Стабилизатор напряжения с 12 вольт на 5: Стабилизатор напряжения 5 Вольт купить

Содержание

Как понизить напряжение с 12 на 5 вольт (резистор, микросхема) ?

 В этой статье расскажу о весьма банальных вещах, что не менялись уже не одно десятилетие, да они вообще не менялись. Другое дело, что с тех пор как был изучен принцип снижения напряжения в замкнутой цепи за счет сопротивления, появились и другие принципы питания нагрузки, за счет ШИМ, но тема это отдельная, хотя и заслуживающая внимания. Поэтому продолжу все-таки по порядку логического русла, когда расскажу о законе Ома, потом о его применении для различных радиоэлементов участвующих в понижении напряжения, а после уже можно упомянуть и о ШИМ.

Закон Ома при понижении напряжения

 Собственно был такой дядька Георг Ом, который изучал протекание тока в цепи. Производил измерения, делал определенные выводы и заключения. Итогами его работы стала формула Ома, как говорят закон Ома. Закон описывает зависимость падения напряжения, тока от сопротивления.
Сам закон весьма понятен и схож с представлением таких физических событий как протекание жидкости по трубопроводу.

Где жидкость, а вернее ее расход это ток, а ее давление это напряжение. Ну и само собой любые изменения сечения или препятствия в трубе для потока, это будет сопротивлением. Итого получается, что сопротивление «душит» давление, когда из трубы под давлением, могут просто капать капли, и тут же падает и расход. Давление и расход величины весьма зависящие друг от друга, как ток и напряжение. В общем если все записать формулой, то получается так:

R=U/I; То есть давление (U) прямо пропорционально сопротивлению в трубе (R), но если расход (I) будет большой, то значит сопротивления как такового нет… И увеличенный расход должен показывать на пониженное сопротивление.

 Весьма туманно, но объективно! Осталось сказать, что закон то этот впрочем, был получен эмпирическим путем, то есть окончательные факторы его изменения весьма не определены.
Теперь вооружившись теоретическими знаниями, продолжим наш путь в познании того, как же снизить нам напряжение.

Как понизить напряжение с 12 на 5 вольт с помощью резистора

 Самое простое это взять и использовать нестабилизированную схему. То есть когда напряжение просто понизим за счет сопротивления и все. Рассказывать о таком принципе особо нечего, просто считаем по формуле выше и все. Приведу пример. Скажем снижаем с 12 вольт до 5.

R=U/I. С напряжением понятно, однако смотрите, у нас недостаточно данных! Ничего не известно о «расходе», о токе потребления. То есть если вы решите посчитать сопротивление для понижения напряжения, то обязательно надо знать, сколько же «хочет кушать» наша нагрузка.

Эту величину вам необходимо будет посмотреть на приборе, который вы собираетесь питать или в инструкции к нему. Примем условно ток потребления 50 мА=0,05 А. Осталось также еще заметить, что по этой формуле мы подберем сопротивление, которое будет полностью гасить напряжение, а нам надо оставить 5 вольт, то 12-5=7 вольт подставляем в формулу.


R= 7/0,05=140 Ом нужно сопротивление, чтобы после из 12 вольт получить 5, с током на нагрузке в 50 мА.
 Осталось упомянуть о не менее важном! О том, что любое гашение энергии, а в данном случае напряжение, связано с рассеиваемой мощностью, то есть наш резистор должен будет «выдержать» то тепло, которое будет рассеивать. Мощность резистора считается по формуле.
P=U*I. Получаем. P=7*0,05=0,35 Вт должна быть мощность резистора. Не менее. Вот теперь курс расчет для резистора можно считать завершенным.

Как понизить напряжение с 12 на 5 вольт с помощью микросхемы

 Ничего принципиально не меняется и в этом случае. Если сравнивать этот вариант понижения через микросхему, с вариантом использующим резистор. По факту здесь все один в один, разве что добавляются полезные «интеллектуальные» особенности подстройки внутреннего сопротивления микросхемы исходя из тока потребления. То есть, как мы поняли из абзаца выше, в зависимости от тока потребления, расчетное сопротивление должно «плавать». Именно это и происходит в микросхеме, когда сопротивление подстраивается под нагрузку таким образом, что на выходе микросхемы всегда одно и тоже напряжение питания! Ну и плюсом идут такие «полезные плюшки» как защита от перегрева и короткого замыкания. Что касательно микросхем, так называемых стабилизаторов напряжения на 5 вольт, то это могут быть: LM7805, КРЕН142ЕН5А. Подключение тоже весьма простое.

Само собой для эффективной работы микросхемы ставим ее на радиатор. Ток стабилизации ограничен 1,5 -2 А.
Вот такие вот принципы понижения напряжения с 12 на 5 вольт. Теперь один раз их поняв, вы сможете легко рассчитать какое сопротивление надо поставить или как подобрать микросхему, чтобы получить любое другое более низкое напряжение.
Осталось сказать пару слов о ШИМ.

 Широко импульсная модуляция весьма перспективный и самое главное высокоэффективный метод питания нагрузки, но опять же со своими подводными камнями. Вся суть ШИМ сводится к тому, чтобы выдавать импульсами такое напряжение питание, которое суммарно с моментами отсутствия напряжения будет давать мощность и среднее напряжение достаточное для работы нагрузки. И здесь могут быть проблемы, если подключить источник питания от одного устройства к другому. Ну, самые простые проблемы это отсутствие тех характеристик, которые заявлены. Возможны помехи, неустойчивая работа. В худшем случае ШИМ источник питания может и вовсе сжечь прибор, под которые не предназначен изначально!

РадиоДом — Сайт радиолюбителей

Стабилизатор напряжения КР142ЕН12А (LM317T) имеет полную защиту от перегрузок, включающую внутрисхемное ограничение по току, защиту от перегрева и защиту выходного транзистора. Максимальное напряжение на входе не может превышать 40 вольт.

Добавлено: 01.04.2018 | Просмотров: 8250 | Стабилизатор напряжения

Не всегда в распоряжении радиолюбителя оказываются нужные микросхемы, и тогда на помощь приходит схема на отечественном составном транзисторе, проверенная многолетней практикой. Переменное напряжение с вторичной обмотки трансформатора выпрямляется диодным мостом VD1—VD4, фильтруется конденсатором С1 и поступает на компенсационный стабилизатор напряжения Rl, VD5, C1.

Добавлено: 24.03.2018 | Просмотров: 13042 | Стабилизатор напряжения

В статье описывается простая схема стабилизатора напряжения от 0 до 12 вольт и током нагрузки до 1,5 ампера. Прибор пригодится для получения точного стабилизированного напряжения для самых различных опытов, неплохо будет установить цифровым вольтметром и амперметром, которых полно в радиолюбительских магазинах.

Добавлено: 21.02.2018 | Просмотров: 8025 | Стабилизатор напряжения

Стабилизатор обеспечивает на выходе два напряжения: 5 вольт, при токе 0,75 ампер; 12 вольт при токе около 200 мА. Основное напряжение, формируемое импульсным стабилизатором, является напряжение +5 вольт. Второе напряжение получается за счёт автотрансформаторного включения обмотки II трансформатора Т1.

Добавлено: 17.02.2018 | Просмотров: 2741 | Стабилизатор напряжения

Схема мощного стабилизатора, обеспечивающих ток нагрузки до 5 Ампер. Что очень подходит для питания фабричных и самодельных бытовых конструкции. Когда нагрузка на устройстве малая, транзистор VT1 закрыт и работает только микросхема, но как нагрузочный ток будет увеличиваться, то напряжение, выделяемое на R2 и VD5, открывается транзистор VT1, и основная часть тока нагрузки начинает проходить через него. 

Добавлено: 25.12.2016 | Просмотров: 20562 | Стабилизатор напряжения

В некоторых радиолюбительских конструкциях требуются маломощные стабилизаторы, потребляющие в режиме стабилизации микроамперы. Ниже приведена принципиальная схема такого стабилизатора с внутренним током потребления всего 10 мкА и током стабилизации 100 мА.

Добавлено: 24.12.2016 | Просмотров: 4676 | Стабилизатор напряжения

LM1578A, LM2578A, LM3578A — могут работать в качестве импульсного понижающего стабилизатора, импульсного повышающего стабилизатора, инверсного стабилизатора. Ниже представлены несколько наиболее популярных схем включения импульсного стабилизатора.

Добавлено: 22.12.2016 | Просмотров: 3455 | Стабилизатор напряжения

Представлены две принципиальные схемы простых стабилизаторов на 5 вольт. Напряжение переменной сети 220 вольт пониженное трансформатором Т1 до 9…10 вольт через выпрямительный диодный мост подается на стабилизатор напряжения.

Добавлено: 11.12.2016 | Просмотров: 9090 | Стабилизатор напряжения

Регулируемый импульсный стабилизатор напряжения LM2576 имеет довольно широкий диапазон регулируемого выходного напряжения от 1,2 вольт до 50 вольт с нагрузкой на выходе до 3 ампер.

Добавлено: 29.09.2016 | Просмотров: 4954 | Стабилизатор напряжения

Энергия , запасенная в катушке, питает нагрузку. Когда напряжение на С4 падает ниже напряжения стабилизации, открывается DA1 и ключевой транзистор. Каждый цикл повторяется с частотой 20000-30000 герц.

Добавлено: 06.05.2016 | Просмотров: 3888 | Стабилизатор напряжения

Микросхемные стабилизаторы фиксированного напряжения постоянного тока КР142ЕН8А—КР142ЕН8Е, КР142ЕН5А— КР142ЕН5Г были популярны в радиолюбительских и промышленных конструкциях 10—25 лет назад. Сейчас эти стабилизаторы устарели, уступив место экономичным импульсным или линейным с малым собственным падением напряжения.

Добавлено: 23.04.2016 | Просмотров: 6134 | Стабилизатор напряжения

Стабилизаторы напряжения или как получить 3,3 вольта — Академия робототехники

 

Исходные данные:  мотор-редуктор рабочее напряжение у которого 5 Вольт при токе 1 А и микроконтроллер ESP-8266 с чувствительным на изменение рабочим напряжением питания 3,3 Вольт и с пиковым током до 600 миллиампер. Все это необходимо учесть и запитать от одной аккумуляторной литий-ионной батареи 18650 напряжением 2,8 -4,2 Вольт.

Собираем схему приведенную ниже:  аккумулятор литий-ионный 18650 напряжением 2,8 — 4,2 Вольт без внутренней схемы зарядного устройства  -> присоединяем  модуль на микросхеме TP4056 предназначенный для зарядки литий-ионных аккумуляторов с функцией ограничения разряда аккумулятора до 2,8 Вольт и защитой от короткого замыкания (не забываем что этот модуль запускается при включенном аккумуляторе и кратковременной подачи питания 5 Вольт на вход модуля от USB зарядного устройства, это позволяет не использовать выключатель питания, ток разряда в ждущем режиме не очень большой и при долгом не использования всего устройства оно само выключиться при падении напряжения на аккумуляторе ниже 2,8 Вольт)

К модулю TP4056  подключаем модуль на микросхеме  MT3608  — повышающий DC-DC (постоянного в постоянный ток) стабилизатор и преобразователь напряжения с 2,8 -4,2 Вольт аккумулятора до стабильных 5 Вольт 2 Ампера — питания мотор-редуктора.

Параллельно к выходу модуля MT3608 подключаем понижающий DC-DC стабилизатор-преобразователь на микросхеме MP1584 EN предназначенный для стабильного питания 3,3 Вольта 1 Ампер микропроцессора ESP8266.

Стабильная работа ESP8266 очень зависит от стабильности напряжения питания. Перед подключением последовательно модулей DC-DC стабилизаторов-преобразователей не забудьте настроить переменными сопротивлениями нужное напряжение, поставьте конденсатор параллельно клеммам мотор-редуктора что бы тот не создавал высокочастотных помех работе микропроцессору ESP8266.

 

Как видим из показаний мультиметра при присоединении мотор-редуктора напряжение питания микроконтроллера ESP8266 НЕ ИЗМЕНИЛОСЬ!

 

Небольшой обзор стабилизаторов напряжения и тока


Зачем нужен СТАБИЛИЗАТОР НАПРЯЖЕНИЯ. Как использовать стабилизаторы напряжения

Знакомство со стабилитронами, расчет параметрического стабилизатора; использование интегральных стабилизаторов; конструкция простого тестера стабилитронов и другое.AMS1117 Технический паспорт

НаименованиеRT9013
Richtek технологии 
ОписаниеСтабилизатор-преобразователь на нагрузку с током потребления 500мА, с малым падением напряжения, низким уровенем собственных шумов, сверхбыстродействующий, с защитой выхода по току и от короткого замыкания, CMOS LDO.  
RT9013 PDF Технический паспорт (datasheet) :

 

*Описание MP1584EN

**Приобрести можно в магазине Your  Cee

MP2307N

*Приобрести можно в магазине Your  Cee

НаименованиеLM2596
Во-первых компонентов Международной 
ОписаниеПростой понижающий стабилизатор-преобразователь питания 3A с внутренней частотой 150 кГц 
LM2596 Технический паспорт PDF (datasheet) :
НаименованиеMC34063A
Крыло Шинг International Group 
ОписаниеDC-DC управляемый преобразователь
MC34063A Технический паспорт PDF (datasheet) :
ОПИСАНИЕ
MC34063A представляет собой монолитную схему управления , содержащую основные функции , необходимые для преобразователей постоянного тока в постоянный ток.
ОСОБЕННОСТИ
Работа от  0.3 Вольт до 40Вольт.
Низкое потребление в режиме ожидания.
Выходная защита по току до 1.5A.
Регулируемая рабочая частота до 42kHz.
Точность 2% от заданного значения.Применение: DC-DC преобразователь

 

НаименованиеXL6009
XLSEMI 
Описание4A, 400kHz, входное напряжение 5~32V / выходное напряжение 5~35V, коммутируемый повышающий преобразователь DC / DC
XL6009 Технический паспорт PDF (datasheet) :

Готовый модуль повышающего преобразователя напряжения XL6009

 

Общее описание
XL6009 является повышающим преобразователем постоянного в постоянный ток с широким диапазоном входного напряжением,  который способен генерировать положительное или отрицательное выходное напряжение. Повышающий DC / DC конвертер  XL6009 служит для поднятия напряжения. Используется при подаче питания к ESP8266, Arduino и других микроконтроллеров от аккумулятора или блока питания с низким напряжением. А также для питания подключенных сенсорных и исполнительных модулей  к ESP8266, Arduino и другим микроконтроллерам  работающих от напряжения  выше 3.3 Вольт прямо от источника питания самого контроллера.Характеристики:
  • Входное напряжение 5~32V
  • Выходное напряжение 5~35V
  • Входной ток 4А (макс), 18мА без нагрузки
  • Конверсионная эфективность более 94%
  • Частота 400кГц
  • Габариты 43x14x21мм

Таблица характеристик при различных напряжениях:

Входное, VВыходное, Vсила тока, Aмощность,Вт
5120,89,6
7,4121,518
1215230
1216232
12181,628,8
12191,528,5
1224124
3120,44,8

 

Повышающий преобразователь напряжения XL6009 (Видео)

http://dwiglo.ru/mp2307dn-PDF.html

Китайские стабилизаторы для самоделкиных. Часть 1.

Китайские стабилизаторы для самоделкиных. Часть 2.

Китайские стабилизаторы для самоделкиных. Часть 3.

 

 

Как сделать из 12 вольт 3.7 вольта. Как получить нестандартное напряжение. Повышающий преобразователь напряжения

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.

Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Вариант №1

Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

Вариант №2

На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .

U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

Вариант №3

Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

Итак, схему в студию!


Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


Итак, что на выходе?


Почти 5.7 Вольт;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

С помощью данного преобразователя напряжения можно получить 220 вольт от аккумуляторной батареи, напряжением 3.7 вольт. Схема не сложная и все детали доступы, этим преобразователям можно запитать энергосберегающую или светодиодную лампу. К сожалению более мощные приборы подключить не получится, так как преобразователь маломощный и больших нагрузок не выдержит.

Итак, для сборки преобразователя нам понадобится:
  • Трансформатор от старого зарядного устройства для телефона.
  • Транзистор 882P или его отечественные аналоги КТ815, КТ817.
  • Диод IN5398, аналог КД226 или вообще любой другой рассчитанный на обратный ток до 10 вольт средней или большой мощности.
  • Резистор (сопротивление) на 1 кОм.
  • Макетная плата.

Еще естественно понадобится паяльник с припоем и флюсом, кусачки, провода и мульти метр (тестер). Можно конечно изготовить и печатную плату, но для схемы из нескольких деталей не стоит тратить время на разработку разводки дорожек их прорисовку и травление фольгированного текстолита или гетинакса. Проверяем трансформатор. Плата старого зарядного устройства.

Аккуратно выпаиваем трансформатор.

Дальше нам надо проверить трансформатор и найти выводы его обмоток. Берем мультиметр, переключаем его в режим омметра. По очереди проверяем все выводы, находим те которые парой «звонятся» и записываем их сопротивления.1. Первая 0,7 Ом.

2. Вторая 1,3 Ом.

3. Третья 6,2 Ом.

Та обмотка, у которой наибольшее сопротивление была первичной, на нее подавалось 220 В. В нашем устройстве она будет вторичной, то есть выходом. С остальных снималось пониженное напряжение. У нас они будут служить как первичная (та, которая с сопротивлением 0,7 ом) и часть генератора (с сопротивлением 1,3). Результаты замеров у разных трансформаторов могут отличаться, нужно ориентироваться на их соотношение между собой.

Схема устройства

Как видите она простейшая. Для удобства мы пометили сопротивления обмоток. Трансформатор не может преобразовывать постоянный ток. Поэтому на транзисторе и одной из его обмоток собран генератор. Он подает пульсирующее напряжение от входа (батареи) на первичную обмотку, напряжение около 220 вольт снимается с вторичной.

Собираем преобразователь

Берем макетную плату.

Устанавливаем трансформатор на нее. Выбираем резистор в 1 килоом. Вставляем его в отверстия платы, рядом с трансформатором. Загибаем выводы резистора так чтобы соединить их с соответствующими контактами трансформатора. Припаиваем его. Удобно при этом закрепить плату в каком ни будь зажиме, как на фото, чтобы не возникала проблема недостающей «третьей руки». Припаянный резистор. Лишнюю длину вывода обкусываем. Плата с обкусанными выводами резистора. Дальше берем транзистор. Устанавливаем его на плату с другой стороны трансформатора, так как на скриншоте (расположения деталей я подобрал так, чтобы было удобнее их соединять согласно принципиальной схеме). Изгибаем выводы транзистора. Припаиваем их. Установленный транзистор. Берем диод. Устанавливаем его на плату параллельно транзистору. Припаиваем. Наша схема готова.

Припаиваем провода для подключения постоянного напряжения (DC input). И провода для съема пульсирующего высокого напряжения (AC output).

Для удобства провода на 220 вольт берем с «крокодилами».

Наше устройство готово.

Тестируем преобразователь

Для того чтобы подать напряжение выбираем аккумулятор на 3-4 вольта. Хотя можно использовать и любой другой источник питания.

Припаиваем провода входа низкого напряжения к нему, соблюдая полярность. Замеряем напряжение на выходе нашего устройства. Получается 215 вольт.

Внимание. Не желательно прикасаться к деталям при подключенном питании. Это не столь опасно, если у вас нет проблем со здоровьем, особенно с сердцем (хотя две сотни вольт, но ток слабый), но неприятно «пощипать» может.Завершаем тестирование, подключив люминесцентную энергосберегающую лампу на 220 вольт. Благодаря «крокодилам» это несложно сделать без паяльника. Как видите, лампа горит.

Наше устройство готово.Совет.Увеличить мощность преобразователя можно установив транзистор на радиатор.Правда емкости аккумулятора хватит не на долго. Если вы собираетесь постоянно использовать преобразователь, то выберите более емкую батарею и сделайте для него корпус.

kavmaster.ru

Светодиод 3 вольта

Светодиоды разного цвета имеют свою рабочую зону напряжения. Если мы видим светодиод на 3 вольта, то он может давать белый, голубой или зеленый свет. Напрямую подключать его к источнику питания, который генерирует более 3 вольт нельзя.

Расчет сопротивления резистора

Чтобы понизить напряжение на светодиоде, в цепь перед ним последовательно включают резистор. Основная задача электрика или любителя будет заключаться в том, чтобы правильно подобрать сопротивление.

В этом нет особой сложности. Главное, знать электрические параметры светодиодной лампочки, вспомнить закон Ома и определение мощности тока.

R=Uна резисторе/Iсветодиода

Iсветодиода – это допустимый ток для светодиода. Он обязательно указывается в характеристиках прибора вместе с прямым падением напряжения. Нельзя, чтобы ток, проходящий по цепи, превысил допустимую величину. Это может вывести светодиодный прибор из строя.

Зачастую на готовых к использованию светодиодных приборах пишут мощность (Вт) и напряжение или ток. Но зная две из этих характеристик, всегда можно найти третью. Самые простые осветительные приборы потребляют мощность порядка 0,06 Вт.

При последовательном включении общее напряжение источника питания U складывается из Uна рез. и Uна светодиоде. Тогда Uна рез.=U-Uна светодиоде

Предположим, необходимо подключить светодиодную лампочку с прямым напряжением 3 вольта и током 20 мА к источнику питания 12 вольт. Получаем:

R=(12-3)/0,02=450 Ом.

Обычно, сопротивление берут с запасом. Для того ток умножают на коэффициент 0,75. Это равносильно умножению сопротивления на 1,33.

Следовательно, необходимо взять сопротивление 450*1,33=598,5=0,6 кОм или чуть больше.

Мощность резистора

Для определения мощности сопротивления применяется формула:

P=U²/ R= Iсветодиода*(U-Uна светодиоде)

В нашем случае: P=0,02*(12-3)=0,18 Вт

Такой мощности резисторы не выпускаются, поэтому необходимо брать ближайший к нему элемент с большим значением, а именно 0,25 ватта. Если у вас нет резистора мощность 0,25 Вт, то можно включить параллельно два сопротивления меньшей мощности.

Количество светодиодов в гирлянде

Аналогичным образом рассчитывается резистор, если в цепь последовательно включено несколько светодиодов на 3 вольта. В этом случае от общего напряжения вычитается сумма напряжений всех лампочек.

Все светодиоды для гирлянды из нескольких лампочек следует брать одинаковыми, чтобы через цепь проходил постоянный одинаковый ток.

Максимальное количество лампочек можно узнать, если разделить U сети на U одного светодиода и на коэффициент запаса 1,15.

N=12:3:1,15=3,48

К источнику в 12 вольт можно спокойно подключить 3 излучающих свет полупроводника с напряжением 3 вольта и получить яркое свечение каждого из них.

Мощность такой гирлянды довольно маленькая. В этом и заключается преимущество светодиодных лампочек. Даже большая гирлянда будет потреблять у вас минимум энергии. Этим с успехом пользуются дизайнеры, украшая интерьеры, делая подсветку мебели и техники.

На сегодняшний день выпускаются сверхяркие модели с напряжением 3 вольта и повышенным допустимым током. Мощность каждого из них достигает 1 Вт и более, и применение у таких моделей уже несколько иное. Светодиод, потребляющий 1-2 Вт, применяют в модулях для прожекторов, фонарей, фар и рабочего освещения помещений.

Примером может служить продукция компании CREE, которая предлагает светодиодные продукты мощностью 1 Вт, 3Вт и т. д. Они созданы по технологиям, которые открывают новые возможности в этой отрасли.

le-diod.ru

Модуль питания DC-DC, расширяющий возможности платы Arduino Pro mini.Я решил уменьшить габариты и стоимость своей домашней метеостанции на GY-BMP280-3.3 и Ds18b20.

Подумав, я пришел к выводу, что самой дорогой и объёмной частью метеостанции является плата Arduino Uno. Самым дешевым вариантом замены может стать плата Arduino Pro Mini. Плата Arduino Pro Mini производится в четырех вариантах. Для решения моей задачи подходит вариант с микроконтроллером Mega328P и напряжением питания 5 вольт. Но есть еще вариант на напряжение 3,3 вольта. Чем эти варианты отличаются? Давайте разберемся. Дело в том, что на платах Arduino Pro Mini устанавливается экономичный стабилизатор напряжения. Например такой, как MIC5205 c выходным напряжением 5 вольт. Эти 5 вольт подаются на вывод Vcc платы Arduino Pro Mini, поэтому и плата будет называться «плата Arduino Pro Mini с напряжением питания 5 вольт». А если вместо микросхемы MIC5205 будет поставлена другая микросхема с выходным напряжением 3,3 вольта, то плата будет называться «плата Arduino Pro Mini с напряжением питания 3,3 вольт»


Плата Arduino Pro Mini может получать энергию от внешнего нестабилизированного блока питания с напряжением до 12 вольт. Это питание должно подаваться на вывод RAW платы Arduino Pro Mini. Но, ознакомившись с даташитом (техническим документом) на микросхему MIC5205, я увидел, что диапазон питания, подаваемого на плату Arduino Pro Mini, может быть шире. Если, конечно, на плате стоит именно микросхема MIC5205.

Даташит на микросхема MIC5205:


Входное напряжение, подаваемое на микросхему MIC5205, может быть от 2,5 вольт до 16 вольт. При этом на выходе схемы стандартного включения должно быть напряжение около 5 вольт без заявленной точности в 1%. Если воспользоваться сведениями из даташита: VIN = VOUT + 1V to 16V (Vвходное = Vвыходное + 1V to 16V) и приняв Vвыходное за 5 вольт, мы получим то, что напряжение питания платы Arduino Pro Mini, подаваемое на вывод RAW, может быть от 6 вольт до 16 вольт при точности в 1%.

Даташит на микросхему MIC5205:Для питания платы GY-BMP280-3.3 для измерения барометрического давления и температуры я хочу применить модуль с микросхемой AMS1117-3.3. Микросхема AMS1117 — это линейный стабилизатор напряжения с малым падением напряжения.Фото модуль с микросхемой AMS1117-3.3:


Даташиты на микросхему AMS1117:Схема модуля с микросхемой AMS1117-3.3:
Я указал на схеме модуля с микросхемой AMS1117-3.3 входное напряжение от 6,5 вольт до 12 вольт, основывая это документацией на микросхему AMS1117.
Продавец указывает входное напряжение от 4,5 вольт до 7 вольт. Самое интересное, что другой продавец на Aliexpress.com указывает другой диапазон напряжений — от 4,2 вольт до 10 вольт.
В чем же дело? Я думаю, что производители впаивают во входные цепи конденсаторы с максимально допустимым напряжением меньшим, чем позволяют параметры микросхемы — 7 вольт, 10 вольт. И, может быть, даже ставят бракованные микросхемы с ограниченным диапазоном питающих напряжений. Что произойдет, если на купленную мной плату с микросхемой AMS1117-3.3, подать напряжение 12 вольт, я не знаю.Возможно для повышения надежности китайской платы с микросхемой AMS1117-3.3 надо будет поменять керамические конденсаторы на электролитические танталовые конденсаторы. Такую схему включения рекомендует производитель микросхем AMS1117А минский завод УП «Завод ТРАНЗИСТОР».
Даташит на микросхему AMS1117А:Удачных покупок!

Стоимость: ~23

Подробнее на Aliexpress

usamodelkina.ru

как сделать в авто с 12 вольт на 3 вольта?

погасить сопротивлением. Вначале переменным резистором, затем, замерив полученное, можно вставлять постоянное.

Схема электродвигатель-генератор.

Поставить стабилизатор на 3 вольта импортную кренку

Я бы просто спаял простейший стабилизатор напряжения: мощный проходной транзистор (например, КТ-805), стабилитрон (если не найдёте на нужное напряжение, то ставите любой другой, делитель и повторитель на транзисторе меньшей мощности) , резистор и парочка электролитических конденсаторов. (Вот типовая схема, электролитические конденсаторы не показаны) . А можно идти по другому пути: в компьютерных магазинах продают преобразователи, втыкаемые в гнездо прикуривателя, на выходе — различные напряжения, как больше, так и меньше 12 вольт (такие приборы используют, например, для питания нетбуков от бортсети) . Не знаю, правда, бывает ли на выходе 3 вольта.

touch.otvet.mail.ru

Делаем DC-DC преобразователь 12>3 Вольт своими руками

DC-DC преобразователь 12>3 Вольт, был создан для запитки маломощных плееров с питанием от двух пальчиковых батареек. Поскольку плееры были предназначены для работы в автомобиле, а бортовая сеть автомобиля доставляет 12 Вольт, то каким-то образом нужно было понизить напряжения до номинала 3-4 Вольт. Недолго думая, решил изготовить самый простой понижающий преобразователь, если представленное устройство вообще можно назвать преобразователем. Конструкция DC-DC преобразователя довольно проста и основана на явлении спада напряжения, которое проходит через кристалл полупроводникового диода.

При заведенном двигателе автомобиля, напряжение бортовой сети повышается до 14 Вольт, это тоже нужно принять во внимание.

Как известно, проходя через полупроводниковый диод, номинал постоянного напряжения спадает в районе 0,7 Вольт. Поэтому, чтобы получить нужный спад напряжения, были использованы 12 дешевых полупроводниковых диода серии IN4007. Это обычные выпрямительные диоды с током 1 Ампер и с обратным напряжением порядка 1000 Вольт, желательно использовать именно эти диоды, поскольку они являются самым доступным и дешевым вариантом. Ни в коем случае не стоит использовать диоды с барьером Шоттки, на них спад напряжения слишком мал, следовательно, для наших целей они не подходят.

После диодов желательно поставить конденсатор (электролит 100-470мкФ) для сглаживания пульсаций и помех.

Выходное напряжение нашего «DC-DC преобразователя» составляет 3,3-3,7 Вольт, выходной ток (максимальный) до 1 Ампер. В ходе работы диоды должны чуток перегреваться, но это вполне нормально.

Весь монтаж можно выполнить на обычной макетной плате или же навесным образом, но не стоит забывать, что вибрации могут разрушить места припоев, поэтому в случае использования навесного варианта, диоды желательно приклеить друг к другу с помощью термоклея.

Аналогичным способом можно понизить напряжение бортовой сети автомобиля до 5 Вольт, для зарядки портативной цифровой электроники — планшетных компьютеров, навигаторов, GPS приемников и мобильных телефонов.

Читайте так-же:
Преобразователь напряжения с 12 В на 220 В / 50 Гц
Повышающий преобразователь напряжения.
Питание цифрового фотоаппарата от внешнего аккумулятора
Автомобильное зарядное usb

acule.ru


Ремонт усилителя воспроизведена плейера иностранного производства часто бывает затруднителен из-за использования в нем низковольтной микросхемы, аналог которой найти очень трудно Поэтому приходится делать новую конструкцию на транзисторах или микросхемах отечественного производства, но в этом случае радиолюбитель испытывает определенные затруднения в выборе нужной схемы с низким значением напряжения источника питания. Для примера, при повторении схем, описанных в , необходимо использовать 53 радиодетали в варианте на микросхемах или 72 радиодетали при транзисторном исполнении. Оптимальнее применить упрощенную схему . У этой схемы очевидные преимущества — один активный элемент (микросхема К157УД2), малое количество используемых деталей, достаточно хорошие характеристики. Но есть один существенный и вроде бы непреодолимый для низковольтного плейера недостаток: высокое напряжение питания микросхемы (в данном усилителе 9В). Из создавшегося положения есть выход — использовать преобразователь первичного напряжения питания плейера, обычно 3 В, во вторичное, более высокое, от которого уже и питать усилитель. В таком варианте для конструкции потребуются всего 10 элементов для преобразователя и 21 для усилителя.

Разработанный вариант преобразователя питания усилителя воспроизведения плейера (питание коллекторного электродвигателя осуществляется непосредственно от источника тока) имеет следующие технические характеристики:

Выходное напряжение, В, при выходном токе 15 мА и входном напряжении 2-3 В……………..7 — 10

Коэффициент пульсаций вторичного напряжения, %, не более……………………………………………0,001

Частота преобразования, кГц……………………………………………………………………………………………100…200

КПД, %, не менее………………………………………………………………………………………………………………… 55

Габариты, мм…………………………………………………………………………………………………………………..14х10х10

Преобразователь напряжения построен по схеме двухтактного генератора (рис. 1), что позволило получить достаточно высокий КПД. Роль переключателей выполняют транзисторы VТ1 и VТ2, которые поочередно открываются и закрываются подобно транзисторам симметричного мультивибратора. Фазировка их работы осуществлена соответствующим включением коллекторных и базовых обмоток трансформатора Т1. Делитель напряжения R2R1 обеспечивает запуск преобразователя. При включении напряжения питания падение напряжение на резисторе R2 (порядка 0,7 В) плюсом приложено к базам транзисторов и открывает их. Вследствие разброса параметров транзисторов токи коллекторов (и токи в коллекторных обмотках трансформатора Т1) не могут быть совершенно одинаковыми, а увеличение тока в одном из плеч генератора приводит к появлению положительной обратной связи на базу данного транзистора и, как следствие, лавинообразному нарастанию тока до его насыщения. При уменьшении скорости нарастания тока в коллекторной обмотке противоЭДС создает положительную связь на базу транзистора другого плеча, ток коллектора в первом плече спадает и лавинообразно увеличивается в цепи коллектора и обмотке другого транзистора. Таким образом, в магни-топроводе трансформатора наводится переменный во времени магнитный поток, который будет создавать во вторичной обмотке (выводы 7-8) ЭДС. Диодный мост VD1 — VD4 переменное напряжение преобразует в пульсирующее, а его сглаживание осуществляется элементами цепи питания усилителя воспроизведения. В устройстве преобразователя конденсатор С1 повышает надежность процесса самовозбуждения.

В конструкции применены самые распространенные транзисторы КТ315, причем можно взять транзисторы с любым буквенным индексом и параметром h 21Э >50. Однако не следует выбирать транзисторы с слишком большим h 21Э, так как при этом падает экономичность устройства. Использование других транзисторов (кроме КТ373Г) нежелательно, так как напряжение насыщения перехода коллектор-эмиттер рекомендованных транзисторов составляет всего 0,4 В, и они обладают небольшими габаритами. Резисторы и конденсатор любые малогабаритные. Тарнсформатор выполнен на кольцевом магнитопроводе К7Х4Х2 из феррита марок 600НН, 400НН. Коллекторная обмотка намотана в два провода (диаметром 0,2 мм) и содержит 11 витков, а базовая (тоже в два провода диаметром 0,13 мм) имеет 17 витков. Вторичная (выходная) обмотка содержит 51 виток провода диаметром 0,13 мм. Намотка производится внавал проводом ПЭВ или ПЭЛ. Вместо диодов КД522Б можно использовать германиевые малогабаритные диоды, при соответствующем изменении числа витков трансформатора. Это даже приведет к повышению КПД преобразователя на 10-15 %. Если в преобразователе применить двухполупериод-ную схему выпрямления с выводом от средней точки вторичной обмотки, то это позволит уменьшить число диодов на два и дополнительно повысить КПД, так как последовательно с нагрузкой (усилителем) будет включен один выпрямляющий диод вместо двух. При этом необходимо произвести перерасчет преобразователя.

Монтаж преобразователя — любой, его детали можно расположить на одной плате с деталями усилителя или оформить в виде отдельного блока. В авторской конструкции был использован второй вариант (рис. 2). Детали преобразователя склеены между собой в объемную конструкцию, состоящую из трех слоев. Слой первый — конденсатор С1 и резисторы R1, R2. Второй — трансформатор и диодный мост, спаянный из VD1- VD4. Третий — транзисторы VТ1, VТ2, спаянные между собой выводами эмиттеров. Перед установкой транзисторов для уменьшения габаритов блока их следует сточить с боков до длины 7 мм. Выводы трансформатора припаяны прямо к выводам деталей. Остальные соединения сделаны тонкими проводниками. После этого следует припаять входные и выходные проводники и проверить работоспособность блока. При использовании исправных элементов и правильно выполненном монтаже конструкция сразу заработает. Если этого не произошло, то надо проверить правильность подключения обмоток трансформатора. После этого всю конструкцию следует залить эпоксидной смолой. Полностью изготовленный и проверенный на работоспособность блок помещают в коробочку из тонкой бумаги, предварительно в ней сделать отверстия для выводов и заполнить объем компаундом.

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.

Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Вариант №1

Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

Вариант №2

На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .

U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

Вариант №3

Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

Итак, схему в студию!


Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


Итак, что на выходе?


Почти 5.7 Вольт;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

DC-DC преобразователь 12>3 Вольт, был создан для запитки маломощных плееров с питанием от двух пальчиковых батареек. Поскольку плееры были предназначены для работы в автомобиле, а бортовая сеть автомобиля доставляет 12 Вольт, то каким-то образом нужно было понизить напряжения до номинала 3-4 Вольт.

При заведенном двигателе автомобиля, напряжение бортовой сети повышается до 14 Вольт, это тоже нужно принять во внимание.

Недолго думая, решил изготовить самый простой понижающий преобразователь, если представленное устройство вообще можно назвать преобразователем. Конструкция DC-DC преобразователя довольно проста и основана на явлении спада напряжения, которое проходит через кристалл полупроводникового диода. Как известно, проходя через полупроводниковый диод, номинал постоянного напряжения спадает в районе 0,7 Вольт. Поэтому, чтобы получить нужный спад напряжения, были использованы 12 дешевых полупроводниковых диода серии IN4007. Это обычные выпрямительные диоды с током 1 Ампер и с обратным напряжением порядка 1000 Вольт, желательно использовать именно эти диоды, поскольку они являются самым доступным и дешевым вариантом. Ни в коем случае не стоит использовать диоды с барьером Шоттки , на них спад напряжения слишком мал, следовательно, для наших целей они не подходят.


После диодов желательно поставить конденсатор (электролит 100-470мкФ) для сглаживания пульсаций и помех.

Выходное напряжение нашего «DC-DC преобразователя» составляет 3,3-3,7 Вольт, выходной ток (максимальный) до 1 Ампер. В ходе работы диоды должны чуток перегреваться, но это вполне нормально.


Весь монтаж можно выполнить на обычной макетной плате или же навесным образом, но не стоит забывать, что вибрации могут разрушить места припоев, поэтому в случае использования навесного варианта, диоды желательно приклеить друг к другу с помощью термоклея.


Аналогичным способом можно понизить напряжение бортовой сети автомобиля до 5 Вольт, для зарядки портативной цифровой электроники — планшетных компьютеров, навигаторов, GPS приемников и мобильных телефонов.

Стабилизатор 7812 — технические параметры

Этот стабилизатор размещен в корпусе  ТО – 220, имеющем три вывода. Он способен стабилизировать напряжение 12 вольт, что дает возможность применять его в разных электронных приборах.

Технические данные:

  • Тип выхода – постоянный.
  • Ток выхода – 1 ампер.
  • Наименьшая температура работы — 0 градусов.
  • Наибольшая рабочая температура — 125 градусов.
  • Число выводов – 3.
  • Номинальное напряжение – 12 вольт.
  • Наименьшее напряжение входа – 14,5 вольт.
  • Наибольшее напряжение входа – 27 вольт.
  • Тип корпуса – ТО – 220 АВ.

Чаще всего такие стабилизаторы используются в какой-то одной части схемы в том случае, когда нет смысла для создания целого блока питания устройств. В стабилизаторе 7812 используется внутренняя токовая защита от перегрева. Это делает блок на его базе очень надежным. При хорошем охлаждении радиатором, устройство стабилизации 7812 способен выдать ток 1 ампер. Наибольшее напряжение входа должно равняться не ниже 14,8 В и не выше 35 В.

Такие стабилизаторы создавались для источников определенного постоянного напряжения 12 В, с использованием дополнительных элементов можно переделать эти устройства в стабилизированные источники тока с возможностью регулировки.

 

Цоколевка стабилизатора.

Схема действия стабилизатора, подходящая для всех микросхем этого типа:

Трехвыводные стабилизаторы

Для многих неответственных использований оптимальным выбором будет обычный 3-выводный стабилизатор. У него имеется всего 3 наружных вывода. Он имеет заводскую настройку на фиксированное напряжение. Серия 7800 – это представители стабилизаторов этого типа. В последних двух цифрах указывается напряжение. Об одном из этой серии, мы уже рассказывали ранее (7805)

На рисунке изображено, как просто выполнить стабилизатор, к примеру, на 5 вольт, применив одну схему. Емкость, подключенная параллельно выходу, оптимизирует процессы перехода и задерживает сопротивление выхода на низком уровне при повышенных частотах. Если прибор находится далеко от фильтра, то нужно использовать вспомогательный конденсатор входа. Серия 7800 производится в металлических и пластиковых корпусах.

lm7812 стабилизатор 12 В

Стабилизатор напряжения 7812 изменяет напряжение величиной до 20 В в 12 В. Этот прибор часто использовался для создания стабильного напряжения работы устройств низкого напряжения: усилителя звука, микроконтроллеров, осветительных ламп.

На входной каскад можно подключить нестабильную величину напряжения, и даже переменное значение. LM 7812 является стабилизатором, входящим в серию микросхем 78хх. Они отличаются лишь напряжением выхода, остальные параметры остаются прежними.

Для лучшего отвода тепла прикрепляют охлаждающий радиатор к корпусу стабилизатора. Его можно снять от старых устройств с платы. Вместо радиатора можно использовать жесть от банок, нарезав ее полосками, и просверлив в них отверстия для крепления на винт.

Блок питания 12В 5А | joyta.ru

Эта схема мощного блока питания на 12 вольт вырабатывает ток нагрузки до 5 ампер. В схеме блока питания применен трех выводной интегральный стабилизатор LM338.

Краткая характеристика Lm338:

  • Uвход: от 3 до 35 В.
  • Uвыход: от 1,2 до 32 В.
  • Iвых.: 5 А (max)
  • Рабочая температура: от 0 до 125 гр. C 

Блок питания 12В 5А на интегральной микросхеме LM338

Напряжение от сети поступает к понижающему трансформатору через плавкий предохранитель FU1 на 7А. Варистор V1 на 240 вольт, используется для защиты схемы блока питания от выбросов напряжения в электросети. Трансформатор Tр1 понижающий с напряжение на вторичной обмотке не ниже 15 вольт с током нагрузки не менее 5 ампер.

Пониженное напряжение с вторичной обмотки поступает на диодный мост, состоящий из четырех выпрямительных диодов VD1-VD4. На выходе диодного моста установлен электролитический конденсатор С1 предназначенный для сглаживания пульсаций выпрямленного напряжения.  Диоды VD5 и VD6 используются в качестве устройств защиты для предотвращения разряда конденсаторов C2 и C3 от незначительного тока утечки в регуляторе LM338. Конденсатор С4 используется для фильтрации высокочастотной составляющей блока питания.

Для нормальной работы блока питания на 12В, стабилизатор напряжения LM338 необходимо установить на радиатор. Вместо выпрямительных диодов VD1-VD4 можно использовать выпрямительную сборку на ток не менее 5 ампер, например, KBU810.

Блок питания на 12 вольт на стабилизаторе 7812

Следующая схема мощного блока питания на 12 вольт и 5 ампер нагрузки построена на интегральном линейном стабилизаторе напряжения 7812. Поскольку допустимый максимальный ток нагрузки данного стабилизатора ограничивается 1,5 ампер, в схему блока питания добавлен силовой транзистор VT1. Этот транзистор известен как обходной внешний транзистор.

Если ток нагрузки будет менее 600 мА, то он будет протекать через стабилизатор 7812. Если ток превысит 600 мА, то на резисторе R1 будет напряжение более 0,6 вольта, в результате чего силовой транзистор VT1 начинает проводить через себя дополнительный ток к нагрузке. Резистор R2 ограничивает чрезмерный базовый ток.

Силовой транзистор в данной схеме необходимо разместить на хорошем радиаторе. Минимальное входное напряжение должно быть на несколько вольт выше, чем напряжение на выходе регулятора. Резистор R1 должен быть рассчитан на 7 Вт. Резистор R2 может иметь мощность 0,5 Вт.

HILDA — электрическая дрель-гравер

Многофункциональный электрический инструмент способн…

Стабилизатор напряжения с 12 на 3 вольта. Блок питания. Расчет сопротивления резистора

Метеостанции на .

Подумав, я пришел к выводу, что самой дорогой и объёмной частью метеостанции является плата Arduino Uno. Самым дешевым вариантом замены может стать плата Arduino Pro Mini. Плата Arduino Pro Mini производится в четырех вариантах. Для решения моей задачи подходит вариант с микроконтроллером Mega328P и напряжением питания 5 вольт. Но есть еще вариант на напряжение 3,3 вольта. Чем эти варианты отличаются? Давайте разберемся. Дело в том, что на платах Arduino Pro Mini устанавливается экономичный стабилизатор напряжения. Например такой, как MIC5205 c выходным напряжением 5 вольт. Эти 5 вольт подаются на вывод Vcc платы Arduino Pro Mini, поэтому и плата будет называться «плата Arduino Pro Mini с напряжением питания 5 вольт». А если вместо микросхемы MIC5205 будет поставлена другая микросхема с выходным напряжением 3,3 вольта, то плата будет называться «плата Arduino Pro Mini с напряжением питания 3,3 вольт»

Плата Arduino Pro Mini может получать энергию от внешнего нестабилизированного блока питания с напряжением до 12 вольт. Это питание должно подаваться на вывод RAW платы Arduino Pro Mini. Но, ознакомившись с даташитом (техническим документом) на микросхему MIC5205, я увидел, что диапазон питания, подаваемого на плату Arduino Pro Mini, может быть шире. Если, конечно, на плате стоит именно микросхема MIC5205.

Даташит на микросхема MIC5205:


Входное напряжение, подаваемое на микросхему MIC5205, может быть от 2,5 вольт до 16 вольт. При этом на выходе схемы стандартного включения должно быть напряжение около 5 вольт без заявленной точности в 1%. Если воспользоваться сведениями из даташита: VIN = VOUT + 1V to 16V (Vвходное = Vвыходное + 1V to 16V) и приняв Vвыходное за 5 вольт, мы получим то, что напряжение питания платы Arduino Pro Mini, подаваемое на вывод RAW, может быть от 6 вольт до 16 вольт при точности в 1%.

Даташит на микросхему MIC5205:
Для питания платы GY-BMP280-3.3 для измерения барометрического давления и температуры я хочу применить модуль с микросхемой AMS1117-3.3. Микросхема AMS1117 — это линейный стабилизатор напряжения с малым падением напряжения.
Фото модуль с микросхемой AMS1117-3.3:


Даташиты на микросхему AMS1117:
Схема модуля с микросхемой AMS1117-3.3:


Я указал на схеме модуля с микросхемой AMS1117-3.3 входное напряжение от 6,5 вольт до 12 вольт, основывая это документацией на микросхему AMS1117.


Продавец указывает входное напряжение от 4,5 вольт до 7 вольт. Самое интересное, что другой продавец на Aliexpress.com указывает другой диапазон напряжений — от 4,2 вольт до 10 вольт.


В чем же дело? Я думаю, что производители впаивают во входные цепи конденсаторы с максимально допустимым напряжением меньшим, чем позволяют параметры микросхемы — 7 вольт, 10 вольт. И, может быть, даже ставят бракованные микросхемы с ограниченным диапазоном питающих напряжений. Что произойдет, если на купленную мной плату с микросхемой AMS1117-3.3, подать напряжение 12 вольт, я не знаю.
Возможно для повышения надежности китайской платы с микросхемой AMS1117-3.3 надо будет поменять керамические конденсаторы на электролитические танталовые конденсаторы. Такую схему включения рекомендует производитель микросхем AMS1117А минский завод УП «Завод ТРАНЗИСТОР».

Исходные данные: мотор-редуктор рабочее напряжение у которого 5 Вольт при токе 1 А и микроконтроллер ESP-8266 с чувствительным на изменение рабочим напряжением питания 3,3 Вольт и с пиковым током до 600 миллиампер. Все это необходимо учесть и запитать от одной аккумуляторной литий-ионной батареи 18650 напряжением 2,8 -4,2 Вольт.

Собираем схему приведенную ниже: аккумулятор литий-ионный 18650 напряжением 2К,8 -4,2 Вольт без внутренней схемы зарядного устройства -> присоединяем модуль на микросхеме TP4056 предназначенный для зарядки литий-ионных аккумуляторов с функцией ограничения разряда аккумулятора до 2,8 Вольт и защитой от короткого замыкания (не забываем что этот модуль запускается при включенном аккумуляторе и кратковременной подачи питания 5 Вольт на вход модуля от USB зарядного устройства, это позволяет не использовать выключатель питания, ток разряда в ждущем режиме не очень большой и при долгом не использования всего устройства оно само выключиться при падении напряжения на аккумуляторе ниже 2,8 Вольт)

К модулю TP4056 подключаем модуль на микросхеме MT3608 — повышающий DC-DC (постоянного в постоянный ток) стабилизатор и преобразователь напряжения с 2,8 -4,2 Вольт аккумулятора до стабильных 5 Вольт 2 Ампера — питания мотор-редуктора.

Параллельно к выходу модуля MT3608 подключаем понижающий DC-DC стабилизатор-преобразователь на микросхеме MP1584 EN предназначенный для стабильного питания 3,3 Вольта 1 Ампер микропроцессора ESP8266.

Стабильная работа ESP8266 очень зависит от стабильности напряжения питания. Перед подключением последовательно модулей DC-DC стабилизаторов-преобразователей не забудьте настроить переменными сопротивлениями нужное напряжение, поставьте конденсатор параллельно клеммам мотор-редуктора что бы тот не создавал высокочастотных помех работе микропроцессору ESP8266.

Как видим из показаний мультиметра при присоединении мотор-редуктора напряжение питания микроконтроллера ESP8266 НЕ ИЗМЕНИЛОСЬ!


Зачем нужен СТАБИЛИЗАТОР НАПРЯЖЕНИЯ. Как использовать стабилизаторы напряжения

Знакомство со стабилитронами, расчет параметрического стабилизатора; использование интегральных стабилизаторов; конструкция простого тестера стабилитронов и другое.

НаименованиеAMS1117
Kexin Промышленные
ОписаниеЛинейный регулятор напряжения DC-DC с малым внутренним падением напряжения, выход 800мА, 3.3В, SOT-223

С управляемым или фиксированным режимом регулирования

AMS1117 Технический паспорт PDF (datasheet) :

Характеристики:
— максимальная стабилизация при полной нагрузке по току;
— быстрая переходная характеристика;
— защита по выходу при превышении тока нагрузки;
— встроенная тепловая защита;
— низкий уровень шума
— регулируемое или фиксированное напряжение 1.5 Вольт, 1.8 Вольт, 2.5 Вольт, 1.9 Вольт, 3.3 Вольт, 5 Вольт.
Наименование
Richtek технологии
ОписаниеСтабилизатор-преобразователь на нагрузку с током потребления 500мА, с малым падением напряжения, низким уровенем собственных шумов, сверхбыстродействующий, с защитой выхода по току и от короткого замыкания, CMOS LDO .
RT9013 PDF Технический паспорт (datasheet) :
Наименование
Монолитные Power Systems
Описание3А, 1.5MHz, 28В Step-Down конвертер
(datasheet) :

**Приобрести можно в магазине Your Cee

Наименование
Монолитные Power Systems
Описание3A, от 4.75 Вольт до 23 Вольт, 340KHz, понижающий преобразователь
MP2307 Спецификация PDF (datasheet) :

Image Info: MP2307

MP2307 представляет собой монолитный синхронный понижающий стабилизатор-преобразователь DC-DC (постоянный в постоянный) . Устройство объединяет 100 миллионов МОП-транзисторов, которые обеспечивают 3A постоянного тока нагрузки в широком рабочем входном напряжении от 4.75 Вольт до 23 Вольт. Регулируемый плавный пуск предотвращает броски тока при включении/отключении, ток питания ниже 1 мкА. Это устройство, доступный в SOIC корпусе с 8 выводами, обеспечивает очень компактное решение системы с минимальной зависимостью от внешних компонентов.

1. Термостойкий 8-контактный SOIC корпус.

2. 3A — непрерывный выходной ток 4A — пиковый выходной ток.

3. Широкий диапазон рабочего входного напряжении от 4.75 Вольт до 23 Вольт.

*Приобрести можно в магазине Your Cee

Наименование
Во-первых компонентов Международной
ОписаниеПростой понижающий стабилизатор-преобразователь питания 3A с внутренней частотой 150 кГц
LM2596 Технический паспорт PDF (datasheet) :
НаименованиеMC34063A
Крыло Шинг International Group
ОписаниеDC-DC управляемый преобразователь
MC34063A Технический паспорт PDF (datasheet) :

Светодиоды разного цвета имеют свою рабочую зону напряжения. Если мы видим светодиод на 3 вольта, то он может давать белый, голубой или зеленый свет. Напрямую подключать его к источнику питания, который генерирует более 3 вольт нельзя.

Расчет сопротивления резистора

Чтобы понизить напряжение на светодиоде, в цепь перед ним последовательно включают резистор. Основная задача электрика или любителя будет заключаться в том, чтобы правильно подобрать сопротивление.

В этом нет особой сложности. Главное, знать электрические параметры светодиодной лампочки, вспомнить закон Ома и определение мощности тока.

R=Uна резисторе/Iсветодиода

Iсветодиода – это допустимый ток для светодиода. Он обязательно указывается в характеристиках прибора вместе с прямым падением напряжения. Нельзя, чтобы ток, проходящий по цепи, превысил допустимую величину. Это может вывести светодиодный прибор из строя.

Зачастую на готовых к использованию светодиодных приборах пишут мощность (Вт) и напряжение или ток. Но зная две из этих характеристик, всегда можно найти третью. Самые простые осветительные приборы потребляют мощность порядка 0,06 Вт.

При последовательном включении общее напряжение источника питания U складывается из Uна рез. и Uна светодиоде. Тогда Uна рез.=U-Uна светодиоде

Предположим, необходимо подключить светодиодную лампочку с прямым напряжением 3 вольта и током 20 мА к источнику питания 12 вольт. Получаем:

R=(12-3)/0,02=450 Ом.

Обычно, сопротивление берут с запасом. Для того ток умножают на коэффициент 0,75. Это равносильно умножению сопротивления на 1,33.

Следовательно, необходимо взять сопротивление 450*1,33=598,5=0,6 кОм или чуть больше.

Мощность резистора

Для определения мощности сопротивления применяется формула:

P=U²/ R= Iсветодиода*(U-Uна светодиоде)

В нашем случае: P=0,02*(12-3)=0,18 Вт

Такой мощности резисторы не выпускаются, поэтому необходимо брать ближайший к нему элемент с большим значением, а именно 0,25 ватта. Если у вас нет резистора мощность 0,25 Вт, то можно включить параллельно два сопротивления меньшей мощности.

Количество светодиодов в гирлянде

Аналогичным образом рассчитывается резистор, если в цепь последовательно включено несколько светодиодов на 3 вольта. В этом случае от общего напряжения вычитается сумма напряжений всех лампочек.

Все светодиоды для гирлянды из нескольких лампочек следует брать одинаковыми, чтобы через цепь проходил постоянный одинаковый ток.

Максимальное количество лампочек можно узнать, если разделить U сети на U одного светодиода и на коэффициент запаса 1,15.

N=12:3:1,15=3,48

К источнику в 12 вольт можно спокойно подключить 3 излучающих свет полупроводника с напряжением 3 вольта и получить яркое свечение каждого из них.

Мощность такой гирлянды довольно маленькая. В этом и заключается преимущество светодиодных лампочек. Даже большая гирлянда будет потреблять у вас минимум энергии. Этим с успехом пользуются дизайнеры, украшая интерьеры, делая подсветку мебели и техники.

На сегодняшний день выпускаются сверхяркие модели с напряжением 3 вольта и повышенным допустимым током. Мощность каждого из них достигает 1 Вт и более, и применение у таких моделей уже несколько иное. Светодиод, потребляющий 1-2 Вт, применяют в модулях для прожекторов, фонарей, фар и рабочего освещения помещений.

Примером может служить продукция компании CREE, которая предлагает светодиодные продукты мощностью 1 Вт, 3Вт и т. д. Они созданы по технологиям, которые открывают новые возможности в этой отрасли.

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.

Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Вариант №1

Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

Вариант №2

На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .

U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

Вариант №3

Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

Итак, схему в студию!


Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


Итак, что на выходе?


Почти 5.7 Вольт;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

Доступность и относительно невысокие цены на сверхъяркие светодиоды (LED) позволяют использовать их в различных любительских устройствах. Начинающие радиолюбители, впервые применяющие LED в своих конструкциях, часто задаются вопросом, как подключить светодиод к батарейке? Прочтя этот материал, читатель узнает, как зажечь светодиод практически от любой батарейки, какие схемы подключения LED можно использовать в том или ином случае, как выполнить расчет элементов схемы.

В принципе, просто зажечь светодиод, можно от любой батарейки. Разработанные радиолюбителями и профессионалами электронные схемы позволяют успешно справиться с этой задачей. Другое дело, сколько времени будет непрерывно работать схема с конкретным светодиодом (светодиодами) и конкретной батарейкой или батарейками.

Для оценки этого времени следует знать, что одной из основных характеристик любых батарей, будь то химический элемент или аккумулятор, является емкость. Емкость батареи – С выражается в ампер-часах. Например, емкость распространенных пальчиковых батареек формата ААА, в зависимости от типа и производителя, может составлять от 0.5 до 2.5 ампер-часов. В свою очередь светоизлучающие диоды характеризуются рабочим током, который может составлять десятки и сотни миллиампер. Таким образом, приблизительно рассчитать, на сколько хватит батареи, можно по формуле:

T= (C*U бат)/(U раб. led *I раб. led)

В данной формуле в числителе стоит работа, которую может совершить батарея, а в знаменателе мощность, которую потребляет светоизлучающий диод. Формула не учитывает КПД конкретно схемы и того факта, что полностью использовать всю емкость батареи крайне проблематично.

При конструировании приборов с батарейным питанием обычно стараются, чтобы их ток потребления не превышал 10 – 30% емкости батареи. Руководствуясь этим соображением и приведенной выше формулой можно оценить сколько нужно батареек данной емкости для питания того или иного светодиода.

Как подключить от пальчиковой батарейки АА 1,5В

К сожалению, не существует простого способа запитать светодиод от одной пальчиковой батарейки. Дело в том, что рабочее напряжение светоизлучающих диодов обычно превышает 1.5 В. Для эта величина лежит в диапазоне 3.2 – 3.4В. Поэтому для питания светодиода от одной батарейки потребуется собрать преобразователь напряжения. Ниже приведена схема простого преобразователя напряжения на двух транзисторах с помощью которого можно питать 1 – 2 сверхъярких LED с рабочим током 20 миллиампер.

Данный преобразователь представляет собой блокинг-генератор, собранный на транзисторе VT2, трансформаторе Т1 и резисторе R1. Блокинг-генератор вырабатывает импульсы напряжения, которые в несколько раз превышают напряжение источника питания. Диод VD1 выпрямляет эти импульсы. Дроссель L1, конденсаторы C2 и С3 являются элементами сглаживающего фильтра.

Транзистор VT1, резистор R2 и стабилитрон VD2 являются элементами стабилизатора напряжения. Когда напряжение на конденсаторе С2 превысит 3.3 В, стабилитрон открывается и на резисторе R2 создается падение напряжения. Одновременно откроется первый транзистор и запирет VT2, блокинг-генератор прекратит работу. Тем самым достигается стабилизация выходного напряжения преобразователя на уровне 3.3 В.

В качестве VD1 лучше использовать диоды Шоттки, которые имеют малое падение напряжения в открытом состоянии.

Трансформатор Т1 можно намотать на кольце из феррита марки 2000НН. Диаметр кольца может быть 7 – 15 мм. В качестве сердечника можно использовать кольца от преобразователей энергосберегающих лампочек, катушек фильтров компьютерных блоков питания и т. д. Обмотки выполняют эмалированным проводом диаметром 0.3 мм по 25 витков каждая.

Данную схему можно безболезненно упростить, исключив элементы стабилизации. В принципе схема может обойтись и без дросселя и одного из конденсаторов С2 или С3 . Упрощенную схему может собрать своими руками даже начинающий радиолюбитель.

Cхема хороша еще тем, что будет непрерывно работать, пока напряжение источника питания не снизится до 0.8 В.

Как подключить от 3В батарейки

Подключить сверхъяркий светодиод к батарее 3 В можно не используя никаких дополнительных деталей. Так как рабочее напряжение светодиода несколько больше 3 В, то светодиод будет светить не в полную силу. Иногда это может быть даже полезным. Например, используя светодиод с выключателем и дисковый аккумулятор на 3 В (в народе называемая таблеткой), применяемый в материнских платах компьютера, можно сделать небольшой брелок-фонарик. Такой миниатюрный фонарик может пригодиться в разных ситуациях.

От такой батарейки — таблетки на 3 Вольта можно запитать светодиод

Используя пару батареек 1.5 В и покупной или самодельный преобразователь для питания одного или нескольких LED, можно изготовить более серьезную конструкцию. Схема одного из подобных преобразователей (бустеров) изображена на рисунке.

Бустер на основе микросхемы LM3410 и нескольких навесных элементов имеет следующие характеристики:

  • входное напряжение 2.7 – 5.5 В.
  • максимальный выходной ток до 2.4 А.
  • количество подключаемых LED от 1 до 5.
  • частота преобразования от 0.8 до 1.6 МГц.

Выходной ток преобразователя можно регулировать, изменяя сопротивление измерительного резистора R1. Несмотря на то, что из технической документации следует, что микросхема рассчитана на подключение 5-ти светодиодов, на самом деле к ней можно подключать и 6. Это обусловлено тем, что максимальное выходное напряжение чипа 24 В. Еще LM3410 позволяет свечения светодиодов (диммирование). Для этих целей служит четвертый вывод микросхемы (DIMM). Диммирование можно осуществлять, изменяя входной ток этого вывода.

Как подключить от 9В батарейки Крона

«Крона» имеет относительно небольшую емкость и не очень подходит для питания мощных светодиодов. Максимальный ток такой батареи не должен превышать 30 – 40 мА. Поэтому к ней лучше подключить 3 последовательно соединенных светоизлучающих диода с рабочим током 20 мА. Они, как и в случае подключения к батарейке 3 вольта не будут светить в полную силу, но зато, батарея прослужит дольше.

Схема питания от батарейки крона

В одном материале трудно осветить все многообразие способов подключения светодиодов к батареям с различным напряжением и емкостью. Мы постарались рассказать о самых надежных и простых конструкциях. Надеемся, что этот материал будет полезен как начинающим, так и более опытным радиолюбителям.

Преобразователь 12В в 5В | Понизить регулятор постоянного тока можно разными способами.

Если вы ищете источник питания 5 В постоянного тока для цифровой схемы. Но у вас есть источник 12В, аккумулятор. Я покажу вам понижающий стабилизатор преобразователя с 12 В на 5 В.

Во многом это зависит от имеющихся у вас деталей и другой пригодности.

Как выбрать преобразователь 5В

Мы должны использовать подходящую схему. Как? Экономия самая лучшая. Я использую эти рекомендации.

  • Экономьте деньги — если он есть в моем магазине, это очень хорошо.Кроме того, сэкономьте время на покупке, а не на долгое ожидание.
  • Простота сборки — простые и отработанные схемы всегда хорошо.
  • Маленький размер — у некоторых проектов ограниченное пространство.

Сначала посмотрите на нагрузку!

Предположим, что нагрузка потребляет ток около 30 мА. Вы должны использовать преобразователь 5 В на 60 мА. Для этого случая достаточно. Когда ток небольшой, его легко построить. Кроме того, экономьте энергию.

Не следует использовать большую цепь источника тока 1А. Это похоже на езду на слоне, чтобы поймать кузнечика.Что это расточительно и ненужно.

Например, схемы

  • Токовый выход 3A — если у вас есть нагрузка, которая использует ток более 2A. Например, цифровая камера, GPS, Raspberry Pi, Arduino и другие.
  • Ниже 50 мА — Малая цепь, например, цифровая КМОП
  • Как преобразовать 12 В постоянного тока в 5 В постоянного тока 1 А
  • Схема преобразователя 12 В в 5 В 2 А

Стабилитрон 5 В — ниже 50 мА

Некоторые схемы потребляют ток от 20 мА до 50 мА (0.05A) только. Можно схему стабилизатора напряжения на стабилитроне.


Стабилитрон поддерживает фиксированное напряжение 5 В. Ему нужен резистор, чтобы ограничить ток и нагрузку.

Как рассчитать прибор

Запитать его от источника 12 В. Вы снова смотрите на схему. Есть три тока.

  • IZ = Максимальный ток стабилитрона
  • IR = Ток через R1
  • IL = Максимальный ток нагрузки

IR является постоянным в любое время.Даже IL изменится с 0 мА до запланированного максимального значения (50 мА). IZ нужно изменить, чтобы напряжение на выходе оставалось 5В.

Во-первых, используйте стабилитрон 5 В, потому что нам нужно 5 В, VZ. Тогда IR составляет около 50 мА.

R1 = (Vin — VZ) / IR
= (12 В — 5 В) / 50 мА
= 140 Ом
или около 150 Ом .

PR — Мощность R1.
PR = VR x IR
= 7 В x 50 мА
= 0,35 Вт или используйте 0,5 Вт.

Но мы забываем, мощность стабилитрона, PZ
PZ = VZ x IZ
Примечание: IZ составляет около IR, 50 мА.

PZ = 5 В x 50 мА
PZ = 0,25 Вт
Итак, мы используем стабилитрон 5 В 0,5 Вт .

Кроме того, C1 — это конденсатор фильтра для сглаживания постоянного напряжения.

100mA 5V схема преобразователя

В цифровых схемах, которые имеют много частей. Они могут использовать ток более 100 мА, но ниже 300 мА.

Мы можем использовать много схем. В предыдущей схеме он имеет слабый ток. Если хочешь 100мА. Вам нужно использовать стабилитрон с низким сопротивлением (R1) и большей мощностью.

Это лучшая идея.Если добавить в схему транзистор. Это увеличит более высокий ток больше. Но выходное напряжение составляет всего 4,4 В. Из-за некоторого падения напряжения на BE транзистора Q1 0,6В.

Нужно поменять стабилитрон 5,6В. Если у тебя его нет. Вы можете добавить диод и стабилитрон последовательно. Вы можете получить их как стабилитрон на 5,6 В.

Так как транзистор хорош для увеличения тока. Итак, мы можем изменить R1 на 1 кОм, как показано на схеме ниже. Для уменьшения тока смещения стабилитрон и база Q1.

200 мА, регулятор 5 В

Регулятор напряжения серии транзисторов 5 В

Если вы используете 2N2222 вместо BC548. Он может использовать 200 мА при нагрузке. Потому что 2N2222 имеет токоприемник (Ic) около 0,8А в таблице данных. Но в реальном использовании он может использовать максимум 0,5 А.

500 мА, регулятор 5 В от 12 В

500 мА, транзистор 5 В и стабилизатор напряжения Зенера

Если вам нужно использовать с нагрузкой от 300 мА до 500 мА. Следует сменить транзистор на BD139.

Он имеет Ic около 2 А макс. Но я могу получить только около 0,5А. Пока работает. Может быть тепло. Так часто лучше работать с радиатором.

Конденсаторы C1, C2 используются для уменьшения пульсаций на выходе. А C3 уменьшит скачок напряжения.

Как преобразовать 12 В постоянного тока в 5 В постоянного тока 1A

Многие друзья хотят преобразовать 12 В постоянного тока в 5 В постоянного тока при 1 А. Это популярная ставка в большинстве схем.

У меня есть два варианта на выбор. Это зависит от пригодности ваших деталей и времени.

Первый, 5V 1A транзисторный регулятор . Он аналогичен приведенным выше схемам.

Я использую силовой транзистор TIP41. Потому что он может получить максимум 4А в спецификации. Но при реальном использовании он может дать мне максимум около 2А. Кроме того, его корпус выполнен из TO-220, поэтому его легко использовать с радиаторами любого размера.

Раньше мне нравилась эта схема. Если у меня есть все комплектующие в моем магазине. Я сделаю это первым.

Но в последнее время мне нравится использовать этот компонент, Регулятор 7805.

Второй, 7805 Регулятор популярный .

Это так просто, быстрее, чем другие. Потому что его корпус такой же, как у TIP41, без стабилитрона и резистора смещения.

Преобразователь 12 В в 5 В 1A с использованием 7805

Кроме того, он имеет низкий уровень пульсаций на выходе около 10 мВ, с электролитическими конденсаторами (C1, C4) на входе и выходе. И оба фильтрующих конденсатора, C2, C3, для уменьшения всплесков напряжения.

Примечание : 7805 распиновка

Так как это линейный регулятор. Так что пока работает. Напряжение на входе и выходе IC1 составляет около 7 В.

При полной нагрузке ток 1А. Таким образом, выходная мощность составляет около 7 Вт. Жарко. Надо установить его на достаточном количестве радиатора.

Преобразователь 12 В в 5 В, выход 1,5 А

Иногда нам нужен выходной ток около 1,5 А. У нас есть 3 способа сделать это.

  • Подключение 7805 параллельно
  • Аккумулятор 12 В к преобразователю постоянного тока 5 В 1,5 А
  • Транзистор более высокого тока для регулятора 7805
  • Регулятор транзистора 2 А
Подключение 7805 параллельно

Если мы подключим 7805 параллельно.Это делает более высокий ток больше. Это подходит для тех, кто поддерживает или не имеет силовых транзисторов.

Но долго не годится. Можешь попробовать!
Оба IC-7805 должны быть абсолютно одинаковыми.

Аккумулятор 12 В на преобразователь постоянного тока 5 В 1,5 А

Если нам нужно использовать регулятор напряжения 12 В на 5 В. Это схема регулятора постоянного тока 5 В 1500 мА.

Это простая схема с использованием IC-7805, фиксированного стабилизатора 5 вольт и силового транзистора TIP41-NPN для увеличения тока до 2А.

Пример эксперимента

Я использую источник питания 7805 с аккумулятором 12 В. Для снижения постоянного напряжения на 5 вольт.

Пробую использовать в нагрузке резисторы 4,7 Ом 5Вт. В качестве принципов он будет использовать ток около 5 В / 4,7 Ом = 1 А.

Я измеряю ток около 0,7 А и падение напряжения 4,9 В, но его можно использовать. Как показано на рисунке 1

Проверка чистого IC-7805 с током не более 1 А.

Требуется транзистор для увеличения выходного тока.

Использую транзистор TIP41. В принципе может подавать ток около 2А. Которого достаточно использовать.

На принципиальной схеме.

Схема простейшего регулятора 5 В, 1,5 А

Затем я тестирую цепь примерно с нагрузкой, резистором 2,4 Ом. Затем измерьте ток примерно 1,3 А, а падение напряжения составит 4,9 В. Его можно использовать как захотим.

Испытания с сильноточной нагрузкой

Продолжайте читать: Четыре небольшие схемы регулятора постоянного тока на 5 В »

Я подавал напряжение диода-1N4007, чтобы компенсировать потерю транзистора между контактом BE.

Мы вставляем светодиод 1 для индикации включения питания этой цепи, а последовательный резистор R1 используется для ограничения тока до безопасного значения.

C1, C3 — конденсаторы с фильтром для сглаживания входной и выходной последовательности постоянного тока.
C2, C4 — искровой ток шумового фильтра.

Во время работы Q1 будет очень жарко, поэтому мы должны установить его с большим радиатором.

Примечание: Имеет минусы. Если это короткое замыкание. IC-7805 может быть поврежден.

Транзистор более высокого тока для регулятора 7805

Если вы хотите, чтобы ток был больше 1 А, используйте 7805 в более чем двух схемах, указанных выше.
Требуется помощь от силового транзистора PNP со схемой ниже.

Принципиальная схема преобразователя 12В в 5В 2А

Сильный ток будет протекать через силовой транзистор Q1, TIP42. В то время как 7805 получает меньший ток. Потому что R1 снижает этот ток.

Таким образом, 7805 поддерживает фиксированное регулируемое напряжение, только 5 В. Хорошо работает без радиатора.

Пока Q1 работает. Это так жарко. Нам нужно установить его с достаточным количеством радиатора.

Если есть готовые запчасти.Этой схемой можно пользоваться долгое время.

Тогда, если вам нужен ток 3А. Просто используйте MJ2955 вместо TIP42.

Хотя эту схему можно хорошо использовать. Но минусы все же есть.
При коротком замыкании силовой транзистор может быть поврежден.

Посмотрите на ниже.

Преобразователь 12В в 5В 5А

Если вам нужен выход 5В 5А. Вы можете изменить предыдущую схему. Используйте TIP2955 вместо TIP42.

Может пропускать ток до 5А.

Или, если у вас есть другой, TIP42.Можно добавить параллельно. Выходной ток тоже будет до 5А.

Токовый выход 3А, преобразователь 5В

Это преобразователь с 12В на 5В понижающий Регулятор при нагрузке 3А.

Преобразователь 12В в 5В понижающий Регулятор

Цифровая камера также может снимать фотографии и видео. Но у него есть недостаток — долго не разряжается аккумулятор. При использовании на открытом воздухе. Нам приходилось часто подзаряжать аккумулятор. Это пустая трата времени.

При покупке дополнительных запасных аккумуляторов. Стоит дорого и все равно часто менять как то же самое.

На его боковой стороне находится разъем для подключения адаптера постоянного тока 5В, ток 2А. Если доработать свинцово-кислотный аккумулятор на 12В, чтобы снизить напряжение до 5 вольт. Это хорошая идея.

Потому что этот аккумулятор дешевле и долго используется. Например, аккумулятор 12В на 10Ач можно взять фотоаппарат на 5 часов.

Как это работает


У нас есть много способов сделать это. Но я покажу вам эту схему ниже.Мне нравится линейная схема, чем схема с переключением режимов.

В схеме много компонентов. Как указано выше, эта схема может питать ток до 3 А с увеличивающимся током Q3-MJ2955. Кроме того, в нем много интересных деталей.

При перегрузке или коротком замыкании нагрузки. Тогда напряжение на R2 составляет около 0,6 В. Итак, Q2 получает напряжение смещения, он работает. После этого VBE Q3 становится низким, Q3 работает ниже до остановки.

Пока Q1 работает для подключения тока через LED1. Это указывает на перегрузку.

Список компонентов регулятора напряжения от 12 В до 5 В

IC1: LM7805, регулятор постоянного тока 5 В IC
Q1: BC558, транзистор 40 В 0,4 А
Q2: BD140, транзистор PNP 1,5 А, 30 В
Q3: MJ2955 или TIP29 , 4A 50V PNP силовой транзистор
C1: 4700 мкФ 25V, электролитический
LED1: светодиод любого цвета по вашему усмотрению
Резисторы
R1: 330 Ом 0,25 Вт
R2: 0,22 Ом 5 ​​Вт
R3: 470 Ом 0,5 Вт
R4: 47 Ом 1 Вт
R5: 18 Ом 1 Вт
Радиатор, провода и т. Д.

Приложение


У меня старый GPS, обычно использую его в машине. Нам нужна схема преобразователя постоянного тока в постоянный, которая может снизить напряжение с 12 В до 5 В при токе более 2 А.
Какая принципиальная схема может это сделать.

Мне нравится, что нужно покупать некоторые детали, так как они есть у меня в магазинах.

Как показано на рисунке 2, я собираю их на универсальной плате

Также См. Другие в более простой схеме . Регулятор 3A 5V с использованием LM350

Простая защита от перенапряжения 5V

Обычно вы можете использовать вышеуказанную схему.Потому что это просто и недорого.

Вы просто добавляете предохранитель F1 для защиты от перегрузки более 2А. Также, если в цепи запитывается высокое напряжение более 5,1 В. Он имеет слишком много токов через ZD1 и D1 в качестве сверхтока. Так что предохранитель внезапно сгорит.

Преобразователь 12В в 5В на 2А с использованием 7805 и транзистора с защитой от перенапряжения

Источник питания 5В 2А с использованием 78S05

Другой способ, мой друг хочет схему источника питания 5В 2А . Чтобы модель была простой, используйте немного оборудования, собирайте легко.

Затем я выбрал для него эту схему.

Почему? В нем используется опорное оборудование, положительный стабилизатор напряжения 5В, / 2А в ТО220, 78S05. И мало деталей, видимых в схеме, качественная и малошумная.

Схема будет работать без дополнительных компонентов, но для защиты от обратной полярности , на входе предусмотрен диод 1N5402, дополнительное сглаживание обеспечивается за счет C1-220uF 50V.

Выходной каскад включает C2-47uF 25V для дополнительной фильтрации.

Загрузить это

Все полноразмерные изображения этого поста находятся в этой электронной книге: Elec Circuit vol. 1 ниже. Пожалуйста, поддержите меня. 🙂

Также адаптер 5 В постоянного тока

  1. Питание микропроцессорного регулятора постоянного тока 5 В 3 А от LM323K
  2. Импульсный источник питания 5 В 3 А от LM2576
  3. LM2673 -5 В 3A Регулятор напряжения переключения
  4. Верхний линейный источник питания 5V 5A с 7812 и LM723

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Pololu 12V Повышающий регулятор напряжения U3V12F12

Обзор

Эти повышающие (повышающие) регуляторы напряжения генерируют более высокое выходное напряжение при входном напряжении до 2,5 В. Они представляют собой импульсные регуляторы (также называемые импульсными источниками питания (SMPS) или преобразователями постоянного тока в постоянный) и имеют типичный КПД от 80% до 90%. Доступный выходной ток является функцией входного напряжения, выходного напряжения и КПД (см. Ниже раздел «Типичный КПД и выходной ток »), но входной ток обычно может достигать 1.4 А. Этот регулятор доступен с фиксированным выходом 5 В, 9 В или 12 В:

Доступны альтернативы с вариациями этих параметров: выходное напряжение Выбрать вариант…

Тепловое отключение регулятора предотвращает повреждение от перегрева, но не , а не , имеет защиту от короткого замыкания или обратного напряжения.

Характеристики

  • входное напряжение: 2,5 В — VOUT
  • фиксированный выход 5 В, 9 В или 12 В с точностью 4%
  • 1.Переключатель 4 А допускает входные токи до 1,4 А
  • 2 мА типичный ток покоя без нагрузки
  • встроенная защита от перегрева
  • малый размер: 0,515 ″ × 0,32 ″ × 0,1 ″ (13 × 8 × 3 мм)

Использование регулятора

Подключения

Повышающий регулятор имеет три соединения: входное напряжение (VIN), заземление (GND) и выходное напряжение (VOUT).

Входное напряжение VIN должно быть не менее 2,5 В и не должно превышать выходное напряжение VOUT.Будьте осторожны с деструктивными всплесками LC, которые могут привести к превышению входного напряжения VOUT (дополнительную информацию см. Ниже).

Три соединения обозначены на задней стороне печатной платы, и они расположены с шагом 0,1 дюйма по краю платы для совместимости с беспаечными макетными платами, разъемами и другими прототипами, использующими сетку 0,1 дюйма. Вы можете припаять провода непосредственно к плате или припаять либо прямую штыревую полоску 3 × 1, либо полоску штыревой под прямым углом 3 × 1, которая входит в комплект.

Типичный КПД и выходной ток

КПД регулятора напряжения, определяемый как (выходная мощность) / (входная мощность), является важным показателем его производительности, особенно когда речь идет о сроке службы батареи или нагреве. Как показано на графиках ниже, этот импульсный стабилизатор обычно имеет КПД от 80 до 90%.

Максимально достижимый выходной ток приблизительно пропорционален отношению входного напряжения к выходному напряжению.Если входной ток превышает предел тока переключателя (обычно где-то между 1,4 и 2 А), выходное напряжение начнет падать. Кроме того, максимальный выходной ток может зависеть от других факторов, включая температуру окружающей среды, воздушный поток и теплоотвод.

LC скачки напряжения

При подключении напряжения к электронным схемам начальный выброс тока может вызвать опасные всплески напряжения, которые намного превышают входное напряжение. В наших тестах с типичными проводами питания (тестовые зажимы ~ 30 дюймов) входное напряжение выше 10 В вызывало скачки напряжения более 20 В.Вы можете подавить такие выбросы, припаяв электролитический конденсатор емкостью 33 мкФ или больше рядом с регулятором между VIN и GND.

Дополнительную информацию о скачках напряжения LC можно найти в нашей заметке по применению «Понимание деструктивных скачков напряжения LC».

Люди часто покупают этот товар вместе с:

Эффективное преобразование 12 В постоянного тока в 5 В для маломощной электроники, оценка шести модулей

В настоящее время я работаю над проектом Arduino, устанавливаемым на автомобиле. Устройство рассчитано на постоянное питание, и я решил использовать автомобильный аккумулятор в качестве источника постоянного питания.Я проектирую устройство с низким энергопотреблением, потребляющим 50 мА или меньше, потому что кто хочет застрять с разряженной батареей, верно?

Автомобильный аккумулятор обычно обеспечивает напряжение от 7 до 15 вольт, но в некоторых стандартах упоминается, что возможны скачки напряжения 40 В. Напряжение автомобильного аккумулятора обычно составляет около 12 В, но падает до ~ 7 В, когда вы запускаете двигатель, и до ~ 14 В, когда двигатель работает и аккумулятор заряжается. Поскольку мы не хотим, чтобы наше устройство сбрасывалось во время пусков, мы хотели бы выполнить преобразование входного напряжения от 7 до 20 вольт в фиксированное выходное напряжение 5 вольт, которое ожидает Arduino Uno.

Регуляторы напряжения

На плате Arduino Uno есть стабилизатор напряжения, который мы могли бы использовать. Рекомендуется для напряжений от 7 до 12 вольт. Это означает, что нам нужно сначала снизить высокое напряжение автомобильного аккумулятора с помощью внешнего компонента, прежде чем мы сможем подключить его к плате Arduino Uno. К сожалению, одно это не решило бы наших проблем, поскольку не удовлетворило бы наши требования к эффективности.

Arduino Uno с обведенным регулятором напряжения. [Фото http: // www.electricrcaircraftguy.com]

Проблема с использованием регулятора напряжения заключается в том, что регулятор расточителен. Любое дополнительное напряжение, которое необходимо сбросить, преобразуется в тепло. Формула эффективности: eff (reg) = Vout / Vin. Стабилизатор напряжения также имеет некоторые преимущества, одно из них — стабильность, что означает, что он может поддерживать очень стабильное и точное выходное напряжение. Еще одно преимущество — компактные размеры.

Чтобы выполнить эффективное преобразование, мы должны использовать импульсный источник питания, в частности понижающий преобразователь, который будет понижать для нас напряжение.Понижающий преобразователь будет включать и выключать вход настолько быстро, насколько это необходимо для обеспечения необходимого напряжения и мощности на выходе. В оставшейся части этой статьи будут сравниваться шесть различных понижающих (понижающих) модулей. Если вы не знакомы с принципом работы понижающего преобразователя с переключением режимов, прочтите эту статью, в которой также сравниваются некоторые модули при более высоких нагрузках.

Кандидатские модули

Одна реализация, которую я рассмотрел, — это понизить напряжение батареи примерно до 7 вольт, а затем запитать Arduino через его регулятор напряжения.Преимущество заключается в более стабильном напряжении для Arduino, однако будет потеря энергии 1-eff (reg) = 1-5 / 7 = 28%. Кроме того, каждый процесс преобразования требует некоторого запаса между Vin и Vout, поэтому при наличии двух этапов нам становится трудно поддерживать нижний предел диапазона напряжения автомобильного аккумулятора, что создает потенциальные проблемы со сбросами во время запуска двигателя.

Итак, я закончил поиск модулей, которые могут работать от автомобильного аккумулятора и выдавать 5 вольт. Это может быть регулируемый модуль или фиксированный на 5 вольт.Я бы подключил эти модули к USB-порту Arduino (предпочтительнее из-за присутствующей там дополнительной защиты) или напрямую к выводу Arduino 5V. Это означает, что предпочтение отдается модулям со встроенным выходным USB-портом типа «мама», хотя адаптеры или кабели преобразователя могут компенсировать его отсутствие.

Модули

Модули, которые я тестировал, происходят с Дальнего Востока, и большинство из них были куплены на eBay по цене от 1 до 2 долларов США (включая доставку). Это означает, что у большинства из них нет четкого номера модели или названия производителя.Я придумываю короткое название для каждого модуля, чтобы я мог легко их упомянуть. Я признаю, что качество фотографий могло быть лучше. Я старался изо всех сил с имеющимся у меня оборудованием. Также обратите внимание, что каждая фотография имеет собственный масштаб. Вот модули в произвольном порядке.

Сигара

Конвертер «Сигарный»

Этот адаптер имеет штекер прикуривателя на одном конце и предназначен для подключения к гнезду прикуривателя в автомобиле. Выходной разъем — это женский USB-порт.Такие модули продаются конечным пользователям для зарядки USB-устройств в автомобиле. Я понятия не имею, где я это взял, но я нашел его в своей корзине запчастей, разобрал и использовал в этом исследовании.

Поскольку такие преобразователи продаются конечным пользователям, их списки обычно не показывают фотографии печатной платы, так что это рулетка в отношении того, какой чип и эффективность вы получаете.

Регулируемый

«Регулируемый» преобразователь, передний

«Регулируемый» преобразователь, задний

Этот адаптер продавался на eBay как «Регулируемый понижающий модуль питания DC-DC LM2596 4.От 75-24В до 0,93-18В ». На самом деле чипа LM2596 там нет, что не должно быть большим сюрпризом для покупателей eBay. Это регулируемый понижающий модуль, который отлично подходит для создания прототипов. Вы регулируете выходное напряжение с помощью многооборотного потенциометра. Входные и выходные разъемы представляют собой винтовые клеммы, и вы можете видеть, что я подключил их к цилиндрической вилке для удобства использования.

Амперметр

Преобразователь амперметра, передний

Преобразователь «Амперметр», Задний

Этот модуль продавался на eBay как «Понижающий преобразователь постоянного тока 2А постоянного напряжения с вольтметром и амперметром».Он имеет регулируемое напряжение, ток и дисплей, который может отображать входное / выходное напряжение и выходной ток. Очень хорошо для прототипирования. Для некоторых людей это может быть даже альтернативой правильному настольному источнику питания. Этот модуль имеет разъемы, аналогичные модулю «Регулируемый», метод регулировки также аналогичен.

штраф

Преобразователь «Fine», передний

Преобразователь «Fine», задний

Этот модуль от QSKJ был внесен в список «Fine 6-24V 12V / 24V to 5V 3A CAR USB Charger Module DC Buck step down Converter».Это один из самых маленьких модулей в тесте. Он явно предназначен для интеграции в другие проекты, поскольку имеет две контактные площадки для ввода. На выходе получается довольно симпатичный женский USB-порт. В листинге упоминается множество дополнительных функций, таких как новейшая схема идентификации USB, схемы защиты, сверхнизкий статический ток (0,85 мА) и многое другое.

600 мА

Преобразователь «600 мА», передний

Преобразователь «600 мА», задний

Этот модуль с пометкой «DM01» на 100% предназначен для интеграции.Входы и выходы через контактные площадки. Похоже, этот модуль также выпускается в версиях на 3,3, 9 и 12 В. Он был выставлен на продажу как «понижающий понижающий модуль постоянного / постоянного тока 600 мА с фиксированным выходным напряжением 6-55 В на 5 В». Это может быть самый маленький модуль из 6, но отсутствие порта USB делает его нечестным сравнением. Одна особенность, которая отличает этот модуль от других, участвовавших в тесте, заключается в том, что он имеет панель «EN». Вы можете управлять этим разъемом для выключения и запуска модуля при необходимости. Заявленный ток отключения составляет менее 1 мкА.Если вы просто собираетесь подключить эту площадку к «Vin +», не беспокойтесь, «ток холостого хода» этого модуля составляет всего 0,7 мА.

Precise

Преобразователь «Precise», передний

Преобразователь «Прецизионный», задний

Этот модуль имеет те же соединения, что и «Fine», но он немного больше. Он продавался как «3A DC-DC 9V / 12V / 24V to 5V USB Step Down Power Module 2A Precise Vehicle Charger».

Напряжение и ток

Вот некоторые электрические свойства 6 модулей.У меня не было свойств модуля для «Сигары», поэтому диапазоны основаны на спецификациях микросхем и могут быть лучше, чем фактические диапазоны модулей.

Модуль Входное напряжение Выходное напряжение Максимальный выходной ток Пиковый выходной ток
Сигара 3 — 40 В 5,4 — 5,5 В 1,5 А?
Регулируемый 4,75 — 24 В 0,93 — 18 В 2.5А
Амперметр 4,5 — 24 В 0,93 — 20 В 2A?
Тонкое 6 — 24 В 5,1 — 5,2 В 2,1 A 3A
600 мА 6 — 55 В 5 В 0,6 A 1 A
Precise 7,5 — 28V 5V 2A 3A

Пиковый ток означает способность обеспечивать высокий ток в течение ограниченного периода времени.Максимальный ток означает максимальный ток, который модуль может обеспечить постоянно. Имейте в виду, что в некоторых модулях упоминается, что для работы с максимальным током может потребоваться дополнительный радиатор или охлаждающее решение.

Несколько моментов, о которых стоит упомянуть: во-первых, «Сигара» с фиксированным выходным USB-разъемом выдает слишком высокое напряжение по стандартам USB. Это могло быть из-за старости или просто плохого качества. Разница составляет около 10%, и я считаю ее непригодной для использования. Во-вторых, большинство модулей способны работать с входным напряжением примерно до 25 вольт, но немногие из них могут работать с напряжением 40 вольт и выше.Престижность за это.

Характеристики коммутационной цепи

Модуль Микросхема Частота Индуктор Заявленный КПД
Сигара MC34063A
100 кГц 220 мкГн? 83% при 24 В и 500 мА
Регулируемый MP23070N 340 кГц
10 мкГн? до 98%
Амперметр MP23070N 340 кГц
10 мкГн??
Fine MP2315 (знак AGCG)
500 кГц 4.7 мкГн от 12 В до 5 В 1 А может до 94%
600 мА HT7463A (маркировка 463A)
1250 кГц
22 мкГн до 96%
Точный MP1584EN 500 кГц
15 мкГн? до 96%

Более высокая частота переключения будет означать меньшую пульсацию на выходе (более точное напряжение / ток), но вызывает больше накладных расходов из-за переключения, что немного снижает эффективность.

Рядом с некоторыми значениями индуктивности стоит знак «?». Это означает, что компонент не был отмечен, а значение было оценено на основе рекомендаций в таблице данных. Обычно для более низкой частоты требуется индуктор большего размера и большей мощности.

Тестирование

Измерение тока с обеих сторон

Сначала я измерил ток, используемый моим устройством на выходе преобразователя, который составил около 50 мА. Затем я создал фиктивную нагрузку 100 Ом, подключив два резистора по 200 Ом параллельно.Я использовал массив резисторов, чтобы уменьшить нагрузку на каждый отдельный резистор, который был рассчитан на 0,25 Вт. В соответствии с законом Ома резистор на 100 Ом будет вызывать нагрузку 50 мА при напряжении 5 вольт, аналогично тому, как это делает устройство.

Затем я измерил ток, используемый преобразователем на входе, как для нагрузки устройства, так и для фиктивной нагрузки. Я заметил, что реальная нагрузка и фиктивная нагрузка с одинаковым средним током имеют одинаковую эффективность. Разница могла возникнуть, поскольку потребляемая мощность фиктивной нагрузки является фиксированной, в то время как устройство может потреблять мощность пачками, но это не оказало существенного влияния на результаты.Я пришел к выводу, что использование фиктивных резисторов — достаточно хорошее приближение для этого теста.

Затем я сделал фиктивные нагрузки для токов 25 мА, 50 мА и 100 мА, используя 1, 2 и 4 резистора, включенных параллельно.

Измерение тока с имитацией нагрузки

Чтобы как можно меньше повлиять на измерения, я использовал амперметр на входе (последовательно) и рассчитал ток на выходе, используя закон Ома I = V / R. Таким образом, не было никакого воздействия на выходную сторону, которое могло бы добавить падение напряжения и повлиять на результаты.Напряжение V измерялось параллельно, а сопротивление R известно и зависит от фиктивной нагрузки, используемой для каждого испытания.

Блок питания для теста был на 12 В, но из-за падения напряжения на амперметре входное напряжение модулей немного ниже.

Результаты

Я рассчитал эффективность каждого модуля для каждого типа нагрузки как:

 eff = Pin / Pout = (Vin * Iin) / (Vout * Iout) 

Таблицы данных некоторых микросхем, используемых в модулях, содержат график эффективности.Эффективность зависит от напряжения и тока. Если возможно, я добавил в последний столбец перечисленную эффективность микросхемы для соответствующих Vin и Iout. У некоторых модулей есть диаграммы эффективности, которые не охватывают диапазоны малых токов, что может указывать на тип нагрузки, для которой (не) были разработаны микросхемы.

Выходной ток 25 мА

Модуль In V Out V In mA Эффективность Эффективность микросхемы
Сигара 11.82 5,46 21 60%
Регулируемый 11,63
5,08 35,65 31%
Амперметр 11,58 5,04
40,04 27%
Мелкое 11,91 5,12 13,7 80% 87%
600 мА 11,9
5.04 14,2 75% 74%
Точный 11,9
4,98 14,75 71% 75%

Выходной ток 50 мА

Модуль In V Out V In mA Эффективность Эффективность микросхемы
Сигара 11,52 5,49 38,6 68%
Регулируемый 11.45 5,08 47,44 48%
Амперметр 11,39 5,05 52,2 43%
Мелкое 11,73 5,13 26,98 83% 89%
600 мА 11,72 5,01 26,66 80% 86%
Точный 11,72 4,98 27.3 78% 77,5%

Выходной ток 100 мА

Модуль In V Out V In mA Эффективность Эффективность микросхемы
Сигара 11,15 5,54 76,3 72%
Регулируемый 11,22 5,08 79,8 58%
Амперметр 11.18 5,04 76,1 60%
Мелкое 11,41 5,12 54,6 84% 91%
600 мА 11,46 4,9 51 82% 88%
Точный 11,38 4,96 53,5 81% 82%

Заключение

Различия могут быть значительными, как показано выше.При тесте с наименьшей нагрузкой (25 мА) худший исполнитель потребляет в 3 раза больше энергии, чем лучший.

Различия в эффективности между модулями становятся более тонкими по мере увеличения нагрузки: 2x для 50 мА и 1,5x для 100 мА.

Входные напряжения разные. Более высокий ток на входе означает большее падение напряжения на амперметре, что приводит к более низкому входному напряжению по сравнению с выходным напряжением источника питания.

Указанный КПД микросхемы находится в пределах 5-10% от измеренного КПД модуля. Дельта может быть связана с неэффективностью самого модуля или с различиями в общих условиях (температура и т. Д.).

И победитель: «Отлично»! Этот модуль явно лучше всего подходит для сценариев с низким энергопотреблением. При достижении токов 100 мА различия между 3 ведущими модулями минимальны.

Чем «Fine» лучше других? Это относительно новая микросхема. Таблица относится к 2014 году, а MP2307 — с 2008 года. Он также имеет очень низкие значения Rds (on) (90 мОм / 40 мОм), но, что наиболее интересно, MP2315 имеет режим энергосбережения AAM (Advanced Asynchronous Modulation) для легкая нагрузка.

Расширенная асинхронная модуляция (AAM) — это запатентованная технология MPS. Используя эту технологию, ИС будет снижать свою частоту при обнаружении низких нагрузок, тем самым уменьшая накладные расходы на переключение, но потенциально вызывая нестабильность и колебания. Значение резистора на выводе AAM определяет, когда начать это поведение. Не стесняйтесь поправлять меня в комментариях, если я неправильно это объясняю.

В заключение, если вам нужен эффективный модуль для легких нагрузок, вы можете попробовать этот модуль от QSKJ с чипом MPS MP2315, помеченным как AGCx (я видел, как AGCG или AGCE используются специально).Если у вас есть другие рекомендации, поделитесь ими в комментариях ниже. Удачного проекта!

12V 5 Amp Fixed Voltage Regulator IC 78h22A Datasheet

В сообщении объясняются технические характеристики, таблица данных и примечания по применению IC 78h22A, которая представляет собой микросхему стабилизатора напряжения, способную обеспечивать фиксированный стабилизированный выход 12 В при максимальном токе 5 А.

Характеристики регулятора на 5 ампер

Мы знакомы с популярными микросхемами 78XX, такими как 7812 IC, которые могут выдавать на выходе фиксированное напряжение 12 В с входными источниками от 15 до 24 В.

Однако вышеуказанное устройство способно выдерживать ток не более 1 А, что может быть недостаточно для многих стандартных приложений.

Для схем, требующих тока до 5 ампер, может быть выбрана альтернатива с более высоким номиналом в виде IC 78h22A, которая очень похожа на своего младшего брата 7812, но способна выдерживать ток до 5 ампер.

Основные технические характеристики или лист данных этой IC 78h22A можно изучить со следующим пояснением:

78h22A — это трехконтактный линейный стабилизатор положительного напряжения IC, рассчитанный на непрерывную подачу тока около 5 ампер при типичном фиксированном напряжении 12 вольт при напряжении. его выход.

ИС имеет полную внутреннюю защиту от коротких замыканий или перегрузок на выходе, что делает ее очень прочной и универсальной.

В случае короткого замыкания или перегрузки на своих выходных клеммах устройство мгновенно отключает подачу питания на свои выходные провода, тем самым предотвращая любую возможность поражения электрическим током. Ситуация также защищает ИС от повреждения.

Вышеупомянутая функция обеспечивает безопасную работу подключенной электроники, а также позволяет избежать включения внешних цепей безопасности, снижая стоимость и количество компонентов для всей конфигурации.

Устройство выпускается в герметичном металлическом корпусе ТО-3, что позволяет легко установить радиатор для повышения эффективности и работы устройства.

Основные технические характеристики ИС

Основные характеристики ИС можно резюмировать следующим образом:

  1. Выходное напряжение: 12 В, фиксированное, регулируемое
  2. Выходной ток: максимум 5 А
  3. Защита: Встроенная защита от короткого замыкания и защита от перегрузки.
  4. Рассеиваемая мощность: 12 x 5 = 50-60 ампер Приблизительно
  5. Корпус: металлический корпус TO-3
Выводы IC 78h22A

На рисунке ниже показаны детали распиновки IC 78h22A, если устройство удерживается с контактами к нам и с большей плоской частью области вверх, правый контакт является входом, левый контакт является выходом, а корпус становится землей IC.

Замечания по применению

IC 78h22A принципиально подходит для всех применений электронных схем, где требуется постоянное напряжение 12 В и с требованиями до 5 А, например, для управления двигателями постоянного тока 12 В, для управления белыми светодиодами высокой ваттности для прожекторного освещения и также для зарядки свинцово-кислотных аккумуляторов (с некоторыми модификациями).

На следующих схемах показаны несколько основных приложений, которые могут быть реализованы с помощью этой универсальной ИС стабилизатора напряжения 12 В 5 А с фиксированным током.

Схема зарядного устройства 12 В 50 Ач
Схема драйвера светодиода 30 Вт

Использование LM338

В случае, если вы не можете получить вышеуказанную ИС, вы можете создать эквивалентный фиксированный стабилизатор 12 В 5 А, используя следующую конфигурацию на основе LM338

12 В 5 А от IC 7812

В приведенных выше схемах мы узнали, как получить фиксированное напряжение 12 В при токе 5 А от специализированной ИС, однако то же самое можно легко получить от простой ИС 7812 путем небольшой модификации, как показано ниже.

Диоды на центральном выводе IC 7812 позволяют изменять выходной сигнал на любое желаемое значение, которое может быть выше 12 В.

Например, для зарядки аккумулятора на 50 Ач вам может потребоваться 14 В 5 А, который можно быстро настроить, добавив показанные диоды.

Таким образом, эта конструкция на самом деле может быть адаптирована для многих различных приложений 12 В 5 А.

Для настройки токового выхода просто измените значение нижнего резистора 1 Ом 5 ​​Вт, это так просто!

Указанный TIP36 рассчитан на ток до 25 А, однако, если вас интересуют только 5 ампер, вы можете легко заменить его транзистором TIP32C над радиатором.

ТОП-10 самых больших идей регулятора напряжения 12В 5 и получите бесплатную доставку

ПЕРСОНАЛ

Код

0_ ЛИНЕЙНЫЙ РЕГУЛЯТОР НАПРЯЖЕНИЯ 12В D-PAK-3. Серия L78M 500 мА, 12 В, фиксированный выход Три. При наличии соответствующего теплоотвода они могут обеспечивать выходной ток более 0,5 А. Хотя в первую очередь разработан как.

1_ Texas Instruments LM2597M-3.3 технические характеристики, атрибуты и параметры. ПРОСТОЙ ПЕРЕКЛЮЧАТЕЛЬ Преобразователь мощности 150 кГц 0.Понижающий стабилизатор напряжения на 5А 8-SOIC. Conv DC-DC от 4,5 В до 40 В, инвертированный / шаг.

2_ может управлять выходной мощностью 60 Вт (12 В / 5 А) при входном напряжении от 42 до 56 В постоянного тока (номинальное входное напряжение 48 В), что особенно подходит для телекоммуникационных приложений с низким и средним энергопотреблением и устройств с питанием от PoE, таких как IP.

3_ Каждому проекту нужен источник питания. Поскольку 3,3-вольтовая логика заменяет 5-вольтовые системы, мы стремимся к регулируемому стабилизатору напряжения LM317, а не к классическому 7805. Мы нашли четыре разных.

4_ Основной частью БП является уже знакомый нам линейный стабилизатор напряжения LM317.Выходное напряжение регулируется с помощью делителя напряжения между двумя выводами. Набор.

5_ MCP1827 представляет собой керамический выходной конденсатор на 1,5 А, стабильный, с низким выходным напряжением, стабилизатором с малым падением напряжения (LDO) с функциями отключения и повышения мощности (только для версии с фиксированным выходом). Он многофункциональный и термически.

6_ DC-DC Buck Серия сверхбыстрого отклика и высокой мощности (Vin = 2,3-3,6 В; Vo = 0,8-1,55 В; Io = 1,5 А) — TSMC 65 нм DCDC SGC67 — это сверхбыстрый отклик, высокий выходной ток, ступенчатый понижающий DC-DC.

7_ Используя простые примитивы в микроконтроллере, можно установить требуемый уровень напряжения и тока для доступного понижающего канала. Тем более, если система дополнена током.

8_ Ваша корзина заполнена. Удалите некоторые товары, если вы хотите добавить другие товары в корзину.

9_ На основе процесса GSMC 0,13 мкм 1,5 В / 12 В eFlash. S3REG8014T65 — это схема регулятора, рассчитанная на обеспечение 1,0–1,3 В при токе нагрузки до 80 мА.Выходное напряжение.


12 В 5 регулятор напряжения

Повышающий преобразователь постоянного тока с 5 В на 12 В

Повышающий DC-DC преобразователь основан на LM2577-ADJ IC, этот проект обеспечивает выход 12 В с использованием входа 5 В, максимальная выходная нагрузка 800 мА. LM2577 — это монолитные интегральные схемы, которые обеспечивают все функции питания и управления для повышающих (повышающих), обратных и прямых импульсных регуляторов преобразователя. Устройство доступно в трех вариантах выходного напряжения: 12В, 15В и регулируемое.

Для этих регуляторов требуется минимальное количество внешних компонентов, они экономичны и просты в использовании. В этом техническом паспорте перечислено семейство стандартных катушек индуктивности и обратных трансформаторов, предназначенных для работы с этими импульсными регуляторами. На микросхеме находится переключатель NPN 3,0 А и связанная с ним схема защиты, состоящая из ограничения тока и температуры, а также блокировки при пониженном напряжении. Другие функции включают в себя генератор с фиксированной частотой 52 кГц, который не требует внешних компонентов, режим плавного пуска для уменьшения пускового тока во время запуска и управление режимом тока для улучшенного подавления переходных процессов входного напряжения и выходной нагрузки.

Характеристики

  • Требуется несколько внешних компонентов
  • Вход 5 В постоянного тока
  • Выход 12 В постоянного тока
  • Выходная нагрузка 800 мА
  • Работа в токовом режиме для улучшения переходных характеристик, стабилизации линии и ограничения тока
  • Внутренний осциллятор, 52 кГц
  • Функция плавного пуска снижает пусковой ток при запуске
  • Выходной выключатель защищен ограничением по току, блокировкой при пониженном напряжении и тепловым отключением
  • Размеры печатной платы: 45.72 x 34.29 мм

Проект основан на LM2577-ADJ IC для гибкости получения других выходных напряжений путем изменения номинала резисторов обратной связи R2 и R3

Формула выходного напряжения В Out = 1,23 В (1 + R2 / R3) (Дополнительные сведения о величине индуктора, конденсатора, резисторов обратной связи, выходном токе и напряжении см. В листе технических данных)

Схема

Как это работает

LM2577 включает и выключает свой выход с частотой 52 кГц, и это создает энергию в катушке индуктивности L1.

Когда переключатель NPN включается, ток в катушке индуктивности заряжается со скоростью vin / L1, сохраняя ток в катушке индуктивности. Когда переключатель выключается, нижний конец катушки индуктивности летит над Vin, разряжая свой ток через диод в выходной конденсатор со скоростью (Vout-Vin) / L1. Таким образом, энергия, запасенная в

Катушка индуктивности

во время включения переводится на выход во время выключения. Выходное напряжение контролируется количеством передаваемой энергии, которое, в свою очередь, регулируется путем модуляции пикового тока индуктора.Это делается путем подачи части выходного напряжения обратно на усилитель ошибки, который усиливает разницу между напряжением обратной связи и опорным напряжением 1,23 В. Выходное напряжение усилителя ошибки сравнивается с напряжением, пропорциональным току переключения (т. Е. Току индуктора во время включения).

Компаратор завершает время включения, когда два напряжения равны, тем самым управляя пиковым током переключения для поддержания постоянного выходного напряжения.

Список деталей

Видео

LM2577 Лист данных

lm2577

3.0 A, понижающий импульсный регулятор

% PDF-1.4 % 1 0 объект > эндобдж 5 0 obj > эндобдж 2 0 obj > эндобдж 3 0 obj > транслировать application / pdf

  • ON Semiconductor
  • LM2596 — 3,0 А, понижающий импульсный регулятор
  • 2008-11-03T10: 30: 52-07: 00BroadVision, Inc.2020-08-19T08: 19: 12 + 02: 002020-08-19T08: 19: 12 + 02: 00 Acrobat Distiller 8.1.0 (Windows) uuid: 68b5acf5-f2a3-4280-99ec-532fbdbceb14uid: b18016fd-a007-40b0-bb40-f1db09544243 конечный поток эндобдж 4 0 obj > эндобдж 6 0 obj > эндобдж 7 0 объект > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > эндобдж 19 0 объект > эндобдж 20 0 объект > эндобдж 21 0 объект > эндобдж 22 0 объект > эндобдж 23 0 объект > эндобдж 24 0 объект > эндобдж 25 0 объект > эндобдж 26 0 объект > эндобдж 27 0 объект > эндобдж 28 0 объект > эндобдж 29 0 объект > эндобдж 30 0 объект > эндобдж 31 0 объект > эндобдж 32 0 объект > эндобдж 33 0 объект > эндобдж 34 0 объект > эндобдж 35 0 объект > эндобдж 36 0 объект > эндобдж 37 0 объект > эндобдж 38 0 объект > эндобдж 39 0 объект > транслировать HWn8 ^ 6 # RJ ^ gɬ3ƍddf: yO * texԩ «1Zq8 | x

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *