Атмосферный дизель: Атмосферный дизельный двигатель | Статья от автосервиса «Автоцарапина»
Атмосферный дизельный двигатель | Статья от автосервиса «Автоцарапина»
На сегодняшний день наиболее мощным, а заодно надежным и простым агрегатом является атмосферный двигатель. Именно этому автомобильному «ингредиенту» удалось зарекомендовать себя с положительной стороны на рынке легковых авто.
Причина популярности атмосферного дизельного двигателя лежит на поверхности: воздух, Ремонт кожи поступающий в камеру сгорания, «приходит» туда за счет разрежения, которое возникает в цилиндрах в то время, когда работает мотор.
Первый атмосферный двигатель, ставший предтечей современного агрегата, был изобретен более ста лет назад, в конце девятнадцатого столетия. Для образования воздушно-топливной смеси был необходим воздух, который подавался при помощи стандартного компрессора. С того дня практически ничего не изменилось, и в том, что касается современных дизельных атмосферных двигателей, все происходит таким же способом.
Устройство агрегата
Если говорить о конструкции, то данный агрегат практически не отличается от своего бензинового «собрата». Здесь есть место и аналогичной системе цилиндр-поршень-шатун-коленвал, которая успешно трансформирует расширение сгорающей воздушно-топливной смеси в крутящий момент.
Отличие имеется, и заключается оно в принципиально ином принципе воспламенения ТВС. В бензиновом моторе топливо активно «сотрудничает» с воздухом еще до «путешествия» в цилиндры и воспламеняется при помощи электрической искры, то в отношении дизельного двигателя все обстоит несколько иначе: воздух и топливо «приходят» в цилиндр исключительно раздельно. Если при уплотнении воздух нагреется до 700-900 градусов, то он непременно пройдет фазу сжатия.
Под огромным давлением, при помощи специальных форсунок в месте максимального сжатия в цилиндр поступает топливо. Возгорание его происходит в виду высокой температуры. После этого идет целая «серия» процессов, шумоизоляция салона ваз 2107 характерных для абсолютно всех двигателей внутреннего сгорания — в частности, расширение, а затем и выхлоп.
Атмосферник или турбодизель: перекрестная характеристика
Автолюбители сталкиваются с вопросом, какому автомобилю отдать предпочтение, атмосферный или турбированный двигатель должен быть на нем установлен, что лучше будет для новой машины.
Атмосферные силовые агрегаты
Автомобильные двигатели, конструктивно не оборудованные турбонагнетателем, относятся к атмосферному виду. В отличие от турбированного, такой мотор работает при давлении, равном атмосферному.
Воздушные массы затягиваются в систему фильтрации силового агрегатапри помощи поршней. Поступая в инжектор либо карбюратор, воздух равномерно смешивается с капельками бензина или дизельного топлива. Полученная топливовоздушная смесь готова к воспламенению.
Основные преимущества и недостатки атмосферных двигателей
Атмосферники обладают следующими неоспоримыми достоинствами:
- Конструкция бензинового атмосферного двигателя отличается простым строением, что существенно облегчает ремонтные работы, снижает временные затраты и материальные расходы на его восстановление.
- Высокий ресурс (более, чем в два раза) обеспечен благодаря эксплуатации автомобиля при небольших нагрузках.
- Уменьшение потребления моторного масла, т. к. отсутствуют дополнительные устройства, требующие тщательную смазку.
- Отсутствие повышенных требований к качеству масла, возможность широкого использования минеральных, полусинтетических и синтетических сортов моторных масел. Стоит отметить, что чрезмерная экономия на качестве масла отражается на длительности срока службы мотора.
- Пониженные требования к качеству потребляемого топлива.
К недостаткам атмосферных силовых агрегатов можно отнести следующие моменты:
- большая масса всего агрегата;
- увеличенный расход бензина и дизельного топлива;
- мощность двигателя меньше, чем у турбированного мотора с подобным объемом;
- невозможность поддерживать заданную мощность при поездках в гористой местности, т. к. там разреженный воздух имеет низкое давление;
- автомобили, оборудованные атмосферниками, имеют худшую динамику, чем их собратья с установленным турбонаддувом.
Атмосферники относятся к относительно дешевым и долговечным моторам. Хоть онималооборотисты, не выдерживают больших нагрузок, однако, их долговечность побила все рекорды.
Простота и неприхотливость, дешевизна обслуживания, нечастая замена масла и прочие достоинства позволяют настаивать на том, что лучше использовать силовые агрегаты данного вида. Атмосферные моторы пользуются большой симпатией у автовладельцев.
Описание двигателей, оборудованных турбонаддувом
В отличие от атмосферных,турбированныесиловые агрегаты снабжены дополнительными устройствами — турбинами. В моторданного вида воздушные массынагнетаются при помощи турбины. Прямое назначение турбины — нагнетать сжатый воздух в рабочие цилиндры двигателя. В таких силовых агрегатах камеры сгорания имеют возможность наполняться сжатым воздухом значительно большего объема.
Повышенное содержание кислорода в топливной смеси приводит к улучшению таких характеристик:
- более качественно происходит процесс сгорания;
- увеличивается мощность мотора;
- усиливается крутящий момент;
- улучшается динамика автомобиля.
Принцип действия турбированных двигателей
Силовые агрегаты, снабженные турбонаддувом, имеют конструктивные отличия по сравнению с подобными моторами атмосферного типа. Главное свойство турбированных движков — это наличие в их конструкции турбокомпрессоров. Турбокомпрессор состоит изспециального вентилятора и турбины. Подключение компрессора к выхлопной системе обеспечивает подачу отработанных газов на лопасти турбины.
Напор подаваемых газов способствует раскручиванию турбины и лопастей вентилятора компрессора. При помощи работы компрессора газы под высоким давлениемзакачиваются в камеру сгорания.
Добавочный объем и повышенное давление воздуха способствуют полному сгоранию топливовоздушной смеси, что приводит к существенному увеличению мощности мотора. Вывод: при сохранении объема камеры сгорания турбированный силовой агрегат способен вырабатывать большее количество лошадиных сил в отличие от атмосферного.
Интеркуллер не заменяет обычную систему охлаждения и даже не дополняет ее. Интеркуллер охлаждает воздух, который разогревается в турбине и снижает ее эффективность.
Зачастую этот узел оборудуется дополнительным вентилирующим механизмом для усиления охлаждающего эффекта.
Плюсы и минусы турбированных движков
Как любое устройство, турбированный двигатель обладает определенными преимуществами и недостатками. В список достоинств данного двигателя входят следующие пункты:
- Существенное повышение мощности, а также крутящего момента двигателя на 70% по сравнению с атмосферным аналогом, что является основной целью конструктивного изменения агрегата.
- Уменьшение расхода бензина или дизтоплива из расчета на единицу мощности.
- Улучшение экологических характеристик выхлопных газов благодаря работе турбокомпрессора, а также наиболее полномусгоранию топливовоздушной смеси в цилиндрах.
- Снижение уровня шума.
- Универсальность конструкции турбированного двигателя как бензинового, так и дизельного, что позволяет устанавливать его на авто любых марок. Монтаж силового агрегата данного вида возможен с использованием прежних крепежных элементов.
К основным недостаткам данных моторов относятся такие эксплуатационные минусы:
- сложность конструкции, создающая трудности при эксплуатации;
- необходимо постоянно менять моторное масло, заливаемоекак в картер двигателя, таки в турбину, а также регулярно отслеживать его качество;
- частая замена воздушных и масляных фильтров;
- повышенные требования к качеству бензина и дизтоплива, которые должны иметь высокую степень очистки;
- увеличение общего расхода топлива;
- высокая стоимость ремонта турбированного двигателя;
- необходимость работы двигателя на холостых оборотах перед отключением, чтобы продлить ресурс самой турбины.
При оценке всех плюсов и минусов напрашивается вывод, что эффективность и мощность турбированных моторов существенно выше атмосферных силовых агрегатов со схожим объемом. Обладателям машин с таким двигателем необходимо внимательно следить за мотором своего авто.
Только при таком отношении силовой агрегат с турбонаддувом способен обеспечить высокую эффективность на всех режимах при любых дорожных условиях.
Какому двигателю отдать предпочтение
При выборе наиболее подходящей модели автолюбители должны внимательно ознакомиться с конструктивными особенностями, преимуществами и недостатками рассматриваемых двигателей. Что должно находиться под капотом новой машины, атмосферный двигатель или турбированный?
Если нужен автомобиль с лучшей динамикой и высокой мощностью, то хороший вариант — это автомобиль, оборудованный турбонаддувом. При этом придется столкнуться с максимальными затратами на приобретение качественного бензина либо дизельного топлива, моторного масла, а также срасходами на эксплуатационный уход.
Машина с установленным атмосферным силовым агрегатом будет отличаться более высоким ресурсом и недорогим обслуживанием. Такой вариант подходит для покупателей, располагающих небольшим бюджетом.
чьи лошади сильнее? — журнал За рулем
Кто лучше тянет? Кто быстрее разгоняется? Сравниваем бензиновый и дизельные двигатели.
До сих пор встречаются чудаки, свято верящие в то, будто бы 100 лошадиных сил дизеля соответствуют примерно 140 «бензиновым» силам. Дело, как они полагают, в крутящем моменте, который у дизеля гораздо выше.
Материалы по теме
Грамотно прояснить ситуацию оказалось не так-то просто. Пришлось то и дело консультироваться в самых различных местах — на ВАЗе и УАЗе, ГАЗе и ЯМЗе. В итоге трактат получил всеобщее «одобрям-с», но автору посоветовали заранее спрятаться от потока помидоров, запущенного недовольными апологетами того или иного двигателя. Мол, будет та же реакция, как если бы спартаковский фанат в своих красно-белых тонах забрался на зенитовскую трибуну…
В общем, разбираемся, чьи силы сильнее. А попутно, чтобы стало веселее, попытаемся ответить на простейший, казалось бы, вопрос:
«Даны два автомобиля, максимально близких по конструкции, — бензиновый и дизельный. Исходные условия: современные моторы одинаковой мощности, идеально подобранные для каждого коробки передач, образцовые водители (почти роботы!), отличное сцепление с дорогой. Какой автомобиль окажется на трассе быстрее?»
Простой вопрос? Оказалось, что не очень…
Лошадиный момент
Для разгона машины нужна энергия. Чем больше энергии можно потратить в единицу времени, тем быстрее машина разгонится. Иными словами, речь идет о мощности. Чем выше мощность, тем быстрее машина: всё, казалось бы, просто. Но…
Материалы по теме
Но на практике картина другая. Максимальная мощность мотора, как бензинового, так и дизельного, достигается им только при полной подаче топлива — понятно, что это соответствует положению «педаль в пол». А вот основная жизнь автомобиля протекает в режимах частичной подачи топлива, при которых развиваемая мотором мощность явно ниже максимальной.
Напомним, что крутящий момент и мощность — это почти что близнецы-братья, как у Маяковского. Друг без друга они не существуют: ведь мощность — это крутящий момент, помноженный на частоту вращения коленчатого вала. И если на какой-то частоте вращения ДВС способен выдать более высокий крутящий момент, чем его конкурент, то и мощность его в этот момент также должна быть выше. Одно без другого просто немыслимо. Поэтому разговоры о том, что у кого-то при равной мощности момент на тех же оборотах выше, сразу пресекаем: это несерьезно.
Материалы по теме
Пару слов о коробках передач. Очень часто споры вокруг двигателей упираются именно в коробку, а потому уходят в сторону от основной темы. Понятно, что коробка способна изменять момент на ведущих колесах в широких пределах, но одновременно она меняет и частоту вращения колес: изменять мощность она, естественно, не может. Поэтому в дальнейшем условно считаем коробку на бензиновой и дизельной машинах неким идеальным атрибутом и больше к ней не возвращаемся. Для ясности также не принимаем во внимание тот факт, что дизельный двигатель априори тяжелее бензинового той же мощности.Если бы крутящий момент был постоянным во всем диапазоне частот вращения коленвала, то внешняя скоростная характеристика, показывающая зависимость мощности и крутящего момента от частоты вращения, превратилась бы в прямую линию, а мощность была бы прямо пропорциональна показаниям тахометра. Тогда разницы в поведении бензинового и дизельного моторов равной мощности не было бы вообще. Однако именно своеобразность протекания момента по дизельной кривой и породила неодинаковость их поведения.
Дело в том, что в массовом сознании дизельные моторы всегда отличала их способность выдавать относительно высокие значения мощности и крутящего момента на низах. Субъективно это воспринималось так, что в этом диапазоне частот дизель откликался на правую педаль охотнее, чем бензиновый коллега. Даже атмосферные дизели за счет более высокого эффективного давления в цилиндрах могли развить более высокий момент, чем бензиновые. Однако без наддува ширина «полки» крутящего момента была при этом практически такой же, то есть практически отсутствовала. А вот с применением наддува полка сразу появилась, причем в левой части характеристики — «на низах».
Материалы по теме
Что это дало? Именно то, чем любят хвалиться приверженцы дизелей — «тягу на низах». В этом диапазоне дизельный двигатель способен развить большую мощность, чем бензиновый, а его момент на ведущих колесах действительно может быть выше.На всякий случай напоминаю: момент существует только там, где есть сопротивление — без него он равен нулю. Грубо говоря, мотор бульдозера готов его выдать, но только в том случае, если встретит кучу щебня перед своим отвалом. Поэтому до тех пор, пока дорога гладкая и ровная, бензиновая и дизельная машины будут примерно в равных условиях. Но как только дорога пойдет в гору или, скажем, подует встречный ветер, то машина, у которой в данном диапазоне оборотов есть запас мощности (или момента — это не важно), сможет за его счет выйти вперед.
А если раскрутить бензиновый мотор до более высоких оборотов? Тогда ситуация выровняется. Мало того, поскольку диапазон частот вращения коленвала у «бензинок» заведомо шире, чем у дизелей, то и отыграться за все обиды они могут именно там, «на верхах». Дизель, быстрее достигнув пика мощности, «заткнется» — его ВСХ пойдет на спад, а вот бензиновый мотор будет продолжать раскручиваться дальше, так как пик его мощности достигается при более высоких частотах вращения.
Впрочем, на этом этапе рассуждений мы упираемся в особенности конкретных моторов. Строго говоря, бензиновый двигатель тоже может быть «низовым». И если у двух моторов, низового и верхового, заявленная максимальная мощность одинакова, то поначалу вперед вырвется именно машина с «низовым» мотором. Как справедливо указал один из наиболее грамотных форумчан, при установке на автомобиль движков от «эмочки» и Таврии, мощность которых примерно одинакова, с «эмочным» мотором разгон будет интенсивнее.
У кого шире?
Материалы по теме
Между прочим, широкая полка момента, которой так любят хвастаться дизелеводы, сегодня уже не является их козырной картой. У бензинового движка с непосредственным впрыском и турбонаддувом она ни в чем не уступает дизельной, а то и превосходит. Более того, как подсказали нам на ЯМЗе, при построениях ВСХ заметно, что по мере снижения частоты вращения турбокомпрессоры «бензинок» держатся дольше, чем их дизельные коллеги. И это объяснимо: дизелю нужно больше воздуха, а потому турбокомпрессоры начинают задыхаться раньше. А с учетом широкого диапазона частот вращения бензиновый мотор вполне может оставить дизель позади.
Пора посмотреть на картинки. Из широкой гаммы вольвовских моторов нам любезно предоставили внешние скоростные характеристики тех, кто имеет воплощение в дизельном и бензиновом вариантах при равных или почти равных заявленных мощностях. Из них видно, что «полка» крутящего момента у бензиновых движков вовсе не уже, а шире, чем у дизельных собратьев по внутреннему сгоранию.
Слева на графиках — ВСХ 190-сильного бензинового мотора B4204T19 (V40 Cross Country, S60). Справа — ВСХ дизельного мотора D4204T5 той же мощности (S60, V 60 Cross Country, S80, XC60, XC70)
Слева показана ВСХ бензинового мотора B4204T36 мощностью 249 л.с. (XC40). Справа — ВСХ дизельного движка D4204T23 в 240 л.с. (Polestar XC60 New, V90 Cross Country, XC90)
Материалы по теме
Что касается вопроса, какой из автомобилей окажется быстрее в гонках с общего старта и чей разгон динамичнее, то теоретические рассуждения дают только один верный ответ: надо посмотреть на ВСХ их моторов. Решение подсказывает площадь под кривой крутящего момента — математики вспомнят слово «интеграл». Фактически эта площадь и есть мерило динамики машины. Чем характеристика «прямоугольнее», тем лучше. Чем равномернее «размазан» по оборотам крутящий момент, тем проще угодить и экологам, и мотористам. Лучше других выглядят бензиновые моторы с непосредственным впрыском и турбонаддувом, хуже — высокофорсированные безнаддувные «бензинки» с пиком мощности под 8000 об/мин и момента на 6000. Высокофорсированный наддувный дизель будет гораздо ближе к первому варианту, чем ко второму.
Надо отметить, что свою лепту в путаницу вносят «электронные педали газа». На пальцах это выглядит так: вы вдавили педаль в пол, а компьютер начинает советоваться с партией зеленых, оценивая предстоящие выбросы вредностей. Поэтому в любой современной машине всё определяется программным обеспечением и скоростью процессора, который порой может и не поспевать отслеживать меняющиеся условия работы. Можно привести и другой пример по части экологии: современные дизели имеют электронные ограничители времени работы на оборотах максимальной мощности, поскольку в таком режиме дизельный двигатель изрыгает сажу.
Всем, кто имеет свое суждение о превосходствах того или иного двигателя, предлагаю высказаться. Аргументы типа «„Зенит“ — чемпион»» прошу не употреблять: хочется услышать технически обоснованную аргументацию.
А вообще-то…
А, вообще-то, подобные споры скоро прекратятся. Одна компания за другой заявляют о полном прекращении новых разработок дизелей. А потом и ДВС в целом… Впереди эпоха гибридов различных мастей и, конечно же, электромобилей. Впрочем, недавно прозвучала команда вспомнить про метан, так что — посмотрим…
Я никогда не любил дизели. Но мне их жалко.
Фото: depositphotos
советы, нюансы, правила :: Autonews
Современные дизельные двигатели разбивают старые мифы о том, что топливо для них является уделом медленных и чадящих грузовиков. Даже в России, где культура использования дизеля развита не так хорошо, как в Европе, в отдельных сегментах его доля оказывается очень высокой.
По данным аналитического агентства «Автостат», за девять месяцев 2019 г. в России было продано почти 100 тыс. дизельных легковушек, что составляет более 8% парка, а в сегменте внедорожников и больших кроссоверов она превышает 50%. При этом доля дизельных машин у бренда BMW в России составляет 70,6%, а Land Rover продает 79% таких автомобилей — хороший дизель обходит бензиновые моторы даже в сегменте автомобилей для водителя.
Чем технически отличается дизельный двигатель
Если в бензиновом двигателе горючая смесь воздуха и топлива формируется во впускном коллекторе, подается в цилиндр и там воспламеняется с помощью свечи зажигания, то в дизельном смесь самовоспламеняется от сжатия после того, как впрыскивается под высоким давлением в цилиндр с уже сжатым и нагретым воздухом, мгновенно образуя горючую смесь.
В дизельном двигателе свечи зажигания не используются вовсе, а само топливо испаряется медленнее, поэтому вероятность возгорания минимальна. Благодаря использованию более жесткого и прочного блока цилиндров и элементов цилиндропоршневой группы дизельные моторы в целом долговечнее бензиновых, а сама конструкция менее требовательная к обслуживанию.
За что любят дизель
Главное преимущество дизеля — экономичность: при примерно равных мощностных характеристиках дизельный двигатель потребляет на треть меньше топлива, чем бензиновый. Даже те, кто не считает затраты на топливо, ценят большие пробеги без необходимости тратить время на заправках. Но важно при этом выбирать качественное топливо вроде «Дизель Опти» c улучшенными характеристиками от АЗС «Газпромнефть» — оно напрямую влияет на экономичность.
Дизельные моторы отличаются более высокой тяговитостью и большим крутящим моментом на низких оборотах. Это значит, что автомобиль с таким двигателем быстрее реагирует на акселератор и легко ускоряется в городском потоке, не тратя время на переключения передач. Эта легкость с лихвой компенсирует более спокойное поведение на высоких оборотах, так как 99% времени автомобиль проводит в потоке транспорта, а не на треке. Кроме того, характеристики дизеля удобнее на бездорожье, где требуется крепкая и легко контролируемая тяга.
Что с зимним пуском и прогревом машины
Проблема зимнего пуска дизельного двигателя напрямую связана со свойствами самого топлива. Если летний дизель густеет при -5 градусах и не прокачивается через фильтры и трубопроводы топливной системы, то зимний может работать и при -45 градусах. В итоге любой исправный дизельный автомобиль с сезонным топливом и качественным моторным маслом пускается так же легко, как бензиновый.
Высокая эффективность дизельных двигателей обуславливает более медленный прогрев силовой установки, поэтому считается, что зимой они не могут нормально прогреть салон машины. На самом деле, любой современный мотор, включая бензиновый, не спешит отдавать тепло, но эта проблема легко решается двумя способами. Во-первых, термостаты эффективно перераспределяют тепло двигателя, а во-вторых, почти все дизельные машины комплектуются дополнительными электрическими обогревателям салона, благодаря которым тепло начинает поступать в первые минуты после пуска.
Тем, кто любит садиться в уже теплый автомобиль, можно посоветовать систему дистанционного пуска, но лучше поставить более экологичный и экономичный предпусковой подогреватель, который работает на том же дизеле, но тратит его только на обогрев салона и прогрев охлаждающей жидкости двигателя. Такую опцию можно установить на все дизельные автомобили штатно или в специализированных мастерских.
Как правильно запускать двигатель
Для облегчения зимнего пуска дизель использует свечи накаливания — устройства, которые быстро прогревают камеру сгорания в течение нескольких секунд. После поворота ключа зажигания на панели приборов зажжется символ работы свечей (обычно спираль), который гаснет через две-пять секунд в зависимости от температуры двигателя — можно включать стартер. На автомобилях с кнопкой пуска двигателя все еще проще: после нажатия клавиши система сама выдержит нужную паузу до включения стартера.
В особенно холодных условиях можно несколько раз подряд включить свечи накаливания, поворачивая ключ зажигания, но не включая стартер, либо нажимая кнопку пуска без удержания педали тормоза (стартер в этом случае не включится). Но это уже избыточные меры для очень холодных зим, потому что современные дизели при использовании зимней солярки и правильных масел легко пускаются с первого раза после ночной стоянки даже в -30 градусов.
Каким топливом заправляться
Зимой дизель следует заправлять исключительно зимним дизтопливом, поэтому на крупных сетевых АЗС всегда тщательно соблюдают сезонность. Современные двигатели очень требовательны к качеству топлива, поэтому оно должно соответствовать всем действующим стандартам. Хорошее топливо не только обеспечивает надежный пуск, но и чистит топливную систему от нагара и отложений, заметно повышает экономичность машины и уменьшает стоимость ее содержания. Именно так работает «Дизель Опти», который реализуется на заправках сети «Газпромнефть».
Еще одним преимуществом фирменного топлива является стабильность его характеристик на любой заправки сети. Так, во время испытаний топлива «Дизель Опти» подопытный Toyota Land Cruiser 200 заправлялся в разных регионах страны при температурах от -5° до +25° и демонстрировал абсолютную стабильность характеристик динамики, расхода и легкости пуска. После 7000 км пробега топливная система была разобрана, и инженеры отметили ее идеальное состояние, а некоторые характеристики даже улучшились благодаря очищающим свойствам топлива.
Кроме того, топливо «Опти» из года в год подтверждает свое высокое качество в экстремальном ралли-марафоне «Шелковый путь», который проходит по территории России, Монголии и Китая. Сеть АЗС «Газпромнефть» заправляет автомобили организаторов и участников ралли, заодно тестируя твое топливо в жесточайших условиях песчаных пустынь, безлюдных степей и крепких утренних морозов.
Турбированные моторы & атмосферные: устройства и принцип работы | Справочная информация
Классические бензиновые и дизельные силовые агрегаты в последние несколько лет стали сдавать позиции лидеров в автомобилестроении. На смену им и в дополнение приходят турбированные и атмосферные двигатели, которые всего пару десятилетий назад можно было встретить только на гоночных болидах.
Сегодня очень часто при выборе современных моделей транспортных средств, автолюбители не знают, на каком силовом агрегате лучше всего остановиться — купить автомобиль с «атмосферником» или турбиной? У каждого из этих механизмов есть свои специфические особенности, а также плюсы и минусы в эксплуатации.
Устройство и принцип работы турбированного двигателя
Турбированный силовой агрегат считается одним из самых старых среди двигателей внутреннего сгорания, так как был придуман почти столетие назад. Принцип его работы заключается в том, в цилиндры подается увеличенное количество воздуха, для этого используется нагнетающее устройство – турбокомпрессор («турбина»). Это создает лучшие условия для сгорания топлива и, соответственно, увеличивает мощность двигателя.
По принципу работы турбированный двигатель не отличается от обычного атмосферного двигателя. А нагнетание дополнительного воздуха позволяет эффективнее использовать полный объем поступающей горючей смеси, что положительно сказывается на динамических характеристиках автомобиля.
Турбокомпрессор использует для работы энергию выхлопных газов. Он подсоединяется к выхлопной системе, в результате чего часть отработанных газов поступает на лопасти турбины и вращает крыльчатку компрессора.
Для охлаждения силового агрегата с турбокомпрессором используют интеркуллер. Это обычный радиатор, но вместо охлаждающей жидкости в нем циркулирует воздух.
Достоинства турбодвигателя
Главный козырь турбированных силовых агрегатов — это, конечно же, их высокая мощность. Двигатели с турбокомпрессором по динамике разгона значительно превосходят своих атмосферных «собратьев» при одинаковом объеме. При этом потребление топлива увеличивается ненамного, так как турбина использует энергию уже отработавших газов, а не тратит горючее на создание новых.
Еще одно достоинство турбированного агрегата – снижение содержания вредных газов в выхлопе, поскольку топливовоздушная смесь сгорает значительно эффективнее. Кроме того, мотор с турбокомпрессором работает менее шумно, чем «атмосферник».
Недостатки турбодвигателя
В отличие от атмосферного двигателя, турбодвигатель очень привередлив к качеству потребляемого горючего. Если не контролировать этот вопрос, то турбина очень скоро может выйти из строя. Кроме того, из-за специфики конструкции двигатели с турбонаддувом следует прогревать в любое время года.
Этот тип силовых агрегатов нуждается в особой заботе в вопросах использования смазочных материалов. Обычные минеральные и синтетические масла категорически запрещается заливать в двигатель с турбиной. Для них предназначаются специальные виды масел, которые достаточно дорого стоят. Кроме того, как отмечают специалисты автосервиса Favorit Motors, замена масла рекомендуется каждые 10 тысяч километров (при эксплуатации в городских условиях).
Устройство и принцип работы атмосферного двигателя
Система запитывания атмосферного двигателя основана на инжекторном или карбюраторном механизме. Топливовоздушная смесь формируется в строгой пропорции: 1 часть бензина + 14 частей воздуха.
Принцип работы «атмосферника» заключается в том, что топливо впрыскивается в цилиндр без сопротивления. Это стало возможным благодаря сложным и тонким настройкам в распределительном валу, который открывает впускающий клапан. После впрыска смесь сгорает, а выделившиеся газы приводят в движение поршни.
Атмосферный двигательный аппарат назван так потому, что давление воздуха при попадании в мотор, равняется одной атмосфере. В его конструкции не используются турбонагнетатели, он функционирует при стандартном атмосферном давлении.
Преимущество в использовании атмосферного двигателя заключается в том, что на каких бы оборотах он не работал в данный момент, у него всегда будет определенный запас мощности. Это позволяет максимально быстро ускоряться при любой начальной скорости движения. До максимально возможного количества оборотов атмосферный силовой агрегат «раскрутится» за считанные секунды.
Достоинства атмосферного двигателя
Рано или поздно даже самый надежный мотор может потребовать вложений и качественного ремонта. Атмосферный агрегат имеет более простое строение, чем турбированный мотор, а потому и проведение ремонтных работ обойдется дешевле.
Срок службы атмосферника гораздо выше, чем у турбированного мотора. Это обусловлено более мягкими условиями эксплуатации и отсутствием повышенных нагрузок. Поэтому рабочий ресурс атмосферного двигателя в среднем вдвое выше, чем у турбины.
В качестве приятного бонуса для автовладельцев специалисты ГК Favorit Motors могут привести следующий факт. Атмосферные агрегаты не требуют постоянно контроля смазки и менее требовательны к качеству используемых масел. В их конструкции отсутствуют устройства, которые нуждаются в дополнительной смазке. Это же касается и выбора топлива: атмосферный двигательный агрегат менее требователен к качеству горючего. Кроме того, замена смазочной жидкости производится реже — каждые 15-20 тысяч километров пробега.
И еще один плюс «атмосферника». Российские водители уже смогли убедиться, что атмосферный силовой агрегат даже зимой прогревается быстрее, чем его турбированный собрат.
Недостатки атмосферного двигателя
Самым главным минусом такого двигателя можно считать отсутствие высоких крутящих моментов. Атмосферный агрегат проигрывает турбированному в плане мощности. Такой автомобиль будет идеальным для неспешных поездок по городу, но в качестве трассового авто для молодежных гонок явно не подойдет.
Расход топлива для такого двигателя будет достаточно высок. Как отмечают специалисты ГК Favorit Motors, в среднем автомобиль с атмосферным двигателем потребляет не менее 11-12 литров горючего на 100 километров пути.
Итоги
Выбирать автомобиль с турбированным или атмосферным агрегатом стоит, исходя из своих личных предпочтений и возможностей. У каждого из этих типов моторов есть свои плюсы и минусы. Турбодвигатель будет мощнее и динамичнее, однако требователен в уходе и обходится дороже. Атмосферный двигатель не такой мощный, зато гораздо дешевле в плане эксплуатации и ремонта.
В наличии в компании Favorit Motors имеется множество разных моделей автомобилей как с атмосферными двигателями, так и с турбированными. Компетентный персонал поможет подобрать автомобиль, исходя из пожеланий и предпочтений каждого клиента.
Как турбированный, так и атмосферный силовой агрегат со временем может начать работать с перебоями или вообще отказать. Современные модели автомобилей оснащены высокотехнологичными электронными системами управления двигателем, поэтому диагностику и ремонт моторов следует выполнять только в специализированных автосервисах.
Автосервис Favorit Motors оснащен полным комплексом диагностического и ремонтного оборудования для диагностики и устранения неисправностей турбированных и атмосферных силовых агрегатов. Для обслуживания и ремонта здесь используются только качественные сертифицированные запчасти, а мастера техцентра обладают многолетним опытом работ. Все операции выполняются в соответствии с технологическими картами заводов-изготовителей, что обеспечивает высокое качество и сжатые сроки ремонта. На все детали и ремонтно-восстановительные работы предоставляется гарантия.
Специалисты компании Favorit Motors напоминают, что своевременное регламентное обслуживание способно значительно продлить срок эксплуатации силового агрегата. Необходимо регулярно менять масло в соответствии с пробегом и устранять выявленные неисправности.
Подборка б/у автомобилей Skoda OctaviaПромо: Дизель… Турбодизель — ДРАЙВ
. На правах рекламы*
Мало какой из современных дизелей (даже огромные корабельные монстры) остается атмосферным. Турбонаддув применяется практически повсеместно, это касается как личного, так и коммерческого транспорта.
Технологии в автомобильной отрасли постоянно развиваются, становятся эффективнее и экономичнее. И «консервативные» на первый взгляд дизельные двигатели не остаются в стороне от этого процесса. Современный дизель, хоть и работает все по тому же базовому принципу воспламенения от сжатия, давно обзавелся значительными новшествами. Пожалуй, два основных тренда современного дизелестроения — Common Rail и турбина. О последней и поговорим.
Чего позволяет добиться турбина? Из очевидного — прирост мощности. Увеличение давления наддува во впуске позволяет сжечь больше рабочей смеси за такт, сама же реакция по законам химии протекает быстрее. Турбина позволяет значительно увеличить литровую мощность двигателя. Иными словами, без увеличения объема с двигателя «снимается» больше «лошадок». В случае с дизелем это работает так: турбина начинает эффективно повышать наддув на более низких, чем у бензинового двигателя, оборотах из-за более высокой компрессии дизеля и, как следствие, большего давления газов на выпуске. Турбина превращает и так отличную тягу дизеля «на низах» в настоящую тепловозную.☺️
Из менее очевидного, но не менее важного — улучшение экологичности дизеля. Высокий наддув позволяет более полно и эффективно сжигать солярку, а вкупе с системой EGR (которая также является стандартом) — вообще дожигать все практически без остатка.
Для максимально возможного снижения концентрации сажи в выхлопе дизельного автомобиля на все современные двигатели устанавливается DPF — дизельный сажевый фильтр. DPF производства Delphi Technologies способны удерживать мельчайшие частички сажи. Это возможно благодаря особой структуре пористого керамического тела фильтра. Поры удерживают сажу, заполняясь ее частичками в процессе работы двигателя. После набора фильтром определенного количества сажи проводится активный прожиг, превращающий частицы в безвредный для здоровья диоксид углерода.
В свете последних данных о канцерогенности сажи поддержание работоспособности сажевого фильтра приобретает особое значение. Не менее важно и качество изготовления фильтра, чему в компании Delphi Technologies уделяют повышенное внимание. Корректная работа и своевременная очистка, наряду с возможностью сажевых фильтров Delphi Technologies задерживать особо вредные для здоровья микроскопические частицы, — крайне важные факторы в деле борьбы за чистый воздух и здоровье человека.
А благодаря увеличению литровой мощности и более полному дожиганию в итоге улучшается и топливная эффективность, и отдача турбированного дизеля по сравнению с атмосферным. Все это ведет к уменьшению расходов на топливо.
В обслуживании турбодизели мало отличаются от атмосферных двигателей. Исправная турбина не должна «есть» масло, равно как и не должна приводить к перегреву двигателя. Если же вы испытываете проблемы с турбокомпрессором — компания Delphi Technologies предлагает широкий ассортимент турбин. Их производят согласно требованиям OE-производителей, поэтому они не уступают в качестве оригинальным изделиям, при этом стоят, естественно, меньше. К слову, на все турбокомпрессоры Delphi Technologies распространяется двухлетняя гарантия!
На правах рекламы*.
* Редакция Драйва не несёт ответственности за содержание рекламных материалов. |
Турбодизель – Автомобили – Коммерсантъ
 ТурбодизельЧасть вторая
В первой части статьи мы говорили о системах наддува двигателей внутреннего сгорания. Сейчас речь пойдет о дизельных двигателях.
Если не слишком искушенному в технике человеку задать вопрос, чем дизельный двигатель отличается от бензинового, то ответы, скорее всего, будут такими: работает на солярке, обходится без свечей зажигания, больше шумит и при этом развивает меньшую мощность. Все это правильно, но…
При слове «дизель» у человека с воображением обычно возникает картинка: весь в грязных потеках грубый механизм на мощной станине, который изрыгает клубы черного дыма и своим ревом заглушает все в радиусе нескольких десятков метров. Если уточнить, что речь идет о двигателе автомобиля, картинка получается не такой страшной, но не более привлекательной: по-прежнему нечто грязное, пахнет, гремит, в мороз не заведешь, машина тупая — за полчаса не разгонишься…
Да, когда-то все так и было. Но с тех пор утекло немало солярки. Дизели сегодня прочно завоевали себе место не только на грузовиках, но и на легковых автомобилях, от самых массовых до вполне респектабельных. Все шире применяются дизели с турбонаддувом, автомобили с такими двигателями по основным параметрам не уступают машинам с привычными бензиновыми моторами.
В таблице 1 в качестве примера приведены основные характеристики Volkswagen Passat GT TDI с 4-цилиндровым турбодизелем. Таким же двигателем комплектуются, кстати, и вполне престижные Audi A4 1.9 TDI и A6 1.9 TDI. Из таблицы видно, что единственное, в чем автомобиль с дизелем явно уступает, — это время разгона. 13,9 сек. до сотни все-таки многовато. Но бывают машины и пошустрее.
Перед тем как рассматривать системы наддува дизельных двигателей, есть смысл остановиться на основных особенностях самих дизелей — для большинства наших автовладельцев они пока не слишком знакомы.
Дизель
Этот тип двигателя получил свое название по имени немецкого инженера Рудольфа Дизеля, построившего в 1897 году первый мотор с самовоспламенением топлива. Конструктивно дизель очень похож на привычный бензиновый двигатель: те же цилиндры, поршни, распредвал, клапаны. Но имеется и ряд отличий, из которых главное, можно даже сказать принципиальное, заключается в том, что воспламенение топлива в дизеле производится не искрой от свечи зажигания, а за счет высокой температуры, которой достигает воздух в результате сжатия его поршнем в цилиндре.
Второй важный момент — способ подачи топлива. В бензиновом двигателе рабочим телом является смесь бензина с воздухом. Смесь готовится заранее (в карбюраторе) или непосредственно в момент ее подачи в цилиндры (в системах впрыска) — главное то, что топливо подается вместе с воздухом, а поджигается и сгорает относительно гомогенная топливо-воздушная смесь.
В дизельном двигателе подача топлива и воздуха происходит раздельно. Вначале в цилиндр всасывается воздух, затем он сжимается, и только после этого впрыскивается топливо, поэтому говорить о гомогенной топливо-воздушной смеси не приходится. Впрыск производится в конце такта сжатия, топливо и воздух фактически не смешиваются друг с другом, горение происходит на фронте впрыскиваемой в сжатый воздух струи топлива (рис. 1).
Самовоспламенение топлива сопровождается резким, скачкообразным повышением давления в цилиндре — этим объясняется обычно шумная, жесткая работа дизельного двигателя. В низкооборотных дизелях с большим рабочим объемом, которые используются на грузовиках, этот недостаток проявляется в меньшей степени, и с ним мирятся. В дизелях легковых автомобилей от него пытаются избавиться применением форкамеры, или предкамеры, — небольшого отсека камеры сгорания, в который впрыскивается топливо. Там оно воспламеняется, частично перемешивается с воздухом, после чего горящая смесь распространяется по основному объему цилиндра.
Этот способ несколько уменьшает жесткость работы двигателя, но снижает его тепловую эффективность и топливную экономичность, поэтому в современных дизелях легковых автомобилей от форкамеры отказываются. Примером может служить 2,5-литровый дизель с турбонаддувом, который в 1990 г. был применен на Audi 100. Двигатель с прямым впрыском, 5-цилиндровый, 120 л. с. и 265 Нм (2250 об./мин.). Расход топлива 5,7 л/100 км. Для более плавного воспламенения топлива использованы двухступенчатый впрыск и сложная электронная схема управления.
Более свежий пример — 1,9-литровый атмосферный дизель с непосредственным впрыском мощностью 64 л. с., который Volkswagen собирается показать на Женевском салоне в этом году на Golf SDI. Отказ от форкамеры позволил на 12% улучшить и так неплохую экономичность двигателя: расход топлива составляет 4,9 л/100 км. Автомобиль Golf SDI с этим дизелем развивает скорость 156 км/час и разгоняется до сотни за 17,6 сек. (11,2 сек. до 80 км/час). Этот же дизель в турбированном варианте развивает мощность уже 90 л. с., потребляет 5,2 л/100 км и разгоняет Golf Cabrio TDI до 100 км/час за 13,3 сек. (8,8 сек. до 80 км/час). Максимальная скорость — 172 км/час.
Очевидное отличие дизельных двигателей от бензиновых — используемое топливо. Дизельное топливо, в просторечии солярка или ДТ, — тяжелая керосино-газойлевая фракция нефти C10 — C14 (у бензинов C6 — C8). Характерной особенностью дизелей является наличие твердых частиц в отработавших газах. Из-за гетерогенности процесса горения на поверхности отдельных частиц топлива всегда наблюдается некоторый недостаток кислорода, в результате чего вместо их окисления происходит частичное термическое разложение с образованием твердых продуктов — сажи. Для хорошего сжигания дизельного топлива требуется значительное, даже избыточное количество воздуха.
Ну и наконец, еще одна особенность — степень сжатия у дизеля в 2 раза выше, чем у бензинового двигателя. Высокая, не менее 14, степень сжатия необходима для того, чтобы температура воздуха в цилиндре поднялась до величины, достаточной для воспламенения топлива. Обычно в дизелях степень сжатия составляет 21-22 и ограничивается лишь прочностными характеристиками двигателя.
Стоит отметить, что устройства для подачи топлива в дизельных двигателях значительно сложнее, чем в бензиновых. Их сложность определяется прежде всего тем, что приходится впрыскивать очень маленькие, всего несколько миллиграмм, порции топлива в среду с высоким давлением. Эти порции должны быть очень точно отмерены — именно количеством подаваемого топлива управляется работа дизеля. Для этого нужны быстродействующие и точные форсунки. Высокая степень сжатия дизеля требует применения соответствующих топливных насосов — давление в сопле форсунки должно достигать нескольких сотен бар. Все это усложняет и ощутимо удорожает систему подачи топлива и, соответственно, сам дизельный двигатель.
Надо еще учесть, что почти все дизели до сих пор оснащаются механическими устройствами впрыска, ненамного отличающимися от тех, которые Bosch GmbH начала выпускать в 1927 году. Они уже почти изжили себя и скоро будут вытесняться гораздо более сложными устройствами с электронным управлением, индивидуальными для каждого цилиндра топливными насосами, совмещенными с форсунками, различными датчиками. Понятно, что стоимость таких систем тоже будет расти.
К числу недостатков дизелей обычно относят большую шумность, более высокую стоимость и, главное, меньшую, при том же рабочем объеме, мощность.
С шумностью пытаются справиться совершенствованием конструкции дизеля, изменением элементов его подвески, поговаривают даже о том, что двигатель можно капсулировать звукопоглощающим материалом. Стоимость — понятие относительное: заплатив за автомобиль больше при покупке, можно сэкономить на эксплуатации — это надо подсчитывать в каждом конкретном случае. А что касается мощности, то способ ее повышения известен — наддув.
Турбодизель
Применение наддува в дизельном двигателе преследует ту же основную цель, что и в бензиновом — увеличить количество топлива, сжигаемого в единицу времени. Устройство и работу различных типов нагнетателей воздуха мы рассматривали в первой части статьи. Все они могут быть применены и на дизельном двигателе. Из графика, приведенного на рис. 2, следует, что механический нагнетатель Comprex обеспечивает наибольшее увеличение крутящего момента двигателя, особенно на низких, около 2000 об./мин., частотах вращения, но общая характеристика при этом получается слишком острой. Нагнетатель Roots придает 1,2-литровому дизелю практически такую же характеристику крутящего момента, как у 1,6-литрового атмосферного бензинового двигателя. Характеристика, которую обеспечивает турбокомпрессор, занимает промежуточное положение: она достаточно плоская, а на средних (2000-4000 об./мин.) частотах вращения крутящий момент даже больше, чем с нагнетателем Roots.
Механические нагнетатели сложнее и дороже, кроме того, благодаря некоторым особенностям работы дизеля к нему легче всего удается приспособить именно турбокомпрессор.
Во-первых, как уже указывалось, подача воздуха в дизеле не связана с подачей топлива и не требует тонкой регулировки — чем больше воздуха, тем лучше. Во-вторых, диапазон рабочих оборотов — от холостых до максимальных — у дизеля меньше, соответственно, проще осуществляется управление турбокомпрессором, с этим вполне справляется обычный перепускной клапан в турбине. Кроме того, благодаря высокой степени сжатия давление отработавших газов дизеля в 1,5-2,5 раза выше — это делает эффективней работу турбины на низких оборотах.
Все это объясняет, почему практически все, по крайней мере европейские, производители для наддува дизельных двигателей применяют именно турбокомпрессор. Исключением является, пожалуй, только японская Mazda, которая на модели 626 Wagon предлагает 4-цилиндровый дизель с нагнетателем Comprex, характеристики которого не особенно впечатляют: при объеме 1998 см куб. мощность и крутящий момент, соответственно, 75 л. с. (4000 об./мин.) и 169 Нм (2000 об./мин.).
Есть и другие факторы, облегчающие применение наддува на дизелях. В отличие от бензиновых двигателей, где из-за опасности детонации степень сжатия при турбировании приходится уменьшать примерно на 20%, дизели к детонации не склонны, поэтому при применении наддува степень сжатия приходится снижать незначительно, всего на несколько процентов, а иногда можно обойтись и без этого.
Эксплуатация: плюсы и минусы
К числу несомненных достоинств дизельных двигателей, как атмосферных, так и турбированных, относятся меньший, чем в бензиновых, расход топлива (примерно на 30%), нетребовательность к качеству топлива и экологическая чистота выхлопа. Дизельное топливо к тому же на 20-30% дешевле, хотя это сильно зависит от страны или региона.
Меньшая мощность дизелей с успехом компенсируется, как мы видели, применением наддува. На рис. 2 видно, что 1,2-литровый турбодизель по мощностным характеристикам эквивалентен 1,6-литровому атмосферному бензиновому двигателю.
В целом дизельный двигатель долговечен — его ресурс обычно на 20-30% больше, чем у бензинового. При турбировании ресурс, естественно, уменьшается, но не так сильно, как у бензинового, всего лишь на 10-20%. Иногда, как бы странно это ни звучало, турбирование может даже увеличить ресурс, например, при постоянной эксплуатации автомобиля в высокогорных районах, где атмосферному дизелю не хватает воздуха — наддув оптимизирует сгорание и позволяет избавиться от жесткой работы двигателя, снижая тем самым ударные нагрузки на его узлы и детали.
Благодаря простоте схемы управления турбокомпрессором повышается надежность и снижаются расходы на обслуживание.
В эксплуатации дизельных автомобилей есть некоторые особенности — неважно, турбирован их двигатель или нет. Главная из них — зимний запуск. По традиции многие считают, что дизель на морозе не запустишь. Это не так — если автомобиль рассчитан на эксплуатацию при низких температурах. Двигатель, например, Peugeot 405 при использовании соответствующего масла, зимней солярки и встроенных свечей накаливания для подогрева зоны впрыска пускается при температуре -32°С — доказано практикой. А вот в инструкции по эксплуатации Chevrolet Suburban с 6,5-литровым турбодизелем, который тоже оснащен свечами накаливания, уже при -18°С предлагается пользоваться электрическим нагревателем блока цилиндров с внешним, из розетки, питанием.
Еще одна проблема, на которую иногда жалуются, — это загрязнение форсунок от плохой солярки. Но эта же проблема возникает и в бензиновых двигателях с системами впрыска топлива. Решить ее позволяет периодическая, строго по инструкции или даже чаще, замена топливного фильтра. Заодно это продлит и срок службы плунжерных пар.
И наконец, стоимость. Как уже говорилось, дизель дороже. Но по сравнению со стоимостью самого двигателя стоимость турбокомпрессора относительно невелика, поэтому турбирование дизеля, значительно улучшая потребительские качества автомобиля, лишь ненамного увеличивает его цену.
В таблице 2 приведены некоторые характеристики автомобиля Peugeot 306 XT, оснащенного разными двигателями — двумя бензиновыми с впрыском и турбодизелем примерно такой же мощности. Сравнение характеристик показывает, что турбодизельный вариант ни в чем не уступает бензиновым. Действительно, турбодизельная версия стоит дороже на $1000. Но подсчитано, что на ее эксплуатации, например, в Германии в год при пробеге 20 тыс. км экономится DM900. Для России годовая экономия только на топливе составила бы $250-300. С учетом долговечности дизельного двигателя и меньших расходов на его эксплуатацию первоначальные дополнительные затраты окупятся за 2-3 года.
Некоторые могут возразить, что через такой срок автомобиль уже пора менять. Наверное, это правильно. Но не всем по карману. Да и покупать дизельный или турбодизельный автомобиль будут не любители острой спортивной езды, у которых машина все равно долго не живет, а те, кто предпочитает экономичность и надежность, пусть даже и несколько медлительную.
Виталий Струговщиков
Таблица 1.
Характеристики Volkswagen Passat GT TDI
Двигатель | турбодизель |
Рабочий объем (см куб.) | 1898 |
Мощность (л. с.) | 90 (4000 об./мин.) |
Крутящий момент (Нм) | 202 (1900 об./мин.) |
Вес (кг) | 1343 |
Максимальная скорость (км/ч) | 178 |
Разгон от 0 до 100 км/час с | 13,9 |
переключением передач (сек.) | |
Разгон от 60 до 100 км/ч на | 11,6 |
4-й передаче (сек.) | |
Расход топлива (л/100 км) | 5,0-8,8 |
Уровень шума в салоне при 100 км/ч (дБ) | 67 |
Цена в Германии (DM) | 43600 |
Таблица 2.
Характеристики Peugeot 306 XT
Модель | Peugeot 306 XT 1.6i | Peugeot 306 XT 1.8i | Peugeot 306 XTDT |
---|---|---|---|
Двигатель | бензиновый с | бензиновый с | турбодизель |
впрыском | впрыском | ||
Рабочий объем (см куб.) | 1587 | 1762 | 1905 |
Степень сжатия | 9,6 | 9,25 | 21,8 |
Мощность (л. с.) | 88 (5600 об./мин.) | 101 (6000 об./мин.) | 92 (4000 об./мин.) |
Крутящий момент (Нм) | 135 (3000 об./мин.) | 153 (3050 об./мин.) | 196 (2250 об./мин.) |
Полная масса (кг) | 1570 | 1590 | 1630 |
Разгон от 0 до 100 км/ч | 12,9 | 12,3 | 12,4 |
(сек.) | |||
Максимальная скорость | 180 | 185 | 180 |
(км/ч) | |||
Расход топлива по | 9,0 | 10,4 | 7,5 |
городскому циклу | |||
(л/100 км) | |||
Каталожная цена (шв. | 22950 | 23500 | 24950 |
франки) |
Бензиновые автомобили производят больше углеродистых твердых частиц, чем современные дизельные автомобили, оборудованные фильтрами
Большинство углеродистых ТЧ из легковых автомобилей — это SOA 1,2,3,4 , который, как известно, содержит вредные реактивные формы кислорода 5 и повреждает ткань легких 6 . Однако, несмотря на обширное исследование загрязнения автомобилей с дизельным двигателем 7 , относительный вклад дизельных и бензиновых автомобилей в окружающую среду SOA остается неустановленным. Хотя в настоящее время средний по ЕС коэффициент выбросов ТЧ для парка легковых автомобилей намного выше для дизельного топлива, чем для бензина 8 , эти значения искажены более старыми автомобилями и не отражают воздействия устройств последующей обработки последнего поколения.Дизельные легковые автомобили, продаваемые сегодня в ЕС / США, имеют дизельные сажевые фильтры (DPF) 9 , пристенный фильтр, часто покрытый или связанный с катализатором окисления. Таким образом, для оценки относительных достоинств различных технологий двигателей и уменьшения загрязнения транспортных средств необходимы знания о первичных выбросах и образовании SOA от современных легковых автомобилей, оснащенных новейшими технологиями доочистки.
В то время как в предыдущих исследованиях изучались выбросы / образование углеродсодержащих аэрозолей из транспортных средств с помощью восходящего подхода (лабораторная количественная оценка выбросов из выхлопной трубы) 1, 10 или подходов к распределению источников сверху вниз 11 , здесь мы объединяем оба подхода.Мы определяем количество углеродсодержащих ТЧ из современных легковых автомобилей (бензин, соответствующий стандарту Euro 5 и дизельное топливо с сажевым фильтром, предельные значения для загрязняющих веществ указаны в таблице S1 дополнительной информации (SI)). Затем мы ограничиваем наши измерения, используя самые современные исследования распределения источников, обеспечивая всестороннюю оценку текущего состояния и будущих тенденций в загрязнении бензином и дизельным двигателем транспортных средств. Кроме того, мы представляем лабораторные измерения образования SOA бензиновых автомобилей при низких температурах (-7 ° C) в дополнение к измерениям при 22 ° C.Низкие температуры значительно увеличивают выбросы транспортных средств 12, 13 , включая прекурсоры SOA, и способствуют конденсации газов в аэрозольную фазу 14 . С помощью этих измерений мы параметризуем образование SOA в транспортных средствах, учитывая полный диапазон соответствующих температур окружающей среды, фоновые концентрации OA и степень атмосферного старения. Этот метод параметризации является новым и, что критически важно, не требует прямых знаний о составе прекурсора (который обычно включает неизвестные и / или не поддающиеся количественному определению газы).
На рис. 1 показана экспериментальная установка, использованная в этом исследовании, а подробные сведения о контрольно-измерительных приборах, испытательном парке и экспериментальных условиях в камере для смога приведены в таблицах SI–5. На рисунке 2a показано сравнение коэффициентов выбросов (EF, г углерода (C), кг −1 топлива) углеродсодержащего аэрозоля и образования SOA во время Нового европейского ездового цикла (NEDC, SI, рис. S1, от используемого бензина стандарта Euro 5). и легковые автомобили с дизельным сажевым фильтром, измеренные в камере для смога 4 . КВ автомобилей с дизельным сажевым фильтром EF на несколько порядков ниже инвентарной стоимости (0.68–2,64 г кг −1 топлива) 8 и намного ниже тех, которые указаны для старых легковых автомобилей без сажевого фильтра 3, 15 , в то время как автомобили с бензиновым двигателем сопоставимы с инвентарной стоимостью (0,01–0,04 г кг — 1 топлива). Бензиновые автомобили выбрасывают в среднем в 10 раз больше углеродистого аэрозоля при 22 ° C и в 62 раза больше при -7 ° C по сравнению с дизельными автомобилями, в основном из-за значительно более высокого BC, а EF при -7 ° C сравнимо с выбросами от старого дизельного топлива. Низкие температуры резко увеличили первичные выбросы и образование вторичного углеродистого аэрозоля от бензиновых автомобилей, но не от дизельного топлива.Поразительно, что для одного бензинового автомобиля выбросы ЧУ были как минимум в 400 раз выше, чем у дизелей (по сравнению с пределом обнаружения). Увеличение выбросов при более низких температурах связано с более выраженным эффектом холодного пуска, который, вероятно, является следствием (1) более низкой эффективности сгорания из-за потери энергии на холодных поверхностях двигателя и повышенного трения из-за того, что смазочные материалы слишком вязкие при низких температурах; и (2) увеличенная задержка перед зажиганием катализатора. Эти факторы имеют тенденцию быть более важными для автомобилей с бензиновым двигателем, чем автомобилей с дизельным двигателем 16, 17 .Дизельные автомобили выделяли в 10 раз больше NO X при обеих температурах. Выбросы NO X от транспортных средств в реальном мире имеют тенденцию отличаться от результатов лабораторных исследований 18, 19 . Однако важно отметить, что таких смещений не ожидается для других загрязнителей, например ТГК 20 . Если бы SOA было добавлено к первичным выбросам, инвентарные значения для бензиновых автомобилей были бы намного превышены: выбросы от новых бензиновых автомобилей (как в ЕС, так и в США) производят до 6,5 раз больше SOA, чем POA, после 5–10 часов эксплуатации. атмосферное старение 2 .Между тем, новые дизельные автомобили не производили обнаруживаемого SOA, в отличие от старых дизелей, для которых производство SOA примерно равно выпущенному POA 3 . Отсутствие наблюдаемого SOA в дизелях DPF объясняется химическим составом выбросов THC; в то время как выбросы от дизелей без DPF химически напоминают пары дизельного топлива 21 , выхлоп дизельных двигателей с DPF содержит большую долю (> 70%) короткоцепочечных кислородсодержащих соединений, в основном формальдегида и ацетальдегида, которые являются гораздо менее эффективными прекурсорами SOA чем ароматические соединения, содержащиеся в выбросах бензина (рис.3в). Эти результаты ставят под сомнение существующую парадигму, согласно которой автомобили с дизельным двигателем связаны, как правило, с гораздо более высокими уровнями выбросов ТЧ 8 , что отражает эффективность недавних средств дополнительной обработки дизельного топлива, соответствующих стандарту Евро 5–6, таких как сажевые фильтры в сочетании с катализаторами окисления дизельного топлива. Кроме того, в то время как Gordon et al . 3 сообщает о первичных выбросах ТЧ (г кг -1 топлива) во время регенерации DPF (сжигание накопленных ТЧ), аналогично тем, которые происходят при обычном вождении автомобиля без DPF, регенерация DPF активируется нечасто (каждые несколько сотен км ), длится около одной минуты и, скорее всего, произойдет с высокой скоростью (более вероятно, за пределами густонаселенных районов).Таким образом, чистый результат регенерации вряд ли значительно снизит эффективность DPF. Все коэффициенты выбросов и коэффициенты производства SOA для различных испытаний (в том числе в г / км −1 ) см. В таблицах SI S6–7.
Рис. 1Схема (не в масштабе) экспериментальной установки. Испытательный автомобиль и камера для смога работали внутри испытательной камеры с контролируемой температурой с приборами снаружи. Во время испытаний приборы работали на выхлопной трубе и от пробоотборника постоянного объема (CVS), в то время как небольшая часть выбросов отбиралась в камеру для смога через нагретый эжекторный разбавитель (общий коэффициент разбавления ~ 150).Оборудование выхлопной трубы включало инфракрасный спектрометр с преобразованием Фурье (FTIR), недисперсионный инфракрасный датчик (NDIR), пламенно-ионизационный детектор (FID) и хемилюминесцентный детектор (CLD). В CVS были инструменты NDIR, CLD и FID, а также подогреваемый пробоотборник с гравиметрическим фильтром. После тестирования первичные выбросы были исследованы, а затем выдержаны в камере для смога под УФ-светом. Газофазными приборами были времяпролетный масс-спектрометр реакции переноса протона (PTR-ToF-MS), FID, резонаторный кольцевой спектрометр, детекторы оксида азота (NO X ), монитор озона (O 3 ) и датчики относительной влажности и температуры (RH / T).Аэрозольные приборы представляли собой времяпролетный масс-спектрометр аэрозолей высокого разрешения (HR-ToF-AMS), сканирующий измеритель подвижности частиц (SMPS) и эталометр. В таблице S2 подробно перечислены все камерные инструменты, а в таблице Platt и др. . 4 дает более полное описание этой установки.
Рис. 2Выбросы углерода / образование вторичных органических аэрозолей от современных легковых автомобилей с дизельным и бензиновым двигателем. ( a ) Коэффициенты выбросов аэрозолей (г кг -1 топлива), измеренные в этом исследовании.SOA находится при воздействии ОН = 10 7 мол. см −3 ч. Дизельные автомобили не производили измеримого ОА, поэтому приводится гравиметрический ТЧ. Для сравнения, среднее и стандартное отклонение коэффициентов выбросов ТЧ от дизелей средней мощности без DPF из Gordon и др. . 2013 ref. 3. ( b ) Среднее соотношение коэффициентов выбросов дизельного топлива / бензина для OA, BC, PM, метана (CH 4 ), общего количества углеводородов (THC), ароматических углеводородов (Ar. HC), оксидов азота (NO X ) и окись углерода (CO) при 22 ° C и -7 ° C.Значения Euro 5 получены с использованием NEDC, в то время как автомобили с технологией LEV2 и DPF для США используют унифицированный ездовой цикл США, UC 3, 21 . Хотя истинное соотношение не может быть рассчитано для OC и BC, максимальное значение, основанное на пределах обнаружения, может быть выделено красными звездочками (*). В отличие от CO и особенно NO X , выбросы ТЧ и углеводородов от бензиновых автомобилей выше, чем от дизельных автомобилей. ( c ) Усредненный состав выхлопных газов, нормированный по ТГК (температура в скобках) в камере для смога с нехарактерными выбросами, выделенными серым цветом.Самая большая часть бензина THC состоит из метилбензолов, присутствующих в топливе, тогда как остальная часть, вероятно, состоит из уцелевших линейных / разветвленных, насыщенных / ненасыщенных углеводородов. Между тем, выбросы дизельного топлива в основном состоят из продуктов пиролиза, включая небольшие карбонилы (формальдегид, ацетальдегид) и карбоновые кислоты (муравьиная, уксусная), которые не являются эффективными прекурсорами SOA. Вспомогательный материал, относящийся к рис. 2, доступен в таблицах SI S3–7, SI.
Рис. 3Выходы вторичных органических аэрозолей от выбросов бензиновых автомобилей, соответствующих стандарту Евро 5.Смоделированные выходы вторичных органических аэрозолей (SOA) в зависимости от концентрации взвешенных органических аэрозолей (C OA ) от трех бензиновых автомобилей стандарта Евро 5 при 22 и −7 ° C (оранжевый и синий, соответственно). Планки погрешностей представляют собой одно стандартное отклонение. Также показаны: выходы SOA из легких ароматических углеводородов (выход Ar ) и паров дизельного топлива и бензина (выход паров дизельного топлива , выход паров бензина ), данные Jathar и др. . 38 . Сравнение ясно показывает, что выход SOA из выбросов бензина выше, чем выход, основанный на содержании ароматических веществ в топливе или ожидаемый из паров бензина, что позволяет предположить наличие неидентифицированных прекурсоров SOA в выхлопных газах.Между тем, выбросы дизельного сажевого фильтра не приводят к измеряемым SOA, в отличие от окисления паров дизельного топлива. Взятые вместе, оба этих наблюдения показывают, что выход SOA из выбросов бензина и дизельного топлива нельзя предсказать на основе выхода паров топлива. Обратите внимание, что выходы SOA для бензиновых автомобилей не корректируются с учетом потерь на стенках из паровой фазы (см. Методы) для целей взаимного сравнения с предыдущими исследованиями.
Рисунок 3 показывает, что выходы SOA (ΔSOA / ΔTHC) для бензиновых легковых автомобилей выше при -7 по сравнению с 22 ° C и превышают выходы как для сырого бензина, так и для чистых однокольцевых ароматических углеводородов.Эти урожаи были определены с использованием новой методологии, как описано в SI. Мы также оценили эффективную энтальпию испарения (включая эффект неидеального перемешивания) в 19 кДж / моль -1 и изменение выхода на 2 ± 0,4% K -1 . Выходы SOA в зависимости от температуры и концентраций взвешенных OA см. На SI Рис. S6. Поскольку бензиновые автомобили производили SOA, а дизели с сажевым фильтром — нет, ожидается, что легковые автомобили с бензиновым двигателем будут преобладать в городских транспортных средствах SOA 11, 22,23,24 .Однако не все исследования согласны с этим, например Gentner et al . 25 предполагают, что автомобили с дизельным двигателем производят больше SOA, поскольку 1) большая часть THC на шоссе поступает от дизелей и 2) THC в выхлопных газах аналогичен испаренному топливу, для которого выход SOA в дизельном топливе выше (рис. 3). Одно из объяснений этого может заключаться в том, что предположение 1 неверно для более новых автомобилей, поскольку состав ТГК из новых дизелей включает большую долю низкомолекулярных карбонилов, которых нет в неочищенном дизельном топливе (рис.2). Другое объяснение может заключаться в том, что измерения на обочине дороги не фиксируют большие выбросы THC, связанные с холодным запуском бензина, которые, вероятно, происходят до достижения основных автомагистралей (рис. 4). Наши результаты показывают, что выбросы от транспортных средств чувствительны к месту отбора проб, возрасту парка и температуре окружающей среды, подразумевая, что региональные исследования, представляющие совокупность выбросов, вероятно, дадут более точные оценки относительной важности дизельного топлива по сравнению с бензином для SOA окружающей среды, чем придорожные исследования на одно место.
Рис. 4Концентрации общего количества углеводородов в выхлопных газах (THC) с временным разрешением для бензиновых (количество автомобилей, n = 11) и дизельных (n = 6) легковых автомобилей стандарта Евро 5. ( a ) Медиана разрешенных во времени концентраций ТГК в выхлопных газах дизельных и бензиновых легковых автомобилей во время ездового цикла NEDC при -7 и 22 ° C (целевая скорость, заштрихованная область) ( b ) Соотношение распределений чьи медианы указаны в A и показаны как функция плотности вероятности (PDF, цветовая шкала) для случая 22 ° C.Несмотря на то, что соотношение THC в выхлопных газах дизельного топлива и бензина широко распределено (> 10) и варьируется, особенно во время начальных операций на более высоких скоростях, разница все же статистически значима. Серая линия показывает интегрированное по времени медианное значение распределения (то есть от начала испытания до обозначенного времени, меньшее, чем разрешенное по времени отношение для большей части цикла, из-за высоких абсолютных концентраций и низкого содержания ТГК бензин: дизельное топливо во время холода. start и ниже единицы, что указывает на то, что общие выбросы THC в выхлопных газах выше).Обратите внимание на логарифмическую шкалу на обеих панелях. В то время как выбросы THC от дизельных автомобилей на порядок выше, чем выбросы бензина в течение почти всего периода вождения, выбросы бензина на два порядка выше, когда катализатор холодный. Из-за эффекта холодного пуска суммарные выбросы бензиновых автомобилей превышают выбросы дизельного топлива даже после поездки на несколько километров (~ 14 км). Этот эффект более выражен при -7 ° C (SI Рис. S3).
Далее мы показываем, что SOA для бензиновых транспортных средств может составлять большую, иногда доминирующую часть SOA для транспортных средств, моделируя SOA окружающей среды из бензиновых и старых дизельных автомобилей в L.A. области (рис. 5a, см. Также материалы SI) и сравнивая результат с наблюдаемым SOA, связанным с ископаемым топливом ( f SOA ) 24, 26, 27 . Мы используем толуол в качестве индикатора для выбросов бензиновых автомобилей и выходов из наших экспериментов со смоговой камерой, начиная с Borbon и др. . 28 демонстрируют, что транспорт является преобладающим источником толуола в Лос-Анджелесе, исходя из отношения толуола к CO, в то время как наши собственные эксперименты показывают минимальные выбросы толуола из дизельного топлива.Кроме того, Бейкер и др. . 6, 29 показывают, что во время кампании CALNEX и с использованием данных инвентаризации выбросов на точечные источники, не являющиеся транспортными средствами, приходится 12% и 6% бензол + толуол + ксилолы (BTEX) в Бейкерсфилде и Пасадене, соответственно.
Рис. 5Оценки доли дизельных и бензиновых легковых автомобилей в атмосферных городских твердых частицах и углеродистых аэрозолях. ( a ) Вклад бензина (синий, заштрихованный) и дизельных автомобилей (розовый, заштрихованный) в ископаемом SOA (зеленый, заштрихованный) в L.A. бассейн, включающий измерения воздействия OH в окружающей среде, выходы SOA камеры для транспортных средств LEV1 / LEV2 и концентрации индикаторов в окружающей среде (см. Методологию в SI). Максимумы-минимумы для полной автомобильной SOA показаны черными пунктирными линиями. Синие маркеры показывают приблизительную доходность по 5 евро для сравнения. Неопределенности в воздействии OH не учитываются, что, возможно, объясняет временной сдвиг между модельными и наблюдаемыми пиковыми концентрациями. Для измеренного SOA ископаемых, диапазон определяется путем распространения наилучшей оценки ошибок в определении SOA из Hayes и др. . 26 и те, которые связаны с определением фракции ископаемых SOA на основе измерений 14 C в Zotter и др. . 27 . ( b ) Черный углерод (BC), углеводородоподобный органический аэрозоль (HOA) и связанный с ископаемым топливом (f) SOA и национальная доля дизельных дорожных транспортных средств (всех типов) в соответствии с моделью GAINS 39 . Состав ископаемого углеродистого вещества в Европе и США явно различается: преобладают ЧУ из выбросов дизельного топлива в Европе и ископаемого SOA из выбросов бензина в США, что соответствует расчетам снизу вверх.( c ) Доля дизельных легковых автомобилей в основных автомобильных ТЧ (бензин + дизельное топливо) в зависимости от общего расхода топлива легковых автомобилей и доли дизельных сажевых фильтров при 22 ° C. Пунктирными линиями показано влияние фракции сажевого фильтра на долю дизельных транспортных средств в выбросах ТЧ при любой данной фракции расхода топлива. Прогноз для ЕС показан с данными о доле дизельного топлива Euro 5 из модели TREMOVE 30 . Для текущего парка первичных ТЧ из бензиновых автомобилей будет больше, чем из дизельного топлива, только если 97% дизелей оснащены сажевым фильтром.SOA будет демонстрировать аналогичную, но менее выраженную тенденцию. Дополнительные данные показаны в SI Рис. S5 и SI в Таблице S11.
Смоделированный SOA с погрешностями соответствует измеренным f SOA при условии выхода из LEV1 / LEV2 / Euro 5, в то время как только выбросы бензина могут объяснить до 82% наблюдаемых f SOA . Между тем, расчетный вклад дизельного топлива значительно ниже. Хотя мы не достигаем закрытия с помощью данных окружающей среды, важная информация — это разделение между и . SOA для автомобилей с бензиновым и дизельным двигателем, показывающий, что бензин составляет большую долю.Этот вывод согласуется с данными наблюдений за аэрозолями, связанными с ископаемым топливом, в европейских городах и США (рис. 5b). POA и BC представляют собой самую большую долю углеродсодержащих ТЧ в Европе, что соответствует более высокой доле дизельных автомобилей. В этих местах: f SOA , вероятно, в основном связан с выбросами дизельного топлива без DPF, если предположить, что он приблизительно равен выбросам дизельного топлива POA 12 . В США, где автомобили работают почти исключительно на бензине, SOA является преобладающей долей углеродсодержащих ТЧ, как и следовало ожидать из восходящих оценок на рис.5а. Таким образом, в сочетании лабораторные выходы SOA и измерения в окружающей среде предполагают, что большая и, вероятно, все более доминирующая доля углеродсодержащих аэрозолей приходится на бензиновые легковые автомобили в США, в то время как в Европе старые дизельные двигатели без сажевого фильтра все еще доминируют в углеродсодержащих аэрозолях.
Мы подчеркиваем, что, поскольку выбросы ТЧ намного выше от дизельных автомобилей без сажевого фильтра, выбросы углерода от дизельных легковых автомобилей еще некоторое время будут оставаться значительными. На рисунке 5c показана оценка воздействия постепенного введения сажевых фильтров на долю первичных автомобильных ТЧ из дизельного топлива 30 .Прогноз для ЕС, показанный синим цветом, предполагает первоначальное увеличение доли первичных ТЧ из дизельных транспортных средств с последующим снижением по мере широкого распространения сажевых фильтров. Принятие электромобилей не меняет выводов, поскольку они не влияют на относительную долю бензиновых или дизельных легковых автомобилей. Результаты показывают, что при наличии только 3% автомобилей с дизельным двигателем без сажевого фильтра дизельные автомобили по-прежнему будут преобладать в выбросах первичного углерода от автомобилей в ЕС в теплых условиях. Между тем, зимой бензин может уже в настоящее время преобладать над углеродосодержащими ТЧ легковых автомобилей.
Повышенное образование углеродсодержащих аэрозолей современными бензиновыми автомобилями наблюдалось в ходе испытаний на транспортных средствах, зарегистрированных в США, а также в этой работе на транспортных средствах Европы. Во всех наших тестах современные бензиновые автомобили производили больше углеродсодержащего аэрозоля, чем современные дизели с сажевым фильтром. Это было верно при рассмотрении только первичных твердых частиц, но разница больше, если учесть дополнительное производство SOA из бензинов, и даже больше, если учесть влияние низких температур на выбросы.Мы также показываем, что эти измерения согласуются с наблюдениями в окружающей среде высоких фракций ископаемого SOA в районах с высокой долей бензиновых автомобилей. Наши результаты показывают, что по мере модернизации автопарка за счет увеличения доли дизельных сажевых фильтров относительный вклад бензиновых легковых автомобилей в углеродсодержащие аэрозоли будет увеличиваться. Обратите внимание, что хотя мы делаем эти выводы из ездовых циклов, предназначенных для представления реального вождения, и из данных об окружающей среде, отражающих совокупность всех выбросов, возможны исключения.Важно отметить, что количество углеродсодержащего аэрозоля в любом регионе от той или иной технологии двигателей будет зависеть от количества транспортных средств с каждым типом используемых двигателей и возраста транспортных средств (т. Е. Количества старых двигателей без сажевого фильтра. по сравнению с современными дизелями с сажевым фильтром), что может зависеть от региона. Конкретные случаи, когда легковые автомобили с дизельным двигателем могут выделять больше углеродсодержащего аэрозоля, чем бензин, могут включать очень длительные поездки (относительная важность холодного запуска ниже), условия эксплуатации здесь не исследованы. E.грамм. высокая скорость (> 120 км / ч −1 ) или экстремальные температуры, а также автомобили с нестандартными значениями (обратите внимание на очень большие диапазоны выбросов, например, на рис. 4). Тем не менее, поскольку выбросы NO X обычно выше у дизельных автомобилей, существует выбор между новыми легковыми автомобилями, которые обычно выбрасывают меньше ТЧ и производят меньше SOA (дизельное топливо), или новыми легковыми автомобилями, которые выбрасывают меньше NO X (бензин ).
Преобразование выбросов дизельного топлива в атмосферу | База данных исследовательского проекта | Исследовательский проект грантополучателя | ЗАКАЗ
Преобразование выбросов дизельного топлива в атмосферу
Номер гранта Агентства по охране окружающей среды: R832347C147Подпроект: Это подпроект номер 147, учрежденный и управляемый Директором Центра в рамках грант R832347
(EPA не финансирует и не создает подпроекты; EPA присуждает и управляет общим грантом для этого центра).
Центр: Институт воздействия на здоровье (2005 — 2010)
Директор центра: Гринбаум, Дэниел С.
Название: Преобразование выбросов дизельного топлива в атмосферу
Исследователи: Зелинска, Варвара
Учреждение: Научно-исследовательский институт пустынь , Институт медицинских эффектов
Руководитель проекта Агентства по охране окружающей среды: Чанг, Серена
Срок проекта: 1 апреля 2005 г. 31 марта 2010 г.
RFA: Институт воздействия на здоровье (2005 г.) RFA Text | Списки получателей
Категория исследований: Здоровье человека , Качество воздуха и токсичность воздуха , Воздуха
Цель:
Дизельные выхлопные газы (DE) являются важным фактором загрязнения воздуха и состоят из сложной смеси сотен соединений в виде газа или частиц.После выброса DE подвергается химическим и физическим превращениям или «старению» в атмосфере, а также диспергированию и переносу. Процесс старения зависит от среды, в которую выделяется ДЭ; атмосфера содержит множество соединений, в том числе окисляющие и нитрующие радикалы, а также органические и неорганические соединения из источников, отличных от дизельных двигателей. Эти соединения могут влиять на химический состав и токсичность DE, а также на то, как долго его различные компоненты остаются в атмосфере.Из-за существенных изменений в технологии дизельных двигателей и последующей обработке за последнее десятилетие возникла необходимость в оценке новых технологий, включая их выбросы, атмосферную переработку их выбросов и соответствующее воздействие на здоровье.
Доктор Барбара Зилинска из Исследовательского института пустынь в Рино, штат Невада, и ее коллеги предлагают изучить влияние фотохимических превращений на составляющие DE и отразятся ли такие изменения в химической и физической форме на изменениях токсичности.Эксперименты исследователей по атмосферному старению будут проводиться в камере моделирования под открытым небом Европейского фотореактора (EUPHORE) в Валенсии, Испания. Затем образцы будут отправлены в лабораторию доктора Зилински в Соединенных Штатах для подробного химического анализа и ее сотруднику доктору Джин Клэр Сигрейв из Института респираторных исследований Лавлейс в Альбукерке, штат Нью-Мексико, для токсикологических экспериментов на грызунах.
Подход:
DE будет генерироваться в EUPHORE с использованием легкового дизельного двигателя Ford 2003 года выпуска, работающего на динамометре при нагрузке около 50%.EUPHORE имеет две наружные симуляционные камеры объемом около 200 м3 и выдвижную крышку, которая позволяет протекать атмосферным реакциям при дневном свете (позволяя протекать фотохимическим реакциям) или в темноте, имитируя ночные условия. В дополнение к DE, несколько соединений (предшественники гидроксильных [OH] или нитратных [NO3] радикалов, толуол или смесь летучих органических соединений [VOCs]) будут добавлены в атмосферную смесь для создания различных условий старения. Затем смеси дают возможность прореагировать в течение 3-5 часов; после завершения реакций крышка камеры будет закрыта (если открыта), и интегрированные пробы воздуха будут собираться в течение ночи с использованием тефлоновых фильтров для сбора частиц и картриджей адсорбент-смола XAD для сбора газообразных частиц.Параллельные образцы будут собраны для подробного химического анализа и токсикологических экспериментов in vivo.
Исследователи будут измерять большое количество соединений, которые, как известно, присутствуют в DE, включая алканы, полициклические ароматические углеводороды (ПАУ), нитро-ПАУ и полярные соединения, а также гопаны и стераны, которые, как известно, присутствуют в смазочном масле. Они также будут измерять элементарный углерод (EC) и органический углерод (OC), NO3 и сульфат.
Будут проведены две серии токсикологических экспериментов.Животных умерщвляют через 24 часа после интратрахеальной инстилляции для оценки маркеров воспаления в крови и жидкости лаважа легких, а также признаков воспаления, цитотоксичности и паренхиматозных изменений в легочной ткани. Кроме того, мышей будут оценивать на маркеры окислительного стресса и фагоцитоза макрофагов в тканях легких и клетках жидкости лаважа, соответственно.
Ожидаемые результаты:
Исследователи ожидают успешного проведения комплексного исследования по характеристике атмосферных превращений DE под воздействием солнечного света, O3, радикалов и органических соединений.Мы надеемся, что это исследование представит новые результаты атмосферного старения DE, полученного из двигателя малой мощности 2003 модельного года в различных условиях. Исследование будет включать использование современных атмосферных камер, использование реалистичного набора условий атмосферного старения и анализ большого количества органических соединений.
Дополнительные ключевые слова:
Воздействие на здоровье, качество воздуха, выбросы от мобильных источников, выхлоп дизельных двигателейСоответствующие веб-сайты:
http: // pubs.healtheffects.org/getfile.php?u=568 ВыходОтчет о проделанной работе и окончательные отчеты:
Резюме и доклады главного центра:
R832347 Институт воздействия на здоровье (2005 — 2010 гг.) Подпроекты в рамках этого центра: (EPA не финансирует и не создает подпроекты; EPA присуждает и управляет общим грантом для этого центра).
R832347C135 Механизмы токсичности твердых частиц в легких неонатальных и молодых взрослых крыс
R832347C136 Поглощение и воспалительные эффекты наночастиц в линии эндотелиальных клеток сосудов человека
R832347C138 Влияние на здоровье человека в условиях длительного воздействия R840840 на астму с последующим воздействием дизельного топлива на здоровье R8327341 Перспективный и пространственный анализ исследования Американского онкологического общества, связывающего загрязнение воздуха твердыми частицами и смертность
R832347C141 Влияние загрязнения воздуха на реполяризацию желудочков
R832347C143 Измерение и моделирование воздействия отдельных токсичных веществ воздуха для исследований воздействия на здоровье и подтверждения биомаркерами 1,307C434 -Бутадиен и его эпоксидные промежуточные соединения
R832347C145 Влияние концентрированных частиц в окружающей среде и выбросов дизельного топлива на дыхательные пути крыс
R832347C147 Преобразование выбросов дизельного топлива в атмосферу
Исследование дизельных двигателей как атмосферного источника изоциановой кислоты в городских районах 90 001
Исследовательская статья 26 июл 2017
Исследовательская статья | 26 июл 2017
Шантану Х.Джатар 1 , Кристофер Хеппдинг 1 , Майкл Ф. Линк 2 , Дельфин К. Фармер 2 , Али Ахерати 1 , Майкл Дж. Клеман 3 , Джуст А. де Гоу 4,5 , Патрик Р. Верес 4,5 и Джеймс М. Робертс 4 Shantanu H. Jathar et al. Шантану Х. Джатар 1 , Кристофер Хеппдинг 1 , Майкл Ф. Линк 2 , Дельфина К. Фармер 2 , Али Ахерати 1 , Майкл Дж.Климан 3 , Йост А. де Гоу 4,5 , Патрик Р. Верес 4,5 и Джеймс М. Робертс 4- 1 Кафедра машиностроения, Государственный университет Колорадо, Форт-Коллинз, Колорадо 80523, США
- 2 Химический факультет, Государственный университет Колорадо, Форт-Коллинз, Колорадо 80523, США
- 3 Департамент гражданского и Экологическая инженерия, Калифорнийский университет в Дэвисе, Дэвис, Калифорния 95616, США
- 4 NOAA Earth System Research Laboratory, Chemical Sciences Division, Boulder, CO 80305, USA
- 5 Кооперативный институт исследований в области наук об окружающей среде, Университет Колорадо, Боулдер, Колорадо 80305, США
- 1 Кафедра машиностроения, Университет штата Колорадо, Форт-Коллинз, Колорадо 80523, США
- 2 Химический факультет, Университет штата Колорадо, Форт-Коллинз, Колорадо 80523, США
- 3 Департамент гражданского и Экологическая инженерия, Калифорнийский университет в Дэвисе, Дэвис, Калифорния 95616, США
- 4 NOAA Earth System Research Laboratory, Chemical Sciences Division, Boulder, CO 80305, USA
- 5 Кооперативный институт исследований в области наук об окружающей среде, Университет Колорадо, Боулдер, Колорадо 80305, США
Корреспонденция : Шантану Х.Джатар ([email protected])
Скрыть данные об авторе Получено: 20 января 2017 г. — Начало обсуждения: 22 февраля 2017 г. — Исправлено: 18 мая 2017 г. — Принято: 19 мая 2017 г. — Опубликовано: 26 июля 2017 г.Изоциановая кислота (HNCO), кислый газ, содержащийся в табачном дыме, городской среде и регионах, затронутых сжиганием биомассы, связана с неблагоприятными последствиями для здоровья. Известно, что бензиновые и дизельные двигатели и сжигание биомассы выделяют HNCO, и предполагается, что они выделяют прекурсоры, такие как амиды, которые могут фотохимически реагировать с образованием HNCO в атмосфере.Все чаще дизельные двигатели в развитых странах, таких как США, должны использовать системы селективного каталитического восстановления (SCR) для снижения выбросов оксидов азота из выхлопных труб. Известно, что химия СКВ производит HNCO в качестве промежуточного продукта, а системы СКВ считаются атмосферным источником HNCO. В этой работе мы измеряем выбросы HNCO от дизельного двигателя, оборудованного системой SCR, и, в сочетании с более ранними данными, используем трехмерную модель переноса химических веществ (CTM) для моделирования концентраций в окружающей среде и вкладов источников / путей в HNCO в городских условиях. среда.Испытания двигателя проводились при трех различных нагрузках двигателя, с использованием двух разных видов топлива и в нескольких рабочих точках. HNCO измеряли с помощью масс-спектрометра с химической ионизацией ацетата. Было обнаружено, что дизельный двигатель выделяет первичный HNCO (3–90 мгкг топлива -1 ), но мы не обнаружили никаких доказательств того, что система SCR или другие устройства дополнительной обработки (например, катализатор окисления и фильтр твердых частиц) производили или увеличивали выбросы HNCO. . Прогнозы CTM хорошо сравнивались с единственными доступными наборами данных наблюдений для HNCO в городских районах, но недооценивали вклад вторичных процессов.Сравнение показало, что дизельные двигатели были крупнейшим источником HNCO в городских районах. CTM также предсказал, что среднесуточные концентрации HNCO достигают максимума ∼110pptv, но на порядок ниже уровня 1ppbv, который может быть связан с физиологическими эффектами у людей. Вклад прекурсоров из других источников сжигания (сжигание бензина и биомассы) и зимние условия могут повысить концентрацию HNCO, но это необходимо изучить в будущей работе.
Некоторые соображения о влиянии атмосферных условий на работу автомобильных дизельных двигателей
Образец цитирования: Фосбери Р. и Голубецки З. «Некоторые соображения о влиянии атмосферных условий на работу автомобильных дизельных двигателей», Технический документ SAE 660744, 1966 г., https: // doi.org / 10.4271 / 660744.Загрузить Citation
Автор (ы): Р. А. К. Фосбери, З. Голубецкий
Филиал: Ассоциация исследований автомобильной промышленности
Страницы: 26
Событие: Национальные встречи по энергетическим установкам и транспорту
ISSN: 0148-7191
e-ISSN: 2688-3627
Также в: Сделки SAE 1966 года-V75-A, Дизельный двигатель с турбонаддувом и двигатели с искровым зажиганием-PT-23
Diesel Fuel — обзор
3.2.4 Дизельное топливо
Дизельное топливо по существу такое же, как топочный мазут, но доля крекинг-газойля обычно меньше, поскольку высокое содержание ароматических веществ в крекинг-газойле снижает цетановое число дизельного топлива.
Допустимое содержание серы для керосина со сверхнизким содержанием серы и дизельного топлива со сверхнизким содержанием серы (15 частей на миллион) намного ниже, чем предыдущий дорожный стандарт США для дизельного топлива с низким содержанием серы (500 частей на миллион), что не только снижает выбросы соединений серы. (причина кислотных дождей), но также позволяет устанавливать передовые системы контроля выбросов, которые в противном случае были бы отравлены этими соединениями.Эти системы могут значительно снизить выбросы оксидов азота и твердых частиц.
Дизельное топливо изначально представляло собой прямогонный продукт, полученный при перегонке сырой нефти. Однако при использовании различных процессов крекинга для получения компонентов дизельного топлива дизельное топливо также может содержать различные количества выбранных крекинг-дистиллятов для увеличения объема, доступного для удовлетворения растущего спроса. Особое внимание уделяется выбору растрескавшейся ложи таким образом, чтобы она соответствовала требованиям.
В широком определении свойств дизельного топлива (таблица 3.3) существует множество возможных комбинаций характеристик (таких как летучесть, качество воспламенения, вязкость, сила тяжести, стабильность и другие свойства). Чтобы охарактеризовать дизельное топливо и тем самым установить рамки определений и ссылок, в разных странах используются различные классификации.
Примером является ASTM D975 в США, в котором сорта № 1D и 2-D являются дистиллятными топливами, типами, наиболее часто используемыми в высокоскоростных двигателях мобильного типа, в стационарных двигателях средней скорости и в железнодорожных двигателях. .Сорт 4-D относится к классу более вязких дистиллятов, а иногда и к смесям этих дистиллятов с мазутом. Топливо № 4-D применимо для использования в двигателях с низкой и средней частотой вращения, используемых в системах, предполагающих постоянную нагрузку и преимущественно постоянную скорость.
Цетановое число — это показатель склонности дизельного топлива к детонации в дизельном двигателе. Шкала основана на характеристиках воспламенения двух углеводородов n -гексадекан (цетан) и 2,3,4,5,6,7,8-гептаметилнонан (изоцетан).Цетановое число имеет короткий период задержки во время воспламенения, и ему присвоено цетановое число 100; изоцетан имеет длительный период задержки и ему присвоено цетановое число 15. Так же, как октановое число имеет значение для автомобильного топлива, цетановое число является средством определения качества воспламенения дизельного топлива и эквивалентно процентному содержанию по объему дизельного топлива. цетан в смеси с изоцетаном, что соответствует качеству воспламенения испытуемого топлива (ASTM D613).
Когда-то при производстве жидкого топлива использовалось то, что осталось после удаления желаемых продуктов из сырой нефти.В настоящее время производство мазута представляет собой сложный вопрос выбора и смешивания различных нефтяных фракций для удовлетворения определенных требований, а производство однородного, стабильного жидкого топлива требует опыта, подкрепленного лабораторным контролем.
Как и бензин, присадки также доступны для дизельного топлива. Присадки к дизельному топливу выполняют две основные функции. Первая добавка к дизельному топливу предназначена для поддержания чистоты форсунок. Чистый инжектор будет распылять идеальный туман дизельного топлива с рисунком «лисьего хвоста», обеспечивая эффективное сгорание.Грязные форсунки производят брызги топлива, которые не представляют собой однородно мелкодисперсный туман, который, помимо прочего, влияет на расход топлива, выходную мощность и качество холостого хода. Вторая роль присадок к дизельному топливу — предотвратить гелеобразование в холодную погоду. Без надлежащей присадки дизельные двигатели не запустятся, когда температура опустится ниже определенной точки.
(PDF) Преобразование выбросов дизельных двигателей в атмосферу
624 С. Сами и Б. Зелинска: Производство вторичных органических аэрозолей из выбросов современных дизельных двигателей
Volkamer, R., Платт У., Виртц К. и Мартин-Ревьехо М .: Ат-
Мосферное окисление толуола в большом объеме фотореактора на открытом воздухе:
тореактор: определение выходов продуктов, удерживающих кольцо, на месте,
J. Phys.Chem. A, 102, 10289–10299, 1998.
Klotz, B., Graedler, F., Sorenson, S., Barnes, I., and Becker, KH:
Кинетическое исследование атмосферного фотолиза α-дикарбонилов ,
внутр. J. Chem. Kinet., 33, 9–20, 2001.
Koch, S. and Moortgat, G.К .: Фотохимия метилглоксала в паровой фазе
, J. Phys. Chem., 102, 9142–9153, 1998.
Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., and Sein-
feld, J. H .: Образование вторичных органических аэрозолей в результате фотоокисления изопрена
, Environ. Sci. Technol., 40, 1869–1877, 2006.
Кролл Дж. Х. и Сайнфельд Дж. Х .: Химия вторичных органических аэрозолей
: Образование и эволюция низколетучих органических веществ в атмосфере
, Атмос.Environ., 42, 3593–3624, 2008.
Lee, S., Jang, M., and Kamens, RM: Образование SOA в результате фотоокисления α-пинена
в присутствии свежих выхлопных газов дизельной сажи
, Атмос. Environ., 38, 2597–2605, 2004.
Lim, YB и Ziemann, PJ: Продукты и механизм образования вторичных органических аэрозолей в результате реакций н-алканов
с радикалами OH в присутствии NOx. Environ. Sci. Technol.,
39, 9229–9236, 2005.
Mart´
ın, M. и Wirtz, K .: Является ли бензол прекурсором вторичного органического аэрозоля
?, Environ. Sci. Technol., 39, 1045–1054, 2005.
Meller, R., Raber, W., Crowley, JN, Jenkin, ME, and Moortgat,
GK: УФ-видимый спектр поглощения метилглиоксаля, J.
Photoch. Photobio., 62, 163–171, 1991.
Nolte, CG, Schauer, JJ, Cass, GR, and Simoneit, BRT:
Триметилсилильные производные органических соединений в исходных образцах —
частиц и в атмосферных мелких твердых частицах. , Environ.Sci.
Technol., 36, 4273–4281, 2002.
Odum, JR, Jungkamp, TPW, Griffn, RJ, Forstner, HJL,
Flagan, RC, and Seinfeld, JH: ароматические углеводороды, реформулированный газ —
линия , и образование атмосферного органического аэрозоля, Environ. Sci.
Technol., 31, 1890–1897, 1997.
Pandis, SN, Paulson, SE, Seinfeld, JH, and Flagan, C.
F. Образование аэрозолей при фотоокислении изопрена и β-
пинена , Атмос.Environ., 25A, 997–1008, 1991.
Pankow, J. F .: Абсорбционная модель разделения газа и частиц
органических соединений в атмосфере, Atmos. Environ., 28,
, 185–188, 1994.
Pathak, RK, Presto, AA, Lane, TE, Stanier, CO, Donahue, N.
,M., and Pandis, SN: Озонолиз α-пинена. : параметризация
массовой доли вторичного органического аэрозоля, Атмосфер. Chem. Phys.,
7, 3811–3821, 2007,
http: // www.atmos-chem-phys.net/7/3811/2007/.
Парк, С. Х., Ким, Х. О., Хан, Ю. Т., Квон, С. Б., и Ли, К. У .:
Скорость потери стенки полидисперсными аэрозолями, Aerosol Sci. Tech., 35,
710–717, 2001.
Peters, AJ, Lane, DA, Gundel, LA, Northcott, GL, и
Jones, KC: Сравнение большого объема и диффузии. пробоотборники для измерения легколетучих органических соединений
в атмосфере, Environ. Sci. Технол., 34, 5001–5006, 2000.
Питтс-младший, Дж. Н., Аткинсон, Р., Свитман, Дж. А., и Зилинска, Б.: Газофазная реакция нафталина
с N2O5 с образованием нитронаф-
таленов, Atmos. Environ., 19, 701–705, 1985.
Plum, CN, Sanhueza, E., Atkinson, R., Carter, WPL, and Pitts
Jr., JN: Константы скорости радикалов OH и скорости фотолиза a-
дикарбонилы, Environ. Sci. Technol., 17, 479–484, 1983.
Rinehart, L.R., Fujita, E.M., Chow, J.К., Мальяно К. и Зилин —
ска, Б .: Пространственное распределение ассоциированных органических соединений PM2,5 —
фунтов в долине Сан-Хоакин, Атмосфера. Environ., 40, 290–303,
2006.
Робинсон, А.Л., Донахью, Нью-Мексико, Шривастава, М.К., Вайткамп,
EA, Сейдж, А.М., Гришоп, А.П., Лейн, Т.Э., Пирс, мл.
Пандис, С. Н.: Переосмысление органических аэрозолей: полулетучие выбросы —
и фотохимическое старение, Science, 315, 1259–1262, 2007.
Sagebiel, J. C., Zielinska, B., Pierson, W. R., and Gertler, A.
W. Реальные выбросы и расчетная реакционная способность органических
разновидностей от автомобилей, Atmos. Environ., 30, 2287–2296,
1996.
Samy, S .: Химические превращения сложных смесей, относящиеся к атмосферным процессам: Лаборатория и исследования окружающей среды —
ies, Ph.D. Диссертация, 2009.
Сасаки, Дж., Ашманн, С. М., Квок, Э. С. С., Аткинсон, Р.и
Арей, Дж .: Продукты реакции нафталина, инициируемой радикалами ОН и NO3 в газовой фазе,
, Environ. Sci. Technol., 31, 3173–3179,
1997.
Seinfeld, JH и Pandis, SN: Атмосферная химия и
физика: от загрязнения воздуха до изменения климата, Нью-Йорк: Wi-
ley, 1998.
Сонг, К., На, К., и Кокер III, Д.Р.: Влияние углеводородов
на NOxratio на образование вторичных органических аэрозолей, Environ.
Sci. Technol., 39, 3143–3149, 2005.
Stern, J. E., Flagan, R. C., Grosjean, D., and Seinfeld, J. H .: Образование и рост аэрозолей
в атмосферном окислении ароматических углеводородов, фосфо-
, Environ. Sci. Technol., 21, 1224–1231, 1987.
Страуд, Калифорния, Макар, Пенсильвания, Микеланджели, Д.В., Мозуркевич, М.,
,Хасти, Д.Р., Барбу, А. и Хамбл, Дж .: Моделирование органического происхождения
образование аэрозоля при фотоокислении смесей толуол / NOx
: сравнение равновесного и кинетического предположений,
Environ.Sci. Technol., 38, 1471–1479, 2004.
Szidat, S., Jenk, TM, Gaggeler, HW, Synal, HA, Fisseha, R.,
Baltensperger, U., Kalberer, M., Samburova, V ., Reimann, S.,
Kasper-Giebl, A. и Hajdas, I.: Установлено радиоуглеродным (14C)
биогенных антропогенных вкладов в органический углерод (OC)
городских аэрозолей из Цюриха, Швейцария, Atmos . Environ., 38,
4035–4044, 2004.
Volkamer, R., Platt, U., and Wirtz, K .: Первичное и вторичное образование глиоксаля
из ароматических углеводородов: экспериментальное доказательство существования бициклоалкильного радикала путь от бензола, толуола и ксилола p-
, J.Phys. Chem. A, 105, 7865–7874, 2001.
Volkamer, R., Spietz, P., Burrows, JP, and Platt, U .: Поперечное сечение поглощения глиоксаля с высоким разрешением
в ультрафиолетовом свете и
ИК-спектральные диапазоны, J. Photoch. Photobio. A, 172, 35–46, 2005.
Volkamer, R., Jimenez, JL, Martini, FS, Dzepina, K., Zhang,
Q., Salcedo, D., Molina, LT, Worsnop, DR, и Молина М.
Дж .: Вторичное образование органических аэрозолей из антропогенного воздуха
Загрязнение: Быстро и выше, чем ожидалось, Geophys.Res. Lett.,
33, L17811, DOI: 10.1029 / 2006GL026899, 2006.
Wang, L., Atkinson, R., and Arey, J .: Дикарбонильные продукты реакций
OH-радикалов нафталина и C1- и
C2-алкилнафталины, Environ. Sci. Technol., 41, 2803–2810,
2007.
Weitkamp, EA, Sage, AM, Pierce, JR, Donahue, NM, и
Robinson, AL: Образование органических аэрозолей в результате фотохимического окисления дизельного топлива. выхлоп в камере смога, Environ.Sci.
Technol., 41, 6969–6975, 2007.
Atmos. Chem. Phys., 10, 609–625, 2010 www.atmos-chem-phys.net/10/609/2010/
Загрязнение атмосферы дизельными двигателями | World Petroleum Congress (WPC)
Abstract
Дизельные двигатели способствуют общему и фотохимическому загрязнению атмосферы, а также вызывают дым и запах. Дизельный выхлоп требует специальных методов для отбора проб и анализа, поскольку его компоненты имеют широкий диапазон летучести. Анализ методом газожидкостной хроматографии показывает, что непрореагировавшее или слабо прореагировавшее топливо составляет основную часть выбросов.
Кроме того, в выхлопных газах присутствует некоторое количество углеводородов с С1 по С3 и очень небольшое количество углеводородов С4 по С7, которых нет в топливе. Количество выбрасываемых углеводородов колеблется от примерно 3% входящего топлива при высокой мощности до 5-10% входящего топлива на холостом ходу. В двигателе синтезируется широкий спектр кислородсодержащих соединений, но их концентрация в выхлопных газах довольно низка.
Окиси азота увеличиваются с увеличением мощности двигателя, и их концентрация колеблется от нескольких до примерно 1000 частей на миллион.Хотя некоторая связь между дымом и запахом и количеством и составом выбросов очевидна, необходим более полный анализ, чтобы полностью понять, почему дизельные двигатели дымят и пахнут.
Résumé
Les moteurs diésel contribuent a la Générale et photochimique de l’atmosphère et sont aussi la cause de fumée et d’odeurs. L’échappement diésel exige специальных методов в l’échantillonnage и l’ésqu’il parcequ’il contient des composants qui couvrent une large varété de propriétés volatiles.
Анализируйте хроматографию на моем жидком газе для определения горючего материала или без учета реакции, чтобы составить мажорную часть выбросов.
En outre, quelques углеводородов от C1 до C3, включая и de très petites количества углеводородов от C4 до C7, включая, что не проходит, чтобы горючие газы, были представлены в главе. Количество углеводородов, содержащих 3% горючих веществ с высокой производительностью 5 и 10% с учетом бездействия горючих материалов.Огромное разнообразие сочинений состоит из синтезированных оксигенетов по своему усмотрению, главной концентрации в работе, которая является истинной.
Quand la force motrice est augmentée les oxydes d’azote augmentent des très petites концентрации jusqu’a 0,01 литра. Quoiqu’une определенная взаимосвязь между дымом и модом, количественными показателями и составом видимых выбросов, анализами и композицией не требует полного понимания двигателей дизельного производства, производящих дым и одежду.
ВВЕДЕНИЕ
В некоторых крупных городах США выбросы двигателей внутреннего сгорания являются значительным источником загрязнения атмосферы.