Принцип работы тнвд бош: Устройство и принцип работы ТНВД Bosch

Содержание

Устройство и принцип работы ТНВД Bosch

ТНВД и ТННД

На чтение 4 мин. Просмотров 2k.

Рано или поздно любой водитель автомобиля может встретиться с проблемой поломки тнвд. В этой статье вы найдете всю основную информацию по теме как: устройство тнвд бош. Начинайте читать уже сейчас!

Топливный насос высокого давления относится к самым сложным узлам системы топливоподачи дизельных двигателей.

Принцип работы ТНВД заключается в подаче к цилиндрам дизельного двигателя в определенный момент и под определенным давлением точно отмеренных порций топливной смеси, которые соответствуют данной нагрузке.

В топливных насосах непосредственного действия проходит механический привод плунжера, а процесс момента впрыска и нагнетания проходят одновременно. Во все цилиндры секцией ТНВД подается необходимая порция топливной смеси. Необходимое давление для впрыска и распыления обеспечивает плунжерный насос. В представленной нами статье мы более подробно поговорим об данной детали производителя bosch, а именно рассмотрим такие довольно распространенные вопросы:

  • Где купить ТНВД и комплектующие?
  • Что такое топливный насос высокого давления?
  • Устройство ТНВД;
  • В чем заключается принцип работы ТНВД бош?
  • Устройство рядного ТНВД бош;
  • Как правильно разобрать ТНВД фирмы bosch?
  • Плунжерный ТНВД bosch, его устройство и принцип работы;
  • Принцип работы момента впрыска ТНВД фирмы bosch;
  • Установка ТНВД bosch.
Тнвд bosch

Основная информация о топливном насосе

Итак, в чем заключается принцип работы ТНВД? Принцип работы ТНВД фирмы бош, так же как и момент впрыска ничем не отличается от ТНВД других производителей. Основным элементом ТНВД фирмы бош является плунжерный насос. Топливный насос рассчитан на то, чтоб под большим давлением передавать определенную порцию топлива к двигателю и не допускать две крайности, такие как его недостаток и избыток. Поэтому поломки на которые владелец автомобиля может не обращать внимание или оценивать их как несущественные, могут привести к ремонту дизельного двигателя или полной его замене. Главным критерием, по которому топливные насосы разделяют на типы, является их устройство. Итак, на основании устройства топливных насосов их разделяют на такие типы:

  • Распределительные. Оснащаются форсунками и регуляторами механического типа. Современные моторы оснащаются рядными ТНВД (топливный насос с высоким давлением) с электрическим управлением. Представленный тип насосов считается самым простым, хотя и отличается значительными размерами и весовыми характеристиками;
  • Рядные. Оснащается одной или несколькими плунжерными парами, нагнетающими топливную смесь и распределяющими ее по цилиндрам. Данный тип намного меньше и легче по сравнению с рядными. Хотя такое преимущество приводит к некоторым недостаткам, например, быстрый износ деталей распределительного типа;
  • Магистральные. Как правило, они используются в системе впрыскивания commonrail. Их основной и единственной функцией является нагнетание топливной смеси в рампу. Количество плунжеров колеблется от одного до трех. В данном типе ТНВД также применяются такие детали как шайба или кулачный валик, приводящие плунжеры в действие.

Разборка и установление топливного насоса

Достаточно очевидным фактом является то, что без использования ТНВД подавать топливо к двигателю было бы сложно. Именно поэтому достаточно логично, что такому типу топливного насоса уделяется столько внимания автолюбителей, которые занимаются ремонтом моторов такого типа.

Ремонт тнвд bosch

Самыми распространенными причинами неполадок являются:

  • Применение низкокачественного топлива, а это может привести к поломке топливного насоса. Для ТНВД применяется дизельное топливо, в качестве смазывающего материала для движущихся деталей и плунжерных пар. В случае загрязнения топлива разными примесями теряется смазывающее свойство, а это может привести к неисправности топливного насоса в дальнейшем;
  • Износ топливного насоса;
  • Проблемы с электрической техникой. Неправильное функционирование электроники автомобиля может сказываться на нормальном функционировании остальных систем.

Для того чтобы качественно отремонтировать топливный насос высокого давления, необходимо знать как проводится разборка и установка, когда восстановление ТНВД невозможно и какие детали нуждаются в замене, для устранения неисправностей. Итак, как правильно проводится разборка и установка топливного насоса высокого давления?

  • Открутите 4 винтика на торцевой стороне;
  • Освободите кабель клапана опережения впрыска из-под прижимной пластины;
  • Открутите 3 винтика, которые закрепляют прижимные пластины дозирующего клапана;
  • Снимите дозирующий клапан;
  • Открутите 2 винтика, которые закрепляют клапан угла опережения впрыска;
  • Снимите клапан опережения впрыска;
  • Открутите винтики, закрепляющие так называемые мозги;
  • Отодвиньте мозги и открутите винтики, которые закрепляют датчик положения валика топливного насоса;
  • Снимите мозги вместе с ливером;
  • Установите на метку шкив и запомните расположение валика вместе с дозирующей иглой;
  • С помощью двух плоских отверток, закладывая их попарно-диаметрально за уши, осторожно камеру вместе со штуцерами;
  • Достаньте подшипник и пластинки;
  • Открутите крышку автомата опережения;
  • Достаньте автомат опережения впрыска;
  • Установите поршень опережения так, чтобы во время поворота из него можно было извлечь кулочковую шайбу;
  • Достаньте поршень опережения впрыска;
  • Топливный насос разобран, а его сборка выполняется в обратном порядке.

Какое устройство ТНВД bosch?

ТНВД bosch устройство выглядит следующим образом. Топливный насос подает в цилиндры дозированное количество топлива под высоким давлением в зависимости от нагрузки и скорости автомобиля. Поэтому при выборе двигателя нужно уделять внимание ТНВД.

ТНВД важнейшая часть устройства топливной системы автомобиля.Основные блоки ТНВД это блок высокого давления с распределительной головкой и дозирующей муфтой, автоматический регулятор частоты вращения с системой рычагов и пружин. Также ТНВД bosch устройство включает в себя роторно-лопастный насос низкого давления с регулирующим перепускным клапаном, электромагнитный клапан для перекрытия впускного окна, автомат изменения угла опережения впрыскивания топлива. Вал привода топливного насоса располагается внутри корпуса ТНВД. На нем устанавливается ротор топливного насоса и шестерня привода вала регулятора с грузами. За валом в корпусе насоса размещено кольцо с роликами и штоком привода автомата опережения впрыскивания топлива. Привод вала ТНВД работает от коленвала дизеля, шестеренчатой передачей. Работа ТНВД происходит так, что поступательное движение плунжера одновременно с движением поршней в цилиндрах дизеля. Шайба обеспечивает поступательное движение, а вал топливного насоса – вращательное.

ТНВД bosch устройство отключения соленоидного управления прерывает подачу топлива к насосу при выключенном зажигании.

Самый важный элемент ТНВД – это лопастный топливоподкачивающий насос, который всасывает топливо от фильтра трубопровода. Колесо насоса располагается в круглом отверстии корпуса. Между ползунами всегда остается некое расстояние, которое уменьшается в сторону нагнетания насоса. Таким образом жидкость, находящаяся в этом объеме, принудительно выдавливается. Топливо подается под давлением в корпус топливного насоса высокого давления.

Распределительный плунжер ТНВД выполняет функции наполнения и разбрызгивания. Плунжер состоит из отверстий и выемок и работает следующим образом. Шлиц распределительного плунжера находится напротив наполнительного отверстия. Топливо поступает под давлением в свободное место в поршне. Затем плунжер проворачивается и наполнительное отверстие снова закрывается. Теперь кулачковый диск движется против самой важной опоры, которая несет обкаты на том же интервале, что и выступы на дисковом кулачке, чтобы уменьшить трение. Далее кулачковый диск движется по роликовому кольцу и происходит разбрызгивание. Следующее отверстие совпадает с каналом выпускного отверстия к форсунке. Топливо вытекает только в направлении цилиндра со сжатием и воспламенением.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ СИСТЕМЫ COMMON RAIL. Статьи компании «ООО «ТД Техлайф»»

После получения технологии прямого впрыска дизельного двигателя с системой COMMON RAIL компании ROBERT BOSCH Gmbh удалось с успехом разработать эффективную схему контроля впрыска, которая получила наибольшее распространение и в мире, благодаря своей простоте и надежности. Системы COMMON RAIL от BOSCH классифицируются по типам насоса высокого давления и могут иметь несколько разновидностей в зависимости от задач двигателя. Системы управления топливоподачей BOSCH могут быть трех типов: с регулированием давления в рампе на стороне высокого давления, регулирование потока топлива на стороне высокого давления при выходе топлива из ТНВД и так называемый «двойной контроль», когда регулировка происходит с помощью датчика контроля потока в ТНВД и посредством регулятора давления на топливной рампе с помощью дозирующего клапана на линии низкого давления на входе в ТНВД.

Система Bosch CP1

Насосы Bosch первого поколения типа CP1 приводятся в работу с помощью вала, соединенного с распредвалом двигателя. Они могут иметь модификации CP1K — компактный дизайн и CP1S — стандартный дизайн, но с регулятором давления на корпусе насоса. Система характеризуется наличием погружного электрического топливного насоса, который подает топливо к ТНВД под давлением 2,6 бар и с производительностью 160 л/час (может меняться в зависимости от модели автомобиля). Электрический топливный насос постоянно активирован при работающем двигателе. Лишнее топливо отводится через предохранительный клапан на блоке топливного фильтра в топливный бак. Блок топливного насоса и указателя уровня топлива оснащен еще одним предохранительным клапаном. При заблокированном топливопроводе предохранительный клапан открывается и подаваемое топливо снова возвращается напрямую в топливный бак. Это позволяет избежать повреждений топливной системы.

ТНВД системы СР1 имеет три плунжера, расположенных радиально к друг другу под углом в 120 градусов. В центре корпуса топливного насоса установлен приводной вал. Привод плунжерных пар осуществляется посредством эксцентрикового кулачка напрямую от выпускного распределительного вала через соединительный элемент. Передаточное число привода топливного насоса соответствует передаточному числу коленчатого вала относительно распределительного вала 2 : 1. ТНВД СР1 не имеет клапана дозирования топлива. Давление в топливной рампе регулируется исключительно посредством регулятора давления топлива (DRV). ТНВД должен создавать минимальное давление в рампе на уровне 170-200 бар на холостом ходе и 1350 бар на максимальных оборотах. После входного штуцера на линии низкого давления в ТНВД имеется специальный клапан, который переводит часть топлива для смазки внутренних поверхностей насоса. Пружина клапана настроена так, что если давление в магистрали ниже 0,8 бар, то топливо направляется на смазку и охлаждение насоса и затем сливается в линиию обратки. Если давление выше 0,8 бар, то пружина сжимается и большая часть топлива подаётся к плунжерам для сжатия. По мере вращения приводного вала, эксцентрик нажимает на трехгранную втулку, а она надавливает на поршень плунжера. Когда эксцентрик не давит на поршень плунжера, поршень под действием возвратной пружины двигатется к центру насоса, создавая разряжение в камере, которое открывает впускной клапан и топливо попадает в камеру. После нажима эксцентрика на поршень, тот двигается вверх, сжимая топливо и высокое давление в камере перекрывает впускной клапан (как только давление станет около 1 бара), одновременно выдвигая шарик контрольного клапан на впуске и выпуская топливо из камеры уже под высоким давлением. После этого движение поршня вниз снова создает разряжение и шарик перекрывает выпускное отверстие и впускной клапан открывается снова. Такт повторяется. Некоторые варианты насоса могут иметь клапан деактивации одного из плунжеров. Причина его использования — снижение нагрузки на ТНВД на малых оборотах, а также быстрое понижение давления в системе при переходе блока управления в аварийный режим. Клапан деактивации состоит из электромагнита и штока, который перекрывает подачу топлива для сжатия. После подачи сигнала с ЭБУ на клапан, соленоид прижимает шток с золотником клапана к впускному отверстию.

Регулятор давления топлива является частью топливной рампы или расположен на корпусе ТНВД. Клапан на насосе располагается после выпускного штуцера подачи топлива в рампу и отводит часть топлива в линию обратки. Клапан состоит из соленоида и подпружиненного штока, который упирается в шарик для перекрытия сливного канала. Открытие форсунок и работа плунжеров приводят к сильным гидравлическим колебаниям топлива. Шарик в клапане призван гасить эти колебания. Если давление в клапане больше 100 бар, то пружина сжимается и топливо утекает в магистраль обратки. Под управлением сигнала частоты с ЭБУ соленоид двигает шток вперед и он перекрывает слив в обратку, повышая давление в линии. Если ЭБУ не управляет клапаном, то давление находится на уровне 100 бар. Если клапан на рампе, то он находится на линии слива топлива в магистраль обратки и регулирует топливо по сигналу частотной модуляции с блока управления двигателем. Также на рампе устанавливается датчик измерения давления. Он с высокой точностью и за соответственно короткое время измеряет мгновенное давление топлива в рампе и передает в ЭБУ сигнал напряжения, соответствующий имеющемуся давлению. Датчик функционирует вместе с регулятором давления топлива в замкнутом контуре регулирования. Также в рампе может располагаться датчик температуры топлива. Его сопротивление при температуре 25 градсов — 2400 Ом, при температуре 80 градусов — 270 Ом.

Обычно в двигателях с системой Bosch СР1 используются форсунки электромагнитного типа. Принцип работы в следующем: 
Топливо из рампы под выскоим давлением через трубку направляется к форсунке и далее по топливной галерее в форкамеру распылителя, а также через впускной дроссель в управляющую камеру клапана. Управляющая камера клапана соединена с линией возврата топлива в бак через выпускной дроссель, который может открываться электромагнитным клапаном. В закрытом состоянии (электромагнитный клапан обесточен) выпускной дроссель закрыт шариком клапана, поэтому топливо не может выйти из управляющей камеры клапана. В этом положении в форкамере распылителя и в управляющей камере клапана устанавливается одинаковое давление (баланс давления). На иглу распылителя действует дополнительно усилие собственной пружины, поэтому игла распылителя остается закрытой (гидравлическое давление и усилие пружины иглы распылителя). Топливо не попадает в камеру сгорания. При активации электромагнитного клапана открывается выпускной дроссель. За счет этого возрастает давление в управляющей камере клапана, а также гидравлическое усилие, действующее на управляющий золотник клапана. Как только гидравлическая сила в управляющей камере клапана станет меньше гидравлической силы в форкамере распылителя и пружины иглы распылителя, игла распылителя открывается. Топливо через отверстия распылителя впрыскивается в камеру сгорания. Спустя заданное программой время подача электропитания к электромагнитному клапану прерывается. После этого выпускной дроссель снова закрывается. С закрытием выпускного дросселя в управляющей камере клапана через впускной дроссель восстанавливается давление из топливной рампы. Это повышенное давление с большим усилием воздействует на управляющий золотник клапана. Эта сила и сила упругости пружины иглы распылителя теперь превосходят силу в форкамере распылителя и игла распылителя закрывается. Скорость закрывания иглы распылителя определяется расходом впускного дросселя. Впрыск прекращается, как только игла распылителя достигает своего нижнего упора. Косвенное приведение в действие иглы распылителя посредством системы гидравлического сервопривода применяется, когда усилие, необходимое для быстрого открывания иглы распылителя с помощью электромагнитного клапана, не может быть создано напрямую. Для этого дополнительно к объему впрыскиваемого топлива в возврат топлива через дроссели управляющей камеры подается требуемый «управляющий объем». Дополнительное к управляющему объему имеются объемы утечек на перемещение иглы распылителя и управляющего золотника клапана. Электромагнитные форсунки калибруются во время производства и имееют несколько вариантов кодировки. Ранние версии разделены на классы (например, Х, Y, Z у Hyundai) и в случае замены классы форсунок необходимо комбинировать по определенному принципу. В более поздних системах используется код : 8-значный (ЕВРО IV) или 9-значный (ЕВРО V), который представляет собой поправочный коэффициент для коррекции топлива и выгравирован на поверхности головки топливной форсунки. В случае замены форсунок в память ЭБУ необходимо вводить новый код. Также необходимо вводить коды форсунок при замене ЭБУ на новый в память нового блока.

Система Bosch CP1Н

Система Bosch CP1H относится к второму поколению и стала применяться с 2001 года. В отличие от насосов CP1 в СР1Н на стороне подачи топлива в рампу расположен соленоидный клапан контроля количества топлива, подаваемого из насоса в рампу. Эта конструкция впервые была применена на типе СР3, но добавлена к СР1 для увеличения производительности насоса. Это позволяет увеличить эффективность насоса, понизив температуру топлива, нагрузку и повысив создаваемое давление. Привод топливного насоса осуществляется напрямую от выпускного распределительного вала через соединительный элемент. Передаточное число привода соответствует передаточному числу коленчатого вала относительно распределительного вала 2 : 1. Топливный насос может вырабатывать максимальное давление топлива от 1600 до 1800 бар. Еще одна особенность системы СР1Н — использование деактиватора одного из плунжеров в случае, если нет необходимости развивать максимальное давление в рампе.

В случае, если в системе не используется погружной электрический насос, ТНВД может быть оборудован подкачивающим насосом шестеренного типа. Основные конструктивные детали – две находящихся в зацеплении шестерни, вращающиеся друг навстречу другу и подающие топливо, защемленное во впадинах между зубьями, из полости всасывания в полость нагнетания. Контактная линия шестерен между полостью всасывания и полостью нагнетания уплотнена, что исключает возможность обратного перетекания топлива. Подача насоса примерно пропорциональна частоте вращения двигателя. В этой связи требуется регулирование подачи / переходного давления. Величина переходного давления, нагнетаемого зубчатыми колесами, зависит от дросселирующих отверстий и их проходного сечения в перепускном дроссельном клапане. Перепускной дроссельный клапан интегрирован в контур низкого давления топливного насоса. Создание высокого давления (до 1800 бар) вызывает высокую температурную нагрузку на отдельные детали топливного насоса. Поэтому для обеспечения выносливости механические детали топливного насоса должны обильно смазываться. Перепускной дроссельный клапан спроектирован так, чтобы при любом режиме эксплуатации обеспечить оптимальное смазывание и, соответственно, охлаждение. При низкой частоте вращения топливного насоса (низкое давление подкачивающего насоса) управляющий золотник лишь немного смещается со своего седла. Потребность в смазке/охлаждении, соответственно, мала. Открывается малая подача топлива через дроссель на конце управляющего золотника для смазки/охлаждения насоса. Некоторые ТНВД могут быть снабжены автоматической вентиляцией (Форд). Через дроссель отводится воздух, который может находиться в топливном насосе. С ростом частоты вращения топливного насоса (ростом давления подкачивающего насоса) управляющий золотник сильнее поджимает нажимную пружину. При растущей частоте вращения топливного насоса требуется усиленное охлаждение топливного насоса. При заданном давлении открывается байпасное охлаждение топливного насоса и расход топливного насоса увеличивается. При высокой частоте вращения топливного насоса (высоком давлении подкачивающего насоса) управляющий золотник сильнее поджимает нажимную пружину. Теперь байпасное охлаждение топливного насоса полностью открыто (максимальное охлаждение). Избыток топлива через байпас обратного потока возвращается в полость всасывания подкачивающего насоса. Таким образом внутреннее давление топливного насоса СР1Н (как и СР1) ограничивается значением 6 бар.

Привод топливного насоса осуществляется от приводного вала, а конструкция, в целом, аналогична CP1. На приводном валу жестко смонтирован эксцентрик, который перемещает три плунжера насоса возвратно-поступательно в соответствии с профилем кулачка эксцентрика. На впускной клапан подается давление топлива от подкачивающего насоса. Если переходное давление превышает внутреннее давление камеры высокого давления (плунжер превышает положение TDC (верхняя мертвая точка)), то впускной клапан открывается. Заполнение камеры высокого давления функционирует комбинировано: С одной стороны, топливо под воздействием переходного давления нагнетается в камеру высокого давления. Давление при этом зависит от проходного сечения клапана дозирования топлива. С другой стороны, топливо при движении плунжера вниз засасывается в камеру высокого давления. Если пройдена BDC (нижняя мертвая точка) плунжера, то впускной клапан закрывается вследствие возросшего давления в камере высокого давления. Топливо больше не может проходить в камеру высокого давления. Как только давление в камере высокого давления превысит давление в топливной рампе, открывается выпускной клапан, и топливо через подсоединение высокого давления нагнетается в топливную рампу (ход подачи). Плунжер насоса подает топливо до тех пор, пока не будет достигнута TDC. Затем давление падает, и выпускной клапан закрывается. Оставшееся топливо более не находится под давлением; плунжер насоса движется вниз. Если давление в камере высокого давления ниже переходного давления, впускной клапан снова открывается, и процесс начинается сначала.

Линия подачи топлива под высоким давлением в рампу имеет ответвление, которое проходит через Клапан регулировки давления для слива лишнего топлива в бак. Клапан установлен или сбоку или позади ТНВД в зависимости от конструкции.

Система Bosch CP3

Система BOSCH CP3 появилась в 2003 году и стала третьим поколением систем BOSCH для прямого впрыска дилеьного топлива. Базовый дизайн насоса CP3 идентичен СР1 и СР1Н. Но в этом типе применена новая технология контроля давления не в линии высокого давления, в на стороне подачи топлива в ТНВД. Для этого применен новый элемент — клапан контроля количества подаваемого в насос топлива (IMV). Корпус имеет новую форму моноблока со сниженным уровнем трения. Другая отличительная особенность — не прямое воздействие эксцентрика на плунжер, а передача усилия через толкатель, что позволяет увеличить нагрузку и добиться максимального давления в 1800 бар. Эти насосы используются как на легковых, так и на коммерческих автомобилях. Версии СР3.1 ~ СР3.4 отличаются размером и уровнем давления в зависимости от выполняемой автомобилем задачи. Версия СР3.4 используется только на грузовиках и автобусах.

Одна из отличительных особеннгостей системы — использование механического передающего насоса, расположенного в задней части ТНВД на линии низкого давления. Насос может быть шестеренчатого типа, как у CP1H, а может быть роторный роликового типа. Такой тип насоса включает в себя эксцентрично расположенную камеру с установленным в ней ротором и роликами, которые могут перемещаться в прорезях ротора. Вращение ротора вместе с создаваемым давлением топлива заставляют ролики перемещаться на периферию прорези, прижимаясь к рабочим поверхностям. В результате ролики действуют как вращающиеся уплотнители, посредством чего между роликами соседних прорезей и внутренней, рабочей поверхностью корпуса насоса, образуется камера. Создание давления определяется тем, что при закрытии входной серпообразной полости объем камеры постоянно уменьшается, и когда выходное отверстие открывается, топливо течет через электромотор и выходит из штуцера в крышке на нагнетательной стороне насоса.

Система Bosch CP4

Система Bosch CPN2

Насосы типа CPN2 используются только в коммерческих автомобилях. Их отличие — два вертикально расположенных в линию качающих плунжера. В некоторых редких случаях применялись насосы с четырьмя качающими элементами.

Сравнительная Таблица Насосов Высокого давления Bosch

Тип ТНВД

Максимальное давление в рампе (Бар)

Тип смазки

CP1

1350

Диз. Топливо

CP1+

1350

Диз. Топливо

CP1H

1600 / 1800

Диз. Топливо

CP1H+OWH

1100

Диз. Топливо

CP3.2

1600

Диз. Топливо

CP3.2+

1100

Диз. Топливо

CP3.3

1600

Диз. Топливо

CP3.4

1600 / 1800

Масло

CP3.4+

1600

Диз.Топливо

CP2

1400

Масло

CP2.2

1600

Масло

CP2.2+

1600

Масло

CP2.4

1600

Масло

CP4.1

1800 / 2000

Диз. Топливо

CP4.2

1100 / 2000

Диз. Топливо

Список автомобилей, на которых используется система COMMON RAIL типа BOSCH:

IVECO 190 E40=EUROTECH CURSOR 10
IVECO 380/400/410 T42
IVECO 180E24,E27,190224, 190E27,190E31,190E35,260E24,260E27 
IVECO CURSOR 8 
IVECO STRALIS
SCANIA DSC
MERCEDES ACTROS
SCANIA R420/R500/R580
SCANIA R380/480 
MERCEDES ACTROS 
MERCEDES ACTROS/TRAVEGO
VOLVO Fh22 / BOSCH 
VOLVO FH 12 / EURO I-II (BOSCH — MARK2 PUMP)
VOLVO Fh22 EURO II / BOSCH EQUIP. 
MERCEDES ATEGO,CITARO 
MERCEDES ACTROS 
MERCEDES CITARO/AXOR/TRAVEGO
IVECO 180=190 E38 EUROSTAR=400/440 E38 EUROSTAR 
RENAULT MAGNUM 400/440/480 E-TECH=DAF=KHD
AUDI A4/A6=SKODA SUPERB=VW PASSAT 1.9TDI 
AUDI A3=SEAT LEON/TOLEDO=VW BORA/PASSAT/GOLF 1.9 TDI 
AUDI A2/A4/A6 1.4/1.9 TDI=SEAT AROSA 1.4 TDI=VW LUPO
AUDIA3/A4=VW PASSAT/POLO/BORA=SKODA FABIA/SUPERB 1.9TDI
VW 1.9 TD ENGINE AXR 
VW VAN 
BMW 330D/XD/530D/730D/X5 3.0D 
LAND ROVER FREELANDER I 2.0 TD4
CHRYSLER VOYAGER 2.5/2.8 CRD 
RENAULT KERAX/PREMIUM 370 Dci with pump CP2
OPEL MOVANO+RENAULT MASTER 2.5 Dci 16v.
TOYOTA SR 
VW LT 28/35/46 2.8 Tdi+CHEVY BLAZER 2.8 DE+NISSAN FRONTIER 2.8 
ISUZU 
FIAT=OPEL ASTRA/VECTRA/ZAFIRA 1.9 Cdti 
HYUNDAI ACCENT II/MATRIX/i30 1.5 CRDi, TUSCAN/SANTA FE’/TRAJET 2.0 CRDi, h2/STAREX/PORTER/IX35/IX55
RENAULT KERAX/PREMIUM 370/420 Dci with pump CP2 
KIA 2.0 CRDi-VGT 
FIAT DOBLO’/IDEA/PANDA/G.PUNTO+LANCIA MUSA/Y 1.3 MULTIJET 
ALFA MITO+FIAT 500/PANDA/QUBO+OPEL CORSA 1.3 
MERCEDES C/E/S/ 200/220/270/280/320 CDI
MERCEDES VITO 108/110/112/E/ML/S/V/CLK 200/220/320/370 CDI
MERCEDES G 270 CDI/E/ML/S 400 CDI/SPRINTER 
KIA SORENTO 2.5 CRDI ALLA156P1265+ 
MERCEDES C30 CDI AMG/C30 CDI AMG 
HYUNDAI LIBERO/STAREX+KIA SORENTO 2.5 CRDI 
MERCEDES SPRITER 208/308/408 CDI 2.2cc
BMW 320D/330D/530D/730D/740D 
DODGE RAM 2500/3500 
IVECO DAILY/DUCATO 2.8/ RENAULT MASTER 2.8 
IVECO DAILY 29L 10/L12/35C10/C12/35S10/S12//RENAULT MASTER
VOLVO 
RENAULT/MACK TRUCKS 
RENAULT ESPACE IV+LAGUNA II+MASTER+MEGANE+SCENIC 1.9 DCI
REMAULT MEGANE/ LAGUNA 1.9 DCI
FIAT ULYSSE/DUCATO 2.0 JTD ENGINE PSA 
CITROEN XANTIA+PEUGEOT 406 2.0 HDI
FIAT ULYSSE 2.0 JTD (MOTORE PEUGEOT) 
IVECO 100 E 17/65+CUMMINS 
VW CONTELLATION+VOLKSBUS+13.180/15.190 ELECTRONIC 
ALFA ROMEO 147/156/166(1.9/2.4 JTD) 
CITROEN 2.0 HDI/PEUGEOT 2.0 HDI 
FIAT PUNTO JTD 
OPEL MOVANO/VIVANO+RENAULT MASTER+TRAFIC 2.5 DCI 
ALFA ROMEO 166+FIAT BRAVO/BRAVA+MULTIPLA+LANCIA 1.9/2.4 JTD
BMW 530D+730D ENGINE E39 
TOYOTA HILUX VIGO 3.0 TD 
OPEL MOVANO 2.2 DTI 
PEUGEOT 206.307 1.4 HDI=CITROEN XSARA 1.4 HD
MERCEDES CDI VARIE CC./SPRINTER VARIE 
MERCEDES 316CDI SPRINTER/VITO 108/110/112 CDI/V200/220 CDI 
MERCEDES E 200 CDI / E 220 CDI / E 270 CDI
MERCEDES CLASSE A 160/170 CDI 
MERCEDES C/E/VITO/SPINTER 220/270 CDI 
MERCEDES CLASSE A 160/170 CDI

Одноплунжерные распределительные топливные насосы ve конструкция топливного насоса bosch ve общее устройство насоса bosch ve

ОДНОПЛУНЖЕРНЫЕ РАСПРЕДЕЛИТЕЛЬНЫЕ ТОПЛИВНЫЕ НАСОСЫ VE

Конструкция топливного насоса BOSCH VE

Общее устройство насоса BOSCH VE

Принципиальная схема системы топливоподачи дизеля с одно­плунжерным распределительным ТНВД с торцевым кулачко­вым при­водом плунжера показана на рис. .

Рис. Принципиальная схема системы топливоподачи дизельного двигателя с одноплунжерным ТНВД:

1 – топливопровод низкого давления; 2 – тяга; 3 – педаль подачи топлива; 4 – ТНВД; 5 – электромагнитный клапан; 6 – топливопровод высокого давления; 7 – топливопровод сливной магистрали; 8 – форсунка; 9 – свеча накаливания; 10 – топливный фильтр; 11 – топливный бак; 12 – топливоподкачивающий насос (применяется при магистралях большой протяженности; 13 – аккумуляторная батарея; 14 – замок «зажигания»; 15 – блок управления временем включения свечей накаливания; 17 – дизель

Топливо из бака 11 прокачивается по топливо­проводу низкого давления в топливный фильтр тонкой очистки топлива 10, откуда засасыва­ется топливным насосом низкого давления и затем на­правляется во внутреннюю полость корпуса ТНВД 4, где создается давление порядка 0,2 — 0,7 МПа. Далее топливо поступает в насосную секцию высокого давления и с помощью плунжера — распреде­лителя в соответствии с порядком работы цилиндров подается по топливопроводам вы­сокого давления 6 в форсунки 8, в ре­зультате чего осуще­ствляется вспрыскивание топлива в камеру сгорания дизеля. Избыточное топливо из корпуса ТНВД, форсунки и топливного фильтра (в некоторых конструкциях) сливается по топливо­проводам 7 обратно в топливный бак. Охлаждение и смазка ТНВД осуществляются циркулирующим в системе топливом. Фильтр тонкой очистки топлива имеет важное значение для нормальной и безаварийной работы ТНВД и форсунки. По­скольку плунжер, втулка, нагнетательный клапан и элементы форсунки являются деталями прецизионными, топливный фильтр должен задерживать мельчайшие абразивные частицы размером 3-5 мкм. Важной функцией фильтра является также задержание и выведение в осадок воды, содержащейся в топ­ливе. Попадание влаги во внутреннее пространство насоса может привести к выходу по­след­него из строя по причине образования коррозии. Задержанная фильтром вода собира­ется в коллекторе, откуда должна периодически удаляться, обычно, когда ее объем достигает 140 см3, о чем сигнализи­рует контрольная лампа датчика уровня.

Топливный насос подает в цилиндры дизеля строго дози­рован­ное количество топлива под высоким давлением в опре­де­ленный мо­мент времени в зависимости от нагрузки и ско­ростного режима. Поэтому характеристики двигателей суще­ственно зависят от работы ТНВД. Основные функциональные блоки топливного насоса VE показаны на рис. и пред­ставляют собой:

1) роторно-лопастной топливный насос низкого давления с ре­гулирующим перепускным клапаном;

2) блок высокого давления с распределительной голов­кой и дозирующей муфтой;

3) автоматический регулятор частоты вращения с систе­мой ры­чагов и пружин;

4) электромагнитный запирающий клапан, отключающий подачу топлива

5) автоматическое устройство (автомат) изменения угла опе­режения впрыскивания топлива.

Рис.9. Схема топливного насоса — Bosch VЕ

Распределительный ТНВД VE может также быть оснащен различ­ными дополнительными устройствами, например, кор­рек­торами топ­ливоподачи или ускорителем холодного пуска, кото­рые позволяют индивидуально адаптировать ТНВД к осо­бенно­стям данного дизеля. Более подробно устройство топливного насоса VE показано на рис..

Рис.10. Схема топливного насоса — Bosch VE:

1 – вал привода насоса; 2 – перепускной клапан регулирования внутреннего давления; 3 – рычаг управле­ния подачей топлива; 4 – грузики регулятора; 5 – жиклер слива топлива; 6 – винт регулировки полной на­грузки; 7 – передаточный рычаг регулятора; 8 – электромагнитный клапан остановки двигателя; 9 – плун­жер; 10 – центральная пробка; 11 – нагнетательный клапан; 12 – дозирующая муфта; 13 – кулачковый диск; 14 – автомат опережения впрыска топлива; 15 – ролик; 16 – муфта; 17 – топливоподкачивающий насос низкого давления

Вал привода 1 топливного насоса расположен внутри кор­пуса ТНВД, на валу установлен ротор 17 топливного насоса низко­го давления и шестерня привода вала регулятора с грузами 4. За ва­лом 1 неподвижно в корпусе насоса уста­новлено кольцо с ро­ли­ками и штоком привода автомата опережения впрыски­вания топлива 14. Привод вала ТНВД осу­ществляется передачей от колен­чатого вала дизеля, шесте­ренчатой или ременной. В че­тырехтактных двигателях час­тота вращения вала ТНВД состав­ляет половину от частоты вращения коленчатого вела, и работа распределительного ТНВД осуществляется таким образом, что поступательное движение плунжера синхронизировано с движе­нием поршней в цилиндрах ди­зеля, а вращательное обеспечива­ет распределе­ние топлива по ци­линдрам. Поступательное дви­жение обеспе­чивается кулачковой шай­бой, а враща­тельное — валом топливного насоса.

Автоматический регулятор частоты вращения. (блок 3 на рис.) включает в себя центробежные грузы (рис. ), которые через муфту регулятора и систему рычагов воз­действуют на доза­тор 9 (рис.10), изменяя таким образом величину топливоподачи в зависимости от скоростного и на­грузочного режимов дизеля. Кор­пус ТНВД закрыт сверху крышкой, в которой установлена ось ры­чага управления, связанного с педалью акселератора.

Автомат опережения впрыскивания топлива (блок 5 на рис.9) является гидравлическим устройством, работа ко­торого опре­деляется давлением топлива во внутренней по­лости ТНВД, созда­ваемым топливным насосом низкого давле­ния с регули­рующим пропу­скным клапаном 3 (рис.10). Кроме того, заданный уровень дав­ления внутри корпуса ТНВД поддерживается дрос­селем 5 в штуцере для выхода избыточ­ного топлива из корпуса ТНВД.

Роторно-лопастной подкачивающий насос и сис­тема низ­кого давления

Топливный насос низкого давления расположен в корпусе ТНВД на приводном валу и служит для забора топлива из бака и подачи его во внутреннюю полость корпуса насоса. Схема устройства то­пливного насоса низкого давлений с клапаном низкого давления по­казана на рис.11.

Рис.11 Топливный насос низкого давления

и регулирующий клапан

1-кольцевая полость; 2-ротор; 3-лопасти; 4-вал;

5-перепускной регулирующий клапан; 6-корпус клапана; 7-резьбовая пробка; 8-пружина; 9-плунжер

Насос состоит из ротора 2 с четырьмя лопастями 3 и кольца 1 в корпусе ТНВД, расположенного эксцентрично по внешней сто­роне ротора. При вращении последнего лопасти под действием центробежной силы прижимаются к внутренней по­верхности кольца, создавая, таким образом, камеры между ними, из которых топ­ливо под давлением по каналу посту­пает во внутреннюю полость корпуса ТНВД. Одновременно часть топлива по­ступает на вход пере­пускного регулирую­щего клапана 5 и, в случае его открытия, перепускается на вход насоса. Корпус 6 пере­пускного регули­рующего клапана завернут по резьбе в корпусе ТНВД, внутри кор­пуса имеется поршень 9, нагруженный тарированной на определен­ное дав­ление пружиной 8, второй конец которой упирается в пробку 7. Если давление топлива оказывается выше установленного значения, поршень 9 клапана открывает канал для перепуска части топлива на всасывающую сторону насоса. Давление на­чала открытия перепускного клапана регулируется измене­нием положе­ния пробки 7, т.е. величиной предварительной затяжки пружины 8.

Важную роль в обеспечении нормальной работы дизеля играет сливной дроссель, установленный в штуцере в крышке ТНВД (пози­ция 5 на рис.10). Жиклер диаметром порядка 0,6 мм, через ко­торый топливо идет на слив, обеспечивает поддержание требуемого давления топлива во внутренней по­лости корпуса ТНВД. Очевидно, что размер дросселя скоор­динирован с работой перепускного клапана.

Перепускной клапан 5 (рис.11) в сочетании со слив­ным дросселем 5 (рис.10), обеспечивают заданную зависи­мость разности давлений топлива в корпусе ТНВД и на вы­ходе насоса низкого давления от частоты вращения вала ТНВД. Количество топлива, по­даваемого насосом низкого давления в несколько раз больше по­даваемого в цилиндры дизеля. Давление топлива во внутренней полости корпуса ТНВД влияет на положение поршня автомата опережения впрыскивания, изменяя угол опе­режения впрыскивания пропорционально частоте вращения ко­ленча­того вала двигателя.

Плунжер-распределитель и линия высокого дав­ле­ния

Основным элементом, создающим высокое давление топ­лива в ТНВД и распределяющим топливо по цилиндрам дизе­ля, является плунжер 7 на рис.10, который совершает воз­вратно-поступа­тельное и вращательное движение по схеме:

двигатель -> вал ТНВД -> кулачковая шайба -> плунжер

Путь топлива по насосу и элементы, обеспечивающие ра­боту плунжера-распределителя, показаны на рис.12.

Принцип действия насоса поясняет рис.

Рис.12 Схема движения топлива в ТНВД:

1 – направление поворота ролика; 2 – ролик; 3 – кулачковый диск; 4 – плунжер; 5 – втулка подачи топлива; 6 – камера; 7 – канал подачи топлива к форсунке; 8 – распределительный паз

Вы­ступы-кулачки кулачковой шайбы 3 находятся в постоянном контакте с роликами 2, установленными на осях в неподвиж­ном кольце 1. При вращении кулачковой шайбы каждый кула­чок, набегая на ролик, толкает плунжер вправо, а возвращение его в прежнее по­ложение осуществля­ется двумя пружинами блока ТНВД.

Количество кулачков на кулачко­вой шайбе, как и число штуцеров линии высокого давления с на­гне­татель­ными клапанами , соответствует числу цилиндров двига­теля, обычно четыре или шесть. Возвратные пружины плун­жера кроме того препятствуют разрыву кинематической связи кулачок — ролик толкателя при больших ускорениях. Обеспе­чивая воз­вратно-поступательное движение плунжера, кулач­ковая шайба формой выступов-кулачков определяет также ход плунжера и скорость его перемещения и, следовательно, ха­рактеристику, давление и продол­жительность впрыскивания. Все эти параметры, в свою очередь, определяются формой камеры сгорания и особенностями рабочего процесса данного дизеля и должны быть, таким образом, скоорди­нированы. По этой причине дня ка­ждого типа дизеля рассчитыва­ется лента профиля куличков, ко­торая «накладывается» на фрон­тальную поверхность кулачковой шайбы, установленной в ТНВД. По­этому кулачковая шайба дан­ного насоса является деталью невзаимозаменяемой, индивидуально соответствующей данному типу ди­зеля.

Муфта опережения впрыска. Более раннее зажигание при увеличении частоты вращения коленчатого вала способствует увеличению мощности дизельного двигателя. При увеличении частоты вращения коленчатого вала впрыск начинается раньше.

Рис. Муфта опережения впрыска:

Рис. а – исходное положение; b – рабочее положение; 1 – корпус ТНВД; 2 – кольцо с роликами; 3 – ролик; 4 – палец; 5 – канал; 6 – крышка; 7 – поршень; 8 – опора; 9 – пружина

Плунжер ТНВД создает высокое давление топлива и рас­преде­ляет его по цилиндрам при осуществлении следующих функциональ­ных этапов процесса топливоподачи: впуск топ­лива, активный ход плунжера и впрыскивание топлива (на­гнетание), отсечка подачи, процесс закрытия нагнетатель­ного клапана и разгрузка линии высокого давления.

Процессы топливоподачи в распределительной головке показаны на рис. . На верхней схеме рис. а показано положение плунжера в крайнем левом положении (мертвой точке). При этом в камере высокого давления 3 находится топливо, поступившее ранее через впускной канал.

При движении плунжера вправо рис б, топливо начинает сжиматься, при этом впускное отверстие 7 рассоединено с прорезью для впуска топлива 8, и топливо под рабочим давлением поступает через центральный канал плунжера в соответствующий выпускной канал определенного цилиндра. Под давлением открывается нагнетательный клапан и топливо по трубопроводу высокого давления поступает к форсунке.

Подача топлива заканчивается, как только поперечно расположенное в плунжере отверстие отсечки подачи 6, выйдет за пределы дозирующей муфты (рис.в) Топливо при этом выходит во внутреннюю полость насоса и нагнетание прекращается.

При дальнейшем повороте и движении плунжера влево (рис. г) происходит разобщение распределительной прорези 2 с каналом 4, впускное отверстие совмещается с соответствующей прорезью 8 в плунжере и за счет создавшегося разряжения топливо поступает в камеру высокого давления 3 и центральный канал. Процесс впуска и последующего впрыска топлива происходит в течение поворота плунжера на 90° в четырехцилиндровом дизеле, 72° в пятицилиндровом и на 60° в шестицилиндровом.

Фазы топливоподачи:

1 – плунжер; 2 – распределительная канавка; 3 – камера; 4 – выпускное отверстие; 5 – втулка подачи топлива; 6 – управляющее отверстие

Корректор по давлению наддува дизеля. Автоматический противодымный корректор или корректор по давлению наддува дизеля (LDA) служит для приведения в со­ответствие расхода топлива, подаваемого в цилиндры дизеля, ве­личине расхода воздуха, подаваемого компрессором, исключая таким образом дымление двигателя. Необходимость установки указанного автоматического устройства определяется изменением плотности воздуха в цилиндрах дизеля с турбонаддувом в зависи­мости от режима работы турбокомпрессора. Особенно необходи­ма работа корректора на режимах разгона дизеля, когда величина топливоподачи возрастает значительно быстрее, чем расход воз­духа, при этом коэффициент избытка воздуха уменьшается, и ра­бота дизеля сопровождается дымлением.

Конструктивное исполнение корректора по давлению над­дува, установленного на верхней крышке корпуса насоса, пока­зано на рис.

Рис. Схема работы корректора с турбонаддувом:

а – положение мембраны при увеличенном давлении наддува; б – положение мембраны при недостаточном давлении наддува; 1 – рычаг-упор корректора; 2 – шток; 3 – мембрана; 4 – подвод разряжения от впускного коллектора; 5 – пружина; 6 – жиклер слива топлива: 7 – стержень; 8 – регулировочный винт максимальной подачи; 9 – увеличенный ход подачи; 10 – дозирующая муфта; 11 – плунжер; 12 – пусковой рычаг; 13 – силовой рычаг

Внутренняя полость корректора разделена мембраной 3 на две камеры — верхнюю, соединенную с впускным коллектором и находящуюся под давлением наддува, и нижнюю, содержащую пружину 5, которая действует на мембрану, оказы­вая сопротивление ее перемещению вниз. Нижняя камера корректора находится под атмосферным давлением. Мембрана 3 соединена со штоком 2, имеющим управляющий конус, в кото­рый упирается подвижный стержень 7, передающий движение штока и, следовательно, мембраны рычагу-упору корректора 1. Шток взаимодействует с силовым рычагом 13 регулятора. Рабо­та корректора происходит следующим образом. Если величина давления наддува недостаточна для преодоления усилия затяж­ки пружины 5, то мембрана 3 и шток 2 находятся в исходном по­ложении, как это показано на рис. б. При увеличении давле­ния воздуха (рис.а), подаваемого компрессором, мембрана, преодоле­вая сопротивление пружины, перемещается вниз, соответствен­но перемещая шток 2 с управляющим конусом, в результате чего стержень 7 изменяет свое положение и рычаг 1 поворачивается относительно оси по часовой стрелке под действием рабочей пружины регулятора. Силовой рычаг 13, следуя перемещению рычага-упора 1, также поворачивается вместе с пусковым рыча­гом 12 относительно их общей оси, перемещая до­зирующую муфту в направлении увеличения подачи. Таким об­разом, величина топливоподачи оказывается в соответствии с количеством воздуха, подаваемого в цилиндры дизеля, посколь­ку это количество пропорционально давлению наддува. Если скоростной и нагрузочный режимы уменьшаются, то снижается и давление наддува, пружина корректора перемещает мембрану со штоком вертикально вверх, и механизм регулятора работает в направлении, обратном описанному выше, уменьшая подачу топлива в функции давления наддува (рис. б).

Если работа турбокомпрессора нарушается, то автомати­ческое устройство LDA, т.е. корректор по давлению наддува, ока­зывается в исходном положении на верхнем упоре (рис. б), обеспечивая работу дизеля без дымления. Величина макси­мальной подачи топлива для данного двигателя регулируется винтом 8, установленным на крышке ТНВД.

Подогрев топлива.

Рис. Подогрев топлива:

Насосы ТНВД: устройство, принцип работы, модели

Содержание   

Насосы ТНВД – это топливные насосы высокого давления, которые применяются для дизельных двигателей. Дизельные автомобили очень сильно отличаются от бензиновых. Разница именно в том, каким образом происходит воспламенение топлива.

Многие производители, такие как Бош, Тойота, Мицубиси, Ниссан, Форд и другие с каждым годом усовершенствуют свои линейки техники с применением насосов высокого давления. Лучшими производителями ТНВД считаются Bosch, Lucas, Delphi, Denso, Zexel.

Принцип действия

Воздух, нагнетаемый в камеру сгорания дизеля, сжимается под давлением. Кроме того, он нагревается. Таким образом, в камере сгорания дизельного двигателя находится горячий сжатый под давлением воздух.

В тот момент, когда впрыскивается топливо, при соприкосновении с горячим сжатым воздухом оно воспламеняется. И подают дизель в цилиндры мотора под давлением и с определенными промежутками времени, чтобы топливная смесь нормально воспламенялась, именно насосы ТНВД.

Устройство ТНВД

Мощность двигателя и его крутящий момент регулируются количеством топлива, которое насос впрыснул в камеру сгорания. Насосы ТНВД бывают:

  • непосредственного действия, т.е. механический вариант;
  • аккумуляторные, т.е. с аккумуляторным впрыском, или автоматический вариант.

В первом случае срабатывает принцип механического плунжера, при котором нагнетание воздуха и топливный впрыск происходят одновременно. Во втором случае гидравлический аккумулятор или система пружин и форсунок сначала нагнетает давление впрыснутого топлива в аккумулятор, а затем происходит процесс зажигания.

В зависимости от метода подачи топлива в цилиндры двигателя есть три разновидности нопорных установок:

  • рядные;
  • многосекционные или магистральные;
  • распределительные.

Рядные напорные установки – подают в расположенные один за другим цилиндры топливную смесь строго по очереди в каждый из цилиндров. В распределительных вариантах одна и та же секция может подавать топливо сразу в несколько цилиндров. К слову, распределительные установки могут быть одноплунжерными и двухплунжерными. Магистральные только нагнетают топливо внутрь аккумулятора.

Рядные модели различают по количеству цилиндров и давлению при впрыске топлива:

  • М – это 4-6 цилиндровый, при давлении впрыска в 550 бар;
  • А – это 2-12 цилиндровый, при давлении впрыска в 950 бар;
  • P-3000 – это 4-12 цилиндровый, при давлении впрыска в 950 бар;
  • P-7100 – это 4-12 цилиндровый, при давлении впрыска в 1200 бар;
  • P-8000 – это 6-12 цилиндровый, при давлении впрыска в 1300 бар;
  • P-8500 – это 4-12 цилиндровый, при давлении впрыска в 1300 бар;
  • R – это 4-12 цилиндровый, при давлении впрыска в 1150 бар;
  • P-10 – это 6-12 цилиндровый, при давлении впрыска в 1200 бар;
  • ZW (M) – это 4-12 цилиндровый, при давлении впрыска в 950 бар;
  • P-9 – это 6-12 цилиндровый, при давлении впрыска в 1200 бар;
  • CW – это 6-10 цилиндровый, при давлении впрыска в 1000 бар;
  • H-1000 – это 5-8 цилиндровый, при давлении впрыска в 1350 бар.

    Топливный Насос Т 25 Рядный

к меню ↑

Внутреннее устройство

Через муфту опережения впрыска и зубчатую передачу коленвала на кулачковый вал передается вращение. Кулачок смещает толкатель, толкатель сжимает пружину и толкает плунжер. Плунжер поднимается, толкает заслонку впускного канала и начинает вытеснять топливо через нагнетательный клапан к форсунке. Чтобы впрыск топлива происходит нормально, нужно, чтобы винтовой и сливной каналы совмещались вовремя.

Распределительная установка ТНВД состоит из:

  • редукционногоклапана;
  • всережимного регулятора;
  • дренажного штуцера;
  • корпуса напорной секции высокого давления в комплекте с плунжерной парой (золотникового устройства) и нагнетательными клапанами;
  • топливоподкачивающего насоса;
  • лючка регулятора (муфты) опережения впрыска;
  • корпуса ТНВД;
  • крышка;
  • электромагнитного клапана выключения подачи топлива;
  • кулачково-роликового устройство привода плунжера.

Муфта впрыска изменяет в зависимости от количества оборотов двигателя угол впрыска топлива. Назначение всережимного регулятора — изменять количество подаваемого топлива в зависимости от режима работы двигателя (запуск, уменьшение или увеличение оборотов, холостой ход, остановка и т.д.).
к меню ↑

Возможные причины поломок

Как только вы заметили отклонения в привычной работе насоса ТНВД нужно выяснить и по возможности как можно быстрее устранить причину поломки. Визуально поломку можно определить по утечкам топлива из корпуса насоса, по затрудненному запуску двигателя, по нехарактерным шумам при работе насоса и по тому, как при уменьшении мощности двигателя увеличивается расход топлива.

Насос ТНВД магистрального типа

Среди самых распространенных поломок можно выделить износ комплектующих и использование топлива низкого качества. И то и другое для уязвимого насоса крайне нежелательно.

Износ приводит к деформации деталей, образованию пустот и снижению надежности напорного аппарата. А примеси в топливных смесях низкого качества приводят к постепенному загрязнению деталей, и, в итоге, к выводу насоса из строя. Если устройство подъедает масло, значит, износились уплотнители. А если заклинит плунжерную пару, то на форсунки перестанет поступать топливная смесь.

В качестве обязательной профилактики стоит всегда следить за качеством топлива, которое вы заливаете в бак. Кроме того, всегда следите за уровнем масла. Периодически, загоняя машину на стенд, нужно регулировать количество и равномерность впрыскивания топлива в ТНВД. Для этого разбирают муфту впрыскивания и соединяют с приводом на стенде кулачковый вал машины.
к меню ↑

ДИАГНОСТИКА И РЕМОНТ ТОПЛИВНОГО НАСОСА ВЫСОКОГО ДАВЛЕНИЯ (ВИДЕО)


к меню ↑

Модельный ряд

Различные компании и корпорации выпускают модели рядных, магистральных и распределительных насосов ТНВД для любых сфер применения. Грузовые и легковые автомобили, трактора, погрузчики и экскаваторы, комбайны и многая другая техника используют все преимущества дизельных насосов ТНВД.
к меню ↑

Модель#1-ТНВД Bosch и Lucas

Это одни из самых надежных производителей напорной техники ТНВД. Модельный ряд установок ТНВД компании Бош достаточно обширен. Модели ТНВД представлены на рынке линейкой рядной и распределительной техники с маркировками: A, M, ММС , P, MW, H, VP29, VP30, VP44. В модельный ряд включены также насосы-форсунки PDE и индивидуальные насосы PLD, VE, Lucas DPS, DPCN.

Особое внимание стоит уделить модели ESR. Это – последняя разработка компании Lucas, которая фактически является роторной моделью ТНВД для высокоскоростных двигателей с системой непосредственного впрыска. Так же внимание производителей внедорожников с системой непосредственного впрыска привлекла модель DP200.

Насос ТНВД и его комплектующие

ТНВД с аккумуляторной топливной системой воплощена в моделях Common Rail.

Это системы магистального типа, на которые в последнее время наблюдается достаточно высокий спрос. Delphi DFP 1.x, DFP 3.x и Bosch CP1, CP2, CP3.2, CP3.4. Они применяются для автомобилей марок Вольво FH-12, FM-12, Мерседес Actros, Атего, Скания 114, 124, R, P, T, Рено Магнум, Премиум DXI, DCI, Ивеко Крузор 8, 10, 13, DAF CF, LF, MACK.
к меню ↑

Модель#2-ТНВД Delphi

Компания Delphi выпускает серию ТНВД EPIC для автомобилей марок Мерседес, Рено Кенго 1.9, Фиат Добло 1.9, Форд Транзит 2.5. А также серию DP200, 210, 310 для автомобилей и погрузчиков JCB, Перкинс, Катерпиллар и John Deere.

Основной проблемой этих насосов стала металлическая стружка, которая образуется в процессе эксплуатации техники от трения механических деталей друг об друга. Поэтому, в них чаще всего приходится заменять плунжеры. Вал в этих моделях ремонту не подлежит. Он только заменяется на новый.

Дозировочный блок тоже подлежит полной замене, потому что выходит из строя по причине износа деталей в процессе наполнения бака некачественным топливом с примесями бензина, воды или твердых частиц.
к меню ↑

Модель#3-DENSO

Эта компания специализируется на производстве моделей ТНВД V3, V4, V5 для автомобилей Тойота, Мицубиси, Опель. А их аккумуляторная система Common Rail маркируется как HP0, HP2, HP3, HP4 и успешно применяется в автомобилях Тойота, Мицубиси, Ниссан, Форд Транзит, Пежо Боксер и Ситроен.

Насос ТНВД DENSO

Отличительной особенностью этой марки стали ECD-регуляторы (Electronically Controlled Diesel system). Это система впрыскивает дизельное топливо при полном контроле электроники. Отрегулировать такие ТНВД можно только на специальных стендах, с использованием контроллеров и форсунок.

Славится своим распределительными ТНВД VRZ для Мицубиси Паждеро 3-Canter, Мазды, Коматсу и других автомобилей. В этих моделях ТНВД без труда можно восстановить плунжерные пары. Кроме того, распределительная техника Zexel используется для японских машин, а от моделей Бош их отличает только номера деталей. В остальном строение абсолютно идентично.
 Главная страница » Насосы

ТНВД КамАЗа: устройство, принцип работы, причины поломок

ТНВД КамАЗа: принцип работы

Переоценить роль ТНВД в работе двигателя КамАЗа просто невозможно: это устройство не просто распределяет порции топлива, но обеспечивает бесперебойное смазывание смежных деталей, обуславливая высокую эффективность работы топливной системы.

К ТНВД топливо поступает из бака, проходя через фильтр тонкой очистки и избавляясь по пути от примесей. Далее ТНВД распределяет топливо строго дозированными порциями — бензин или дизель попадает в форсунки, а оттуда в камеры сгорания. Топливо, которое по каким-то причинам не прошло путь от начала до конца (например, попало в зазор между иглой и корпусом распылителя), отправляется в сливной топливопровод.

ТНВД: диагностика и ремонтные работы

Ремонт ТНВД КамАЗа — сложная и достаточно дорогостоящая процедура. Избежать необходимости проведения ремонтных работ поможет своевременная, регулярная диагностика. Грамотно диагностировать работу двигателя, ТНВД сможет только профессионал, который имеет в своем распоряжении необходимое оборудование, инструменты.

Кроме регулярной диагностики двигателя, к автомастерам стоит обращаться и при наличии посторонних шумов со стороны насоса: шумная работа ТНВД указывает на наличие неисправности. Мастер с помощью диагностических инструментов сможет определить характер этой неисправности.

Наиболее частая причина поломки — неправильная работа плунжерных пар. Выявить эту неисправность мастер сможет с помощью прибора ДД-2115. Для диагностики также используется механотестер топливной аппаратуры. Насколько правильно работают форсунки, можно определить с помощью прибора МТА-2: устройство измерит давление в начале впрыска, поможет выявить погрешности в герметичности корпуса распылителя (скорость и качества распыления определяются вязкостью топлива).

После окончания ремонтных работ производится регулировка насоса — грамотно проведенный заключительный этап ремонта определяет эффективность работы узла, время его дальнейшей бесперебойной эксплуатации.

Какое устройство тнвд bosch? — ptbnn.ru

Применение дизельных топливных систем фирмы Bosch.

М, MW, А, Р, ZWM, CW — многоплунжерные рядные ТНВД, обозначенные по мере увеличения размеров, PF — одноплунжерные ТНВД, VE — ТНВД распределительного типа с аксиальным плунжером, VR — роторные ТНВД распределительного типа, UP — система с индивидуальными ТНВД, UI — система с насос-форсунками, CR — система Common Rail.

Многоплунжерные рядные ТНВД типов М, MW, А, Р, ZWM, CW.

В рядных, многоплунжерных ТНВД каждый из цилиндров имеет свою плунжерную пару. Работа происходит по следующей схеме; вращение коленчатого вала приводит в действие вал ТНВД который для подачи топлива приводит в движение втулку в плунжерной паре, возврат втулки осуществляется при помощи пружины. Плунжерные пары располагаются в ряд, ход плунжера не регулируется.

Изменение объема подачи топлива регулируется при помощи отсечной кромки, выполненной на плунжере. Во время перемещения рейки ТНВД, плунжера поворачиваются, меняя при этом положение отсечной кромки, в следствии чего меняется ход плунжера, соответственно подача топлива. На форсунку в штуцере ТНВД устанавливается нагнетательный клапан, который обеспечивает моментальное и точное прекращение процесса впрыска.

ТНВД типа РЕ

В ТНВД PE типа, подача топлива осуществляется через выходное отверстие, которое закрыто корпусом плунжера. Объем подачи топлива регулируется перепускным отверстием, Положение рейки ТНВД определяется механическим регулятором или регулятором с электромагнитным клапаном.

ТНВД с дозирующей муфтой

ТНВД данного типа отличается от других наличием дозирующей муфты, при помощи которой происходит регулировка циклов подачи топлива, муфта перемещается вверх и вниз вдоль плунжера. Перемещение муфты определяет ход плунжера, а это значит, что открытие перепускного отверстия, регулируется при помощи вала привода.

ТНВД распределительного типа

ТНВД данного типа отличается от других наличием дозирующей муфты, при помощи которой происходит регулировка циклов подачи топлива, муфта перемещается вверх и вниз вдоль плунжера. Перемещение муфты определяет ход плунжера, а это значит, что открытие перепускного отверстия, регулируется при помощи вала привода.

ТНВД распределительного типа

Особенностью ТНВД распределительного типа можно назвать наличие всего одной плунжерной пары на все цилиндры двигателя. ТНВД бывает двух типов, с механическим регулятором частоты вращения или с электронной системой управления, имеющей встроенный автомат опережения впрыска.

ТНВД распределительного типа с аксиальным расположением плунжера

Топливный насос низкого давления (ТННД) подает топливо в корпус ТНВД распределительного типа особенностью которого является аксиальное расположение плунжера. Центральный плунжер обеспечивает распределение топлива по цилиндрам двигателя, все это происходит под высоким давлением. Один оборот вала привода означает, что плунжер выполнил количество рабочих ходов, равное количеству цилиндров двигателя. Вал привода при вращении передает Поступательно-вращательное движение плунжеру, передаточным звеном является кулачковая шайба, которая в свою очередь при помощи торцевых кулачков двигается по роликам, закрепленные на роликовом кольце. У ТНВД VE типа с механическим регулятором частоты вращения, также, как и у ТНВД VE типа с электромагнитным приводом, количество подаваемого топлива и как следствие рабочий ход плунжера осуществляется дозирующей муфтой. Автомат опережения впрыска регулирует процессы подачи топлива при помощи поворота роликового кольца. У ТНВД с электронным управлением за объем подачи топлива отвечает клапан с электромагнитным приводом. Электронный блок управления (ЭБУ) двигателя и ЭБУ ТНВД обрабатывают поступающие сигналы, которые в свою очередь контролируются рядом датчиков.

Роторный ТНВД

В ТНВД роторного типа топливо подается при помощи лопастного ТННД. ТНВД имеет кулачковое кольцо и одну или две пары радиально расположенных плунжеров они создают высокое давление и распределяют топливо по форсункам, электромагнитный клапан в свою очередь производит замер давления в системе. Подача топлива регулируется при помощи автомата опережения впрыска по средствам вращения кулачкового кольца в нужном направлении. Электронный блок управления (ЭБУ) двигателя и ЭБУ ТНВД обрабатывают поступающие сигналы, которые в свою очередь контролируются рядом датчиков.

Одноплунжерные ТНВД PF

ТНВД PF предназначены для использования в малогабаритных двигателях, тепловозных, морских судов и в строительной технике. Данные насосы не имеют кулачкового вала, их принцип работы такой же ка и у рядных ТНВД РЕ типа. Регулирование объема подачи топлива происходит при перемещении рейки по команде регулятора частоты вращения.

Насос-форсунки.

Насос-форсунка это устройство объединяющие в себе ТНВД и форсунку вместе, устанавливается она непосредственно в ГБЦ своя для каждого из цилиндров, в действие приводятся кулачком, или распредвалом при помощи толкателя клапана. В отличии от ТНВД рядных, распределительного типа, в связи с отсутствием магистрали высокого давления, насос-форсунка дает гораздо большее давление впрыска до 2050 бар. ЭБУ в купе с высокими показателями давления впрыска означают значительное снижение выброса вредных веществ. Электронное управления и контроль всех процессов увеличивает преимущество насос-форсунок перед другими типами впрыска.

Индивидуальные ТНВД (UPS)

Система с индивидуальным ТНВД аналогична с принципом работы насос-форсунок. Эта система обеспечивает высокое давление впрыска, устанавливаются непосредственно на каждый цилиндр двигателя, соединение с форсунками происходит при помощи трубок высокого давления. Система электронного управления контролирует и отвечает за все процессы.

Аккумуляторные топливные системы Common Rail (CR)

Коммон Райл — «Common rail» общая магистраль. Это система подачи топлива, применяемая в современных дизельных двигателях. В системе Common Rail насос нагнетает дизельное топливо под высоким давлением в общую топливную магистраль, затем электронная форсунка впрыскивает под высоким давлением топливо в цилиндры. Особенностью системы Common Rail является экономичность расхода топлива, малая шумность работы двигателя, соответствие нормам экологических стандартов. Прототип Common Rail был создан в конце 1960-х годов Робертом Хубером в Швейцарии, в середине 1990-х годов доктор Шохей Ито и Масахико Мияки из корпорации Denso разработали систему Common Rail и стали использовать ее в коммерческом транспорте, в первые на грузовиках Hino. Именно поэтому Denso считается первопроходцем в адаптации систем Common Rail к нуждам автомобилестроения.

Система Common Rail, схему работы можно описать тремя терминами, электроника, контур низкого давления и контур высокого давления. Из топливного бака при помощи подкачивающего насоса, топливо по трубопроводу попадает в топливный фильтр, после очистки при помощи насоса высокого давления топливо по топливной магистрали подается на рампу, с которой и происходит распределение топлива на каждую из CR форсунок, через трубки высокого давления. Все это выполняется под управлением ЭБУ (электронного блока управления). ЭБУ контролирует работу всей системы, информация поступает от датчиков: педали акселератора, положения распределительного и коленчатого валов, давления топлива, расхода воздуха, работы турбо наддува, ряда температурных датчиков. На основании всей полученной и обработанной информации ЭБУ подает команду на начало впрыска топлива, таким образом управляя всей топливной системой.

Схема расположения аккумуляторной топливной системы Common Rail на четырехцилиндровом дизеле

1 — массовый расходомер воздуха, 2 — ЭБУ, 3 — ТНВД, 4 — аккумулятор топлива высокого давления, 5 — форсунки, 6 — датчик частоты вращения коленчатого вала, 7 — датчик температуры охлаждающей жидкости, 8 — топливный фильтр, 9 — датчик положения педали акселератора.

Насос ТНВД для автомобиля: принцип действия, разновидности устройства

Насосы ТНВД – это топливные насосы высокого давления, которые применяются для дизельных двигателей. Дизельные автомобили очень сильно отличаются от бензиновых. Разница именно в том, каким образом происходит воспламенение топлива.

Многие производители, такие как Бош, Тойота, Мицубиси, Ниссан, Форд и другие с каждым годом усовершенствуют свои линейки техники с применением насосов высокого давления. Лучшими производителями ТНВД считаются Bosch, Lucas, Delphi, Denso, Zexel.

1 Принцип действия

Воздух, нагнетаемый в камеру сгорания дизеля, сжимается под давлением. Кроме того, он нагревается. Таким образом, в камере сгорания дизельного двигателя находится горячий сжатый под давлением воздух.

В тот момент, когда впрыскивается топливо, при соприкосновении с горячим сжатым воздухом оно воспламеняется. И подают дизель в цилиндры мотора под давлением и с определенными промежутками времени, чтобы топливная смесь нормально воспламенялась, именно насосы ТНВД.

Мощность двигателя и его крутящий момент регулируются количеством топлива, которое насос впрыснул в камеру сгорания. Насосы ТНВД бывают:

  • непосредственного действия, т.е. механический вариант;
  • аккумуляторные, т.е. с аккумуляторным впрыском, или автоматический вариант.

В первом случае срабатывает принцип механического плунжера, при котором нагнетание воздуха и топливный впрыск происходят одновременно. Во втором случае гидравлический аккумулятор или система пружин и форсунок сначала нагнетает давление впрыснутого топлива в аккумулятор, а затем происходит процесс зажигания.

В зависимости от метода подачи топлива в цилиндры двигателя есть три разновидности нопорных установок:

  • рядные;
  • многосекционные или магистральные;
  • распределительные.

Рядные напорные установки – подают в расположенные один за другим цилиндры топливную смесь строго по очереди в каждый из цилиндров. В распределительных вариантах одна и та же секция может подавать топливо сразу в несколько цилиндров. К слову, распределительные установки могут быть одноплунжерными и двухплунжерными. Магистральные только нагнетают топливо внутрь аккумулятора.

Рядные модели различают по количеству цилиндров и давлению при впрыске топлива:

  • М – это 4-6 цилиндровый, при давлении впрыска в 550 бар;
  • А – это 2-12 цилиндровый, при давлении впрыска в 950 бар;
  • P-3000 – это 4-12 цилиндровый, при давлении впрыска в 950 бар;
  • P-7100 – это 4-12 цилиндровый, при давлении впрыска в 1200 бар;
  • P-8000 – это 6-12 цилиндровый, при давлении впрыска в 1300 бар;
  • P-8500 – это 4-12 цилиндровый, при давлении впрыска в 1300 бар;
  • R – это 4-12 цилиндровый, при давлении впрыска в 1150 бар;
  • P-10 – это 6-12 цилиндровый, при давлении впрыска в 1200 бар;
  • ZW (M) – это 4-12 цилиндровый, при давлении впрыска в 950 бар;
  • P-9 – это 6-12 цилиндровый, при давлении впрыска в 1200 бар;
  • CW – это 6-10 цилиндровый, при давлении впрыска в 1000 бар;
  • H-1000 – это 5-8 цилиндровый, при давлении впрыска в 1350 бар.

Топливный Насос Т 25 Рядный

1.1 Внутреннее устройство

Через муфту опережения впрыска и зубчатую передачу коленвала на кулачковый вал передается вращение. Кулачок смещает толкатель, толкатель сжимает пружину и толкает плунжер. Плунжер поднимается, толкает заслонку впускного канала и начинает вытеснять топливо через нагнетательный клапан к форсунке. Чтобы впрыск топлива происходит нормально, нужно, чтобы винтовой и сливной каналы совмещались вовремя.

Распределительная установка ТНВД состоит из:

  • редукционногоклапана;
  • всережимного регулятора;
  • дренажного штуцера;
  • корпуса напорной секции высокого давления в комплекте с плунжерной парой (золотникового устройства) и нагнетательными клапанами;
  • топливоподкачивающего насоса;
  • лючка регулятора (муфты) опережения впрыска;
  • корпуса ТНВД;
  • крышка;
  • электромагнитного клапана выключения подачи топлива;
  • кулачково-роликового устройство привода плунжера.

Муфта впрыска изменяет в зависимости от количества оборотов двигателя угол впрыска топлива. Назначение всережимного регулятора — изменять количество подаваемого топлива в зависимости от режима работы двигателя (запуск, уменьшение или увеличение оборотов, холостой ход, остановка и т.д.).
к меню ↑

1.2 Возможные причины поломок

Как только вы заметили отклонения в привычной работе насоса ТНВД нужно выяснить и по возможности как можно быстрее устранить причину поломки. Визуально поломку можно определить по утечкам топлива из корпуса насоса, по затрудненному запуску двигателя, по нехарактерным шумам при работе насоса и по тому, как при уменьшении мощности двигателя увеличивается расход топлива.

Насос ТНВД магистрального типа

Среди самых распространенных поломок можно выделить износ комплектующих и использование топлива низкого качества. И то и другое для уязвимого насоса крайне нежелательно.

Износ приводит к деформации деталей, образованию пустот и снижению надежности напорного аппарата. А примеси в топливных смесях низкого качества приводят к постепенному загрязнению деталей, и, в итоге, к выводу насоса из строя. Если устройство подъедает масло, значит, износились уплотнители. А если заклинит плунжерную пару, то на форсунки перестанет поступать топливная смесь.

В качестве обязательной профилактики стоит всегда следить за качеством топлива, которое вы заливаете в бак. Кроме того, всегда следите за уровнем масла. Периодически, загоняя машину на стенд, нужно регулировать количество и равномерность впрыскивания топлива в ТНВД. Для этого разбирают муфту впрыскивания и соединяют с приводом на стенде кулачковый вал машины.
к меню ↑

1.3 ДИАГНОСТИКА И РЕМОНТ ТОПЛИВНОГО НАСОСА ВЫСОКОГО ДАВЛЕНИЯ (ВИДЕО)

2 Модельный ряд

Различные компании и корпорации выпускают модели рядных, магистральных и распределительных насосов ТНВД для любых сфер применения. Грузовые и легковые автомобили, трактора, погрузчики и экскаваторы, комбайны и многая другая техника используют все преимущества дизельных насосов ТНВД.
к меню ↑

2.1 Модель#1-ТНВД Bosch и Lucas

Это одни из самых надежных производителей напорной техники ТНВД. Модельный ряд установок ТНВД компании Бош достаточно обширен. Модели ТНВД представлены на рынке линейкой рядной и распределительной техники с маркировками: A, M, ММС , P, MW, H, VP29, VP30, VP44. В модельный ряд включены также насосы-форсунки PDE и индивидуальные насосы PLD, VE, Lucas DPS, DPCN.

Особое внимание стоит уделить модели ESR. Это – последняя разработка компании Lucas, которая фактически является роторной моделью ТНВД для высокоскоростных двигателей с системой непосредственного впрыска. Так же внимание производителей внедорожников с системой непосредственного впрыска привлекла модель DP200.

Насос ТНВД и его комплектующие

ТНВД с аккумуляторной топливной системой воплощена в моделях Common Rail.

Это системы магистального типа, на которые в последнее время наблюдается достаточно высокий спрос. Delphi DFP 1.x, DFP 3.x и Bosch CP1, CP2, CP3.2, CP3.4. Они применяются для автомобилей марок Вольво FH-12, FM-12, Мерседес Actros, Атего, Скания 114, 124, R, P, T, Рено Магнум, Премиум DXI, DCI, Ивеко Крузор 8, 10, 13, DAF CF, LF, MACK.
к меню ↑

2.2 Модель#2-ТНВД Delphi

Компания Delphi выпускает серию ТНВД EPIC для автомобилей марок Мерседес, Рено Кенго 1.9, Фиат Добло 1.9, Форд Транзит 2.5. А также серию DP200, 210, 310 для автомобилей и погрузчиков JCB, Перкинс, Катерпиллар и John Deere.

Основной проблемой этих насосов стала металлическая стружка, которая образуется в процессе эксплуатации техники от трения механических деталей друг об друга. Поэтому, в них чаще всего приходится заменять плунжеры. Вал в этих моделях ремонту не подлежит. Он только заменяется на новый.

Дозировочный блок тоже подлежит полной замене, потому что выходит из строя по причине износа деталей в процессе наполнения бака некачественным топливом с примесями бензина, воды или твердых частиц.
к меню ↑

2.3 Модель#3-DENSO

Эта компания специализируется на производстве моделей ТНВД V3, V4, V5 для автомобилей Тойота, Мицубиси, Опель. А их аккумуляторная система Common Rail маркируется как HP0, HP2, HP3, HP4 и успешно применяется в автомобилях Тойота, Мицубиси, Ниссан, Форд Транзит, Пежо Боксер и Ситроен.

Насос ТНВД DENSO

Отличительной особенностью этой марки стали ECD-регуляторы (Electronically Controlled Diesel system). Это система впрыскивает дизельное топливо при полном контроле электроники. Отрегулировать такие ТНВД можно только на специальных стендах, с использованием контроллеров и форсунок.

Славится своим распределительными ТНВД VRZ для Мицубиси Паждеро 3-Canter, Мазды, Коматсу и других автомобилей. В этих моделях ТНВД без труда можно восстановить плунжерные пары. Кроме того, распределительная техника Zexel используется для японских машин, а от моделей Бош их отличает только номера деталей. В остальном строение абсолютно идентично.

Ремонт ТНВД Bosch

2009 год, весна, во время ремонта автомобиля подумал, что неплохо было бы заняться и ТНВД, так как я давно грешу на него. Симптомы — плохой запуск, дерготня на холодную и серо-синий дым. Кроме того, летом хлебнул воды в броде, после этого, автомобиль стал ездить несколько хуже, спустя некоторое время, из топливного фильтра вытащил довольно большой ком грязи. В баках до сих пор попадается вода и грязь. Обратку я не видел, так как шланги непрозрачные. Я решил, что сменю сальник на валу ТНВД, да заодно почищу от грязи. К тому же, один товарищ посоветовал мне прочистить сетку, якобы у него на таком же автомобиле была такая же фигня. Сетка перед плунжером. Если подумать, а заодно и вспомнить состояние фильтра, то я не удивлюсь, если там все забито грязью.

Снял ТНВД, перед началом работ я отмыл его.

На фотографии, слева от болта подачи топлива в ТНВД, располагается головка перепускного клапана насоса, радует то, что грязи под ней не было.

У меня ТНВД Zexel.

Я долго подумал и решил полностью убрать ЕГР, поэтому хочется устранить резистор с ТНВД. На моем двигателе, он больше ни на что не влияет.

Чтобы можно было добраться до сетки, понадобится демонтировать секцию высокого давления — «чугунку», для этого откручиваем 4 винта по краям.

На фотографии изображено, как выглядит ТНВД со снятой крышкой. Можно заметить, что присутствует налет коричневатого цвета на стенках, он лежит везде ровным слоем. Данный налет я смыл легко. Вал управления подачей установлен плотно, признаки износа отсутствуют, топливо не сочится.

Вид на плунжер клапана автомата опережения впрыска.

В общем, чугунку я снял (узел высокого давления). Добрался до сеточки, продул ее, после собрал все обратно.

Плунжер (края канавок очень острые).

«Чугунка» с цилиндром (я не знаю, как он называется) и сеткой.

Сетка располагается на входе в плунжерную пару.

Особой грязи на сетке заметно не было, но на всякий случай продул компрессором.

Еще один вид на внутренности.

Наконец то, я добрался до этой сетки, продул ее, чугунку поставил на место.При разборке насос был зажат в тисках за скобу «чугунка» была вверху, «чугунку» я снял, а плунжер и ролики оставил на месте.Собрал, начал прокручивать, после моего вмешательства стало слышно скрип резины, к тому же, как мне показалось, вал стал вращаться труднее. Перепроверил все, вроде все детали на своих местах, стоят, как положено. Когда я сменил сальник, я не проверил вращение, не сравнил с тем, что было до замены и которое стало после замены. Вместо этого я сразу занялся снятием «чугунки» поэтому и не проверил.

Как понимаю я, ничего выпасть, высыпаться и встать на свое место криво не могло, шлицы я тоже не мог перепутать, плунжер это не волнистая шайба, поставить его можно только в одном положении. Ну, а скрип, скорее всего от сальника. При его установке я окунул сальник на всякий случай в солярку, а вал почистил.На фотографии шайба под плунжером. Менять нужно однозначно.Параметры подачи топлива зависят от нее.На данной фотографии она располагается на волнистой шайбе, на рабочем месте. (Вроде бы на рабочем, так как я разбирал не аккуратно, во время извлечения шайбы она вывалилась, поэтому первоначальное положение я не помню. В том смысле — той стороной, или нет).

Эта же шайба, только снята и перевернута. Невооруженным взглядом можно заметить выработку на рабочих частях.

Торец плунжера. Износ присутствует.

Плунжер. Края канавок очень острые (как бритва).

Насос я разобрал полностью, внутренности разбросаны в произвольном порядке.

Все детали нужно тщательно промыть в чистом ДТ, а так же продуть сжатым воздухом. Любая песчинка может испортить всю работу.

При ремонте уплотнения в насосе нужно заменить.

Я использовал готовые ремкомплекты. Для удобства я рассортировал их в кейс. Здесь не все.Подготовленный корпус закреплен на сборочном стенде.

Все подготовка заключается в шлифовке некоторых рабочих поверхностей наждачной бумагой, ее зернистость должна быть от 400 до 1200. Чаще всего применял 800. Вот так после шлифовки выглядит рабочая стенка подкачного насоса, внутренние стенки и втулки вала насоса.

На фотографии полость плунжера корректора опережения впрыска, (обозначается как timer)Это насос низкого давления, по простому можно назвать: подкачным насосом.

Его задача закачивать топливо из бака в полость корпуса, топливо закачивается под правильным давлением. За это отвечает редукционный, или перепускной клапан (на снимке он не указан).Работа таймера и двигателя напрямую зависит от давления ( это очень важный параметр).

Все детали, кроме шестерни привода центробежного регулятора в случае необходимости можно заменить на новые. Чаще всего меняют статор, ротор и лепестки. На много реже крышку и вал.

Подготовленный корпус протерт и продут.

В моем случае, насос правого вращения, т.е. ротор, вращается против часовой стрелки. Думаю, данная фотография поможет понять, принцип его работы. Сначала ротор, статор, лепестки и стенки расширяются, образуют полость, в нее во время образования засасывается топливо из входного канала, потом они сужаются, тем самым выбрасывая топливо в подающий канал, в котором расположен редукционный клапан.

Надеюсь, понятно, в большинстве случаев для насоса левого вращения можно применить подкачной от правого, для этого понадобится его перевернуть. Нюансы конечно есть, но описывать их долго.

Думаю, Вы понимаете, что здесь наделает вода.В корпус статор входит ну очень плотно, края у него достаточно острые, если при установке перекосить и начать забивать, то корпус будет отправлен на помойку с застрявшим статором. Перед установкой я его смазал, а только потом аккуратными ударами по периметру поставил его на место.

Ставим крышку, желательно смазать резьбу винтов. Я например, обычно для смазки ротора использую (Castrol LMX).

Опыт показывает, что горячая солярка его не растворяет.
Ремкомплект FLAG.

Нужный ремкомплект можно подобрать по каталогу, под любой насос. По большому счету, они отличаются диаметром сальников.

Рабочие поверхности отполированы. Детали промыл, протер, продул сжатым воздухом, теперь положил в чистое ДТ. Резиновые «сухарики», которые связывают вал с его зубчатой частью, приводящую в работу центробежный регулятор.

Я установил новые, смазал их LMX. Заодно смазал шпоночный паз, вал и шайбу.

Отчасти смазывать нужно для того, чтобы, при установке шайба и шпонка не вывалились.

Продолжаем работу, аккуратно нужно совместить паз ротора подкачного насоса со шпонкой вала.Лично у меня первого раза не получилось поставить вал на место без возникнувших сложностей.Если начать энергично вращать вал, можно будет услышать характерный прерывистый звук работающего подкачного насоса.

Обойма роликов устанавливается сверху. Она должна быть также смазана по наружной рабочей части. При дефектовке у нее нужно контролировать состояние гнезд под оси роликов, если присутствует заметный износ, замены не избежать. Поставить можно без какого-либо усилия и специальных инструментов.

С обоймой роликов его связывает подвижная ось таймера. Если изменить внутрикорпусное давление, поршень автомата опережения впрыска вращает обойму роликов, соответственно он изменит угол впрыска.

Она же, установлена в таймер:

Рабочая поверхность таймера должна быть отполирована. Довольно распространенная неисправность — клин таймера посторонним мусором. Симптомы, двигатель достаточно теряет в мощности, начинает дымить, стучать и не набирает обороты.

Таймер смазал LMX и установил в корпус, именно в таком положении.

Далее его нужно задвинуть в корпус до среднего положения.

Повернуть на 90?, задвинуть штифт, связывающий его и обойму роликов, после зафиксировать маленьким штифтиком и пружинным зажимом.

Желательно проверить плавность движения и отсутствие заеданий. Ставим новые уплотнительные кольца. Для смазки уплотнений использую LMX. Вид левой (в данном случае) крышки таймера. Под ней находится пружина и регулировочные шайбы.

Про них писать особо нечего. Короче, натяжение пружины нужно подбирать на стенде.Я подбирал натяг по собственным ощущениям, после установки работу таймера можно корректировать изменением внутрикорпусного давления, полагаться придется на слух. И это конечно неправильно.

Сами ролики. В зависимости от состояния осей, рабочей поверхности и люфтов, либо меняются на новые, либо ось и рабочая поверхность полируется и все ставится на место. Выкрашивание, риски, отметины цветов побежалости не допустимы, узел крайне нагружен.

Ролики устанавливаем на место.

Будьте внимательны, постарайтесь не перепутать положение шайбы на ролике и то, с какой стороной вы ее поставите. Если ролики перемешаются, в этом нет ничего страшного.

Крестообразная шайба. Выработка от вала на ней заметна.

Проворачиваем на 90 градусов, для того, чтобы дальнейшая работа происходила в том месте, где выработка отсутствует. Также нужно проконтролировать и в случае чего, привести в порядок остальные рабочие поверхности.

Ставим ее на место, пружина пока не понадобится.

Характеристика впрыска зависит от профиля кулачков (см. маркировку на фото), т.е. от нарастания давления. Рабочие поверхности приведены в порядок.Иногда случается такое:

Кулачковый диск стоит на своем месте, штифт под пятку плунжера распологается так же, как и шпоночный паз на приводном валу ТНВД.

Пока без шайб, пружин и кольца дозатора. Подбираем шайбы по толщине под пятой плунжера размер К, довольно важный параметр при регулировке ТНВД. Пара установлена, из пары выкручена заглушка, плунжер должен быть в нижней точке хода.

Норма = 3.5 мм в нашем случае.

Далее начинаем устанавливать шайбы и дозатор на плунжер. Шайбы должны быть отдефектованы, а поверхности подготовлены соответствующим образом. Не забудьте обратить внимание на положение шайб и отверстия в дозаторе.

Приступаем к регулировке второго, не менее важного параметра — Kf. Способ измерения — тот же, кроме того, что установлена пружина, пару держим в руках. Я буду устанавливать размером в 5.8 мм. На фотографии видно плоские регулировочные шайбы.

Попутно нужно контролировать, чтобы шайбы были одной толщины, а пружины должны быть ровные и обязательно одной длины.

Теперь фиксируем пару (без плунжера) в тисках и начинаем заворачивать заглушку, резьбу и упорные поверхности желательно смазать.

Специальная головка для заглушки.

Некоторые пытались делать это газовыми ключами.

Далее нужно проверить рабочие поверхности у нагнетательных клапанов, проверить маркировку, после не забываем промыть и продуть. Ставим в тело пары:

Видно этапы: новенькая медная шайба из ремкомплекта, пружина, клапан, штуцер. Резьба штуцера должна быть смазана, особого усилия не нужно.

Пружина устанавливается под кулачковый диск:

Плунжерную пару устанавливаем в корпус, она устанавливается в горизонтальном положении, фиксируется винтами, затягивать не нужно.Ставим пружины привода дозатора, я их ставил на смазку, так как по-другому они выпадают.

Винты крепления привода дозатора в корпус нужно наживить, медные шайбы желательно заменить.Помнится, с ними возникали некоторые проблемы.

Далее начинаем установку привод дозатора.

Необходимо следить за тем, чтобы попасть в углубление дозатора, а так же, чтоб пружины не выпали и не перекосились.

После установки на место, болты оси привода можно затянуть. (для этого существует специальная трехгранная головка). Далее приступаем к сборке и установке на место центробежного регулятора, резинку на его оси нужно сменить. Не нужно забывать про то, что глубина вворачивания оси нормируется. На практике нужно совместить торец оси с плоскостью её контргайки.

В том случае, если установлен автомат прогрева, здесь поставили узел, который в зависимости от температуры ОЖ будет смещать рычаг управления подачей, а так же, будет через отверстие в корпусе сдвигать обойму роликов, тем самым изменяя угол впрыска (на холодном моторе изменяет в раннюю сторону).

На оси рычага управления меняем резиновое кольцо, опять же не забываем смазать его.

Рычаг управления устанавливаем на место. К тому времени плунжерная пара уже стоит на месте, винты аккуратно затянуты, электромагнитный клапан отсечки топлива установлен. Уплотнение под ним заменено, клапан желательно проверить рабочим напряжением.

Далее нужно аккуратно установить сальник, старайтесь не перекосить. Рабочая кромка должна быть смазана, при установке сальник нужно сместить, старайтесь не повредить о края шпоночного паза рабочую кромку.

Теперь, нужно аккуратно поставить на место верхнюю крышку насоса. Штуцер обратки не забудьте проверить на проходимость (на фотографии в штуцере присутствует грязь), продуваем, обратку затягивать не нужно, пока насос не прокачается помпой ручной подкачки топлива, что на фильтре.

Вот и все, теперь на насос нужно установить всю внешнюю «обвеску», рычаги, датчики, трубки подачи, кронштейны, после его можно установить на двигатель.

Наглядно, подобный ремонт ТНВД Бош, также смотрите на видео:

Топливный насос высокого давления (ТНВД): виды, устройство, принцип работы

Топливный насос (сокращенно ТНВД) предназначен для выполнения следующих функций — подачи горючей смеси под высоким давлением в топливную систему ДВС, а также регулирования его впрыска в определенные моменты. Именно поэтому топливный насос считается наиболее важным устройством для дизельных и бензиновых двигателей.

Преимущественно ТНВД применяются, конечно же, в дизельных двигателях. А в бензиновых двигателях ТНВД встречаются лишь в тех агрегатах, на которых используется система непосредственного впрыска топлива. При этом насос в бензиновом двигателе работает куда с меньшей нагрузкой, поскольку такое высокое давление, как в дизеле не требуется.

Основные конструктивные элементы топливного насоса — плунжер (поршень) и цилиндр (втулка) малого размера, которые объединяются в единую плунжерную систему (пару), изготовленную из высокопрочной стали с большой точностью.

На самом деле изготовление плунжерной пары довольно трудная задача, требующая специальных высокоточных станков. На весь Советский союз был, если не изменяет память, всего один завод, на котором изготавливались плунжерные пары.

Как делают плунжерные пары в нашей стране сегодня можно увидеть в этом видео:

Между плунжерной парой предусматривается очень маленький зазор, так называемое прецизионное сопряжение. Это отлично показано в видео, когда плунжер очень плавно, с зависанием под действием собственного веса входит в цилиндр.

Итак, как мы уже сказали ранее, топливный насос применяется не только для своевременной подачи горючей смеси в топливную систему, но и для распределения его через форсунки в цилиндры в соответствии с типом двигателя.

Форсунки – связующее звено в этой цепи, поэтому они соединены с насосом трубопроводами. С камерой сгорания форсунки соединяются нижней распылительной частью, оснащенной небольшими отверстиями для эффективного впрыска топлива с дальнейшим его воспламенением. Определить точный момент впрыска ТС в камеру сгорания позволяет угол опережения.

Типы топливных насосов

В зависимости от особенностей конструкции различают три основных типа ТНВД – распределительный, рядный, магистральный.

Рядный ТНВД

Этот тип топливного насоса высокого давления оснащается плунжерными парами, расположенными рядом друг с другом (потому и такое название). Их количество строго соответствует количеству рабочих цилиндров двигателя.

Таким образом, одна плунжерная пара обеспечивает подачу топлива в один цилиндр.

Пары устанавливаются в насосном корпусе, в котором предусмотрены каналы входа и выхода. Запускается плунжер при помощи кулачкового вала, соединенного, в свою очередь, с коленвалом, от которого и передается вращение.

Кулачковый вал насоса, при вращении кулачками воздействует на толкатели плунжеров, заставляя их двигаться внутри втулок насоса. При этом поочередно открываются и закрываются впускные и выпускные отверстия. При движении плунжера вверх по втулке создается давление, необходимое для открывания нагнетательного клапана, через который топливо под давлением направляется по топливопроводу к определенной форсунке.

Момент подачи топлива и регулировка его количества, необходимого в конкретный момент времени может осуществляться либо с помощью механического устройства, либо с помощью электроники. Такая регулировка нужна для корректировки подачи топлива в цилиндры двигателя в зависимости от частоты вращения коленчатого вала (оборотов двигателя).

Механическое управление обеспечивается за счет использования специальной муфты центробежного типа, которая закреплена на кулачковом валу. Принцип действия такой муфты заключен в грузиках, которые находятся внутри муфты и имеют возможность перемещаться под действием центробежной силы.

Центробежная сила изменяется с ростом (или уменьшением) величины оборотов двигателя, благодаря чему грузики либо расходятся к внешним краям муфты, либо снова сближаются к оси. Это приводит к смещению кулачкового вала относительно привода из-за чего и изменяется режим работы плунжеров и, соответственно, при увеличении частоты вращения коленвала двигателя обеспечивается ранний впрыск топлива, а поздний, как вы догадались, при снижении оборотов.

Рядные топливные насосы весьма надежны. Их смазка осуществляется моторным маслом, поступающим из системы смазки двигателя. Они совершенно не привередливы к качеству топлива. На сегодняшний день применение таких насосов из-за их громоздкости ограничено грузовыми автомобилями средней и большой грузоподъемности. Примерно до 2000 года они применялись и на легковых дизельных моторах.

Распределительный ТНВД

В отличие от рядного насоса высокого давления, у распределительного ТНВД может быть либо один, либо два плунжера в зависимости от объема двигателя и, соответственно, необходимого объема топлива.

И эти один или два плунжера обслуживают все цилиндры двигателя, которых может быть и 4, и 6, и 8, и 12. Благодаря своей конструкции, в сравнении с рядными ТНВД, распределительный насос более компактен и меньше весит, и при этом способен обеспечить более равномерную подачу топлива.

К основному недостатку данного типа насосов можно отнести их относительную недолговечность. Распределительные насосы устанавливаются только в легковые автомобили.

Распределительный ТНВД может оснащаться различными типами приводов плунжера. Все эти типы привода являются кулачковыми и бывают: торцевыми, внутренними, внешними.

Наиболее эффективными считаются торцевые и внутренние приводы, которые лишены нагрузок, создаваемых давлением топлива на приводной вал, вследствие чего они служат несколько дольше, нежели насосы с внешним кулачковым приводом.

Кстати, стоит отметить, что импортные насосы фирм Bosch и Lucas, наиболее часто использующиеся в автомобилестроении оснащены именно торцевым и внутренним приводом, а внешний привод имеют насосы серии НД отечественного производства.

Торцевой кулачковый привод

В этом типе привода, используемом в насосах Bosch VE, основным элементом является распределительный плунжер, предназначенный для создания давления и распределения топлива в топливных цилиндрах. При этом плунжер-распределитель совершает вращательные и возвратно-поступательные перемещения при вращательных движениях кулачковой шайбы.

Возвратно-поступательное перемещение плунжера осуществляется одновременно с вращением кулачковой шайбы, которая, опираясь на ролики, перемещается вдоль неподвижного кольца по радиусу, то есть, как бы обегает его.

Воздействие шайбы на плунжер обеспечивает высокое давление топлива. Возврат плунжера в исходное состояние осуществляется благодаря пружинному механизму.

Распределение топлива в цилиндрах происходит за счет того, что приводной вал обеспечивает вращательные движения плунжера.

Величина подачи топлива может быть обеспечена с помощью электронного (электромагнитный клапан) или механического (центробежная муфта) устройства. Регулировка осуществляется за счет поворота на определенный угол неподвижного (не вращающегося), регулировочного кольца.

Цикл работы насоса состоит из следующих стадий: закачка порции топлива в надплунжерное пространство, нагнетание давления за счет сжатия и распределение топлива по цилиндрам. Затем плунжер возвращается в исходное положение и цикл повторяется заново.

Внутренний кулачковый привод

Внутренний привод применяется в распределительных ТНВД роторного типа, например, в насосах Bosch VR, Lucas DPS, Lucas DPC. В таком типе насоса подача и распределение топлива осуществляется посредством двух устройств: плунжера и распределительной головки.

Распределительный вал оснащается двумя противоположно-расположенными плунжерами, которые обеспечивают процесс нагнетания топлива, чем меньше расстояние между ними, тем выше давление топлива. После нагнетания давления топливо устремляется к форсункам по каналам распредголовки через нагнетательные клапана.

Подачу топлива к плунжерам обеспечивает специальный подкачивающий насос, который может отличаться в зависимости от типа своей конструкции. Это может быть либо шестеренчатый насос, либо роторно-лопастной. Подкачивающий насос находится в корпусе насоса и приводится в действие приводным валом. Собственно, он прямо на этом валу и установлен.

Распределительный насос с внешним приводом рассматривать не будем, поскольку, скорее всего, их звезда близка к закату.

Магистральный ТНВД

Такой вид топливного насоса применяется системе подачи топлива Common Rail, в которой топливо перед тем, как поступить к форсункам сначала накапливается в топливной рампе. Магистральный насос способен обеспечить высокую подачу топлива — свыше 180 МПа.

Магистральный насос может быть одно-, двух- или трехплунжерным. Привод плунжера обеспечивается кулачковой шайбой или валом (тоже кулачковым, разумеется), которые в насосе совершают вращательные движения, проще говоря, крутятся.

При этом в определенном положении кулачков, под действием пружины плунжер перемещается вниз. В этот момент происходит расширение компрессионной камеры, за счет чего в ней снижается давление и образуется разряжение, которое заставляет открыться впускной клапан, через который топливо проходит в камеру.

Поднятие плунжера сопровождается увеличением внутрикамерного давления и закрытием клапана впуска. При достижении давления, на который настроен насос, открывается выпускной клапан, через который топливо нагнетается в рампу.

В магистральном насосе управление процессом подачи топлива реализуется дозирующим топливным клапаном (который приоткрывается или закрывается на необходимую величину) при помощи электроники.

Распределительный насос Bosch типа VE (автомобиль)

10,16.

Распределительный насос Bosch типа VE

На рис. 10.32 показана компоновка насоса типа VE, установленного в самовентилирующейся топливной системе, аналогичной той, что используется на легковых автомобилях. Подобно другим роторным насосам, в этом типе используется один насосный элемент и несколько выходов высокого давления, по одному на каждый цилиндр двигателя.
В дополнение к основным функциям, присущим современным роторным насосам распределительного типа, в насос VE могут быть встроены различные дополнительные модули: запуск / остановка работы.
(b) Модуль автоматического холодного пуска для ускорения впрыска.
(c) Функция быстрого холостого хода для равномерной работы во время прогрева.
(d) Регулировка крутящего момента для согласования расхода топлива с потребностью в топливе.
Компоновка основных подсистем насоса показана в упрощенном разрезе на рис. 10.33. К ним относятся:
(a) Подача топлива низкого давления.
(fc) Подача и распределитель топлива высокого давления.
(c) Соленоид отключения подачи топлива.
(d) Привод плунжера распределителя.
(c) Блок автоматического опережения впрыска.
(/) Напорный клапан.
(g) Механический регулятор.

Рис. 10.33. Распределительный насос Bosch типа VE.


Подача топлива низкого давления.

Перекачивающий насос с четырьмя лопастями приводится в движение приводным валом с половинной скоростью вращения коленчатого вала и подает топливо в насосную камеру под давлением, устанавливаемым регулирующим клапаном. Давление топлива повышается вместе с частотой вращения двигателя и используется для работы блока автоматической подачи. Кроме того, это обеспечивает перелив через корпус насоса, чтобы способствовать охлаждению и обеспечивать функцию самовлива.После прохождения через небольшое препятствие в верхней части насоса излишки топлива возвращаются обратно в топливный бак.

Подача топлива высокого давления.

На рис. 10.34 показан упрощенный вид насосной камеры с вырезанной частью распределительной головки для просмотра плунжера насоса. Плунжер вращается в головке для обеспечения действия клапана и совершает возвратно-поступательное движение за счет постоянного хода для создания высокого давления. Кулачковая пластина, движущаяся по роликовому кольцу, вызывает это осевое перемещение.Количество топлива высокого давления, подаваемого в форсунку через выпускное отверстие, измеряется положением золотника. Эта функция изменяет эффективный ход нагнетания, который увеличивается по мере перемещения золотника к распределительной головке.


Рис. 10.34. Принцип работы насосного агрегата Bosch VE. A. Вход топлива в насосную камеру. B. Насос в конце поставки.
На рисунке 10.34A показано, что вращение плунжера привело к тому, что одна из дозирующих щелей открыла впускной канал, и все выпускные отверстия закрыты в этом положении.До этого плунжер двигался вниз по камере, чтобы топливо входило и заполняло камеру высокого давления. Дальнейшее вращение плунжера закрывает входное отверстие, а единственная распределительная щель в плунжере открывает одно из выходных отверстий. В этом положении плунжер продвинулся вверх по камере, чтобы создать давление в топливе и доставить его к форсунке через выпускное отверстие.
На рис. 10.34B показано положение плунжера в конце периода впрыска. Плунжер значительно продвинулся дальше, открыв отрезное отверстие в плунжере, что вызывает мгновенное снижение давления и прекращение впрыска.Дальнейшее движение плунжера позволяет вернуть топливо из насосной камеры в полость насоса. Золотник управления установлен в это максимальное положение топлива, соответствующее потребности в топливе для запуска. Перемещение управляющего золотника в крайнее положение от распределительной головки, что является настройкой золотника для медленного хода, снижает производительность до минимума.

Отсечка топлива.

Электромагнитный клапан перекрывает подачу топлива во впускной канал, когда ключ зажигания выключен.

Плунжерный привод распределителя.

Вращение приводного вала на половине частоты вращения коленчатого вала (для четырехтактного двигателя) передается через вилку и кулачковый диск, обеспечивая вращательное движение плунжеру насоса. Возвратно-поступательное движение плунжера обеспечивается вращением кулачковой пластины над четырьмя роликовыми толкателями, прикрепленными к роликовому кольцу. В насосе для четырехцилиндрового двигателя на кулачковой пластине сформированы четыре выступа, а контакты между пластиной и роликами поддерживаются двумя прочными возвратными пружинами плунжера.Хомут, расположенный между приводным валом и кулачковой пластиной, позволяет пластине перемещаться в осевом направлении, сохраняя при этом привод.

Рис. 10.35. Плунжерный привод.

Клапан давления.

Нагнетательный клапан, конструкция которого аналогична тому, что используется на линейных насосах, устанавливается в распределительной головке в месте подключения к топливопроводам высокого давления. Этот клапан исключает необходимость прокачки топливных магистралей высокого давления.

Устройство автоматического впрыска.

Узел роликовых колец свободно прикреплен к корпусу, поэтому его можно частично повернуть на угол до 12 градусов. Это позволяет механизму автоматического продвижения (рис. 10.36) изменять время впрыска.
Когда насос работает, топливо под давлением от перекачивающего насоса подается в камеру опережения времени через полость насоса. Увеличение скорости насоса также увеличивает давление и расход перекачивающего насоса, так что поршень опережения времени перемещается против своей пружины.Это заставляет приводной штифт вращать роликовое кольцо в направлении, противоположном направлению вращения приводного вала.

Принцип работы дизельного топливного насоса

Топливный насос высокого давления бывает трех типов: рядный, распределительный и монококовый. Независимо от того, что это за продукция, самая важная часть — это насос. Количество, давление и время работы топливного насоса должны быть очень точными и автоматически регулироваться в зависимости от нагрузки.Топливный насос высокого давления — это разновидность деталей, требующих тонкого и сложного производственного процесса. В настоящее время топливные насосы для дизельных двигателей общего назначения в стране и за рубежом производятся на нескольких профессиональных заводах в мире.

Принцип работы

Ознакомиться с принципом работы насосов с корпусом рядного ТНВД.

Источник питания необходим при работе ТНВД. Кулачковые диски в нижних частях насосов приводятся в движение шестернями коленчатого вала двигателей.

Плунжер — ключевой компонент топливного насоса высокого давления. Если использовать метафору медицинских инжекторов, то съемная заглушка похожа на поршень, а цилиндр можно назвать втулкой поршня. Соберите пружину внутри цилиндра с одной стороны плунжера, поэтому другая сторона будет касаться распредвала. Плунжеры будут перемещаться вверх и вниз внутри плунжерных втулок каждый раз, когда распределительные валы поворачиваются на один оборот. Это основное движение плунжера топливного насоса высокого давления.

Плунжеры и втулки плунжера — очень точные детали. На корпусе плунжера имеется наклонный паз, а на втулке плунжера — присос. Всасывающий патрубок заполнен дизельным топливом. Дизельное топливо поступает в плунжерную втулку, когда наклонный паз плунжера находится на всасывании. Таким образом, распределительный вал толкает плунжер выше. Когда он достигнет определенной высоты, наклонный паз отклонится от всасывания, и последняя закроется. В этой ситуации дизельное топливо больше не может двигаться, пока плунжер поднимается выше и сжимает дизельное топливо.Когда давление топлива достигает определенного диапазона, открывается односторонний клапан. Таким образом, топливо будет проходить через форсунку для впрыска топлива и попадать в камеру сгорания цилиндра.

Следует отметить, что все дизельные двигатели оснащены впускными и обратными маслопроводами. Понять функцию впускного патрубка несложно, но как насчет возвратного маслопровода? Это связано с тем, что в цилиндр поступает только часть дизельного топлива, несмотря на то, что некоторое количество дизельного топлива выгружается плунжерами.Остаток сливается через отверстие для возврата масла. Более того, двигатель регулирует количество впрыскиваемого топлива путем регулирования количества сливаемого топлива.

Плунжер переместится вниз после достижения самой верхней точки. Затем наклонная прорезь снова встретится со всасывающим патрубком и дизельное топливо будет всасываться в плунжерную втулку. Начинается новый цикл. Каждая плунжерная система рядного ТНВД соответствует одному цилиндру. В рядном ТНВД имеется четыре цилиндра, для которых требуется всего четырехплунжерная система.Это позволяет предлагать товары большого размера. Обычно они используются в автомобилях среднего или большего размера. Например, в дизельных двигателях автобусов и грузовиков обычно используются рядные ТНВД.

Топливные насосы, применяемые в дизельных двигателях легковых и легковых автомобилей, в основном распределительного типа. Они отличаются небольшими размерами, малым весом, меньшим количеством компонентов и простой конструкцией. В этом типе насосов используется один или два набора (-ов) плунжерной системы для сжатия дизельного топлива и его проталкивания в топливные форсунки.

На крыльчатке установлены две группы плунжеров. Плунжеры вращаются вместе с рабочими колесами при приводе от двигателей. Выпуклая часть кулачкового кольца прижимает плунжер и заставляет его играть роль насоса для подачи дизельного топлива в масляное отверстие в середине рабочего колеса. В это время дизельное топливо остается на входах распределителей и последовательно распыляется.

Поскольку обороты двух групп плунжерной системы (или одной группы плунжерной системы) пропорциональны увеличению количества цилиндров, ТНВД ограничивается количеством цилиндров и максимальной скоростью вращения.

С развитием технологии дизельных двигателей, теперь они популярны с одним из видов топливных насосов мономерного типа (называемых мономерными насосами или соплами насоса). Фактически, он объединяет вышеупомянутые два типа ТНВД в один тип. Впрыск топлива в каждый цилиндр завершается их соответствующим независимым узлом впрыска (мономерный насос или насос-форсунка).

VP44 Соленоид управления синхронизацией

Общее описание
Система впрыска дизельного топлива с ТНВД Bosch имеет два блока управления для электронного управления дизельным двигателем.Блок управления помпой Bosch (установлен на помпе) и блок управления двигателем. Такая конфигурация предотвращает перегрев определенных электронных компонентов, а также помехи от сигналов, которые генерируются очень высокими токами (до 20 А) в ТНВД распределительного типа.

Внешний вид
На рис. 1 показан насос VP44.


Фиг.1

Принцип действия VP44 Электромагнитная синхронизация

VP44 — это впрыскивающий насос среднего высокого давления роторного типа, в основном механический с двумя компонентами с электронным управлением — соленоидом дозирования топлива и соленоидом опережения. Электромагнитный клапан опережения опережения имеет широтно-импульсную модуляцию с помощью контроллера ЭСУД, чтобы управлять ходом синхронизирующего поршня относительно пружины в корпусе VP44. Этот поршень перемещает волнистое кольцо внутри насоса, которое заставляет поршни в роторе вовнутрь, когда он вращается, и создает высокое давление, чтобы выскочить или открыть инжектор, на который направлен ротор, чтобы заставить топливо течь. Топливо протекает через форсунку только до тех пор, пока не будет превышено давление на выходе. Если верхняя точка на волнистом кольце перемещается в одну сторону до точки, где давление выталкивания превышено и топливо течет быстрее, событие впрыска продвигается вперед.Если он движется в другую сторону, давление выталкивания возникает позже и, следовательно, замедляется синхронизация события впрыска. Распределительная часть впрыскивающего насоса в основном такая же, как и крышка распределителя в газовом сценарии, за исключением того, что в ней есть отверстия, идущие к каждому нагнетательному клапану и инжекторной линии в правильном порядке включения в направлении вращения. Ротор в этом насосе выполняет ту же работу, что и ротор в распределителе в газовых автомобилях. Вместо того, чтобы направлять электричество к контакту в крышке распределителя и проводу свечи зажигания, в топливном насосе высокого давления он является гидравлическим, и ротор вращается мимо круглого отверстия в так называемом распределителе, так что топливо течет к отдельному инжектору.Отверстие в роторе, которое соединяется с круглым отверстием распределителя, имеет прорези, поэтому топливо может течь в течение определенного периода времени при вращении ротора.

Заказ на проверку работоспособности соленоида управления синхронизацией VP44
• Проверка соленоида управления синхронизацией VP44 с помощью осциллографа

  1. Подключите токовые клещи переменного / постоянного тока к первому каналу осциллографа.
    Установите диапазон клещей постоянного / переменного тока на ± 20 А.

    Важное примечание: Следует зажимать только один из двух проводов, а не оба.Неважно, какой провод будет зажиматься токовыми клещами: положительный или отрицательный. Это повлияет только на полярность измеряемого тока.

  2. Запустите двигатель и оставьте его работать на холостом ходу.
  3. Посмотрите на экран осциллографа и сравните его с осциллограммой на рис. 2.


Фиг.2

• Возможные неисправности в опережающем клапане VP44

  • Механическая неисправность
  • Неисправность клапана соленоида
  • Отсутствует управляющий сигнал — обычно из-за неисправного блока управления насосом

Как работает топливная форсунка? Бензин и Дизель

Назначение топливной форсунки:

В основном, топливная форсунка предназначена для распыления топлива в распыленной или туманной форме, чтобы оно сгорело полностью и равномерно.Топливный насос высокого давления (FIP) подает дизельное топливо под давлением через линии высокого давления к впускному отверстию каждого инжектора. Однако обычные форсунки или форсунки первого поколения открываются под действием гидромеханического давления. Внутри обычного инжектора пружина удерживает игольчатый клапан в «закрытом» положении до тех пор, пока давление в линиях высокого давления не достигнет определенного значения. В дизельных двигателях DI и IDI более ранних поколений использовались обычные форсунки, как показано на диаграмме ниже.

Диаграмма поперечного сечения обычной дизельной форсунки

Принцип работы обычной топливной форсунки:

Игольчатый клапан точно управляется чувствительной к давлению пружиной.Он поднимается со своего седла, впрыскивая дизельное топливо в цилиндр в сильно распыленной или туманной форме. В момент падения давления игольчатый клапан возвращается на свое место, что приводит к прекращению впрыска. Форсунка впрыска имеет чрезвычайно критические допуски. Зазор между его движущимися частями составляет всего 0,002 мм или 2 микрона.

Современный инжекторный блок нагнетает дизельное топливо через небольшое отверстие в форсунке размером всего 0,25 мм². Количество впрыскиваемого топлива может варьироваться от 1 мм³ до 350 мм³.Обычные форсунки открываются и закрываются гидромеханически. Они имеют среднее давление открытия сопла от 140 до 210 кг / см2. Современный агрегат Bosch распыляет дизельное топливо на скорости до 2000 км / ч. Bosch и Lucas — ведущие мировые производители дизельных форсунок.

Принцип работы бензинового инжектора:

Бензиновые форсунки нового поколения существенно отличаются по конструкции и размерам от обычных дизельных форсунок. Двигатель с непосредственным впрыском бензина (GDI) создает топливно-воздушную смесь внутри камеры сгорания.Открытие впускного клапана позволяет поступать только свежему воздуху. В то время как форсунки высокого давления впрыскивают бензин в камеру сгорания, это улучшает охлаждение камеры сгорания. Это обеспечивает более высокий КПД двигателя за счет более высокой степени сжатия, что, в свою очередь, увеличивает топливную экономичность и крутящий момент.

Бензиновый тип GDI (Фото любезно предоставлено Bosch)

Насос высокого давления подает топливо в топливную рампу высокого давления (также известную как Common Rail). Кроме того, электромагнитный инжектор высокого давления Bosch HDEV5 имеет номинальное давление в системе до 20 МПа и размер капли / SMD (средний диаметр по Заутеру) всего 15 мкм.Форсунки установлены на топливной рампе / общей топливной рампе. Кроме того, форсунки дозируют и распыляют топливо под высоким давлением и очень быстро. Кроме того, форсунки обеспечивают оптимальную смесь и впрыскивают бензин в камеру сгорания.

Для получения дополнительной информации прочтите о GDI.

Что такое насос-форсунка?

Кроме того, в системах впрыска топлива на дизельных двигателях CRDi используется «насос-форсунка» или «насос / форсунка». Она объединяет функции форсунки-форсунки и впрыскивающего насоса в единый блок.Эта конструкция состоит из отдельного насоса, назначенного для каждого цилиндра, а не из общего насоса, используемого для всех цилиндров в моделях предыдущего поколения.

Блочный инжектор (Изображение предоставлено Bosch)

В этой системе насос и форсунка объединены в единый компактный узел, который устанавливается непосредственно на головку блока цилиндров. Такая конструкция устраняет необходимость в топливопроводах высокого давления. Встроенные каналы, встроенные непосредственно в головку блока цилиндров, подают дизельное топливо. Таким образом, это помогает исключить потенциальные отказы утечек топливопровода.

Функционирование насос-форсунки:

При работе верхний распределительный вал приводит в действие топливный насос низкого давления. Затем он подает дизельное топливо в топливные каналы в головке блока цилиндров и во впускное отверстие всех форсунок. Для привода плунжерного насоса внутри форсунки используется общий распределительный вал. Эта конструкция может обеспечить более высокое давление впрыска до 2200 бар и точное время впрыска. Кроме того, он точно контролирует количество впрыскиваемого топлива. Кроме того, электромагнитный клапан работает как двухпозиционный переключатель для подачи топлива в форсунку.

Помпа двойного типа (Фото: VW)

Пьезоэлектрический инжектор:

Самым совершенным типом инжектора, несомненно, является «пьезоэлектрический инжектор». Он не только обеспечивает повышенную точность для двигателей последнего поколения CRDi, но также создает давление топлива до 3000 бар или 44 000 фунтов на квадратный дюйм. Кроме того, эти современные топливные форсунки работают по принципу «пьезо». Слово «пьезо» происходит от греческого слова «пьезеин», что означает сдавливание или надавливание.

Пьезо-тип (Фото любезно предоставлено Denso)

Пьезо-привод состоит из сотен керамических пластин, уложенных одна над другой в инжекторе.Будучи электрически заряженными, пьезокристаллы могут изменить свою структуру всего за несколько тысячных долей секунды, слегка расширившись. Это расширение штабеля приводит к его линейному перемещению. Затем он передается непосредственно на иглу инжектора без какой-либо механической связи между ними. В результате форсунки открываются / закрываются за несколько миллисекунд (тысячную долю секунды). Следовательно, он может впрыскивать крошечное количество топлива, весящее менее одной тысячной грамма, а также тонко его распределять.

Пьезоэлектрические форсунки:

1. Очень высокая скорость работы
2. Чрезвычайно быстрое время отклика
3. Повторяемость движения клапана
4. Точное дозирование впрыскиваемого топлива
5. Большая частота — до семи впрысков на цикл сгорания

Пьезо-форсунки:

1. Оптимизировать сгорание топливовоздушной смеси.
2. Меньший расход топлива.
3. Уменьшить загрязнение, снизить выбросы.

Посмотреть видео о работе топливной форсунки можно здесь:

О CarBikeTech

CarBikeTech — это технический блог.Его члены имеют опыт работы в автомобильной сфере более 20 лет. CarBikeTech регулярно публикует специальные технические статьи по автомобильным технологиям.

Посмотреть все сообщения CarBikeTech

Как работают форсунки Bosch и некоторые связанные с ними формы неисправностей

Давайте начнем здесь:

Как работают форсунки Bosch и некоторые связанные с ними формы неисправностей

Роль инжектора в системе Common Rail состоит в том, чтобы точно распылять топливо в камеру сгорания в нужное время, чтобы топливо полностью сгорело.

Каждый масляный канал форсунки Common Rail включает в себя часть низкого напряжения и часть высокого давления:

Форсунка состоит из пяти основных компонентов:

Корпус форсунки (1) скрепляет сопло с несколькими отверстиями (2) с узлом электромагнитной катушки (3) и содержит корпус клапана (4). Якорь соленоида (5) движется вместе с шариком. Шар открывает и закрывает так называемый А-дроссель. Корпус клапана имеет два отверстия (A- и Z-дроссели), регулирующие давление в управляющей камере (6), и соответствующий управляющий поршень (7).Управляющий поршень находится в непосредственном физическом соединении с иглой форсунки (8).

Когда форсунка не работает, игольчатый клапан форсунки блокирует отверстие, предотвращая впрыск топлива под высоким давлением в камеру сгорания. Когда катушка соленоида форсунки получает сигнал ЭБУ, якорь всасывается из-за электромагнитной энергии, генерируемой катушкой, в то же время шар клапана и держатель шара клапана поднимаются под давлением масла, так же как и игольчатый клапан форсунки. В этот момент отверстие открывается, топливо в хорошей форме распыляется и распыляет его в цилиндр.Количество распыляемого топлива также точно контролируется ЭБУ, и каждый полный процесс впрыска можно разделить на следующие пять этапов:

(1) выкл. (Без впрыска)

(2) разомкнут (начало впрыска)

(3) Полное открытие (непрерывный впрыск)

(4) Выкл. (Уменьшение объема впрыска)

(5) полностью закрыто (остановка впрыска)

Проанализировав отказ основных частей следующих форсунок Common Rail, мы можем узнать основную причину отказа форсунок, а затем разработать профилактические меры.

(1) Электромагнитный клапан

Ошибка плавления электромагнитной катушки: слишком большое напряжение питания или слишком продолжительное время работы, что вызвало плавление электромагнитной катушки.

Профилактический способ: Запрещается искусственно подавать внешнее напряжение на форсунки.

Форма отказа показана на следующем рисунке:

(2) Ослабление разъема высокого давления форсунки:

Соединитель высокого давления форсунки не герметичен через кожух.

Причина неисправности: при снятии трубки высокого давления соединение поворачивается, а затем ослабляется.

Профилактический способ: при демонтаже маслопровода высокого давления зафиксировать соединение высокого давления гаечным ключом

(3) Коррозия внутри форсунки Common Rail высокого давления

Профилактические мероприятия: проверять качество мазута и периодически сливать воду в период грубой фильтрации

Форма отказа показана на следующем рисунке:

(4) Форсунка Common Rail высокого давления: изношены внутренние детали (например, компоненты клапана и т. Д.))

Признаки: горит лампа неисправности автомобиля, при ускорении подачи газа идет черный дым, а мощность недостаточна.

Причина неисправности: Топливо содержит большое количество примесей

Профилактические меры: убедиться в качестве фильтра, особенно в качестве фильтра тонкой очистки (использование нестандартных фильтров категорически запрещено). Установите воздушный фильтр на вентиляционное отверстие топливного бака, чтобы избежать загрязнения топлива песком и пылью во внешней среде и обеспечить качество топлива.

Форма отказа показана на следующем рисунке:

(5) Уплотнительная стальная прокладка: воздух в цилиндре

Признак: Горючие газы проникают в возвратное масло и вызывают недостаточную мощность двигателя.

Причина неисправности: примеси вызывают образование ямок на поверхности медной прокладки, что снижает герметичность.

Меры предосторожности: повторное использование медных прокладок запрещено. Чтобы обеспечить чистоту медной прокладки, дна монтажного отверстия двигателя и крышки форсунки при установке форсунки, используйте только медную прокладку, чтобы не допустить оставшуюся прокладку в монтажном отверстии двигателя.

Форма отказа показана на следующем рисунке:

(6) Форсунка Common Rail: внешнее повреждение

Признак: топливная форсунка не работает должным образом, из-за чего двигатель работает нестабильно.

Причина неисправности: неправильная установка и неправильная работа.

Меры предосторожности: Затяните крышки электромагнитных клапанов, клеммы и разъемы жгута проводов при установке форсунки

Топливный насос вспомогательного двигателя судовой

Топливный насос вспомогательного двигателя судовой — тип Bosch

Домашняя страница || Вспомогательная сила ||


Топливный насос вспомогательного двигателя судовой — тип Bosch

Топливный насос типа Bosch : Наиболее распространенным топливным насосом, используемым на вспомогательных дизельных двигателях, является насос Bosch. тип.Это поршневой насос с кулачковым приводом и спиральной канавкой на плунжере для контролировать отсечку подачи топлива и, следовательно, количество топлива, подаваемого в цилиндр для сгорания.

Эти насосы могут быть размещены отдельно вдоль распределительный вал, по одному в каждом положении цилиндра, или они могут быть размещены в одном блокировать. Каждый насосный агрегат содержит плунжер насоса и направляющую вместе с подпружиненный нагнетательный клапан и его седло. Плунжеры и направляющие не взаимозаменяемые, их следует рассматривать как комбинированные узлы или элементы.

Операция : Принцип работы насосов спирального типа схематично показан на рисунке 7.6. Когда плунжер E находится на нижнем пределе своего хода (рисунок 7.6a), топливо поступает в ствол из окружающей камеры всасывания через два порта. Как плунжер поднимается, часть топлива вытесняется через порты, пока они просто не закроются (Рисунок 7.6b) за верхний край плунжера. Топливо, скопившееся над плунжером, теперь вытеснен через нагнетательный клапан над верхней частью цилиндра насоса.

Рисунок
Рисунок: Виды в разрезе узла топливного насоса


Рисунок 7.6: a, b, c Виды в разрезе узла топливного насоса

  • 1. Соединение нагнетательного трубопровода
  • 2. Пружина нагнетательного клапана.
  • 3. Нагнетательный клапан
  • 4. Седло нагнетательного клапана
  • 5. Соединение седла нагнетательного клапана
  • 6. Корпус насоса
  • 7. Стопорный винт
  • 8. Стопорный винт
  • 9.Стойка управления
  • 10. Верх стопорного воротника.
  • 11. Направляющая плунжера
  • 12. Управляющая втулка
  • 13. Плунжер
  • 14. Толкатель толкателя
  • 15. Пружина насоса
  • 16. Нижняя стопорная втулка
  • 17. Стопорные кольца

Давление, оказываемое поднимающимся плунжером, заставляет топливо поднимать клапан и войдите в трубу, соединяющую насос с форсункой. Поскольку труба уже полный, избыточное топливо, которое нагнетается, вызывает повышение давления по всей линии и поднимает игольчатый клапан форсунки.Это приводит к тому, что топливо попадать в камеру сгорания в виде мелкой струи.


Рисунок 7.7 Топливный насос типа Bosch

По мере того, как плунжер продолжает двигаться вверх, нижний край регулятора спираль открывает отверстие для разлива, позволяя отводить топливо из бочки всасывающую камеру через вертикальное просверленное отверстие в плунжере или через обработанный паз или канал (рисунок 7.7). Это позволяет нагнетательному клапану закрыться. под действием его пружины и при падении давления в трубопроводе, инжектор тоже закрывается.На стыке нагнетательного клапана и его направляющей, имеется короткий плоский цилиндрический поршень, который заполняет проем седла как клапан закрывается. Это подчеркивает падение давления в напорном трубопроводе, так что форсунка закрывается резко.

Фактический ход плунжера постоянен, но эффективный ход зависит от какая часть спирали движется вверх и вниз в соответствии с отверстием для разлива. В эффективный ход может быть установлен между максимальным расходом топлива и отсутствием топлива. Последний установка означает, что топливо проливается на всю длину хода плунжера.В плунжер перемещается в нужное положение рейкой и квадрантом (Рисунок 7.7).

Квадрантный воротник находится на рукаве с двумя вертикальными прорезями на дно. Два выступа, выступающие из нижней части плунжера, перемещаются вверх. и вниз в этих пазах, когда плунжер совершает возвратно-поступательное движение. Вращательное движение втулка (не имеющая вертикального движения) перемещает плунжер. Стеллаж, который сетки с зубчатым квадрантом снаружи соединены с подходящим рычажным механизмом от регулятора и рычага ручного управления.

Ниже кратко описаны некоторые из основных процедур для судового вспомогательного оборудования :

  1. Общая конструкция вспомогательного двигателя

  2. На больших тихоходных двигателях возникли серьезные проблемы. двигатели с некоторыми из бункеров низкого качества, например, с бункерами, содержащими каталитическая мелочь. Топливо должно соответствовать спецификации, указанной в инструкции. книга по двигателю. ……
  3. Турбина противодавления вспомогательного двигателя

  4. Многие суда использовали вспомогательную паровую турбину в качестве ступени понижения первичного давления перед подачей пара к другим вспомогательным агрегатам, требующим пар при значительно более низком давлении, чем имеющееся.Такое расположение обеспечивает гораздо более благоприятный тепловой баланс, чем при использовании редукционного клапана …
  5. Топливный насос вспомогательного двигателя

  6. Наиболее распространенным топливным насосом, используемым на вспомогательных дизельных двигателях, является насос Bosch. тип. Это поршневой насос с кулачковым приводом и спиральной канавкой на плунжере для контролировать отсечку подачи топлива и, следовательно, количество топлива, подаваемого в цилиндр для сгорания. ……
  7. Форсунка общего топлива вспомогательного двигателя

  8. Топливо подается в кольцевое пространство форсунки через просверленное отверстие корпус форсунки от входа.Клапан форсунки выталкивается из своего гнезда в корпус форсунки за счет давления топлива от насоса, воздействующего на заплечик игольчатый клапан. ……
  9. Вспомогательная система охлаждения двигателя

  10. Для судовых вспомогательных двигателей могут применяться различные системы охлаждения, но наиболее часто используется простая система с замкнутым контуром. Море вода проходит через промежуточный охладитель, маслоохладитель, а затем через воду рубашки охлаждения. охладитель в последовательном потоке. ……
  11. Гидравлический регулятор вспомогательного двигателя

  12. При использовании для выработки электроэнергии переменного тока дизельный двигатель обычно оснащается гидравлическим регулятором. Он включает в себя устройство измерения центробежной скорости (подпружиненные грузики), управляющее сервоцилиндром с подходящим демпфированием с масляным приводом через пилотный клапан. ……
  13. Вспомогательная система управления частотой вращения двигателя

  14. В отличие от силовых турбин, турбины генератора работают с постоянной частотой вращения и должны регулироваться соответствующим образом.Правила классификационного общества требуют, чтобы при внезапном снятии или включении полной нагрузки было только 10% кратковременное и 6% постоянное изменение скорости. ……
  15. Вспомогательный двигатель, отслеживающий неисправности

  16. Отказ двигателя при запуске или проблемы во время работы могут быть связаны с неисправности системы впрыска топлива или другие возможные причины. Инструкция руководство по поиску неисправностей и устранению неисправностей будет включать некоторые из типичных проблемы ……
  17. Генераторы, приводимые в движение от главной силовой установки

  18. Генераторы могут приводиться в движение от карданного вала, через коробку передач или путем установки на самом двигателе. ……
  19. Котлы на выхлопных газах

  20. Изначально котлы на выхлопных газах или экономайзеры имели простую конструкцию и производили очень умеренное количество пара из двигателей малой мощности того времени. По мере увеличения мощности низкооборотного двигателя большее количество пара, которое могло бы быть произведено из-за потери энергии выхлопных газов в противном случае, ……
  21. Вспомогательный двигатель Конструкция турбогенератора

  22. Конструкция турбогенератора — Для выработки электроэнергии турбины обычно представляют собой машины с горизонтальным осевым потоком и импульсной реакцией. Они могут выходить либо во встроенный конденсатор (всегда под подвешенным), либо в отдельный центральный вспомогательный конденсатор или главный конденсатор судна. ……
  23. Топливная система двигателя Caterpillar

  24. В ряду более крупных двигателей Caterpillar используются топливные насосы спирального типа с приводом от раздельный распредвал…….

Главная страница || Охлаждение || Машины || Услуги || Клапаны || Насосы || Вспомогательная сила || Карданный вал || Рулевые механизмы || Судовые стабилизаторы || Холодильное оборудование | || Дизайн корабля || Главная ||


General Cargo Ship.com предоставляет информацию о различных системах оборудования грузовых судов — процедурах обращения, мерах безопасности на борту и некоторые базовые знания о грузовых судах, которые могут быть полезны людям, работающим на борту, и тем, кто работает в терминале.По любым замечаниям, пожалуйста Свяжитесь с нами

Copyright © 2010-2016 General Cargo Ship.com Все права защищены.
Условия использования
Прочтите нашу политику конфиденциальности || Домашняя страница ||

Технология Duramax CP3 — Diesel World

С флисом Performance

ТНВД Bosch CP3 использовался в системе Duramax с момента его появления в 2001 году и с тех пор зарекомендовал себя как идеальная система впрыска для рынка легких дизельных двигателей.Будь то стандартное приложение для ежедневного вождения / буксировки или высокопроизводительный грузовик для буксировки / перетаскивания салазок, систему впрыска Common Rail с двойной установкой CP3 просто сложно превзойти. Благодаря способности CP3 обеспечивать экстремальное давление в рельсах (26 000 фунтов на квадратный дюйм или более) и простоте использования, технология CP3 продолжает развиваться и поднимать производительность дизеля на высоту, о которой никогда не было возможно с электронным впрыском.

Основные принципы работы

Не только CP3 использовался на двигателях Duramax с 2001 по 2010 годы, Dodge Cummins использует технологию Common Rail с 2003 года.Радиальная трехпоршневая конструкция приводится в действие шестеренкой от двигателя. Очевидно, его основная цель — создать высокое давление в топливной рампе, которая подает топливо к отдельным форсункам. Поскольку компьютер двигателя и форсунки выполняют большую часть работы, когда дело доходит до момента впрыска и скорости впрыска, в основном все, что требуется от CP3, — это подавать заданное давление топлива в топливную систему на основе расчетной потребности ECM. Внутренние части насоса работают так же, как и в обычном двигателе, с вращающимся узлом в середине корпуса насоса; смещенный выступ на валу перемещает каждый из трех поршней вверх и вниз для создания давления в соответствующем цилиндре; это движение создает чрезмерное давление топлива, которое затем подается в топливную рампу.В топливном насосе высокого давления используются электроника и исполнительный механизм управления подачей топлива (FCA) для регулирования этого давления и увеличения объема и давления по запросу. Поскольку двигателю потребуется меньший объем и давление на холостом ходу, чем при тяжелом полностью открытом дросселе, регулятор давления является ключом к правильному функционированию CP3.

Модификации

Поскольку насос CP3 был спроектирован для подачи топлива в стандартный двигатель мощностью 360 л.с., в большинстве случаев, когда вы превысите отметку в 500 л.с., заводской CP3 просто не сможет подавать необходимый объем топлива для поддержания требуемого давление в топливной рампе.Чтобы преодолеть эти ограничения, компания Fleece Performance из Браунсбурга, штат Индиана, разработала все новые внутренние компоненты для замены заводских деталей, которые не только увеличивают расход Bosch CP3, но и повышают его прочность и долговечность за счет более мощных и высоких давлений. Поскольку насосы должны выдерживать более высокую боковую нагрузку от вращательных напряжений, внутренний распределительный вал спроектирован и обработан полностью на самом современном оборудовании. В настоящее время Fleece предлагает две версии Bosch CP3: CP3K, который является идеальной заменой стандартного (с внутренними модификациями, сделанными для снятия ограничения по топливу при 3000+ об / мин), PowerFlo 750 использует ход поршня 10 мм, что позволяет увеличить объем до 750. rwhp без падения давления в рампе при жесткой нагрузке.

Чтобы лучше понять науку, лежащую в основе ТНВД CP3, и то, что рынок запасных частей делает для повышения их потенциала производительности, быстрый сеанс вопросов и ответов с Брайденом Флисом и Джеффом Мерриамом из Fleece Performance должен помочь вам понять новейшие технологии CP3.

Хотя эта статья основана исключительно на линейке продуктов Duramax, Fleece также предлагает полную линейку модифицированных сменных насосов для двигателей Cummins объемом 5,9 л и 6,7 л, а наука и инженерия в этих насосах будут практически идентичными.

Разговор с Брайденом Флисом и Джеффом Мерриамом

В: Что именно выполняет ТНВД CP3?
A: «Топливная система Common Rail наиболее легко связана с экономической теорией спроса и предложения. Заданная длительность впрыска основного топлива — это «потребность», а насос CP3 — «подача». По мере увеличения размера форсунки и / или увеличения заданной продолжительности подачи топлива (увеличение спроса) тем выше будет потребность в поставке. Заводские CP3 ограничены тем объемом, который они могут поставлять, в основном в зависимости от рабочего объема и оборотов двигателя.По мере того, как спрос превышает способность CP3 поддерживать поставку, давление в топливной рампе начинает падать.

1 Fleece Performance PowerFlo CP3 — это простой апгрейд CP3 без завышенных цифр, доказавший, что он поддерживает 750 RWHP с соответствующими дополнительными модификациями. Он не только поддерживает 750 об / ч, но также устраняет заводское ограничение расхода топлива, которое начинается при 3000 об / мин.2 Хотя ТНВД PowerFlo 750 CP3 построены с использованием новых ТНВД Bosch
, в насос внесено несколько модификаций, чтобы увеличить объем доступного расхода топлива.Самая важная часть этой головоломки — это центральный вал, на котором будут ездить плунжеры: так же, как и на распределительном валу двигателя, профиль этого «кулачка» является ключом к правильному потоку и максимальному давлению в рампе. На современном оборудовании с ЧПУ все детали, изготовленные Fleece Performance, проходят строгий контроль качества, чтобы гарантировать, что каждый собранный и отправленный насос будет работать так же хорошо или лучше, чем рекламируется.4 После завершения на токарном станке с ЧПУ можно установить внутренний кулачок. в насос Bosch CP3, где его дополнительный ход на 10 мм поможет насосам подавать необходимое топливо в форсунки, чтобы превзойти потенциал заводских насосов в лошадиных силах.Доказано, что PowerFlo 750 поддерживает истинную скорость 750 об / ч, если для этого достаточно ваших поддерживающих модификаций и турбонагнетателя.

5 и 6 Чтобы гарантировать, что каждый насос будет работать с максимальной отдачей и заявленным потенциалом, они помещаются внутри симулятора Common Rail Engine и испытательного стенда, разработанного Fleece Performance. Используя блок управления двигателем LBZ Duramax и форсунки с форсунками FPE 60%, они могут потребовать
времени основного впрыска, используемого в приложениях с высокой мощностью, чтобы воссоздать реальные условия, и проверить работу насосов, чтобы гарантировать, что падение давления в рампе останется в прошлом.

Q: Когда стандартный CP3 OEM начинает ослабевать и не может поддерживать давление в рампе и / или выходит из строя, каковы преимущества использования модифицированного CP3K по сравнению с полностью замененным насосом?
A: Fleece Performance CP3K — это совершенно новый насос Bosch, модифицированный для устранения заводского ограничения расхода топлива, которое начинается при 3000 об / мин. Штатный CP3 начнет терять расход топлива и давление в рампе после 3000 об / мин. Это уменьшение расхода и давления будет коррелировать с потерей мощности, когда вам это может понадобиться больше всего.Этот CP3K представляет собой экономичную модернизацию, которая позволит вам поддерживать желаемое давление в топливной рампе до красной линии.

В: Какова продолжительность основного впрыска?
A: Продолжительность основного впрыска — это время, в течение которого форсунка включается или находится под напряжением. Измеряемый в микросекундах (мкс), его иногда называют шириной импульса. По сути, это команда компьютера, сообщающая форсунке, как долго она должна быть открыта, и впрыскивать топливо в цилиндр.

Q: Форсунки какого размера можно использовать с каждым из ваших вариантов модернизации CP3?
A: Размер инжектора должен зависеть от желаемой мощности в лошадиных силах: грузовик использует общие возможности настройки.Заданная длительность или настройка основного впрыска в конечном итоге определяет, какой размер форсунки будет поддерживать CP3. Наш PowerFlo 750 без проблем будет поддерживать наш инжектор мощностью 100 л.с. при 2600 мкс, что дает более 750 об / ч (при условии, что у вас есть поддерживающие модификации и турбокомпрессор для его поддержки). Некоторые клиенты даже видели 800 об / ч с меньшей продолжительностью работы и большими форсунками на 68-миллиметровом турбокомпрессоре Fleece.

7 ТНВД PowerFlo 750 стали самым популярным предметом на рынке Fleece Performance.8 Испытательный стенд CP3 — бесценное оборудование для обработки данных, отвечающее высочайшим стандартам качества. Благодаря подъемному насосу Airdog 150, подающему давление топлива к CP3, и использованию комплектного блока управления двигателем LBZ и форсунок, испытания на этом стенде максимально приближены к реальному миру.9 ТНВД Fleece CP3K и PowerFlo 750 доступны с 2001 г. Грузовики 2010 года в качестве прямой замены насосов OEM. Поскольку регулятор модели LBZ обеспечивает лучшую общую производительность по сравнению с CP3, они используются на всех модифицированных насосах, поэтому грузовикам LB7 и LLY могут потребоваться индивидуальные настройки для обеспечения надлежащего холостого хода и качества работы.10 Комплект для переоборудования Fleece LML CP3 включает в себя все необходимое для переоборудования грузовиков с CP4 2011–2015 гг. На высокопроизводительный ТНВД CP3. Если переоборудовать грузовики более поздних моделей обратно на более ранние модели CP3, цель в 750 лошадиных сил больше не будет проблемой.

Q: CP3 использовался в Duramax 2001-2010 гг. Почему в приложении LML 2011-2015 гг. Произошел большой переход от GM к более новому насосу CP4?
A: CP4 был представлен в основном для снижения стоимости платформы LML.Благодаря более эффективным пьезоэлектрическим инжекторам требуется меньшее количество топлива для удовлетворения заводских требований к мощности / крутящему моменту, поэтому CP3 не нужен.

В: Если LML требует меньшего расхода топлива, по каким причинам компания Fleece разработала комплект для переоборудования CP3 для грузовиков 2011-2015 годов?
A: К сожалению, с момента своего появления насос CP4 оказался менее надежным и менее функциональным, чем система CP3, использовавшаяся на предыдущих платформах Duramax.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *