стекло не даёт теплу выходить из машины, не покрывается ледяной несоскабливаемой коркой и не запотевает.

Технология изготовления атермального стекла довольно трудоемкая и дорогостоящая. Только компании определенного статуса и возможностей могут заниматься таким процессом. Но, несмотря на сложности, крупные иностранные и знакомые всем российские автозаводы уже освоили  эту процедуру и предлагают потребителям приобрести автомобиль с атермальным остеклением или заменить на него имеющиеся обыкновенные стекла.

Содержание статьи

Как производится атермальное стекло?

Автомобильные атермальные стекла

В процессе производства в стекольную массу определенными образом и пропорциями добавляется состав, куда входят ионы серебра и оксиды железа. За счёт применения благородных металлов атермальное стекло приобретает разнообразные оттенки от зеленоватого, голубого и фиолетового до коричневого или даже оттенка хамелеон.

Добавление необычных примесей в состав стекла не ухудшает безопасность атермального стекла. Оно так же многослойно по структуре и при деформации все мелкие частицы стекла не вылетают из него, а остаются в плоскости стекла, что удовлетворяет требованиям безопасности.

Что означает атермальное остекление на автомобиле?

Атермальным  может быть лобовое и передне-боковое остекление. По большому счёту именно от этих стёкол идёт наибольший нагрев салона автомобиля. Редко атермальные стекла ставят на задние боковые двери и на заднее стекло. Производство таких необычных стёкол специфическое, поэтому и цена на атермальное остекление всей машины будет достаточно весома. Атермальное стекло обладает всеми свойствами обычного, но к ним добавляется много полезных и приятных моментов.

Атермальное остекление – это:

  • повышенная защищенность стекла от нагрева. Благодаря этому обивка салона, руль и передняя панель не будут чрезмерно перегреваться;
  • значительное уменьшение бликов света. Это повышает качество управления автомобилем, поскольку видимость дороги становится лучше и не приходится постоянно щуриться, глаза устают меньше;
  • необычный вид машины со стёклами зеленовато-голубого или фиолетового оттенка. Это обуславливается характером примешиваемых реагентов в состав. За счёт такого вмешательства, в процессе долгой эксплуатации атермального стекла, оно высокопрочно и более долговечно, поверхность стекла не выгорает на солнце;
  • четкое, контрастное изображение за стеклом с истинной цветопередачей;
  • доведённое до минимума замерзание и запотевание стекла в зимние месяцы;
  • экономия средств. За счёт низкой теплоотдачи летом система кондиционирования не работает на полную, а в морозные времена требуется меньше сил печке для нагрева и поддержания тёплой атмосферы. Снижается потребление топлива за счёт уменьшения или полного отключения печки и кондиционера, а сэкономленные деньги можно потратить на более полезные нужды. К тому же элементы двигателя прослужат куда дольше.

Как не обмануться при выборе атермального стекла?

Атермальное лобовое стекло

Предприниматели, главной целью которых является извлечение материальной выгоды, а не удовлетворение потребности покупателя, подделывают атермальные стекла или просто предлагают тонированное стекло вместо настоящего.

Способы проверки качества атермальности на стекле:

  • Главной чертой настоящего атермального стекла является нанесение в нижнем углу штампов Tined или Overtined. Такие метки должны быть четко написаны, не размыты и легко читаемы. Tined говорит о светопропускаемости в 81 % и имеет светло зелёный оттенок. Если стоит штамп Overtined – значит светопропускаемость 78,5 % и стекло имеет зелёный цвет.

    Таким образом, если перед вами стекло с размытым и нечитаемым штампом или вообще данная метка отсутствует – перед вами 100% подделка

  • За счёт сложного производства на высококачественном оборудовании все края и стороны атермального стекла четкие, ровные, без зазубринок. В противном случае, при малейшем дефекте кромки перед вами фальшивка;
  • Сравнение тени от стекла с ним самим. Если поставить атермальное стекло на землю, его тень будет темнее, чем само стекло.

Преимущества атермального остекления автомобиля

Атермальное остекление лобового стекла выделит ваш автомобиль и повысит комфорт передвижения. Атермальные стекла необычных оттенков добавят выразительности и закончат образ автомобиля.

Летом с таким остеклением не придётся садится в машину, как в «печку», за счёт отражения УФ лучей. А в холода не придётся мерзнуть, отскребая и отпотевая стекло, так как атермальное стекло сохранит тепло в салоне, сократив время работы печки и кондиционера.

Решив приобрести лобовое стекло, помните, что оно действительно стоит своих денег и невозможно купить качественное атермальное стекло дёшево. Помимо дороговизны, можно столкнуться только с ещё одной небольшой неприятностью. Поскольку в атермальное стекло добавляются смеси благородных металлов, при его многослойности и прочности, фильтр стекла очень слабо пропускает сигнал антирадара.

Атермальное остекление что это такое

Ещё несколько лет назад об атермальном остеклении автомобилей знали лишь те, кто интересовался особенностями тюнинга транспортных средств. На данный момент многие производители машин стали вносить такие стёкла в основную комплектацию своих моделей. Вследствие этого существенно возрос соответствующий интерес автомобилистов, порождающий большое количество вопросов. Основной из них заключается в следующем: атермальное стекло – что это такое в машине. В этом необходимо детально разобраться, прежде чем использовать такое изделие на собственном автомобиле.
Салон автомобиля – это ограниченное пространство, которое очень быстро реагирует не те или иные условия окружающей среды. Прежде всего, это касается высокой температуры воздуха на улице. Она делает пребывание в машине некомфортным, так как внутри и снаружи машины за короткий промежуток времени нагреваются все поверхности. Это влияет на самочувствие как водителя, так и пассажиров транспортного средства.

Атермальное остекление отличается тем, что оно сводит к минимуму неблагоприятное воздействие солнечных лучей посредством впитывания тепловой энергии. К тому же данная технология способствует пропусканию света, зримого для человека типа.

Таким образом, основные свойства атермального остекления автомобиля заключаются в следующем:

Блокировка попадания определённого количества инфракрасных и ультрафиолетовых лучей в салон транспортного средства. Многие из них задерживаются непосредственно в толщине стекла или же отбиваются от него вследствие специального компонентного состава.
Препятствование проникновения большого объёма тепловой энергии в машину. Ввиду этого поверхности приборной панели даже в самые тёплые дни не очень сильно нагреваются при длительном нахождении транспортного средства на солнце.
Затемнение стекла и снижение частоты образования на нём бликов. Последние практически отсутствуют, так как стекло создаёт идеальные условия для того, чтобы блокировать неблагоприятное преломление лучей, способное на некоторое время ослепить водителя.
Обеспечение более стабильного температурного режима в салоне автомобиля. Вследствие этого пассажиры машины могут себя чувствовать максимально комфортно и уютно даже в условиях длительной поездки в самые жаркие летние дни по автостраде.
Более значительная прочность в сравнении с обыкновенными типами стёкол. При попадании небольших камней в машину существует высокая вероятность того, что не образуется трещина или какое-либо иное повреждение.
Защита обшивки от выгорания и выцветания посредством воздействия на неё солнечных лучей. Поэтому салон автомобиля длительное время остаётся как новый.
Атермальное стекло на белой машине
Кроме пропускающей способности, атермальные стёкла имеют ещё одно преимущество — прочность

Таким образом, атермальное остекление способствует значительному улучшению комфорта, удобства и безопасности эксплуатации автомобиля. Именно вследствие этого всё большее количество производителей используют данную технологию для производства новых моделей транспортных средств. Это касается как зарубежных компаний, так и некоторых отечественных брендов.

Атермальное стекло большинства производителей позволяет пропускать свет в достаточном объёме для того, чтобы водитель в итоге не столкнулся с проблемой лишения прав. Вместе с тем некоторые эксперты советуют проверить перед покупкой, будет ли новое остекление соответствовать установленным в государстве правилам.

Как отличить атермальное стекло от обыкновенного?
В настоящее время спрос на атермальные стёкла, содержащие ионы серебра, всё время растёт. Вследствие этого на рынке появилось большое количество поддельных товаров, которые не обладают соответствующими свойствами и полезными качествами. Нередко продавцы пытаются выдать обычные стёкла, имеющие солнцезащитную полосу вверху, за атермальные. Для того чтобы не приобрести такую продукцию по завышенной цене, необходимо понимать, как отличить разные типы друг от друга. Это можно сделать следующим образом:

Первоначально необходимо тщательно осмотреть стекло. Нужно обратить внимание на его кромку. Она должна быть хорошо отшлифованной и ровной.
Также следует найти маркировку товара. Все производители атермального стекла указывают на ней такие слова, как INTED или же OVERINTED. Разница между первым и вторым типом заключается лишь в коэффициенте светопропускания. В продукции с маркировкой INTED он составляет 81%, а с OVERINTED – 78,5%. В первом случае стекло отличается лёгким зеленоватым оттенков, а во втором – выраженным зелёным цветом.
Необходимо узнать название производителя товара. В настоящее время атермальные стёкла изготовляются лишь на высококачественном и дорогом оборудовании, которое не могут себе позволить малоизвестные компании. Именно поэтому необходимо ориентироваться на бренд.
Маркировка атермального стекла
Только маркировки с обозначениями INTED и OVERINTED указывают на атермальные стёкла

С использованием солнцезащитных очков, имеющих поляризационный эффект. Через них на поверхности остекления будут заметны радужные разводы, такие как на пятнах разлитого бензина в солнечный день. Такой эффект обусловлен преломлением солнечных лучей посредством того, что они сталкиваются с небольшими кристаллами компонентов остекления.
Посредством сравнения тени и самого стекла. Первая должна быть темнее, чем непосредственно само остекление. Этот способ определения подделки сам по себе не помогает выбрать оригинал, так как обеспечить данный эффект можно и другими методиками. Именно поэтому эксперты рекомендуют, прежде всего, пользоваться поляризационными очками. Они позволяют с большей вероятностью выявить подделку.
Таким образом, если пользоваться всеми вышеперечисленными рекомендациями специалистов, можно без проблем отличить атермальное стекло от обыкновенного. Это позволяет существенно сэкономить деньги и свободное время.

Технология изготовления
Многие автомобилисты путают атермальное остекление с другими технологиями, среди которых необходимо выделить тонирование или же покрытие стёкол специальной пленкой. На самом же деле способ изготовления существенно выделяется из методов, которые более известны широкой аудитории.

Технология изготовления атермального стекла отличается своей сложностью. Она требует использования специального высокотехнологичного заводского оборудования, которое не применяется для производства обычных изделий. Именно поэтому в настоящее время лишь небольшое количество компаний занимается выпуском стёкол данного типа.

Суть изготовления атермального стекла заключается в добавлении к расплавленной массе определённого количества специальных присадок. В них содержатся два главных компонента, которые в итоге и обеспечивают соответствующие свойства и положительные качества. Среди них специалисты выделяют оксиды железа и ионы серебра. Именно поэтому атермальное остекление автомобиля обретает голубоватый или же, что чаще бывает, зеленоватый оттенок. Если же рассматривать его через поляризационные очки, можно увидеть фиолетовый цвет.

Ещё до недавнего времени атермальное стекло не производили. Многие компании занимались изготовлением только лишь специальных атермальных плёнок. Они тоже обладают высокими энергосберегающими свойствами, но имеют совершенно иную технологию формирования. Это связанно с тем, что такие изделия состоят из большого количества слоёв, иной раз достигающих 200 единиц. Каждый из них блокирует определённый процент излучения, вследствие чего к самой поверхности стекла доходит лишь незначительная его часть. Именно поэтому атермальные пленки используются в первую очередь не для тонирования, а для блокировки тепловой энергии, которая способна проникнуть в салон транспортного средства.

Впитывание большого количества ультрафиолетового и инфракрасного излучения. Вследствие этого около 50% всех лучей не проникают в салон и не воздействуют неблагоприятным образом как на водителя, так и на пассажиров.
Способность менять насыщенность цвета стекла в зависимости от того, какая мощность внешнего освещения дороги. Ввиду этого снижается степень усталости глаз, что крайне важно при длительных поездках на значительные расстояния между городами.
Противостояние процессам запотевания и замерзания. Из-за этого даже в холодный период времени сохраняется высокая степень обзорности. Владельцу машины не приходится дополнительно очищать стекло от образующегося конденсата вследствие перепада температур внутри салона и снаружи.
Создание комфортной атмосферы внутри машины. Атермальное стекло позволяет не пользоваться встроенными кондиционерами. Это, в свою очередь, сказывается на энергопотреблении машины, а также расходе топлива.
Снижение нагревания салона, которое происходит вследствие попадания внутрь прямых солнечных лучшей. Стекло позволяет снизить температуру приборной панели на 2 градуса.
Улучшение показателей безопасности эксплуатации автомобиля в солнечную погоду. Это обусловлено тем, что атермальное остекление препятствует образованию бликов. К тому же водителю не приходится всё время прищуриваться, из-за чего он меньше устает и больше концентрируется на процессе вождения.
Отсутствие выгорания под воздействием прямых солнечных лучей. Это свойство делает остекление более устойчивым к потере цвета, что сказывается на длительности эксплуатации.
Как и любые другие виды остекления автомобилей, атермальное имеет некоторые недостатки:

Высокая стоимость. Цена данной технологии в два раза больше стандартной.
Не на все модели и марки автомобилей атермальное стекло подходит. В последнее время производители включают его в базовые комплектации но далеко не всех транспортных средств.
Негативное влияние на работу навигаторов. Стёкла такого типа способны воздействовать на некоторые функции отдельных устройств внутри салона автомобиля. Водитель может заметить сбои в телефонной связи, сигналах GPS и радиоволновой передаче.
Прежде чем приобрести атермальное стекло, необходимо обратить внимание на его показатели затемнения. Они не должны превышать установленные на законодательном уровне нормы, так как в таком случае водителя могут лишить прав. Если остекление полностью соответствует стандартам, можно смело его покупать. Это обусловлено тем, что оно способно создать действительно комфортные условия для пребывания в салоне в летний период времени. Зимой же такие изделия будут, наоборот, удерживать тепло внутри, снижая нагрузку на отопительные приборы, что отразится и на расходе топлива. Несмотря на то, что атермальные стёкла дорогие, их приобретение представляет собой действительно удачный способ инвестирования денег.

Всем привет! Думаю, не все еще знают о том, что такое атермальное остекление в автомобиле. Это понятие действительно появилось относительно недавно.

Изначально о нем знали лишь единицы. Ситуацию во многом изменили сами автопроизводители, которые решили начать выпускать свои машины в комплектации с атермальными стеклами. В итоге они начали становиться все более и более востребованными.

Многие из тех, кто знает, что это такое и какие преимущества дает атермальное стекло (АС) в машине, изначально стараются заказывать автомобиль с ним в списке комплектующих. Все же сейчас ряд компаний предлагают этот компонент.

Есть и те, кто недавно узнал про подобный тип лобового стекла, а потому стремится заменить стандартную конструкцию на атермальную.

Думаю, стоит изучить этот вопрос более детально. Каждый сможет для себя решить, купить АС или это будет лишней тратой денег на свое авто.

Особенности производства

Многие относят атермальные стекла к способам тонировки. Но я бы не сказал, что здесь речь идет о простом тонировании стекол. Тонировка подразумевает нанесение специальных материалов. Для примера можете посмотреть предыдущие материалы о силиконовой и съемной тонировке.

Скажу сразу. Поскольку технология для многих новая, многие часто путают понятие атермального стекла с нанесением тонировки или с установкой тонирующих пленок. Но в случае с АС технология изготовления намного сложнее. Они никак не может применяться в отношении уже готового лобового стекла. Вот почему это не тонировка.

Чтобы изготовить такую конструкцию, требуется наличие современного и высокоэффективного заводского оборудования. Суть производства заключается в добавлении специальных присадок к массе, которую получают путем плавления стекла с дальнейшим приданием ему заданной формы. В качестве присадок используются ионы серебра и оксиды железа. Именно благодаря им получаются те голубые или зеленые оттенки, характерные для атермального стекла.

При просмотре через солнцезащитные очки цвет будет фиолетовым. Но присадки не просто меняют цвет, а обеспечивают изделие полезными характеристиками.

Если говорить коротко, то для производства АС требуется стандартное сырье с добавлением специальных присадок. Именно присадки делают разницу между обычным и атермальным остеклением.

Преимущества и недостатки

Хоть я и не Википедия, но могу точно сказать, какие сильные и слабые стороны есть у атермального остекления автомобиля. Ровно так же мы ранее рассматривали сильные и слабые стороны тонировки авто.

Давайте начнем с положительных качеств. Их сформировали отзывы самих автовладельцев и мнение экспертов. В итоге мы имеем такие достоинства:

  • Прочность и долговечность превышает значения обычного стекла;
  • Снижается нагрузка на работу систем отопления и охлаждения воздуха в салоне;
  • Летом салон нагревается менее интенсивно;
  • Зимой остекление сохраняет тепло;
  • В отличие от антидождя для стекла, АС не нужно обновлять;
  • Наблюдается меньший расход топлива, поскольку с меньшей интенсивностью работает дополнительное оборудование;
  • Запотевание намного меньше;
  • АС почти не промерзает;
  • При попадании на стекло солнечных лучей они рассеиваются;
  • Уменьшается количество бликов;
  • Салон медленнее выгорает;
  • Передняя панель менее интенсивно нагревается;
  • За использование АС не предусмотрен штраф, так как это заводское изделие.

У атермального остекления действительно много преимуществ перед классическими лобовыми стеклами. Да, тут есть свои недостатки, но зачастую их можно пережить.

Покупать автомобиль с АС или заказывать его отдельно, каждый водитель решает самостоятельно. Я бы советовал просто прокатиться на машине знакомого или друга, у которого установлено такое остекление заводского типа. То есть от производителя.

Мне как-то пришлось лично столкнуться с АС, когда новый вид остекления только набирал обороты популярности. В знойный летний день я был сначала за рулем своего авто, а затем пересел в машину друга, чтобы почувствовать разницу. Я оказался приятно удивлен, поскольку при кажущемся сходстве машин уровень комфорта был совершенно разным.

Нет, атермальное остекление не обладает магическими свойствами. То есть когда на улице жара, то и в салоне без включенного кондиционера даже при наличии АС будет жарко. Но при всех дополнительных достоинствах и способности снижать блики, такое стекло действительно стоит потраченных на него денег.

Что же касается недостатков, то они здесь следующие:

  • Цена. Не сложно узнать, сколько стоит АС. Ценники отличаются, в зависимости от производителя и изделия для конкретного автомобиля. Но будьте готовы к тому, что цена окажется выше в 1,5-2 раза в сравнении с обычным остеклением;
  • Ограниченный ассортимент. Поскольку технология только появляется, еще не на все автомобили можно найти подходящее по размерам стекло. Но все чаще автокомпании дают АС уже в базовой комплектации к своим новым моделям. Потому и покупать его отдельно не всегда нужно;
  • Гаджеты. Некоторое дополнительное оборудование может работать не совсем корректно. Это относится к навигаторам и антирадарам , к примеру. Функции иногда блокируются, либо ухудшается работа. Но это происходит не так часто, чтобы считать ситуацию серьезным недостатком.

Выводы уже делайте сами. Делитесь своим мнением в комментариях.

Найди отличия

Если посмотреть на фото и видео о машинах с АС и тонировкой, не всегда понятно, где что установлено. Визуально отличить машину с полноценным атермальным стеклом от обычного стекла с тонировочной пленкой сложно.

И этой особенностью не постеснялись воспользоваться недобросовестные фирмы. Потому в ассортименте автостекол можно встретить подделки. Они просто берут обычное стекло и наклеивают на него пленку.

Чтобы не стать жертвой мошенников, научитесь отличать оригинал от подделки.

  • Осмотр стекла. Внимательно смотрите на кромки. Если это АС соответствующего качества, тогда поверхности кромок будут идеально обработаны и выровнены. На пленочных стеклах часто видно лохмотья от неровно обрезанной тонировки;
  • Маркировка. Настоящие АС всегда имеют маркировку. Обычно это слово Overinted или Inted;
  • Производитель. Поинтересуйтесь, кто именно сделал стекло и как называется фирма. Для производства АС требуется дорогое оборудование, которое доступно лишь крупных компаниям;
  • Очки. Возьмите очки типа Polaroid. То есть у них должен быть поляризационный эффект. Посмотрев через них на остекление, вы должны увидеть словно разводы радуги. Такие появляются, если разлить масло или бензин. Если их нет, перед вами подделка;
  • Тень и стекло. Поставив изделие на солнце, смотрите на тень. Это действительно АС, когда создаваемая тень оказывается темнее стекла.

Запомните, что главным условием для беспроблемной эксплуатации транспортного средства с атермальным стеклом является наличие подтверждения изготовления АС по ГОСТу. Тогда никаких претензий к вам со стороны ГИБДД не будет. Пусть стекло выглядит как затонированное, но по факту никакого нарушения закона здесь нет.

Наличие нового типа лобового остекления действительно увеличивает уровень комфорта внутри машины. Особенно это ощущается в жаркие и солнечные дни. Не придется включать на максимум кондиционер, а потому и расход топлива упадет. Да, можно обойтись более дешевыми шторками на стекла , но их эффективность будет все равно ниже.

Если вам понравился материал, обязательно поставьте нам оценку.

Всем спасибо за ваше внимание! Подписывайтесь на сайт, задавайте вопросы и оставляйте комментарии! Мы всегда рады общению!

(3 оценок, среднее: 5,00 из 5)

Дата публикации: 21 сентября 2018 .
Категория: Автотехника.

Салон автомобиля является замкнутым пространством с небольшой площадью, при этом его большая часть покрыта стеклами, поэтому в жаркое время года нахождение в машине превращается в настоящий кошмар. Помимо этого, стандартное лобовое стекло пропускает ультрафиолет, который губителен для пластиковых и кожаных поверхностей.

Чтобы избавиться от этих неприятностей многие используют тонировку. Однако такой материал (особенно если он приобретен у недобросовестного поставщика) не всегда отвечает требованиям ГОСТ по светопропускной способности (не менее 75% для лобового стекла и не меньше 70% для боковых). Также пленка, приклеенная некачественно, будет пузыриться или отрываться кусками. Поэтому намного лучше установить в авто атермальное стекло, которое способно поглощать и отражать солнечную энергию.

Атермальное стекло и атермальная тонировка одно и то же или нет

Пленочный светофильтр представляет собой несколько пластин, склеенных между собой. Такая тонировка наносится на любое прозрачное стекло и позволяет защитить салон машины от вредного влияния солнечного света, но, не скрывая, что находится в машине от любопытных глаз.

Если же речь идет об атермальном остеклении, то оно также призвано противостоять УФ-излучению. Однако в этом случае имеется ввиду стекло, которое было произведено по особой технологии. То есть на него не просто наклеили светофильтр. Хоть идея атермального остекления не нова, изготовление такого стекла требует дорогостоящего специализированного оборудования. Это связано с тем, что в процессе производства в стандартное расплавленное стекло добавляют присадки (в строгом соотношении и количестве), в качестве которых чаще всего используется оксид железа и ионы серебра.

Полезно! Атермальные лобовые стекла способны поглощать порядка 50% ИК-излучения и солнечной энергии. Пленка же отталкивает инфракрасные лучи и энергию до 93%.

Таким образом, атермальная пленка и стекло представляют собой два совершенно разных продукта. Разумеется, второй обойдется дороже, а пленку при желании можно приобрести и приклеить самостоятельно. Однако, качество первого материала значительно выше.

Преимущества атермального остекления

АС обладает массой достоинств помимо препятствия нагреванию салона машины в летний зной. Атермальное стекло также:

  • Прочнее и долговечнее стандартного стекла. Если во время движения в машину попадет небольшой камень, то с наибольшей вероятностью он не оставит трещины или другого серьезного повреждения.
  • Немного затемняет поверхность, поэтому снижается образование бликов. Поэтому даже если водитель забыл солнечные очки, преломления света не будет таким сильным, чтобы ослепить его.
  • Позволяет сэкономить топливо, так как не придется лишний раз включать систему кондиционирования.
  • В зимнее время позволит, наоборот, сохранять тепло. Это объясняется тем, что оно намного дольше промерзает.
  • Выполняет роль теплозащитного экрана. Все происходящее снаружи автовладелец видит четче, поэтому его глаза меньше устают.
  • Не требует обновления (например, как покрытия типа «антидождь»).

Таким образом салон машины не будет нагреваться и выгорать. При этом автовладелец получает более прочное лобовое стекло, которое будет сложнее повредить и злоумышленнику, решившему попасть внутрь ТС.

Полезно! В отличие от тонировки разных типов, АС разрешено для использования и никак не противоречит закону о светопропускной способности.

Атермальное остекление действительно повышает уровень комфорта водителя и пассажиров транспортного средства, поэтому некоторые крупные автопроизводители (зарубежные и отечественные) начали выпускать новые модели машин, в которых даже в базовой комплектации устанавливаются более прочные АС. Однако, даже такой весомый аргумент не означает, что конструкции этого типа лишены минусов.

Недостатки АС

Основной минус заключается в том, что производство таких изделий слишком затратное. В итоге стоит такое автомобильное стекло чуть ли не в 2 раза дороже обычно. Хотя, если учесть его долгий срок службы и то, что водителю не придется жечь больше бензина в летнее время или менять выгоревшею обивку, то такое стекло со временем удастся «отбить».

Второй минус касается только тех, кто любит использовать такие гаджеты, как антирадары и навигаторы. К сожалению, из-за компонентов, которые входят в состав такого стекла, оно в прямом смысле может глушить сигнал. Поэтому могут возникнуть проблемы.

Третий минус – такие изделия сложно найти для любого автомобиля. Конечно в интернете есть подделки на любой вкус и цвет, но покупать фальшивку нет никакого смысла. Лучше дождаться, когда в продаже появится именно заводская модель.

К слову, контрафактные модели, которые наводнили рынок в связи растущей популярностью АС, являются еще одним недостатком. Но, его можно исключить, если обратить внимание на несколько нюансов.

Как отличить подделку от оригинала

Находчивости жуликов никогда нет предела, поэтому сегодня некоторые недобросовестные продавцы умудряются продавать под видом атермальных стекол даже обычные изделия с солнцезащитной полоской. Чтобы не заплатить большие деньги за простую «стекляшку» нужно держать ухо востро и обратить внимание на следующие детали:

  • Маркировка. На стекле обязательно должно присутствовать слово «Tinted» (уровень светопропускания 81% для лобового и 80% для боковых стекол) или «Overtinted» (78,5% и 72%). Также нужно обратить внимание на то, что изделия «Tinted» будут отличаться легким зеленоватым оттенком, у «Overtinted» более насыщенный зеленый цвет.

  • Стоимость. Атермальное стекло не может стоить столько же, сколько и обычное. Учитывая сложности его производства, цена должна быть минимум на 10-15% выше.
  • Кромка стекла. Если изделие изготовлено качественно, то производитель не допустит «косяков» в виде некачественной обработки краев изделия. Поэтому нужно провести рукой по кромке. Если чувствуются шероховатости, неровности или зазубрины, то с наибольшей вероятностью такое АС было изготовлено в кустарных условиях.

Также существует еще два простых способа проверки изделия:

  • Надеваем солнцезащитные очки с эффектом поляризации и смотрим на поверхность стекла. Если на ней как будто появляются радужные переливы, как на луже пролитого бензина, то такое изделие настоящее.
  • Ставим стекло на солнце таким образом, чтобы от него образовалась тень. Если она темнее самого изделия, то АС настоящее, если светлее, то это явно подделка.

Если говорить об оттенке настоящего стекла, то он не обязательно будет чистым зеленым. Поверхность может отличать и голубоватым, фиолетовым или коричневатым оттенком.

Что такое атермальное остекление в машине

Автор: Евгений Живоглядов.
Дата публикации: .
Категория: Автотехника.

Салон автомобиля является замкнутым пространством с небольшой площадью, при этом его большая часть покрыта стеклами, поэтому в жаркое время года нахождение в машине превращается в настоящий кошмар. Помимо этого, стандартное лобовое стекло пропускает ультрафиолет, который губителен для пластиковых и кожаных поверхностей.

Чтобы избавиться от этих неприятностей многие используют тонировку. Однако такой материал (особенно если он приобретен у недобросовестного поставщика) не всегда отвечает требованиям ГОСТ по светопропускной способности (не менее 75% для лобового стекла и не меньше 70% для боковых). Также пленка, приклеенная некачественно, будет пузыриться или отрываться кусками. Поэтому намного лучше установить в авто атермальное стекло, которое способно поглощать и отражать солнечную энергию.

Атермальное стекло и атермальная тонировка одно и то же или нет

Пленочный светофильтр представляет собой несколько пластин, склеенных между собой. Такая тонировка наносится на любое прозрачное стекло и позволяет защитить салон машины от вредного влияния солнечного света, но, не скрывая, что находится в машине от любопытных глаз.

Если же речь идет об атермальном остеклении, то оно также призвано противостоять УФ-излучению. Однако в этом случае имеется ввиду стекло, которое было произведено по особой технологии. То есть на него не просто наклеили светофильтр. Хоть идея атермального остекления не нова, изготовление такого стекла требует дорогостоящего специализированного оборудования. Это связано с тем, что в процессе производства в стандартное расплавленное стекло добавляют присадки (в строгом соотношении и количестве), в качестве которых чаще всего используется оксид железа и ионы серебра.

Полезно! Атермальные лобовые стекла способны поглощать порядка 50% ИК-излучения и солнечной энергии. Пленка же отталкивает инфракрасные лучи и энергию до 93%.

Таким образом, атермальная пленка и стекло представляют собой два совершенно разных продукта. Разумеется, второй обойдется дороже, а пленку при желании можно приобрести и приклеить самостоятельно. Однако, качество первого материала значительно выше.

Преимущества атермального остекления

АС обладает массой достоинств помимо препятствия нагреванию салона машины в летний зной. Атермальное стекло также:

  • Прочнее и долговечнее стандартного стекла. Если во время движения в машину попадет небольшой камень, то с наибольшей вероятностью он не оставит трещины или другого серьезного повреждения.
  • Немного затемняет поверхность, поэтому снижается образование бликов. Поэтому даже если водитель забыл солнечные очки, преломления света не будет таким сильным, чтобы ослепить его.
  • Позволяет сэкономить топливо, так как не придется лишний раз включать систему кондиционирования.
  • В зимнее время позволит, наоборот, сохранять тепло. Это объясняется тем, что оно намного дольше промерзает.
  • Выполняет роль теплозащитного экрана. Все происходящее снаружи автовладелец видит четче, поэтому его глаза меньше устают.
  • Не требует обновления (например, как покрытия типа «антидождь»).

Таким образом салон машины не будет нагреваться и выгорать. При этом автовладелец получает более прочное лобовое стекло, которое будет сложнее повредить и злоумышленнику, решившему попасть внутрь ТС.

Полезно! В отличие от тонировки разных типов, АС разрешено для использования и никак не противоречит закону о светопропускной способности.

Атермальное остекление действительно повышает уровень комфорта водителя и пассажиров транспортного средства, поэтому некоторые крупные автопроизводители (зарубежные и отечественные) начали выпускать новые модели машин, в которых даже в базовой комплектации устанавливаются более прочные АС. Однако, даже такой весомый аргумент не означает, что конструкции этого типа лишены минусов.

Недостатки АС

Основной минус заключается в том, что производство таких изделий слишком затратное. В итоге стоит такое автомобильное стекло чуть ли не в 2 раза дороже обычно. Хотя, если учесть его долгий срок службы и то, что водителю не придется жечь больше бензина в летнее время или менять выгоревшею обивку, то такое стекло со временем удастся «отбить».

Второй минус касается только тех, кто любит использовать такие гаджеты, как антирадары и навигаторы. К сожалению, из-за компонентов, которые входят в состав такого стекла, оно в прямом смысле может глушить сигнал. Поэтому могут возникнуть проблемы.

Третий минус – такие изделия сложно найти для любого автомобиля. Конечно в интернете есть подделки на любой вкус и цвет, но покупать фальшивку нет никакого смысла. Лучше дождаться, когда в продаже появится именно заводская модель.

К слову, контрафактные модели, которые наводнили рынок в связи растущей популярностью АС, являются еще одним недостатком. Но, его можно исключить, если обратить внимание на несколько нюансов.

Как отличить подделку от оригинала

Находчивости жуликов никогда нет предела, поэтому сегодня некоторые недобросовестные продавцы умудряются продавать под видом атермальных стекол даже обычные изделия с солнцезащитной полоской. Чтобы не заплатить большие деньги за простую «стекляшку» нужно держать ухо востро и обратить внимание на следующие детали:

  • Маркировка. На стекле обязательно должно присутствовать слово «Tinted» (уровень светопропускания 81% для лобового и 80% для боковых стекол) или «Overtinted» (78,5% и 72%). Также нужно обратить внимание на то, что изделия «Tinted» будут отличаться легким зеленоватым оттенком, у «Overtinted» более насыщенный зеленый цвет.

  • Стоимость. Атермальное стекло не может стоить столько же, сколько и обычное. Учитывая сложности его производства, цена должна быть минимум на 10-15% выше.
  • Кромка стекла. Если изделие изготовлено качественно, то производитель не допустит «косяков» в виде некачественной обработки краев изделия. Поэтому нужно провести рукой по кромке. Если чувствуются шероховатости, неровности или зазубрины, то с наибольшей вероятностью такое АС было изготовлено в кустарных условиях.

Также существует еще два простых способа проверки изделия:

  • Надеваем солнцезащитные очки с эффектом поляризации и смотрим на поверхность стекла. Если на ней как будто появляются радужные переливы, как на луже пролитого бензина, то такое изделие настоящее.
  • Ставим стекло на солнце таким образом, чтобы от него образовалась тень. Если она темнее самого изделия, то АС настоящее, если светлее, то это явно подделка.

Если говорить об оттенке настоящего стекла, то он не обязательно будет чистым зеленым. Поверхность может отличать и голубоватым, фиолетовым или коричневатым оттенком.

Что такое атермальное остекление в автомобиле: как работает

Всем привет! Думаю, не все еще знают о том, что такое атермальное остекление в автомобиле. Это понятие действительно появилось относительно недавно.

Изначально о нем знали лишь единицы. Ситуацию во многом изменили сами автопроизводители, которые решили начать выпускать свои машины в комплектации с атермальными стеклами. В итоге они начали становиться все более и более востребованными.

Многие из тех, кто знает, что это такое и какие преимущества дает атермальное стекло (АС) в машине, изначально стараются заказывать автомобиль с ним в списке комплектующих. Все же сейчас ряд компаний предлагают этот компонент.

Есть и те, кто недавно узнал про подобный тип лобового стекла, а потому стремится заменить стандартную конструкцию на атермальную.

Думаю, стоит изучить этот вопрос более детально. Каждый сможет для себя решить, купить АС или это будет лишней тратой денег на свое авто.

Особенности производства

Многие относят атермальные стекла к способам тонировки. Но я бы не сказал, что здесь речь идет о простом тонировании стекол. Тонировка подразумевает нанесение специальных материалов. Для примера можете посмотреть предыдущие материалы о силиконовой и съемной тонировке.

Скажу сразу. Поскольку технология для многих новая, многие часто путают понятие атермального стекла с нанесением тонировки или с установкой тонирующих пленок. Но в случае с АС технология изготовления намного сложнее. Они никак не может применяться в отношении уже готового лобового стекла. Вот почему это не тонировка.

Чтобы изготовить такую конструкцию, требуется наличие современного и высокоэффективного заводского оборудования. Суть производства заключается в добавлении специальных присадок к массе, которую получают путем плавления стекла с дальнейшим приданием ему заданной формы. В качестве присадок используются ионы серебра и оксиды железа. Именно благодаря им получаются те голубые или зеленые оттенки, характерные для атермального стекла.

При просмотре через солнцезащитные очки цвет будет фиолетовым. Но присадки не просто меняют цвет, а обеспечивают изделие полезными характеристиками.

Если говорить коротко, то для производства АС требуется стандартное сырье с добавлением специальных присадок. Именно присадки делают разницу между обычным и атермальным остеклением.

Преимущества и недостатки

Хоть я и не Википедия, но могу точно сказать, какие сильные и слабые стороны есть у атермального остекления автомобиля. Ровно так же мы ранее рассматривали сильные и слабые стороны тонировки авто. 

Давайте начнем с положительных качеств. Их сформировали отзывы самих автовладельцев и мнение экспертов. В итоге мы имеем такие достоинства:

  • Прочность и долговечность превышает значения обычного стекла;
  • Снижается нагрузка на работу систем отопления и охлаждения воздуха в салоне;
  • Летом салон нагревается менее интенсивно;
  • Зимой остекление сохраняет тепло;
  • В отличие от антидождя для стекла, АС не нужно обновлять;
  • Наблюдается меньший расход топлива, поскольку с меньшей интенсивностью работает дополнительное оборудование;
  • Запотевание намного меньше;
  • АС почти не промерзает;
  • При попадании на стекло солнечных лучей они рассеиваются;
  • Уменьшается количество бликов;
  • Салон медленнее выгорает;
  • Передняя панель менее интенсивно нагревается;
  • За использование АС не предусмотрен штраф, так как это заводское изделие.

У атермального остекления действительно много преимуществ перед классическими лобовыми стеклами. Да, тут есть свои недостатки, но зачастую их можно пережить.

Покупать автомобиль с АС или заказывать его отдельно, каждый водитель решает самостоятельно. Я бы советовал просто прокатиться на машине знакомого или друга, у которого установлено такое остекление заводского типа. То есть от производителя.

Мне как-то пришлось лично столкнуться с АС, когда новый вид остекления только набирал обороты популярности. В знойный летний день я был сначала за рулем своего авто, а затем пересел в машину друга, чтобы почувствовать разницу. Я оказался приятно удивлен, поскольку при кажущемся сходстве машин уровень комфорта был совершенно разным.

Нет, атермальное остекление не обладает магическими свойствами. То есть когда на улице жара, то и в салоне без включенного кондиционера даже при наличии АС будет жарко. Но при всех дополнительных достоинствах и способности снижать блики, такое стекло действительно стоит потраченных на него денег.

Что же касается недостатков, то они здесь следующие:

  • Цена. Не сложно узнать, сколько стоит АС. Ценники отличаются, в зависимости от производителя и изделия для конкретного автомобиля. Но будьте готовы к тому, что цена окажется выше в 1,5-2 раза в сравнении с обычным остеклением;
  • Ограниченный ассортимент. Поскольку технология только появляется, еще не на все автомобили можно найти подходящее по размерам стекло. Но все чаще автокомпании дают АС уже в базовой комплектации к своим новым моделям. Потому и покупать его отдельно не всегда нужно;
  • Гаджеты. Некоторое дополнительное оборудование может работать не совсем корректно. Это относится к навигаторам и антирадарам, к примеру. Функции иногда блокируются, либо ухудшается работа. Но это происходит не так часто, чтобы считать ситуацию серьезным недостатком.

Выводы уже делайте сами. Делитесь своим мнением в комментариях.

Найди отличия

Если посмотреть на фото и видео о машинах с АС и тонировкой, не всегда понятно, где что установлено. Визуально отличить машину с полноценным атермальным стеклом от обычного стекла с тонировочной пленкой сложно.

И этой особенностью не постеснялись воспользоваться недобросовестные фирмы. Потому в ассортименте автостекол можно встретить подделки. Они просто берут обычное стекло и наклеивают на него пленку.

Чтобы не стать жертвой мошенников, научитесь отличать оригинал от подделки.

  • Осмотр стекла. Внимательно смотрите на кромки. Если это АС соответствующего качества, тогда поверхности кромок будут идеально обработаны и выровнены. На пленочных стеклах часто видно лохмотья от неровно обрезанной тонировки;
  • Маркировка. Настоящие АС всегда имеют маркировку. Обычно это слово Overinted или Inted;
  • Производитель. Поинтересуйтесь, кто именно сделал стекло и как называется фирма. Для производства АС требуется дорогое оборудование, которое доступно лишь крупных компаниям;
  • Очки. Возьмите очки типа Polaroid. То есть у них должен быть поляризационный эффект. Посмотрев через них на остекление, вы должны увидеть словно разводы радуги. Такие появляются, если разлить масло или бензин. Если их нет, перед вами подделка;
  • Тень и стекло. Поставив изделие на солнце, смотрите на тень. Это действительно АС, когда создаваемая тень оказывается темнее стекла.

Запомните, что главным условием для беспроблемной эксплуатации транспортного средства с атермальным стеклом является наличие подтверждения изготовления АС по ГОСТу. Тогда никаких претензий к вам со стороны ГИБДД не будет. Пусть стекло выглядит как затонированное, но по факту никакого нарушения закона здесь нет.

Наличие нового типа лобового остекления действительно увеличивает уровень комфорта внутри машины. Особенно это ощущается в жаркие и солнечные дни. Не придется включать на максимум кондиционер, а потому и расход топлива упадет. Да, можно обойтись более дешевыми шторками на стекла, но их эффективность будет все равно ниже.

Если вам понравился материал, обязательно поставьте нам оценку.

Всем спасибо за ваше внимание! Подписывайтесь на сайт, задавайте вопросы и оставляйте комментарии! Мы всегда рады общению!

Атермальное стекло — это какое? Преимущества и недостатки

Атермальное стекло представляет собой обычное автомобильное стекло, при изготовлении которого в состав смеси были добавлены специальные примеси. Внешне атермальное стекло легко узнать по необычному оттенку: зеленоватый или голубой оттенок стекла в автомобиле означает, что в машине имеет место атермальное остекление.

За счёт добавок в своём составе атермальное стекло не так сильно нагревается летом, что отражается на комфорте людей в салоне. Зимой атермальное стекло тоже весьма полезно: оно не так быстро, как обычное автостекло, выпускает тепло из нагретого салона машины, не запотевает и не покрывается ледяной коркой после длительной стоянки.

Разумеется, не всё так просто. Технология изготовления атермального стекла достаточно дорогостоящая, и не все компании могут себе позволить выпуск такой продукции.

Тем не менее, атермальные стёкла выпускаются даже российскими заводами, и найти их в каталоге автостёкол и среди предложений не составит труда.

Производство атермального стекла

На производстве процесс получения атермального стекла выглядит так: в стекольную массу добавляют состав с ионами серебра и оксидами железа в составе. Благородные металлы в составе стекла придают ему не только особые свойства, но и необычные оттенки: зеленоватый, голубой, фиолетовый, коричневый и даже хамелеон.

По сути добавление металлов структуру автостекла не меняет: атермальное стекло это такой же триплекс, то есть несколько слоёв листового стекла на прочной полимерной плёнке.

Такое стекло прочное и безопасное — как и все сертифицируемые автомобильные стёкла с прозрачной историей происхождения.

Какие стёкла бывают атермальными

В основном атермальное остекление в машине используют для лобовых и передне-боковых стёкол. Ставить атермальное стекло в задней части кузова особого смысла нет, поэтому встречается такое решение нечасто. Плюс полное атермальное остекление удорожает стоимость всего автомобиля, и не все производители готовы на это пойти.

Преимущества и недостатки атермального стекла

Как мы уже отметили выше, атермальное стекло получает все свойства (прочность, безопасность, светопропускаемость и т.п.) обычного, но в довесок оно располагает ещё несколькими весомыми преимуществами.

Служит дольше. Примеси благородных металлов делают атермальное стекло более прочным и долговечным по сравнению с обычным стеклом, к тому же его поверхность не подвержена выгоранию на солнце за счёт уменьшенного нагрева.

Защищает стёкла от чрезмерного нагрева. Благодаря тому, что атермальное стекло отводит часть солнечных лучей, обивка салона, руль и передняя панель не перегреваются, даже если машина греется на солнцепёке.

Уменьшает бликование стекла. За счёт этого свойства атермального стекла управлять машиной комфортнее, водителю не приходится щуриться на солнце.

Улучшает видимость. Атермальное стекло отличается передачей чёткого, контрастного изображения и полным сохранением цветопередачи, что хорошо отражается на управляемости машиной.

Снижает запотевание и замерзание стекла. С атермальным стеклом поверхность не покрывается плотной коркой льда после стоянки в холод, а окна запотевают меньше.

Позволяет экономить на кондиционере и салонном отопителе. Атермальное стекло обладает низкой теплопередачей, значит, летом кондиционер можно не включать на полную, а зимой печке легче поддерживать нужную температуру. Плюс снижение нагрузки на двигатель.

Улучшает внешний вид автомобиля. Машина с необычным остеклением зеленовато-голубого или фиолетового оттенка привлекает внимание и смотрится дорого.

При всех преимуществах такого стекла, стоит учитывать, что за счёт добавок металла атермальное стекло плохо пропускает сигнал антирадара. Поэтому если вы злостный нарушитель ПДД «на скорость», не полагайтесь на вспомогательное оборудование.

Как купить настоящее атермальное стекло

Преимущества стекла с защитой от УФ-лучей и низкой теплопередачей очевидны, и потому многие хотят или купить автомобиль с заводским атермальным остеклением, либо заменить имеющиеся стёкла на атермальные. Где спрос — там и предложение, и потому недобросовестные продавцы обманывают покупателей, продавая поддельные атермальные или просто тонированные стёкла вместо оригинальных.

Чтобы проверить качество атермального стекла:
  • Помните, что оно не может стоить дёшево — сама технология производства и используемые добавки обходятся производителю в круглую сумму, и наверняка она отразится на конечной стоимости.
  • Ищите надпись Tined или Overtined в нижнем углу. Причём метка должна быть чётко написана, не размыта и читаться легко. Отметка Tined означает светопропускаемость стекла в 81%, такое атермальное стекло светло-зелёное. Отметка Overtined говорит о светопропускаемости 78,5%, а стекло будет зелёным.

  • Все стороны атермального стекла должны быть чёткими, ровными, без следов клея и грубых следов обработки кромки. Любые дефекты — признак подделки.
  • Проведите тест на тень. Поставьте атермальное стекло на землю, и если тень от стекла будет темнее, чем само стекло — перед вами настоящее атермальное стекло.
  • Чтобы отличить атермальное стекло от просто тонированного, посмотрите на него через очки с поляризационными стёклами. Если стекло настоящее, вы увидите радужный эффект а-ля плёнка растёкшегося бензинового пятна на асфальте.

Надеемся, наши советы помогут выбрать вам качественное автомобильное стекло.

За консультацией по подбору и установке стекла обращайтесь в ДИТС-сервис в Минске, мы всегда рады помочь!

Что такое терморазрыв в Windows?

Наша зима в Монтане устраивается здесь, в Glo European Windows. У нас были очень холодные дни, и я думаю, что скоро их станет еще больше. Эти холодные дни приносят внезапное осознание важности изоляции: изоляции для наших домов, наших рукавиц и даже наших окон. Ладно, вы можете не думать об окнах, требующих теплоизоляции, но это правда! Как и в наших домах, у наших окон есть термический разделитель: изоляция внутри рамы, которая оказывает огромное влияние на качество вашего окна .

Изоляция в окне называется «термическим разрывом». Терморазрыв — это непрерывный барьер между внутренней и внешней рамой окна, который предотвращает теплопроводную потерю тепловой энергии (см. Изображение выше). Ограждение надежно соединяет внутренние и внешние металлические рамы оконной створки. Этот термический разделитель создает сопротивление потерям тепловой энергии и в сочетании с газонаполненным тройным остеклением сохраняет внутреннее пространство вашего окна при более комфортной температуре.Когда в ваших окнах комфортная температура, у вас комфортная температура. Как мы обсуждали в предыдущих сообщениях в блоге, чем холоднее оконная рама, тем больше ток проводимости. Холодные окна забирают тепло от вашего тела, создавая ощущение «сквозняка», которое никогда не позволяет нам согреться. Итак, , если ваши окна теплые, они не отбирают у вас столь необходимое тепло тела, позволяя вам и оставаться в вашем доме, чтобы оставаться в тепле.

Европейские алюминиевые окна также имеют так называемую «прокладку с теплым краем».Прокладка с теплым краем — это барьер между стеклопакетами или стеклопакетами. Наши окна имеют высокопроизводительную распорку, которая выполняет несколько функций: — Она воспринимает напряжение, вызванное тепловым расширением и изменениями давления. — Он обеспечивает газонепроницаемое уплотнение, предотвращающее потерю газа аргона или криптона (который также имеет изолирующее значение) в устройстве. — Он обеспечивает барьер для влаги, предотвращающий попадание воды, которая может затуманивать устройство, называемое влагопоглотителем.

Интересный факт: тот же влагопоглотитель в ваших окнах — это тот же материал, что и в тех маленьких пакетиках, которые всегда находятся в новой обуви, карманах куртки и т. Д.чтобы они были в первозданном виде и не содержали влаги. В следующий раз, вместо того, чтобы выбрасывать пакеты в мусор, используйте их повторно в спортивной сумке, кроссовках или между полотенцами, чтобы вещи оставались свежими!

— Обеспечивает изолирующий барьер, уменьшающий образование конденсата внутри у края. Прокладка с теплым краем обеспечивает более высокую производительность и повышенную энергоэффективность, что имеет решающее значение в холодные зимние месяцы (и летнюю жару). Чем шире терморазрыв, тем лучше будет теплоизоляция окна.Наши окна оборудованы для работы с большими непрерывными тепловыми разрывами в диапазоне от 1 3/8 дюйма до 2 3/8 дюйма по всей раме, по сравнению с окнами с плохой изоляцией с термическим разделением только на 1/2 дюйма, то есть , если это .

Когда температура этой зимой упадет до однозначных цифр и у меня в голове будут танцевать сахарные сливы, можете быть уверены, что мне будут сниться тепловые разрывы шириной более дюйма… хотя это не совсем так. такое же кольцо к нему, как детский стишок.

Введение в пассивную атермализацию

Тепловая расфокусировка | Уравнения ахроматического и атермального дублетов | Графический метод выбора стекла Achrotherm и материалов корпуса

Для приложений, подверженных колебаниям температуры, важно разработать атермическую оптическую систему: оптическую систему, нечувствительную к тепловым изменениям окружающей среды и возникающим в результате расфокусировке системы.Разработка атермической конструкции, которая зависит от коэффициента теплового расширения (КТР) материалов и изменения индекса с температурой (dn / dT), особенно важна в инфракрасном диапазоне. Значение dn / dT большинства ИК-материалов на порядки выше, чем у видимых стекол, что приводит к большим изменениям показателя преломления. Кроме того, хотя оптические системы часто проектируются на воздухе, материал корпуса также чувствителен к тепловым изменениям, и это следует учитывать при рассмотрении атермализованной конструкции.

Тепловая расфокусировка

Расширение и сжатие материала из-за изменений температуры регулируется коэффициентом теплового расширения материала α, который имеет единицы 10 -6 м / ° C (или ppm / ° C). Изменение длины (L) материала из-за изменения температуры определяется уравнением 1.

Термическая расфокусировка — это изменение положения фокуса на оси при изменении температуры из-за изменения показателя преломления с температурой (dn / dT) и расширения материала.Аналогичное уравнение, количественно определяющее изменение фокусного расстояния линзы в воздухе в зависимости от температуры, дается уравнением 2, где β — термооптический коэффициент.

β можно определить с помощью уравнения 3, где α g — КТР стекла. Уравнение для β должно включать член для изменения показателя преломления воздуха в зависимости от температуры, но, поскольку этот член мал по сравнению со значениями dn / dT материала в ИК-диапазоне, он здесь не включен. Это приближение не следует использовать в видимом диапазоне, поскольку воздействие воздуха больше влияет на термооптический коэффициент, чем в инфракрасном.

Для объектива, установленного в корпусе с коэффициентом теплового расширения α h , изменение положения фокуса представляет собой комбинацию изменения фокусного расстояния объектива и изменения положения плоскости изображения из-за корпуса расширение, как показано в уравнении 4 и на рисунке 1. Если изменение длины корпуса равно изменению фокуса из-за линзы, то расфокусировка равна нулю, и система считается атермальной.

Рисунок 1: Расфокусировка (Δf) линзы в металлическом корпусе при изменении температуры (ΔT)

Уравнения ахроматических и атермальных дублетов

Распространенным оптическим элементом является ахроматический дублет, в котором для коррекции цвета используются положительный и отрицательный элементы из разных материалов с равной и противоположной степенью хроматической аберрации.Предполагая, что элемент находится в воздухе, ν-число (обратная дисперсия) для произвольного диапазона волн, определяемого самой длинной, самой короткой и средней длиной волны, дается уравнением 5. Если уравнения 6 и 7 удовлетворяются, результатом является ахроматический дублет. Оптимальное решение — это решение, содержащее два элемента с наибольшей разностью ν-чисел: Δν.

Чем больше Δν, тем больше фокусное расстояние (меньшая мощность) и меньшие радиусы (уменьшаются аберрации и улучшаются оптические характеристики). Посмотрев на карту стекла, легко визуально выбрать корону и бесцветное стекло, у которых есть большая разница в числах ν.Аналогичным образом, мы можем использовать обратный термооптический коэффициент (уравнение), обычно называемый тепловым числом ν, в наших ахроматических уравнениях для создания атермального дублета (уравнения 8 и 9). Если мы спроектируем дублет, в котором выполняются уравнения ахроматического дублета и атермального дублета (уравнения 6-9), в результате получится ахротермическая система: система, которая одновременно является ахроматической и атермической (уравнение 10).

Построив график зависимости теплового ν-числа (ν T ) от цветного ν-числа, мы можем визуально идентифицировать два материала, которые можно использовать для разработки ахротермической системы.Учитывая уравнение для линии (y = mx + b, где m — наклон, а b — точка пересечения по оси Y), мы видим, что если мы установим точку пересечения по оси y равной нулю и выберем материал (ν 1 , ν T1 ) наклон m = ν T1 / ν 1 . Из уравнения дублетного ахротерма мы знаем, что хотим, чтобы наклон двух разных материалов был одинаковым, чтобы добиться цветокоррекции и атермализации; любые два материала, которые могут быть соединены линией, проходящей через источник, обеспечат ахротермическое решение.Как показано на рисунке 2, IG5 и AMTIR1 обеспечат почти ахротермическое решение в воздухе для LWIR (8–12 мкм). Примечание. График не учитывает расширение какого-либо механического корпуса системы.

Рисунок 2: Образец ν T в зависимости от ν График для LWIR (8-12 мкм)

Графический метод выбора ахротермального стекла и материалов корпуса

Альтернативой графику зависимости теплового ν-числа (ν T ) от цветного ν-числа является построение графика зависимости термооптического коэффициента (β) отν-число обратного цвета. 1 Этот метод не только помогает идентифицировать два доступных оптических материала, но также помогает определить КТР материала корпуса, необходимого для ахротермического раствора в корпусе. Как показано на рисунке 3, точка пересечения по оси y обеспечивает необходимый материал корпуса через линию, которая проходит через два материала и пересекает ось y. В случае, если единый материал корпуса с требуемым КТР недоступен, требуемый КТР может быть достигнут с помощью биметаллического корпуса или альтернативного решения для механического монтажа.

Рисунок 3: Типовая карта атермального стекла, отображающая β в зависимости от (1 / ν)

Важно отметить, что этот метод все еще предполагает, что dn / dT воздуха меньше, чем у оптических материалов; в то время как это верно для инфракрасных систем, dn / dT воздуха необходимо учитывать для систем, работающих в видимом спектре. Для получения более подробной информации об этих и других графических методах атермализации, пожалуйста, обратитесь к указанным источникам.


Список литературы

  • Шверц, Кэти, Дэн Диллон и Скотт Спарролд.«Графический выбор оптических компонентов и материала корпуса для цветокоррекции и пассивной атермализации». Труды SPIE, том. 8486: Текущие разработки в области дизайна линз и оптической техники XIII , 11 октября 2012 г.
  • Шверц, Кэти, Адам Бублиц и Скотт Спарролд. «Преимущества использования специального халькогенидного стекла для пассивно атермализированных систем визуализации LWIR с коррекцией цвета». Труды SPIE, том. 8353: Инфракрасные технологии и приложения XXXVIII , 31 мая 2012 г.

Библиография

1 Тамагава, Ясухиса, Сатоши Вакабаяси, Тору Тадзиме и Цутому Хашимото. «Дизайн многолинзовой системы с атермальной диаграммой». Прикладная оптика 34, вып. 33 (1 декабря 1994 г.): 8009-013.

Теплоизоляционное остекление | Тепловой комфорт

Высококачественное теплоизоляционное остекление повышает энергоэффективность окон за счет значительного сокращения потерь тепла.

Теплоизолирующее стекло (также известное как стекло с низким коэффициентом излучения или низкоэмиссионным стеклом) обычно образует внутреннюю панель стеклопакета (IGU).Стекло имеет прозрачное металлическое покрытие, которое отражает тепло от радиаторов отопления или огня обратно в комнату, а не позволяет ему уходить через окна. В то же время он контролирует солнечное излучение и максимизирует естественный свет.

Использование теплоизоляционных двойных стекол — лучший способ повысить энергоэффективность ваших окон и сделать жильцов здания более комфортными.

Теплоизоляционное стекло можно комбинировать со многими другими продуктами для многофункционального остекления, такими как низкие эксплуатационные расходы, защита от солнечных лучей, шумоподавление, декоративное стекло и повышенная безопасность.

Для комфорта и экономии энергии улучшенное теплоизоляционное остекление стало частью минимального стандарта. Зимой такое остекление повышает комфорт, сводя к минимуму явление холодной стены, и защищает качество конструкции за счет уменьшения внутренней конденсации. Высоко ценится в жаркие солнечные дни, улучшенное теплоизоляционное остекление, которое также включает функцию защиты от солнца, снижает приток тепла, позволяя проникать естественному, хотя и смягченному, свету.

Использование стекла, сочетающего теплоизоляционное остекление и защиту от солнца, остается ключевым фактором для уменьшения перегрева и бликов. Учитывая их большие застекленные поверхности; фасады, окна и зимние сады получают огромное количество естественного света и солнечной энергии. Следовательно, важно обеспечить соответствующий контроль солнечного света, чтобы ограничить перегрев и воздействие солнечных лучей на крышу.

Тем не менее, выбор правильного остекления с тепловыми и солнечными характеристиками будет зависеть от различных критериев, таких как ориентация фасада и климатическая зона здания.

Например, остекление с легкой защитой от солнца может быть выбрано для фасадов с низкой солнечной активностью (обращенных на север или восток), если здание находится в зоне прохладного климата.

С другой стороны, для ориентации на юг и запад, особенно в жарких регионах, где много солнечных лучей, рекомендуется использовать остекление с пониженным солнечным фактором из нашей линейки SGG COOL-LITE.

Всякий раз, когда существует разница в температуре между поверхностями, тепло будет перемещаться из более теплой области в более прохладную.Это верно для всех поверхностей. Однако особенность глазурованной поверхности состоит в том, что она также прозрачна для солнечного излучения, что приводит к свободному притоку тепла.

Выбрав атермическое изоляционное остекление, вы уменьшите потери энергии в вашем доме или офисе на 50-80%.

Стекло Saint-Gobain для теплового комфорта значительно улучшило изоляционные свойства окон, зимних садов и фасадов. Таким образом, эти современные решения по остеклению способствуют повышению энергоэффективности зданий, обеспечивая положительный энергетический баланс ограждающей конструкции, а также снижая потребность в искусственном освещении.Фактически, многие энергетические и тепловые моделирование показывают, что в большинстве европейских климатических условий и для большинства типов зданий среднее соотношение площади остекления к площади пола должно быть увеличено на

.

Атермальное флюидирование стекол | Nature Communications

Фотоманипуляция аминоазобензола SAM

Изученная азосистема (dMR) является производным красителя метилового красного 19 , показанного на рис. 1a, синтезированного и ковалентно связанного на стеклянных подложках с образованием плотных, фотоактивных, SAM. как показано на рис.1b. Освещение азобензолов поляризованным светом приводит к анизотропной ориентации молекул, поскольку молекулы стремятся выстраиваться в направлении, в котором фото-рандомизация их ориентации минимизирована, то есть с моментами фотовозбуждения транс-цис (приблизительно по длинной оси молекулы) по нормали к падающей поляризации 20,10,11 . Мы изучили фотоориентацию и релаксацию dMR SAM путем временного воздействия на них поляризованного света с длиной волны 514 нм и измерения динамики результирующего двулучепреломления в плоскости на длине волны 632 нм с использованием высокочувствительного поляриметра 21 .Два актиничных луча 514 нм, один линейно поляризованный насос (LP, плоская поляризация p ) и один циркулярно поляризованный (CP) насос освещают образец при падении, близком к нормальному, и могут включаться и выключаться с помощью 40 Время отклика -мкс с использованием сегнетоэлектрических жидкокристаллических электрооптических затворов.

Рис. 1. Самособирающийся связанный молекулярный монослой dMR.

( a ) Молекулярная структура дМР, синтезированная и связанная со стеклом, демонстрирующая поверхность VDW азохромофорного ядра, молекулярный дипольный момент d (розовый), длинную ось азо-ядра и переход хромофора момент т (синий).Угол между осью сердечника и плоскостью поверхности составляет ψ ≈25 °. ( b ) Эскиз структуры в плоскости с ориентацией в плоскости в результате падающего света, поляризованного вдоль p (зеленая стрелка), показывающий VDW-проекции ядер dMR на плоскость поверхности (желто-зеленый), крепления страховок к поверхности (голубой), ориентация диполя d и его азимутальная ориентация φ . Этот рисунок хорошо отображает экспериментальную среднюю поверхностную плотность.( c – e ) Все фотоиндуцированные изменения в dMR SAM происходят из-за отдельных событий, в которых поглощение одного фотона указанной поляризации возбуждает молекулу (розовая), вызывая изомеризацию и переориентацию. ( d ) Из-за привязок соседние молекулы должны проходить друг над другом или протискиваться мимо соседних привязок, что приводит к локально ориентированному стекловидному состоянию, стабилизированному большим барьером U th ~ k B ( 7500 К). Изолированное поглощение фотонов производит такие события с квантовой эффективностью QELF ~ 1 (одно событие / поглощенный фотон / молекула), потому что атака фотоиндуцированного барьера происходит при T = 800 K, что превышает стеклование для такой локальной переориентации.

Ядро метилового красного дМР прикреплено к поверхности стекла короткой алкильной единицей из четырех одинарных связей C – C, что дает средний угол между длинной осью ядра и плоскостью поверхности ψ ~ 25 ° , показанный на рис. 1a 22,19 , и допускает переориентацию и трансляцию ядра на ~ 1 нм. На рисунке 1b показана геометрия локально ориентированного состояния с молекулами, представленными стержнями, имеющими азимутальную ориентацию φ и отношением длины к ширине, соответствующим отпечатку ван-дер-ваальсова (VDW) формы ядра на рис.1а, с привязными ремнями, случайно прикрепленными к поверхности, в местах, обозначенных синими кружками. Измерения оптического поглощения (дополнительное примечание 1) дают площадь поверхности на молекулу S = 0,55 нм 2 . Сравнение с площадью следа VDW S м = 0,45 нм 2 на рис. 1b показывает, что монослой плотно упакован, с моментами перехода n-π * π-π *, представленными t , практически параллельно плоскости интерфейса (рис.1а).

Ориентация в плоскости была индуцирована в монослоях освещением LP, так что поляризация зонда и средняя длинная ось молекулы в плоскости, директор n t ( φ ), были равны + 45 ° и -45 ° от поляризации LP соответственно. В этой геометрии индуцированное двулучепреломление в плоскости Δ n может быть получено из прохождения T через анализатор скрещенного зонда с использованием Δ n ( λ / πd ) T 1/2 , где d = 0.5 нм — это средняя толщина азосердца, принимаемая за толщину пленки SAM (Дополнительные методы, дополнительные рисунки S1 и S2). Сверхнизкая утечка поляриметра при погасании, T мин = 2,4 × 10 −10 , позволяет измерять двулучепреломление SAM в плоскости всего лишь Δ n ~ 0,001.

Во время освещения dMR SAM, изначально рандомизированного по ориентации за счет тепловых флуктуаций, пучком накачки LP, начиная с t = 0, двулучепреломление в плоскости Δ n ( t ) Δ n ( t ) = n || n , где n || (┴) — индекс поляризации, параллельной (нормальной) n , увеличивается с увеличением падающей оптической плотности энергии, F (энергия / площадь) от некоторого небольшого начального фонового значения Δ n <~ 0.001, до Δ n ~ 0,14, как показано на рис. 2а и дополнительном рис. S4. Это двойное лучепреломление можно отнести к упорядочению в плоскости изомеров транс , поскольку они имеют большую анизотропию оптической поляризуемости, чем цис 23 , и, как правило, большую анизотропию в их ориентационном распределении в условиях ориентационного горения дырок (Дополнительные примечания 2 и 3) 24,25,26 . Двулучепреломление Δ n , которое пропорционально параметру двумерного (2D) ориентационного порядка S = 2 φ —sin 2 φ >, указывает на развитие плоскости заказ с S ~ 0.5, на основе сравнения измеренных нами Δ n с величиной нематиков на основе азо 27 . На вставке к рис. 2а показано, что двулучепреломление SAM зависит только от поглощенной плотности энергии (поглощенная энергия / площадь), F A , и что начальный рост Δ n ( t ) довольно быстрый, с порядком SAM в значительной степени развивается при поглощенном флюенсе F A ~ 1 фотон, поглощаемый на молекулу (1 Па / моль), как рассчитано на основе измеренного оптического поглощения света 514 нм, падающего на изотропный SAM.Обратите внимание, что F A = 1 Па / моль при F = 20 мДж см −2 (дополнительное примечание 1) 19 .

Рисунок 2: Динамика записи и стирания двулучепреломления ЗУР в плоскости Δ n ( t ).

( a ) Δ n ( t ) индуцированный светом LP, включенным при t = 0. Вставка: Δ n ( t ) зависит только от средней поглощенной энергии / площади F A , а при F A = 1 фотон, поглощенный на молекулу (1 Па / моль), a достигается значительная часть насыщенного порядка.Сплошная желтая линия — это Δ n ( t ) от Q G ( t ) (уравнение 2). Почти линейный рост Δ n ( F ) при низком уровне F представляет собой инкрементное накопление в Δ n из потока однофотонных событий локального выравнивания, изолированных и случайных в пространстве-времени. ( b ) Измеренный распад Δ n ( t) / Δ n ( t = 0) (сплошные символы), первоначально записанный светом LP с изменяющейся F и удаленный начиная с t = 0 либо термически, либо CP-светом с интенсивностью I CP = 1 Вт · см −2 . Δ n ( т ) ≈ ( т / τ т ) η в большом т и хорошо подходят для Q G ( т ) (сплошные кривые), что дает время масштабирования τ t (ромбы, логарифмический график «угол») и η , показатель степени затухания. Для сравнения показан экспоненциальный спад (пурпурная пунктирная кривая). Степенный закон показывает экспоненциальное распределение высот коллективных барьеров, с η = T / T м , которое уменьшается и, таким образом, T m , которое увеличивается при написании F .Для каждого F , η больше в случае CP, что дает большую эффективную температуру для стирания CP, T CP ~ 750 K. Для термического стирания время испытания для пересечения коллективного барьера составляет τ t ~ 2 с ( τ t в этом режиме обозначается как τ th ), а при высокой интенсивности CP происходит стирание τ ph ( I CP ) при F A = 1 Па / моль (вертикальные оранжевые линии) ( τ t обозначается как τ ph ( I CP ) в этом режиме).( c ) Время испытаний τ t = τ th и соответствующие барьеры T th для пересечения локального барьера (попытки коллективного барьера) во время термической релаксации. τ t существенно не изменяются при записи F A даже при низком уровне F A , где события записи изолированы, что указывает на то, что они определяются локальными ограничениями, присутствующими в неписаной SAM.( d ) В целом F A , δ Δ n ( F A ) (черная линия) — рост Δ n ( F A ) выше прогноз модели релаксации (желтая кривая). δT м ( F A ) — рост T м выше комнатной температуры (фиолетовая линия). Связанный логарифмический рост δ, Δ n и δT m указывает на «истощение» или ориентационное «деформационное упрочнение» 52 .

Термическое и световое стирание: медленная динамика

На рисунках 2b и 3a показано Δ n ( t ) анизотропных dMR-SAM, первоначально записанных светом LP из F и соответствующего F A значения отображаются и стираются либо тепловыми колебаниями при T = 300 K, либо освещением именно CP-светом. Здесь t = 0 — время, в которое пучок LP выключен, а пучок CP включен в случае фото стирание.Эти данные о распаде показывают сверхмедленную, стеклообразную релаксацию без существенного уменьшения нормализованного ориентационного порядка Q ( t ) = Δ n ( t ) / Δ n (0) для t < τ t , «угол» на логарифмическом графике, полученный из масштабирования времени для последующего затухания по степенному закону и обозначенный ромбиками на рис. 2b и 3a. Для теплового случая τ t = τ th ~ 2 с и степенной закон затухает при длительном времени Δ n ( t ) / Δ n (0) ~ ( t / τ th ) η , измеряется до нескольких часов.Угол тепловой 2D XY ориентационной релаксации сравнительно анизотропных, но не связанных молекул в свободно подвешенных смектических жидкокристаллических пленках C составляет τ th ~ 10 −11 с (дополнительное примечание 4) 28,29,30,31, 32,33 , предполагая, наряду с рис. 1c – e, что два основных фактора вызывают такую ​​медленную ориентационную динамику: (i) высокая плотность упаковки в плоскости, почти такая же, как у чистого твердого красителя, способствует тенденции к азо ядра, которые связываются посредством дипольного и VDW взаимодействия их почти плоских хромофорных ядер, что приводит к сильным структурным корреляциям в плоскости 34 , которые значительно усиливают энергетические барьеры, препятствующие движению молекул друг мимо друга.(ii) Локальная переориентация ограничивается тросами до дискретных скачков, как показано на рис. 1c – e, где молекулы должны проходить друг над другом или друг за другом, и для этого они должны либо растягивать, либо сгибать тросы.

Рис. 3. Эволюция от теплового к оптическому стиранию двулучепреломления в плоскости.

( a ) Изменение релаксации двойного лучепреломления SAM с увеличением интенсивности стирания. Начальная плотность энергии записи LP зафиксирована на уровне F = 25 мДж · см −2 . Крайние правые данные (черные точки, I CP = 0) показывают термическое стирание.Черная сплошная линия — это уровень утечки поляриметра, вычтенный в ( b ). ( b ) Подбор выбранных данных релаксации к модели (уравнение 2; пурпурные кривые). Для термического распада (температура атаки барьера T = 300 K) измеренное значение η = 0,51 показывает, что индуцированная средняя высота барьера составляет T м = 590 K. При достаточно высоком I CP фото -индуцированные попытки являются доминирующими и генерируют локальные T ~ 800 K, независимо от I CP .Подходящие времена масштабирования (атака барьера) τ t = τ th и τ t = τ ph ( I CP ) показаны ромбами. Спады являются бимодальными в режиме «кроссовера», в котором время термических и фотоиндуцированных испытаний сравнимо со сплошными голубыми линиями, рассчитанными на основе модели релаксации, обобщенной для бимодального поведения (дополнительное уравнение S17). Вертикальные оранжевые линии обозначают F A = 1 Па / моль.( c ) Средняя обратная скорость τ t для успешного пересечения локальных молекулярных ориентационных барьеров и, следовательно, для испытаний коллективных барьеров ориентации, как функция интенсивности падающего света CP I CP . При низком уровне I CP , τ t имеет свою тепловую ценность ( τ t = τ th ~ 2 с), требуя ~ 10 11 молекулярных флуктуаций комнатной температуры для преодоления T th ~ 7500 K локальный барьер, в то время как при высоком I CP мы находим τ t ~ τ ph ( I CP ), что почти равно to (1 Па / моль) / I ACP , где I ACP — интенсивность поглощенного CP (дополнительное примечание 1, дополнительное уравнение S2).Это указывает на то, что в среднем каждый поглощенный фотон генерирует тест на пересечение локального барьера, свидетельствующий о стекловании (псевдоожижение), которое стирает локальный барьер. Этот фотоиндуцированный обход процесса тепловых испытаний ответственен за ориентационную флюидизацию за счет освещения CP, что прямо проявляется здесь как ориентационная вязкость, которая уменьшается обратно пропорционально увеличению интенсивности ( γ 1/ I CP ).

Эта медленная тепловая релаксация указывает на активированный, ограниченный барьером процесс распада, который обычно описывается законом Аррениуса, τ () = τ r exp (/ k B T ), где 1/ τ r — скорость попыток преодоления барьера на шкале времени молекулярной ориентационной флуктуации, не более τ r ~ 20 пс 18 — высота барьера, а τ () — характерное время экспоненциальной релаксации, как показано на рис.4а. Однако явно неэкспоненциальный характер релаксации, явно показанный на рис. 2b, предполагает, что τ () следует обобщить, чтобы включить распределение энергетических барьеров, f (), понятие, согласующееся с неоднородной природой монослой, отмеченный в пунктах (i) и (ii) выше. Минимальное затухание для τ < τ t показывает, что f () имеет «барьерную щель», то есть небольшую плотность барьеров ниже минимальной энергии U t , которая может быть в тепловом случае оценивается как U th / k B T th ~ ln ( τ th / τ r ) T ~ ln (10 11 ) T ~ 25 * 300 K ~ 7500 K, большое значение, вероятно, из-за плотности монослоя и ограничений троса.Поэтому полезно записать = U t + U , определяя плотность f ( U ), нормализованную в U , и соответствующее τ ( U ) = τ r exp ( U t + U ) / k B T = τ t exp ( U / k B T ), с τ t = τ r exp ( U t / k B T ).Обратное «пробное» время 1/ τ t (~ 0,5 Гц для термического распада), полученное из пробного барьера U t , затем служит в качестве скорости для попыток пересечь барьеры, распределенные с f ( U ). Запись Q ( t ) = ∫ g ( t / τ ) H ( τ ) , где распределение времен релаксации τ ( U ) = τ t exp ( U / k B T ) равно H ( τ ( U )) = f ( U ) / | d τ ( U ) / d U | , дает релаксацию в форме Q ( t ) = G ( t / τ t ), показывая, что это время испытания барьера τ t , которое становится масштабное время релаксации (дополнительное примечание 5).Для общности мы предположили, что релаксационная динамика параметра порядка для каждой моды или события τ растянута экспоненциально, Q τ ( t ) = exp- ( t / τ ) α . Однако обнаружено, что динамический показатель моды α существенно влияет только на динамику записи фотографий.

Рисунок 4: Краткое описание релаксационных процессов, относящихся к dMR SAM.

( a ) Дельта-функция распределения высот барьеров, f ( U ) = δ ( U U t ), приводит к термически активируемой релаксации Аррениуса, для которой функция убывания экспоненциальная во времени Q ( t ) = exp (- t / τ t ), с временем масштабирования τ t определяется зазором барьера, U t , а скорость молекулярных флуктуаций τ r −1 .( b ) Распад для ориентационного стекла локальных доменов, стабилизированных минимальным локальным энергетическим барьером U t , с коллективными междоменными взаимодействиями, дающими дополнительную энергию U , распределенную по экспоненциальному закону при больших U , f ( U ) = exp (- U / U м ), как для распределения Шера / Шлезингера 43 , показанного здесь. Результатом является функция затухания с ‘углом’ при τ t , определяемая U t , и степенным асимптотическим затуханием Q ( t ) = ( t / τ t ) η определяется показателем степени η = k B T / U m .( c ) В терморелаксирующей dMR SAM U th и, следовательно, τ th определяются локально, в ориентированных стекловидных кластерах из нескольких молекул, первоначально созданных в результате событий изомеризации, индуцированной однофотонным излучением. U m увеличивается с усилением коллективного взаимодействия таких ориентированных кластеров, так что η = k B (300 K) / U m уменьшается с увеличением плотности письма.( d ) При фоторазрушении CP dMR SAM эффективная температура атаки барьера, также установленная в событиях индуцированной однофотонной изомеризацией, составляет T loc = 800 K, расплавляя локальное коллективное стеклообразное состояние и вызывая атаки. на барьерах из-за взаимодействия с соседними молекулами с единичной квантовой эффективностью. Более быстрое затухание по степенному закону, которое приводит к η = k B (800 K) / U m , свидетельствует о том, что все барьеры в f ( U ) атакуются при T . eff = 800 K, и, таким образом, даже высокие энергетические барьеры в f ( U ) достаточно локализованы, обязательно в пространственно-временном объеме 1 нм / 10 пс для события фотоориентации.

Следуя идее распределения высоты барьера, мы обнаружили, что f ( U ) предсказано на основе моделей статистики экстремальных значений, описывающих плотность энергий самых глубоких минимумов в суровых энергетических ландшафтах 35,36, 37,38,39,40,41 , в частности, университетского класса Гамбеля 35 , дают прекрасное описание нашего отдыха. В частности, как впервые отметили Пфистер и Шер, 42 и Шлезингер 43 , наблюдаемая кинетика степенного закона при больших t возникает естественным образом, если высокоэнергетический хвост f ( U ) является экспоненциальной в пределе большого значения U , что также предсказывается на основе статистики экстремальных значений и моделей Гамбеля 44,35,39 .Экспоненциальное распределение хвоста и его релаксационная динамика показаны на рис. 4б. Нормализованное распределение Гамбеля (дополнительное примечание 5)

, где β — параметр, а Γ (1/ β ) — гамма-функция, отсекаемая как двойная экспонента для U <0, чтобы создать барьерную щель, и является экспоненциальной при большом U , f G ( U ) ~ exp- ( U / U м ), с константой затухания U м средняя высота барьера экспоненциальной хвост.Для β = α / η , f G ( U ) дает эффективное распределение времен релаксации H G ( τ ) = [ α / Γ ( η / α ) τ t ] [exp- ( τ t / τ ) α ] [ τ / τ t ] — ( η +1) , который затем можно проинтегрировать, как написано выше, чтобы получить релаксацию параметра порядка:

Таким образом, Gumbel H G ( τ ) дает функцию релаксации, которая проста, но обеспечивает высококачественные соответствия наших данных релаксации Δ n ( t ) (пурпурные кривые на рис. 2b и 3b), где мы берем Q G ( t ) = Δ n ( t ) / Δ n (0). Q G ( t ) масштабируется на τ t и при длительном времени, где Q G ( t ) <1, мы имеем Δ n ( t ) Q G ( т ) ( т / τ т ) η = ( т / τ т ) k T B / U m = ( t / τ t ) T / Tm , степенной закон затухания во времени зависит только от: (i) параметра η , что является показателем убывания η = T / T m , который определяется соотношением энергии тепловой активации k B T к U m = k B T m , характеристическая энергия масштабирования экспоненциального хвоста записанного barr распределение по высоте; и (ii) частота попыток преодоления барьера 1/ τ t , которая устанавливает шкалу времени.Затухание в течение длительного времени является степенным, потому что в ходе релаксации, как только барьеры ниже определенной энергии U ( t ) были пересечены, средняя высота оставшихся барьеров всегда была U ( t ) + U м . В Q G ( t ) время «угла» на графиках log – log в значительной степени определяет τ t , значения аппроксимации показаны ромбиками на рис. 2, 3, 4. а по данным рис.3c. Большой уклон — т в значительной степени определяет η . Обнаружено, что динамический показатель моды равен α ~ 0,8, управляя в первую очередь начальной записью, описываемой как Δ n ( t ) 1– Q G ( t ) (Рис. 2a и Дополнительный Рис. S5). Наши основные результаты вытекают из аппроксимации распада следующим образом.

Стекловидная релаксация SAM: два различных процесса преодоления барьеров

Мы идентифицируем локальный процесс, который определяет τ t , и коллективный процесс, который увеличивает η с увеличением плотности записи.Мы начнем с обсуждения τ t , отметив, что запись и стирание фотографий происходит посредством серии дискретных случайных событий поглощения фотонов, которые при используемых здесь интенсивностях (<1 кВт · см −2 ) широко распространены. разделены в пространстве-времени в результате их короткой продолжительности (~ 10 пс) и небольшого пространственного измерения (~ 1 нм, дополнительное примечание 5), как подробно описано в обсуждении событий изомеризации ниже. Это можно увидеть из рис. 3c, где доля времени, затрачиваемого освещенной молекулой на фото-события, показана в зависимости от интенсивности, в данном случае для стирания CP.Таким образом, при записи изначально случайного состояния при низком флюенсе, F A <1 Па / моль, двулучепреломление, которое почти линейно растет со временем, или F A (рис. 2a), является усредненная мера локальной ориентации изолированных групп из нескольких молекул, каждое событие ориентации вызвано одним фотоном. Термический распад Q G ( t ) соответствует рис. 2b, где τ t = τ th не зависит от плотности записи до F A <1 Па / моль (рис.2c) в сочетании с данными вставки на рис. 2a, которые показывают, что индуцированная Δ n ( t ) зависит только от плотности энергии даже для самой медленной (низкой интенсивности) записи, указывают на то, что тепловое время жизни изолированных ориентированных кластеров из нескольких молекул в случайном монослое составляет τ th ~ 2 с в режиме F A <1 Па / моль. Это ясно показывает, что ограничения, определяющие τ th и, следовательно, U th , являются локальными.Оценка локальной ориентационной вязкости γ может быть получена путем предположения, что ориентационная диффузия определяется константой D = k B T /8 πγa 3 . Принимая 1 / D ~ τ th ~ 2 с и радиус a ~ 0,5 нм, получаем γ ~ 10 8 пуаз, количественно определяя стеклянную природу ориентации dMR.

Переходя к η , Q G ( t ) подходит на рис.2b показывают, что для F A > 1 Па / моль, где локальные области испытывают множественные события поглощения во время записи, показатель затухания η увеличивается с увеличением F A . Поскольку термическое стирание происходит при T ≈ 300 K, поведение η = T / T м для термических распадов показывает, что T м ( F A ) увеличивается с 500 K до 1200 K по мере того, как F A увеличивается с 0.5–250 Па / моль, что свидетельствует о расширении экспоненциального хвоста f ( U ) до более высоких энергий и, таким образом, об углублении барьеров, определяющих f ( U ). Рис. 2d показывает, что в целом F A , как T m ( F A ), так и записанное двулучепреломление Δ n ( F A ) из рис. 2a увеличиваются в виде журнала ( F A ), указывая на то, что постепенно улучшенный порядок записи создает все более глубокие барьеры.Усиление очень глубоких барьеров, ответственных за хвосты степенного закона в течение длительного времени, предполагает коллективный процесс, происходящий из взаимной стабилизации локально ориентированных доменов нескольких молекул, который усиливается, когда каждая местность испытывает множественные ориентирующие события в расширенном во времени процесс написания. Молекула должна преодолеть свой локальный ориентационный барьер U th , который существенно не меняется с F A , чтобы проверить барьеры, задаваемые f ( U ), которые становятся глубже с увеличение F A .

Переход фотоэразирования к независимому от интенсивности приподнятому локальному T

Если известен T m ( F A ), рис. 2b позволяет сравнить термическое затухание и затухание CP для записи с F A = 0,5, 12 и 60 Па / моль, и, следовательно, определение из η = T CP ( F A ) / T m ( F A ) эффективной температуры T CP для кругового поляризованного стирания, в данном случае при интенсивности стирания I CP = 1000 мВт см −2 .Большие наклоны для случая CP показывают, что эффективная температура для атаки барьеров f ( U ) во время стирания CP больше, чем T = 300 K. Расчет T CP из T CP ( F A ) = ηT м ( F A ) дает аналогичные эффективные температуры стирания, T CP = 760 K, 710 K и 770 K для трех значений из письменного F A , общий для термической и CP-стертой релаксации, соответственно.Это постоянство является доказательством ключевого результата: значения T м и, следовательно, распределения высоты барьера одинаковы для термического стирания и стирания CP. Взяв T CP = 750 K, мы можем затем определить барьер T м ( F A ) для различных значений F A , вплоть до T м ( F A = 675 Па / моль) = 1670 K, что недоступно термически, потому что термический распад становится чрезвычайно медленным для таких больших F A .

На рис. 3a и b показаны серии релаксационных кривых dMR SAM, ориентированно записанных с фиксированной поляризованной плотностью записи F A = 1,25 Па / моль и стертых либо термически, либо с возрастающей интенсивностью I CP CP свет. Для термического стирания ( I CP = 0, T = 300 K) мы измеряем η = T / T м = 0,51, что соответствует средней высоте ориентационного барьера T м = 590 К, индуцированное F A = 1.25 па / моль при письме. Подгонка этих данных к уравнению 2 дает время испытания, τ t , показанное ромбами для каждой кривой на фиг. 2b и 3a. Также показано время, в течение которого поглощенная плотность энергии во время стирания составляет один фотон на молекулу ( F A = 1 Па / моль). Для термического стирания τ th τ t ( I CP = 0) порядка нескольких секунд. τ т ( I CP ), показанные на рис.3c, начинает уменьшаться с увеличением I CP в режиме кроссовера, где скорость испытаний с фотоусилителем становится сопоставимой с термической: τ t ( I CP ) ~ τ th . Для I CP > ~ 100 мВт см −2 , где τ t ( I CP ) << τ th , мы обозначаем фотонно-управляемую асимптотическую вариацию τ t ( I CP ) как τ ph ( I CP ) на рисунках 3a – c и 4d.В переходном режиме τ t ( I CP ) ~ τ th ( I CP ~ 10 мВт / см −2 ) распады соответствуют бимодальному модель (сплошные голубые кривые на рис. 3b), с температурным наклоном на короткое время и наклоном фото-события на долгом времени (дополнительное примечание 6). При высоком I CP , где τ t ( I CP ) < τ th , η насыщается при I CP — независимое асимптотическое значение, η CP = 1.50. Это соответствует эффективной температуре T CP = η CP T m = 890 K, которая, согласно нашей модели энергетического ландшафта, является температурой локальной структуры, как она делает пробные попытки преодолеть свои ориентационные барьеры. Это несколько больше, чем T CP = 740 K для SAM на рис. 2a, что типично для варианта SAM-to-SAM для T CP , которое, по нашим данным, в среднем составляет T CP. = 800 ± 100 К.Тот факт, что температура T CP становится независимой от I CP , когда она достаточно велика, чтобы испытания были преимущественно генерированными фотонами, показывает, что T CP не связано со средним потоком энергии. Скорее T CP можно понимать как эффективную локальную температуру, особенность локальных переходных процессов, которые являются полностью изолированными пространственно-временными событиями даже при самых высоких интенсивностях, используемых здесь. На рисунке 3c показано изменение τ t с I CP , и мы видим, что в режиме высокого I CP τ ph ( I CP ) изменяется как 1/ I CP (черная пунктирная линия) и очень близко к τ t = (1 Па / моль) / I ACP (сплошная оранжевая линия), время, необходимое для F A , чтобы вырасти до F A = 1 Па / моль (дополнительное уравнение S2).Это почти равенство указывает на то, что процесс стирания CP имеет квантовую эффективность, QELF ~ 1: для каждого поглощенного фотона генерируется одна попытка преодоления барьера на молекулу.

Возвращаясь к нашей модели релаксации как локальной ориентационной диффузии, ограниченной вязкостью γ и отмечая также, что γ τ t , мы сразу видим, что гораздо более быстрые распады, вызванные CP-светом (рис. 2b и 3а) за счет уменьшения τ ph ( I CP ) при увеличении I CP , является проявлением ориентационной флюидизации.Поэтому на рис. 3c мы также изображаем это поведение как фотоиндуцированное снижение относительной вязкости γ ( I CP ) / γ (0), с уменьшением вязкости в ~ 10 −5 раз. , найденный уже при относительно небольшой интенсивности лазера 1 кВт / см −2 . На рисунке 3c затем прямо показано, что ключевым признаком этой флюидизации является переход от I CP к вязкости, которая обратно пропорциональна интенсивности света.Из-за низкой плотности событий в пространстве-времени (верхняя ось) освещение не производит заметного среднего нагрева, то есть псевдоожижение является «атермальным».

События фотоабсорбции / изомеризации

Поглощение фотона на длине волны 514 нм выделяет энергию = 2,4 эВ в азо-ядро дМР, достаточную для возбуждения одной гармонической степени свободы до = 29000 К. Появляется некоторая часть этой энергии. в форме, которая локально проверяет распределение молекулярного ориентационного барьера при эффективной температуре T CP ~ 800 K.Быстрая спектроскопия 45,46,47 , квантово-молекулярное динамическое моделирование 18,48 и молекулярно-динамическое моделирование 17 дают полуколичественную картину этого процесса, указывая на то, что он является в основном механическим, с энергией фотонов, имеющей вид когерентная сила, временно действующая на окружающую среду поглощающей молекулы 49,50 , следующим образом. После поглощения фотонов и электронного возбуждения азо-ядро возвращается в основной электронный коллектор в конфигурации переходного состояния, из которой когерентное изменение внутримолекулярной конфигурации происходит по одному из нескольких возможных путей, например, от транс до цис или транс до транс , все из которых уменьшают внутреннюю потенциальную энергию на ~ 2 эВ (45 ккал на моль), что составляет почти всю поглощенную энергию фотонов 18,48 .Например, преобразование ядра из транс в цис осуществляется за счет изменения двугранного угла CNNC на 180 °. В вакууме это преобразование представляет собой плавное скольжение по поверхности потенциальной энергии основного состояния в виде квазиэкспоненциальной затухающей релаксации (характерное время = 0,4 пс) 18 . В этом процессе колебательные моды молекулы термализуются, при этом энергия сводится в основном к полностью возбужденным низкочастотным колебаниям, и молекула достигает внутренней температуры ~ 1100 К 45 .Однако в растворе почти вся энергия такого когерентного изменения формы молекулы высвобождается в виде ориентационной и трансляционной работы, совершаемой над соседними молекулами 18,47,48 . В частности, детальное моделирование Tiberio et al. 18 показывают, что для азобензола в растворителе изменениям молекулярной формы преимущественно противодействуют межмолекулярные вязкие силы, а не внутримолекулярная диссипация, что приводит к затухающей релаксации в гораздо более длительном временном масштабе (~> 10 пс), чем в вакууме, a ожидаемая динамика (дополнительное примечание 7) и подтвержденная экспериментом 46 .В этом случае распад становится слишком медленным для возбуждения молекулярных колебаний, и потенциальная энергия азо идет главным образом на создание когерентного движения растворителя, а также на вращение и поступательное движение азо-ядра. Выделенная энергия 2 эВ соответствует ~ 30 гармоническим степеням свободы при 800 К, с помощью которых можно атаковать ориентационные барьеры молекулы. Тот факт, что квантовая эффективность для барьерных испытаний, QE ~ 1, больше, чем для транс цис изомеризации (0.3 < QE транс-цис <0,7) 9 указывает на то, что поглощенная энергия фотона передается соседям возбужденной молекулы, независимо от того, дойдет ли она до цис или вернется к транс 18 . МД моделирования Teboul et al. 17,51 также показывают локализованное временное усиление среднеквадратичного молекулярного смещения и динамическую неоднородность в кластерах, окружающих изомеризующиеся молекулы.Однако это моделирование трудно использовать напрямую, потому что суммарная вложенная энергия не указывается.

Фотофлюидизация: стеклование локальных барьеров

Этот анализ показывает, что в плотной среде фотонно-индуцированное изменение формы молекулы азоядра происходит в масштабе времени 10 пс, достаточно медленно, чтобы вызывать когерентный переходный процесс силы на соседние молекулы (в отличие от молекулярных колебаний 49,50 ), вкладывая ~ 2 эВ механической энергии, достаточной для создания ориентационного события с эффективной локальной температурой T = 800 K.Если бы только вращение вокруг коротких молекулярных осей было таким возбужденным (что маловероятно), то верхняя оценка ~ 30 молекул могла бы быть непосредственно задействована. Поскольку, как правило, существуют поступательные, другие вращательные и низколежащие колебательные моды, которые также будут возбуждены, фактическое количество участвующих молекул должно быть меньше, вероятно, ограничено группами ближайших соседей (~ 7 молекул). Как отмечалось выше, начальная запись оставляет такую ​​группу с барьером U th ~ k B (7500 K) для переориентации.С этим барьером и температурой фотоиндуцированной атаки T = 800 K, количество событий поглощения фотонов для генерации испытания будет exp [7,500K / 800K], то есть QELF <10 −4 , что на порядки меньше наблюдаемого QELF ~ 1. Это сравнение подразумевает, что в процессе локального пересечения барьера должен происходить переход стекла в псевдоожиженное состояние при температурах между 300 и 800 K, что дает гораздо меньший эффективный барьер при температуре атаки T = 800 K, чем при T = 300 К.Эксперименты не дают прямой информации о природе этого перехода, но его существование неудивительно, поскольку T = 800 K превышает температуру стеклования ( T g ) большинства органических сред, и данные моделирования свидетельствуют о том, что Об индуцированной динамической неоднородности в системе азо-легированного полимера сообщалось 51 . T loc = 800 K, локальная, управляемая светом температура испытания, таким образом, расплавляет коллективные локальные структуры, возможно, несколько молекул H- или J-агрегатов, которые сдерживают переориентацию, чтобы дать возможность группе молекул выполнить «испытание». проверить при T loc = 800 K барьеров, возникающих при взаимодействии с соседними ориентированными молекулами.Небольшая часть времени, в течение которого молекула принимает участие в событии, показанном на рис. 3c для интенсивностей, используемых здесь, гарантирует, что флюидизация производится потоком случайно происходящих, изолированных, дискретных событий фотоориентации. В каждом из этих событий T loc = 800 K конкурирует с барьером переориентации U , распространяемым от узла к месту с f ( U ). Эта конкуренция представляет собой процесс, включающий коллективное поведение молекулы и только ее ближайших соседей, поскольку, как обсуждалось в предыдущем разделе, только несколько молекул могут быть временно нагреты до этой температуры.Такой поток случайных фотоориентационных событий, встречающих экспоненциальное распределение высот барьеров, приводит к наблюдаемым затуханиям степенного закона. В этом случае локальный стеклование, при котором группа из нескольких молекул «плавится», переориентируется и «повторно замерзает», явно является механизмом постоянного макроскопического изменения (формы), обнаруживаемого в азо-системах 17,14 .

Запись в большом количестве F: сопряженное старение порядка и средней высоты барьера

Медленное старение, показанное на рис.2d, с Δ n ( F A ) и T m ( F A ), увеличиваясь как ln F A с F A в диапазоне 10 < F A <10 4 Па / моль, указывает на ограниченный барьером процесс записи. Барьеры, встречающиеся при письме, — это как раз те, которые устанавливаются и должны быть преодолены в обратном порядке во время стирания, то есть характерный масштаб энергии для записи составляет T m .Затем, принимая пробную частоту, сгенерированную фотографией, ν w , для записи (для преодоления препятствий для достижения ориентированного состояния), шкала энергии, записанная в момент времени t , задается просто условием «исчерпания», определение δU м ( t ) как энергетическую границу между низкими барьерами, которые в среднем уже были пересечены в момент времени t ( P ( t )> 1) и высокими еще пересечь 52 : 1≈ P ( t ) = w exp (- δU m ( t ) / k B T ).Решение для δT m ( t ) дает δT m ( t ) ≈ T ln ( w ) или δT m ( t ) ≈ T ln ( F A / F A w ), где F Aw — плотность потока энергии, необходимая для пробного письма. Из рис. 2г, при F A = 10 3 Па / моль имеем δT м / T ≈4.3, что дает F / F w = 74 и, следовательно, F w = 14 Па / моль в качестве пробной скорости записи, выраженной как флюенс, поглощенный изотропным образцом (фактическое поглощение будет примерно половину этого значения из-за индуцированного ориентационного упорядочения). Таким образом, в этом асимптотическом режиме каждая молекула должна пройти через цикл транс цис транс ~ 10 раз, чтобы провести испытание, при котором дальнейшее поляризованное освещение может усилить связь между локальными стеклообразными доменами и увеличить T m .В то время как одиночные записывающие фотоны эффективно создают локальные стеклообразно ориентированные домены, требуется много записывающих фотонов, чтобы связать их вместе, чтобы установить как лучший порядок, так и барьерное распределение, имеющее хвост, простирающийся в сторону более высоких энергий. Эта связь порядка и высоты барьера также может быть понята как пример ориентационного деформационного упрочнения (дополнительное примечание 8) 52 .

Стекло и термическое напряжение

Термическое напряжение возникает, когда одна область стеклянного стекла становится горячее, чем прилегающая область.Если напряжение слишком велико, стекло треснет. Уровень напряжения, при котором стекло разобьется, зависит от нескольких факторов. Закаленное стекло очень эластичное и не склонно к разрушению из-за термического напряжения. Многослойное стекло и отожженное стекло ведут себя одинаково. Более толстые стекла менее терпимы. Стекло, содержащее проволоку, более уязвимо. Качество кромок стекла может сыграть свою роль. Стекло с поврежденными краями будет подвергаться меньшим нагрузкам, чем чистое резаное стекло. Хорошая чистая обрезная кромка — лучшая отделка наряду с полностью отполированными краями.Шлифованные кромки и выступающие кромки могут быть не такими хорошими. Отшлифованный или выпуклый край — это серия мелких дефектов вокруг стекла. Эффект сводит все дефекты к среднему уровню и в лучшем случае может быть только более предсказуемым, чем стекло с более случайными повреждениями.

Можно рассчитать разницу температур в помещении и устранить поломку по тепловым причинам. Для оценки теплового риска нам необходимо знать следующую информацию, указанную в Форме проверки термической безопасности Pilkington:

  • Расположение дома
  • Ориентация
  • Тип используемого стекла, включая детали стеклопакетов
  • Размер навеса здания, если таковой имеется
  • Размер стоек и крышек транца, если есть
  • Детали любых внутренних или внешних жалюзи / жалюзи
  • Подробная информация о любой резервной копии i.е, где панель составляет уровень пола или потолка за стеклом, позволяя горячему воздуху задерживаться и отражаться обратно в стекло.
  • Материал обрамления, включая терморазрыв и цвет оправы.
  • Размер окна и его открытие. Т.е. меняет угол к солнцу.
  • Детали систем внутреннего отопления.
  • Любые другие детали, например, другие здания или деревья, отбрасывающие тень на стекло.

В течение года солнце меняет свой путь по небу.Если стекло в здании подвергается чрезмерному термическому напряжению, в первый год его использования могут возникнуть проблемы. Самые сложные периоды — весна и осень, когда солнечные углы низкие, а ночи холодные. В середине лета края стекла в любом случае будут более теплыми, а путь солнца будет проходить прямо над головой, обеспечивая меньшее воздействие тепла на стекло.

Стекло с солнцезащитным фильтром либо отражает энергию, либо поглощает ее, отводя тепло наружу. По своей природе оно нагревается сильнее, чем прозрачное стекло и стекло, которое рассчитано только на тепловую эффективность, как Pilkington K Glass ™ и Pilkington Optitherm SN ™.Мы всегда рекомендуем проверку термобезопасности солнцезащитного стекла и толстых стеклянных конструкций, включая огнестойкое стекло.

Во многих случаях, когда есть подозрение на термическое разрушение, использование здания каким-либо образом изменилось. В школах есть тенденция наклеивать плакаты на детское творчество. Офисы могут добавить жалюзи там, где ничего не было запланировано, или пленки для защиты от солнца или взрыва были добавлены в последнюю очередь. Большинство установок из стекла находятся в пределах допустимого рабочего диапазона, но в некоторых случаях неожиданные изменения могут привести к чрезмерной нагрузке.

Стекло также чувствительно к термическому воздействию огня. Особые конструктивные особенности должны быть приняты в тех случаях, когда противопожарная защита является ключевой задачей как для защиты имущества, так и для безопасности жизни.

Атермальное превосходство: SiC по сравнению с телескопами из алюминия и стекла для малых спутников — Aperture Optical Sciences

ВВЕДЕНИЕ Узлы оптических телескопов

(OTA), выполненные из карбида кремния (SiC), обеспечивают преимущества в производительности для космических приложений, но в основном используются в государственном секторе.Новое поколение легких и термостойких конструкций доступно на рынке, что позволяет распространить применение SiC на небольшие спутники.

Одной из основных проблем при проектировании спутниковых телескопов является способность сохранять рабочие характеристики в тепловых условиях низких околоземных орбит (НОО). В этом примечании по применению сравниваются анализы термостойкости двух аналогичных OTA, разработанных AOS, одного из карбида кремния и одного из алюминия со стеклянными зеркалами. Влияние изменений температуры в условиях замачивания на разрешенное расстояние до земли (GRD) исследуется с помощью анализа изображений.

SiC обладает наивысшим сочетанием удельной жесткости (E / ρ) и термической стабильности (k / α) среди всех материалов оптического качества. Эти свойства делают SiC идеальным для поддержания оптических и механических характеристик во время запуска и в динамических тепловых условиях низкой околоземной орбиты (НОО).

Рис. 1: Свойства материала и расчетная удельная жесткость в зависимости от коэффициента термической деформации для широко используемых материалов для зеркал. Свойства POCO Graphite SuperSiC-Si, 6061-T6 Aluminium и Corning HPFS Fused Silica

при комнатной температуре

SiC vs.ТРАДИЦИОННЫЕ ТЕЛЕСКОПЫ AL-GLASS

Небольшие спутниковые OTA обычно требуются для соответствия оптическим характеристикам в диапазоне температур приблизительно от -30 ° C до + 40 ° C для приложений LEO. Проведенный анализ исследует влияние фокуса и GRD в зависимости от температуры. Конструкция телескопа, использованная в анализе, представляет собой двухзеркальную отражающую систему с прозрачной апертурой 125 мм, предназначенную для обеспечения GRD ≤ 7,5 м для длин волн ближнего ИК-диапазона на высоте 500 км.

Рис. 2 и 3: Вид в разрезе 125-мм телескопа AOS

Графики функции рассеяния точки (PSF) показаны при -30, -20, +20 и + 40 ° C для телескопов из карбида кремния и алюминия и стекла.Узкий PSF соответствует меньшему размытию изображения на детекторе. Преобладающим воздействием на телескоп в результате изменения температуры является смещение оптики, которое вызывает расфокусировку (и, следовательно, размытость изображения на детекторе). На рисунке 12 показано сравнительное смещение фокуса в системах SiC и алюминий-стекло. Размытие изображения иллюстрируется PSF в результате различных сдвигов фокусного расстояния (рис. 4-11). Затем рассчитывается влияние на GRD. (Рисунок 13). Эта разница в чувствительности к тепловому поглощению также является показателем относительной чувствительности к температурным градиентам, которые гораздо сложнее исправить на низких околоземных орбитах.

Рисунок 13: Зависимость разрешенного расстояния от земли (GRD) от температуры для телескопов из карбида кремния и стекла и алюминия от -30 до + 40 ° C.

ВЫВОДЫ:

• Система SiC поддерживает расчетный GRD в типичном требуемом диапазоне температур (± 35 ° C).

• Характеристики системы алюминий-стекло быстро ухудшаются даже после ± 2 ° C по сравнению с оптимальным значением GRD.

Тепловые свойства SiC позволяют создавать телескопические системы, превосходящие по характеристикам алюминиево-стеклянные телескопы.В условиях выдержки смещение фокуса SiC номинально равно нулю. Кроме того, SiC демонстрирует до 37 раз лучшие характеристики в диапазоне температур для разрешенных расстояний до земли по сравнению с алюминиево-стеклянными телескопами в условиях термической выдержки. Реальные сценарии представляют собой более сложные задачи, которые раскрывают еще более широкие преимущества оптимизированного выбора материалов.

АВТОРЫ:

Дэйв Эйкенс; Savvy Optics Corp., Честер, CT 06412

Кевин Дальберг, Чип Раган, Флемминг Тинкер; Aperture Optical Sciences Inc., Meriden, CT 06450

СПРАВОЧНИК:

1. KJ Kasunic, D Aikens, D. Swabowski, C. Ragan, F. Tinker, «Технические и стоимостные преимущества телескопов из карбида кремния для малых спутниковых изображений», SPIE Optical Engineering and Applications, Сан-Диего, 2017, статья № 10402-11.

2. Тинкер, Ф., Синь, К., «Асферическая обработка стекла и оптики SiC», Изготовление и тестирование оптики, Монтерей, Калифорния, США, 24-28 июня 2012 г., Figuring and Finishing Science (OM4D),

3.«Справочник SAGE по дистанционному зондированию», T. A. Warner, M.D. Nellis, G.M. Foody, (SAGE Publications Ltd., Лондон, 2009 г.), 101-102.

4. F.P. Инкропера, Д. ДеВитт, Т. Бергман, А. Лавин, «Введение в теплопередачу», (Wiley Publishing, Нью-Джерси, 2006), пятое издание.

5. Свойства материала SuperSiC [онлайн], POCO Graphite, http://poco.com/MaterialsandServices/tabid/124/Default.aspx [22 июня 2017 г.].

Единственный недостаток окон с тепловым стеклом, которого вы, вероятно, не видели Скоро

Фото: istockphoto.com

Окна с тепловым стеклопакетом стали стандартом для нового строительства и модернизации. В большинстве ситуаций окна отлично справляются со своей задачей, предлагая улучшенную изоляцию, пониженную передачу шума, равномерную температуру в помещении и четкий, ясный вид на окружающий мир.

В редких случаях, однако, одно или несколько оконных стекол в тепловом окне самопроизвольно разбиваются, создавая поразительный шум, который описывается как похожий на выстрел, и заставляет жителей искать объяснения.Катализатор не всегда очевиден, но будьте уверены, есть причина. Впереди узнайте больше об этом необычном происшествии и найдите способы минимизировать риск разбивания окна.

ОТНОСИТЕЛЬНО: Лучшие тепловые завесы для экономии энергии

Технология тепловых панелей

Двух- или трехкамерные окна состоят из двух или трех оконных стекол, разделенных узким пространством, которое либо герметично закрыто, либо заполнено инертный газ, например аргон. Пространство между стеклами служит слоем изоляции для уменьшения теплопередачи, поэтому люди, находящиеся в доме, с меньшей вероятностью будут чувствовать холода при ходьбе у теплового окна зимой.

Эти многослойные окна также служат для уменьшения теплопередачи в жаркие летние дни, поэтому блокам кондиционирования не нужно прилагать столько усилий, чтобы поддерживать в доме прохладу. Чтобы многослойное окно работало эффективно, воздушное пространство между стеклами должно быть полностью закрыто — никаких утечек. Однако это уплотнение создает давление между стеклами. Это давление в сочетании с любым из следующих факторов может привести к разбитому или разбитому стеклу.

Фото: istockphoto.com

Термическое напряжение

По словам Pella, известного производителя качественных дверей и окон, большинство термических трещин на окнах происходит весной и осенью, когда жаркие дневные температуры немного выше, чем низкие ночные температуры.Сильные колебания температуры в течение относительно короткого периода (несколько часов) могут оказать дополнительную нагрузку на окно. Стекло, как и другие материалы, будет немного расширяться и сжиматься при изменении температуры. Когда возникает трещина от термического напряжения, она часто бывает под перпендикулярным углом. В некоторых случаях существует риск разбить окно, а не просто образоваться трещина. Поломка из-за термического стресса чаще встречается у некачественных окон, но даже качественные окна не являются полностью защищенными.

Фото: istockphoto.com

Неправильная установка

Небольшая порезка в стекле, возникшая во время установки, создаст слабое место в стекле и, в сочетании с термической нагрузкой, может привести к поломке. Кроме того, окна, установленные в слишком плотный грубый проем или неквадратный грубый проем, могут испытывать дополнительное давление на стекло, увеличивая риск взлома. Риск ниже, если качественные окна установлены в прочную и прочную раму, но неправильная установка все еще может быть проблемой.Для достижения наилучших результатов попросите надежного оконного подрядчика установить новые и замененные окна.

СВЯЗАННЫЕ с: Замена окон 101

Дефект производителя

Хотя это редкость, во время производства закаленного стекла крошечные кусочки никеля могут загрязнить стекло. Эти мелкие частицы, известные как включения сульфида никеля (NiS), могут со временем расширяться, создавая напряжение на стекле, которое может привести к его разрушению. Если окно было правильно установлено и не находится под давлением из-за термического напряжения, включение NiS никогда не может вызвать проблемы.Если это действительно приводит к растрескиванию стекла, это часто происходит по схеме «бабочка», выходящей наружу из-за никелевого загрязнения. Когда включение NiS совпадает с другими факторами, такими как неправильная установка или сильное термическое напряжение, увеличивается риск разрушения стекла.

Фото: istockphoto.com

Размер окна

Окна для больших картин подвергаются большему стрессу, чем маленькие, что подвергает их большему риску разрушения или растрескивания от любого фактора.Подобно тому, как транспортировка и установка больших окон требует большей осторожности, чем транспортировка и установка маленьких окон, большие окна также подвержены повышенному риску поломки. Уменьшите риск, купив окна с большими стеклами у известных производителей окон и установив их профессионально.

СВЯЗАННЫЙ: Сколько стоит замена окон?

Разрушение при ударе

Возможно, самая частая причина поломки окна не имеет никакого отношения к термическому напряжению, неправильной установке или загрязнению стекла.

Добавить комментарий

Ваш адрес email не будет опубликован.