Двигатель внешнего сгорания: Видео: Как работает двигатель внешнего сгорания: Статьи

Содержание

Двигатель внешнего сгорания принцип. Двигатель внутреннего сгорания

В двигателях внешнего сгорания процесс сжигания топлива и источник теплового воздействия отделены от рабочей установки. К данной категории обычно относят паровые и газовые турбины, а также двигатели Стирлинга. Первые прототипы подобных установок были сконструированы более двух веков назад и применялись на протяжении почти всего XIX столетия.

Когда для бурно развивающейся промышленности понадобились мощные и экономичные энергетические установки, конструкторы придумали замену взрывоопасным паровым двигателям, где рабочим телом был находящийся под большим давлением пар. Так появились двигатели внешнего сгорания, получившие распространение уже в начале XIX столетия. Только через несколько десятков лет им на смену пришли двигатели внутреннего сгорания. Стоили они существенно дешевле, что и их широкое распространение.

Но сегодня конструкторы все пристальнее присматриваются к вышедшим из широкого употребления двигателям внешнего сгорания.

Это объясняется их преимуществами. Главное достоинство состоит в том, что такие установки не нуждаются в хорошо очищенном и дорогом топливе.

Двигатели внешнего сгорания неприхотливы, хотя до сих пор их постройка и обслуживание обходятся достаточно дорого.

Двигатель Стирлинга

Один из самых известных представителей семейства двигателей внешнего сгорания – машина Стирлинга. Она была придумана в 1816 году, неоднократно совершенствовалась, но впоследствии на долгое время была незаслуженно забыта. Теперь же двигатель Стирлинга получил второе рождение. Его с успехом используют даже при освоении космического пространства.

Работа машины Стирлинга основана на замкнутом термодинамическом цикле. Периодические процессы сжатия и расширения здесь идут при разных температурах. Управление рабочим потоком происходит посредством изменения его объема.

Двигатель Стирлинга может работать в качестве теплового насоса, генератора давления, устройства для охлаждения.

В данном двигателе при низкой температуре идет сжатие газа, а при высокой – его расширение. Периодическое изменение параметров происходит за счет использования особого поршня, имеющего функцию вытеснителя. Тепло к рабочему телу при этом подводится с внешней стороны, через стенку цилиндра. Эта особенность и дает право

Несмотря на свои высокие показатели, современный двигатель внутреннего сгорания начинает устаревать. Его к. п. д. достиг, пожалуй, своего предела. Шум, вибрация, отравляющие воздух газы и другие присущие ему недостатки заставляют ученых искать новые решения, пересматривать возможности давно «забытых» циклов. Одним из «возрожденных» двигателей является стирлинг.

Еще в 1816 г. шотландский священник и ученый Роберт Стирлинг запатентовал двигатель, в котором топливо и воздух, поступающие в зону горения, никогда не попадают внутрь цилиндра. Они, сгорая, лишь нагревают находящийся в нем рабочий газ. Это и дало основание назвать изобретение Стирлинга двигателем внешнего сгорания.

Роберт Стирлинг построил несколько двигателей; последний из них имел мощность 45 л. с. и проработал на шахте в Англии более трех лет (до 1847 г.). Эти двигатели были очень тяжелыми, занимали много места и внешне напоминали паровые машины.

Для мореплавания двигатели внешнего сгорания впервые были применены в 1851 г. шведом Джоном Эриксоном. Построенное им судно «Эриксон» благополучно пересекло Атлантический океан из Америки в Англию с силовой установкой, состоявшей из четырех двигателей внешнего сгорания. В век паровых машин это было сенсацией. Однако силовая установка Эриксона развивала всего 300 л. с., а не 1000, как ожидалось. Двигатели имели огромные размеры (диаметр цилиндра 4,2 м, ход поршня 1,8 м). Расход угля получился не меньше, чем у паровых машин. Когда судно пришло в Англию, оказалось, что двигатели не пригодны для дальнейшей эксплуатации, так как у них прогорели днища цилиндров. Чтобы вернуться в Америку, пришлось заменить двигатели обычной паровой машиной. На обратном пути судно попало в аварию и затонуло со всем экипажем.

Маломощные двигатели внешнего сгорания в конце прошлого века применялись в домах для перекачивания воды, в типографиях, на промышленных предприятиях, в том числе на петербургском заводе Нобеля (ныне «Русский дизель»), Устанавливались они и на мелких судах. Стирлинги выпускались во многих странах, в том числе в России, где они назывались «тепло и сила». Ценили их за бесшумность и безопасность работы, чем они выгодно отличались от паровых машин.

С развитием двигателей внутреннего сгорания о стирлингах забыли. В энциклопедическом словаре Брокгауэа и Эфрона о них написано следующее: «Безопасность от взрывов составляет главную выгодную сторону калорических машин, благодаря которой они могут опять войти в употребление, если найдут для их построения и смазки новые материалы, лучше выдерживающие высокую температуру».

Дело заключалось, однако, не только в отсутствии соответствующих материалов. Еще оставались неизвестными современные принципы термодинамики, в частности эквивалентность тепла и работы, без чего невозможно было определить наивыгоднейшие соотношения основных элементов двигателя. Теплообменники делали с малой поверхностью, из-за чего двигатели работали при непомерно высоких температурах и быстро выходили из строя.

Попытки усовершенствовать Стирлинг были предприняты после второй мировой войны. Наиболее существенные из них заключались в том, что рабочий газ стали применять сжатым до 100 атм и использовать не воздух, а водород, имеющий более высокий коэффициент теплопроводности, низкую вязкость и, кроме того, не окисляющий смазки.

Устройство двигателя внешнего сгорания в его современном виде схематически показано на рис. 1. В закрытом с одной стороны цилиндре находятся два поршня. Верхний — поршень-в ы тесните ль служит для ускорения процесса периодического нагрева и охлаждения рабочего газа. Он представляет собой полый закрытый цилиндр из нержавеющей стали, плохо проводящий тепло, и перемещается под действием штока, связанного с кривошипно-шатунным механизмом.

Нижний поршень — рабочий (на рисунке показан в сечении). Он передает усилие на кривошипно-шатунный механизм через полый шток, внутри которого проходит шток вытеснителя. Рабочий поршень снабжен уплотняющими кольцами.

Под рабочим поршнем имеется буферная емкость, образующая подушку, выполняющую функцию маховика — сглаживать неравномерность крутящего момента благодаря отбору части энергии во время рабочего хода и отдаче ее на вал двигателя во время хода сжатия. Для изоляции объема цилиндра от окружающего пространства служат уплотнения типа «заворачивающийся чулок». Это резиновые трубки, прикрепленные одним концом к штоку, а другим к корпусу.

Верхняя часть цилиндра соприкасается с подогревателем, а нижняя — с холодильником. Соответственно в нем выделяются «горячий» и «холодный» объемы, свободно сообщающиеся между собой посредством трубопровода, в котором находится регенератор (теплообменник). Регенератор заполнен путанкой из проволоки малого диаметра (0,2 мм) и обладает высокой теплоемкостью (например, к. п. д. регенераторов фирмы Филипе превышает 95%).

Рабочий процесс двигателя Стирлинга может быть осуществлен и без вытеснителя, на основе применения золотникового распределителя рабочего заряда.

В нижней части двигателя расположен кривошипно-шатунный механизм, служащий для преобразования возвратно-поступательного движения поршня во вращательное движение вала. Особенностью этого механизма является наличие двух коленчатых валов, соединенных двумя шестернями со спиральными зубьями, вращающимися навстречу друг другу. Шток вытеснителя связан с коленчатыми валами посредством нижнего коромысла и прицепных шатунов. Шток рабочего поршня соединяется с коленчатыми валами через верхнее коромысло и прицепные шатуны. Система одинаковых шатунов образует подвижный деформируемый ромб, откуда и название этой передачи — ромбическая. Ромбическая передача обеспечивает необходимый сдвиг фаз при движении поршней. Она полностью уравновешена, в ней не возникают боковые усилия на штоки поршней.

В пространстве, ограниченном, рабочим поршнем, находится рабочий газ — водород или гелий. Полный объем газа в цилиндре не зависит от положения вытеснителя. Изменения объема, связанные со сжатием и расширением рабочего газа, происходят за счет перемещения рабочего поршня.

При работе двигателя верхняя часть цилиндра постоянно нагревается, например, от камеры сгорания, в которую впрыскивается жидкое топливо. Нижняя часть цилиндра постоянно охлаждается, например, холодной водой, прокачиваемой через водяную рубашку, окружающую цилиндр. Замкнутый цикл Стирлинга состоит из четырех тактов, изображенных на рис. 2.

Такт I — охлаждение . Рабочий поршень находится в крайнем нижнем положении, вытеснитель движется вверх. При этом рабочий газ перетекает из «горячего» объема над вытеснителем в «холодный» объем под ним. Проходя по пути через регенератор, рабочий газ отдает ему часть своего тепла, а затем охлаждается в «холодном» объеме.

Такт II — сжатие . Вытеснитель остается в верхнем положении, рабочий поршень движется вверх, сжимая рабочий газ при низкой температуре.

Такт III — нагревание . Рабочий поршень находится в верхнем положении, вытеснитель движется вниз. При этом сжатый холодный рабочий газ устремляется из-под вытеснителя в освобождающееся пространство над ним. По дороге рабочий газ проходит через регенератор, где предварительно подогревается, попадает в «горячую» полость цилиндра и нагревается еще сильнее.

Такт IV — расширение (рабочий ход) . Нагреваясь, рабочий газ расширяется, передвигая при этом вытеснитель и вместе с ним рабочий поршень вниз. Совершается полезная работа.

Стирлинг имеет замкнутый цилиндр. На рис. 3, а показана диаграмма теоретического цикла (диаграмма V — Р). По оси абсцисс отложены объемы цилиндра, по оси ординат — давления в цилиндре. Первый такт является изотермическим I-II, второй происходит при постоянном объеме II-III, третий — изотермический III-IV, четвертый — при постоянном объеме IV-I. Так как давление во время расширения горячего газа (III-IV) больше давления во время сжатия холодного газа (I-II), то работа расширения больше работы сжатия. Полезную работу цикла можно графически изобразить в виде криволинейного четырехугольника I-II-III-IV.

В действительном процессе поршень и вытеснитель движутся непрерывно, так как они связаны с кривошипно-шатунным механизмом, поэтому диаграмма действительного цикла скруглена (рис. 3, б).

Теоретический к. п. д. двигателя стирлинга составляет 70%. Исследования показали, что на практике можно получить к. п. д., равный 50%. Это значительно больше, чем у самых лучших газовых турбин (28%), бензиновых двигателей (30%) и дизелей (40%).


Стирлинг может работать на бензине, керосине, дизельном, газообразном и даже твердом топливе. По сравнению с другими двигателями, он имеет более мягкий и почти бесшумный ход. Объясняется это низкой степенью сжатия (1,3÷1,5), к тому же давление в цилиндре повышается плавно, а не взрывом. Продукты сгорания также выпускаются без Шума, так как сгорание происходит постоянно. В них сравнительно немного токсичных составляющих, потому что горение топлива происходит непрерывно и при постоянном избытке кислорода (α=1,3).

Стирлинг с ромбической передачей полностью уравновешен, в нем не возникает вибраций. Это качество, в частности, было учтено американскими инженерами, установившими одноцилиндровый стирлинг на искусственном спутнике Земли, где даже небольшая вибрация и неуравновешенность могут привести к потере ориентации.

Одним из проблемных вопросов остается охлаждение. В стирлинге с выпускными газами отводится только 9% тепла, получаемого от топлива, поэтому, например, при установке его на автомобиле пришлось бы делать радиатор примерно в 2,5 раза больше, чем при использовании бензинового двигателя той же мощности. Задача решается проще на судовых установках, где эффективное охлаждение обеспечивается неограниченным количеством забортной воды.


На рис. 4 показан разрез двухцилиндрового катерного двигателя Филипс мощностью 115 л. с. при 3000 об/мин с горизонтальным расположением цилиндров. Общий рабочий объем каждого цилиндра 263 см 3 . Поршни, расположенные оппозитно, соединены с двумя траверсами, что позволило полностью уравновесить газовые силы и обойтись без буферных объемов. Подогреватель выполнен из трубок, окружающих камеру сгорания, по которым проходит рабочий газ. Охладителем служит трубчатый холодильник, через который прокачивается забортная вода. Двигатель имеет два коленчатых вала, соединенных с гребным валом посредством червячных передач. Высота двигателя всего 500 мм, что позволяет установить его под настилом и таким образом уменьшить размеры машинного отсека.

Мощность стирлинга регулируется в основном изменением давления рабочего газа. Одновременно, чтобы поддерживать температуру подогревателя постоянной, регулируется и подача топлива. Для двигателя внешнего сгорания пригодны практически любые источники тепла. Важно, что он может превращать в полезную работу низкотемпературную энергию, на что не способны двигатели внутреннего сгорания. Из кривой на рис. 5 видно, что при температуре подогревателя всего 350° С к. п. д. стирлинга еще равен ≈ 20%.

Стирлинг экономичен — удельный расход топлива у него составляет всего 150 г/л. с. час. В энергетической установке «двигатель стирлинг- аккумулятор тепла», использующейся на американских спутниках Земли, тепловым аккумулятором служит гидрит лития, который поглощает тепло в период «освещения» и Отдает его стирлингу, когда спутник находится на теневой стороне Земли. На спутнике двигатель служит для привода генератора мощностью 3 квт при 2400 об/мин.

Создан опытный мотороллер со Стирлингом и аккумулятором тепла. Использование аккумулятора тепла и стирлинга на подводной лодке позволяет ей в несколько раз дольше идти в погруженном положении.

Литература

  • 1. Смирнов Г. В. Двигатели внешнего сгорания. «Знание», М., 1967.
  • 2. Dr. Ir. R. I. Meijer. Der Philips — Stirlingmotor, MTZ, N 7, 1968.
  • 3. Curtis Anthony. Hot air and the wind of change. The Stirling engine and its revival. Motor (Engl.), 1969, (135), N 3488.

Двигатель Стирлинга, принцип работы которого качественно отличается от привычного для всех ДВС, когда-то составлял последнему достойную конкуренцию. Однако на какое-то время о нем забыли. Как этот мотор используется сегодня, в чем заключается принцип его действия (в статье можно найти также чертежи двигателя Стирлинга, наглядно демонстрирующие его работу), и каковы перспективы применения в будущем, читайте ниже.

История

В 1816 году в Шотландии Робертом Стирлингом была запатентована названная сегодня в честь своего изобретателя. Первые двигатели горячего воздуха были изобретены еще до него. Но Стирлинг добавил в устройство очиститель, который в технической литературе называется регенератором, или теплообменником. Благодаря ему производительность мотора возрастала при удерживании агрегата в тепле.

Двигатель признали наиболее прочной паровой машиной из имеющихся на тот момент, так как он никогда не взрывался. До него на других моторах такая проблема возникала часто. Несмотря на быстрый успех, в начале двадцатого столетия от его развития отказались, так как он стал менее экономичным, по сравнению с появившимися тогда другими двигателями внутреннего сгорания и электродвигателями. Однако Стирлинг еще продолжал применяться в некоторых производствах.

Двигатель внешнего сгорания

Принцип работы всех тепловых моторов заключается в том, что для получения газа в расширенном состоянии необходимы большие механические усилия, чем при сжатии холодного. Для наглядной демонстрации этого можно провести опыт с двумя кастрюлями, наполненными холодной и горячей водой, а также бутылкой. Последнюю опускают в холодную воду, затыкают пробкой, затем переносят в горячую. При этом газ в бутылке начнет выполнять механическую работу и вытолкнет пробку. Первый двигатель внешнего сгорания основывался на этом процессе полностью. Правда, позже изобретатель понял, что часть тепла можно применять для подогрева. Таким образом, производительность значительно возросла. Но даже это не помогло двигателю стать распространенным.

Позже Эриксон, инженер из Швеции, усовершенствовал конструкцию, предложив охлаждать и нагревать газ при постоянном давлении вместо объема. В результате немало экземпляров стало использоваться для работы в шахтах, на судах и в типографиях. Но для экипажей они оказались слишком тяжелыми.

Двигатели внешнего сгорания от Philips

Подобные моторы бывают следующих типов:

  • паровой;
  • паротурбинный;
  • Стирлинга.

Последний вид не стали развивать из-за небольшой надежности и остальных не самых высоких показателей по сравнению с появившимися другими типами агрегатов. Однако в 1938 году компания Philips возобновила работу. Двигатели стали служить для приводов генераторов в неэлектрофицированных районах. В 1945 году инженеры компании нашли им обратное применение: если вал раскручивать электромотором, то охлаждение головки цилиндров доходит до минус ста девяносто градусов по Цельсию. Тогда решено было применять в холодильных установках усовершенствованный двигатель Стирлинга.

Принцип работы

Действие мотора заключается в работе по термодинамическим циклам, в которых при разной температуре происходит сжатие и расширение. При этом регулирование потоком рабочего тела реализуется за счет изменяющегося объема (или давления — в зависимости от модели). Таков принцип работы большинства подобных машин, которые могут иметь разные функции и конструктивные схемы. Двигатели могут быть поршневыми или роторными. Машины с их установками работают в качестве тепловых насосов, холодильников, генераторов давления и так далее.

Помимо этого, есть моторы с открытым циклом, где регулирование потоком реализуется посредством клапанов. Именно их называют двигателями Эриксона, кроме общего названия имени Стирлинга. В ДВС полезная работа осуществляется после предварительного сжатия воздуха, впрыска топлива, нагрева полученной смеси вперемешку со сгоранием и расширения.

Двигатель Стирлинга принцип работы имеет такой же: при низкой температуре происходит сжатие, а при высокой — расширение. Но по-разному осуществляется нагрев: тепло подводится через стенку цилиндра извне. Поэтому он и получил название двигателя внешнего сгорания. Стирлинг применял периодическое изменение температуры с вытеснительным поршнем. Последний перемещает газ с одной полости цилиндра в другую. С одной стороны, температура постоянно низкая, а с другой — высокая. При передвижении поршня вверх газ перемещается из горячей в холодную полость, а вниз — возвращается в горячую. Сначала газ отдает много тепла холодильнику, а затем от нагревателя получает столько же, сколько отдал. Между нагревателем и холодильником размещается регенератор — полость, наполненная материалом, которому газ отдает тепло. При обратном течении регенератор возвращает его.

Система вытеснителя соединена с рабочим поршнем, сжимающим газ в холоде и позволяющим расширяться в тепле. За счет сжатия в более низкой температуре происходит полезная работа. Вся система проходит четыре цикла при прерывистых движениях. Кривошипно-шатунный механизм при этом обеспечивает непрерывность. Поэтому резких границ между стадиями цикла не наблюдается, а Стирлинга не уменьшается.

Учитывая все вышесказанное, напрашивается вывод, что этот двигатель является поршневой машиной с внешним подводом тепла, где рабочее тело не покидает замкнутое пространство и не заменяется. Чертежи двигателя Стирлинга хорошо иллюстрируют устройство и принцип его действия.

Детали работы

Солнце, электричество, ядерная энергия или любой другой источник тепла может подводить энергию в двигатель Стирлинга. Принцип работы его тела заключается в применении гелия, водорода или воздуха. Идеальный цикл обладает термическим максимально возможным КПД, равным от тридцати до сорока процентов. Но с эффективным регенератором он сможет работать и с более высоким КПД. Регенерацию, нагрев и охлаждение обеспечивают встроенные теплообменники, работающие без масел. Следует отметить, что смазки двигателю нужно очень мало. Среднее давление в цилиндре составляет обычно от 10 до 20 МПа. Поэтому здесь требуется отличная уплотнительная система и возможность попадания масла в рабочие полости.

Сравнительная характеристика

В большинстве работающих сегодня двигателей подобного рода используется жидкое топливо. При этом непрерывное давление легко контролировать, что способствует снижению уровня выбросов. Отсутствие клапанов обеспечивает бесшумную работу. Мощность с массой сопоставимы моторам с турбонаддувом, а удельная мощность, получаемая на выходе, равна показателю дизельного агрегата. Скорость и крутящий момент не зависят друг от друга.

Затраты на производство двигателя гораздо выше, чем на ДВС. Но при эксплуатации получается обратный показатель.

Преимущества

Любая модель двигателя Стирлинга имеет много плюсов:

  • КПД при современном проектировании может доходить до семидесяти процентов.
  • В двигателе нет системы высоковольтного зажигания, распределительного вала и клапанов. Его не нужно будет регулировать в течение всего срока эксплуатации.
  • В Стирлингах нет того взрыва, как в ДВС, который сильно нагружает коленвал, подшипники и шатуны.
  • В них не бывает того эффекта, когда говорят, что «двигатель заглох».
  • Благодаря простоте прибора его можно эксплуатировать в течение длительного времени.
  • Он может работать как на дровах, так и с ядерным и любым другим видом топлива.
  • Сгорание происходит вне мотора.

Недостатки

Применение

В настоящее время двигатель Стирлинга с генератором используют во многих областях. Это универсальный источник электрической энергии в холодильниках, насосах, на подводных лодках и солнечных электрических станциях. Именно благодаря применению различного вида топлива имеется возможность его широкого использования.

Возрождение

Эти двигатели снова стали развиваться благодаря компании Philips. В середине двадцатого века с ней заключила договор General Motors. Она вела разработки для применения Стирлингов в космических и подводных устройствах, на судах и автомобилях. Вслед за ними другая компания из Швеции, United Stirling, стала заниматься их развитием, включая и возможное использование на

Сегодня линейный двигатель Стирлинга применяется на установках подводных, космических и солнечных аппаратов. Большой интерес к нему вызван из-за актуальности вопросов ухудшения экологической обстановки, а также борьбы с шумом. В Канаде и США, Германии и Франции, а также Японии идут активные поиски по развитию и совершенствованию его использования.

Будущее

Явные преимущества, которые имеет поршневой и Стирлинга, заключающиеся в большом ресурсе работы, применении разного топлива, бесшумности и малой токсичности, делают его очень перспективным на фоне мотора внутреннего сгорания. Однако с учетом того, что ДВС на протяжении всего времени совершенствовали, он не может быть легко смещен. Так или иначе, именно такой двигатель сегодня занимает лидирующие позиции, и сдавать их в ближайшее время не намерен.

Двигатели внешнего сгорания стали использоваться тогда, когда людям потребовался мощный и экономичный источник энергии. До этого использовались паровые установки, однако они были взрывоопасными, так как использовали горячий пар под давлением. В начале 19 века им на смену пришли устройства с внешним сгоранием, а еще через несколько десятков лет были изобретены уже привычные приборы с внутренним сгоранием.

Происхождение устройств

В 19 веке человечество столкнулось с проблемой, которая заключалась в том, что паровые котлы слишком часто взрывались, а также имели серьезные конструктивные недостатки, что делало их использование нежелательным. Выход был найден в 1816 году шотландским священником Робертом Стирлингом. Эти устройства можно также называть «двигателями горячего воздуха», которые применялись еще в 17 веке, однако этот человек добавил к изобретению очиститель, называющийся в настоящее время регенератором. Таким образом, двигатель внешнего сгорания Стирлинга был способен сильно повысить производительность установки, так как он сохранял тепло в теплой рабочей зоне, в то время как рабочее тело охлаждалось. Из-за этого эффективность работы всей системы была значительно увеличена.

В то время изобретение использовалось достаточно широко и находилось на подъеме своей популярности, однако со временем его перестали использовать, и о нем забыли. На смену оборудованию внешнего сгорания пришли паровые установки и двигатели, но уже привычные, с внутренним сгоранием. Вновь о них вспомнили лишь в 20 веке.

Работа установки

Принцип работы двигателя внешнего сгорания заключается в том, что в нем постоянно чередуются два этапа: нагревание и охлаждение рабочего тела в замкнутом пространстве и получение энергии. Данная энергия возникает из-за того, что постоянно изменяется объем рабочего тела.

Чаще всего рабочим веществом в таких устройствах становится воздух, однако возможно использование еще и гелия или водорода. В то время пока изобретение находилось на стадии разработки, в качестве опытов использовались такие вещества, как двуокись азота, фреоны, сжиженный пропан-бутан. В некоторых образцах пытались применять даже обычную воду. Стоит отметить, что двигатель внешнего сгорания, который запускали с водой в качестве рабочего вещества, отличался тем, что у него была достаточно высокая удельная мощность, высокое давление, а сам он был достаточно компактным.

Первый тип двигателя. «Альфа»

Первой моделью, которая использовалась, стала «Альфа» Стирлинга. Особенность его конструкции состоит в том, что она имеет два силовых поршня, находящихся в разных в раздельных цилиндрах. Один из них имел достаточно высокую температуру и был горячим, другой, наоборот, холодным. Внутри теплообменника с высокой температурой располагалась горячая пара цилиндр-поршень. Холодная пара находилась внутри теплообменника с низкой температурой.

Основными преимуществами теплового двигателя внешнего сгорания стало то, что они имели высокую мощность и объем. Однако температура горячей пары при этом была слишком велика. Из-за этого возникали некоторые технические трудности в процессе изготовления таких изобретений. Регенератор данного устройства находится между горячей и холодной соединительными трубками.

Второй образец. «Бета»

Вторым образцом стала модель «Бета» Стирлинга. Основное конструктивное отличие заключалось в том, что имелся лишь один цилиндр. Один из его концов выполнял роль горячей пары, а другой конец оставался холодным. Внутри данного цилиндра перемещался поршень, с которого можно снимать мощность. Также внутри имелся вытеснитель, который отвечал за изменение объема горячей рабочей зоны. В данном оборудовании использовался газ, который перекачивался из холодной зоны в горячую через регенератор. Этот вид двигателя внешнего сгорания обладал регенератором в виде внешнего теплообменника или же совмещался с поршнем-вытеснителем.

Последняя модель. «Гамма»

Последней разновидностью данного двигателя стала «Гамма» Стирлинга. Этот тип отличался не только наличием поршня, а также вытеснителя, а еще и тем, что в его конструкцию входили уже два цилиндра. Как и в первом случае один из них был холодным и использовался он для отбора мощности. А вот второй цилиндр, как в предыдущем случае, был холодным с одного конца и горячим с другого. Здесь же перемещался вытеснитель. В поршневом двигателе внешнего сгорания также имелся регенератор, который мог быть двух типов. В первом случае он был внешним и соединял между собой такие конструктивные части, как горячую зону цилиндра с холодной, а также с первым цилиндром. Второй тип — это внутренний регенератор. Если использовался этот вариант, то он входил в конструкцию вытеснителя.

Использование Стирлингов обосновано в том случае, если необходим простой и небольшой преобразователь тепловой энергии. Также его можно использовать в том случае, если разница температур недостаточно велика, чтобы использовать газовые или же паровые турбины. Стоит отметить, что на сегодняшний день такие образцы стали использоваться чаще. К примеру, используются автономные модели для туристов, которые способны работать от газовой конфорки.

Применение устройств в настоящее время

Казалось бы, что такое старое изобретение не может использоваться в наши дни, однако это не так. NASA заказало двигатель внешнего сгорания типа Стирлинга, однако в качестве рабочего вещества должны использоваться ядерные и радиоизотопные источники тепла. Кроме этого, он также успешно может быть использован в следующих целях:

  • Использовать такую модель двигателя для перекачки жидкости гораздо проще, чем обычный насос. Во многом это благодаря тому, что в качестве поршня можно применять саму перекачиваемую жидкость. Кроме того, она же и будет охлаждать рабочее тело. К примеру, такой вид «насоса» можно использовать, чтобы накачивать воду в ирригационные каналы, используя для этого солнечное тепло.
  • Некоторые изготовители холодильников склоняются к установке таких устройств. Стоимость продукции удастся снизить, а в качестве хладагента можно применять обычный воздух.
  • Если совместить двигатель внешнего сгорания этого типа с тепловым насосом, то можно оптимизировать работу тепловой сети в доме.
  • Довольно успешно Стирлинги используются на подводных лодках ВМС Швеции. Дело в том, что двигатель работает на жидком кислороде, который впоследствии используется для дыхания. Для подводной лодки это очень важно. К тому же такое оборудование обладает достаточно низким уровнем шума. Конечно, агрегат достаточно большой и требует охлаждения, но именно эти два фактора несущественны, если речь идет о подводной лодке.

Преимущества использования двигателя

Если во время конструирования и сборки применить современные методы, то удастся поднять коэффициент полезного действия двигателя внешнего сгорания до 70%. Использование таких образцов сопровождается следующими положительными качествами:

  • Удивительно, однако крутящий момент в таком изобретении практически не зависит от скорости вращения коленчатого вала.
  • В данном силовом агрегате отсутствуют такие элементы, как система зажигания и клапанная система. Также здесь отсутствует распредвал.
  • Достаточно удобно то, что на протяжении всего периода использования не потребуется проводить регулировку и настройку оборудования.
  • Данные модели двигателя не способны «заглохнуть». Простейшая конструкция аппарата позволяет использовать его достаточно продолжительное время в полностью автономном режиме.
  • В качестве источника энергии можно использовать практически все, начиная от дров и заканчивая урановым топливом.
  • Естественно, что в двигателе внешнего сгорания процесс сжигания веществ осуществляется снаружи. Это способствует тому, что топливо дожигается в полном объеме, а количество токсических выбросов минимизируется.

Недостатки

Естественно, что любое изобретение не лишено недостатков. Если говорить о минусах таких двигателей, то они заключаются в следующем:

  1. Из-за того что сгорание осуществляется вне двигателя, отвод получаемого тепла происходит через стенки радиатора. Это вынуждает увеличивать габариты устройства.
  2. Материалоемкость. Для того чтобы создать компактную и эффективную модель двигателя Стирлинг, необходимо иметь качественную жаропрочную сталь, которая сможет выдержать большое давление и высокую температуру. Кроме того, должна быть низкая теплопроводность.
  3. В качестве смазки придется покупать специальное средство, так как обычное коксуется при высоких температурах, которые достигаются в двигателе.
  4. Для получения достаточно высокой удельной мощности придется использовать либо водород, либо гелий в качестве рабочего вещества.

Водород и гелий в качестве топлива

Получение высокой мощности, конечно же, необходимо, однако нужно понимать, что использование водорода или гелия достаточно опасно. Водород, к примеру, сам по себе достаточно взрывоопасен, а при высоких температурах он создает соединения, которые называются металлогидритами. Это происходит, когда водород растворяется в металле. Другими словами, он способен разрушить цилиндр изнутри.

Кроме того, и водород, и гелий — это летучие вещества, которые характеризуются высокой проникающей способностью. Если говорить проще, то они достаточно легко просачиваются сквозь практически любые уплотнения. А потери вещества означают потери в рабочем давлении.

Роторный двигатель внешнего сгорания

Сердце такой машины — это роторная машина расширения. Для двигателей с внешним типом сгорания этот элемент представлен в виде полого цилиндра, который с обеих сторон прикрыт крышками. Сам по себе ротор имеет вид колеса, который посажен на вал. Также у него имеется определенное количество П-образных выдвигающихся пластин. Для их выдвижения используется специальное выдвижное устройство.

Двигатель внешнего сгорания Лукьянова

Юрий Лукьянов — это научный сотрудник Псковского политехнического института. Он уже достаточно давно занимается разработкой новых моделей двигателей. Ученый старался сделать так, чтобы в новых моделях отсутствовали такие элементы, как коробка передач, распредвал и выхлопная труба. Основной недостаток устройств Стирлинга заключался в том, что они имели слишком большие габариты. Именно этот недостаток ученому и удалось устранить за счет того, что лопасти были заменены на поршни. Это помогло уменьшить размер всей конструкции в несколько раз. Некоторые говорят о том, что можно сделать двигатель внешнего сгорания своими руками.

Двигатели внешнего сгорания

Важным элементом реализации программы энергосбережения является обеспечение автономными источниками электроэнергии и тепла небольших жилых образований и удаленных от централизованных сетей потребителей. Для решения этих задач как нельзя лучше подходят инновационные установки для генерации электроэнергии и тепла на основе двигателей внешнего сгорания. В качестве топлива может использоваться как традиционные виды топлива, так и попутный нефтяной газ, биогаз, получаемый из древесных стружек и пр.

На протяжении последних 10 лет отмечались повышения цен на ископаемое топливо, повышенное внимание к выбросам СО 2 , а также растущее желание перестать зависеть от ископаемого топлива и полностью обеспечивать себя энергией. Это стало следствием развития огромного рынка технологий, способных производить энергию из биомассы.

Двигатели внешнего сгорания были изобретены почти 200 лет тому назад, в 1816 году. Вместе с паровым двигателем, двух- и четырехтактным двигателем внутреннего сгорания, двигатели внешнего сгорания считаются одними из основных типов двигателей. Они были разработаны с целью создания двигателей, которые были бы более безопасными и производительными, чем паровой двигатель. В самом начале 18-го века отсутствие подходящих материалов приводило к многочисленным случаям со смертельным исходом в связи со взрывами паровых двигателей, находящихся под давлением.

Значительный рынок для двигателей внешнего сгорания сформировался во второй половине 18-го века, в частности, в связи с более мелкими сферами применения, где их можно было безопасно эксплуатировать без необходимости в услугах квалифицированных операторов.

После изобретения двигателя внутреннего сгорания в конце 18-го века рынок для двигателей внешнего сгорания исчез. Стоимость производства двигателя внутреннего сгорания в сравнении со стоимостью производства внешнего сгорания ниже. Основной недостаток двигателей внутреннего сгорания заключается в том, что для их работы необходимо чистое, ископаемое топливо, увеличивающее выбросы СО2, топливо. Однако, до недавнего времени стоимость ископаемого топлива была низкой, а выбросам СО2 не уделялось должного внимания.

Принцип работы двигателя внешнего сгорания

В отличие от широко известного процесса внутреннего сгорания, при котором топливо сжигается внутри двигателя, двигатель внешнего сгорания, приводится в действие внешним источником тепла. Или, точнее говоря, она приводится в действие разностями температур, создаваемыми внешними источниками нагревания и охлаждения.

Этими внешними источниками нагревания и охлаждения могут служить отработанные газы биомассы и охлаждающая вода соответственно. Процесс приводит к вращению генератора, монтированного на двигателе, посредством чего производится энергия.

Все двигатели внутреннего сгорания приводятся в действие разностями температур. Бензиновые, дизельные двигатели и двигатели внешнего сгорания основаны на той особенности, что для сжатия холодного воздуха необходимо меньше усилий, чем для сжатия горячего воздуха.

Бензиновые и дизельные двигатели всасывают холодный воздух и сжимают этот воздух, прежде чем он подогревается в процессе внутреннего сгорания, который происходит внутри цилиндра. После подогревания воздуха над поршнем поршень перемещается вниз, посредством чего воздух расширяется. Так как воздух горячий, сила, действующая на шток поршня, велика. Когда поршень доходит до низа, клапаны открываются и горячие выхлопы заменяются новым, свежим, холодным воздухом. При движении поршня вверх холодный воздух сжимается, причем сила, действующая на шток поршня, меньше, чем при его движении вниз.

Двигатель внешнего сгорания работает в соответствии с немного другим принципом. В нем нет клапанов, он герметически запаян, а воздух подогревается и охлаждается при помощи теплообменных аппаратов горячего и холодного контура. Встроенный насос, приводимый в действие движением поршня, обеспечивает движение воздуха туда и обратно между этими двумя теплообменными аппаратами. Во время охлаждения воздуха в теплообменном аппарате холодного контура поршень сжимает воздух.

После сжатия воздух затем подогревается в теплообменном аппарате горячего контура, прежде чем поршень начинает двигаться в обратном направлении и использовать расширение горячего воздуха для приведения в действие двигателя.

Двигатель внешнего сгорания. Старый, но не забытый. | РетроТехника. Просто о сложном.

Двигатель Стирлинга.

Двигатель Стирлинга.

Все мы привыкли к словосочетанию «Двигатель внутреннего сгорания«. Его вполне можно назвать устойчивым, ведь когда мы его произносим, слышим или читаем, то не воспринимаем эти слова по отдельности, только вместе. То же можно сказать об электро двигателе. А вот Двигатель внешнего сгорания сразу создаёт диссонанс в нашем сознании. Мы просто спотыкаемся и заостряем внимание на этих трёх словах, особенно на том, что в середине. Слишком оно выпячивается и не вписывается в привычный смысл… Но такой двигатель существует!
Расскажу о своём первом впечатлении от встречи с ним. Не с самим двигателем в натуре, а об его упоминании в печатном издании. Это была, как не странно, Литературная газета. Я был ещё совсем молодым человеком, выпускником технического ВУЗа, и большим любителем новинок различной техники, которая как-то вдруг стала активно появляться и развиваться семимильными шагами. Этот процесс был запущен гораздо раньше, но я стал активно интересоваться им в середине 70-х годов. Просто, в силу своего возраста. До этого у меня были другие интересы. Основные взгляды на технику я черпал из журналов «Изобретатель и рационализатор»,»Радио», «Моделист-конструктор», «Юный Моделист-конструктор», «Техника молодёжи», «Юный техник» … Эти издания выписывал мой отец, и я их тоже любил и читал. Но вот о Двигателе внешнего сгорания ничего не знал. А тут, в Литературке появилась о нём статья с свете развития космических технологий. Это вообще уникальная газета для того времени. Она была еженедельной и появлялась в киосках «Союзпечать» по средам. Стоила 15 копеек, что гораздо дороже обычных газет (от 2-х до 5 копеек), но она была «толстая» — целых 16 страниц, и тематически охватывала очень большой объём информации от юмора, литературы и искусства до политики, науки, техники и ещё очень много интересных тем. Поэтому, по средам у газетных киосков собиралась приличная очередь из самой разнообразной «публики» разных социальных, возрастных, профессиональных и прочих слоёв советского общества. И вот, именно в ней и была та статья, где описывалось устройство и принцип работы двигателя внешнего сгорания. Точно не помню, но это было в конце 70-х – начале 80-х годов. Как сейчас помню, мы с семьёй пошли в кино и я по дороге купил Литературку. Пока ждали начала сеанса, я наткнулся на эту статью, но дочитать не успел и весь фильм ждал окончания, чтобы прочитать до конца… Не судите за длинное вступление. Просто хочется передать ту атмосферу и чувства молодого механика, который набрёл на такой интересный материал. Позднее я встречал статьи на эту тему и в других источниках, но первое впечатление было очень сильным.
Теперь немного о принципе работы и конструкции этого замечательного агрегата. Он до безобразия прост! Самое простое объяснение его работы — это пример с бутылкой, закрытой обычной пробкой. Если мы погрузим её дном в горячую воду, то воздух внутри нагреется и его давление возрастёт. В какой-то момент его хватит для того, чтобы вытолкнуть пробку из горлышка. А если сделать вместо пробки трубку с поршнем, то он сдвинется до уравновешивания давления внутри и снаружи бутылки, и только тогда остановится. То есть произведена работа — движение поршня. Если прекратить нагрев, воздух охладится и снова снова сожмётся, поршень втянется обратно… Если к поршню через шатун присоединить маховик, то можно подобрать его длину так, что маховик провернётся на пол оборота, а по инерции даже немного больше. Чтобы его вращение продолжилось, воздух должен остыть, потом снова нагреться и так далее. А чтобы это происходило автоматически, рядом был сделан ещё один цилиндр с поршнем и его тоже соединили шатуном с тем же маховиком. Только второй цилиндр не нагревался, а охлаждался. Внутренние полости обоих цилиндров соединены между собой, например, трубкой. Когда в первом цилиндре воздух нагревается и расширяется, поршень двигается, крутит маховик и перегоняет воздух за поршнем в другой цилиндр, где он охлаждается… В первом цилиндре поршень не очень плотно подогнан к цилиндру и воздух подмешивается к нагретому, а за счёт инерции маховика и охлаждения (и сжатия) воздуха во втором (с плотно подогнанным поршнем), движение продолжается и двигатель работает дальше. Просто вначале, при нагреве, необходим дополнительный импульс для раскручивания маховика. Чем больше разница температур нагретого и охлаждённого цилиндров, тем большая мощность будет выработана двигателем. Эта схема двигателя была придумана и запатентована шотландским священником Робертом Стирлингом в 1816 году, хотя сам принцип работы воздушного двигателя был известен гораздо ранее.
Схема, которую я описа́л, так и называется — Двигатель Стирлинга. Он придумал несколько вариантов подобных двигателей, которые отличались разным исполнением цилиндро-поршневой системы, где мог быть один общий цилиндр с разными поршнями в горячей и холодной зоне, Первый опи́санный вариант он назвал Альфа, второй (с одним цилиндром) — Бета, а третий (с двумя цилиндрами и дополнительным промежуточным охладителем, который назвали Регенератором) — Гамма.
Не буду отбирать «хлеб» у тех, кто уже очень подробно описа́л все эти конструкции, лишь приведу небольшую галерею рисунков и фотографий, найденных на просторах сервиса Яндекс-картинок.

Двигатель Стирлинга вариант Альфа.Двигатель Стирлинга вариант Бета.Двигатель Стирлинга вариант Гамма.

Двигатель Стирлинга вариант Альфа.

Основное отличие Двигателя внешнего сгорания от внутреннего — это бо́льший КПД и тихая работа. Ведь в нём не происходит никаких взрывных, детонационных и выхлопных процессов, стука клапанов и прочих шумов, присущих бензиновым и дизельным двигателям. От парового двигателя он также отличается гораздо бо́льшим КПД и отсутствием шума, а главное — в нём нет взрывоопасных областей высокого давления, при мощности, зависящей только от разности температур горячей и холодной зон. Для сравнения — если КПД Парового двигателя в паровозе — Менее 15 %, КПД двигателей внутреннего сгорания достигает показателей от 25 % у бензиновых до 40 % у дизельных, то у двигателей внешнего сгорания он может достигать 50-ти, а по некоторым источникам 70 % и более при использовании современной керамики. При этом нужно использовать не просто воздух, а специальные газовые смеси на основе гелия и водорода, они имеют повышенную теплоёмкость и практически удваивают обороты и мощность двигателя. Расход этих газов минимален, и зависит только от качества уплотнительных соединений двигателя. Могут так же использоваться сжиженные газы или вода (пар).
Это видео я нашёл на канале U-Tube. Здесь прекрасно видно, что при внешнем нагреве двигатель работает, как бы сам по себе. Никаких сложных карбюраторов, клапанов и свечей зажигания… Или форсунок и топливных насосов… Простое нагревание и толчёк маховика… А главное — нечему ломаться или засоряться. Пока шарниры и уплотнения не износятся и не заклинят, он будет работать!

Область применения у Двигателей внешнего сгорания может быть очень обширная. Для нагрева рабочей части возможно использовать всё, что горит или нагревает. Любые горючие отходы, тепло солнца, подземные источники тепла, биогазы в сельском хозяйстве и прочее… Представьте себе космический корабль или станцию, на которой одна сторона двигателя нагревается солнцем, а другая охлаждается космическим холодом. Перепад огромный и двигатель может работать годами и преобразовывать механическую энергию в электрическую. Или подводную лодку. Тепла вырабатывается много, и его приходится отводить наружу, холодная вода — прекрасный охладитель для низкотемпературной области двигателя. .. Областей применения не счесть. Основной недостаток — это габариты и вес такого двигателя, а также смазка внутренних трущихся поверхностей. Но при современных конструкционных материалах эти показатели существенно улучшаются. К тому же эти двигатели совсем не нуждаются в обслуживании. Они остаются работоспособными весь заранее известный период времени — ресурс. А он весьма велик.

Современных схем Двигателей внешнего сгорания существует довольно много. Они бывают многоцилиндровые со сложным распредвалом, с несколькими цилиндрами, расположенными по кругу; роторные двигатели с выдвижными лопостями и переменным профилем цилиндра; конструкции с регенераторами газовых смесей и прочими премудростями.

Схема роторного двигателя внешнего сгорания.Схема роторного двигателя внешнего сгорания с выдвижными лопастями.Схема роторного двигателя внешнего сгорания с одной подвижной лопастью.

Схема роторного двигателя внешнего сгорания.

А ещё двигатель Стирлинга может работать «наоборот» — при внешнем вращении маховика, он работает на охлаждение применяемого газа, то есть , как холодильник! И весьма эффективный. При таком использовании, температуру рабочего тела удавалось понизить до минус 190° C, что позволяет их применять для сжижения газа.
Очень многие специалисты считают, что будущее именно за этими двигателями. Но так считают уже на протяжении всего времени с изобретения и существования Двигателя внешнего сгорания. К сожалению, тем, от кого это зависит, выгодно использовать дорогие источники энергии. Что взять с двигателя, который работает сам по себе? От этого выиграет потребитель, а они как бы и ни причём… Хочется надеяться, что это замечательная конструкция всё же займёт своё заслуженное место в нашей жизни. Лично меня не интересует благосостояние олигархов, наживающихся на нас, простых людях.

Заранее предупреждаю критиков — эта статья, в основном, посвящена моему впечатлению от этой конструкции и её популяризации. Подробную информацию об этих двигателях можно в изобилии найти в сети. Чем больше будет о них информации, тем ближе критическая точка неприятия её нашими и ненашими властьимущими, теми, кто влияет на внедрение технологий в нашу с Вами борьбу за выживание.

С Андрианов.

Роторные двигатели внешнего сгорания

Первые тепловые машины созданные человечеством были машинами внешнего сгорания. Они широко (для того времени) использовались в различных  отраслях промышленности и на транспорте. Как правило, основой преобразования энергии газа во вращательное движение была кинематика поршневого двигателя с кривошипно-шатунным механизмом. После создания двигателей внутреннего сгорания, сфера применения двигателей с внешним подводом тепла значительно сократилась. В последнее время в связи с развитием  технологии, появлением новых материалов появились перспективы реализовать потенциальные возможности двигателей  внешнего сгорания. Их относительная экологическая чистота, возможность применения помимо традиционного другого разнообразного топлива  или источников тепла (солнечной, ядерной энергии) меньшая шумность возродила интерес к ним.

Одним из самых конструктивно и технологически проработанным (не считая турбин)  двигателем внешнего сгорания является двигатель Стирлинга, который к тому же имеет довольно высокий теоретический (до 70 %) КПД. Правда, основные модификации  (альфа, бета, гамма) таких двигателей конструктивно сложны и громоздки, а схема преобразования теплоты, содержащейся в топливе, предполагает значительные потери механической энергии, и небольшую по сравнению с обычным ДВС, удельную мощность. Кроме того, сложно решить  вопросы уплотнения и    герметизации рабочего тела. И попытки обойти эти проблемы в существующих схемах, даже с учетом новых технологий, пока не привели к созданию конкурентоспособной  с обычным ДВС силовой установки.

Авторы предлагают варианты схем построения двигателей внешнего сгорания, лишенных, на их взгляд,  некоторых из вышеописанных, существенных недостатков. Такие схемы позволяют иметь высокие удельные характеристики двигателей, меньшие требования к уплотнениям, использование распространенных компонент в качестве рабочего тела и более низкие значения средних давлений цикла без потери эффективности. Тип расширительной машины  и схемы построения двигателя позволяют иметь два важных свойства.

 Первое – однонаправленностьпроцесса  исключает потери, связанные с изменением направления  движения рабочего тела. Возвратно–поступательное движение поршневой машины (большинство построенных двигателей имеет этот тип кинематики), создает  и  соответственное движение рабочего тела. А это,  при больших паразитных объемах и на высоких частотах вращения, приводит  к уменьшению   перемещаемой массы рабочего тела в системе согласно тактам цикла. В существующих двигателях с возвратно поступательным движением, порции рабочего тела не могут в цикле находится более чем в двух смежных тактах.  Приходится резко ограничивать объемы теплообменников и трубопроводов. Ограничение объемов теплообменников  свою очередь ведет к  снижению скорости теплообмена. И тогда, для построения двигателей с высокими удельными характеристиками полученных за счет значительных оборотов, надо   использовать рабочее тело с большим коэффициентом теплопередачи (водород, гелий). А  ограничение объемов трубопроводов приводит  к большим газодинамическим потерям (уменьшение проходного сечения).

Однонаправленность, же позволяет иметь в устоявшемся режиме относительно  постоянную скорость рабочего тела в системе и темне позволяет пружинить рабочим телом, что значительно уменьшает потери от паразитных объемов. Используя это свойство можно иметь в теплообменнике 2-3 «порций» рабочего тела. Отсюда,  при сквозном проходе рабочего тела по закольцованному контуру, время теплообмена можно увеличить в 2-3 раза, и при этом  иметь более развитую  площадь теплообмена за счет больших теплообменников. А это в свою очередь увеличит и скорость теплообмена. Похожие схемы имеют двигатель Нисковских и частично Цвауэра.

Второе –  параллелизм,  кратно увеличивающий (при равном количестве рабочих тактов в единицу времени) время такта в цикле т.к. каждый такт в параллельных секциях происходит   одновременно и синфазно, что приводит и соответственному увеличению  времени теплообмена. К примеру, это время вчетверо больше, чем в существующих двигателях Стирлинга любой модификации с последовательным чередованием тактов  цикла.  И это качество, при равных условиях, позволяет иметь меньшую  скорость рабочего тела, тем самым значительно уменьшая и газодинамические потери.

  В итоге, реализуя оба свойства длительность теплообмена   можно увеличить на порядок. А это  – повышение удельных показателей двигателей использующих доступный газ, к примеру азот  (воздух) на уровень двигателей, где в качестве рабочего тела используется вещество с большим коэффициентом передачи теплоты (водород и гелий). И поэтому появляется возможность создания относительно дешевых двигателей с высокими удельными характеристиками, с меньшими требованиями к уплотнениям, с функцией  компенсации потери рабочего тела(воздух) и поддержании среднего давления цикла посредством подкачки (компрессор с независимым приводом или от двигателя, ресивер и т.д.) из атмосферы. Кроме того, более высокая масса воздуха (по сравнению с водородом), при однонаправленном движения  рабочего тела, способствует накоплении энергии, чем выравниваются возникающие пульсации потока.

 Естественно в качестве рабочего тела можно использовать и другие газы, а с применением  водорода или  гелия можно кратно увеличить удельную мощность (за счет оборотов)   по отношению к существующим двигателям, до пределов механических ограничений.

Сердце данных двигателей его силовая часть, основа преобразования – роторная машина расширения (Рис.1).

 

 

 

 

 

 

 Машина расширения для двигателя внешнего сгорания  содержит неподвижный корпус  представляющий полый цилиндр, который с торцов прикрыт крышками, ротор  в виде посаженного на вал  колеса и имеющего n  П-образных выдвигающихся, посредством выдвижного устройства (ВУ), пластин –лопаток расположенных в спицах. Внутренняя ободная поверхность корпуса и внешняя ободная поверхность ротора образуют n  синусоидальнообразных полостей с впускными и выпускными окнами каждая.

  Конструктивные особенности машины расширения позволяют иметь довольно значительные объемы полостей, при небольших общих габаритах. Самым оптимальным является трехлопаточный вариант, (и при  дальнейшем увеличении лопаток — кратно трем) обеспечивающий при минимальном диаметре ротора максимальное значение опорной части лопаток при  их полном выдвижении, и наибольшую величину этого выдвижения.

Механизм ВУ обладает несложной кинематикой и суть вспомогательное устройство, а не элемент преобразования энергии, и служит для согласования выдвижения лопаток с углом поворота ротора. Механизм ВУ не подвергается большим динамическим нагрузкам  и не является  источником значительных механических потерь.

 Герметизацию полостей машины расширения можно обеспечить путем лабиринтных уплотнений. В внутриободном пространстве ротора можно иметь избыточное давление без потерь КПД ( в отличии альфа модификаций, где подпоршневое давление в картере уменьшает КПД). Лопатки находятся в закрытых (изолированных от внутриободного пространства ротора) каналах расположенных в спицах с выходом только в рабочие полости и  соединенных с элементами ВУ (толкателями) через легко уплотняемые штоки. Последние, в свою очередь, могут быть защищены гофрированными втулками от масла. Внутриободное пространство ротора в свою очередь должно быть отделено (не показано) от подверженного  смазке около осевого пространства (где расположены элементы ВУ). В каналах лопаток (лучше с выталкивающей стороны) расположены желобки, для подвода рабочего тела к тыльной грани лопаток, что бы избежать  тормозящего разряжения.

                        Работа машины расширения осуществляется следующим образом (Рис.2).

 

 

 

 

 

 

 

 

 

 

 Рабочее тело  через впускное окно  подается в рабочую полость  и, воздействуя на заднюю грань (по ходу вращения) лопатки, заставляет ротор  вращаться. А в дальнейшем  лопатка своей передней гранью выталкивает отработанное рабочее тело через выпускное окно, чем обеспечивается  его прямоточное движение внутри расширительной машины.

Построение двигателя как комбинации нескольких размещенных на одном валу модулей (секций машин расширения) с подобранными объемами полостей и расположением зон нагрева и охлаждения, позволяет задать  любой термодинамический цикл его работы (с учетом параметров рабочего тела, конструкционных материалов, и используемого топлива), к примеру  цикл Стирлинга, Эриксона и т. д. Варианты схем построения двигателей ограниченны только рациональностью и здравым смыслом и показывают гибкость данной конструкции.

Классический цикл Стирлинга  реализуется в двигателе, в котором  на всех этапах цикла используется  только газообразное рабочее тело с четырьмя переменными объемами и с использованием регенераторов (Рис3. схема построения).

 

 

 

 

 

 

 

 

 Двигатель составлен из последовательно расположенных на одном валу  секций-модулей  Si  (где i = 1,2…k), каждая из которых имеет  N полостей  определенного (условного) объема Vi. И двигатель состоит из двух четко разделенных частей.  Однанагревается (горячая) Dh, а другаяохлаждается (холодная) Dc.. Участки корпуса и ротора, принадлежащие к разным частям, теплоизолированы друг от друга.   Основные элементы Ву (кривошипы, коромысло) расположены в «холодной» части двигателя. Водило с расположенными на нем элементами, организующими качание вала выдвижного устройства,  может быть общим для всех секций двигателя. А вал ВУ проходит по геометрической оси через общий полый вал роторов модулей  и «поэтажно» имеет рычаги с толкателями лопаток. Этим обеспечивается синфазное выдвижение лопаток  всех модулей.  Каждая часть состоит из  двух секций S. Соотношение объемовVполостей соответствующих секций Si (модулей), ( V1 = V2, V3 = V4для цикла Стирлинга).  Выпускные окна  полостей одной секции (Si)последовательно соединены трубопроводами с впускными окнами  другой Si+1 (последующей по циклу). А так, как не имеет значения, из какой полости секции (Si) рабочее тело перейдет в конкретную полость следующей по циклу секции (Si+1), то можно  выходы одной секции и   входы следующей свести в один коллектор  кольцевого типа, охватывающий двигатель и исполняющий роль теплообменника, причем   значительная  площадь его поверхности  будет этому способствовать. В определенном месте (в соответствии с термодинамическим циклом) в  разрез трубопроводов противонаправленных потоков рабочего тела вставлены вращающиеся вокруг своей оси дисковые регенераторы (регенератор) рабочеготела Rg 1.  Регенераторимеет радиальное разделение его насадок на секторы теплоизоляционными продольными пластинами (в поперечном разрезе –  как цитрусовые). Трубопроводы различных направлений (относительно зон нагрева и охлаждения), в разрез которых вставлен диск-кассета,  чередуясь, последовательно разнесены с учетом направления вращения диска с насадками (причем на один диск могут подводится трубопроводы от нескольких полостей, или их общего коллектора). Скорость вращения диска регенератора  и толщина насадок должна быть согласована со скоростью вращения ротора, с учетом привода от двигателя (возможный и независимый привод). Задавая направленность рабочего тела (подсоединением трубопроводов к соответствующим сторонам диска регенератора), можно еще  использовать и резонансный эффект.

Для предотвращения потерь связанных с холостым проходом рабочего тела рабочих полостей, в модуле расширения (или в других модулях в зависимости от цикла), при нахождении лопаток в зоны перехода, нужна перекрывающая задвижка перед впускным окном соответствующего модуля. Диск регенератора также может исполнять роль запирающей задвижки, перекрывающей трубопровод в момент прохождения лопаткой зону перехода, когда соответствующий сектор будет  глухо закрыт пластиной.

 Нагрев рабочего тела происходит в нагревателе Hот любого источника тепла ((в представленном – горелки). Охлаждение рабочего тела в холодильнике С посредством  охлаждающей жидкости с последующим отводом тепла через радиатор Rd.  Нагрев и охлаждение также захватывают стенки  модулей в соответствии расположении последних  в определенных  зонах (частях ) двигателя.  Для более эффективного использования тепла рабочего тела  служит и  предварительный теплообменник НС 1 выравнивающий  температуру отходящего и входящего потока  рабочего тела. Для регулировки мощности служит золотник Z , управляемый посредством  штока,  и перепускной канал, соединяющий выпускной трубопровод секции  S1 с впускным. Выдвигаясь, при регулировании, золотник отсекает часть потока рабочего тела выходящего из модуля «холодного» отдела и следующего в «теплый»  и возвращает во входящий трубопровод данного модуля. Тем самым определяется количество рабочего тела проходящего через зону нагрева, что  и  соответственно влияет на изменение мощности с высокой степенью реакции.

Подвод воздуха к горелкам (для источников тепла требующих кислород) происходит посредством нагнетателя, через воздушный  регенератор Rg 2( построенного аналогично Rg 1) и  встроенного в противонаправленные каналы подвода воздуха и отвода  отработанных газов. Тем самым идет подогрев воздуха к горелкам и уменьшаются тепловые потери. Для той же цели  также используется  и воздушный предварительный теплообменник НС 2. Такая обвязка позволяет максимально исключить (уменьшить) тепловые потери.

В данном исполнении термодинамический цикл, благодаря синфазности выдвижения лопаток будет более полно соответствовать теоретическому циклу Стирлинга.

Полезная работа двигателя будет

L= Pср. h (V2V1) – Pср.c(V3V4) – Lспр.

   где, Pср. h   среднее давление в горячем отделе

           Pср. c  — среднее давление в холодном отделе

Pср. h   = Pср.c *(T2 ) / (T1 ) ,

где Tтемпература (K) холодильника ( в отделе C),     T2 температура (K) нагревателя (в отделе H)

            L спр.  – работа сил механического, газодинамического и др. сопротивления.

 Мы уже отмечали гибкость системы для  построения двигателей по различным термодинамическим циклам. И, как вариант, исключим одну малую «горячую» секцию с условным объемом  V2.Образующая система с подобранными объемами V1, V3. V4. и рабочим процессом при трех тактах  будет реализовывать следующий термодинамический (в теории естественно) цикл.

Это естественно, приведет к некоторой потере эффективности. Но, помимо упрощения конструкции двигателя и снижения его массогабаритных показателей, можно иметь важное преимущество. В «горячей» области в секции с условным объемом  V3, давление, перед  и после лопатки существенно не различимо (естественно будут определенные незначительные отклонения). Отсюда  в самой термически нагруженной части двигателя значительно упрощаются требования к уплотнениям лопаток. Достаточно иметь технологические зазоры (как в турбине) между стенками рабочей полости и торцами лопатки. Это возможно, так как выдвижение лопаток согласованно с углом поворота ротора. А в оставшихся «холодной» секции с почти «комнатной» температурой, проблемы уплотнений (включая материал изготовления) решить значительно проще.

 

Также можно позволяют построить  паровой двигатель с использованием регенераторов (общий вид рис. 1).

В двигателе, в качестве рабочего тела используются  две компоненты, одна  постоянно пребывающая в цикле в газообразном состоянии — газовый носитель, и компоненты  изменяющей свое фазовое состояние. Газовая составляющая в двухобъемном варианте, может и не является рабочим телом. Это несущая и вспомогательная субстанция позволяющая использовать регенераторы в паровой машине. И газовая составляющая изначально находится при повышенном давлении.

Для построения данного двигателя используем две секции (модуля), первая S1 с условным объемом  V1 является насосом газовой составляющей, а вторая  S3 с условным большим объемом V3-  непосредственно машина расширения (Рис.5).

 

Рабочее тело (в газообразном состоянии) с газовым носителем, пройдя  после расширения  регенератор Rg 1, в конденсаторе-сепараторе Cs, конденсируется и становится жидкостью, а газовая составляющая попадает в малую «холодную» секцию S1 (V1).

 На выходе этой секции перед регенератором или  через открытый торец его обода  компоненты опять смешиваются, там жидкообразная распыляется  форсункой F, а газовая несущая позволяет создавать направленность потока и осуществляет перенос компоненты  изменяющей фазовое состояние.

Трубопровод перед регенератором разделен камеры таким образом сначала в первой камере (по чередованию прохождения насадки) происходит смешивание компонент. Пройдя регенератор жидкая составляющая опять становится газом (паром), и поступает через нагреватель в зону расширения всекцию  S3 (V3). В итоге получается паровая машина с регенераторами, где газовая составляющая  является постоянной компонентой замкнутого цикла. Форсунка Fa расположенная в зоне нагрева служит для максимально быстрого изменения – акселерации (увеличения) мощности.

 Если задействовать в паровой машине три секции(и более) получим   более перспективное направление – двигатели, использующие  смешанное двухкомпонентное рабочее тело. Здесь газовая компонента суть рабочее тело, иуже будет совершать работу, содействуя приросту КПД.  Наиболее перспективным выглядит двухкомпонентный двигатель и с тремя секциями S1,S3,S4 с условными объемами V1,   V3 , V4 (Рис.6).

Основным достоинством такого рабочего тела является возможность получения при существующих уровнях среднего давления рабочего тела  удельной мощности, почти в 2 раза большей, чем в случае однокомпонентного газового топлива. Кроме того, процессы парообразования и конденсации, наблюдаемые при фазовом переходе компонентов, характеризуется высокими коэффициентами теплоотдачи. Поэтому процессы сжатия и расширения в большей степени приближенны к изотермическим, чем в цикле с газовым рабочим телом.   Важно и то, что при этом значительно (на две-три сотни градусов) снижается  максимальная температура цикла и  начальное давление газообразного рабочего тела. При этом чувствительность мощности двигателя к изменению «мертвого» объема оказывается чрезвычайно низкой.

Таким образомширокий выбор вариантов построения двигателя с определенным циклом, способом организации рабочего процесса, при однонаправленном движением рабочего тела, в сочетании с простотой расширительной машины и использованием вращающихся регенераторов позволяет с помощью дешевых и доступных материалов добиться повышения  КПД и удельных характеристик двигателя. Сохраняя при этом уже известные достоинства  двигателей данного типа– малошумность, «всеядность», высокий крутящий момент в очень широком диапазоне частот вращения выходного вала, увеличенный ресурс и низкие затраты на обслуживание  при длительной эксплуатации.  А указанные способы регулирования мощности  позволяют применять данный двигатель не только в качестве стационарной силовой установки, но и стать реальной  альтернативой мобильным (транспортным)  ДВС.

       Литература.

  1. Уокер Г. Пер.с англ. – М.: Машиностроение,1985.
  2. Г.Т.Ридер, Ч.Хупер.. М., Наука, 1986.
  3. Двигатели Стирлинга / [В.Н. Даниличев, С.И. Ефимов, В.А. Звонок и др.]; под ред. М.Г. Круглова. – М.: «Машиностроение», 1977.
  4. Патент РФ 2454546. Роторный преобразователь энергии и двигатель внешнего сгорания с его      использованием.  Чантурия И.Г., Чантурия О.Г.

                                                                                                     О.ЧАНТУРИЯ, И.ЧАНТУРИЯ.


Судовые поршневые двигатели внешнего сгорания (двигатели Стирлинга)

Артикул: 00-00007079

в желания В наличии

Автор: Мышинский Э. Л., Рыжков-Дудонов М.А.

Место издания: Ленинград

Год: 1976

Формат: 60×90/16 (~145х215 мм)

Переплет: Мягкая обложка

Страниц: 76

Вес: 120 г

С этим товаром покупают

Читать онлайн / Скачать/полистать/читать on-line

Читать on-line книгу «Судовые поршневые двигатели внешнего сгорания (двигатели Стирлинга)» Мышинский Э.Л., Рыжков-Дудонов М.А. на полный экран

В брошюре изложены принципы работы поршневого двигателя внешнего сгорания, особенности его термодинамического цикла. Рассмотрены основные конструктивно-компоновочные схемы, а также нагрузочные, экономические и виброакустические характеристики на установившихся и динамических режимах работы.
Особое внимание уделено судовым энергетическим установкам, созданным на основе двигателей внешнего сгорания, сделан анализ их преимуществ перед установками других типов, определены рациональные области их применения.
Рассмотрены последние достижения в исследовательских и конструкторских работах зарубежных форм, связанных с созданием двигателей внешнего сгорания различного применения.
Совокупность приведенных в книге материалов позволяет читателю получить наиболее полное представление об основных особенностях, состоянии развития и перспективах энергетических установок с двигателями внешнего сгорания.
Круг читателей: инженеры и научные работники, занимающиеся исследованиями в области судовой энергетики и созданием транспортных двигателей.

Оглавление
Предисловие
Глава I. Общие понятия о поршневых двигателях внешнего сгорания
§ 1. Термодинамический цикл
§ 2. Принцип действия
§ 3. Преимущества двигателя внешнего сгорания. Область целесообразного применения в судостроении
Глава II. Конструкции поршневых двигателей внешнего сгорания
§ 4. Классификация конструкций
§ 5. Основные компоновочные схемы
§ 6. Механизмы передачи движения
§ 7. Уплотнение рабочего контура
§ 8. Нагреватель
§ 9. Регенератор
§ 10. Тепловые трубы
§ 11. Система внешнего сгорания
Глава III. Характеристики двигателей внешнего сгорания
§ 12. Система регулирования мощности
§ 13. Нагрузочные и скоростные характеристики
§ 14. Токсичность выпускных газов
§ 15. Уровни вибрации и шума
Глава IV. Судовые энергетические установки с двигателями внешнего сгорания
§ 16. Установки малых катеров
§ 17. Зарубежные установки подводного хода с использованием углеводородного топлива и кислорода
§ 18. Установки, использующие водород в качестве топлива
§ 19. Зарубежные установки подводного хода с тепловыми аккумуляторами
§ 20. Зарубежные установки подводного хода с окислением металлов
§ 21. Судовые холодильные установки, работающие по циклу Стирлинга
Заключение
Приложение
Указатель литературы

Современный двигатель внешнего сгорания. Двигатель стирлинга. Преимущества двигателя внешнего сгорания

Принцип работы

Предлагаемая инновационная технология основана на использовании высокоэффективного четырехцилиндрового двигателя внешнего сгорания. Это — тепловой двигатель. Тепло может поставляться от внешнего источника тепла или производиться путем сжигания широкого спектра видов топлива внутри камеры сгорания.

Тепло поддерживается при постоянной температуре в одном отделении двигателя, где оно преобразуется в водород, находящийся под давлением. Расширяясь, водород толкает поршень. В отделении двигателя с низкой температурой водород охлаждается при помощи аккумуляторов тепла и охладителей жидкости. При расширении и сжатии водород вызывает возвратно-поступательное движение поршня, которое преобразуется во вращательное движение при помощи наклонной шайбы, которая приводит в действие стандартный, емкостный электрический генератор. В процессе охлаждения водорода также производится тепло, которое можно использовать для комбинированного производства электроэнергии и тепла во вспомогательных процессах.

Общее описание

Теплоэнергетическая установка FX-38 представляет собой единый модуль «двигатель-генератор», который включает двигатель внешнего сгорания, систему сгорания, работающую на пропане, природном газе, попутном нефтяном газе, других видах топлива со средней и низкой энергоемкостью (биогаз), индуктивный генератор, систему контроля двигателя, защищенный от атмосферных воздействий корпус со встроенной системой вентиляции и другое вспомогательное оборудование для параллельной работы с сетью высокого напряжения.

Номинальная мощность по электричеству при работе на природном газе или биогазе при частоте 50 Гц составляет 38 кВт. Кроме того, установка производит 65 кВт-ч извлекаемого тепла с поставляемой по специальному заказу системой комбинированного производства тепла и электроэнергии.

Установка FX-38 может быть оснащена различными опциями системы охлаждения для обеспечения гибкости схемы установки. Продукт разработан для простого подключения к электрическим контактам, системам подачи топлива и внешним трубам системы охлаждения, если оборудованы таковыми.

Дополнительные детали и опции

  • Модуль измерения мощности (обеспечивает установленный трансформатор тока для считывания на дисплее параметров переменного тока)
  • Опция дистанционного мониторинга по интерфейсу RS-485
  • Опции встроенного, либо удаленно смонтированного радиатора
  • Опция использования пропанового топлива
  • Опция использования природного газа
  • Опция использования попутного нефтяного газа
  • Опция использования топлива низкой энергоемкости

Установка FX-48 может применяться в нескольких вариантах следующим образом:

  • Параллельное подключение к высоковольтной сети при 50 Гц, 380 В переменного тока
  • Режим совместной выработки тепла и электроэнергии

Эксплуатационные характеристики установки

В режиме производства электроэнергии и тепла при частоте 50 Гц установка производит 65 кВт-ч извлекаемого тепла. Продукт оборудован системой труб, готовой для подключения к поставляемому заказчиком теплообменнику типа жидкость/жидкость. Горячая сторона теплообменника представляет собой схему замкнутого цикла с охладителем кожуха двигателя и встроенным радиатором системы, если таковые присутствуют. Холодная сторона теплообменника предназначена для схем теплоприемника заказчика.

Техническое обслуживание

Установка предназначена для непрерывной работы и отбора мощности. Базовая проверка эксплуатационных характеристик проводится заказчиком с интервалом в 1000 часов и включает проверку системы водяного охлаждения и уровня масла. Через 10000 часов эксплуатации производится обслуживание передней части установки, включающее замену поршневого кольца, сальника штока, ремня привода и различных сальников. Специфические ключевые компоненты проверяются на износ. Скорость работы двигателя составляет 1500 оборотов в минуту для работы на частоте 50 Гц.

Бесперебойность

Бесперебойность работы установки составляет свыше 95%, исходя из интервалов эксплуатации, и учитывается при графике технического обслуживания.

Уровень звукового давления

Уровень звукового давления блока без встроенного радиатора составляет 64 дБА на расстоянии 7 метров. Уровень звукового давления блока с встроенным радиатором с вентиляторами охлаждения составляет 66 дБА на расстоянии 7 метров.

Выбросы

При работе на природном газе выбросы двигателя меньше или равны 0,0574 г/Нм 3 NO x , 15,5 г/Нм 3 летучих органических соединений и 0,345 г/Нм 3 СО.

Газообразное топливо

Двигатель рассчитан на работу на различных типах газообразного топлива со значениями низшей теплоты сгорания от 13,2 до 90,6 МДж/Нм 3 , попутный нефтяной газ, природный газ, угольный метан, газ вторичной переработки, пропан и биогаз полигонов ТБО. Для охвата данного диапазона устройство может быть заказано со следующими конфигурациями топливной системы:

Система сгорания требует регулируемого давления подачи газа в 124-152 мбар для всех типов топлива.

Окружающая среда

Установка в стандартном исполнении работает при температуре окружающей среды от -20 до +50°С.

Описание установки

Теплоэнергетическая установка FX-38 полностью готова для выработки электроэнергии в заводской поставке. Встроенный электрический пульт монтируется на блок для удовлетворения требований интерфейса и контроля. Устойчивый к атмосферным воздействиям цифровой дисплей, встроенный в электрический пульт, обеспечивает оператору интерфейс запуска, остановки и перезапуска с помощью кнопок. Электрический пульт также служит основным местом подключения оконечного электрического устройства заказчика, а также с оконечными устройствами проводной связи.

Установка способна достигать выходной мощности полной нагрузки примерно через 3-5 минут с момента запуска в зависимости от изначальной температуры системы. Последовательность запуска и установки приводится в действие нажатием кнопки.

После команды пуска установка подключается к высоковольтной сети путем закрытия внутреннего контактора на сеть. Двигатель немедленно поворачивается, очищая камеру сжигания до открытия топливных клапанов. После открытия топливного клапана энергия подается на запальное устройство, поджигая топливо в камере сжигания. Наличие сжигания определяется по повышению температуры рабочего газа, что приводит в действие процедуру управления разгоном до точки рабочей температуры. После этого пламя остается самоподдерживающимся и постоянным.

После команды остановки установки сначала закрывается топливный клапан для прекращения процесса сжигания. По прошествии предварительно установленного времени, в течение которого механизм охлаждается, откроется контактор, отключая установку от сети. В случае если таковые установлены, вентиляторы радиатора могут работать некоторое время для уменьшении температуры охлаждающей жидкости.

В установке используется двигатель внешнего сгорания с постоянной длиной хода, подключенный к стандартному индукционному генератору. Устройство работает параллельно с высоковольтной сетью или параллельно с системой распределения энергии. Индукционный генератор не создает своего собственного возбуждения: он получает возбуждение от подключенного источника электросети. Если напряжение в электросети исчезает, установка отключается.

Описание узлов установки

Конструкция установки обеспечивает ее простой монтаж и подключение. Имеются внешние соединения для топливных труб, оконечных устройств электроэнергии, интерфейсов коммуникаций и, если это предусмотрено, внешнего радиатора и система труб теплообменника жидкость/жидкость. Установку можно заказать в комплекте со встроенным или удаленно монтированным радиатором и/или системой труб теплообменника жидкость/жидкость для охлаждения двигателя. Также предоставляются инструменты для безопасного отключения и логические схемы управления, разработанные специально для желаемого режима работы.

Кожух имеет две эксплуатационные панели на каждой стороне отделения двигатель/генератор и внешнюю однопетельную дверь для доступа к электрическому отделению.

Вес установки: около 1770 кг.

Двигатель является 4-цилиндровым (260 см 3 /цилиндр) двигателем внешнего сгорания, поглощающим тепло непрерывного сжигания газового топлива в камере внутреннего сгорания, и включает следующие встроенные компоненты:

  • Вентилятор подачи воздуха в камеру сгорания, приводится в действие двигателем
  • Воздушный фильтр камеры сгорания
  • Топливная система и кожух камеры сгорания
  • Насос для смазочного масла, приводится в действие двигателем
  • Охладитель и фильтр для смазочного масла
  • Водяной насос системы охлаждения двигателя, приводится в действие двигателем
  • Температурный датчик воды в системе охлаждения
  • Датчик давления смазочного масла
  • Датчик давления и температуры газа
  • Все необходимое контрольное и защитное оборудование

Характеристики генератора приводятся ниже:

  • Номинальная мощность 38 кВт при 50 Гц, 380 В переменного тока
  • Электрический КПД 95,0% при коэффициенте мощности 0,7
  • Возбуждение от коммунальной электросети при помощи индукционного мотора/генераторного возбудителя
  • Менее 5% общих гармонических искажений от отсутствия нагрузки до полной нагрузки
  • Класс изоляции F

Интерфейс оператора – цифровой дисплей обеспечивает управление установкой. Оператор может запустить и остановить установку с цифрового дисплея, посмотреть время работы, рабочие данные и предупреждения/сбои. При установке опционального модуля измерения мощности оператор может видеть многие электрические параметры, такие как вырабатываемая мощность, киловатт-часы, киловатт-амперы и коэффициент мощности.

Функция диагностики оборудования и сбора данных встроена в систему контроля установки. Диагностическая информация упрощает удаленный сбор данных, отчет по данным и устранение неисправностей устройства. Эти функции включают сбор системных данных, таких как информация о рабочем состоянии, все механические рабочие параметры, такие как температура и давление цилиндров, а также, если подключен опциональный измеритель мощности, – электрические параметры значений вырабатываемой мощности. Данные могут быть переданы через стандартный порт соединения RS-232 и показаны на персональном компьютере или ноутбуке при помощи программного обеспечения для сбора данных. Для нескольких установок или в случаях, когда расстояние передачи сигнала превышает возможности RS-232, для получения данных используется опциональный порт RS-485 с использованием протокола MODBUS RTU.

Для переноса горячих выхлопных газов от системы сгорания используются трубы из нержавеющей стали. К выхлопной трубе в месте выхода из кожуха прикреплена сбалансированная выхлопная заслонка с защитным колпаком от дождя и снега.

Для охлаждения могут применяться различные прикладные технологии и конфигураций:

Встроенный радиатор – предоставляет собой радиатор, рассчитанный на температуру окружающей среды до +50°C. Все трубы подключаются в заводских условиях. Это типичная технология в случае, если не используется утилизация отходящего тепла.

Внешний радиатор – предназначен для установки заказчиком, рассчитан на температуру окружающей среды до +50°C. Короткие несущие ножки поставляются с радиатором для монтажа на контактном столике. При необходимости установки в помещении можно использовать данный вариант вместо предоставления системы вентиляции, требуемой для подачи охлаждающего воздуха во встроенный радиатор.

Внешняя система охлаждения – предоставляет систему труб снаружи кожуха для поставляемой заказчиком системы охлаждения. Ей может выступать теплообменник или удаленно монтированный радиатор.

Хладагент состоит из 50% воды и 50% этиленгликоля по объему: можно заменить смесью пропиленгликоля и воды, при необходимости.

Установка FX-38 использует водород в качестве рабочего тела для приведения в движение поршней двигателей по причине высоких способностей водорода к передаче тепла. В нормальном режиме работы потребляется предсказуемое количество водорода из-за нормальных утечек, вызванных проницаемостью материала. Для учета этого темпа потребления место установки требует наличия одного или нескольких наборов баллонов с водородом, отрегулированных и подсоединенных к блоку. Внутри установки встроенный водородный компрессор увеличивает давление в баллоне до более высокого давления в двигателе и вводит малые порции по запросу встроенного программного обеспечения. Встроенная система не требует технического обслуживания, а баллоны подлежат замене в зависимости от работы двигателя.

Для подачи топлива поставляется труба со стандартной трубной резьбой 1 дюйм для всех стандартных типов топлива, за исключением низкоэнергетических вариантов, для которых используется стандартная трубная резьба 1 1 / 2 дюйма. Требования к давлению топлива для всех видов газообразного топлива составляют от 124 до 152 мбар.

Основной принцип работы двигателя Стирлинга заключается в постоянно чередуемых нагревании и охлаждении рабочего тела в закрытом цилиндре. Обычно в роли рабочего тела выступает воздух, но также используются водород и гелий.

Цикл работы двигателя Стирлинга состоит из четырёх фаз и разделён двумя переходными фазами: нагрев, расширение, переход к источнику холода, охлаждение, сжатие и переход к источнику тепла. Таким образом, при переходе от тёплого источника к холодному источнику происходит расширение и сжатие газа, находящегося в цилиндре. При этом изменяется давление, за счёт чего можно получить полезную работу. Поскольку теоретические объяснения удел ученых мужей, слушать их временами утомительно, поэтому перейдем к наглядной демонстрации работы двигателя Стерлинга.

Как работает двигатель Стирлинга
1.Внешний источник тепла нагревает газ в нижней части теплообменного цилиндра. Создаваемое давление толкает рабочий поршень вверх.
2.Маховик толкает вытеснительный поршень вниз, тем самым перемещая разогретый воздух из нижней части в охлаждающую камеру.
3.Воздух остывает и сжимается, рабочий поршень опускается вниз.
4.Вытеснительный поршень поднимается вверх, тем самым перемещая охлаждённый воздух в нижнюю часть. И цикл повторяется.

В машине Стирлинга движение рабочего поршня сдвинуто на 90 градусов относительно движения поршня-вытеснителя. В зависимости от знака этого сдвига машина может быть двигателем или тепловым насосом. При сдвиге 0 градусов машина не производит никакой работы (кроме потерь на трение) и не вырабатывает её.

Еще одним изобретением Стирлинга, увеличившим КПД двигателя стал регенератор, который представляет собой камеру, заполненную проволокой, гранулами, гофрированной фольгой для улучшения теплоотдачи проходящего газа (на рисунке регенератор заменен ребрами радиатора охлаждения).

В 1843 году Джеймс Стирлинг использовал этот двигатель на заводе, где он в то время работал инженером. В 1938 году фирма «Филипс» инвестировала в двигатель Стирлинга мощностью более двухсот лошадиных сил и отдачей более 30 %.

Достоинства двигателя Стирлинга:

1. Всеядность. Можно использовать любое топливо, главное создать разницу температур.
2. Низкая шумность. Поскольку работа построена на перепаде давления рабочей жидкости, а не на поджоге смеси, то шумность по сравнению с двигателем внутреннего сгорания существенно ниже.
3. Простота конструкции, отсюда высокий запас прочности.

Однако все эти достоинства в большинстве случаев перечеркиваются двумя большими недостатками:

1. Большие габариты. Рабочее тело необходимо охлаждать, и это приводит к существенному увеличению массы и размеров за счёт увеличенных радиаторов.
2. Низкий КПД. Тепло подводится не к рабочему телу непосредственно, а только через стенки теплообменников, соответственно потери КПД велики.

С развитием двигателя внутреннего сгорания двигатель Стирлинга ушел…нет не в прошлое, а в тень. Он с успехом эксплуатируется в качестве вспомогательных силовых установок на подводных лодках, в тепловых насосах на теплоэлектростанциях, в качестве преобразователей солнечной и геотермальной энергии в электрическую, с ним связаны космические проекты по созданию силовых установок работающих на радиоизотопном топливе (радиоактивный распад происходит с выделением температуры, кто не знал).Кто знает, возможно однажды двигатель Стирлинга ждет большое будущее!

Всего около ста лет назад двигателям внутреннего сгорания пришлось в жестокой конкурентной борьбе завоевывать то место, которое они занимают в современном автомобилестроении. Тогда их превосходство отнюдь не представлялось столь очевидным, как в наши дни. Действительно, паровая машина — главный соперник бензинового мотора — обладала по сравнению с ним огромными достоинствами: бесшумностью, простотой регулирования мощности, прекрасными тяговыми характеристиками и поразительной «всеядностью», позволяющей работать на любом виде топлива от дров до бензина. Но в конечном итоге экономичность, легкость и надежность двигателей внутреннего сгорания взяли верх и заставили примириться с их недостатками, как с неизбежностью.
В 1950-х годах с появлением газовых турбин и роторных двигателей начался штурм монопольного положения, занимаемого двигателями внутреннего сгорания в автомобилестроении, штурм, до сих пор не увенчавшийся успехом. Примерно в те же годы делались попытки вывести на сцену новый двигатель, в котором поразительно сочетается экономичность и надежность бензинового мотора с бесшумностью и «всеядностью» паровой установки. Это — знаменитый двигатель внешнего сгорания, который шотландский священник Роберт Стирлинг запатентовал 27 сентября 1816 года (английский патент № 4081).

Физика процесса

Принцип действия всех без исключения тепловых двигателей основан на том, что при расширении нагретого газа совершается большая механическая работа, чем требуется на сжатие холодного. Чтобы продемонстрировать это, достаточно бутылки и двух кастрюль с горячей и холодной водой. Сначала бутылку опускают в ледяную воду, а когда воздух в ней охладится, горлышко затыкают пробкой и быстро переносят в горячую воду. Через несколько секунд раздается хлопок и нагреваемый в бутылке газ выталкивает пробку, совершая механическую работу. Бутылку можно снова возвратить в ледяную воду — цикл повторится.
в цилиндрах, поршнях и замысловатых рычагах первой машины Стирлинга почти в точности воспроизводился этот процесс, пока изобретатель не сообразил, что часть тепла, отнимаемого у газа при охлаждении, можно использовать для частичного подогрева. Нужна лишь какая-то емкость, в которой можно было бы запасать тепло, отнятое у газа при охлаждении, и снова отдавать ему при нагревании.
Но, увы, даже это очень важное усовершенствование не спасло двигатель Стирлинга. К 1885 году достигнутые здесь результаты были весьма посредственны: 5-7 процентов к.п.д., 2 л. с. мощности, 4 тонны веса и 21 кубометр занимаемого пространства.
Двигатели внешнего сгорания не были спасены даже успехом другой конструкции, разработанной шведским инженером Эриксоном. В отличие от Стирлинга, он предложил нагревать и охлаждать газ не при постоянном объеме, а при постоянном давлении. 8 1887 году несколько тысяч небольших эриксоновских двигателей отлично работало в типографиях, в домах, на шахтах, на судах. Они наполняли водонапорные баки, приводили а действие лифты. Эриксон пытался даже приспособить их для привода экипажей, но они оказались чересчур тяжелыми. В России до революции большое количество таких двигателей выпускалось под названием «Тепло и сила».

Современное автомобилестроение вышло на такой уровень развития, при котором без фундаментальных научных исследований практически невозможно достигнуть кардинальных улучшений в конструкции традиционных моторов внутреннего сгорания. Такая ситуация вынуждает конструкторов обратить внимание на альтернативные проекты силовых установок . Одни инженерные центры сосредоточили свои силы на создании и адаптации к серийному выпуску гибридных и электрических моделей, другие автоконцерны вкладывают средства в разработку двигателей на топливе из возобновляемых источников (например, биодизель на рапсовом масле). Существуют и другие проекты силовых агрегатов, которые в перспективе могут стать новым стандартным движителем для транспортных средств.

Среди возможных источников механической энергии для автомобилей будущего следует назвать двигатель внешнего сгорания, который был изобретен в середине XIX века шотландцем Робертом Стирлингом в качестве тепловой расширительной машины.

Схема работы

Двигатель Стирлинга преобразует тепловую энергию, подводимую извне, в полезную механическую работу за счет изменения температуры рабочего тела (газа или жидкости), циркулирующего в замкнутом объеме.

В общем виде схема работы устройства выглядит следующим образом: в нижней части двигателя рабочее вещество (например, воздух) нагревается и, увеличиваясь в объеме, выталкивает поршень вверх. Горячий воздух проникает в верхнюю часть мотора, где охлаждается радиатором. Давление рабочего тела снижается, поршень опускается для следующего цикла. При этом система герметична и рабочее вещество не расходуется, а только перемещается внутри цилиндра.

Существует несколько вариантов конструкции силовых агрегатов, использующих принцип Стирлинга.

Стирлинг модификации «Альфа»

Двигатель состоит из двух раздельных силовых поршней (горячего и холодного), каждый из которых находится в своем цилиндре. К цилиндру с горячим поршнем подводится тепло, а холодный цилиндр расположен в охлаждающем теплообменнике.

Стирлинг модификации «Бета»

Цилиндр, в котором находится поршень, нагревается с одной стороны и охлаждается с противоположного конца. В цилиндре двигается силовой поршень и вытеснитель, предназначенный для изменения объема рабочего газа. Обратное перемещение остывшего рабочего вещества в горячую полость двигателя выполняет регенератор.

Стирлинг модификации «Гамма»

Конструкция состоит из двух цилиндров. Первый — полностью холодный, в котором движется силовой поршень, а второй, горячий с одной стороны и холодный с другой, служит для перемещения вытеснителя. Регенератор для циркуляции холодного газа может быть общим для обоих цилиндров или входить в конструкцию вытеснителя.

Преимущества двигателя Стирлинга

Как и большинство моторов внешнего сгорания, Стирлингу присуща многотопливность : двигатель работает от перепада температуры, независимо от причин его вызвавших.

Интересный факт! Однажды была продемонстрирована установка, которая функционировала на двадцати вариантах топлива. Без остановки двигателя во внешнюю камеру сгорания подавались бензин, дизельное топливо, метан, сырая нефть и растительное масло — силовой агрегат продолжал устойчиво работать.

Двигатель обладает простотой конструкции и не требует дополнительных систем и навесного оборудования (ГРМ, стартер, коробка передач).

Особенности устройства гарантируют длительный эксплуатационный ресурс: более ста тысяч часов непрерывной работы.

Двигатель Стирлинга бесшумен , так как в цилиндрах не происходит детонация и отсутствует необходимость вывода отработанных газов. Модификация «Бета», оснащенная ромбическим кривошипно-шатунным механизмом, является идеально сбалансированной системой, которая в процессе работы не имеет вибраций.

В цилиндрах двигателя не происходят процессы, которые могут оказать негативное воздействие на окружающую среду. При выборе подходящего источника тепла (например, солнечная энергия) Стирлинг может быть абсолютно экологически чистым силовым агрегатом.

Недостатки конструкции Стирлинга

При всем наборе положительных свойств немедленное массовое применение двигателей Стирлинга невозможно по следующим причинам:

Основная проблема заключается в материалоемкости конструкции. Охлаждение рабочего тела требует наличия радиаторов большого объема, что существенно увеличивает размеры и металлоемкость изготовления установки.

Нынешний технологический уровень позволит двигателю Стирлинга сравниться по характеристикам с современными бензиновыми моторами только за счет применения сложных видов рабочего тела (гелий или водород), находящихся под давлением более ста атмосфер. Этот факт вызывает серьезные вопросы как в области материаловедения, так и обеспечения безопасности пользователей.

Немаловажная эксплуатационная проблема связана с вопросами теплопроводности и температурной стойкости металлов. Тепло подводится к рабочему объему через теплообменники, что приводит к неизбежным потерям. Кроме того, теплообменник должен быть изготовлен из термостойких металлов, устойчивых к высокому давлению. Подходящие материалы очень дороги и сложны в обработке.

Принципы изменения режимов двигателя Стирлинга также кардинально отличаются от традиционных, что требует разработки специальных управляющих устройств. Так, для изменения мощности необходимо изменить давление в цилиндрах, угол фаз между вытеснителем и силовым поршнем или повлиять на емкость полости с рабочим телом.

Один из способов управления скоростью вращения вала на модели двигателя Стирлинга можно увидеть на следующем видео:

Коэффициент полезного действия

В теоретических расчетах эффективность двигателя Стирлинга зависит от разницы температур рабочего тела и может достигать 70% и более в соответствии с циклом Карно.

Однако первые реализованные в металле образцы обладали крайне невысоким КПД по следующим причинам:

  • неэффективные варианты теплоносителя (рабочего тела), ограничивающие максимальную температуру нагрева;
  • потери энергии на трение деталей и теплопроводность корпуса двигателя;
  • отсутствие конструкционных материалов, устойчивых к высокому давлению.

Инженерные решения постоянно совершенствовали устройство силового агрегата. Так, во второй половине XX века четырехцилиндровый автомобильный двигатель Стирлинга с ромбическим приводом показал на испытаниях КПД равный 35% на водном теплоносителе с температурой 55 °C.Тщательная проработка конструкции, применение новых материалов и доводка рабочих узлов обеспечили КПД экспериментальных образцов в 39%.

Примечание! Современные бензиновые двигатели аналогичной мощности обладают коэффициентом полезного действия на уровне 28-30%, а турбированные дизели в пределах 32-35%.

Современные образцы двигателя Стирлинга, такие как созданный американской компанией Mechanical Technology Inc, демонстрируют эффективность до 43,5%. А с освоением выпуска жаропрочной керамики и аналогичных инновационных материалов появится возможность значительного повышения температуры рабочей среды и достижения КПД в 60%.

Примеры успешной реализации автомобильных Стирлингов

Несмотря на все сложности, известно немало работоспособных моделей двигателя Стирлинга, применимых для автомобилестроения.

Заинтересованность в Стирлинге, подходящем для установки в автомобиль, появилась в 50-е годы XX века. Работу в данном направлении вели такие концерны, как Ford Motor Company, Volkswagen Group и другие.

Компания UNITED STIRLING (Швеция) разработала Стирлинг, в котором максимально использовались серийные узлы и агрегаты, выпускаемые автопроизводителями (коленчатый вал, шатуны). Получившийся в результате четырехцилиндровый V-образный мотор обладал удельной массой 2,4 кг/кВт, что сравнимо с характеристиками компактного дизеля. Данный агрегат был успешно опробован в качестве силовой установки семитонного грузового фургона.

Одним из успешных образцов является четырехцилиндровый двигатель Стирлинга нидерландского производства модели «Philips 4-125DA», предназначавшийся для установки на легковой автомобиль. Мотор имел рабочую мощность 173 л. с. в размерах, аналогичных классическому бензиновому агрегату.

Значительных результатов добились инженеры компании General Motors, построив в 70-х годах восьмицилиндровый (4 рабочих и 4 компрессионных цилиндра) V-образный двигатель Стирлинга со стандартным кривошипно-шатунным механизмом.

Аналогичной силовой установкой в1972 году оснащалась ограниченная серия автомобилей Ford Torino , расход топлива у которой снизился на 25% по сравнению с классической бензиновой V-образной восьмеркой.

В настоящее время более полусотни зарубежных компаний ведут работы по совершенствованию конструкции двигателя Стирлинга в целях его адаптации к массовому выпуску для нужд автомобилестроения. И если удастся устранить недостатки данного типа двигателей, в то же время сохранив его преимущества, то именно Стирлинг, а не турбины и электромоторы, придет на смену бензиновым ДВС.

Двигатели внешнего сгорания

Важным элементом реализации программы энергосбережения является обеспечение автономными источниками электроэнергии и тепла небольших жилых образований и удаленных от централизованных сетей потребителей. Для решения этих задач как нельзя лучше подходят инновационные установки для генерации электроэнергии и тепла на основе двигателей внешнего сгорания. В качестве топлива может использоваться как традиционные виды топлива, так и попутный нефтяной газ, биогаз, получаемый из древесных стружек и пр.

На протяжении последних 10 лет отмечались повышения цен на ископаемое топливо, повышенное внимание к выбросам СО 2 , а также растущее желание перестать зависеть от ископаемого топлива и полностью обеспечивать себя энергией. Это стало следствием развития огромного рынка технологий, способных производить энергию из биомассы.

Двигатели внешнего сгорания были изобретены почти 200 лет тому назад, в 1816 году. Вместе с паровым двигателем, двух- и четырехтактным двигателем внутреннего сгорания, двигатели внешнего сгорания считаются одними из основных типов двигателей. Они были разработаны с целью создания двигателей, которые были бы более безопасными и производительными, чем паровой двигатель. В самом начале 18-го века отсутствие подходящих материалов приводило к многочисленным случаям со смертельным исходом в связи со взрывами паровых двигателей, находящихся под давлением.

Значительный рынок для двигателей внешнего сгорания сформировался во второй половине 18-го века, в частности, в связи с более мелкими сферами применения, где их можно было безопасно эксплуатировать без необходимости в услугах квалифицированных операторов.

После изобретения двигателя внутреннего сгорания в конце 18-го века рынок для двигателей внешнего сгорания исчез. Стоимость производства двигателя внутреннего сгорания в сравнении со стоимостью производства внешнего сгорания ниже. Основной недостаток двигателей внутреннего сгорания заключается в том, что для их работы необходимо чистое, ископаемое топливо, увеличивающее выбросы СО2, топливо. Однако, до недавнего времени стоимость ископаемого топлива была низкой, а выбросам СО2 не уделялось должного внимания.

Принцип работы двигателя внешнего сгорания

В отличие от широко известного процесса внутреннего сгорания, при котором топливо сжигается внутри двигателя, двигатель внешнего сгорания, приводится в действие внешним источником тепла. Или, точнее говоря, она приводится в действие разностями температур, создаваемыми внешними источниками нагревания и охлаждения.

Этими внешними источниками нагревания и охлаждения могут служить отработанные газы биомассы и охлаждающая вода соответственно. Процесс приводит к вращению генератора, монтированного на двигателе, посредством чего производится энергия.

Все двигатели внутреннего сгорания приводятся в действие разностями температур. Бензиновые, дизельные двигатели и двигатели внешнего сгорания основаны на той особенности, что для сжатия холодного воздуха необходимо меньше усилий, чем для сжатия горячего воздуха.

Бензиновые и дизельные двигатели всасывают холодный воздух и сжимают этот воздух, прежде чем он подогревается в процессе внутреннего сгорания, который происходит внутри цилиндра. После подогревания воздуха над поршнем поршень перемещается вниз, посредством чего воздух расширяется. Так как воздух горячий, сила, действующая на шток поршня, велика. Когда поршень доходит до низа, клапаны открываются и горячие выхлопы заменяются новым, свежим, холодным воздухом. При движении поршня вверх холодный воздух сжимается, причем сила, действующая на шток поршня, меньше, чем при его движении вниз.

Двигатель внешнего сгорания работает в соответствии с немного другим принципом. В нем нет клапанов, он герметически запаян, а воздух подогревается и охлаждается при помощи теплообменных аппаратов горячего и холодного контура. Встроенный насос, приводимый в действие движением поршня, обеспечивает движение воздуха туда и обратно между этими двумя теплообменными аппаратами. Во время охлаждения воздуха в теплообменном аппарате холодного контура поршень сжимает воздух.

После сжатия воздух затем подогревается в теплообменном аппарате горячего контура, прежде чем поршень начинает двигаться в обратном направлении и использовать расширение горячего воздуха для приведения в действие двигателя.

Были ли у автомобилей двигатели внешнего сгорания?

Большинство автомобилей в настоящее время и исторически работают на двигателях внутреннего сгорания, типах двигателей, в которых нагрев и охлаждение происходят внутри конструкции двигателя. Таким образом, двигатель внешнего сгорания — это двигатель, в котором для работы предусмотрены функции внешнего нагрева и охлаждения. Звучит непрактично, но на самом деле довольно эффективно. И в автомобилях используются по крайней мере два различных типа двигателей внешнего сгорания: паровой двигатель и двигатель Стирлинга.

Впервые паровой двигатель был замечен в машинах, таких как поезда и сельскохозяйственное оборудование, и при таких тяжелых нагрузках благородный паровой двигатель смог доказать свою пригодность для движения на дороге, чтобы привести в движение автомобиль. Когда паровой двигатель нагревается до полной температуры, он обеспечивает постоянное давление. На практике это означает, что автомобилем можно управлять без редуктора. Один из примеров, ракета Стэнли, смогла развить скорость до 127 миль в час (204,4 километра в час) — и это было в 1906 году! Паровые автомобили сохранили свою популярность даже после того, как технологии двигателей внутреннего сгорания получили распространение, отчасти потому, что в то время автомобиль с двигателем внутреннего сгорания нужно было запускать вручную, что было трудно и часто опасно. Электростартеры, которые мы используем сегодня, еще не изобрели. Примерно в то времяБыла запущена Ford Model T , новые электрические компоненты начали делать автомобили намного удобнее. Стоимость тоже была фактором сдвига. Самые популярные паровые автомобили стоят примерно в шесть раз дороже серийно выпускаемых Ford, поэтому они медленно вымирают. Паровозы теперь считаются чем-то вроде диковинки. Они популярны среди коллекционеров (Джей Лено — известный энтузиаст паровых автомобилей), а их надежность означает, что существует множество старинных образцов. Паровые двигатели также являются источником интриги для некоторых исследователей и инженеров. Фактически, многие из них считают, что эффективность парового двигателя в сочетании с современными технологиями дает паровой энергии большой потенциал для возвращения.

Реклама

Двигатель Стирлинга, который был разработан шотландским изобретателем в начале 1800-х годов, также некоторое время приводил в действие автомобили прошлого, хотя его популярность застопорилась после его первоначального подъема, потому что материалы, используемые для создания ранних версий двигателя, не могли выдерживать экстремальную жару. необходимо запустить его. Этот тип двигателя, подобный паровому, использует поршни для создания энергии, но тепло исходит извне. Теперь, когда доступны более качественные и прочные материалы, у Стирлинга может появиться новый потенциал. Двигатели Стирлинга действительно обладают некоторыми преимуществами, такими как их способность работать на любом типе топлива, что вдохновило автопроизводителей Детройта на эксперименты со Стирлингом в 1970-х годах. Совсем недавно, в 2012 году, автомобиль с двигателем Стирлинга участвовал в европейском экомарафоне Shell Eco-marathon, соревновании экспериментальных автомобилей на альтернативном топливе. Автомобиль не

Двигатель внешнего сгорания, 7 (семь) букв

Примеры употребления слова турбина в литературе.

При свете раннего солнца город был похож на огромный ящик с сокровищами, обитый черным и серым бархатом пепелищ и наполненный миллионами сверкающих драгоценных камней: осколками аккумуляторов, амперметров, анализаторов, батарей, библиотечных автоматов, бутылок, банкнотов, бобин, вентиляторов, генераторов, громкоговорителей, динамо-машин, динамометров, детекторов, калориметров, конденсаторов, копилок, консервных автоматов, вакуумных установок, изоляторов, ламп, магнето, массспектрометров, масштабных линеек, машин по учету личного состава, моек для посуды, мотогенераторов, моторов, механических уборщиков, осциллографов, очистителей, записывающих устройств, напильников, колосников, обогревателей, панелей управления, понижающих трансформаторов, прерывателей, преобразователей, приводных ремней, потенциометров, пылеулавливателей, резцов, распылителей, регуляторов частоты, радиоприемников, реакторов, реле, реостатов, рентгеновских установок, сварочных аппаратов, счетных машин, счетчиков Гейгера, светофоров, сопротив

Он внимательно следил за работой Везера, словно сидел в учебной кабине и словно грохот, оглушающий его, несмотря на плотной шлем и наушники, был шумом турбины, имитирующей грохот моторов.

И при всем этом я чувствовал на штурвале трепетание упругого потока, передающееся от рулей, дрожь фюзеляжа отработы могучих винтов, вращаемых турбинами общей мощностью в 16000 лошадиных сил, скачки кабины в болтанку — это был взаправдашний полет на железных крыльях, которые не сломать, не согнуть.

В последний момент перед выходом на поверхность, он выключил турбину и притормозил руками, чтобы при выныривании не сделать всплеска.

Непригодный мотор заменили мотором с подбитого самолета соседнего полка, у соседей же нашли необходимые винты, даже двухскоростные передачи нагнетателя в пяти моторах заменили, хотя некоторые крепления можно было сделать только на ощупь, мелкими гаечками, а в промежуток между крыльчаткой и корпусом турбины проходил всего один палец.

Источник: библиотека Максима Мошкова

Внешний тепловой двигатель — Энергетическое образование

Внешний тепловой двигатель (EHE) относится к любому двигателю, который получает тепло из источника, отличного от жидкости, которая заставляет двигатель работать. Наиболее распространенным типом ЭТО является двигатель внешнего сгорания, который используется во многих конструкциях силовых установок.

Внешние тепловые двигатели обычно представляют собой паровые двигатели, и они отличаются от двигателей внутреннего сгорания тем, что источник тепла отделен от рабочей жидкости. [1] Например, двигатель внешнего сгорания будет использовать пламя для нагрева воды в пар, а затем использовать пар для вращения турбины.Это отличается от внутреннего сгорания, как в двигателе автомобиля, где бензин воспламеняется внутри поршня, работает, а затем выбрасывается.

Все двигатели внешнего сгорания являются внешними тепловыми двигателями. Существуют ЭТЭ, такие как солнечные тепловые электростанции, атомные электростанции и геотермальные электростанции, которые не являются двигателями внешнего сгорания. Несмотря на это, внешние тепловые двигатели, как и ядерные реакторы, иногда называют двигателями внешнего сгорания. [3]

Двигатель внешнего сгорания

Двигатели внешнего сгорания являются наиболее распространенной формой внешних тепловых двигателей из-за их использования на электростанциях. Двигатель внешнего сгорания отличается от других ЭТО тем, что ему требуется топливо для сгорания, чтобы создать тепло, которое используется для работы.

Двигатели внешнего сгорания больше не используются на транспорте, так как мобильные конструкции недостаточно эффективны, но их продолжают использовать на электростанциях. [4] Например, электростанция, работающая на природном газе, превращает воду в пар, который вращает турбину и вырабатывает электричество. Конструкция с внешним сгоранием означает, что природный газ не вступает в непосредственный контакт с водой, и двигатель по-прежнему использует огромное количество выделяемой энергии для выполнения полезной работы.Примерно так же работает угольная электростанция, где уголь забирается на электростанцию ​​из шахты и сжигается в котле. Трубы направляют воду в котел, и горящий уголь кипятит воду, создавая пар, который вращает турбину и вырабатывает электричество.

Примеры

Ссылки

Были ли у автомобилей двигатели внешнего сгорания?

Большинство автомобилей, как в настоящее время, так и в прошлом, работают на двигателях внутреннего сгорания, типе двигателя, в котором нагрев и охлаждение происходят внутри конструкции двигателя. Таким образом, двигатель внешнего сгорания — это двигатель, который разработан с функциями внешнего нагрева и охлаждения для работы. Звучит непрактично, но на самом деле весьма эффективно. И по крайней мере два различных типа двигателей внешнего сгорания использовались в автомобилях: паровой двигатель и двигатель Стирлинга.

Паровой двигатель впервые был замечен в машинах, таких как поезда и сельскохозяйственное оборудование, и при этих тяжелых нагрузках благородный паровой двигатель смог доказать, что он достаточно пригоден для движения по дорогам, чтобы приводить в движение автомобиль.Как только паровая машина достигает полного нагрева, она обеспечивает постоянное давление. С практической точки зрения это означает, что автомобилем можно управлять без коробки передач. Например, ракета Стэнли могла развивать скорость до 127 миль в час (204,4 километра в час) — и это было в 1906 году! Автомобили с паровым двигателем сохранили свою популярность даже после того, как технология двигателей внутреннего сгорания была на подъеме, отчасти потому, что в то время автомобиль с двигателем внутреннего сгорания нужно было запускать вручную, что было сложно и часто опасно. Электростартеры, которые мы используем сегодня, еще не были изобретены. Примерно в то время, когда Ford выпустил модель T, новые электрические компоненты начали делать автомобили намного удобнее. Стоимость тоже повлияла на переход. Самые популярные паровые автомобили стоят примерно в шесть раз дороже серийного Ford, из-за чего они постепенно вымирают. Паровые автомобили теперь рассматриваются как нечто любопытное. Они популярны среди коллекционеров (Джей Лено — известный энтузиаст паровых автомобилей), а их надежность означает, что существует множество старинных экземпляров.Паровые двигатели также являются источником интриг для некоторых исследователей и инженеров. На самом деле, многие из них считают, что эффективность парового двигателя в сочетании с современными технологиями дает паровой энергии большой потенциал для возвращения.

Двигатель Стирлинга, который был разработан шотландским изобретателем в начале 1800-х годов, также какое-то время приводил в движение автомобили прошлого, хотя его популярность сошла на нет после первоначального подъема, поскольку материалы, используемые для создания ранних версий двигателя, могли не выдерживать экстремального нагрева, необходимого для его запуска. Этот тип двигателя, подобный паровому двигателю, использует поршни для создания энергии, но тепло поступает извне двигателя. Теперь, когда доступны более качественные и прочные материалы, у Стирлинга может появиться новый потенциал. Двигатели Стирлинга имеют некоторые преимущества, такие как их способность работать на любом типе топлива, что вдохновило автопроизводителей Детройта на эксперименты со Стирлингом в 1970-х годах. Совсем недавно, в 2012 году, автомобиль с двигателем Stirling участвовал в европейском экомарафоне Shell, соревновании экспериментальных автомобилей на альтернативном топливе.Автомобиль не соответствовал требованиям конкурса и не мог участвовать в гонках, но ему удалось заставить людей снова задуматься о двигателе Стирлинга.

Двигатели внешнего сгорания | Применение, преимущества, недостатки

Все мы знаем, что двигатель преобразует одну форму энергии в другую форму, которая обычно представляет собой работу. Тип двигателей, которые обычно используются для движения транспортных средств, — это двигатели внутреннего сгорания.

Двигатели внутреннего сгорания — это двигатели, которые сжигают топливо для получения энергии и преобразуют эту энергию в работу.

Двигатели внутреннего сгорания бывают двух типов.

Двигатель внутреннего сгорания и двигатель внешнего сгорания.

При внутреннем сгорании топливо сгорает внутри блока двигателя.

Как работают двигатели внутреннего сгорания, это не тема обсуждения в этой статье. В этой статье мы сосредоточимся на двигателях внешнего сгорания.

Работа двигателя внешнего сгорания

В двигателе внешнего сгорания топливо сжигается вне двигателя, а энергия, полученная при сгорании топлива, затем переносится в двигатель с помощью теплоносителя.

Во многих двигателях теплоносителем является вода, но в ряде других случаев это может быть и воздух.

Одним из наиболее распространенных примеров внешнего сгорания является паровая машина, разработанная великим ученым Джеймсом Уаттом.

В этом двигателе пар получается с помощью тепла, получаемого при сжигании угля. Затем пар направляется в двигатель, где энергия его давления преобразуется в работу. Используемый в то время двигатель был поршневого типа.

Эти виды поршневых двигателей внешнего сгорания в настоящее время не используются. Их полностью заменили двигатели внутреннего сгорания. Причиной замены стали их большие размеры и неэффективность. Кроме того, они требуют тщательного ухода.

Поршневые двигатели внешнего сгорания сегодня можно легко увидеть в различных музеях.

Все ли двигатели внешнего сгорания сегодня не используются?

Ответ: нет, не все двигатели внешнего сгорания устарели.На самом деле, многие из них сегодня очень популярны.

Одним из наиболее популярных сегодня примеров двигателей внешнего сгорания является паровая турбина. Паровая турбина представляет собой двигатель внешнего сгорания, который расходует пар и преобразует его энергию в полезную работу. Поскольку пар производится где-то за пределами турбины (которая является двигателем), он известен как двигатель внешнего сгорания.

Двигатели внешнего сгорания

На большинстве электростанций мира для выработки электроэнергии используются паровые турбины.Причина их популярности в том, что, поскольку они являются двигателями внешнего сгорания, они не имеют ничего общего с типом топлива, которое используется для преобразования воды в пар. Все, что нужно паровым турбинам, — это пар хорошего качества.

Разнообразие топлива, которое можно использовать для производства пара в паровой турбине, очень велико. Это может быть уголь, дрова, травяная солома, жидкое или газообразное топливо.

Другим важным типом двигателя внешнего сгорания, который используется сегодня, является газовая турбина. Работа газовых турбин аналогична паровой турбине, с той лишь разницей, что в качестве теплоносителя здесь используется воздух, а не пар.

Преимущества двигателей внешнего сгорания

  1. Можно использовать практически любой доступный вид топлива
  2. Поскольку мощность не вырабатывается из-за детонации топлива, поэтому создается очень меньше шума.
  3. Выбросы двигателя также очень низкие
  4. Очень экономичный для производства огромной энергии

Недостатки двигателей внешнего сгорания

  1. Не подходит для требований низкой нагрузки
  2. Утечка рабочей жидкости
  3. Расход смазки
  4. Размер двигателя относительно большой
  5. Общая рабочая температура высока, поэтому требуется большой уход и специальные строительные материалы

Типы и применение двигателей внешнего сгорания

  1. Паровые двигатели: паровозные, морские
  2. Двигатели Стирлинга: экспериментальные космические аппараты
  3. Паровые турбины: мощные, большие морские
  4. Газовая турбина замкнутого цикла: силовая, морская

Изображение (также указано авторство): Автор Википедии (пользователь: andrew.ainsworth) пользователь [[:User:Andrew.Ainsworth:User:{{{3}}}|{{{3}}}]], CC BY-SA 3.0, https://commons.wikimedia.org/w/ index. php?curid=7113276

BangShift.com Двигатель внешнего сгорания Stirling был испытан правительством

Видео: 30 лет назад двигатель внешнего сгорания Стирлинга был испытан правительством – куда он делся?

04 января 2022 Брайан Лонес Видео Apex, BangShift APEX, Новости BangShift, ДВИГАТЕЛИ, ИСТОРИЯ, РАЗНОЕ, Видео но также используется и тестируется правительством США, в частности Министерством энергетики.Эти «внешние» части двигателя означают, что сгорание происходит не в цилиндре, а вне его. Тепло от сгорания используется для перемещения поршня. Странный? Черт возьми, это так, но, судя по этому видео, которое, по общему признанию, смещено в пользу потенциального производителя двигателя, эта штука превзошла все ожидания. Он повысил экономию топлива, превзошел стандарты выбросов без использования каталитического нейтрализатора или другого устройства и обеспечил бесперебойную работу во множестве различных мест и сред.

Если и есть ОДНА часть видео, которая вызывает удивление, так это тот факт, что рассказчик говорит, что существует технология, позволяющая запустить двигатели в «ограниченное производство» сегодня. Мы не уверены, почему они будут «ограничены» в своем производстве, но есть несколько возможных причин. Во-первых, это передовая и сложная механическая обработка, во-вторых, строительство из труднодоступных материалов, которые нелегко достать. Помимо этих ограничивающих факторов, мы не уверены, в чем заключалась их блокировка.Мы также не уверены, почему правительство не продвинулось дальше.

В любом случае, это видео крутое, потому что оно демонстрирует испытания и рассказывает об использовании этих двигателей в реальном мире, чего мы никогда не знали!

Посмотрите это дикое видео 1992 года о двигателе внешнего сгорания Stirling —


Classy Cranberry Cruiser: этот Cadillac 1960 года — идеальный способ стильно владеть дорогой Дакар 2022: расширенные основные моменты этапа 1 самого продолжительного и самого известного в мире ралли по бездорожью

 


Растущий импульс: глобальный обзор государственных целей по поэтапному отказу от продаж новых автомобилей с двигателями внутреннего сгорания

Калифорния является последней юрисдикцией в мире, взявшей на себя обязательство постепенно прекратить продажу новых автомобилей с двигателями внутреннего сгорания (ДВС). В указе, опубликованном в конце сентября, говорится, что к 2035 году все новые легковые автомобили и легкие грузовики, продаваемые в Калифорнии, должны иметь нулевой уровень выбросов. Это последовало за действиями Калифорнийского совета по воздушным ресурсам, принятыми в июне 2020 года, которые приняли Регламент Advanced Clean Trucks (ACT), обязывающий производителей продавать грузовики с нулевым уровнем выбросов как увеличивающуюся долю их годовых продаж в Калифорнии с 2024 по 2035 год. С этими последними обязательствами Калифорния является частью мирового тренда.

Как отмечалось в предыдущих исследованиях (см. здесь и здесь), все большее число правительств страны, провинций и штатов устанавливают временные рамки для поэтапного прекращения продаж новых автомобилей с ДВС или разрешают продавать только новые автомобили с электродвигателями.Некоторые расширили масштабы своего поэтапного отказа на дополнительные сегменты транспортных средств, включая фургоны, легкие коммерческие грузовики, а также автомобили средней и большой грузоподъемности, а некоторые стремятся постепенно отказаться от использования автомобилей с ДВС для определенных целей. Поскольку большинство целей сосредоточено на легковых автомобилях, мы используем карту ниже, чтобы сравнить целевые годы для разных юрисдикций.

Рисунок 1. Национальные правительства, правительства провинций и штатов с определенными целями по полному отказу от продаж новых автомобилей с ДВС.

На карте мира еще много белых пятен.Что касается легковых автомобилей, то на долю 17 правительств, установивших цели по поэтапному отказу от автомобилей с ДВС, в 2019 году приходилось лишь около 13% мировых продаж новых легковых автомобилей (обратите внимание, что мы используем регистрационные данные для указания продаж в некоторых юрисдикциях). В таблице в конце этого блога приведены цели правительства страны, провинции и штата по поэтапному отказу от автомобилей с ДВС, включая дополнительные сегменты транспортных средств, такие как фургоны, легкие коммерческие грузовики, а также автомобили средней и большой грузоподъемности; все эти цели установлены в любой точке мира по состоянию на начало ноября 2020 года. Мы сосредоточены на новых продажах, регистрациях и импорте, а не на целевых показателях запасов, которые применяются ко всем транспортным средствам на дорогах. На карте и в таблице показаны только цели, упомянутые в официальной политике или стратегических документах; те, которые объявлены политическими представителями, но не изложены в письменной форме, исключаются.

Из карты и таблицы видно, что европейские страны лидируют. Норвегия и Нидерланды взяли на себя самые жесткие сроки. Менее чем через 5 лет Норвегия хочет, чтобы все новые легковые автомобили, легкие коммерческие автомобили и городские автобусы были проданы с нулевым уровнем выбросов (автобусам будет разрешено использовать биогаз).Страна также стремится к тому, чтобы к 2030 году 75% новых автобусов дальнего следования и 50% новых грузовиков были проданы с нулевым уровнем выбросов. легковых автомобилей продано с 2030 года. Кроме того, страна намерена реализовать городскую логистику с нулевым уровнем выбросов к 2025 году. Другие европейские страны, которые обязались прекратить продажу или регистрацию новых легковых автомобилей с ДВС менее чем за 10 лет, включают Данию, Исландию, Ирландию, Словению и Швецию. .Шотландия хочет прекратить продажу новых автомобилей и фургонов с ДВС к 2032 году, а Великобритания, вероятно, сдвинет свою текущую цель с 2040 года на 2035 год и может даже передвинуть ее на 2030 год. Франция поставила цель прекратить продажу легковых автомобилей. автомобили и легкие коммерческие автомобили, работающие на ископаемом топливе, к 2040 году, а в Испании есть законопроект, разрешающий продажу автомобилей с нулевым уровнем выбросов только с 2040 года.

В Северной Америке Калифорния является наиболее амбициозной с точки зрения сроков и затронутых транспортных средств.Ожидается, что в соответствии с вышеупомянутым распоряжением будут разработаны положения, которые превратят цели в действия. Канадская провинция Британская Колумбия уже на шаг впереди этого и в июле 2020 года приняла обязательное постановление, требующее от автопроизводителей постепенно увеличивать долю продаж новых легковых автомобилей с нулевым уровнем выбросов и легких коммерческих фургонов до 10% к 2025 году и 30% к 2025 году. 2030 г. и 100% к 2040 г. Провинция также устанавливает требования соответствия. На национальном уровне Канада установила такие же постепенные цели для тех же сегментов транспортных средств, но еще не приняла юридически обязательный регламент.

В Центральной и Южной Америке Коста-Рика и Колумбия — единственные страны, в официальных политических документах которых указаны цели поэтапного отказа от автомобилей с ДВС. В своем Национальном плане по декарбонизации Коста-Рика предложила, чтобы не позднее 2050 года 100% продаж новых легковых автомобилей для перевозки людей и товаров были с нулевым уровнем выбросов. В Колумбии Закон о продвижении электромобилей гласит, что приобретение электромобилей или транспортных средств с нулевым уровнем выбросов в парке общественного транспорта должно быть увеличено как минимум с 10% в 2025 г. до 20% в 2027 г., 40% в 2029 г., 60% в 2031 г., 80% в 2033 г. и 100% в 2035 г. ; тем не менее, нет никаких планов продаж для других сегментов транспортных средств.

Китайская провинция Хайнань поставила перед собой самые амбициозные цели в Азии по поэтапному отказу от продаж новых дизельных и бензиновых легковых автомобилей, легких коммерческих автомобилей, городских и междугородных автобусов к 2030 году. Существуют более ранние цели для определенных групп пользователей (например, государственных автопарков, операторов каршеринга, а также почтовые и логистические услуги, у которых к 2020 году поставлена ​​цель 100% продаж электромобилей). Только для автомобилей в частном пользовании провинция нацелена на постепенное увеличение продаж электромобилей с 10% в 2019 году до 40% в 2020 году, 80% в 2025 году и 100% в 2030 году.Правительство Израиля также нацелено на 2030 год с постепенным увеличением доли электромобилей в продажах новых частных автомобилей: 5% в 2022 году, 23% в 2025 году, 61% в 2028 году и 100% в 2030 году; обратите внимание, что это охватывает только часть сегмента легковых автомобилей.

Островное государство Кабо-Верде, расположенное у северо-западного побережья Африки, является единственным африканским государством, обязавшимся в установленные сроки отказаться от автомобилей с ДВС. Как указано в Хартии национальной политики в области электромобильности, цель страны — запретить импорт автомобилей с ДВС не позднее 2035 года; сюда входят легковые автомобили, легкие коммерческие автомобили, автобусы, средние и тяжелые грузовики, а также двухколесные транспортные средства.

Упомянутые выше национальные правительства, правительства провинций и штатов имеют несколько общих черт. Все они установили определенную цель и сроки, установили свои амбиции на 100% поэтапный отказ от ДВС или новые продажи исключительно электрических автомобилей или автомобилей с нулевым уровнем выбросов и опубликовали свои цели в официальных политических документах.

Помимо этих усилий, несколько инициатив обязались прекратить продажу новых автомобилей с ДВС. 18 стран, штатов и провинций, присоединившихся к Международному альянсу транспортных средств с нулевым уровнем выбросов (IZEVA), договорились о том, чтобы к 2050 году продажи всех новых легковых автомобилей были нулевыми.Кроме того, как указано выше, семь членов IZEVA — Британская Колумбия, Калифорния, Канада, Нидерланды, Норвегия, Великобритания и Квебек (Канада) — официально взяли на себя более ранние цели по поэтапному отказу от легковых автомобилей с ДВС. Что касается автомобилей средней и большой грузоподъемности, 15 штатов США и округ Колумбия подписали в июле этого года меморандум о взаимопонимании, в котором они обязались к 2050 году обеспечить 100% нулевым уровнем выбросов при продаже новых автомобилей средней и большой грузоподъемности.

Дополнительные страны, регионы и штаты обязались постепенно прекратить продажу автомобилей с ДВС, но пока без каких-либо официальных политических документов или законодательства.Например, всего через несколько дней после заявления Калифорнии Нью-Йорк и Нью-Джерси призвали к 2035 году обеспечить продажи новых легковых автомобилей и легких грузовиков в штатах на 100 % с нулевым уровнем выбросов; в отличие от Калифорнии, это не было частью распоряжения. В сентябре правительство Бельгии также предложило запретить продажу новых автомобилей с ДВС к 2026 году, но это касается только служебных автомобилей. Другие страны, объявившие о поэтапном отказе от продажи автомобилей с ДВС, включают Египет, Португалию, Шри-Ланку и Тайвань.

Важно отметить, что ведущие рынки транспортных средств, такие как США, Китай и Германия, не имеют обязательных долгосрочных обязательств по полному отказу от автомобилей с ДВС.В Соединенных Штатах Закон об автомобилях с нулевым уровнем выбросов, который устанавливает цель продаж автомобилей с нулевым уровнем выбросов к 2040 году, не был принят. А в Китае, хотя соответствующее регулирующее агентство начало расследование запрета ICE в 2017 году, центральное правительство не объявило официальных целей. Тем не менее, Китай уже довольно далеко продвинулся в плане электрификации своего автобусного парка. Уже будучи крупнейшим в мире рынком электромобилей, продажи новых автобусов в Китае в 2019 году составили 96% электромобилей, и это без объявления каких-либо национальных целей по доле электробусов.В случае Германии, став членом IZEVA, страна косвенно согласилась отказаться от автомобилей с двигателями внутреннего сгорания не позднее 2050 года; однако это обязательство еще не отражено в национальном плане защиты климата. Тем не менее, приверженность Калифорнии стала катализатором новых политических дискуссий в Германии об установлении официальной национальной цели поэтапного отказа.

Мы подчеркиваем, что обязательства по поэтапному отказу распространяются на продажу новых автомобилей, а не автомобилей, уже находящихся в эксплуатации.Кроме того, только Британская Колумбия приняла обязательные правила, и большинство целей поэтапного отказа от автомобилей с ДВС не включают подключаемые гибридные электромобили (PHEV). Недавний анализ показал, что PHEV потребляют в среднем в два-четыре раза больше топлива, чем это отражено в значениях одобрения типа.

Тем не менее, недавние объявления и обязательства являются важным сигналом. Похоже, они придали новый импульс дискуссиям о целях поэтапного отказа от автомобилей с ДВС и о полном переходе на автомобили с нулевым уровнем выбросов.Возможно, это всколыхнет страны, которые до сих пор не решались взять на себя обязательства по достижению определенной цели поэтапного отказа.

Правительство Год Категория транспортного средства* Целевые типы транспортных средств* Политический документ**
ЕВРОПА
Норвегия 2025 Легковые автомобили, легкие коммерческие автомобили, городское использование Продажа новых автомобилей со 100% нулевым уровнем выбросов Национальный транспортный план на 2018–2029 годы (2017)
Нидерланды 2025 Городские автобусы Покупка нового автомобиля со 100% нулевым уровнем выбросов Миссия Ноль (2019)
2030 Легковые автомобили Продажа новых автомобилей со 100% нулевым уровнем выбросов
Дания 2030 Легковые автомобили Отсутствие продаж новых автомобилей с бензиновым или дизельным двигателем План климата и воздуха (2018)
2035 Отсутствие продаж новых бензиновых, дизельных или подключаемых гибридных автомобилей
Исландия 2030 Легковые автомобили Отсутствие регистрации новых автомобилей с бензиновым или дизельным двигателем План действий Исландии по борьбе с изменением климата на 2018–2030 годы (2018 г. )
Ирландия 2030 Легковые автомобили Отсутствие продаж новых автомобилей, работающих на ископаемом топливе План действий по борьбе с изменением климата на 2019 г. (2019 г.)
Словения 2030 Легковые автомобили, легкие коммерческие автомобили Нет новых регистраций транспортных средств с CO 2 Выбросы выше 50 г/км Стратегия развития рынка для создания адекватной альтернативной топливной инфраструктуры в транспортном секторе Республики Словении (2017 г.)
Швеция 2030 Легковые автомобили Отсутствие продаж новых автомобилей с бензиновым или дизельным двигателем План действий по климатической политике (2019 г.)
Шотландия (Соединенное Королевство) 2032 Легковые автомобили, легкие коммерческие автомобили Отсутствие продаж новых автомобилей с бензиновым или дизельным двигателем План изменения климата (2018 г. )
Соединенное Королевство 2035 Легковые автомобили, легкие коммерческие автомобили Нет продаж новых бензиновых, дизельных или гибридных автомобилей Консультации по прекращению продажи новых бензиновых, дизельных и гибридных автомобилей и микроавтобусов (2020)
Франция 2040 Легковые автомобили, легкие коммерческие автомобили Отсутствие продаж новых автомобилей, работающих на ископаемом топливе Закон о правилах мобильности (2019 г.)
Испания 2040 Легковые автомобили, легкие коммерческие автомобили Продажа новых автомобилей со 100% нулевым уровнем выбросов Проект Закона об изменении климата и энергопереходе (2020 г.)
Германия, Баден-Вюртемберг (Германия) 2050 Легковые автомобили Продажа новых автомобилей со 100% нулевым уровнем выбросов Обязательство IZEVA (2015 г. ), еще не отраженное в национальном плане защиты климата
СЕВЕРНАЯ, ЦЕНТРАЛЬНАЯ И ЮЖНАЯ АМЕРИКА
Калифорния (США) 2035 Легковые автомобили, легкие грузовики Продажа новых автомобилей со 100% нулевым уровнем выбросов Исполнительный указ (2020)
Колумбия 2035 Общественный транспорт Новые покупки 100% электрические или с нулевым уровнем выбросов Закон о продвижении электромобилей в Колумбии (2019 г.)
Британская Колумбия (Канада) 2040 Автомобили малой грузоподъемности (легковые автомобили, легкие коммерческие автомобили) Продажа и аренда новых автомобилей 100 % с нулевым уровнем выбросов Закон об автомобилях с нулевым уровнем выбросов (2020 г.)
Канада 2040 Автомобили малой грузоподъемности (легковые автомобили, легкие коммерческие автомобили) Продажа новых автомобилей со 100% нулевым уровнем выбросов Федеральный бюджет Канады (2019 г. )
Коста-Рика 2050 Легковые автомобили (легковые автомобили, легкие коммерческие автомобили) Продажа новых автомобилей со 100% нулевым уровнем выбросов Национальный план декарбонизации (2019 г.)
Коннектикут, Мэриленд, Массачусетс, Нью-Джерси, Нью-Йорк, Орегон, Род-Айленд, Вермонт, Вашингтон (США) 2050 Легковые автомобили Продажа новых автомобилей со 100% нулевым уровнем выбросов Обязательство IZEVA (2015 г.), еще не отраженное в официальных стратегических документах государственного или провинциального уровня
Калифорния, Коннектикут, Колорадо, Гавайи, Мэн, Мэриленд, Массачусетс, Нью-Джерси, Нью-Йорк, Северная Каролина, Орегон, Пенсильвания, Род-Айленд, Вермонт, Вашингтон, округ Колумбия (США) 2050 Автомобили средней и большой грузоподъемности Продажа новых автомобилей со 100% нулевым уровнем выбросов Меморандум о взаимопонимании (2020 г. ), еще не отраженный в официальных стратегических документах
АЗИЯ
Хайнань (Китай) 2020 Государственные и каршеринговые автомобили, легкие грузовики Продажа новых автомобилей, полностью электрических План развития экологически чистых транспортных средств (2019 г.)
  2020 Автобусы, автомобили для перевозки пассажиров Отсутствие продаж новых автомобилей с бензиновым или дизельным двигателем
  2025 Туристические автобусы, прокат автомобилей Отсутствие продаж новых автомобилей с бензиновым или дизельным двигателем
  2030 Частные автомобили Продажа новых автомобилей, полностью электрических
Израиль 2030 Частные автомобили Продажа новых автомобилей, полностью электрических Цели в области энергосбережения на 2030 год (2018 год)
АФРИКА
Кабо-Верде 2035 Легковые автомобили, легкие коммерческие автомобили, автобусы, средние и тяжелые грузовики, двухколесные транспортные средства Запрещен импорт транспортных средств с двигателем внутреннего сгорания, работающих на ископаемом топливе (бензин или дизельное топливо) Хартия политики в области электромобильности (2019 г. )
*Терминология, используемая в официальных политических документах
**Дата публикации

Таблица 1.Цели правительства страны, провинции и штата по поэтапному прекращению продаж новых автомобилей с ДВС или установлению целей по 100% доле электромобилей в новых продажах, регистрациях или импорте до 2050 года (по состоянию на начало ноября 2020 года).

Двигатель внутреннего сгорания

Двигатель внутреннего сгорания
Гленн

Исследовательский
Центр

В течение сорока лет после первый полет братьев Райт, самолеты использовались двигатели внутреннего сгорания превратить пропеллеры генерировать толкать.Сегодня большинство самолетов авиации общего назначения или частных самолетов по-прежнему приводимый в движение пропеллерами и двигателями внутреннего сгорания, как и ваш автомобильный двигатель. На этой странице мы обсудим основы двигатель внутреннего сгорания, использующий Двигатель братьев Райт 1903 года, показанный на рисунке в качестве примера.

При обсуждении двигателей мы должны учитывать как механическое действие машина и термодинамический процессы, которые позволяют машине производить полезные работай. Основная механическая конструкция двигателя Райта: удивительно похож на современный, четырехтактный, четыре цилиндра автомобильные двигатели.Как следует из названия, процесс горения двигателя внутреннего сгорания находится в закрытом цилиндр . Внутри цилиндра находится движущийся поршень который компрессы смесь топлива и воздуха перед сгоранием, а затем обратно вниз по цилиндру после сгорания. На рабочий ход поршень поворачивает кривошип, который преобразует линейное движение поршень в круговое движение. Поворот коленчатый вал затем используется для вращения винта самолета. То движение поршня повторяется термодинамический цикл называется Цикл Отто которая была разработана немцем Dr. Н. А. Отто, 1876 г. и используется до сих пор.

Хотя между современными авиационные двигатели и двигатель Райта 1903 года, простота конструкции двигателя Райта делает его хорошей отправной точкой для студентов. Отдельные веб-страницы для всех основных систем и части предусмотрены так, что вы можете изучить каждый пункт более подробно. Вот программа на Java, которую вы можете использовать для просмотра движка с разнообразие локаций:

На этой странице показан интерактивный Java-апплет, который позволяет вам изменять вид на двигатель самолета 1903 года, нажимая кнопки для остановки, шага или вращения Изображение.

Вы можете загрузить собственную копию этого апплета, нажав следующую кнопку:

Программа скачивается в формате .zip. Вы должны сохранить файл на диск и затем «Извлеките» файлы. Нажмите на «Engine.html» для запуска программы в автономном режиме.


Виды деятельности:

Экскурсии с гидом

Навигация . .


Домашняя страница руководства для начинающих

Стационарные поршневые двигатели внутреннего сгорания

Нужно ли мне разрешение на установку дизельного двигателя, например генератора?
Применимость разрешения будет зависеть в первую очередь от номинальной мощности двигателя и предполагаемого использования генератора.Чтобы установить неаварийный генератор мощностью более 300 тормозных л.с., вам потребуется получить разрешение на полет или изменить существующее разрешение до принятия каких-либо договорных обязательств на Объекте.  Только аварийные генераторы , как правило, не требуют разрешения или изменения разрешения для установки; однако программы пикового бритья не считаются чрезвычайными ситуациями, и все же есть несколько положений, которые могут применяться независимо от того, требуется ли разрешение. Эти положения и факторы, используемые для определения применимости, более подробно обсуждаются ниже.

Что такое стационарный поршневой двигатель внутреннего сгорания?
Стационарные поршневые двигатели внутреннего сгорания (RICE) — это двигатели, в которых используется расширение газов и возникающее в результате этого повышенное давление от сгорания топлива внутри замкнутого цилиндра (цилиндров) для перемещения одного или нескольких поршней вперед и назад для вращения вала и производят механическую энергию. Механическая энергия может использоваться непосредственно для оборудования, такого как насосы или компрессоры, или ее можно использовать для питания электрического генератора и производства электроэнергии.

Стационарные поршневые двигатели внутреннего сгорания используют воспламенение от сжатия (CI) или искровое зажигание (SI), чтобы вызвать сгорание в цилиндрах. CI RICE обычно работает на дизельном топливе, тогда как SI RICE обычно работает на более легком топливе (например, бензине, пропане, природном газе, биогазе и т. д.). RICE загрязняет воздух в результате сжигания топлива, обычно создавая более высокий уровень загрязнения, чем другие источники сгорания, такие как котлы, из-за более высокого давления внутри RICE и повторяющегося «периодического» сгорания, которое происходит с каждым циклом сгорания, который перемещает поршень ( с).

Чтобы соответствовать определению стационарного RICE в соответствии с правилами Вермонта, двигатель должен оставаться на стационарном источнике в течение 12 месяцев подряд или в течение всего рабочего сезона на сезонных источниках. Федеральные правила отличаются тем, что, если двигатель установлен на шасси, предназначенном для перемещения либо собственным ходом, либо внешним источником питания, он считается не стационарным RICE, а скорее внедорожным двигателем.

Как насчет двигателей для шоссейных и внедорожных транспортных средств на моем объекте?
Дорожные транспортные средства (напр.грамм. грузовики, автобусы, легковые автомобили и мотоциклы), зарегистрированные для использования на дорогах общего пользования, подпадают под действие отдельных стандартов выбросов автотранспортных средств и не подпадают под действие каких-либо разрешений на полеты для стационарных источников, выдаваемых AQCD Вермонта, и не включаются в них. Внедорожные двигатели (например, локомотивы, морские суда, внедорожные транспортные средства для отдыха, оборудование для газонов и садов, а также внедорожное строительное оборудование, включая самосвалы, бульдозеры и переносные генераторы) также подпадают под действие отдельных норм выбросов, но их регулирование является более сложным. .Для любого стационарного источника в Вермонте, необходимого для получения разрешения на другие выбросы загрязнителей воздуха (см. VAPCR 5-401 для списка источников загрязнителей воздуха, требующих разрешений на выбросы в воздух), выбросы загрязнителей воздуха и использование топлива для любых внедорожных двигателей будут включены в разрешение на полет. Основная причина их включения в разрешение на использование воздуха связана с выбросами этих двигателей, которые, вероятно, происходят полностью из стационарного источника, в отличие от транспортных средств, которые выделяют выбросы на многие мили автомагистралей.

Однако федеральное определение внедорожных двигателей включает положения, в которых говорится, что эти двигатели станут стационарными источниками в зависимости от того, как они используются. Если внедорожный двигатель остается неподвижным в одном и том же фиксированном месте в течение 12 месяцев подряд или в течение всего сезона эксплуатации у сезонных источников, он будет считаться стационарным двигателем. Компрессоры и генераторы часто используются таким образом.

Выбросы внедорожных двигателей и использование топлива на Производственном объекте будут включены в регистрацию Производственного объекта и будут регулироваться в разрешении на полеты Производственного объекта. Однако, если внедорожный двигатель не будет реклассифицирован как стационарный двигатель, разрешение не может любые новые стандарты выбросов для двигателя, поскольку внедорожные двигатели, уже подпадают под действие федеральных стандартов выбросов.

Как регулируются стационарные RICE?
Существует несколько факторов, которые могут повлиять на то, какие правила применяются к стационарным RICE, например:

  • Номинальная тормозная мощность двигателя,
  • при изготовлении или установке двигателя,
  • независимо от того, расположен ли двигатель в крупном источнике или в районе источника,
  • предполагаемое использование двигателя, в том числе когда/куда двигатель перемещается (если применимо),
  • и является ли двигатель двигателем с воспламенением от сжатия или с искровым зажиганием. Двигатели с искровым зажиганием далее подразделяются по силовому циклу (т. е. двухтактные и четырехтактные, а также «богатое горение» и «бедное горение»)
  • .

Таким образом, перед установкой стационарного RICE вы должны уведомить отдел разрешений и проектирования AQCD, чтобы убедиться, что вы полностью осведомлены о своих обязательствах по соблюдению требований. Уведомление должно содержать следующую информацию: марка, модель, номинальная мощность двигателя, мощность генератора в кВт (если применимо), год выпуска двигателя и сертификация двигателя по выбросам.Эта информация доступна на паспортной табличке двигателя, прикрепленной к двигателю, в отличие от паспортной таблички генератора, которая прикреплена к компоненту генератора. К уведомлению должна быть приложена фотография заводской(ых) таблички(ей) двигателя, чтобы гарантировать, что вся информация будет точно зафиксирована и представлена. Если предполагается использование в качестве аварийного генератора, в уведомлении также должно быть указано, что аварийный генератор должен использоваться только для аварийного использования  и что вы знакомы с государственными и федеральными определениями, ограничивающими операции, разрешенные для аварийных генераторов. Генераторы, которые будут использоваться в неаварийных целях, включая большинство программ снижения пиковой нагрузки, как правило, требуют разрешения или изменения разрешения перед установкой.

Что мне нужно сделать, чтобы получить разрешение на полет?
Заявка на получение разрешения на строительство должна быть подана с соответствующим сбором за подачу заявки в AQCD. Разрешение должно быть выдано до того, как заявитель сможет начать строительство проекта. Это потребуется перед установкой или эксплуатацией неаварийного стационарного RICE на объекте.Дополнительную информацию см. на нашей веб-странице «Руководство по применению разрешения на строительство». В дополнение к информации, необходимой для подачи заявки на получение разрешения на строительство, пожалуйста, также представьте следующие спецификации и проекты оборудования.

Спецификации и конструкции оборудования
При подаче заявки на разрешение предоставьте следующую информацию в отдел разрешений и проектирования.

  • Производитель двигателя, номер модели, серийный номер(при наличии), Дата изготовления
  • Дата установки:
  • Использование двигателя (аварийный резерв, основное питание, пиковая мощность, использование без генератора (поясните)):
  • Номинальная мощность двигателя (л.с.):
  • Номинальная мощность двигателя (непрерывная/основная/резервная):
  • Мощность генератора (кВт):
  • Рабочая скорость двигателя (об/мин):
  • Тип топлива (автомобильное дизельное топливо [прозрачное, без оттенка]/стандартное дизельное топливо [красного оттенка]/природный газ/пропан/бензин/другое):
  • Максимальный расход топлива при нагрузке 100 % (жидкое топливо [галлонов/ч]/газообразное топливо [куб. фут/ч]):
  • Конструкция двигателя: количество цилиндров
    • рабочий объем на цилиндр (куб. дюймы)
    • двухтактный или четырехтактный
    • с турбонаддувом, наддувом или без наддува?
    • с промежуточным или промежуточным охлаждением?
    • способ зажигания [искровой или компрессионный (дизельный цикл)]:
  • Сертифицирован ли двигатель на соответствие федеральным ограничениям выбросов двигателей внедорожной техники, изложенным в 40 CFR Part 89 или Part 1039?
  • Если да, укажите уровень сертификации двигателя и год сертификации (т. год стандартов, по которым он сертифицирован):
  • Будет ли использоваться послойный заряд или замедление двигателя?
  • Будет ли двигатель использовать катализатор для очистки воздуха?
  • Будет ли двигатель оборудован уловителем дыма для снижения выбросов твердых частиц?
  • Производитель генератора, номер модели, серийный номер (при наличии)
  • Номинальная мощность генератора (кВт): основная мощность и/или мощность в режиме ожидания
  • Химия выхлопных газов (при наличии)

Государственные правила для генераторов
Исключение штата для аварийных генераторов применяется только к генераторам только для аварийного использования и только в том случае, если совокупная мощность этих двигателей-генераторов на всем объекте составляет менее 2000 л.с.Определение штата Вермонт для аварийного использования только допускает неограниченную работу во время чрезвычайных ситуаций, не зависящих от объекта, а также до 100 часов в год на плановые испытания и техническое обслуживание. Только в соответствии с определением, принятым в Вермонте, аварийные события также включают работу в рамках программ ISO Новой Англии или местных энергетических компаний по реагированию на чрезвычайные ситуации. Эти программы используются для обеспечения надежности электросети в периоды чрезвычайно высокого спроса на электроэнергию и реализуются только после того, как также были реализованы отключения электроэнергии.Эти программы очень ограничены и не включают в себя большинство программ пиковой нагрузки или сброса нагрузки, используемых для сокращения потребления электроэнергии, когда затраты на электроэнергию высоки, но надежность сети не находится под угрозой. Если у вас есть сомнения, вам следует обратиться в свою энергетическую компанию и в Отдел разрешений и проектирования AQCD, чтобы подтвердить, соответствует ли программа требованиям. Даже если ваш аварийный генератор имеет право на освобождение от разрешения, он не может быть освобожден от соблюдения минимальных стандартов выбросов. Если двигатель мощностью 450 л.с. или выше и установлен после 1 июля 2007 г., он должен как минимум соответствовать федеральному стандарту EPA Tier 2 на выбросы загрязняющих веществ внедорожных двигателей 40 CFR Part 89 или эквивалентному.Это включает в себя двигатели, которые будут использоваться для аварийного резервного копирования. Эффект этого правила заключается в том, что многие старые двигатели, не соответствующие требованиям, не могут быть установлены в Вермонте. Большинству существующих аварийных генераторов, установленных до этой даты, было разрешено оставаться только для аварийного использования. Если ваш двигатель мощностью 450 л.с. или больше, вам необходимо будет предоставить документацию в Отдел разрешений и проектирования AQCD о том, что предлагаемый двигатель соответствует требованиям, прежде чем устанавливать двигатель.

Федеральные правила для генераторов
Федеральное агентство по охране окружающей среды США имеет два правила, касающихся загрязнения воздуха, которые могут применяться к вашему генератору. Один применяется к новым двигателям, а другой применяется к существующим двигателям. Оба позволяют аварийным генераторам работать неограниченное количество часов в аварийных ситуациях и до 100 часов в год для проверок технического обслуживания и проверки готовности, но оба имеют более строгие требования к работе в рамках программ реагирования на чрезвычайные ситуации.

Точная применимость этих правил очень сложна для двигателей, установленных в переходный период 2005-2007 гг. Одно правило применяется к новым двигателям 2007 модельного года и новее, а также заказанным после 11 июля 2005 г., которые были изготовлены (не установлены) после 1 апреля 2006 г., а другое относится к существующим двигателям, установленным до 12 июня 2006 г.Применимость этих правил в переходный период не является беспрепятственной, и двигатель может подпадать под действие одного, обоих правил или ни одного из правил.

Краткое изложение этих правил представлено ниже. Поскольку Вермонт не делегировал эти правила, Агентство по охране окружающей среды США является исполнительным органом и несет ответственность за определение применимости и выполнения этих правил. Для получения дополнительной информации вам следует напрямую обратиться в Агентство по охране окружающей среды США и на их веб-сайт.

Часть 60 Подчасть IIII
Это правило применяется к более новым двигателям, включая аварийные генераторы, примерно 2007 модельного года и новее. За некоторыми исключениями, это правило для стационарных двигателей в основном указывает на стандарты выбросов для внедорожных двигателей, указанные в 40 CFR Part 89 и 1039. Его требования ложатся в первую очередь на производителя двигателей, которые должны производить соответствующие двигатели, отвечающие все более строгим стандартам выбросов для более новых моделей. годы.Стандарты выбросов варьируются в зависимости от года выпуска, размера двигателя и, в некоторых случаях, предполагаемого использования двигателя. В то время как большинство двигателей, произведенных после 2014 года, должны соответствовать стандартам выбросов Tier 4, которые требуют усовершенствованных средств контроля выбросов оксидов азота, состоящих из катализатора селективного каталитического восстановления (SCR) и впрыска дизельной выхлопной жидкости (DEF) 1 , некоторые двигатели все еще производятся сегодня. к менее строгим стандартам выбросов, если они предназначены только для аварийного использования или для больших (> 750 л.с.) приложений, не связанных с генераторной установкой.Если двигатель сертифицирован для только аварийного использования , оператор должен ограничить его работу только аварийным использованием . На табличке сертификации двигателя по выбросам будет указано, ограничено ли это для двигателя. Перед покупкой любого двигателя убедитесь, что он предназначен только для аварийного использования. Такие двигатели ни в коем случае нельзя использовать или переоборудовать для неаварийной работы в любой момент в будущем. Независимо от уровня сертификации двигателя по выбросам оператор двигателя должен использовать только топливо ULSD и должен обслуживать двигатель в соответствии с рекомендациями производителя и в соответствии с передовыми методами контроля загрязнения воздуха для минимизации выбросов.

Если вы планируете использовать биодизельное топливо, обратите внимание, что все из следующих условий должны быть выполнены:

  • Биодизельное топливо соответствует требованиям к топливу 40 CFR 60. 4207(b),
  • .
  • Гарантия производителя двигателя на двигатель (включая системы контроля выбросов) включает использование биодизеля (или смеси биодизеля), используемого в двигателе, и
  • Биодизель соответствует стандарту ASTM D6751.

1 Для стационарных двигателей, изготовленных и имеющих маркировку , используйте в аварийных ситуациях только . Подчасть IIII не требует, чтобы они соответствовали последним (Уровень 4) стандартам выбросов, установленным для внедорожных двигателей в 40 CFR Part 89 и 1039.Для таких стационарных аварийных двигателей разрешено использовать только двигатели с маркировкой , которые соответствуют Уровню 3 для двигателей мощностью менее 750 л.с. и Уровню 2 для двигателей мощностью более 750 л.с. Кроме того, внедорожные двигатели мощностью более 750 л.с. (560 кВт), которые не являются компонентом генераторной установки, могут соответствовать стандартам выбросов Tier 4 без необходимости использования катализатора селективного каталитического восстановления (SCR) и впрыска дизельного топлива. выхлопная жидкость (DEF).

Часть 63 Подчасть ZZZZ
Это правило применяется к существующим двигателям, установленным до 12 июня 2006 г., и его требования в первую очередь относятся к объекту, эксплуатирующему двигатель.Требования варьируются в зависимости от размера и использования двигателя. Исключением являются аварийные генераторы в жилых/коммерческих/институциональных объектах, но не на промышленных объектах. Федеральное определение аварийной операции не соответствует определению штата и является предметом продолжающегося судебного разбирательства. В настоящее время двигатели , а не , предназначенные только для аварийного использования, могут эксплуатироваться в рамках программы ISO Новой Англии по реагированию на чрезвычайные ситуации. Некоторые неэкстренные операции разрешены, но такие операции не могут использоваться для снижения пиковых нагрузок или реагирования на неэкстренный спрос или для получения дохода для объекта, за исключением случаев, разрешенных в настоящее время в (f)(4)(ii), которые по-прежнему позволяют до 50 часов «местного» реагирования на запросы. Вам следует напрямую проконсультироваться с правилами и Агентством по охране окружающей среды, чтобы убедиться, что вы продолжаете соблюдать эти положения, если вы собираетесь использовать двигатель для каких-либо неаварийных программ или программ реагирования на запросы.

Аварийные генераторы на промышленных объектах и ​​неаварийные двигатели мощностью менее 300 л.с. должны устанавливать счетчик наработанного времени (аварийные агрегаты), менять масло и фильтр каждые 500 часов (аварийные агрегаты) или 1000 часов (неаварийные агрегаты) работы, но не реже одного раза в год, проверяйте воздушный фильтр двигателя каждые 1000 часов работы, но не реже одного раза в год, проверяйте шланги и ремни двигателя каждые 500 часов, но не реже одного раза в год, и ведите соответствующие записи.В неаварийных двигателях мощностью 300 л.с. и выше должен быть установлен катализатор окисления для снижения выбросов окиси углерода, они должны использовать только топливо ULSD и должны обслуживать двигатель в соответствии с рекомендациями производителя и в соответствии с передовыми методами контроля загрязнения воздуха для минимизации выбросов, в том числе ограничение времени работы на холостом ходу.

Какие еще разрешения или требования могут быть применимы к моему проекту?
В отделе помощи окружающей среде Департамента охраны окружающей среды есть специалисты по разрешениям, которые могут оказать помощь в определении того, какие другие государственные разрешения или программы могут быть применимы к вашему проекту.Дополнительную информацию об этой услуге можно найти на следующем веб-сайте:  http://dec.vermont.gov/environmental-assistance/permits

. .

Добавить комментарий

Ваш адрес email не будет опубликован.