Что называется тактом в работе двигателя: Рабочий цикл двигателя: что это такое

Содержание

Рабочий цикл двигателя: что это такое

Существует несколько различных типов двигателей, при этом на колесном, гусеничном, водном и даже иногда воздушном транспорте  (грузовые и легковые авто,  спецтехника, моторные  лодки, самолеты и т.п.), нередко можно встретить двигатель внутреннего сгорания (ДВС).

Так или иначе, широкое распространение силовой агрегат данного типа получил благодаря своей автономности, универсальности, а также целому ряду других преимуществ. При этом агрегаты имеют много различных параметров и характеристик, среди которых стоит отдельно выделить рабочий цикл.  Далее мы поговорим о том,  что означает рабочий цикл автомобильного двигателя внутреннего сгорания.

Содержание статьи

Рабочий цикл ДВС: что нужно знать

Если рассматривать принцип работы двигателя внутреннего сгорания, топливо в таких агрегатах сгорает в закрытой камере (камера сгорания), куда подается готовая топливно-воздушная смесь или воздух и топливо по отдельности (дизельные агрегаты и моторы с прямым впрыском).

Работа такого мотора основана на том, что во время сгорания топлива происходит расширение газов.  Указанные газы становятся причиной роста давления в цилиндре, благодаря чему поршень получает «толчок». Затем энергия, переданная на поршень, преобразуется в механическую работу.  Давайте рассмотрим принцип работы двигателя, а также рабочие циклы более подробно.

Итак, рабочий  цикл двигателя – последовательно повторяющиеся процессы, которые протекают в цилиндрах в рамках трансформации тепловой энергии топлива в полезную механическую работу. Если  один рабочий цикл совершается за 2 хода поршня, когда коленчатый вал делает один оборот, такой двигатель является двухтактным.

Двигатели, которые устанавливаются на автомобили, обычно работают по четырехтактному циклу (четырехтактный двигатель). Это значит, рабочий цикл совершается за два оборота коленвала и четыре хода поршня. Работу такого ДВС можно разделить на такты: такт впуска, такт сжатия, такт рабочего хода, такт выпуска.

Как работает четырехтактный бензиновый двигатель

Чтобы было понятнее, начнем с того, что когда поршень в цилиндре во время работы  ДВС начинает занимать крайние положения (максимально приближен или удален по отношению к оси коленчатого вала), эти положения принято называть ВМТ и НМТ. ВМТ означает верхняя мертвая точка, тогда как НМТ значит нижняя мертвая точка.  Теперь вернемся к тактам.

  • На такте впуска коленчатый вал двигателя делает первую половину оборота, при этом поршень из ВМТ движется в НМТ. В этот момент  открыт впускной клапан, а выпускной клапан закрыт. При движении поршня вниз в цилиндре образуется разрежение, в результате чего  в цилиндр «засасывается» топливно-воздушная смесь через открытый впускной клапан. Рабочая смесь состоит из воздуха и распыленного топлива (в некоторых двигателях на такте впуска поступает только воздух).
  • Следующим тактом является сжатие. После того, как произойдет наполнение цилиндра топливно-воздушной смесью, коленвал начинает совершать вторую половину оборота.  В этот момент поршень начинает подниматься из НМТ в ВМТ. При этом впускной клапан уже закрыт. Далее поршень сжимает смесь в герметично закрытом цилиндре. Чем больше уменьшается объем цилиндра, тем сильнее сжимается смесь. Результатом такого сжатия является повышение температуры смеси.
  • К тому времени, когда поршень подойдет к концу такта сжатия (практически дойдет до ВМТ), смесь в бензиновых двигателях воспламеняется от внешнего источника (электрическая искра на свече зажигания). Затем топливный заряд сгорает, в результате в цилиндре резко повышается температура и давление. В этот момент  поршень уже перемещается обратно из ВМТ в нижнюю  мертвую точку, принимая на себя энергию расширяющихся газов.
Далее от поршня через шатун энергия передается на КШМ, позволяя вращать коленчатый вал двигателя. Коленвал в это время делает третий по счету полуоборот, а движение поршня из ВМТ в НМТ называется рабочим ходом поршня.
  • После того, как поршень почти дойдет до НМТ в конце рабочего хода, происходит  открытие выпускного клапана. После этого давление в цилиндре снижается,  несколько падает и температура. Затем начинается такт выпуска.  В это время коленчатый вал совершает последний полуоборот, при этом поршень снова поднимается из НМТ в ВМТ, буквально «выталкивая» отработавшие газы из цилиндра через открытый выпускной клапан в выпускной коллектор.

Работа четырехтактного дизельного ДВС

Хотя дизель конструктивно похож на бензиновый мотор, в дизельных двигателях изначально сжимается только воздух, после чего прямо в камеру сгорания впрыскивается дизтопливо. При этом  воспламенение такой смеси происходит самостоятельно (под большим давлением, а также в результате контакта с нагретым от сильного сжатия воздухом).

Простыми словами, воздух сначала сжимается и нагревается, в среднем,  до 650 градусов по Цельсию. В самом конце такта сжатия в камеру сгорания топливная форсунка впрыскивает солярку, затем смесь дизтоплива и воздуха самовоспламеняется.

С учетом данной особенности на такте впуска (поршень движется из ВМТ в НМТ), за счет разряжения в цилиндр подается воздух через  открытый впускной клапан. Давление и температура воздуха в этот момент имеют низкие показатели.

Затем начинается сжатие, поршень поднимается из НМТ в верхнюю мертвую точку. Как и в случае с бензиновым мотором, впускной и выпускной клапаны  полностью закрыты, что позволяет поршню  сильно сжать воздух.

Обратите внимание, для дизельного двигателя очень важно, чтобы температура сжатого воздуха была достаточной для воспламенения топлива. По этой причине степень сжатия в дизельных ДВС намного выше, чем в бензиновых.  Далее, когда поршень практически доходит до ВМТ, происходит топливный впрыск (момент впрыска дизельного двигателя).

Если учесть, что давление воздуха в цилиндре высокое (необходимо для его нагрева), дизельное топливо в момент впрыска должно также подаваться под  очень высоким давлением. Фактически, форсунке нужно «продавить» солярку в камеру сгорания, в которой уже находится сильно сжатый поршнем и горячий воздух.

Для решения этой задачи многие системы питания дизельного двигателя имеют ТНВД (топливный насос высокого давления). Также в схеме могут быть использованы насос-форсунки (форсунка и насос объединены в одно устройство). Еще существуют варианты, когда питание  двигателя реализовано при помощи так называемого «аккумулятора» высокого давления. Речь идет о системах Common Rail.

Рекомендуем также прочитать статью о том, что такое крутящий момент и мощность двигателя. Из этой статьи вы подробно узнаете о данных характеристиках, в чем измеряется мощность и момент двигателя, как эти показатели зависят друг от друга и т.д.

После воспламенения заряда происходит расширение газов и начинается рабочий ход поршня. Температура в  результате горения смеси  повышается, происходит увеличение давления. Указанное давление газов  «толкает» поршень, происходит рабочий ход. Завершающим этапом становится выпуск, когда поршень после совершения рабочего хода снова поднимается из НМТ в ВМТ.  Затем весь описанный выше процесс (рабочий цикл двигателя) повторяется.

Синхронная работа нескольких цилиндров

Выше были описан принцип работы ДВС, при этом рассматривались процессы в одном цилиндре.

Однако, как известно, большинство двигателей являются многоцилиндровыми. Для того чтобы добиться ровной и синхронной работы всех цилиндров,  рабочий ход поршня в каждом отдельном цилиндре должен происходить через  равный промежуток времени (одинаковые углы поворота коленвала).

При  этом последовательность, с которой чередуются  одинаковые такты в разных цилиндрах, принято называть  порядком работы ДВС (например, 1-2-4-3). На практике это выглядит таким образом, что после рабочего хода в цилиндре 1, далее рабочий ход происходит во втором, четвертом, а уже затем в третьем цилиндре.

В зависимости от компоновки двигателя и его конструктивных особенностей последовательность (порядок работы) может быть разной. Дело в том, что двигатели бывают не только рядными, но и V-образными.

Рекомендуем также прочитать статью о КПД дизельного двигателя. Из этой статьи вы узнаете о данном параметре и от чего зависит КПД, а также почему дизельные моторы имеют КПД выше по сравнению с бензиновыми ДВС.

Во втором случае такая компоновка позволяет разместить цилиндры под углом, при этом становится возможным увеличить общее количество цилиндров без увеличения самой длины блока цилиндра двигателя. Такое решение позволяет разместить мощный многоцилиндровый ДВС под капотом не только большого внедорожника или грузовика, но и легкового авто.

Читайте также

Рабочие циклы двигателей внутреннего сгорания

Температура смеси в конце впуска 75— 125 °С.

Второй такт — сжатие. Поршень перемещается от н. м. т. к в. м. т., оба клапана закрыты. Давление и температура рабочей смеси повышаются, достигая к концу такта соответственно 9—15 кгс/см2 и 350— 500 °С.

Третий такт — расширение, или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется электрической искрой, происходит быстрое сгорание смеси.

Максимальное давление при сгорании достигает 35—50 кгс/см2, а температура 2200— 2500 °С. Давление газов в процессе расширения передается на поршень, далее через поршневой палец и шатун — на коленчатый вал, создавая крутящий момент, заставляющий вал вращаться. В конце расширения начинает открываться выпускной клапан, давление в цилиндре снижается до 3—5 кгс/см2, а температура до 1000—1200 °С.

Рис. 1. Рабочий цикл четырехтактного карбюраторного двигателя: а — впуск, 6 — сжатие, в — расширение, г — выпуск; 1 — впускной клапан, 2 — выпускной клапан, 3 — поршень

Четвертый такт — выпуск. Поршень перемещается от н. м. т. к в. м. т., выпускной клапан открыт. Отработавшие газы выпускаются из цилиндра в атмосферу. Процесс выпуска протекает при давлении выше атмосферного. К концу такта давление в цилиндре снижается до 1,1—1,2 кгс/см2, а температура до 700—800 °С.

Далее процессы, происходящие в цилиндре, повторяются в указанной последовательности. Рабочим является только один такт — расширение, впуск и сжатие являются подготовительными, а выпуск — заключительным тактами.

При пуске двигателя его коленчатый вал вращается электродвигателем (стартером) или пусковой рукояткой. Когда двигатель начнет работать, впуск, сжатие и выпуск происходят за счет энергии, накопленной маховиком двигателя при рабочем такте.

Рабочий цикл четырехтактного дизеля. При впуске поршень движется от в. м. т к н. м. т., открыт впускной клапан. За счет образующегося разрежения в цилиндр поступает чистый воздух. Давление 0,85—0,95 кгс/см2, температура 40— 60°С.

При такте сжатия поршень движется вверх, оба клапана закрыты. Давление и температура воздуха повышаются, достигая в конце такта 35—55 кгс/см2 и 450—650 °С.

Когда поршень подходит к в. м. т., в цилиндр через форсунку впрыскивается дизельное топливо, подаваемое насосом высокого давления.

При рабочем ходе впрыснутое в цилиндр дизельное топливо самовоспламеняется от сильно сжатого и нагретого воздуха. С появлением первых очагов пламени начинается процесс сгорания, характеризуемый быстрым повышением давления и температуры. Когда поршень от в. м. т. начинает опускаться, сгорание в течение некоторого промежутка времени протекает при почти постоянном давлении. Максимальное давление газов достигает 50—90 кгс/см2, а температура — 1700—2000 °С. В конце расширения давление снижается до 2—4 кгс/см2, а температура — до 800—1000 °С. * При такте выпуска поршень перемещается от н. м. т. к в. м. т., открыт выпускной клапан. Давление газов в цилиндре снижается до 1,1—1,2 кгс/см2.

После окончания такта выпуска- начинается новый рабочий цикл.

Вследствие более высоких значений степени сжатия дизели более экономичны по расходу топлива, чем карбюраторные двигатели. Кроме того, они используют более дешевые сорта нефтяных топлив и менее опасны в пожарном отношении, чем бензин. С другой стороны, дизели имеют большую массу, чем карбюраторные двигатели, поэтому их устанавливают на отечественных автомобилях большой и очень большой грузоподъемности (МАЗ, КрАЗ, КамАЗ и БелАЗ).

С освоением мощностей Камского автозавода дизели будут устанавливать на грузовые автомобили ЗИЛ и Уральского автозавода, а также на автобусы ЛАЗ и ЛиАЗ.

Диаграмма рабочего цикла двигателя. Рабочий цикл двигателя можно представить в виде диаграммы, на которой по вертикальной оси откладывают давление р, а по горизонтальной—объем цилиндра V.

На диаграмме четырехтактного карбюраторного двигателя линия впуска 7—1 располагается ниже линии атмосферного давления (1 кгс/см2). При такте сжатия (линия I—2—3) давление повышается, достигая наибольшей величины в точке 3.

Точка соответствует моменту проскаки-вания искры в свече зажигания и началу процесса сгорания. Линия 3—4—5—6 иллюстрирует рабочий ход, причем линия 3—4, соответствующая резкому возрастанию давления, означает процесс сгорания рабочей смеси, а линия 4—5—6— расширение газов. В точке 4 давление газов достигает наибольшей величины.

Рис. 2. Рабочий цикл четырехтактного дизеля ЯМЗ: а —впуск, б — сжатие, в — расширение, г — выпуск; 1—форсунка, 2 — топливный насос высокого давления

В точке начинает открываться выпускной клапан. Линия соответствует такту выпуска. Она располагается несколько выше линии, соответствующей атмосферному давлению.

Рис. 3. Диаграмма рабочего цикла двигателя внутреннего сгорания (а) и схема сил, действующих от давления газов (б)

На рис. 3, б показана схема сил, действующих от давления газов в одноцилиндровом двигателе. Сила Р давления газов, действующая на поршень при рабочем ходе, раскладывается на две силы: N и S. Сила N прижимает поршень к стенке цилиндра, а действие силы S передается через шатун на коленчатый вал двигателя.

Сила Г, составляющая силы S и касательная к окружности вращения шатунной шейки, действует на плече R. Произведение TR называют крутящим моментом двигателя. Крутящий момент вызывает вращение коленчатого вала. Далее он передается через механизмы трансмиссии на ведущие колеса, вызывая движение автомобиля.

Вторая составляющая силы S сила F воспринимается коренными подшипниками коленчатого вала.

Рабочий цикл четырехтактного карбюраторного двигателя устройство легкового автомобиля диагностика устранение неисправностей ремонт и обслуживание автомобиля

 

Раздел I.

устройство автомобиля

Глава 2. Двигатель

1. Общее устройство и рабочий цикл двигателя

Рабочий цикл четырехтактного карбюраторного двигателя

 Процесс, происходящий в цилиндре за один ход поршня, называется тактом. Таких тактов четыре: впуск бензино-воздушной смеси, ее сжатие, расширение газов при сгорании (рабочий ход), выпуск продуктов сгорания. Совокупность тактов называется рабочим циклом.

Если рабочий цикл совершается за четыре хода поршня, т. е. за два оборота коленчатого вала, то двигатель называют четырехтактным.

Рис. 5. Рабочий цикл четырехтактного карбюраторного двигателя: а — впуск; б — сжатие; в — рабочий ход; г — выпуск

Табл. 2. Краткие технические характеристики двигателей автомобилей ГАЗ-24 и их модификаций и УАЗ ( УМЗ — Ульяновский моторный завод)

Первый такт — впуск: поршень перемещается от ВМТ к НМТ, впускной клапан 1 (рис. 5, а) открыт, выпускной клапан 3 закрыт. В цилиндре создается разрежение (0,7-0,9 кгс/см2), и горючая смесь, состоящая из паров бензина и воздуха, поступает в цилиндр. Горючая смесь смешивается с продуктами сгорания, оставшимися в цилиндре от предшествующего цикла, и образует рабочую смесь. Температура смеси в конце впуска 75-125° С.

Количество поступившей в цилиндр бензино-воздушной смеси определяет количество сжигаемого топлива, а следовательно, величину получаемой в цилиндре работы за цикл. Поэтому чем лучше наполнение цилиндра бензино-воздушной смесью, тем выше мощность двигателя.

Поступающая в цилиндр бензино-воздушная смесь подогревается от нагретых внутренних стенок цилиндра. Это, с одной стороны, улучшает испарение бензина, а с другой ухудшает наполнение цилиндров из-за понижения плотности смеси.

Второй такт — сжатие: поршень перемещается от НМТ к ВМТ (рис. 5, б), оба клапана закрыты. Давление в цилиндре и температура рабочей смеси повышаются. В конце такта давление достигает 9-15 кгс/см2, а температура 350-500° С.

Третий такт — расширение или рабочий ход. В конце такта, сжатия рабочая смесь воспламеняется в результате искрового разряда в свече 2 зажигания, происходит быстрое сгорание смеси (рис. 5, в). Максимальное давление при сгорании достигает 35- 50 кгс/см2, а температура 2200-2500° С. Давление газов передается на поршень 4, далее через поршневой палец 5 и шатун 6 на коленчатый вал 7, создавая крутящий момент, заставляющий вал вращаться. В конце такта открывается выпускной клапан 3, отработавшие газы начинают выходить в выпускной трубопровод, давление и температура в цилиндре снижаются.

Очистка  карбюратора, замена и промывка жиклеров, промывочные жидкости

Четвертый такт — выпуск (рис. 5, г): поршень перемещается от НМТ к ВМТ, выпускной клапан 3 открыт. Отработавшие газы из цилиндра поступают в выпускной трубопровод и далее через глушитель в атмосферу. Процесс выпуска протекает при давлении выше атмосферного. К концу такта давление в цилиндре снижается до 1,1-1,2 кгс/см2, а температура до 700-800° С.

Далее процессы, происходящие в цилиндре, повторяются в указанной выше последовательности. Рабочим является только один такт — расширение, впуск и сжатие являются подготовительными тактами, выпуск — заключительным.

При пуске двигателя его коленчатый вал вращается электродвигателем — стартером. Когда двигатель начнет работать, такты впуска, сжатия и выпуска происходят за счет энергии, накопленной маховиком двигателя при рабочем ходе.

На легковых автомобилях ГАЗ-24 «Волга», а также автомобилях УАЗ устанавливают четырехцилиндровые четырехтактные карбюраторные двигатели с вертикальным расположением цилиндров. Диаметр цилиндра и ход поршня равны 92 мм, литраж 2,445 л. Двигатели отличаются степенью сжатия и величиной наибольшей эффективной мощности, а также некоторыми конструктивными решениями (табл. 2).

Главная страница сайта

Рубрикатор статей

На предыдущую страницу  Читать книгу сначала На следующую страницу

О компании О документах О рекламе Меню Карата

 

Смотреть что такое «Четырёхтактный двигатель» в других словарях. Устройство и принцип работы двигателя внутреннего сгорания

Нужно иметь некоторые представления о самом двигателе и его строении. Давайте разберемся со всем более подробно:

В устройстве двигателя поршень является ключевым элементом рабочего процесса. Поршень выполнен в виде металлического пустотелого стакана, расположенного сферическим дном (головка поршня) вверх. Направляющая часть поршня, иначе называемая юбкой, имеет неглубокие канавки, предназначенные для фиксации в них поршневых колец. Назначение поршневых колец – обеспечивать, во-первых, герметичность надпоршневого пространства, где при работе двигателя происходит мгновенное сгорание бензиново-воздушной смеси и образующийся расширяющийся газ не мог, обогнув юбку, устремиться под поршень. Во-вторых, кольца предотвращают попадание масла, находящегося под поршнем, в надпоршневое пространство. Таким образом, кольца в поршне выполняют функцию уплотнителей. Нижнее (нижние) поршневое кольцо называется маслосъемным, а верхнее (верхние) – компрессионным, то есть обеспечивающим высокую степень сжатия смеси.

Когда из карбюратора или инжектора внутрь цилиндра попадает топливно-воздушная или топливная смесь, она сжимается поршнем при его движении вверх и поджигается электрическим разрядом от свечи системы зажигания (в дизеле происходит самовоспламенение смеси за счет резкого сжатия). Образующиеся газы сгорания имеют значительно больший объем, чем исходная топливная смесь, и, расширяясь, резко толкают поршень вниз. Таким образом тепловая энергия топлива преобразуется в возвратно-поступательное (вверх-вниз) движение поршня в цилиндре.

Далее необходимо преобразовать это движение во вращение вала. Происходит это следующим образом: внутри юбки поршня расположен палец, на котором закрепляется верхняя часть шатуна, последний шарнирно зафиксирован на кривошипе коленчатого вала. Коленвал свободно вращается на опорных подшипниках, что расположены в картере двигателя внутреннего сгорания. При движении поршня шатун начинает вращать коленвал, с которого крутящий момент передается на трансмиссию и – далее через систему шестерен – на ведущие колеса.

Технические характеристики двигателя.Характеристики двигателя При движении вверх-вниз у поршня есть два положения, которые называются мертвыми точками. Верхняя мертвая точка (ВМТ) – это момент максимального подъема головки и всего поршня вверх, после чего он начинает движение вниз; нижняя мертвая точка (НМТ) – самое нижнее положение поршня, после которого вектор направления меняется и поршень устремляется вверх. Расстояние между ВМТ и НМТ названо ходом поршня, объем верхней части цилиндра при положении поршня в ВМТ образует камеру сгорания, а максимальный объем цилиндра при положении поршня в НМТ принято называть полным объемом цилиндра. Разница между полным объемом и объемом камеры сгорания получила наименование рабочего объема цилиндра.


Суммарный рабочий объем всех цилиндров двигателя внутреннего сгорания указывается в технических характеристиках двигателя, выражается в литрах, поэтому в обиходе именуется литражом двигателя. Второй важнейшей характеристикой любого ДВС является степень сжатия (СС), определяемая как частное от деления полного объема на объем камеры сгорания. У карбюраторных двигателей СС варьирует в интервале от 6 до 14, у дизелей – от 16 до 30. Именно этот показатель, наряду с объемом двигателя, определяет его мощность, экономичность и полноту сгорания топливо-воздушной смеси, что влияет на токсичность выбросов при работе ДВС.
Мощность двигателя имеет бинарное обозначение – в лошадиных силах (л. с.) и в киловаттах (кВт). Для перевода единиц одна в другую применяется коэффициент 0,735, то есть 1 л.с. = 0,735 кВт.
Рабочий цикл четырехтактного ДВС определяется двумя оборотами коленчатого вала – по пол-оборота на такт, соответствующий одному ходу поршня. Если д вигатель одноцилиндровый, то в его работе наблюдается неравномерность: резкое ускорение хода поршня при взрывном сгорании смеси и замедление его по мере приближения к НМТ и далее. Для того, чтобы эту неравномерность купировать, на валу за пределами корпуса мотора устанавливается массивный диск-маховик с большой инерционностью, благодаря чему момент вращения вала во времени становится более стабильным.

Принцип работы двигателя внутреннего сгорания


Современный автомобиль, чаше всего, приводится в движение двигателем внутреннего сгорания. Таких двигателей существует огромное множество. Различаются они объемом, количеством цилиндров, мощностью, скоростью вращения, используемым топливом (дизельные, бензиновые и газовые ДВС). Но, принципиально, устройство двигателя внутреннего сгорания, похоже.
Как работает двигатель и почему называется четырехтактным двигателем внутреннего сгорания? Про внутреннее сгорание понятно. Внутри двигателя сгорает топливо. А почему 4 такта двигателя, что это такое? Действительно, бывают и двухтактные двигатели. Но на автомобилях они используются крайне редко.
Четырехтактным двигатель называется из-за того, что его работу можно разделить на четыре, равные по времени, части. Поршень четыре раза пройдет по цилиндру – два раза вверх и два раза вниз. Такт начинается при нахождении поршня в крайней нижней или верхней точке. У автомобилистов-механиков это называется верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ).

Первый такт — такт впуска

Первый такт, он же впускной, начинается с ВМТ (верхней мертвой точки). Двигаясь вниз, поршень, всасывает в цилиндр топливовоздушную смесь. Работа этого такта происходит при открытом клапане впуска. Кстати, существует много двигателей с несколькими впускными клапанами. Их количество, размер, время нахождения в открытом состоянии может существенно повлиять на мощность двигателя. Есть двигатели, в которых, в зависимости от нажатия на педаль газа, происходит принудительное увеличение времени нахождения впускных клапанов в открытом состоянии. Это сделано для увеличения количества всасываемого топлива, которое, после возгорания, увеличивает мощность двигателя. Автомобиль, в этом случае, может гораздо быстрее ускориться.

Второй такт — такт сжатия

Следующий такт работы двигателя – такт сжатия . После того как поршень достиг нижней точки, он начинает подниматься вверх, тем самым, сжимая смесь, которая попала в цилиндр в такт впуска. Топливная смесь сжимается до объемов камеры сгорания. Что это за такая камера? Свободное пространство между верхней частью поршня и верхней частью цилиндра при нахождении поршня в верхней мертвой точке называется камерой сгорания. Клапаны, в этот такт работы двигателя закрыты полностью. Чем плотнее они закрыты, тем сжатие происходит качественнее. Большое значение имеет, в данном случае, состояние поршня, цилиндра, поршневых колец. Если имеются большие зазоры, то хорошего сжатия не получится, а соответственно, мощность такого двигателя будет гораздо ниже. Компрессию можно проверить специальным прибором. По величине компрессии можно сделать вывод о степени износа двигателя.

Третий такт — рабочий ход

Третий такт – рабочий, начинается с ВМТ. Рабочим он называется неслучайно. Ведь именно в этом такте происходит действие, заставляющее автомобиль двигаться. В этом такте в работу вступает система зажигания. Почему эта система так называется? Да потому, что она отвечает за поджигание топливной смеси, сжатой в цилиндре, в камере сгорания. Работает это очень просто – свеча системы дает искру. Справедливости ради, стоит заметить, что искра выдается на свече зажигания за несколько градусов до достижения поршнем верхней точки. Эти градусы, в современном двигателе, регулируются автоматически «мозгами» автомобиля.
После того как топливо загорится, происходит взрыв – оно резко увеличивается в объеме, заставляя поршень двигаться вниз. Клапаны в этом такте работы двигателя, как и в предыдущем, находятся в закрытом состоянии.

Четвертый такт — такт выпуска

Четвертый такт работы двигателя, последний – выпускной. Достигнув нижней точки, после рабочего такта, в двигателе начинает открываться выпускной клапан. Таких клапанов, как и впускных, может быть несколько. Двигаясь вверх, поршень через этот клапан удаляет отработавшие газы из цилиндра – вентилирует его. От четкой работы клапанов зависит степень сжатия в цилиндрах, полное удаление отработанных газов и необходимое количество всасываемой топливно-воздушной смеси.

После четвертого такта наступает черед первого. Процесс повторяется циклически. А за счет чего происходит вращение – работа двигателя внутреннего сгорания все 4 такта, что заставляет поршень подниматься и опускаться в тактах сжатия, выпуска и впуска? Дело в том, что не вся энергия, получаемая в рабочем такте, направляется на движение автомобиля. Часть энергии идет на раскручивание маховика. А он, под действием инерции, крутит коленчатый вал двигателя, перемещая поршень в период «нерабочих» тактов.

Газораспределительный механизм

Газораспределительный механизм (ГРМ) предназначен для впрыска топлива и выпуска отработанных газов в двигателях внутреннего сгорания. Сам механизм газораспределения делится на нижнеклапанный, когда распределительный вал находится в блоке цилиндров, и верхнеклапанный. Верхнеклапанный механизм подразумевает нахождение распредвала в головке блока цилиндров (ГБЦ). Существуют и альтернативные механизмы газораспределения, такие как гильзовая система ГРМ, десмодромная система и механизм с изменяемыми фазами.
Для двухтактных двигателей механизм газораспределения осуществляется при помощи впускных и выпускных окон в цилиндре. Для четырехтактных двигателей самая распространенная система верхнеклапанная, о ней и пойдет речь ниже.

Устройство ГРМ
В верхней части блока цилиндров находится ГБЦ (головка блока цилиндров) с расположенными на ней распределительным валом, клапанами, толкателями или коромыслами. Шкив привода распредвала вынесен за пределы головки блока цилиндров. Для исключения протекания моторного масла из-под клапанной крышки, на шейку распредвала устанавливается сальник. Сама клапанная крышка устанавливается на масло- бензо- стойкую прокладку. Ремень ГРМ или цепь одевается на шкив распредвала и приводится в действие шестерней коленчатого вала. Для натяжения ремня используются натяжные ролики, для цепи натяжные «башмаки». Обычно ремнем ГРМ приводится в действие помпа водяной системы охлаждения, промежуточный вал для системы зажигания и привод насоса высокого давления ТНВД (для дизельных вариантов).
С противоположной стороны распределительного вала посредством прямой передачи или при помощи ремня, могут приводиться в действие вакуумный усилитель, гидроусилитель руля или автомобильный генератор.

Распредвал представляет собой ось с проточенными на ней кулачками. Кулачки расположены по валу так, что в процессе вращения, соприкасаясь с толкателями клапанов, нажимают на них точно в соответствии с рабочими тактами двигателя.


Существуют двигатели и с двумя распредвалами (DOHC) и большим числом клапанов. Как и в первом случае, шкивы приводятся в действие одним ремнем ГРМ и цепью. Каждый распредвал закрывает один тип клапанов впускных или выпускных.
Клапан нажимается коромыслом (ранние версии двигателей) или толкателем. Различают два вида толкателей. Первый – толкатели, где зазор регулируется калибровочными шайбами, второй – гидротолкатели. Гидротолкатель смягчает удар по клапану благодаря маслу, которое находится в нем. Регулировка зазора между кулачком и верхней частью толкателя не требуется.


Принцип работы ГРМ

Весь процесс газораспределения сводится к синхронному вращению коленчатого вала и распределительного вала. А так же открыванию впускных и выпускных клапанов в определенном месте положения поршней.
Для точного расположения распредвала относительно коленвала используются установочные метки. Перед одеванием ремня газораспределительного механизма совмещаются и фиксируются метки. Затем одевается ремень, «освобождаются» шкивы, после чего ремень натягивается натяжным(и) роликами.
При открывании клапана коромыслом происходит следующее: распредвал кулачком «наезжает» на коромысло, которое нажимает на клапан, после прохождения кулачка, клапан под действием пружины закрывается. Клапаны в этом случае располагаются v-образно.
Если в двигателе применены толкатели, то распредвал находится непосредственно над толкателями, при вращении, нажимая своими кулачками на них. Преимущество такого ГРМ малые шумы, небольшая цена, ремонтопригодность.
В цепном двигателе весь процесс газораспределения тот же, только при сборке механизма, цепь одевается на вал совместно со шкивом.

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм (далее сокращенно – КШМ) – механизм двигателя. Основным назначением КШМ является преобразование возвратно-поступательных движений поршня цилиндрической формы во вращательные движения коленчатого вала в двигателе внутреннего сгорания и, наоборот.


Устройство КШМ


Поршень

Поршень имеет вид цилиндра, изготовленного из сплавов алюминия. Основная функция этой детали заключается в превращении в механическую работу изменение давления газа, или наоборот, – нагнетание давления за счет возвратно-поступательного движения.
Поршень представляет собой сложенные воедино днище, головку и юбку, которые выполняют совершенно разные функции. Днище поршня плоской, вогнутой или выпуклой формы содержит в себе камеру сгорания. Головка имеет нарезанные канавки, где размещаются поршневые кольца (компрессионные и маслосъемные). Компрессионные кольца исключают прорыв газов в картер двигателя, а поршневые маслосъемные кольца способствуют удалению излишков масла на внутренних стенках цилиндра. В юбке расположены две бобышки, обеспечивающие размещение соединяющего поршень с шатуном поршневого пальца.

Шатун

Изготовленный штамповкой или кованый стальной (реже – титановый) шатун имеет шарнирные соединения. Основная роль шатуна состоит в передаче поршневого усилия к коленчатому валу. Конструкция шатуна предполагает наличие верхней и нижней головки, а также стержня с двутавровым сечением. В верхней головке и бобышках находится вращающийся («плавающий») поршневой палец, а нижняя головка – разборная, позволяя, тем самым, обеспечить тесное соединение с шейкой вала. Современная технология контролируемого раскалывания нижней головки позволяет обеспечить высокую точность соединения ее частей.

Коленчатый вал

Изготовленный из стали или чугуна высокой прочности коленчатый вал состоит из шатунных и коренных шеек, соединенных щеками и вращающихся в подшипниках скольжения. Щеки создают противовес шатунным шейкам. Основная функция коленчатого вала состоит в восприятии усилия от шатуна для преобразования его в крутящий момент. Внутри щек и шеек вала предусмотрены отверстия для подачи под давлением масла системой смазки двигателя.

Блок и головка цилиндров

Блок цилиндров и головка блока цилиндров отливаются из чугуна (реже – сплавов алюминия). В блоке цилиндров предусмотрены рубашки охлаждения, постели для подшипников коленчатого и распределительного валов, а также точки крепления приборов и узлов. Сам цилиндр выполняет функцию направляющей для поршней. Головка блока цилиндра располагает в себе камеру сгорания, впускные-выпускные каналы, специальные резьбовые отверстия для свечей системы зажигания, втулки и запрессованные седла. Герметичность соединения блока цилиндров с головкой обеспечены прокладкой. Кроме того, головка цилиндра закрыта штампованной крышкой, а между ними, как правило, устанавливается прокладка из маслостойкой резины.

В целом, поршень, гильза цилиндров и шатун формируют цилиндр или цилиндропоршневую группу кривошипно-шатунного механизма. Современные двигатели могут иметь до 16 и более цилиндров.

Рассмотрим подробно каждый такт цикла.

Такт впуска

Поршень 4 движется от в.м.т. к н.м.т. Над ним в полости цилиндра 1 создается разрежение. Впускной клапан 6 при этом открыт, цилиндр через впускную трубу 7 и карбюратор 8 сообщается с атмосферой. Под влиянием разности давлений воздух устремляется в цилиндр. Проходя через карбюратор, воздух распыливает топливо и, смешиваясь с ним, образует горючую смесь, которая поступает в цилиндр. Заполнение цилиндра 1 горючей смесью продолжается до прихода поршня в н.м.т. К этому времени впускной клапан закрывается.

Такт сжатия

При дальнейшем повороте коленчатого вала 10 поршень движется от н. м.т. к в.м.т. В это время впускной 6 и выпускной 3 клапаны закрыты, поэтому поршень сжимает находящуюся в цилиндре рабочую смесь. В такте сжатия составные части рабочей смеси хорошо перемешиваются и нагреваются. В конце такта сжатия между электродами свечи 5 возникает электрическая искра, от которой рабочая смесь воспламеняется. В процессе сгорания топлива выделяется большое количество теплоты, давление и температура газов повышаются.

Такт расширения

Оба клапана закрыты. Под давлением расширяющихся газов поршень движется от в.м.т. к н.м.т. (рисунок в) и при помощи шатуна 9 вращает коленчатый вал 10, совершая полезную работу.

Такт выпуска

Когда поршень подходит к н.м.т., открывается выпускной клапан 3 и отработавшие газы под действием избыточного давления начинают выходить из цилиндра в атмосферу через выпускную трубу 2. Далее поршень движется от н.м.т. к в.м.т. (рисунок г) и выталкивает из цилиндра отработавшие газы.

Рисунок. Рабочий цикл одноцилиндрового четырехтактного карбюраторного двигателя:
а – такт впуска; б – такт сжатия; в – такт расширения; г – такт выпуска; 1 – цилиндр, 2 – выпускная труба; 3 – выпускной клапан; 4 – поршень; 5 – искровая зажигательная свеча; 6 – впускной клапан; 7 – впускная труба; 8 – карбюратор; 9 – шатун; 10 – коленчатый вал.

Рабочий цикл четырехтактного дизеля

В отличие от карбюраторного двигателя в цилиндр дизеля воздух и топливо вводятся раздельно.

Такт впуска

Поршень движется от в.м.т. к н.м.т. (рисунок а), впускной клапан открыт, в цилиндр поступает воздух.

Такт сжатия

Оба клапана закрыты. Поршень движется от н.м.т. к в.м.т. (рисунок б) и сжимает воздух. Вследствие большой степени сжатия (порядка 14…18) температура воздуха становится выше температуры самовоспламенения топлива.

Рисунок. Рабочий цикл одноцилиндрового четырехтактного дизеля: а – такт впуска; б – такт сжатия; в – такт расширения; г – такт выпуска

В конце такта сжатия при положении поршня, близком к в.м.т., в цилиндр через форсунку начинает впрыскиваться жидкое топливо. Устройство форсунки обеспечивает тонкое распыливание топлива в сжатом воздухе.

Топливо, впрыснутое в цилиндр, смешивается с нагретым воздухом и оставшимися газами, образуется рабочая смесь. Большая часть топлива воспламеняется и сгорает, давление и температура газов повышаются.

Такт расширения

Оба клапана закрыты. Поршень движется от в.м.т. к н.м.т. (рисунок в). В начале такта расширения сгорает остальная часть топлива.

Такт выпуска

Выпускной клапан открывается. Поршень движется от н.м.т. к в.м.т. (рисунок г) и через открытый клапан выталкивает отработавшие газы в атмосферу.

У описанных двигателей в течение рабочего цикла только в такте расширения поршень перемещается под давлением газов и посредством шатуна приводит коленчатый вал во вращательное движение. При выполнении остальных тактов – выпуске, впуске и сжатии – нужно перемещать поршень, вращая коленчатый вал. Эти такты являются подготовительными и осуществляются за счет кинетической энергии, накопленной маховиком в такте расширения. Маховик, обладающий значительной массой, крепят на конце коленчатого вала.

Рабочий цикл четырехтактного карбюраторного двигателя

Двигатели внутреннего сгорания отличаются друг от друга рабочим циклом, по которому они работают.

Рабочий цикл – это комплекс последовательных рабочих процессов, периодически повторяющихся в каждом цилиндре при работе двигателя.

Рабочий процесс, происходящий в цилиндре за один ход поршня, называется тактом.

По числу тактов, составляющих рабочий цикл, двигатели делятся на два вида:

четырехтактные, в которых рабочий цикл совершается за четыре хода поршня,

двухтактные, в которых рабочий цикл совершается за два хода поршня.

На легковых автомобилях, как правило, применяются четырехтактные двигатели, а на мотоциклах и моторных лодках – двухтактные. О путешествиях по водным просторам поговорим как-нибудь потом, а с четырьмя тактами работы автомобильного двигателя разберемся сейчас.

Рабочий цикл четырехтактного карбюраторного двигателя состоит из следующих тактов:

– впуск горючей смеси,

– сжатие рабочей смеси,

– рабочий ход,

– выпуск отработавших газов.

Рис. 8. Рабочий цикл четырехтактного карбюраторного двигателя: а) впуск; б) сжатие; в) рабочий ход; г) выпуск

Первый такт – впуск горючей смеси (рис. 8а ).

Горючей смесью называется смесь мелко распыленного бензина с воздухом в определенной пропорции. Приготовлением смеси в двигателе занимается карбюратор или форсунка, о чем мы поговорим чуть позже. А пока следует знать, что соотношение бензина к воздуху примерно 1:15 считается оптимальным для обеспечения нормального процесса сгорания.

При такте впуска поршень от верхней мертвой точки перемещается к нижней мертвой точке. Объем над поршнем увеличивается. Цилиндр заполняется горючей смесью через открытый впускной клапан. Иными словами, поршень всасывает горючую смесь.

Впуск смеси продолжается до тех пор, пока поршень не дойдет до нижней мертвой точки. За первый такт работы двигателя кривошип коленчатого вала поворачивается на пол-оборота.

В процессе заполнения цилиндра горючая смесь перемешивается с остатками отработавших газов и меняет свое название, теперь эта смесь называется рабочая.

Второй такт – сжатие рабочей смеси (рис. 8б ).

При такте сжатия поршень от нижней мертвой точки перемещается к верхней мертвой точке. Оба клапана плотно закрыты, поэтому рабочая смесь сжимается.

Из школьной физики всем известно, что при сжатии газов их температура повышается. Давление в цилиндре над поршнем в конце такта сжатия достигает 9–10 кг/см², а температура 300–400°С.

В заводской инструкции к автомобилю можно увидеть один из параметров двигателя с названием – «степень сжатия» (например 8,5). А что это такое?

Степень сжатия показывает, во сколько раз полный объем цилиндра больше объема камеры сгорания (Vn/Vc – см. рис. 7). У бензиновых двигателей в конце такта сжатия объем над поршнем уменьшается в 8–11 раз.

В процессе такта сжатия коленчатый вал двигателя поворачивается на очередные пол-оборота. От начала первого такта и до окончания второго, он повернется уже на один оборот.

Третий такт – рабочий ход (рис. 8в ).

Во время третьего такта происходит преобразование выделяемой при сгорании рабочей смеси энергии в механическую работу. Давление от расширяющихся газов передается на поршень и затем, через шатун и кривошип, на коленчатый вал.

Вот откуда берется та сила, которая заставляет вращаться коленчатый вал двигателя и, в конечном итоге, ведущие колеса автомобиля.

В самом конце такта сжатия рабочая смесь воспламеняется от электрической искры, проскакивающей между электродами свечи зажигания. В начале такта рабочего хода сгорающая смесь начинает активно расширяться. Поскольку впускной и выпускной клапаны все еще закрыты, то расширяющимся газам остается только один единственный выход – давить на подвижный поршень.

Под действием давления, достигающего величины 50 кг/см², поршень начинает перемещаться к нижней мертвой точке. При этом на всю площадь поршня давит сила в несколько тонн, которая через шатун передается на кривошип коленчатого вала, создавая крутящий момент.

При такте рабочего хода температура в цилиндре достигает более 2000 градусов.

Коленчатый вал при рабочем ходе делает очередные пол-оборота.

Четвертый такт – выпуск отработавших газов (рис. 8г ).

При движении поршня от нижней мертвой точки к верхней мертвой точке открывается выпускной клапан (впускной все еще закрыт), и отработавшие газы с огромной скоростью выбрасываются из цилиндра двигателя.

Вот почему слышен тот сильный грохот, когда по дороге движется автомобиль без глушителя, но об этом позже. А пока обратим внимание на коленчатый вал двигателя – при такте выпуска он делает еще пол-оборота. И всего, за четыре такта рабочего цикла, он сделал два полных оборота.

После такта выпуска начинается новый рабочий цикл, и все повторяется: впуск – сжатие – рабочий ход – выпуск… и так далее.

Теперь, интересно, кто из вас обратил внимание на то, что полезная механическая работа совершается одноцилиндровым двигателем только в течение одного такта – такта рабочего хода! Остальные три такта (выпуск, впуск и сжатие) являются лишь подготовительными и совершаются они за счет кинетической энергии вращающихся по инерции коленчатого вала и маховика.

Маховик (рис. 9)это массивный металлический диск, который крепится на коленчатом валу двигателя. Во время рабочего хода поршень через шатун и кривошип раскручивает коленчатый вал двигателя, который передает маховику запас энергии вращения.


Рис. 9. Коленчатый вал двигателя с маховиком: 1 шатунная шейка; 2 – противовес; 3 – маховик с зубчатым венцом; 4 – коренная (опорная) шейка; 5 – коленчатый вал двигателя

Запасенная в массе маховика энергия вращения позволяет ему в обратном порядке через коленчатый вал, шатун и поршень осуществлять подготовительные такты рабочего цикла двигателя. Поршень движется вверх (при такте выпуска и сжатия) и вниз (при такте впуска) именно за счет отдаваемой маховиком энергии.

Если двигатель имеет несколько цилиндров, работающих в определенном порядке, то подготовительные такты в одних цилиндрах совершаются за счет энергии, развиваемой в других, ну и маховик, конечно, тоже помогает.

В детстве у вас наверняка была игрушка, которая называлась волчок. Вы раскручивали его энергией своей руки (рабочий ход ) и радостно наблюдали за тем, как долго он вращается. Точно так же и массивный маховик двигателя – раскрутившись, он запасает энергию, но только значительно большую, чем детская игрушка, а затем эта энергия используется для перемещения поршня в подготовительных тактах.

Дизельные двигатели

Главной особенностью работы дизельного двигателя является то, что топливо подается форсункой или насосом-форсункой непосредственно в цилиндр двигателя под большим давлением в конце такта сжатия. Необходимость подачи топлива под большим давлением обусловлена тем, что степень сжатия у таких двигателей значительно больше, чем у бензиновых.

Поскольку давление и температура в цилиндре дизельного двигателя очень велики, то происходит самовоспламенение топлива. Это означает, что искусственно поджигать смесь не надо. Поэтому у дизельных двигателей отсутствуют не только свечи, но и вся система зажигания.

Рабочий цикл четырехтактного дизельного двигателя

Первый такт – впуск, служит для наполнения цилиндра двигателя только воздухом.

При движении поршня от верхней мертвой точки к нижней мертвой точке происходит всасывание воздуха через открытый впускной клапан.

Второй такт – сжатие, необходим для подготовки к самовоспламенению дизельного топлива.

При движении к верхней мертвой точке поршень сжимает воздух в 18–22 раза (у бензиновых в 8–11 раз). Поэтому в конце такта сжатия, давление над поршнем достигает 40 кг/см², а температура поднимается выше 500градусов.

Третий такт – рабочий ход, служит для преобразования энергии сгораемого топлива в механическую работу.

В конце такта сжатия в камеру сгорания через форсунку под давлением подается дизельное топливо, которое самовоспламеняется за счет высокой температуры сжатого воздуха.

При сгорании дизельного топлива расширяющиеся газы создают усилие, которое перемещает поршень к нижней мертвой точке и через шатун проворачивает коленчатый вал.

Во время рабочего хода давление в цилиндре достигает 100 кг/см², а температура превышает 2000°С.

Четвертый такт – выпуск отработавших газов, служит для освобождения цилиндра от отработавших газов.

Поршень от нижней мертвой точки поднимается к верхней мертвой точке и, через открытый выпускной клапан, выталкивает отработавшие газы.

При последующем движении вниз поршень засасывает свежую порцию воздуха, происходит такт впуска и рабочий цикл повторяется.

В дизельном двигателе нагрузки на все механизмы и детали значительно больше, чем в бензиновом, и это закономерно приводит к увеличению его массы, размеров и стоимости.

В то же время, дизельный двигатель имеет и неоспоримые преимущества – меньший расход топлива, чем у его бензинового «брата», а также отсутствие системы зажигания, что значительно уменьшает количество возможных неисправностей при эксплуатации.

Кривошипно-шатунный механизм (КШМ)

Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршня в цилиндре во вращательное движение коленчатого вала двигателя.

Ранее рассматривалась работа одноцилиндрового двигателя. Это было необходимо для простоты восприятия протекающих в нем процессов.

На большинстве легковых автомобилей, как отечественных, так и зарубежных, устанавливаются четырехцилиндровые двигатели. Конечно, существуют варианты и с другим количеством цилиндров (от двух до двенадцати), но в объеме этой книги мы ограничимся знакомством именно с четырехцилиндровым двигателем, так как он является самым распространенным.


Рис. 10. Основные детали четырехцилиндрового бензинового двигателя: а) продольный разрез; б) поперечный разрез; 1 – блок цилиндров; 2 – головка блока цилиндров; 3 – поддон картера; 4 – поршни с кольцами и пальцами; 5 – шатуны; 6 – коленчатый вал; 7 – маховик; 8 – распределительный вал; 9 – рычаги; 10 – впускные клапаны; 11 – выпускные клапаны; 12 – пружины клапанов; 13 – впускные и выпускные каналы

Кривошипно-шатунный механизм состоит из (рис. 10):

– блока цилиндров с картером;

– головки блока цилиндров;

– поддона картера двигателя;

– поршней с кольцами и пальцами;

– шатунов;

– коленчатого вала;

– маховика.

Блок цилиндров объединяет в себе не только уже известные нам цилиндры и шатунно-поршневую группу, но и другие системы двигателя. Блок является основой двигателя, в которой имеется множество литых каналов и сверлений, подшипников и заглушек. Именно в блоке вращается (на подшипниках) коленчатый вал. Во внутренних полостях блока циркулирует жидкость системы охлаждения, там же проходят и масляные каналы системы смазки двигателя. Большая часть из навесного оборудования двигателя монтируется, опять же, на блоке цилиндров. Нижняя часть блока называется картером.

Головка блока цилиндров является второй по значимости и по величине составной частью двигателя. В головке расположены камеры сгорания, клапаны и свечи цилиндров, в ней же на подшипниках вращается распределительный вал с кулачками. В головке, как и в блоке цилиндров, имеются водяные и масляные каналы и полости. Головка крепится к блоку цилиндров и при работе двигателя составляет с блоком единое целое.

Устройство и взаимодействие основных деталей кривошипно-шатунного механизма (шатунно-поршневой группы) мы с вами рассмотрели ранее, при изучении работы ног велосипедиста и рабочего цикла двигателя.

Для тех, кто уже вернулся обратно на эту страницу, предлагается небольшой экскурс в мир цифр.

На холостом ходу коленчатый вал двигателя вращается со скоростью приблизительно 800–900 оборотов в минуту (13–15 об/сек). На средней и большой скорости движения автомобиля число оборотов коленчатого вала в минуту составляет от 2000 до 4000. А в ходе автомобильных соревнований, у специально подготовленных автомобилей, двигатель «раскручивается» до 12000 об/мин (200 оборотов в секунду) и даже больше.

А что поршни? Они движутся в цилиндре с огромной скоростью! За один оборот коленчатого вала каждый поршень успевает подняться вверх, «развернуться» и опуститься вниз (или наоборот – сначала вниз, потом вверх). При этом путь от одной мертвой точки до другой поршни «пролетают» за сотые доли секунды! А если вспомнить еще и об огромных температурах и давлении в цилиндрах в это время!

Вот в таких непростых, мягко выражаясь, условиях работают детали двигателя вашего автомобиля.

Мы с вами разобрались с очень сложным и уникальным процессом, происходящим внутри двигателя с одним цилиндром. Многоцилиндровый двигатель принципиально ничем не отличается от простейшего одноцилиндрового. Но, когда цилиндров много, представьте, в каких условиях работает двигатель (температуры, давление, трение…), при этом работает безотказно и продолжительное время, ничего не требуя взамен, кроме лишь «кормления» бензином и периодического обслуживания.

Основные неисправности кривошипно-шатунного механизма

Стуки в двигателе могут возникнуть по причине износа поршневых пальцев, шатунных и коренных подшипников.

Для устранения неисправности необходимо заменить изношенные детали.

Повышенная дымность выхлопных газов и (или) падение компрессии (давление в конце такта сжатия) случается из-за износа поршневых колец, поршней, цилиндров, залегания поршневых колец в канавках поршней.

Для устранения неисправности следует заменить изношенные детали.

Эксплуатация кривошипно-шатунного механизма двигателя

Правильная эксплуатация двигателя крайне необходима, так как его ремонт достаточно трудоемкий и дорогостоящий процесс. И к кривошипно-шатунному механизму это относится в первую очередь.

Ресурс двигателя – это продолжительность нормальной работы двигателя без его капитального ремонта. Для отечественных автомобилей ресурс двигателя составляет приблизительно 150–200 тысяч километров пробега, и несколько больше для иномарок.

Многим из вас эти цифры покажутся недосягаемо большими, но это не означает, что можно забывать о своевременной смене масел, жидкостей, фильтров и других расходных материалов. Плюс к этому, двигатель требует периодических регулировок. Необходимо соблюдать сроки обслуживания его механизмов и систем, как это рекомендовано заводом-изготовителем вашего автомобиля. А иначе, через удивительно короткий промежуток времени, вам может понадобиться капитальный ремонт двигателя.

Факторы, влияющие на продолжительность работы двигателя

Первый фактор , уменьшающий ресурс двигателя – частые перегрузки автомобиля. Если загрузка салона, багажника и прицепа превышает все разумные пределы, то, двигаясь на такой перегруженной машине продолжительное время, вы рискуете выработать ресурс двигателя ранее вышеуказанного срока.

Водители, полагающие, что металл выдержит все, очень сильно ошибаются. Попробуем «примерить» это утверждение на себя.

Если сумка, с которой вы идете по улице, весит полтора-два кило, то можно долго не ощущать усталости. А теперь давайте возьмем на прогулку свой любимый телевизор с диагональю 51 см и, «погуляв» по набережным часика эдак два, оценим свое состояние. А ведь в отличие от нашего с вами организма, металл претерпевает необратимые изменения.

Вторым фактором , влияющим на срок службы двигателя, является движение с максимально возможной скоростью длительное время.

Если на трехкилометровой дистанции по кроссу вы будете бежать так же быстро, как и на 100 метров, то вам не избежать быстрой усталости и потери сил.

Вспоминается фраза из песни В. Высоцкого: «На десять тысяч я рванул, как на пятьсот… и… спекся!».

Последствия в этом случае для человеческого организма могут быть плачевными. То же самое происходит и с двигателем автомобиля. Жаль, что многие начинают понимать это слишком поздно.

Мы с вами не так далеко ушли от «страшно» больших цифр (температуры, давления, скорости…), характеризующих условия, в которых работают механизмы двигателя. Согласитесь, что количество «взрывов» в цилиндрах, периодичность колебаний температуры и давления за одну секунду, не могут не влиять на продолжительность «жизни» деталей двигателя.

Третий фактор , ускоряющий износ двигателя – экология. Грязный воздух и грязные дороги укорачивают жизнь не только человеку, но и разрушающе действуют на структуру металла, уменьшая ресурс двигателя. Поэтому не забывайте вовремя производить замену фильтров, по возможности применяйте качественные масла и топливо, следите за внешним видом двигателя своего автомобиля. Хотя бы пару раз в год его следует очищать от грязи и мыть с использованием специальных жидкостей.

Газораспределительный механизм (ГРМ)

Газораспределительный механизм предназначен для своевременного впуска в цилиндры двигателя горючей смеси и выпуска отработавших газов.

Газораспределительный механизм состоит из (см. рис. 10):

– распределительного вала;

– рычагов или толкателей;

– впускных и выпускных клапанов с пружинами;

– впускных и выпускных каналов.

Распределительный вал располагается чаще всего в верхней части головки блока цилиндров. Составной частью вала являются кулачки, количество которых соответствует количеству впускных и выпускных клапанов двигателя. Иными словами, над каждым клапаном расположен свой персональный кулачок. Именно эти кулачки при вращении распределительного вала обеспечивают своевременное, согласованное с движением поршней в цилиндрах, открытие и закрытие клапанов.

Распределительный вал приводится во вращение от коленчатого вала двигателя с помощью шестерен, цепной передачи или зубчатого ремня. Натяжение цепи привода регулируется специальным натяжителем, а зубчатого ремня – натяжным роликом (рис. 11).

а) цепной привод: 1– звездочка распределительного вала; 2 – цепь; 3 – успокоитель цепи; 4 – звездочка привода масляного насоса; 5 – звездочка коленчатого вала; 6 – башмак натяжителя цепи; 7 – натяжитель цепи

б) ременной привод: 1 зубчатый шкив распределительного вала; 2 – зубчатый ремень; 3 – зубчатый шкив коленчатого вала; 4 – зубчатый шкив водяного насоса; 5 – натяжной ролик

Рис. 11. Схема привода распределительного вала

Давайте вернемся к упрощенной схеме двигателя и разберемся с работой газораспределительного механизма (рис. 12).


Рис. 12. Схема взаимодействия деталей газораспределительного механизма

При вращении распределительного вала кулачок набегает на рычаг, который, в свою очередь, нажимает на стержень соответствующего клапана (впускного или выпускного) и открывает его (рис. 12 а ). Продолжая вращаться, кулачок сбегает с рычага, и под воздействием сильной пружины клапан закрывается (рис. 12 б ).

Основные неисправности газораспределительного механизма двигателя

Стуки в газораспределительном механизме появляются по причине увеличенных тепловых зазоров в клапанном механизме, износе подшипников или кулачков распределительного вала, рычагов, а также из-за поломки пружин клапанов.

Для устранения стуков необходимо отрегулировать тепловой зазор, а изношенные детали и узлы заменить.

Повышенный шум цепи привода распределительного вала появляется вследствие износа шарнирных соединений звеньев цепи и ее удлинения.

Следует отрегулировать натяжение цепи, а при чрезмерном ее износе заменить.

Потеря мощности двигателя и повышенная дымность выхлопных газов происходят при нарушении теплового зазора в клапанном механизме, неплотном закрытии клапанов, износе маслоотражательных колпачков.

Зазор следует отрегулировать, изношенные колпачки заменить, а клапаны «притереть» к седлам.

Эксплуатация газораспределительного механизма двигателя

Обратите внимание на тепловой зазор между рычагом и кулачком распределительного вала (рис. 12 б ). Немного знаний физики позволит понять, что этот зазор должен быть строго определенного размера. Ведь при нагревании все детали двигателя расширяются, в том числе и детали газораспределительного механизма.

Если зазор между рычагом и кулачком распределительного вала меньше нормального, то клапан будет открываться больше, чем ему положено, и не будет полностью закрываться. Это нарушит рабочий цикл двигателя и, плюс ко всему, в скором времени придется менять «подгоревшие» клапаны.

Если тепловой зазор будет слишком велик, то встреча кулачка с рычагом будет происходить с ударом, что выразится в заметном увеличении шума при работе двигателя и приведет к быстрому износу деталей газораспределительного механизма.

При неправильной установке теплового зазора наблюдается целый «букет» неприятностей. Двигатель начинает работать неустойчиво, глохнуть и преподносить прочие «сюрпризы», описанные в неисправностях газораспределительного механизма. Используя инструкцию по эксплуатации своего автомобиля, следует периодически контролировать правильность «зазора в клапанах».

Причем разговор идет о десятых долях миллиметра! Например, для двигателей ВАЗ, в зависимости от модели, тепловой зазор должен быть в пределах 0,15–0,35 мм. Если у вас есть соответствующие инструменты и решимость «залезть» в двигатель, то после нескольких попыток можно научиться «регулировать клапана». А если вы не собираетесь осваивать профессию автомеханика, то при подозрениях на «разрегулированные клапана» следует обратиться к специалистам.

При эксплуатации двигателя необходимо следить за натяжением цепи (зубчатого ремня) привода распределительного вала и при необходимости его регулировать.

Владельцам ВАЗ-2108 и 2109 с рабочим объемом двигателя 1,3 литра следует быть особенно внимательными к состоянию ремня привода распределительного вала и вовремя его менять, не допуская обрыва изношенного ремня при движении. У этих двигателей при выходе ремня из строя возможна «встреча» поршней с клапанами, что влечет к серьезным взаимным повреждениям. Это отнюдь не та встреча, на которую стремишься со сладостным ожиданием, а совсем другая, за которой последует сложный ремонт с заменой деталей газораспределительного и кривошипно-шатунного механизмов двигателя.

Большинству из вас никогда не придется разбирать и собирать двигатель, да это и не нужно, если вы не являетесь специалистом в этой области. Но при любых экспериментальных работах с автомобилем, разбирая какой-то узел, а потом его собирая, обязательно запоминайте расположение деталей и последовательность демонтажа. А то могут остаться «лишние» детали!

Причем, сборка всегда труднее, чем разборка. Не забывайте арабскую пословицу: «Прежде чем тащить осла на крышу подумай, как снять его оттуда».

В начале автомобильной жизни не рекомендуется включать музыку сразу же после запуска двигателя. Проехав некоторое расстояние, прислушайтесь к звукам, доносящимся из-под капота. Они могут быть самыми разными, но любой «выделяющийся» звук говорит о том, что с двигателем не все в порядке. При появлении новых, незнакомых вам звуков, следует обратиться в автосервис или к знакомому умельцу.

Ни одна неисправность в автомобиле не появляется, не предупредив водителя об этом заранее. В то же время немало «юных» водителей ездят на своих машинах с явно аварийными узлами, думая, что так и должно быть.

Одной из проблем начинающих водителей является то, что зачастую они не знают, как должен вести себя исправный автомобиль, какие шумы нормальные, а какие «говорят» о надвигающихся финансовых затратах. А знать это важно, так как многие неисправности влияют еще и на безопасность движения.

вступления , вы­водов по теме, многословии… украл бы автомобиль . Я не украду автомобиль . _________________ Я… предлагают пройти через устройство , снабженное электромагнитом…

  • Предлагаемая вашему вниманию книга используется в качестве базового учебника по

    Руководство

    . .. ВСТУПЛЕНИЕ Написание данной книги продиктовано необходимостью создания такого учебника по … наблюдений с использованием технических устройств . Врезка 6.3. Практика… меняются. Предпочтения по — требителей по отношению к автомобилям следует постоянно…

  • В числе процессов, характеризующих работу мощных и производительных машин и механизмов, следует отметить рабочий цикл четырехтактного двигателя. Это совокупность процессов, повторяющихся в определенной последовательности, во время которых цилиндр наполняется рабочей смесью, после чего происходит ее сжатие и воспламенение. Газы, образовавшиеся при сгорании, расширяются, а затем – удаляются из цилиндра.

    Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу.

    Если рабочий цикл совершается за два хода поршня, т. е. за один оборот коленчатого вала, то такой двигатель называется двухтактным. В настоящее время двухтактные двигатели на автомобилях не применяют, а используют лишь на мотоциклах и как пусковые двигатели на тракторах. Это связано прежде всего с тем, что они имеют сравнительно высокий расход топлива и недостаточное наполнение горючей смеси из-за плохой очистки цилиндров от отработавших газов. Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения и выпуска. В карбюраторном четырехтактном одноцилиндровом двигателе рабочий цикл происходит следующим образом.

    Такт впуска

    Поршень находится в в.м.т. и по мере вращения коленчатого вала (за один его полуоборот) перемещается от в.м.т. к н.м.т. При этом впускной клапан открыт, а выпускной клапан закрыт. При движении поршня вниз объем над ним увеличивается, поэтому в цилиндре создается разряжение, равное 0,07-0,095 МПа , в результате чего свежий заряд горючей смеси, состоящей из паров бензина и воздуха, засасывается через впускной трубопровод в цилиндр. От соприкосновения свежего заряда с нагретыми деталями в конце такта впуска он имеет температуру 75-125 °С.

    Степень заполнения цилиндра свежим зарядом характеризуется коэффициентом наполнения, который для высокооборотных карбюраторных двигателей находится в пределах 0,65-0,75. Чем выше коэффициент наполнения, тем большую мощность развивает двигатель.

    Такт сжатия

    После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала поршень перемещается от н.м.т. к в.м.т. Впускной клапан закрывается, а выпускной закрыт. По мере сжатия горючей смеси температура и давление ее повышаются. В зависимости от степени сжатия давление в конце такта сжатия может составлять 0,8-1,5 МПа , а температура газов 300- 450 °С.

    Такт расширения, или рабочий ход

    В конце такта сжатия горючая смесь воспламеняется от электрической искры, возникающей между электродами свечи, и быстро сгорает, в результате чего температура и давление образующихся газов резко возрастают, поршень при этом перемещается от в. м.т. к н.м.т. Максимальное давление газов на поршень при сгорании для карбюраторных двигателей находится в пределах 3,5-5 МПа , а температура газов 2100-2400 °С.

    При такте расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип передает вращение коленчатому валу. При расширении газы совершают полезную работу, поэтому ход поршня при этом такте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня давление в цилиндре снижается до 0,3-0,75 МПа , а температура — до 900-1200 °С.

    Такт выпуска

    Коленчатый вал через шатун перемещает поршень от н.м.т. к в.м.т. При этом выпускной клапан открыт и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной трубопровод. В начале процесса выпуска продуктов сгорания давление в цилиндре значительно выше атмосферного, но к концу такта оно падает до 0,105-0,120 МПа , а температура газов в начале такта выпуска составляет 750- 900 °С , понижаясь к его концу до 500-600 °С. Полностью очистить цилиндры двигателя от продуктов сгорания практически невозможно (слишком мало времени), поэтому при последующем впуске свежей горючей смеси она перемешивается с остаточными отработавшими газами и называется рабочей смесью.

    Коэффициент остаточных газов характеризует степень загрязнения свежего заряда отработавшими газами и представляет собой отношение массы продуктов сгорания, оставшихся в цилиндре, к массе свежей горючей смеси. Для современных карбюраторных двигателей коэффициент остаточных газов находится в пределах 0,06-0,12. По отношению к рабочему ходу такты впуска, сжатия и выпуска являются вспомогательными.

    Двухтактный двигатель – особенности работы

    Весь цикл работы двухтактного двигателя происходит за один оборот коленвала. Это позволяет на выходе получать приблизительно в 1,4-1,8 раз большую мощность, с того же рабочего объема, имея те же самые обороты двигателя. Разумеется, коэффициент полезного действия у таких агрегатов значительно ниже, чем у тех же 4 тактных моделей. Это используется при создании тяжелых и низкооборотных двигателей судов. Здесь они напрямую соединяются с гребным валом. Нашли свое применение такие модели и в мотоциклах.

    Это так же приводит к тому, что модели, работающие в 2 такта, очень сильно греются. Здесь выделятся большая тепловая энергия. В некоторых случаях приходится подключать к ним дополнительное охлаждение, чтобы агрегат всегда находился в работоспособном состоянии. Однако, можно выделить и плюс подобной технологии. Ввиду того, что работа поршня ограничивается 2 тактами, он совершает гораздо меньше движений за единицу времени, поэтому потери на трение минимальны. Это напрямую отражается на износе основных рабочих деталях двухтактного двигателя.

    Еще одной актуальной проблемой для данной модели является тот факт, что постоянно нужно искать компромисс между потерями свежего заряда и качеством продувки. Да, принцип работы заставляет ведущих инженеров и техников трудится над созданием универсальной системы, которая бы сводила к минимуму потери. 4 тактный двигатель вытесняет отработанные газы в тот момент, когда его поршень находится в верхней мертвой точке. Здесь ситуация коренным образом меняется. Вся отработка вылетает в трубу в тот момент, когда цилиндр практически полностью свободен, то есть этот процесс захватывает его объем полностью. Качество обдува играет в этом очень важную роль.

    Именно поэтому не всегда удается разделить свежую рабочую смесь от выхлопных газов. В любом случае они будут смешиваться. Особенно отчетливо такая проблема выделяется у карбюраторных моделей моторов, которые напрямую подают готовое к работе горючее в цилиндр. Естественно, в данном случае стоит говорить о большем количестве используемого воздуха. Отсюда возникает необходимость применения сложных по структуре и составу воздушных фильтров. 4 тактный двигатель обделен этим недостатком.

    Принцип работы данной модели двигателя говорит о том, что его применение может быть ограничено ввиду особенностей конструкции и большого количества потерь. Однако от 2 тактов еще никто не отказывается, создавая все больше устройств на его основе. Стоит отметить, что сегодня на рынке представлено множество различных механизмов, которые используют как 4 тактный двигатель внутреннего сгорания, так и двухтактный. Кстати, тот экземпляр, о котором мы решили поговорить сегодня, может иметь не только простейшее строение, в некоторых механизмах используются достаточно сложные его варианты.

    Рабочий цикл двухтактного двигателя – достоинства и недостатки

    Самое главное преимущество двухтактных двигателей – более высокая, по сравнению с четырехтактными, литровая мощность. Дело здесь в том, что при равном количестве цилиндров и количестве оборотов коленчатого вала в минуту, каждый цилиндр совершает рабочий ход вдвое чаще. При этом, за счет того, что фактический рабочий ход двухтактного двигателя короче (он укорочен за счет процессов газообмена), реально объем двигателя увеличивается на 50-60%.

    Не менее важное преимущество – компактность. Благодаря этому качеству двухтактные двигатели нашли широкое применение не только в небольших транспортных средствах наподобие снегоходов, но и в садовой технике, а также инструментах (к примеру, в бензопилах). Кроме того, отсутствие газораспределительного механизма заметно делает конструкцию проще и дешевле в производстве. Есть у двухтактных ДВС и существенные недостатки. Они расходуют больше топлива впустую, так как при открытии выпускного окна в систему выхлопа попадает часть несгоревшей смеси. Система смазки классического двухтактного мотора крайне примитивна – бензин смешивается с маслом заранее, и оба эти вещества попадают в камеру сгорания одновременно. Обусловлено это тем, что организовать масляную ванну в картере невозможно – картер участвует в процессе газообмена.

    В результате масло, не пошедшее на смазывания стенок цилиндра, сгорает вместе с топливом. Ресурс двухтактного двигателя также значительно меньше, главным образом, за счет высоких оборотов коленвала. По этой причине в двигателях этого типа применяется только специальное высококачественное масло, разработанное для применения в двухтактных двигателях. Экологические параметры также оставляют желать лучшего: в выхлопе, из-за особенностей газораспределения, содержится большое количество СО и СН.

    Подписывайтесь на наши ленты в

    К атегория:

    Техническое обслуживание автомобилей

    Рабочие циклы четырехтактных двигателей и показатели их работы

    Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу.

    Если рабочий цикл совершается за два хода поршня, т. е. за один оборот коленчатого вала, то такой двигатель называется двухтактным. В настоящее время двухтактные двигатели на автомобилях не применяют, а используют лишь на мотоциклах и как пусковые двигатели на тракторах. Это связано прежде всего с тем, что они имеют сравнительно высокий расход топлива и недостаточное наполнение горючей смеси из-за плохой очистки цилиндров от отработавших газов.

    Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения и выпуска.

    В карбюраторном четырехтактном одноцилиндровом двигателе (рис. 1.3) рабочий цикл происходит следующим образом.


    Рис. 1. Рабочий цикл четырехтактного одноцилиндрового карбюраторного двигателя

    Такт впуска. Поршень находится в в.м.т. и по мере вращения коленчатого вала (за один его полуоборот) перемещается от в.м.т. к н.м.т. При этом впускной клапан открыт, а выпускной клапан закрыт. При движении поршня вниз объем над ним увеличивается, поэтому в цилиндре создается разряжение, равное 0,07-0,095 МПа, в результате чего свежий заряд горючей смеси, состоящей из паров бензина и воздуха, засасывается через впускной трубопровод в цилиндр.

    От соприкосновения свежего заряда с нагретыми деталями в конце такта впуска он имеет температуру 75-125 °С.

    Степень заполнения цилиндра свежим зарядом характеризуется коэффициентом наполнения, который для высокооборотных карбюраторных двигателей находится в пределах 0,65-0,75. Чем выше коэффициент наполнения, тем большую мощность развивает двигатель.

    Такт сжатия. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала поршень перемещается от н.м.т. к в.м.т. Впускной клапан 4 закрывается, а выпускной 6 закрыт. По мере сжатия горючей смеси температура и давление ее повышаются. В зависимости от степени сжатия давление в конце такта сжатия может составлять 0,8-1,5 МПа, а температура газов 300- 450 °С.

    Такт расширения, или рабочий ход. В конце такта сжатия горючая смесь воспламеняется от электрической искры, возникающей между электродами свечи, и быстро сгорает, в результате чего температура и давление образующихся газов резко возрастают, поршень при этом перемещается от в.м.т. к н.м.т. Максимальное давление газов на поршень при сгорании для карбюраторных двигателей находится в пределах 3,5-5 МПа, а температура газов 2100-2400 °С.

    При такте расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип передает вращение коленчатому валу. При расширении газы совершают полезную работу, поэтому ход поршня при этом такте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня давление в цилиндре снижается до 0,3-0,75 МПа, а температура — до 900-1200 °С.

    Такт выпуска. Коленчатый вал через шатун перемещает поршень от н.м.т. к в.м.т. При этом выпускной клапан открыт и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной трубопровод. В начале процесса выпуска продуктов сгорания давление в цилиндре значительно выше атмосферного, но к концу такта оно падает до 0,105-0,120 МПа, а температура газов в начале такта выпуска составляет 750- 900 °С, понижаясь к его концу до 500-600 °С. Полностью очистить цилиндры двигателя от продуктов сгорания практически невозможно (слишком мало времени), поэтому при последующем впуске свежей горючей смеси она перемешивается с остаточными отработавшими газами и называется рабочей смесью.

    Коэффициент остаточных газов характеризует степень загрязнения свежего заряда отработавшими газами и представляет собой отношение массы продуктов сгорания, оставшихся в цилиндре, к массе свежей горючей смеси. Для современных карбюраторных двигателей коэффициент остаточных газов находится в пределах 0,06-0,12.

    По отношению к рабочему ходу такты впуска, сжатия и выпуска являются вспомогательными.

    Рабочие циклы четырехтактного дизеля и карбюраторного двигателя существенно различаются по способу смесеобразования и воспламенения рабочей смеси. Основное отличие состоит в том, что в цилиндр дизеля при такте впуска поступает не горючая смесь, а воздух, который из-за большой степени сжатия нагревается до высокой температуры, а затем в него впрыскивается мелкораспыленное топливо, которое под действием высокой температуры воздуха самовоспламеняется.

    В четырехтактном дизеле рабочие процессы происходят следующим образом.

    Такт впуска. При движении поршня от в. м.т. к н.м.т. вследствие образующегося разряжения из воздухоочистителя в полость цилиндра через открытый впускной клапан 5 поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0,08-0,95 МПа, а температура 40-60 °С.

    Такт сжатия. Поршень движется от н.м.т. к в.м.т. Впускной 5 и выпускной 6 клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает имеющийся в цилиндре воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. Из-за высокой степени сжатия температура воздуха достигает 550-700 °С при давлении воздуха внутри цилиндра 4,0-5,0 МПа.

    Такт расширения, или рабочий ход. При подходе поршня к в.м.т. в цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом. Впрыснутое топливо, перемешиваясь с нагретым воздухом, самовоспламеняется и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6-9 МПа, а температура 1800-2000 °С. Под действием давления газов поршень перемещается от в.м.т. к н.м.т. Происходит рабочий ход. Около н.м.т. давление снижается до 0,3-0,5 МПа, а температура-до 700-900 °С.

    Такт выпуска. Поршень перемещается от н.м.т. к в.м.т. и через открытый выпускной клапан 6 отработавшие газы выталкиваются из цилиндра. Давление газа снижается до 0,11-0,12 МПа, а температура — до 500-700 °С. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

    Показатели работы двигателя. Работа, совершаемая газами в единицу времени внутри цилиндра двигателя, называется индикаторной мощностью.


    Рис. 2. Рабочий цикл четырехтактного дизеля

    Мощность, получаемая на коленчатом валу двигателя, называется эффективной мощностью. Она меньше индикаторной на значение мощности, затрачиваемой на насосные потери и на трение в криво-шипно-шатунном и газораспределительном механизмах двигателя, а также на приведение в действие вентилятора, жидкостного насоса и других вспомогательных устройств.

    Таким образом, эффективная мощность меньше, чем индикаторная мощность, из-за механических потерь, расходуемых в механизмах и системах двигателя. На основании этого механическим к.п.д. (коэффициентом полезного действия) двигателя называют отношение эффективной мощности к индикаторной.

    Механический к.п.д. карбюраторных двигателей составляет 0,70- 0,85, а дизелей — 0,73-0,87.

    Мощностные показатели двигателя в значительной мере определяются количеством теплоты, превращенным в полезную работу. Степень использования теплоты, введенной в двигатель с топливом, оценивают эффективным к.п.д., который представляет собой отношение количества теплоты Qe, превращенной в эффективную работу, к количеству теплоты Qt, выделившейся в результате сгорания


    Рис. 3. Схемы компоновки цилиндров двигателей

    Дизель. Рассмотрим процесс протекания каждого такта в цилиндре дизеля (рис. 7).

    Первый такт — впуск. Цилиндр заполняется воздухом, кислород которого обеспечивает сгорание топлива. Чем больше воздуха поступает в цилиндр, тем большее количество топлива можно сжечь в нем и тем выше будет давление газов на поршень при рабочем ходе (увеличивается мощность).

    Во время впуска поршень движется вниз, впускной клапан открыт, а выпускной закрыт. Воздух, поступающий в цилиндр, нагревается при смешивании с горячими остаточными газами и от нагретых деталей работающего дизеля.

    К концу первого такта температура воздуха достигает 40… 60 °С, и его плотность уменьшается. Кроме того, при движении он встречает сопротивление во впускных каналах дизеля. По этим причинам давление в цилиндре оказывается ниже атмосферного (0,08… 0,09 МПа).

    Второй такт — сжатие. Поршень перемещается вверх, оба клапана закрыты. Под действием поршня воздух сжимается в 15…17 раз (степень сжатия е=15… 17) и при этом нагревается. Давление в конце сжатия доходит до 3…4 МПа, а температура — до 550…600 °С, что значительно превышает температуру самовоспламенения топлива.


    Рис. 4. Схема рабочего цикла одноцилиндрового четырехтактного дизеля: 1 — форсунка; 2 — топливный насос.

    Третий такт — расширение. Перед самым окончанием такта сжатия, когда поршень почти дошел до в. м.т., в цилиндр через форсунку впрыскивается порция топлива. Большая часть его сразу же воспламеняется и сгорает. Температура газов повышается до 2000…2100 °С, а давление — до 5,5…8,0 МПа. Под таким давлением расширяющихся газов поршень перемещается вниз и через шатун проворачивает коленчатый вал. В процессе расширения сгорает остальная часть впрыснутого топлива. По мере перемещения поршня давление газов в цилиндре падает, а температура уменьшается. К концу третьего такта давление снижается до 0,2…0,3 МПа, а температура — до 600…650 °С.

    Четвертый такт — выпуск. Впускной клапан закрыт, а выпускной открыт. Из цилиндра выталкиваются отработавшие газы. Давление оставшихся газов падает до 0,11…0,12 МПа. Температура отработавших газов в месте выхода из цилиндра составляет 400…500 °С.

    Карбюраторный двигатель. Подобным образом рассмотрим рабочий цикл четырехтактного карбюраторного двигателя.

    Такт впуска. Выпускной клапан закрыт, а впускной открыт. При движении поршня от в. м. т. вниз цилиндр заполняется смесью топлива с воздухом. Такая смесь приготовляется в специальном приборе — карбюраторе и называется горючей смесью. Поступая в цилиндр, она перемешивается с остаточными газами, в результате чего образуется рабочая смесь.

    Давление рабочей смеси в цилиндре при такте впуска из-за сопротивления в карбюраторе ниже, чем в цилиндре дизеля, и составляет 0,07…0,08 МПа. Температура рабочей смеси повышается 60…120 °С в основном за счет высокой температуры остаточных газов.

    Такт сжатия. При этом такте, как и в дизеле, рабочая смесь, сжимаясь, нагревается. С увеличением степени сжатия растет давление и температура смеси, а также скорость ее сгорания. В результате повышается экономичность и мощность двигателя. Но при повышенной температуре возникает опасность преждевременного воспламенения (самовоспламенения) смеси. Чтобы избежать этого, рабочую смесь сжимают незначительно (е=4…8). Давление в цилиндре в конце такта сжатия — 0,9…1,2 МПа, а температура не превышает температуры самовоспламенения, доходя лишь до 330 °С.

    Такт расширения. Перед окончанием такта сжатия между электродами искровой свечи зажигания проскакивает электрический заряд. Искра воспламеняет рабочую смесь. Температура горящих газов доходит до 2500 °С, а давление повышается до 3,0…4,5 МПа. Под действием силы давления газов поршень перемещается вниз. К концу. третьего такта давление снижается до 0,3…0,4 МПа, а температура — до 900…1200 °С.

    Такт выпуска происходит так же, как в дизеле, но при несколько более высокой температуре газов.

    Сравнительная оценка дизеля и карбюраторного двигателя.

    По сравнению с карбюраторным (бензиновым) двигателем дизель имеет следующие преимущества:
    — дизель экономичнее: на единицу выполненной работы вследствие высокой степени сжатия он расходует на 25% меньше топлива;
    — топливо, на котором работает дизель, менее опасно в пожарном отношении и оказывает меньшее коррозионное действие на детали, чем бензин.

    Недостатки дизеля:
    — из-за высокого давления газов в цилиндрах, корпус и другие детали, работающие со значительными нагрузками, тяжелее и имеют большие размеры;
    — для пуска дизеля требуется более мощный стартер или специальный карбюраторный пусковой двигатель;
    — дизель работает со значительным избытком воздуха, поэтому размеры цилиндров и других деталей и сборочных единиц увеличены.

    К атегория: — Техническое обслуживание автомобилей

    Двухтактный двухцилиндровый двигатель принцип работы


    Помимо всем известных четырехтактных двигателей, которые используются в автомобилях, есть еще двигатели двухтактного действия, которые устанавливают на технические агрегаты: бензопилы, мотоциклы, газонокосилки, квадроциклы, скутеры, моторные лодки и т.д. Основное отличие двухтактного от четырехтактного двигателя — это принцип работы ДВС. Кроме этого, 2-х тактные моторы меньше по габаритам, способны развивать меньшую мощность и, следовательно, имеют меньший КПД.

    Устройство двухтактного двигателя

    Конструкция такого мотора проще, чем у четырехтактного. В двухтактного ДВС нет газораспределительного механизма. Двигатель состоит из блока цилиндра, в котором располагается коленвал на подшипниках.

    Головка шатуна ложится в специальное для нее место — шейка вала. Между головкой шатуна и шейкой вала — вкладыши, которые фиксируются корончатыми гайками.

    Верхняя часть шатуна крепится с поршнем посредством пальца. Палец — это пустотелый цилиндр, который служит соединительными элементом конструкции шатун-поршень.

    На поршне в специальные канавки по периметру в верхней части устанавливаются компрессионные кольца, от которых зависит компрессия двигателя.

    Движущим элементом в двигателе внутреннего сгорания является топливно-воздушная смесь, которая сгорая создает энергию, толкающая поршень вниз. От движения поршня вверх-вниз происходит вращения коленчатого вала. На коленвале закрепляется маховик, который передает вращение дальше, то есть валу коробки и так далее.

    Охлаждение двухтактного двигателя осуществляется через ребра наружного блока. Кроме внешнего охлаждения, некоторая часть охлаждения идет от масла, которое содержится в бензине.

    В двухтактные двигатели заливается бензин, в которое добавлено специальное моторное масло. Например, для газонокосилки Штиль, на 5 литров бензина, надо добавить 100 грамм, то есть, соотношение бензина к маслу 50:1. Именно столько количества масла отлично смазывает трущиеся поверхности цилиндр с кольцами поршня.


    Ремонт двухтактных двигателей внутреннего сгорания

    Ремонт двухтактных ДВС осуществляется только квалифицированными рабочими по технологическим и маршрутным картам, которые разрабатывают инженеры и проектировщики. Эти инструкции дают рабочему понять, где и когда использовать ту или иную операцию, как и каким порядкм устанавливать детали, а также в какой последовательности их затягивать.

    Сами «двухтактники» устанавливаются в специальные стенды-кантователи, которые позволяют с большим удобством и правильно, доступно визуально осуществить правильную сборку и протяжку.

    Принцип работы

    Один оборот коленчатого вала является одним циклом рабочего процесса двигателя внутреннего сгорания.

    Топливо (бензин+масло) с воздухом подается в рабочую камеру сгорания цилиндра, после чего за счет образования искры свечи зажигания, происходит взрыв горючей смеси, энергия которой резко отталкивает поршень вниз.

    Когда поршень движется вниз, открывается выпускное окно и немного позже открывается переходное окно, через которое впрыскивается новая порция горючего.

    В картер двигателя топливная смесь попадает через окно, открывающееся за счет вакуума при движении поршня вверх от нижней мертвой точки (НМТ) к верхней (ВМТ). При этом движении также открывается окно для выброса газов сгоревшей смеси. Через милисекунды открывается продувочное окно. Через продувочное окно подается новая порция топлива.

    Принцип работы 2-х тактного двигателя. И как выбрать масла для него?

    Принцип работы 2-х тактного двигателя. И как выбрать масла для него?
    Для того, чтобы ответить на этот вопрос, нужно разобраться, что такое 2-х тактный двигатель, где он используется и какие преимущества и недостатки перед 4-х тактным.

    Начнем по порядку. 2-х тактный двигатель – разновидность поршневого двигателя, в котором рабочий процесс совершается за два хода поршня. У такого двигателя всего 2 такта, такт сжатия и такт рабочего хода. Причем очистка и наполнения цилиндра горючий смеси осуществляется не отдельными тактами, как в 4-х тактном двигателя, а совместными. При этом число ходов поршня у двух тактного двигателя больше.

    Рассмотрим принцип работы 2-х тактного двигателя.

    1. Такт сжатия.

    1.1 Перемещения поршня от нижней мертвой точки поршня (НМТ) к верхней мертвой точке поршня (ВМТ). При этом поршень перекрывает, сначала впускное окно, затем выпускное.

    1.2 После этого начинается сжатие рабочий смеси. Одновременно с этим в кривошипной камере, под поршнем, создается разрежение, под действием которого через впускное окно поступает горючая смесь, в кривошипную камеру.

    2. Такт рабочего хода.

    2.1 Когда поршень достигает ВМТ, рабочая смесь воспламеняется, при помощи искры со свечи зажигания.

    2.2 Под действием высокого давления поршень перемещается от ВМТ к НМТ, при этом расширяющиеся газы совершают полезную работу.

    2.3 Опускаясь вниз, поршень создает высокое давление в кривошипной камере, клапан закрывается, не давая таким образом горючей смеси снова попасть во впускной коллектор.

    2.4 Когда поршень проходит выпускное окно, оно открывается и начнется выпуск отработавших газов в атмосферу.

    2.5 При дальнейшем перемещении поршень открывает впускное окно и сжатая в кривошипной камере горючая смесь поступает по каналу, заполняя цилиндр и осуществляя продувку его от остатков отработавших газов.

    Для более полного представления рассмотрим видео взятое с сайта youtube:

    Рассмотрим основные преимущества и недостатки 2-х тактных двигателей:

    + отсутствие систем смазки и газораспределения, что в разы уменьшает размер двигателя;

    + простота и дешевизна в производстве и изготовлении;

    + маленький вес и компактность.

    Недостатками являются:

    — больший расход топлива, чем у 4-х тактных двигателей;

    — больший шум;

    — меньшая долговечность. Но это спорный вопрос.

    Применяются двухтактные двигатели: в садовой техники (газонокосилки, триммеры, бензопилы и др.), так же в мопедах, скутерах, некоторых мотоциклах, картах и бензиновых генераторах и др.

    К выбору масла для 2-х тактной техники стоит подходить очень тщательно. Как и любые моторные масла, их, нужно подбирать по допускам, которые дают заводы производители техники. Чтобы в этом разобраться, нужно знать, как классифицируются эти моторные масла.

    Рассмотрим классификацию по API.

    API TA Моторные масла для двухтактных двигателей небольших мопедов, газонокосилок и другой подобной техники.
    API TB Моторные масла для маломощных двухтактных двигателей мотоциклов.
    API TC Моторные масла для двухтактных двигателей, работающих на суше. Данные автомасла могут применяться в случаях, когда производитель мотора требует соответствия масла классам API TA или API TB.
    API TD Моторные масла, специально разработанные для двухтактных подвесных моторов

    Так же моторные масла для двухтактных двигателей классифицируются по JASO:

    JASO FA Для двухтактных двигателей мотоциклов и других машин (масла предназначены для применения в развивающихся странах).
    JASO FB Для двухтактных двигателей мотоциклов и других машин (минимальные требования для применения в Японии).
    JASO FС Для двухтактных двигателей мотоциклов и других машин, бездымное моторное масло (основное масло для применения в Японии).
    JASO FD Для двухтактных двигателей мотоциклов и других машин, бездымное моторное масло с улучшенными характеристиками по чистоте двигателя в сравнении с FC (наивысшие требования к 2-тактным маслам в Японии).

    От правильного выбора масла зависит, как долго прослужит техника. Выбирайте качественную и надежную продукцию. Все продукты Eurol отвечают заявленному стандарту, и проходят тщательную проверку в лаборатории. Выбирая продукцию Eurol, Вы выбираете качество!
    Вернуться к списку статей

    Как повысить мощность

    Как и 4-х тактные двигатели, 2-х тактные можно усовершенствовать, сделать, так называемый, чип-тюнинг.

    Для повышения мощности ДВС можно сделать следующее:
    • Расточить выпускное отверстие, чтобы отработавшие газы выходили полностью.
    • Улучшить эффект продувки. Продувка — это удаление отработавших газов и наполнение рабочего объема цилиндра новой порцией топливной смеси. Сделать нужно так, чтобы через впускное окно успевало впрыскиваться топливо в камеру сгорания. Если топливо не будет в нужном объеме поступать в камеру сгорания, то в картере мотора будет скапливаться топливо. Поэтому, для качественного заполнения топливом рабочей части цилиндра, требуется увеличить диаметр отверстия выпускного окна (выброса отработавших газов).
    • Можно применять на карбюраторе вихревой диффузор. Вихревой диффузор называют также нулевой. За счет этого диффузора за меньший период времени будет поступать в цилиндр больше топлива.
    • На глушитель вмонтировать специальный резонатор, подходящий по оборотам к конкретному двигателю. Резонатор делает так, чтобы не сгоревшая топливная смесь, возвращалась обратно в цилиндры. Это эффективно, когда в цилиндре происходит не полное сгорание смеси.

    Чтобы часть цилиндра под поршнем заполнялась полностью, надо осмотреть впускные и выпускные каналы, возможно, на отверстиях есть царапины, задиры, сколы. Такие мелкие дефекты влияют на скорость движения топлива и газов.

    Для лучшего эффекта повышения мощности можно отфрезеровать и затем отшлифовать головка блока цилиндров (ГБЦ).

    Не рекомендуется уменьшать вес деталей двигателя, так как из-за увеличения разности противовеса, нарушения центра тяжести, может увеличиться торцевое биение маховика и коленвала.

    Как увеличить тягу

    Тяга двухтактных моторов зависит от открытия дроссельной заслонки. С резким возрастание оборотов двигателя, возрастает тяга. Отсюда следует, что, для того, чтобы уменьшить время разгона ДВС, надо увеличить рабочий объем цилиндра.

    Когда двигатель работает на низких оборотах, качественная тяга повышает приемистость, увеличивает скорость разгона — ускорение.

    Тягу также можно увеличить путем замены клапанов на специальные и настроить их так, чтобы они держались в открытом положении дольше, чем обычные.

    Проблема с продувкой

    Чем выше обороты коленвала, тем больше мощность. Но, конструкция двухтактных двигателей имеет такую особенность — чем быстрее начинает двигаться поршень, тем хуже продувается камера сгорания цилиндра, так как окна подачи и выпуска отработавших газов остаются открытыми очень мало времени.

    Камерная продувка — это удаление газов и впрыск топлива в цилиндр из картера. Топливо начинает всасываться и находиться в картере при движении поршня вверх. Затем, когда поршень идет вниз, впускной канал закрывается и открывается продувочное окно, через которое подается новая порция топлива и выгоняются газы отработавшей предыдущей смеси топлива (смотрите рисунок выше, посередине).

    Такая простая конструкция двухтактного двигателя исключает необходимость устанавливать газораспределительный механизм (ГРМ), насоса продувки, клапанов и узла смазки.

    Продувка во время работы двухтактного двигателя на холостом ходу (ХХ) осуществляется по-другому. Во время работы на ХХ, продувка осуществляется открыванием на маленький угол заслонки. Такая продувка не качественная, поэтому на холостом ходу, многие наверное замечали, двигатель бензопилы или газонокосилки работает не стабильно. Что касается бензопилы, например, Echo (Эхо), то там надо наполовину вытягивать подсос.

    Одноцилиндровый двухтактный двигатель имеет контурную продувку, то есть щелевую. В нижней части цилиндра в стенке есть специальная щель, через которую происходит газораспределение. В такте сжатия и рабочего хода, то есть когда поршень вверх, отверстия впуска и продувки должны быть закрытыми.

    Контурная продувка — это предпоршневой объем (цилиндр под поршнем) представляет собой продувочный насос. Такая конструкция позволяет делать двигатели самых малых габаритов.

    Рабочие циклы двухтактных двигателей

    Рабочий цикл двухтактного двигателя совершается за два хода поршня (такта), т. е. за один оборот коленчатого вала. Это достигается за счет размещения в цилиндре продувочных и выпускных окон или только продувочных окон при наличии выпускного клапана на цилиндровой крышке.

    Для очистки цилиндра от отработавших газов и заполнения его свежим зарядом воздуха используется продувочный воздух давлением Рз 1,15 ÷ 1,20 бар, нагнетаемый расположенным на двигателе продувочным насосом.

    Рабочие циклы двухтактных двигателей также могут быть быстрого, постепенного и смешанного сгорания (рис. 9).

    Схема работы двухтактного бескомпрессорного дизеля и его индикаторная диаграмма приведены на рис. 10.

    1 — процесс сжатия начинается в момент, когда при движении к в.м.т. поршень закрывает выпускные окна (точка «а») и начинает сжимать находящийся в цилиндре воздух. В конце сжатия (точка «с») давление возрастает до рс = 35÷50 бар и температура — до tс = 500÷600 °C.

    2 — процессы сгорания и расширения. В точке с начинается сгорание топлива, впрыскиваемого в цилиндр через форсунку. Сгорание топлива происходит сначала при постоянном объеме (с — у), а затем при постоянном давлении (у-z). В точке «z» давление в цилиндре достигает Рz =50÷65 бар и температура — tz 1400÷1600 °C. В результате расширения газов, продолжающегося до точки «b», поршень перемещается к н.м.т., совершая рабочий ход.

    3 — процессы выпуска и продувки. В точке «b» поршень своей кромкой открывает выпускные окна. К этому времени давление в цилиндре снижается до Рв = 2,5÷4 бар и температура — до tb = 600÷800 °C. Через открывающиеся выпускные окна газы выходят из цилиндра в выпускной коллектор. В точке «s» открываются продувочные окна. К этому моменту давление в цилиндре не превышает Рэ = 1,15÷1,25 бар. Выпуск газов до начала открытия продувочных окон носит название «свободного выпуска».

    В точке «s» в цилиндр начинает поступать из ресивера продувочный воздух, который осуществляет продувку, т.е. очистку цилиндра от отработавших газов и его зарядку свежим воздухом. Поршень приходит в н.м.т. И затем начинает двигаться вверх. В точке «n» продувочные окна закрываются, однако выпускные окна еще открыты. При дальнейшем движении поршня происходит некоторая потеря заряда, т.е. часть воздуха выходит через открытые выпускные окна в выпускной коллектор. В точке «а» выпускные окна закрываются и начинается процесс сжатия (точки а = b, s = n лежат на одних и тех же прямых, перпендикулярных оси V).

    Похожие статьи

    • Судовые Двигатели : 6RD76 и 9RD90
    • Судовые Двигатели БМЗ: 9ДКРН 50/110 и 7ДКРН 74/160
    • Смазочные масла: физико-химические свойства
    • Топливо: элементарный состав топлива
    • Понятие о тепловом балансе дизеля: экономическая оценка
    • Работа и мощность двигателей: среднее индикаторное давление
    • Системы продувки двухтактных двигателей
    • Рабочие циклы четырёхтактных двигателей
    • Основные данные двигателей: рабочий объем цилиндра
    • Классификация и маркировка двигателей

    4 Rating 4. 00 (2 Votes)

    Такты двигателя — Энциклопедия по машиностроению XXL

    Из сказанного следует, что только в первом такте двигатель развивает движущую силу, а в остальных тактах движение поршня связано с преодолением сопротивлений. Таким образом, в первом такте движущимся массам необходимо сообщить запас кинетической энергии, при помощи которой в следующих тактах преодолеваются сопротивления. Для этого на коренном валу двигателя устанавливается маховое колесо с достаточно большим моментом инерции.  [c.328]
    Совокупность последовательных процессов, периодически повторяющихся в рабочем цилиндре, называется рабочим циклом, который может совершаться за два или четыре хода поршня (соответственно за один или за два оборота коленчатого вала). Таким образом, рабочий цикл может совершаться за два или четыре такта. Двигатель, в котором рабочий цикл совершается за два хода поршня, т. е. за два такта, называется двухтактным, за четыре хода поршня, т. е. за четыре такта, — четырехтактным.  [c.152]

    Процессы, составляющие рабочий цикл двигателя, осуществляются преимущественно за период перемещения поршня из одной мертвой точки в другую. Каждое из указанных перемещений поршня (ход поршня) называется тактом. Двигатели, у которых рабочий цикл совершается за четыре хода поршня или за два оборота коленчатого вала, называются четырехтактными. Если же рабочий цикл осуществляется за два хода поршня или один оборот коленчатого вала, то такие двигатели называются двухтактными. Схема четырехтактного двигателя показана на фиг. 11-3.  [c.271]

    Такты двигателя 18, 32, 66 Тележка автомобиля 9 Телескопическая стойка 204 Телескопический амортизатор 196 Температурный режим двигателя 44 Тепловой зазор 35 Термостат 46, 65 Ток высокого напряжения 90  [c.301]

    Таким образом, цикл двигателя внутреннего сгорания образуется в результате четырех возвратно-поступательных ходов поршня, называемых тактами двигателя, вследствие чего такой двигатель называют четырехтактным. За четыре такта вал двигателя делает два полных оборота. Если у двигателя отсутствуют такты всасывания и выхлопа, то такой двигатель называют двухтактным. Вал двигателя делает один оборот.  [c.157]

    Уменьшение числа тактов двигателя т с четырех до двух увеличивает мощность на 65—75% при том же числе оборотов.  [c.209]

    Коленчатый вал (рис. 88) воспринимает усилия от поршней и передает образующийся крутящий момент механизмам трансмиссии. Коленчатый вал состоит из коренных 16 и шатунных 15 шеек, носка 3, фланца 10 и противовесов 6. Шейки коленчатого вала соединяются щеками, которые с шатунными шейками образуют кривошипы коленчатого вала. Количество и расположение шеек зависят от числа и расположения цилиндров и числа тактов двигателя.  [c.115]

    Соотношение скоростей вращения двигателя и М. устанавливается в зависимости от числа цилиндров, числа тактов двигателя и числа отрывов М. (табл. 2).  [c.156]

    Пневматический привод (рис. 197) служит для сТупенчатого поворота кулачкового вала группового переключателя. Посредством зубчатой передачи, имеющей соотношение зубьев) 1 12, коленчатый вал пневматического двигателя соединен с кулачковым валом. При каждом такте двигателя коленчатый вал поворачивается на 90°, а кулачковый вал при этом делает поворот на угол в 12 раз меньше, т. е. 7,5°. Это соответствует изменению положения вала на дну ступень.  [c.170]


    К — коэфициент, учитывающий число тактов двигателей внутреннего сгорания или число рабочих сторон поршня в паровых машинах. Индикаторами называются приборы, применяемые при испытаниях поршневых машин для снятия индикаторной диаграммы. Последняя позволяет  [c.779]

    Различие в коррозионной активности топлив проявляется главным образом в условиях высоких температур у камеры сгорания и выпускного такта двигателя за счет кислотной и газовой коррозии. Кислотную и газовую коррозию продуктами сгорания определяют прежде всего сернистые соединения, которые при сгорании образуют оксиды 80г 80з.  [c.168]

    Ст — количество тактов двигателя (два или четыре).  [c.90]

    Во втором подходе при расчете нестационарного течения в цилиндре при движении поршня решаются одномерные нестационарные уравнения газовой динамики с учетом неравновесного протекания химических реакций. Закон движения поршня задается. Расчет течения в плоскости х может быть проведен для всех тактов двигателя. Численное решение осуществляется методом характеристик, поскольку система уравнений в этом случае является гиперболической.  [c.232]

    У двухтактного двигателя отдельным процессам соответствуют (рис. 21.2, б) 0-1 — продувка и введение новой порции смеси-(-/-2 — сжатие (1-й такт) 2-3 — сгорание + 5- — расширение + -6) — выхлоп (2-й такт). В двухтактном двигателе очистку цилиндра от остаточных газов и наполнение его свежим зарядом выполняют продувочным воздухом через шлицы, открываемые поршнем.[c.178]

    Третий ход иори(ия двигателя носит название такта всасывания. Вблизи верхней мертвой точки поршня во время второго такта (выхлопа) открывается вса-  [c.118]

    Из условия работы видим, что цикл станка должен состоять из шести рабочих тактов, соответствующих прямому н обратному ходу каждого из трех ИМ. Начинается цикл прямым ходом ИМ2 в 1-м такте. Затем ИМ2 останавливается, а ИМЗ совершает прямой ход. В 3-м такте ИМЗ стоит, а ИМ2 делает обратный ход. В 4-м такте ИМЗ совершает обратный ход, возвращая рейку 4 назад. После этого в 5-м такте включаются ИМ1 и двигатель М, силовая головка / с вращающимся инструментом 8 подается на деталь J. В б-м такте механизм ИМ1 совершает обратный ход, возвращая головку 7 с инструментом в исходное положение.  [c.193]

    Промежуточное звено 3 сложной реакции наиболее продолжительно по времени. В четырехтактном двигателе процесс расширения длится от 40 до 5 мкс. В определенный момент такта расширения происходит прекращение процесса окисления СО на промежуточной стадии, при этом даже в случае избытка кислорода в продуктах сгорания будет содержаться окись углерода в концентрациях, измеряемых несколькими десятыми долями процента по объему. В ОГ карбюраторного двигателя возможны концентрации СО до 10% по объему, ому способствует недостаток кислорода при переобогащении топливовоздушной смеси. Максимальные концентрации СО в камере сгорания дизеля могут достигать нескольких процентов но объему, но в ОГ их не более 0,2%. Это объясняется интенсивным догоранием СО в такте расширения и выпуска при общем избытке воздуха (кислорода),  [c.10]

    За исключением такта впуска давление в картере бензинового двигателя значительно. меньше, чем в цилиндрах, поэтому часть свежего заряда и ОЕ прорываются через неплотности цилиндропоршневой группы из камеры сгорания в картер. Здесь они смешиваются с парами масла и топлива, смываемого со стенок цилиндра холодного двигателя. Картерные газы разжижают масло, способствуют конденсации воды, старению и загрязнению масла, повышают  [c.12]

    Рециркуляция применяется как в бензиновых двигателях, так и дизелях. Перепуск ОГ происходит из-за разности давлений в системе выпуска и впуска, регулирования степени рециркуляции — с помощью заслонок и клапанов. На полных нагрузках рециркуляцию применять нецелесообразно, так как значительно возрастают выбросы углеводородов, сажи, расход топлива (до 20%). Более эффективна межцилиндровая рециркуляция отработавших газов, когда ОГ переходят из цилиндра, в котором заканчивается такт выпуска, в цилиндр с тактом впуска. Каналы рециркуляции открываются поршнями в их положении у н.м.т. Высокая скорость перетекания газов способствует также интенсивному завихрению заряда в цилиндрах.  [c.45]


    Рассмотренный рабочий процесс совершается за четыре хода поршня (такта) или за два оборота вала. Такие двигатели называют четырехтактными.  [c.262]

    Рабочим циклом называется совокупность характерных процессов, происходящих в двигателе в определенной последовательности во время его работы. Для четырехтактного двигателя внутреннего сгорания рабочий цикл состоит из четырех тактов (впуск горючей смеси, сжатие, рабочий ход, выпуск).[c.56]

    Фазовые углы назначают на основе анализа рабочих циклов машины. Например, в ДВС интервалы тактов принимают по положению поршня в предельных положениях в верхней и нижней мертвых точках (в. м. т. и и. м. т.), т. е. угол поворота коленчатого вала за время одного такта равен 180°. Моменты открытия и закрытия клапанов в ДВС называют фазами газораспределения. Они обеспечиваются кулачками на распределительном валу. Впускной клапан должен открываться до прихода поршня в в. м. т., т. е. с опережением на некоторый угол и, а закрываться с некоторым запаздыванием на угол 6 (рис. 18.5, Выпускной клапан открывается до прихода поршня в н. м. т., т. е. с опережением на угол у, а закрывается с запаздыванием на угол р. Конкретные величины углов опережения и запаздывания зависят от марки двигателя. Например, для ВАЗ-2106 (1=12° 6 = 40° у = 42° р=10° для ЗИЛ-130 а = 31° 6 = 83° у = 67° р = 47°.  [c.486]

    Линия 01 этой диаграммы изображает такт всасывания горючей смеси. Линия /2 —такт ее сжатия, которое вследствие его быстротьь можно с хорошей точностью считать адиабатическим. В точке 2 смесь поджигается, и линия 23 изображает почти изохорический процесс нарастания давления, связанный с резким повышением температуры рабочих газов. Рабочий такт двигателя изображается линией 34, которая опять очень близка к адиабате. В конце рабочего такта открывается выхлопной клапан, и линия 41 изображает связанный с этим процесс почти изохорического падения давления до атмосферной величины. Поскольку температура рабочих газов в точке 4 все eijie вьппе окружающей, этот процесс сопровождается  [c.114]

    Получился очень компактный и простой агрегат. При расширении газов сгоревшего топлива поршни толкают магнитные сердечники внутрь соленоидов (рабочийтакт). Но какая же сила заставляет выталкивать эти сердечники обратно из соленоидов при последующем (холостом) такте двигателя Это сила сжатого воздуха в воздушных буферах, установленных между рабочими цилиндрами и электрическими генераторами.[c.130]

    Ппуск — минимально допустимое пусковое число оборотов двигателя, мин а — число тактов двигателя  [c.410]

    Работа тангенциальных сил затрачивается на преодоление сопротивления и изменение частоты вращения коленчатого вала. В период рабочего хода энергия подводится к системе, совершается полезная работа и увеличивается частота вращения коленчатого вала. В этот период избыточная энергия акуммулируется всеми вращающимися массами, главным образом маховиком и потребителем энергии, и возвращается в систему, когда ее не хватает при совершении других тактов двигателя. Чем больше момент инерции маховика и больше число цилиндров, тем равномернее вращение вала двигателя.  [c.69]

    Направлени-я магнитных потоков, создаваемых этими шестью фазами в пределах 360°, представлены на рис. 3.8, в, где векторы 1,2,3 указывают направления магнитных потоков, создаваемых тремя фазами первой секции, а векторы 2, 3 — направления магнитных потоков, создаваемых тремя фазами второй секции. При подаче тока в первую фазу первой секции зубцы ротора устанавливаются точно напротив зубцов первого и четвертого полюсов, на которых находится обмотка первой фазы. При подаче тока во вторую фазу первой секции ротор повернется на 1/3 шага зубцов, т. е. на 6° так, что его зубцы окажутся напротив зубцов полюсов 2 5 (рис. 3.8, б). Если подать ток в третью фазу, то ротор повернется еще на 6°. Если подавать ток по очереди в обмотки второй секции, то ротор также будет поворачиваться на 6°, но со сдвигом на 3° относительно первой секции. Если ток подать сразу в первую фазу первой секции и в третью фазу второй секции, то ротор повернется на 1,5°, т. е. зубцы встанут между зубцами первой и второй секций. Таким образом, чередуя подачу тока то в одну фазу, то в две, получим непрерывное вращение шагового двигателя скачками по 1,5°. За 12 тактов двигатель повернется на 360/20 = 18°, т. е. один оборот он сделает за 240 тактов. Соответствующее чередование тока в обмотках шагового двигателя обеспечивается специальными кодовыми преобразователями, основными элементами которых являются счетчики импульсов со схемами обратных связей и мощные усилители, обеспечивающие ток в обмотках. При напряжении 48 В шаговый двигатель обеспечивает частоту вращения до 4000 мин- , что соответствует 16 ООО Гц.  [c.74]

    Число зубцов у щестерен 22, 37, 24 и 23 подобрано так, что кулачковый валик вращается вдвое медленнее коленчатого вала. Такое соотношение чисел оборотов кулачкового валика и коленчатого вала необходимо потому, что в четырехтактном двигателе (о тактах двигателя см. ниже) каждый такт повторяется через два оборота. Таким образом, кулачки распределительного валика открывают каждый клапан один раз за два оборота коленчатого вала. .  [c.36]

    На рис. 4 показана осциллограмма сигнала цилиндрического, Р2Т-датчика при частоте вращения двигателя 1200 об/мин, степени сжатия 6, полном сопротивлении нагрузки i b=110 МОм и и l=90 пФ для трех тактов двигателя. Показана также осциллограмма выходного сигнала лабораторного кварцевого пьезоэлектрического преобразователя давления Кистлера. Фактическая максимальная амплитуда напряжения равна 7 В при расчетной величине 20,9 В (3).[c.24]

    На рис. 5 представлена осциллограмма напряжения датчика для двух тактов двигателя при частоте вращения 1000 об/мин и степени сжатия 7. Детонация двигателя была отчетливо слышна. Заметим, что ширина полосы частот PZT-датчика вполне достаточна, чтобы детектировать частоту детопации. Электронный повторитель напряжения для PZT-датчика входит в режим насыщения при напряжении +10 В.  [c.24]


    По числу тактов двигатели или дизели могут быть четырехтактные, у которых рабочий цикл осуществляется за четыре хода поршщя ИЛ1И два оборота коленчатого вала двухтактные — рабочий цикл осуществляется за два хода поршня или один оборот коленчатого вала.  [c.9]

    Различают два типа поршневых ДВС — тырехтактные и д в ухт .а.к. цй е. У четырехтактного двигателя, индикаторная диаграмма которого изображена на рис. 21.2, а, отдельным процессам соответствуют 0-1 — всасывание топливной смеси (1-й такт) 1-2 — сжатие смеси (2-й такт) 2-5 — сгорание + 3- — расширение продуктов сгорания + 4-5 — выхлоп (3-й такт) 5-  [c. 178]

    Д в и г а т е ли со смешанным с гУр а нием топлива (б е с к о м-прессорные дизели). В цилиндре этого двигателя тоже сжимается чистый воздух, а жидкое топливо, сжатое насосом до давлений около 30— 40 МПа, подается в форсунку, через которую оно в мелкораспыленном виде разбрызгивается в цилиндр в конце такта сжатия.  [c.179]

    Шестизвенный V-образиый рычажный крнвошипно-ползунный механизм двигателя внутреннего сгорания автобуса преобразует возвратно-поступательное движение ползунов (поршней) 3 и 5 во вращательное движение кривошипа I (рис. 6.3, й). Передача движения от поршней к кривошипу осуществляется через шатуны 2 и 4. В начале такта расширения (рис. 6.3, в) взорвавшаяся в цилиндре рабочая смесь перемещает поршень из в.м.т в н.м.т. В конце такта расширения открываются выпускные клапаны и продувочные окна п продукты горения удаляются из цилиндра в выхлопную систему. Продувка цилиндров начинается после поворота кривошипа от н.м.т на 60 (рис. 6. 3, г). После продувки цилшщра начинается второй такт — сжатие воздуха, который заканчивается взрывом впрыснутого в цилиндр топлива (рис. 6.3, в).  [c.205]

    Цикл движения поршня включает такты расширения (рис. 6.4, в), когда взорвавшаяся в цилиндре рабочая смесь перемещает поршень из в.м.т в п.м.т (в конце такта открываются выпускные клапаны и продувочные окна цилиндра и продукты горения удаляются в выпускную систему), и такт сжатия, заканчивающийся взрывом впрыснутого в цилиндр топлива (рис. 6,4, в). На кривошнп-пом валу закреплен кулачок плунжерного насоса, при помощи которого осуществляется смазывание всех подвижных соединений двигателя (рис. 6.4, д). Циклограмма машины показана на рис. 6.4, г.  [c.208]

    Основным механизмом двигателя внутреннего сгорания является кривошип-но-нолзуниый механизм 1-2-3, который преобразует возвратно-поступательное движение ползуна (поршня) 3 во вращательное движение кривошипа I. Передача движения от ползуна к кривошипу осуществляется через шатун 2 (рис. 6.5, а). Цикл движения поршней включает такты раси1иреиия, выпуска, впуска и сжатия. Взорвавшаяся в камере сгорания рабочая смесь перемещает поршень из  [c.210]

    На рис. 271 в качестве примера показана циклограмма работы автоматической линии для обработки головок цилиндра тракторного двигателя, состоящей из 14 станков. Как видно из циклограммы, лимитирующей является операция на вертикально-фрезерном станке модели А253 такт работы линии равен 3,5 мин.  [c.459]


    Автомобильная компания ТВС

    Мы любим или ненавидим конкретную машину в зависимости от ее характера. Итак, двигатель, среди множества других вещей, вероятно, является наиболее определяющим компонентом, определяющим этого так называемого персонажа. Является ли двигатель резвым, высокооборотистым агрегатом или ленивой глыбой с кучей крутящего момента на низких оборотах, во многом зависит от архитектуры двигателя. В то время как сочетание цилиндров в различных конфигурациях, таких как рядный, V-образный или горизонтально-оппозитный, создает отличительный характер в каждом случае, диаметр цилиндра и ход самого цилиндра являются очень важным аспектом в определении свойств двигателя. Здесь, в этой части, мы поговорим о длинноходных и короткоходных двигателях и о том, как эти две конфигурации влияют на их расположение.

    Что такое диаметр цилиндра и ход поршня?

    Прежде чем мы углубимся в детали длинноходных и короткоходных двигателей, нам сначала нужно правильно понять концепцию диаметра цилиндра и хода поршня. Цилиндр двигателя подобен хорошо обработанному круглому отверстию, вырезанному из металлического блока, что определяет его объем, кубатуру или рабочий объем. Здесь отверстие — это диаметр круглого отверстия на его конце.Ход, с другой стороны, является глубиной отверстия. Посмотрите на следующее изображение, чтобы понять, как выглядит типичный цилиндр. Мы четко обозначили его отверстие и ход для лучшего понимания.

    Отношение диаметра к ходу

    Как вы понимаете, вырезать цилиндр внутри металлического блока можно разными способами. Для любой заданной кубатуры можно сделать круглое отверстие слишком большим, с меньшей глубиной или наоборот. Сейчас двигатель с первой конфигурацией цилиндров называют короткоходным, а вторую — длинноходным.Если сделать цилиндр с точно такими же размерами диаметра и хода, получившийся двигатель называется «квадратным» цилиндром. Вот почему двигатель с коротким ходом также называют двигателем с квадратным ходом, а двигатель с длинным ходом называется двигателем с квадратным ходом.

    Свойства двигателя с квадратным или коротким ходом поршня

    Для любой заданной кубатуры двигатель с квадратным сечением должен двигаться меньше, поскольку у него более широкий диаметр цилиндра. Эти двигатели также имеют меньшее инерционное напряжение, что позволяет им оснащаться более быстрыми фазами газораспределения.Это дает короткоходному двигателю возможность развивать более высокие обороты, чем его длинноходные аналоги. Благодаря большему диаметру цилиндра в этих двигателях также есть место для установки более качественных впускных и выпускных клапанов на головке. Как вы понимаете, с высокооборотистым двигателем с большими клапанами легче создать относительно большую мощность при постоянном смещении.

    Короткоходный или сверхквадратичный двигатель обычно обеспечивает пиковую мощность относительно выше в диапазоне оборотов. Это отличное свойство для высокооборотистых легких спортивных мотоциклов, которые предназначены для сильного ускорения и используются предпочтительно для восторженной езды по улицам или трекам.Хотя максимальная мощность таких двигателей выше, чем у их длинноходных аналогов, они не производят такого большого крутящего момента в нижнем диапазоне оборотов, что влияет на их управляемость при низких оборотах двигателя, ну, условно говоря.

    Свойства двигателя с квадратным или длинноходным ходом

    Поскольку длинноходный двигатель имеет меньший диаметр цилиндра, а поршень должен перемещаться дольше для любого заданного рабочего объема, по своей природе инерционное напряжение в этом типе двигателей относительно выше. Начнем с того, что эти двигатели не могут вращаться так же высоко, как их более квадратные аналоги, поэтому фаза газораспределения для этого типа двигателей относительно медленная. Кроме того, поскольку отверстие не очень широкое, относительно меньше места для больших клапанов, что, опять же, означает некоторое ограничение на подачу горючего заряда. Все это, наряду с относительно тяжелой механикой, приводит к тому, что длинноходные двигатели производят меньшую мощность, чем короткоходные двигатели аналогичного рабочего объема.

    Несмотря на то, что мощность типичного длинноходного двигателя относительно меньше, у него есть свои преимущества. Эти двигатели производят гораздо более здоровый крутящий момент в нижнем диапазоне диапазона оборотов, что очень хорошо подходит для крутых, ленивых машин с оборотами.Большие, тяжелые мотоциклы, длинноногие туреры и круизеры, мотоциклы, которые нуждаются в грузоподъемности и имеют легкое, расслабленное поведение, являются идеальными продуктами для установки этих двигателей.

    Хотите поделиться своими мыслями о длинноходных двигателях VS с коротким ходом? Мнение. Есть вопрос? Стреляй! Мы будем внимательно слушать и будем очень рады ответить.

    Диаметр цилиндра

    и ход поршня: что дает больше мощности?

    Если вы не водите Mazda с роторным двигателем, характеристики вашего бензинового или дизельного двигателя в значительной степени определяются его отверстием (шириной или диаметром цилиндров) и ходом поршня (расстоянием, которое проходит поршень внутри цилиндра).

    Но если вы хотите увеличить мощность, что лучше увеличить диаметр цилиндра или ход поршня? Джейсон Фенске из Engineering Explained рассказывает об этом в прилагаемом видео.

    Короткий ответ заключается в том, что большее отверстие, как правило, лучший способ получить большую мощность. Это создает больше места, позволяя увеличить отверстия клапанов, что, в свою очередь, может подавать больше топлива и воздуха в цилиндр. Это не работает на низких оборотах, но работает на высоких оборотах. Это хорошо сочетается с другим фактором. Больший диаметр цилиндра с более коротким ходом также позволяет двигателю развивать более высокие обороты, что создает большую мощность.

    И наоборот, длинный ход, как правило, лучше с точки зрения топливной экономичности, поскольку он уменьшает площадь поверхности во время сгорания. Чем меньше площадь поверхности, тем меньше места для выхода тепла, что обеспечивает превращение большей части энергии сгорания в полезную работу по проталкиванию поршня.

    В длинноходовом двигателе малого диаметра также требуется, чтобы пламя перемещалось на меньшее расстояние во время сгорания, а это означает, что продолжительность горения короче. Это позволяет сгоранию выполнять еще больше работы и делает двигатель более эффективным.

    Однако это всего лишь обобщения. Двигатели большого диаметра могут быть эффективными, а двигатели с длинным ходом – мощными. Но, не обращая внимания на какие-либо другие переменные, существует корреляция между размером отверстия и мощностью, а также между длиной хода и эффективностью.

    Диаметр цилиндра и ход поршня — не единственные факторы, влияющие на конструкцию двигателя, и поэтому это не жесткие правила. Масса вращающихся частей и использование турбонаддува или наддува могут повлиять на выходную мощность и эффективность.

    Если говорить о двигателе отдельно, то это лишь часть картины. Производительность двигателя в конечном итоге определяется автомобилем, в котором он используется. Выбор трансмиссии, а также вес и аэродинамика автомобиля также влияют на эффективность. В то же время мощный двигатель не имеет смысла, если эту мощность нельзя использовать на асфальте.

    Чтобы узнать больше, посмотрите видео выше. Как и все видео EE, вы, безусловно, расширите свои знания в области автомобильной техники.

    Четырехтактный цикл | Только передний край

    Четырехтактный принцип работы большинства современных автомобильных двигателей был открыт французским инженером Альфонсом Бо де Роша  в 1862 году.Четырехтактный цикл часто называют циклом Отто в честь немца Николауса Августа Отто , который сконструировал двигатель на этом принципе в 1876 году.

    Ход поршня – это перемещение поршня от ВМТ (верхней мертвой точки) до НМТ (нижней мертвой точки) или от НМТ до ВМТ. В одном четырехтактном цикле двигателя четыре такта. Это такт впуска, такт сжатия, рабочий такт и такт выпуска.

    • Такт впуска:  Бензин не сгорит, если его не смешать с правильным количеством воздуха.Это очень взрывоопасно, когда 1 часть смешивается примерно с 15 частями воздуха. Незадолго до достижения поршнем ВМТ впускной клапан начинает открываться. Когда коленчатый вал вращается, он тянет шток и поршень вниз в цилиндре к НМТ. Образующаяся при этом пустота низкого давления заполняется атмосферным давлением воздуха и топливом через открытый впускной клапан. На каждый галлон топлива, подаваемого топливной системой, всасывается около 10 000 галлонов воздуха. По мере того как коленчатый вал продолжает вращаться, поршень начинает двигаться обратно в цилиндре, и впускной клапан закрывается.
    • Такт сжатия:  Поршень движется вверх в цилиндре, сжимая воздушно-топливную смесь на меньшую площадь, что облегчает ее сгорание. Такт сжатия начинается в НМТ после завершения такта впуска. Когда поршень движется к ВМТ, оба клапана закрываются, поскольку смесь сжимается примерно до 1/8 объема, который она занимала, когда поршень находился в НМТ.
    • Рабочий ход:  Когда поршень приближается к ВМТ на такте сжатия, смесь сжатого воздуха и топлива становится очень взрывоопасной.Когда система зажигания генерирует искру на свече зажигания, топливо воспламеняется. Горит топливно-воздушная смесь. По мере сгорания смесь расширяется, заставляя поршень двигаться вниз в цилиндре, пока он не достигнет НМТ. Действие поршня поворачивает коленчатый вал, приводя автомобиль в движение. Рабочий ход иногда называют тактом расширения.
    • Такт выпуска: Когда поршень приближается к НМТ на такте рабочего хода, выпускной клапан открывается, позволяя отработавшим газам выйти. Поскольку горящие газы все еще расширяются, они вытесняются через открытый выпускной клапан. По мере того, как коленчатый вал продолжает вращаться после НМТ, поршень движется вверх в цилиндре, помогая выталкивать оставшиеся выхлопные газы через открытый выпускной клапан. Через несколько градусов после прохождения поршнем ВМТ выпускной клапан закрывается. Весь четырехтактный цикл повторяется, начинаясь снова, когда поршень движется вниз на такте впуска.

    Четырехтактный цикл значительно сложнее, чем это простое объяснение. Когда двигатель работает, время открытия и закрытия клапанов фактически определяет, когда фактически начинается каждый такт.Более подробно фазы газораспределения будут рассмотрены в одной из следующих статей.

     

    Библиография: – https://www.britannica.com/technology/four-stroke-cycle

                 – Автомобильные двигатели – Тим Жиль

     

    Как работает четырехтактный двигатель? – MechStuff

    Это самые основные двигатели, используемые в автомобилях и мотоциклах, например, Четырехтактный бензиновый двигатель ИЛИ четырехтактный двигатель (часто называемый). Это очень легко понять до тех пор, пока вы не захотите выполнять все термодинамические расчеты и все такое прочее!

    4-тактный двигатель: —

    4-тактный двигатель

    Анимация – 1.Впуск 2.Компрессия 3.Мощность 4.Выхлоп ! Кредиты — Zephyris

    Само название дает нам представление — это двигатель внутреннего сгорания, в котором поршень совершает 4 такта, дважды поворачивая коленчатый вал. Ход относится к полному перемещению поршня в любом из направлений. Цикл завершается, когда все 4 такта завершены. Четырехтактный двигатель был впервые продемонстрирован Николаусом Отто в 1876 году, поэтому он также известен как цикл Отто.

    Перейдем к деталям, которые есть у 4-х тактного двигателя,
    Поршень – В двигателе поршень используется для передачи силы расширения газов на механическое вращение коленчатого вала через шатун.Поршень может сделать это, потому что он плотно закреплен внутри цилиндра с помощью поршневых колец, чтобы минимизировать зазор между цилиндром и поршнем!
    Коленчатый вал – Коленчатый вал – это деталь, способная преобразовывать возвратно-поступательное движение во вращательное.
    Шатун – Шатун передает движение от поршня к коленчатому валу, который действует как плечо рычага.
    Маховик – Маховик представляет собой вращающееся механическое устройство, используемое для накопления энергии.
    Впускной и выпускной клапаны – Позволяет подавать свежий воздух с топливом и выводить отработавшую топливно-воздушную смесь из цилиндра.
    Свеча зажигания – Свеча зажигания подает электрический ток в камеру сгорания, который воспламеняет топливно-воздушную смесь, что приводит к резкому расширению газа.

    Детали четырехтактного двигателя. источник: — xorl.wordpress.com

    Четыре такта 4-тактного двигателя имеют название —

    1. Такт всасывания/впуска: —

    В этом такте поршень перемещается от ВМТ к НМТ [( Верхней мертвой точки центр – самое дальнее положение поршня к коленчатому валу) до ( нижняя мертвая точка – ближайшее положение поршня к коленчатому валу)].
    Поршень движется вниз, всасывая топливовоздушную смесь из впускного клапана.
    Ключевые слова : —

    1 Впускной клапан — Open
    Выпускной клапан — Закрыто
    Rotation Crankshaл — 180 °

    2. Объемный ход: —

    Здесь, поршень движется от BDC в TDC сжимает топливно-воздушная смесь. Импульс маховика помогает поршню двигаться вверх.
    Ключевые точки :-
    Впускной клапан – ЗАКРЫТ
    Выпускной клапан – ЗАКРЫТ
    Поворот коленчатого вала – 180° (всего = 360°)

    источник: — cdkidsdiscover.com

    3. Рабочий ход :-


    Начался второй оборот коленчатого вала, так как он совершает один полный оборот в такте сжатия. Рабочий такт начинается с расширения воздушно-топливной смеси, воспламеняемой с помощью свечи зажигания. Здесь поршень движется от ВМТ к НМТ. Этот ход производит механическую работу по вращению коленчатого вала.
    Ключевые точки :-
    Впускной клапан – ЗАКРЫТ
    Выпускной клапан – ЗАКРЫТ
    Поворот коленчатого вала – 180° (всего = 540°)

    6Такт выпуска: —


    Опять же, импульс маховика перемещает поршень вверх от НМТ до ВМТ, тем самым выталкивая выхлопные газы наружу через выпускной клапан.
    Ключевые пункты : —

    1 Впускной клапан —1 Закрыто
    Выпускной клапан — Open
    Ротация коленчатого вала — 180 ° (Total = 720 °)

    здесь завершает две полные вращения (720 °) вместе с одним циклом ( Один цикл, потому что термодинамический цикл  – это серия термодинамических  процессов, которая возвращает систему в исходное состояние.Здесь во время ударов происходит ряд термодинамических процессов. 4 такта = 4 процесса!)

    Предлагаемая статья – Как работают двухтактные двигатели?

    Как впускной и выпускной клапаны открываются и закрываются в определенное время хода?

    Ну, они не рассчитаны по времени с помощью таймера или часов (пошутить надо мной). Ответ такой удивительный, а решение чертовски простое — распределительный вал !
    Распределительный вал соединен с коленчатым валом через шестеренчатый механизм или зацеплен с помощью зубчатой ​​цепи.

    Вращающийся кулачок на распределительном валу!

    Анимация вверху — кулачок на распределительном валу, преобразующий вращательное движение в колебательное движение клапанов, тем самым открывая и закрывая клапаны в точное время. Источник

    Опять же, это доказывает, что иногда все, что нам нужно, это простой дизайн.

    Вам может понравиться – Различия, преимущества и недостатки 4-тактного и 2-тактного двигателя!

    Свеча зажигания используется только в бензиновых двигателях и поэтому используется здесь.Дизельные двигатели не имеют свечи зажигания. Смесь настолько сильно сжата, что способна самовоспламениться.

    Как запускается двигатель ИЛИ как опускается поршень при запуске двигателя?

    Ответ: когда вы вставляете ключ в машину, чтобы включить ее, батарея приводит в действие небольшой двигатель, который находится в зацеплении с большей шестерней маховика. Таким образом, двигатель запускается путем всасывания в него воздушно-топливной смеси, а затем следует описанному выше циклу.

    Вот видео как заводятся двигатели?

     

    Связанные

    О Stroke Engine – Strokeengine

    Мы создали этот сайт с целью заполнить пробел в переводе знаний между результатами исследований и текущей клинической практикой.На этом сайте можно найти самую свежую информацию о ценности различных вмешательств, используемых при инсульте. Также называется «мозговой атакой» и происходит, когда клетки мозга умирают из-за недостаточного кровотока. В 20% случаев это кровоизлияние в мозг, вызванное разрывом или вытеканием из кровеносного сосуда. 80% случаев также известны как «схемный инсульт», или образование тромба в сосуде, снабжающем кровью головной мозг. Больше реабилитационных, а также психометрических и прагматических свойств инструментов оценки, используемых при инсульте. Также называется «мозговой атакой» и происходит, когда клетки мозга умирают из-за недостаточного кровотока.В 20% случаев это кровоизлияние в мозг, вызванное разрывом или вытеканием из кровеносного сосуда. 80% случаев также известны как «схемный инсульт», или образование тромба в сосуде, снабжающем кровью головной мозг. Еще реабилитация.

    Вы заметите, что темы вмешательств и оценок перечислены либо по доменам, либо в алфавитном порядке. Это реальные практики и оценки, которые были найдены в учебниках, журнальных статьях и основаны на интервью с более чем 1800 клиницистами, работающими с инсультом. Также называется «мозговой атакой» и происходит, когда клетки мозга умирают из-за недостаточного кровотока.В 20% случаев это кровоизлияние в мозг, вызванное разрывом или вытеканием из кровеносного сосуда. 80% случаев также известны как «схемный инсульт», или образование тромба в сосуде, снабжающем кровью головной мозг. Еще реабилитация.

    инсультТакже называется «мозговой атакой» и происходит, когда клетки мозга умирают из-за неадекватного кровотока. В 20% случаев это кровоизлияние в мозг, вызванное разрывом или вытеканием из кровеносного сосуда. 80% случаев также известны как «схемный инсульт», или образование тромба в сосуде, снабжающем кровью головной мозг.Контент More Engine получен из нескольких источников, в том числе из научно обоснованного обзора инсульта, который также называется «мозговой атакой» и возникает, когда клетки мозга умирают из-за недостаточного кровотока. В 20% случаев это кровоизлияние в мозг, вызванное разрывом или вытеканием из кровеносного сосуда. 80% случаев также известны как «схемный инсульт», или образование тромба в сосуде, снабжающем кровью головной мозг. More Rehabilitation (EBRSR) под руководством доктора Тиселла в Лондоне, Онтарио, и обширные обзоры баз данных, включая MEDLINE, CINAHL, Кокрановскую библиотеку, HealthSTAR, Health and Psychosocial Instruments, CANCERLIT, PsycINFO. Цель состоит в том, чтобы предоставить вам информацию о передовой практике, то есть практике, основанной на научных доказательствах ее эффективности. Специальная группа старших исследователей, аспирантов и научных сотрудников, обладающих опытом в конкретных областях, также вносит свой вклад в создание и оценку качества каждой темы. Вы можете узнать больше об этих людях, нажав на инсульт. Также называется «мозговой атакой» и происходит, когда клетки мозга умирают из-за недостаточного кровотока. В 20% случаев это кровоизлияние в мозг, вызванное разрывом или вытеканием из кровеносного сосуда.80% случаев также известны как «схемный инсульт», или образование тромба в сосуде, снабжающем кровью головной мозг. Команда «Больше двигателей».

    После тщательного обзора каждому вмешательству присваивается уровень доказательности 1a (сильный): хорошо спланированный метаанализ или 2 или более РКИ высокого качества (PEDro ≥ 6), показывающих аналогичные результаты 1b(средний): 1 РКИ высокого качества ( PEDro ≥ 6) 2a (ограниченный): как минимум 1 РКИ удовлетворительного качества (PEDro = 4-5) 2b (ограниченный): как минимум одно РКИ низкого качества (PEDro < 4) или хорошо спланированное неэкспериментальное исследование контролируемое испытание, квазиэкспериментальные исследования, когортные исследования с несколькими исходными данными, серии исследований с одним субъектом с несколькими исходными данными и т. д.) 3 (консенсус): согласие группы экспертов или группы профессионалов в данной области или нескольких предварительных исследований со схожими результатами 4 (противоречащие): противоречивые данные 2 или более одинаково хорошо спланированных исследований 5 (нет доказательств): Нет хорошо спланированных исследований — только тематические исследования/описания случаев или когортные исследования/серии отдельных субъектов без множественных исходных данных) Более того, оценка его эффективности для различных исходов. Для получения дополнительной информации об этих рейтингах см. «Доказательства рейтинга».

    В «Ссылках» вы найдете гиперссылки на веб-сайты других групп, которые начали сбор информации об инсульте. Также называется «мозговой атакой» и происходит, когда клетки мозга умирают из-за недостаточного кровотока.В 20% случаев это кровоизлияние в мозг, вызванное разрывом или вытеканием из кровеносного сосуда. 80% случаев также известны как «схемный инсульт», или образование тромба в сосуде, снабжающем кровью головной мозг. Больше практик. Есть также ссылки на онлайновые базы данных, которые можно использовать для получения большого количества информации о различных вмешательствах.

    Наша цель — предоставить вам простой и доступный сайт. Если у вас есть какие-либо предложения или комментарии о том, как этот сайт может лучше удовлетворить ваши потребности, пожалуйста, свяжитесь с нами.

    От имени инсульта Также называется «мозговой атакой» и происходит, когда клетки мозга умирают из-за недостаточного кровотока. В 20% случаев это кровоизлияние в мозг, вызванное разрывом или вытеканием из кровеносного сосуда. 80% случаев также известны как «схемный инсульт», или образование тромба в сосуде, снабжающем кровью головной мозг. Команда двигателей,

    Никол Корнер-Битенский, доктор философии OT(c)
    инсультТакже называется «мозговой атакой» и происходит, когда клетки мозга умирают из-за недостаточного кровотока.В 20% случаев это кровоизлияние в мозг, вызванное разрывом или вытеканием из кровеносного сосуда. 80% случаев также известны как «схемный инсульт», или образование тромба в сосуде, снабжающем кровью головной мозг. Руководитель проекта по двигателю (2005-2013)
    Annie Rochette, PhD OT (c)
    Фактический инсультТакже называется «мозговой атакой» и происходит, когда клетки мозга умирают из-за недостаточного кровотока. В 20% случаев это кровоизлияние в мозг, вызванное разрывом или вытеканием из кровеносного сосуда.80% случаев также известны как «схемный инсульт», или образование тромба в сосуде, снабжающем кровью головной мозг. Руководитель проекта по двигателю

    Что такое четырехтактный двигатель?

    Прежде чем приступить к изучению четырехтактного двигателя , , мы должны знать, что означает ход. Здесь мы узнаем о работе, типах, основных компонентах, применении и преимуществах четырехтактных двигателей. Я надеюсь, что вам это действительно понравится.

    Что такое инсульт?

    Когда поршень движется от ВМТ к НМТ, это называется 1 такт. Ход означает движение чего-либо в определенном направлении. Здесь имеется в виду движение поршня. Прежде чем определить 1 такт, мы должны знать некоторые основные термины, используемые в четырехтактном двигателе.

    Основные компоненты четырехтактного двигателя

    1. Впускной коллектор: Это канал для поступления топлива внутрь цилиндра.

    2. Выпускной коллектор: Проход для выхода продуктов сгорания.

    3. Впускной клапан: Это кулачковый клапан, через который топливо или воздух поступает в цилиндр.

    4. Выпускной клапан: Это также кулачковый клапан, через который выхлопные газы выходят из цилиндра.

    5. Свеча зажигания: Используется для создания искры для сжигания топлива.

    6. Цилиндр: Это часть двигателя, в которой поршень совершает возвратно-поступательное движение, чтобы произвести все четыре такта, необходимые для работы двигателя.

    7. Поршень:  Это часть двигателя, которая совершает возвратно-поступательное движение внутри цилиндра.Он выполняет процессы всасывания, сжатия и выпуска во время работы четырехтактного двигателя.

    8. Шатун:  Соединяет поршень и коленчатый вал двигателя. Он передает мощность, вырабатываемую двигателем, от поршня к коленчатому валу. И возвратно-поступательное движение поршня сменяется круговым движением.

    9. Коленчатый вал:  Используется для преобразования возвратно-поступательного движения поршня в круговое.

    10.Картер картера: Удерживает в себе коленчатый вал в сборе и предохраняет их от повреждений.

    Основная используемая терминология:
    1. Отверстие:

    Внутренний диаметр цилиндра называется отверстием. Обычно выражается или измеряется в миллиметрах (мм).

    2. Ход поршня:

    Расстояние, пройденное поршнем от одной мертвой точки до другой мертвой точки, называется ходом. Расстояние между двумя мертвыми точками называется длиной хода.

    3. ВМТ:

    Полная форма ВМТ — верхняя мертвая точка. Это максимальный верхний предел, до которого может двигаться поршень.

    4. НМТ:

    Полная форма НМТ — нижняя мертвая точка. Это нижний максимальный предел, до которого может двигаться поршень.

    5. Камера сгорания:

    Это камера, в которой происходит сгорание топлива

    6. Рабочий объем:

    Это объем, находящийся между поршнем и головкой цилиндра, когда поршень находится в верхней мертвой точке. Центр в вертикальных двигателях и внутренняя мертвая точка в горизонтальных двигателях.Clearance Volume обычно выражается в процентах от Swept Volume.

    7. Рабочий объем:

    Это объем, который поршень проходит за один ход. Он равен площади поперечного сечения поршня, умноженной на длину его хода. Он также известен как рабочий объем.

    8. Общий объем:

    Сумма зазора и рабочего объема называется общим объемом.

    9. Степень сжатия:

    Отношение общего объема к объему зазора называется степенью сжатия.Для бензиновых двигателей значение степени сжатия варьируется от 10:1 до 14:1, а для дизельных двигателей — от 18:1 до 23:1.

    Четырехтактный четырехтактный двигатель. Это означает, что поршень перемещается 4 раза, чтобы завершить один цикл рабочего хода. Один цикл рабочего такта включает в себя всасывание, сжатие, рабочий такт и такт выпуска.

    1 такт: такт всасывания
    В этом такте поршень перемещается от ВМТ к НМТ, а всасывание воздуха или топлива происходит внутри цилиндра.

    2-тактный: такт сжатия
    В этом такте поршень движется от НМТ к ВМТ и происходит сжатие воздуха или топлива.

    3-тактный: Рабочий ход
    В этом такте поршень перемещается от ВМТ к НМТ и происходит сгорание топлива.

    4 такта: Такт выпуска
    В этом такте поршень перемещается от НМТ к ВМТ, и сгоревшие выхлопные газы выбрасываются из цилиндра.

    Что такое четырехтактный двигатель?

    Любое механическое устройство, способное преобразовывать химическую энергию топлива в механическую энергию, называется двигателем.Также в четырехтактном двигателе химическая энергия преобразуется в механическую энергию, при которой поршень совершает четырехкратное движение для создания рабочего такта (2 раза от ВМТ до НМТ и 2 раза от НМТ до ВМТ).

    Типы 

    Четырехтактный двигатель бывает двух типов:

    1. Бензиновый двигатель или бензиновый двигатель:

    Когда бензин используется в качестве топлива в четырехтактном двигателе, он называется четырехтактным бензиновым двигателем. Конструкция бензинового двигателя немного отличается от дизельного двигателя.В бензиновом двигателе есть свеча зажигания для сгорания топлива. А топливовоздушная смесь засасывается в цилиндр. смесь воздух-бензин готовится карбюратором.

    2. Дизельный двигатель:

    Если в четырехтактном двигателе используется дизельное топливо, то он называется дизельным двигателем. В дизельных двигателях есть топливная форсунка для впрыска топлива в цилиндр. Во время всасывания в цилиндр всасывается только воздух. Горячий сжатый воздух используется для сжигания топлива в четырехтактном двигателе этого типа.

    также читать:

    Различные удары в четырехтактных двигателе

    1. 200006
    2. ход всасывания
    3. ход сжатия
    4. ход мощности
    5. ход вытяжки

    Давайте понять, что на самом деле происходит в этих штрихах один за другим в деталях.

    1. Ход всасывания:

    • Поршень движется от ВМТ к НМТ
    • Открытие впускного клапана )

    В такте всасывания поршень сначала перемещается из ВМТ в НМТ.При движении поршня впускной клапан открывается и в цилиндр поступает топливовоздушная смесь в случае бензинового двигателя и только воздух в дизельном двигателе. Выпускной клапан остается закрытым во время этого такта.

    2. Такт сжатия

    • Поршень движется от НМТ к ВМТ.
    • Сжатие воздуха или воздушно-топливной смеси (воздух в дизеле и топливовоздушная смесь в бензиновом двигателе)
    • Впускной и выпускной клапаны остаются закрытыми.

    В такте сжатия поршень движется от НМТ к ВМТ.Впускной и выпускной клапан остаются закрытыми во время этого хода. При движении поршня вверх (от НМТ к ВМТ) происходит сжатие топливовоздушной смеси в случае бензинового двигателя и только воздуха в случае дизеля. Процесс сжатия завершается, когда поршень достигает ВМТ. Компрессию делают для повышения температуры воздуха или воздушно-топливной смеси. Температура повышается настолько, что может легко загореться при искрообразовании в случае бензинового двигателя и распылении дизельного топлива в случае дизельных двигателей.

    3. Мощность/расширение/рабочий ход

    • Искрение и горение воздушно-топливной смеси в бензиновом двигателе.
    • Сжигание дизельного топлива горячими газами.
    • Поршень перемещается из ВМТ в НМТ.
    • Впускной и выпускной клапаны остаются закрытыми.
    Бензиновый двигатель:

    Воздушно-топливная смесь воспламеняется свечой зажигания. Благодаря возгоранию начинается процесс горения. Сгорание воздушно-топливной смеси создает очень высокое давление сгоревших газов.Эти сгоревшие газы под высоким давлением оказывают давление на верхнюю поверхность поршня, и он начинает двигаться вниз от ВМТ к НМТ. Это рабочий ход двигателя. В этом такте мы получаем мощность, которая используется для запуска автомобиля. Впускной и выпускной клапан остаются закрытыми во время этого такта.

    Дизельный двигатель:

    При приближении поршня к ВМТ происходит впрыск дизельного топлива в виде распыления через топливную форсунку. При контакте распыляемого топливной форсункой дизельного топлива с горячими сжатыми газами оно воспламеняется и начинаются процессы горения. Из-за горения под высоким давлением образуются горячие отработанные газы, которые создают очень большую нагрузку на верхнюю поверхность поршня. За счет воздействия тяги на поршень он начинает двигаться вниз, т.е. от ВМТ к НМТ.

    4. Такт выпуска

    • Поршень движется от DBC к TDC.
    • Открытие выпускного клапана.
    • Выпуск горячих дымовых газов через выпускной клапан.

    В этом такте поршень движется вверх, т.е. от ВМТ к НМТ.Когда поршень движется вверх, выпускной клапан открывается, и все сгоревшие газы, оставшиеся после рабочего такта, начинают выходить из цилиндра. Сгоревшие газы выходят в окружающую среду через выпускной клапан. Когда поршень достигает ВМТ, процесс выхлопа завершается. И после этого снова повторяются все четыре такта.

    Работа четырехтактного двигателя (бензиновый двигатель)

    Приложение
    • Четырехтактные бензиновые двигатели используется в легковых транспортных средствах, таких как мотоциклы, автомобили, скутеры и т. д.
    • Четырехтактные дизельные двигатели используются в тяжелых транспортных средствах, таких как автобусы, грузовики, поезда и т. д., где требуется очень большая выходная мощность.

    Преимущества четырехтактного двигателя перед двухтактным
    • Обладает высокой топливной экономичностью.
    • Работает тише, чем двухтактные двигатели.
    • Остается дольше, чем у двухтактного двигателя, и не прекращается так быстро.
    • Нам не нужно смешивать масло с топливом, как это делается в двухтактном двигателе.

    В этой статье мы изучили, что такое четырехтактный двигатель. Если вы нашли эту информацию полезной, не забудьте поставить лайк и поделиться ею.

    Что такое поглаживающие комплекты и как они увеличивают крутящий момент?

    В качестве альтернативы расточке цилиндров, ходовой комплект является эффективным, но трудоемким способом увеличения мощности

    В мире, который когда-то был одержим уменьшением размеров турбонагнетателей для повышения объемной эффективности, есть первые признаки того, что производители склоняются к двигателям большего рабочего объема, чтобы снизить затраты и упростить процесс проектирования. Однако в сфере модификации автомобилей объем двигателя всегда был связан с выходной мощностью.

    До того, как принудительная индукция стала популярной, путь к власти всегда был большим перемещением. Это оставило бы много места внутри цилиндров для большого количества воздуха и топлива, которые могли бы попасть для сгорания, создавая мощный ход вниз для вращения коленчатого вала.

    Поскольку прирост мощности на вторичном рынке обычно достигается за счет принудительной индукции, искусство увеличения рабочего объема двигателя часто можно упустить из виду.К счастью, можно приобрести ходовые комплекты, которые упрощают процесс увеличения размера двигателя за счет удлинения хода поршня, избегая дорогостоящей механической обработки, необходимой для растачивания цилиндра.

    Содержимое обвеса Titan Motorsport для автомобиля Nissan GTR R35.

    Строкерный комплект увеличивает рабочий объем двигателя за счет удлинения хода поршня.В комплекте будут изготовленные на заказ компоненты двигателя, измененные с оригинальных деталей, чтобы добиться такого увеличения хода. Они позволяют поршню двигаться дальше вверх и вниз по цилиндру благодаря использованию другого коленчатого вала. Шейки вдоль коленчатого вала удлиняются на заданное расстояние в зависимости от степени увеличения хода. Увеличение высоты шейки вдвое увеличивает длину хода. Это связано с относительным увеличением ВМТ (верхней мертвой точки) и НМТ (нижней мертвой точки).

    Чтобы поршень не врезался в головку блока цилиндров, также присутствуют другие модификации вторичного рынка. Во-первых, поршневой палец можно поставить выше по шатуну, либо укоротить сам шатун. Это устраняет необходимость сложной обработки головок или стенок цилиндров с ЧПУ для обеспечения более длинного хода.

    Как все это приводит к увеличению мощности?

    5 МБ

    Набор для поглаживания можно обосновать с помощью основных уравнений двигателя внутреннего сгорания. Начнем с объема цилиндров двигателя:

    Здесь вы можете увидеть зависимость между ходом поршня и рабочим объемом двигателя.Из этих уравнений видно, что по мере увеличения длины хода увеличивается и объем. Так как это связано с властью? Во-первых, давайте посмотрим, как увеличение хода влияет на крутящий момент:

    IMEP — это давление внутри цилиндра, но здесь нас интересует только соотношение хода и крутящего момента.

    По мере увеличения хода выходной крутящий момент двигателя будет увеличиваться из-за дополнительного рычага, создаваемого «расстоянием», с которого действует сила.Точно так же, как использование более длинного торцевого ключа для снятия колеса проще, чем использование стандартного инструмента меньшего размера, увеличенный ход означает, что к коленчатому валу прилагается большое крутящее усилие.

    Мощность связана с выходным крутящим моментом при определенной частоте вращения двигателя, поэтому увеличение мощности будет происходить с увеличением хода.

    Краткое резюме. ..

    Как и в большинстве проектов, не связанных с трансмиссией OEM, здесь будут некоторые недостатки. Поскольку поршень должен перемещаться дальше во время своего возвратно-поступательного движения, величина создаваемого напряжения может увеличиваться. Горизонтальная нагрузка на поршень также увеличивается во время каждого хода, и оба этих результата приводят к чрезмерному износу. Способность двигателя набирать обороты также будет затруднена из-за увеличенного хода поршня.Это означает, что обводной комплект может уменьшить отзывчивость двигателя, потенциально лишив его характера. Новый коленчатый вал также необходимо будет полностью отбалансировать для данного двигателя, поскольку нежелательная вибрация становится проблемой.

    Очевидные опасности связаны с меньшими допусками, вводимыми с более длинным ходом. Несмотря на то, что меры предосторожности, упомянутые ранее, могут быть предприняты, риск столкновений внутри двигателя неизбежно возрастает. Распространенной проблемой является контакт шатунных шеек с масляными направляющими, расположенными между коленчатым валом и масляным поддоном.Чтобы противодействовать этому, многие комплекты для строк содержат модифицированные поддоны / поддоны, чтобы обеспечить немного больший зазор.

    1000 л.с. можно получить от твин-турбо V6 R35 с 4,0-литровым строковым комплектом

    .

    Строкер-кит — относительно сложная модификация, предназначенная только для самых практичных автолюбителей.Возможность разобрать двигатель, заменить ключевые компоненты, а затем собрать все обратно не для слабонервных, но прирост мощности, связанный со строковым комплектом, пользуется большим уважением в мире маслкаров.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *