Что такое коленчатый вал: Коленвал: описание,устройство,назначение,снятие,шлифовка,неисправности. | АВТОМАШИНЫ
что это такое и какую функцию он выполняет?
Двигатель внутреннего сгорания — это сердце любого современного автомобиля.
Этот агрегат состоит из нескольких основных элементов:
- цилиндров;
- поршней;
- коленчатого вала;
- маховика.
Все вместе они образуют кривошипно-шатунный механизм. Кривошип, он же коленчатый вал (Crank Shaft) или попросту — коленвал, выполняет весьма важную функцию — преобразует поступательное движение, создаваемое поршнями, в крутящий момент. Когда на тахометре стрелка приближается к 2000 оборотов в минуту, это говорит о том, что коленвал совершает именно такое количество оборотов. Ну а дальше этот момент передается через сцепление на трансмиссию, а от нее на колеса.
Устройство
Как известно, поршни в двигателе перемещаются неравномерно — одни находятся в верхней мертвой точке, другие в нижней. Поршни связаны с коленвалом с помощью шатунов. Чтобы обеспечить такое неравномерное перемещение поршней коленвал, в отличие от всех других валов в автомобиле — первичного, вторичного, рулевого, газораспределительного, — имеет особую искривленную форму. Поэтому он и назван кривошипом.
Основные элементы:
- коренные шейки — расположены по оси вала, они при вращении не смещаются и находятся в картере двигателя;
- шатунные шейки — смещены от центральной оси и во время вращения описывают круг, именно к ним на шатунных подшипниках крепятся шатуны;
- хвостовик — на нем закреплен маховик;
- носок — на нем крепится храповик, которым прикручен шкив привода ГРМ — на шкив надевают ремень генератора, он же, в зависимости от модели, приводит во вращение лопасти насоса ГУРа, вентилятора кондиционера.
Также важную роль выполняют противовесы — благодаря им вал может по инерции вращаться. Кроме того, в шатунных шейках просверлены масленки — масляные каналы, по которым поступает моторное масло для смазки подшипников. В блоке мотора коленвал крепится с помощью коренных подшипников.
Раньше часто применялись сборные коленвалы, однако от них отказались, так как из-за интенсивного вращения в местах соединения составных частей возникают огромные нагрузки и ни один крепеж не может их выдержать. Поэтому сегодня применяют в основном полноопорные варианты, то есть вырезанные из одного куска металла.
Процесс их производства довольно сложный, ведь нужно обеспечить микроскопическую точность, от которой будет зависеть работоспособность двигателя. При производстве используют сложные компьютерные программы и лазерное измерительное оборудование, способное определить отклонение буквально на уровне сотых частей миллиметра. Также огромное значение имеет точный расчет массы коленвала — ее вымеряют до последнего миллиграмма.
Если описывать принцип действия коленвала, то он полностью соответствует фазам газораспределения и тактам работы 4-тактного ДВС, о которых мы уже ранее рассказывали на Vodi.su. То есть, когда поршень находится в верхней точке, сочлененная с ним шатунная шейка тоже находится над центральной осью вала, и по мере вращения вала перемещаются все 3-4, а то и 16 поршней. Соответственно, чем больше цилиндров в двигателе, тем более замысловатую форму имеет кривошип.
Сложно представить себе, какой размер имеет коленчатый вал в двигателе карьерных самосвалов, о которых мы тоже рассказывали на нашем сайте Vodi.su. Например на БелАЗе 75600 установлен двигатель объемом 77 литров и мощностью 3500 л.с. Мощный коленвал приводит в движение 18 поршней.
Шлифовка коленвала
Коленвал — вещь очень дорогая, тем не менее из-за трения он со временем приходит в негодность. Чтобы не покупать новый, его шлифуют. Работу эту могут выполнять только высококлассные токари, у которых есть соответствующее оборудование.
Вам же нужно будет приобрести комплект ремонтных шатунных и коренных вкладышей. Вкладыши продаются практически в любом магазине запчастей и идут под обозначениями:
- Н (номинальный размер) — соответствуют параметрам нового кривошипа;
- Р (Р1, Р2, Р3) — ремонтные вкладыши их диаметр на несколько миллиметров больше.
Исходя из размера ремонтных вкладышей, токарь-моторист точно измеряет диаметр шеек и подгоняет их под новые вкладыши. Для каждой модели определен шаг ремонтных вкладышей.
Вы же продлить срок службы коленчатого вала можете путем применения качественного моторного масла и своевременной его замены.
Загрузка…Поделиться в социальных сетях
Коленчатый вал двигателя
Коленчатый вал двигателя самый дорогой и ответственный элемент. В двигателе внутреннего сгорания он способен преобразовывать возвратно-поступательные движения поршня в крутящий момент. На него воздействуют переменные нагрузки, возникающие от давления сгорающих газов. Также на него воздействуют инерционные силы, возникающие от постоянно вращающихся масс.
Внешне коленчатый вал представляет собой конструктивный элемент, изготовленный из стали методом ковки или литья. Турбированные и дизельные двигатели имеют более прочные коленчатые валы.
Конструкция коленчатого вала
В конструкцию вала входят несколько шатунных и коренных реек, которые соединены щеками. Число коренных шеек на одну больше, чем шатунных и их диаметр несколько больше. В противоположном от шатунной рейки месте – устанавливается противовес. Он предназначен для уравновешивания и делает работу двигателя плавной.
Шатунная рейка, установленная между щеками, именуется коленом. В зависимости от количества и порядка работы цилиндров, колена располагаются соответствующим образом. Таким образом, достигается равномерная работа двигателя, своевременное воспламенение, снижение крутильных колебаний.
Шейка является опорой для соответствующего шатуна. На V-образных двигателях, коленвал имеет несколько более удлиненные шейки, на которых установлены по два шатуна, приходящиеся на левый и правый цилиндр. Часть валов оснащается спаренными шейками, которые отклонены друг от друга на 18°. Такая конструкция делает воспламенение более равномерным и носит название Split-pin.
Самая большая нагрузка приходится на то место коленчатого вала, где шейка переходит к щеке. Для снижения воздействующих на это место сил, здесь выполнена галтель – радиус закругления. Совокупность галтелей увеличивает общую длину вала, которая компенсируется углублениями в шейке и щеке.
Для вращения коленвала в опорах предусмотрены специальные подшипники скольжения. В их роли выступают тонкостенные вкладыши из стальных пластин, на которых нанесено специальное покрытие для улучшения скольжения. Для того, чтобы не допустить проворачивания вкладышей, в шейке имеется специальный выступ. Благодаря выступу вкладыши надежно фиксируются в опоре.
Чтобы исключить осевые перемещения коленчатого вала, предусмотрен упорный подшипник, расположенный в крайней коренной шейке.
Схема смазочной системы
Шейные и коренные шейки входят в систему смазки. Для их смазывания предусмотрены специальные магистрали, в которые масло подается под давлением.
С задней части коленчатого вала, именуемой хвостовиком, происходит отбор мощности. К хвостовику закрепляется маховик. С передней части коленвала находятся посадочные места, где установлена звездочка. Посредством ременной передачи коленчатый вал соединяется с распредвалом и вспомогательными компонентами. В некоторых конструкциях там же устанавливается гаситель крутильных колебаний. Конструктивно это два диска, между которыми находится резина, пружина или силиконовая жидкость. Основная функция гасителя – поглощение возникающих во время работы двигателя вибраций.
Коленчатый вал
Перецентровка коленвала
Чтобы исключить причины, вызывающие появление остаточных напряжений, в технологию изготовления вала введены дополнительные операции перецентровки: первая — после обтачивания коренных шеек, вторая — после термической обработки. Базой при перецентровках приняты первая и четвертая коренные шейки, что позволило усреднить биение и снизить припуски на последующую обработку
Во время второй перецентровки, производимой на алмазно-расточном станке, кроме корректировки центров улучшается форма центровых фасок, уменьшается шероховатость поверхности, что важно для последующей обработки детали на финишных операциях. Все это позволило ликвидировать операции правки валов, уменьшить и стабилизировать межоперационные припуски и, в конечном итоге, благоприятно сказалось на надежности коленчатых валов в эксплуатации
Проблема снижения остаточных напряжений решена путем внедрения более производительного и прогрессивного способа предварительной обработки коленчатых валов методом кругового фрезерования. При этом методе обработка производится многорезцовыми фрезерными головками, оснащенными твердосплавными неперетачиваемыми пластинками с механическим креплением. Резание ведется на скорости 100—150 м/мин. Коленчатый вал производит за цикл медленный поворот в режиме подачи. Количество шеек, обрабатываемых за один поворот детали, соответствует количеству фрезерных головок. Таким методом можно обрабатывать как коренные, так и шатунные шейки. По сравнению с точением фрезерование характеризуется сравнительно невысокой нагрузкой на коленчатый вал во время обработки. Достигается это соответствующим расположением режущих кромок пластинок фрезерной головки, благодаря чему весь профиль шейки делится на отдельные участки (секторы). При этом режущие кромки инструмента вступают в работу попеременно, что значительно снижает силы резания. Привод круговой подачи осуществляется с обоих концов вала, благодаря чему исключается его деформация и обеспечивается высокая геометрическая точность. Стружка дробится, что также положительно сказывается на параметрах процесса.
что это Устройство коленчатого вала. Фото, видео
Наверное каждый автолюбитель задавался вопросом: что такое коленвал, что он из себя представляет? В данной статье мы дадим ответ на это вопрос.
Усилия, передаваемые поршнями через шатуны, воспринимает коленчатый вал. Затем они преобразуются в крутящий момент. Главные требования к коленчатому валу – это жёсткость и прочность.
Материалом изготовления коленчатого вала является сталь и высокопрочный чугун. Стальные валы куют, а чугунные выливают в изготовленные формы. Поверхности шатунных и коренных шеек обрабатывают термически, придают им прочность, а затем шлифуют.
На коленчатом валу имеется несколько шатунных и коренных шеек. Они соединены между собой щёчками, которые имеют продолжение в противоположную от шейки сторону и создают противовес. В конструкции двигателей некоторых грузовых автомобилей имеются противовесы, крепящиеся к коленчатому валу при помощи болтов. Диаметр коренных шеек всегда больше шатунных. Если посмотреть на коленчатый вал с его торца, и Вы увидите, как шатунные шейки перекрывают коренные, то это означает, что у него очень жёсткая конструкция. Двигатель, в котором поршень имеет короткий ход, сделать перекрытие шеек проще. Коленчатый вал называется полноопорным, если слева и справа от шатунной шейки расположены коренные шейки. При отсутствии с обеих сторон коренных шеек, такой вал называют неполноопорным. Его масса будет увеличенной, он может выдерживать сильные закручивающие и изгибающие нагрузки, а конструкция при этом более жёсткая.
Наибольшее распространение получили полноопорные коленчатые валы. Разборные коленчатые валы в современных двигателях внутреннего сгорания применяют редко. Сопряжение от щёчки к шейке делают по радиусу, потому что в этом месте большое количество напряжений. Образование трещин и дальнейшее разрушение в этом месте в такой конструкции сведены почти на ноль.
Тонкостенные, разъёмные вкладыши используются как подшипники скольжения в шатунных и коренных шейках. Их изготавливают из тонкой стали, на поверхность которой наносят антифрикционный сплав (баббит). С помощью особого выступа они устанавливаются в специальные канавки, что не даёт им проворачиваться в опорах коленчатого вала. Упорные подшипники скольжения удерживают коленчатый вал от осевого смещения.
Технологические отверстия (масляные каналы) просверлены внутри шеек и щёчек коленчатого вала. Моторное масло поступает всё время под давлением, потому что незначительная продолжительность работы коленчатого вала без масла приведёт к его поломке. Он не выдержит нагрузки и заклинит.
Маховик крепится к его задней части. Он выводит кривошипо — шатунный механизм из мёртвых точек, запасает и отдаёт энергию на разных тактах, а также снижает неравномерность работы двигателя в целом. Маховик изготавливают из чугуна, и он имеет форму диска. Масса у него большая. Зубчатый венец напрессован на наружную поверхность маховика. При помощи него электрический стартер при пуске передаёт движение на коленчатый вал. Если на двигателе внутреннего сгорания три и больше поршня, то рабочий ход одновременно начинается в двух или большем количестве цилиндров. Масса маховика на таких двигателях мала, а крутящий момент плавный.
Видео — изготовление коленвала
Крутильные колебания – это непрекращающееся раскручивание и закручивание коленчатого вала. Если произойдёт совпадение частот внешних сил и крутильных колебаний, то последствием этого станет резонанс, который приведёт к поломке коленчатого вала. На старых автомобилях в двигателях коленчатые валы ломались в месте сопряжения коренной шейки со щёчкой. Количество оборотов и высокая жёсткость современных коленчатых валов не подвержены пагубному влиянию резонансных частот. Однако на двигателях имеются гасители крутильных колебаний, снижающие виброактивность коленчатых валов. Шкив коленчатого вала делят на две части, заливают их резиной, центруют, и после этого за счёт внутреннего трения он будет поглощать вибрацию.
В настоящее время огромную популярность приобрели двухмассовые маховики, выполняющие роль гасителей крутильных колебаний.
Также на двигатели внутреннего сгорания устанавливают новейшие тороидные стартер – генераторы, позволяющие ему работать при максимальных нагрузках, при помощи электронного блока управления снижать вибрации и колебания, а также бесшумно производить запуск.
Материалы изготовления коленчатого вала
Коленчатые валы двигателя шести- и восьмицилиндровых четырехтактных двигателей изготовляются из марганцовистой стали 50Г, а двенадцати цилиндровых — из Хромованадиевой стали 60ХФА. Коренные и шатунные шейки, а также шейки под уплотнительные манжеты подвергаются поверхностной закалке с нагревом ТВЧ. Сложная форма кованых коленчатых валов влечет за собой необходимость сравнительно большого съема металла при механической обработке. Металл снимается не только на шейках, но и на щеках. Сравнительно большие припуски имеют коленчатые валы У-образных двигателей, когда шейки расположены в нескольких плоскостях. Кроме того, стремление использовать штамп как можно дольше также приводит к увеличению припусков. Согласно исходной технологии токарная обработка коренных шеек, переднего и заднего Концов коленчатого вала проводилась одновременно на многорезцовых станках мод. МК-840, а шатунных шеек на многорезцовых станках мод. МК-8212. При этом суммарная ширина режущих кромок одновременно работающих резцов на станке мод. МК-840 для шестицилиндровых валов составляла 440 мм, для восми-цилиндровых 490 мм, а на станке мод. МК-8212 — соответственно 240 и 320 мм.
Наличие значительных сил резания и ударных нагрузок при обработке щек в сочетании с перераспределением внутренних напряжений в материале вала после снятия поверхностного слоя штампованной заготовки приводило к короблению вала на предварительных операциях его изготовления. Нагрев шеек при закалке ТВЧ также вызывал дополнительное коробление вала. При этом суммарные деформации вала достигали 1,5—2 мм. I С целью их устранения технологическим процессом предусматривалась правка вала, которая производилась после обтачивания коренных и шатунных шеек и после термической обработки. Процесс правки заключался в неоднократном прогибе вала с устранением биения до допустимых величин.
Что такое коленвал
Коленчатый вал – это механическая деталь автомобильного двигателя, которая является промежуточным звеном-преобразователем тепловой энергии сгораемого топлива в механическую энергию вращения колёс.
По внешнему виду он представляет собой вал из стального сплава со множеством шатунных шеек, которые между собой соединены коленной шейкой. Число шеек-колен соответствует числу цилиндров в двигателе, их расположению, форме. Шейки соединены с поршнями через шатуны, которые, двигаясь возвратно-поступательно, приводят вал в движение.
Если в коленчатом вале шатунные шейки находятся с двух сторон от коленной шейки, он называется полноопорным. Если же они расположены только с одной стороны – неполноопорным.
Коленвал производится из углеродистой или легированной стали с повышенной износостойкостью (для спорткаров, люкс-моделей и автомобилей с повышенной мощностью) или модифицированного чугуна (для стандартных серийных моделей) с помощью литья или прессования. Для легирования стали применяются молибден, хром и иные металлы, существенное увеличивающие прочность сплава.
В большинстве двигателей коленчатый вал располагается в нижней части, над картером, в оппозитных – выше, по центру мотора.
Почему коленвалы называют плоскими
В процессе изучения устройства коленчатого вала, порой кажется, что ты на уроке биологии. Первым делом в глаза бросаются массивные плоские «щеки», между которыми находятся «шейки». Одни шейки (как вы наверняка знаете) — коренные (на них вал опирается, лежа в картере) и шатунные (именно к ним сверху «цепляются» шатуны). Если посмотреть на коленвал «в фас», возможны два варианта: либо щеки с шейками лежат в одной плоскости, либо половина из них расположена под прямым углом к другой половине. В первом случае вал и называют плоским.
При сборке двигателя вашей малолитражки наверняка использован именно плоский вал — это самой собой разумеющееся решение для 4-цилиндрового двигателя. А вот при создании V-образной «восьмерки» уже есть выбор. Изначально (на заре автомобилестроения) все конструкторы предпочитали именно плоские валы, однако с ростом мощности силовые агрегаты генерировали все больше вибраций и все труднее поддавались балансировке. Именно в попытках уменьшить уровень вибраций создатели моторов и пришли к схеме с установкой шеек под прямым углом друг к другу. И сейчас на большинстве V-образных «восьмерок» стоят именно такие коленвалы. А «плоские» остались уделом гоночных моторов или двигателей для суперкаров — можно вспомнить силовые агрегаты Ferrari или 5-литровый двигатель под капотом нового Shelby Mustang GT350.
Понять разницу между плоским коленвалом (справа) и коленвалом с шейками, установленными под прямым углом, проще всего с помощью картинок.
Окончательно отказываться от плоского коленвала мотористы не собираются. Ведь более простая конструкция делает его компактнее и легче, а значит — при прочих равных такой вал способен быстрее раскручиваться, делая мотор более приемистым. К тому же, сто последних лет металлурги не сидели спустя рукава — и благодаря продвинутым материалам, позволяющим при прежних размерах сделать деталь ощутимо легче, у современных плоских валов вибрации на порядок меньше, чем у их далеких предков.
Остается вопрос: почему же тогда коленвалы 4-цилиндровых моторов делают плоскими? Дело в том, что уровень вибраций, вызванных т.н. силами инерции 2-го порядка (именно они проявляются на V-образных «восьмерках» с плоским коленвалом), сильно зависит от рабочего объема мотора. 4-цилиндровые двигатели компактны — поэтому на такие вибрации порой можно просто закрыть глаза. А если нельзя — проще и дешевле использовать т.н. балансирные валы. О которых мы поговорим в другой раз.
Коленвал как один из важнейших узлов двигателя автомобиля видео АвтоНоватор
Двигатель внутреннего сгорания (ДВС) сам по себе не может стронуть с места автомобиль, потому что поршни способны только на поступательное движение, которое должно быть преобразовано через коленвал в крутящий момент, обязательный для трансмиссии
Иными словами, последний служит передачей между ДВС и ведущими колесами, если не принимать во внимание ряд других узлов и механизмов
Из чего состоит коленвал
Как известно, гениальность – в простоте, и коленвал является ярким тому примером, так как устройство данного автомобильного узла не отличается сложностью, а эффективность его чрезвычайно высока. Именно этот элемент кривошипно-шатунного механизма, выполненный из стали или чугуна, несет на себе основную нагрузку вращения колес, передавая им энергию двигателя. Составлен вал из ряда колен (число их соответствует числу цилиндров ДВС), каждое из которых состоит из двух щек и соединяющей их шатунной шейки. Между собой колена связаны коренными шейками, снабженными одноименными подшипниками.
Преобразование поступательного движения в крутящее происходит за счет того, что оси шеек, соединенных через подшипники с шатунами, не совпадают с осью вращения всего вала. К слову, во избежание возникновения центробежных сил во время работы узла щеки с противоположной стороны от шатунных шеек утяжелены противовесами. Таково устройство коленчатого вала в целом, если не рассматривать маховик, устанавливаемый на одном конце узла, и соединение через ведомый диск с коробкой передач на другом конце.
Как работает коленчатый вал двигателя
Итак, в камерах двигателя внутреннего сгорания, после воспламенения нагнетенного туда горючего, образуются газы, которые, расширяясь, толкают поршни. Те, в свою очередь, оказывают воздействие на присоединенные к ним шатуны через кинематическую пару (бронзовая втулка и палец, тончайший зазор между ними заполнен маслом, подающимся сквозь отверстие во втулке). Шатун нижней головкой через подшипник соединен с шейкой колена, расположенного на валу, и каждое движение поршня, таким образом, проворачивает весь коленчатый вал двигателя.
Чтобы крутящий момент был передан на трансмиссию без ослабления, каждую коренную шейку охватывает специальный подшипник коленвала, состоящий из двух половинок, установленных внутри крышек картера. В последнем предусмотрены ячейки для вращающихся колен, с отверстиями для шатунов в верхней части и поддоном для масла в нижней. Между ячейками, по числу опорных шеек, располагаются подшипники, у каждого вместо элементов качения с внутренней стороны имеется канавка для масла.
Чтобы масло не вытекало из картера, на оба конца вала устанавливаются сальники, которые также имеются с каждой стороны от опорных подшипников.
https://youtube.com/watch?v=Ue6cDpSOKu4
Шестерня коленвала и ее значение
Когда картер полностью собран, снаружи устанавливается сальник, а затем – шестерня коленвала. Необходима она для того, чтобы через зубчатый ремень или непосредственно через шестерню распределительного вала происходила его синхронизация с работой коленчатого вала. В свою очередь распредвал посредством установленных на нем кулачков с определенной периодичностью открывает и закрывает клапаны газораспределительного механизма (ГРМ). Это необходимо для своевременной подачи в цилиндры ДВС топлива и отвода газов после его сгорания.
Если используется ременная передача, она попутно охватывает шкив насоса охлаждающей жидкости. К слову, натяжение ремня должно быть строго отрегулировано, для этого предусмотрен специальный ролик. Если у шестерни вдруг обнаружится люфт, проверьте, насколько надежно сидит в своем гнезде шпонка коленвала. Даже после того, как последняя будет вынута, шестерня при натянутом ремне должна сидеть достаточно плотно. Если люфт продолжается, значит, произошла деформация посадочного места, и не остается ничего другого, кроме как поменять вал. То же самое, если разбивает гнездо под шпонку.
Что такое коленчатый вал двигателя в автомобиле — Auto-Self.ru
Коленчатый вал или, как его называют опытные водители и автослесари, коленвал – важная функциональная деталь автомобильного двигателя, которая имеет строгую индивидуальную форму в зависимости от модели. В данной статье мы рассмотрим, что такое коленчатый вал двигателя, какие функции он выполняет и к чему приводит эксплуатация машины с неисправным валом.
Что такое коленвал
Коленчатый вал – это механическая деталь автомобильного двигателя, которая является промежуточным звеном-преобразователем тепловой энергии сгораемого топлива в механическую энергию вращения колёс. По внешнему виду он представляет собой вал из стального сплава со множеством шатунных шеек, которые между собой соединены коленной шейкой. Число шеек-колен соответствует числу цилиндров в двигателе, их расположению, форме. Шейки соединены с поршнями через шатуны, которые, двигаясь возвратно-поступательно, приводят вал в движение.
Если в коленчатом вале шатунные шейки находятся с двух сторон от коленной шейки, он называется полноопорным. Если же они расположены только с одной стороны – неполноопорным.
Коленвал производится из углеродистой или легированной стали с повышенной износостойкостью (для спорткаров, люкс-моделей и автомобилей с повышенной мощностью) или модифицированного чугуна (для стандартных серийных моделей) с помощью литья или прессования. Для легирования стали применяются молибден, хром и иные металлы, существенное увеличивающие прочность сплава.
В большинстве двигателей коленчатый вал располагается в нижней части, над картером, в оппозитных – выше, по центру мотора.
Для чего нужен коленчатый вал
Двигатели внутреннего сгорания работают за счёт функционирования поршневого блока. Его принцип действия заключается в следующем:
- во время сгорания топливной смеси в цилиндре воздух расширяется с создаёт давление;
- под действие давления поршень выталкивается, совершая поступательное движение;
- благодаря соединению с шатунными шейками поступательное движение превращается во вращательное;
- энергия вращения, переданная на коленчатый вал, передаётся колёсам автомобиля, и он приводится в движение.
Таким образом, коленвал – это преобразователь одного вида механического движения в другой. Как известно, поршни в ДВС двигаются несимметрично. В то время, как одни из них совершают поступательные движения (выталкиваются из цилиндра), другие – возвратное (затягиваются обратно). Конструкция коленчатых валов разрабатывается с предельной точностью, поэтому во время работы все цилиндры сохраняют общее вращение вала. Поэтому коленца имеют разные оси вращения.
Из чего состоит коленчатый вал
Конструкция коленчатого вала: 1. Носок коленчатого вала; 2. Посадочное место звездочки (шестерни) привода распределительного вала; 3. Отверстие подвода масла к коренной шейке; 4. Противовес; 5. Щека; 6. Шатунные шейки; 7. Фланец маховика; 8. Отверстие подвода масла к шатунной шейке; 9. Противовесы; 10. Коренные шейки; 11. Коренная шейка упорного подшипника.
Рабочие компоненты коленвала:
- Коренная шейка – валовая опора, которая служит осью вращения самого вала. Она лежит в подшипнике, который встроен в картер.
- Шатунные шейки – опоры, связанные с поршневыми шатунами. Во время работы они смещаются относительно оси вала по круговой траектории.
- Щёки – вспомогательные детали, связывающие шатунные и коренные шейки. Они также предотвращают разрушение вала из-за резонансной нагрузки.
- Хвостовик – задняя часть, соединённая с шестерной отбора или маховиком для передачи мощности на движение.
- Носок – передняя часть вала, которая посредством шкива или зубчатого колеса передаёт мощность приводу газораспределительного блока и других вспомогательных механизмов.
- Противовесы – детали, необходимые для распределения нагрузки и уравновешивания массы шатунов и поршней.
Для уплотнения носка и хвостовика используются защитные сальники. Это предотвращает просачивание масла в местах выхода частей маховика за границы блока цилиндров. Вращательное движение обеспечивается тонкими стальными подшипниками скольжения. Чтобы ось вращения вала не смещалась, на одну из коренных шеек ставится упорный подшипник.
Во время работы самые большие напряжения концентрируются в месте соединения шеек и щёк. Для разгрузки его делают с галтелью – полукруглым переходом с промежуточным технологическим поясом. По причине экстремальных нагрузок в месте перехода щёк в шейки в своё время производители отказались от составных коленвалов, детали которых соединялись крепежом.
Для чего нужен датчик коленвала
Датчик положения коленчатого вала (ДПКВ) используется в автомобилях, которые оборудованы системами электронного управления мотором. Поскольку вращение вала сказывается на работе многих функциональных блоков и систем, своевременная подача топлива в цилиндры ДВС может улучшить ездовые характеристики. Датчик коленвала как раз отвечает за синхронизацию рабочих процессов. В различных моделях автомобилей его использование улучшает синхронизацию зажигания или топливных форсунок. Прибор передаёт на электронный блок управления данные о положении коленвала, направлении и частоте вращения.
Встречаются датчики следующих видов:
- Магнитные (индуктивного типа). Сигнал на ЭБУ формируется в момент прохождения синхронизационной метки через магнитное поле, которое формируется вокруг датчика. Система не требует отдельного питания, и может параллельно работать как датчик скорости.
- Датчики Холла (работают на эффекте Холла). Ток в приборе начинает движение при приближении изменяющегося магнитного поля. Перекрытие магнитного поля реализуется специальным синхронизирующим диском, зубья которого взаимодействуют с магнитным полем ДПКВ. Дополнительная функция – датчик распределения зажигания.
- Оптические. В данном случае для синхронизации также используется зубчатый диск. Он перекрывает оптический поток, проходящий между приёмником и светодиодом. Приёмник фиксирует прерывания светового потока и передаёт в электронный блок управления импульс напряжения, соответствующий параметрам вращения вала.
Датчик коленвала устанавливается внутри корпуса двигателя, как и прочие датчики управления. Для его встраивания используется специальный кронштейн, расположенный возле приводного шкива генератора. Внешне он отличается от датчиков другого назначения наличием проводка длиной 55-70 см с особым разъёмом, который соединяет устройство с системой электронного управления.
Видео на тему
Поделитесь с друзьями в соц.сетях:
Google+
Telegram
Vkontakte
Коленчатый вал двигателя (коленвал): работа, устройство, вращение
Коленвал – это один из главных элементов двигателя. Он является частью кривошипно-шатунного механизма. Она имеет сложное устройство. Что собой представляет данный механизм? Давайте рассмотрим.
Устройство и назначение
Коленчатый вал воспринимает усилия от поршня и преобразует их в механическую энергию. На этот механизм воздействуют силы вращения. Работает он постоянно под высокой нагрузкой.
Поэтому, чтобы деталь не вышла преждевременно из строя, коленчатые валы изготавливают из качественных, высокопрочных чугунных сплавов. Затем все детали закаляются током высокой частоты. Различают валы с двойным противовесом или вовсе без противовеса.
Располагается колневал двигателя непосредственно в корпусе мотора. Что касается конструкции, то она в целом зависит от двигателя. Несмотря на некоторые различия, в конструкциях есть очень много общего. Коленвал — это комплекс из нескольких деталей. В качестве опоры для этой конструкции используются коренные шейки – чаще встречаются модели с четырьмя шейками, но также есть и трехопорные. В шестицилиндровых моторах установлены валы, где таких опор 7. Для того чтобы коленчатый вал был уравновешен, применяют противовесы. Если цилиндры имеют небольшой диаметр, тогда используют одинарные противовесы. За счет этих деталей обеспечивается максимально плавная работа силового агрегата.
Вспомогательные механизмы
Итак, зная, для чего предназначен коленвал двигателя и какие силы воздействуют на него во время работы, можно понять, почему сопряжения между щеками и шатунными шейками немного закруглены. Это позволяет предотвратить преждевременные разрушения. Между щек расположена шатунная рейка. Механики, которые обслуживают двигатели, называют ее «коленом». Она предназначена для того, чтобы обеспечивалось равномерное воспламенение, чтобы работа двигателя была максимально уравновешенной, чтобы на вал действовали минимальные крутильные и изгибающие силы. Коленвал это – деталь, работающая при высоких оборотах. Вращение шатунов и самого вала на опорах обеспечивается за счет подшипников скольжения. Установлены упорные элементы на крайней или средней коренной шейке. В задачи этого подшипника входит предотвращение осевых смещений и перемещение механизма. Если учесть, сколько деталей должны слаженно и четко работать в одном механизме, нетрудно сказать, что в процессе производства коленчатый вал тщательно балансируется. Но иногда удается обнаружить и разбалансируемые детали. В продажу такие изделия не поступают.
Работа коленчатого вала изнутри
Принцип работы в целом простой. Когда поршень максимально удален, щеки и шатун коленчатого вала выстраиваются в одну линию.
В этот момент в камерах сгорания воспламеняется топливо и выделяются газы, которые двигают поршень к коленчатому валу. С поршнем движется и шатун, головка которого проворачивает коленчатый вал.
Когда последний развернется, шейка шатуна движется вверх и с ней перемещается поршень.
Система смазки
Неисправности
В силу высоких нагрузок данный механизм выходит из строя. Среди типовых неисправностей можно выделить ускоренный износ шеек. Он связан с проблемами в блоке цилиндров. Также нередко случаются задиры на поверхностях шеек. Это случается из-за неудовлетворительной циркуляции или отсутствия смазки, либо в связи с нарушением температурных режимов. Царапины на поверхностях шеек можно видеть особенно часто. Необходимо различать просто царапины и трещины, которые образуются вследствие усталости металла. Нередко случаются биения и прогиб детали. Это особенно актуально для двигателей высокооборотистых автомобилей. Еще одна типовая неисправность – отклонение шеек от их заводского размера. Но это более естественный процесс, чем все остальные. Нужно учитывать, что размеры коленвала имеют допуск не более 0,02 миллиметров. Любое несоответствие устраняется проточкой на специализированном оборудовании.
Как выполнить замену?
Конечно, при некоторых видах неисправностей можно обойтись ремонтом – шлифовкой либо проточкой. Но иногда восстановить вал не получается. В таком случае можно заменить старый механизм на новый. Кстати, в двигателе это наиболее дорогая составляющая. Особенно в дизельных силовых агрегатах.Прежде чем будет выполнена замена коленвала, проверяются осевые люфты. Это упростит подбор осевых вкладышей. Необходимо найти метки на вкладыше и блоке цилиндров. Они указывают направление установки крышек коренных подшипников. Все детали, которые мешают демонтировать вал, необходимо также снять. В руководствах по ремонту процесс демонтажа описывается по-разному, так как есть 8-ми и 16-клапанные двигатели, с рядной или V-образной системой расположения цилиндров. Затем необходимо установить новый коленчатый вал на место старого – нужно строго соблюдать инструкции производителя автомобиля и не перепутать положение коленвала. Ввиду высокой ответственности все работы нужно производить в специализированном сервисе.
Итак, мы выяснили устройство, назначение и принцип работы коленчатого вала автомобиля.
Источник: https://autogear.ru/article/279/965/kolenval-eto-chto-ustroystvo-naznachenie-printsip-rabotyi/
Коленчатый вал двигателя внутреннего сгорания: устройство, назначение, принцип работы
Коленчатый вал (коленвал) двигателя – это одна из важных деталей КШМ, расположенная в цилиндровом блоке. Вал преобразует поступательные движения поршней во вращательный момент, который через трансмиссию передается на колеса автомобиля.
Устройство коленчатого вала
Сложная конструкция коленвала представлена в виде расположенных по одной оси колен – шатунных шеек, соединенных специальными щеками. При этом количество колен зависит от числа, формы и месторасположения цилиндров, а также тактности двигателя автомобиля. С помощью шатунов шейки соединяются с поршнями, совершающими поступательно-возвратные движения.
В зависимости от расположения коренных шеек коленвал может быть:
- полноопорным – когда коренные шейки расположены по две стороны от шатунной шейки,
- неполноопорным – когда коренные шейки расположены только по одну из сторон от шатунной шейки.
- В большинстве современных автомобильных двигателей применяются полноопорные коленвалы.
- Итак, основными элементами коленвала являются:
- Коренная шейка – основная часть вала, которая размещается на коренных вкладышах (подшипниках), находящихся в картере.
- Шатунная шейка – деталь, соединяющая коленвал с шатунами. При этом смазка шатунных механизмов осуществляется благодаря наличию специальных масляных каналов. Шатунные шейки в отличие от коренных шеек всегда смещены в стороны.
- Щеки – детали, соединяющие два типа шеек – коренные и шатунные.
- Противовесы – детали, которые предназначены для уравновешивания веса поршней и шатунов.
- Фронтальная (передняя) часть или носок – часть механизма, оснащенная колесом с зубцами (шкивом) и шестерней, в некоторых случаях гасителем крутильных колебаний, который осуществляет контроль над мощностью привода ГРМ (газораспределительного механизма), а также других механизмов устройства.
- Тыльная (задняя) часть или хвостовик – часть механизма, соединенная с маховиком при помощи маслоотражающего гребня и маслосгонной резьбы, осуществляет отбор мощности вала.
Фронтальная и тыльная сторона коленчатого вала уплотняется защитными сальниками, которые препятствуют протеканию масла там, где выступающие части маховика выходят за пределы блока цилиндров.
Вращательные движения всего механизма коленвала обеспечивают подшипники скольжения – тонкие стальные вкладыши, с защитным слоем антифрикционного вещества. Для предотвращения осевого смещения вала, применяется упорный подшипник, установленный на коренной шейке (крайней или средней).
Коленвал двигателя изготавливается из износостойкой стали (легированной или углеродистой) или модифицированного чугуна, методом штамповки или литья.
Принцип действия коленчатого вала
Несмотря на сложность самого устройства, принцип работы коленвала достаточно прост.
В камерах сгорания происходит процесс сжигания поступившего туда топлива и выделения газов. Расширяясь, газы воздействуют на поршни, совершающие поступательные движения. Поршни передают механическую энергию шатунам, соединенным с ними втулкой или поршневым пальцем.
Шатун в свою очередь соединен с шейкой коленвала подшипником, вследствие чего каждое поступательное поршневое движение преобразуется во вращательное движение вала. После того как происходит разворот на 180˚, шатунная шейка движется уже в обратном направлении, обеспечивая возвратное движение поршня. Затем циклы повторяются.
Процесс смазки коленчатого вала
Смазка коленвала обеспечивается за счет шатунных и коренных шеек. Важно помнить, что смазка коленчатого вала всегда происходит под давлением. Каждая коренная шейка обеспечена индивидуальным подводом масла от общей смазочной системы. Поступившее масло попадает на шатунные шейки по специальным каналам, расположенным в коренных шейках.
Как выглядит
Как видно на фото, этот элемент имеет довольно сложную форму. Его основными составными частями являются:
- коренные шейки,
- шатунные шейки,
- щеки,
- противовесы.
Коренные (опорные) шейки служат для опоры коленвала в так называемых «постелях». В них крепятся не смещающиеся в процессе работы подшипники, обеспечивающие вращение. Поскольку на коренные шейки приходятся более значительные нагрузки, их диаметр больше, чем у шатунных.
Шатунные шейки (колена) – это опорные поверхности шатунов. С учетом порядка работы цилиндров колена смещаются относительно оси вращения на определенные углы.
Если коленчатый вал сконструирован так, что по обе стороны от каждой шатунной шейки находятся опорные, то он называется полноопорным, в противном случае – неполноопорным. В современных автомобильных двигателях наибольшее распространение имеют именно полноопорные коленвалы.
Из каких материалов и как изготавливается
Материал и технология производства зависят от класса и назначения автомобиля:
- Для стандартных серийных автомобилей коленчатый вал отливается из чугуна, этим достигается минимальная себестоимость производства.
- Коленвал более мощных и спортивных машин кованый и изготовлен из стали. По сравнению с чугунным он обладает улучшенными характеристиками по таким параметрам, как габариты, вес и прочность.
- Самый дорогостоящий вариант, использующийся в люксовых моделях, – коленчатый вал, выточенный из цельного куска стали.
Место перехода щек в шейки является самым нагруженным, так как здесь концентрируются максимальные напряжения. Для того чтобы разгрузить соединение, его выполняют с полукруглым переходом (галтелью).
Как правило, галтели делают двойными с промежуточным технологическим пояском.
Такое конструктивное решение позволяет сохранить максимальное значение активной площади шеек – поверхности, находящей под вкладышами.
Как раз по причине возникновения высоких нагрузок в соединениях, не нашел широкого применения коленчатый вал составной конструкции, в котором отдельные части соединены между собой крепежом.
Для чего необходим
При помощи кривошипно-шатунного механизма двигателя возвратно-поступательное движение поршней цилиндров двигателя переходит во вращательное движение и передается через трансмиссию к колесам автомобиля. Коленчатый вал как раз и нужен для того чтобы выполнить такое превращение. При работе каждый из поршней четырехтактного двигателя постоянно находится в одном из тактов:
- впуск,
- сжатие,
- рабочий ход,
- выпуск.
В фазе рабочего хода поршень толкает связанный с ним шатун, а тот, в свою очередь, смещает коленчатый вал. Так реализуется вращение. Следующий по порядку работы цилиндров двигателя поршень в это время сжимает горючую смесь и после ее воспламенения толкает свой шатун, в результате чего коленчатый вал непрерывно вращается.
К заднему, если смотреть со стороны расположения ремней/цепей механизма газораспределения, концу коленвала через фланец при помощи болтов крепится маховик – массивный чугунный диск с напрессованным зубчатым венцом (см. фото).
Для того чтобы маховик не смещался и не нарушалась балансировка, предусмотрены центровочные штифты или специальные болты, расположенные несимметрично.
Для предотвращения утечек масла на фланец маховика устанавливается дополнительное уплотнение (сальник).
Маховик накапливает энергию, необходимую для поддержания равномерного вращения в промежутках между воспламенениями горючей смеси в цилиндрах и выводит поршни из мертвых точек (крайних верхних и нижних положений поршня в цилиндре).
Зубчатый венец маховика связан с шестерней стартера. При пуске двигателя маховик проворачивается стартером, придавая валу начальное вращение. Наконец, именно через маховик на узлы и агрегаты трансмиссии передается вращательное движение.
Обычно для контроля правильности установки фаз газораспределения на маховике имеются метки, указывающие положение первого поршня в верхней мертвой точке.
В передней части коленвала, называемой «носком», устанавливается шкив или шестерня привода газораспределительного механизма, элементов системы охлаждения и других агрегатов (см. фото).
Носок уплотняется кольцевой манжетой (сальником). Кроме того, с внешней стороны носка в крышке двигателя устанавливается пылеотражатель, препятствующий проникновению загрязнений в картер.
Устройство кривошипно-шатунного механизма
Но кривошип имеет П-образную форму, поэтому относительно оси коленвала, на которой размещен этот кривошип, расстояние между поршнем и самим валом меняется. За счет применения кривошипов и удалось организовать преобразование перемещения поршня во вращение вала.
Но это схема взаимодействия только цилиндро-поршневой группы с кривошипно-шатунным механизмом. Начнем с ЦПГ. Основными в ней являются гильзы и поршни.
Устройство современного двигателя
Современные автомобильные двигатели получили различные типы газораспределительных механизмов, разработка которых была основана на опыте эксплуатации более ранних моделей.
Классификация ГРМ по четырем основным различиям: 2. По количеству распределительных валов : — один распредвал (SOHC — Single OverHead Camshaft) — два распредвала (DOHC — Double OverHead Camshaft),
Группа деталей коленчатого вала
Заключительное звено кривошипно-шатунного механизма поршневого двигателя – группа коленчатого вала. Детали этой группы завершают процесс преобразования поступательного движения поршня во вращательное движение выходного звена.
В группу коленчатого вала входят: собственно коленчатый вал, противовесы, маховик, элементы привода газораспределительного и других вспомогательных механизмов и систем двигателя, узел осевой фиксации и детали маслоуплотняющих устройств.
Наиболее сложной и ответственной деталью группы коленчатого вала является сам коленчатый вал. От технического совершенства конструкции и качества изготовления коленчатого вала во многом зависят полнота использования двигателем тепловой энергии сгоревших газов, т. е. КПД, потери на трение, долговечность, надежность, эффективность и экономичность двигателя.
Коленчатый вал двигателя
«Коленчатый вал – деталь, изогнутая до невозможности и вращающаяся до потери пульса» Поговорка слесарей-мотористов
Коленчатый вал поршневого двигателя является деталью, конструкция которой позволяет завершить преобразование возвратно-поступательного прямолинейного движения поршня во вращательное движение.
Как упоминалось в одной из статей об автомобилях, вращательное движение является оптимальным для большинства передвигающихся по суше машин и механизмов (т. е. для легковых, грузовых автомобилей и автобусов, тракторов и сельскохозяйственной техники и т. д.
), поскольку основным движителем для таких машин является колесо, совершающее в процессе выполнения работы вращательное движение.
Коленчатый вал поршневого двигателя воспринимает усилие со стороны шатуна и преобразует их в крутящий момент. Кроме того, коленчатый вал обеспечивает движение поршней во время вспомогательных тактов и пуска двигателя, а также приводит в действие вспомогательные механизмы и приборы двигателя и его систем.
Усилия со стороны газов и сил инерции при большой длине коленчатого вала вызывают заметные продольные и угловые деформации, причиной которых являются динамические (переменные) нагрузки, способные при продолжительных воздействиях привести к усталостным разрушениям.
Шейки коленчатого вала работают при больших окружных скоростях и испытывают значительные тепловые и механические напряжения. При этом шатунные шейки совершают сложные перемещения, вызывающие комплексные инерционные нагрузки.
Исходя из перечисленных выше условий, в которых работает коленчатый вал, к его конструкции предъявляются следующие требования:
- форма коленвала должна обеспечивать уравновешенность двигателя в время работы,
- высокая жесткость, исключающая недопустимые деформации,
- высокая усталостная прочность и способность противостоять динамическим нагрузкам,
- высокая износостойкость трущихся поверхностей,
- минимальная масса, позволяющая снизить возникающие во время вращения вала инерционные силы и моменты.
Особенности конструкции коленчатого вала
Основными элементами коленчатого вала (рис. 1) являются коренные 4 и шатунные 2 шейки, соединяющие щеки 3, носок 5 и хвостовик 1. Две шатунные шейки, шатунная шейка и щеки, соединяющие их, образуют кривошип.
Торцевые поверхности щек, выступающие за шейки, шлифуются и образуют кольцевые пояски, используемые для осевой фиксации шатунов и самого коленчатого вала. Эти кольцевые пояски сопрягаются с цилиндрической поверхностью шеек плавными переходами – галтелями.
Внутри шеек и щек имеется система каналов и отверстий для подачи смазочного материала к подшипникам. Масло, как правило, поступает к шатунным вкладыши по каналам из смежных коренных подшипников.
Достаточную жесткость на изгиб обеспечивают так называемые полноопорные валы, в которых число коренных шеек на одну больше количества шатунных шеек.
Расположение шатунных шеек определяется из условия равномерного распределения воспламенения и уравновешенности деталей.
Коленчатые валы могут быть цельными и составными, т. е. разборными – состоять из отдельных кривошипов, соединяемых в единый узел. Составные валы применяются редко, только в случае использования коренных подшипников качения (рис. 2).
Щеки коленчатого вала со стороны коренных шеек часто имеют продолжение, заканчивающееся противовесами, предназначенными для разгрузки коренных подшипников от действия центробежных сил вращающихся масс, которые обусловлены дисбалансом вала из-за смещения шатунных шеек относительно оси вращения, а также для общего уравновешивания двигателя. Противовесы выполняются заодно с коленчатым валом, но в случае большой их массы (например, в дизелях) они могут изготавливаться отдельно от вала и крепиться к нему болтами, шпильками или штифтами.
На носке коленчатого вала устанавливают шкивы или зубчатые колеса для привода механизма газораспределения, насосов, вентилятора и других механизмов и узлов различных систем двигателя. На хвостовике коленчатого вала устанавливается маховик, уравновешивающий вращающиеся массы двигателя, на котором выполнен зубчатый венец для пуска двигателя.
Иногда зубчатые колеса привода газораспределительного механизма устанавливают не на носке, а на хвостовике, где имеются элементы уплотнения – гребень и маслосгонная резьба или накатка.
Источник: https://advokat-32.ru/17257-rabota-kolenchatogo-vala-dvs.html
Коленчатый вал
Чтобы исключить причины, вызывающие появление остаточных напряжений, в технологию изготовления вала введены дополнительные операции перецентровки: первая — после обтачивания коренных шеек, вторая — после термической обработки. Базой при перецентровках приняты первая и четвертая коренные шейки, что позволило усреднить биение и снизить припуски на последующую обработку
Во время второй перецентровки, производимой на алмазно-расточном станке, кроме корректировки центров улучшается форма центровых фасок, уменьшается шероховатость поверхности, что важно для последующей обработки детали на финишных операциях. Все это позволило ликвидировать операции правки валов, уменьшить и стабилизировать межоперационные припуски и, в конечном итоге, благоприятно сказалось на надежности коленчатых валов в эксплуатации
Проблема снижения остаточных напряжений решена путем внедрения более производительного и прогрессивного способа предварительной обработки коленчатых валов методом кругового фрезерования.
При этом методе обработка производится многорезцовыми фрезерными головками, оснащенными твердосплавными неперетачиваемыми пластинками с механическим креплением. Резание ведется на скорости 100—150 м/мин. Коленчатый вал производит за цикл медленный поворот в режиме подачи.
Количество шеек, обрабатываемых за один поворот детали, соответствует количеству фрезерных головок. Таким методом можно обрабатывать как коренные, так и шатунные шейки. По сравнению с точением фрезерование характеризуется сравнительно невысокой нагрузкой на коленчатый вал во время обработки.
Достигается это соответствующим расположением режущих кромок пластинок фрезерной головки, благодаря чему весь профиль шейки делится на отдельные участки (секторы). При этом режущие кромки инструмента вступают в работу попеременно, что значительно снижает силы резания.
Привод круговой подачи осуществляется с обоих концов вала, благодаря чему исключается его деформация и обеспечивается высокая геометрическая точность. Стружка дробится, что также положительно сказывается на параметрах процесса.
что это Устройство коленчатого вала. Фото, видео
Наверное каждый автолюбитель задавался вопросом: что такое коленвал, что он из себя представляет? В данной статье мы дадим ответ на это вопрос.
Усилия, передаваемые поршнями через шатуны, воспринимает коленчатый вал. Затем они преобразуются в крутящий момент. Главные требования к коленчатому валу – это жёсткость и прочность.
Материалом изготовления коленчатого вала является сталь и высокопрочный чугун. Стальные валы куют, а чугунные выливают в изготовленные формы. Поверхности шатунных и коренных шеек обрабатывают термически, придают им прочность, а затем шлифуют.
На коленчатом валу имеется несколько шатунных и коренных шеек. Они соединены между собой щёчками, которые имеют продолжение в противоположную от шейки сторону и создают противовес.
В конструкции двигателей некоторых грузовых автомобилей имеются противовесы, крепящиеся к коленчатому валу при помощи болтов. Диаметр коренных шеек всегда больше шатунных.
Если посмотреть на коленчатый вал с его торца, и Вы увидите, как шатунные шейки перекрывают коренные, то это означает, что у него очень жёсткая конструкция. Двигатель, в котором поршень имеет короткий ход, сделать перекрытие шеек проще.
Коленчатый вал называется полноопорным, если слева и справа от шатунной шейки расположены коренные шейки. При отсутствии с обеих сторон коренных шеек, такой вал называют неполноопорным. Его масса будет увеличенной, он может выдерживать сильные закручивающие и изгибающие нагрузки, а конструкция при этом более жёсткая.
Наибольшее распространение получили полноопорные коленчатые валы. Разборные коленчатые валы в современных двигателях внутреннего сгорания применяют редко. Сопряжение от щёчки к шейке делают по радиусу, потому что в этом месте большое количество напряжений. Образование трещин и дальнейшее разрушение в этом месте в такой конструкции сведены почти на ноль.
Тонкостенные, разъёмные вкладыши используются как подшипники скольжения в шатунных и коренных шейках. Их изготавливают из тонкой стали, на поверхность которой наносят антифрикционный сплав (баббит).
С помощью особого выступа они устанавливаются в специальные канавки, что не даёт им проворачиваться в опорах коленчатого вала. Упорные подшипники скольжения удерживают коленчатый вал от осевого смещения.
Технологические отверстия (масляные каналы) просверлены внутри шеек и щёчек коленчатого вала. Моторное масло поступает всё время под давлением, потому что незначительная продолжительность работы коленчатого вала без масла приведёт к его поломке. Он не выдержит нагрузки и заклинит.
Маховик крепится к его задней части. Он выводит кривошипо — шатунный механизм из мёртвых точек, запасает и отдаёт энергию на разных тактах, а также снижает неравномерность работы двигателя в целом. Маховик изготавливают из чугуна, и он имеет форму диска. Масса у него большая.
Зубчатый венец напрессован на наружную поверхность маховика. При помощи него электрический стартер при пуске передаёт движение на коленчатый вал. Если на двигателе внутреннего сгорания три и больше поршня, то рабочий ход одновременно начинается в двух или большем количестве цилиндров.
Масса маховика на таких двигателях мала, а крутящий момент плавный.
Видео — изготовление коленвала
Крутильные колебания – это непрекращающееся раскручивание и закручивание коленчатого вала. Если произойдёт совпадение частот внешних сил и крутильных колебаний, то последствием этого станет резонанс, который приведёт к поломке коленчатого вала. На старых автомобилях в двигателях коленчатые валы ломались в месте сопряжения коренной шейки со щёчкой.
Количество оборотов и высокая жёсткость современных коленчатых валов не подвержены пагубному влиянию резонансных частот. Однако на двигателях имеются гасители крутильных колебаний, снижающие виброактивность коленчатых валов.
Шкив коленчатого вала делят на две части, заливают их резиной, центруют, и после этого за счёт внутреннего трения он будет поглощать вибрацию.
В настоящее время огромную популярность приобрели двухмассовые маховики, выполняющие роль гасителей крутильных колебаний.
Также на двигатели внутреннего сгорания устанавливают новейшие тороидные стартер – генераторы, позволяющие ему работать при максимальных нагрузках, при помощи электронного блока управления снижать вибрации и колебания, а также бесшумно производить запуск.
Материалы изготовления коленчатого вала
Коленчатые валы двигателя шести- и восьмицилиндровых четырехтактных двигателей изготовляются из марганцовистой стали 50Г, а двенадцати цилиндровых — из Хромованадиевой стали 60ХФА. Коренные и шатунные шейки, а также шейки под уплотнительные манжеты подвергаются поверхностной закалке с нагревом ТВЧ.
Сложная форма кованых коленчатых валов влечет за собой необходимость сравнительно большого съема металла при механической обработке. Металл снимается не только на шейках, но и на щеках. Сравнительно большие припуски имеют коленчатые валы У-образных двигателей, когда шейки расположены в нескольких плоскостях.
Кроме того, стремление использовать штамп как можно дольше также приводит к увеличению припусков. Согласно исходной технологии токарная обработка коренных шеек, переднего и заднего Концов коленчатого вала проводилась одновременно на многорезцовых станках мод. МК-840, а шатунных шеек на многорезцовых станках мод. МК-8212.
При этом суммарная ширина режущих кромок одновременно работающих резцов на станке мод. МК-840 для шестицилиндровых валов составляла 440 мм, для восми-цилиндровых 490 мм, а на станке мод. МК-8212 — соответственно 240 и 320 мм.
Наличие значительных сил резания и ударных нагрузок при обработке щек в сочетании с перераспределением внутренних напряжений в материале вала после снятия поверхностного слоя штампованной заготовки приводило к короблению вала на предварительных операциях его изготовления.
Нагрев шеек при закалке ТВЧ также вызывал дополнительное коробление вала. При этом суммарные деформации вала достигали 1,5—2 мм. I С целью их устранения технологическим процессом предусматривалась правка вала, которая производилась после обтачивания коренных и шатунных шеек и после термической обработки.
Процесс правки заключался в неоднократном прогибе вала с устранением биения до допустимых величин.
Что такое коленвал
Коленчатый вал – это механическая деталь автомобильного двигателя, которая является промежуточным звеном-преобразователем тепловой энергии сгораемого топлива в механическую энергию вращения колёс.
По внешнему виду он представляет собой вал из стального сплава со множеством шатунных шеек, которые между собой соединены коленной шейкой. Число шеек-колен соответствует числу цилиндров в двигателе, их расположению, форме. Шейки соединены с поршнями через шатуны, которые, двигаясь возвратно-поступательно, приводят вал в движение.
Если в коленчатом вале шатунные шейки находятся с двух сторон от коленной шейки, он называется полноопорным. Если же они расположены только с одной стороны – неполноопорным.
Коленвал производится из углеродистой или легированной стали с повышенной износостойкостью (для спорткаров, люкс-моделей и автомобилей с повышенной мощностью) или модифицированного чугуна (для стандартных серийных моделей) с помощью литья или прессования. Для легирования стали применяются молибден, хром и иные металлы, существенное увеличивающие прочность сплава.
В большинстве двигателей коленчатый вал располагается в нижней части, над картером, в оппозитных – выше, по центру мотора.
Почему коленвалы называют плоскими
В процессе изучения устройства коленчатого вала, порой кажется, что ты на уроке биологии. Первым делом в глаза бросаются массивные плоские «щеки», между которыми находятся «шейки».
Одни шейки (как вы наверняка знаете) — коренные (на них вал опирается, лежа в картере) и шатунные (именно к ним сверху «цепляются» шатуны).
Если посмотреть на коленвал «в фас», возможны два варианта: либо щеки с шейками лежат в одной плоскости, либо половина из них расположена под прямым углом к другой половине. В первом случае вал и называют плоским.
При сборке двигателя вашей малолитражки наверняка использован именно плоский вал — это самой собой разумеющееся решение для 4-цилиндрового двигателя. А вот при создании V-образной «восьмерки» уже есть выбор.
Изначально (на заре автомобилестроения) все конструкторы предпочитали именно плоские валы, однако с ростом мощности силовые агрегаты генерировали все больше вибраций и все труднее поддавались балансировке.
Именно в попытках уменьшить уровень вибраций создатели моторов и пришли к схеме с установкой шеек под прямым углом друг к другу. И сейчас на большинстве V-образных «восьмерок» стоят именно такие коленвалы.
А «плоские» остались уделом гоночных моторов или двигателей для суперкаров — можно вспомнить силовые агрегаты Ferrari или 5-литровый двигатель под капотом нового Shelby Mustang GT350.
Понять разницу между плоским коленвалом (справа) и коленвалом с шейками, установленными под прямым углом, проще всего с помощью картинок.
Окончательно отказываться от плоского коленвала мотористы не собираются. Ведь более простая конструкция делает его компактнее и легче, а значит — при прочих равных такой вал способен быстрее раскручиваться, делая мотор более приемистым.
К тому же, сто последних лет металлурги не сидели спустя рукава — и благодаря продвинутым материалам, позволяющим при прежних размерах сделать деталь ощутимо легче, у современных плоских валов вибрации на порядок меньше, чем у их далеких предков.
Остается вопрос: почему же тогда коленвалы 4-цилиндровых моторов делают плоскими? Дело в том, что уровень вибраций, вызванных т.н.
силами инерции 2-го порядка (именно они проявляются на V-образных «восьмерках» с плоским коленвалом), сильно зависит от рабочего объема мотора. 4-цилиндровые двигатели компактны — поэтому на такие вибрации порой можно просто закрыть глаза.
А если нельзя — проще и дешевле использовать т.н. балансирные валы. О которых мы поговорим в другой раз.
Коленвал как один из важнейших узлов двигателя автомобиля видео АвтоНоватор
Двигатель внутреннего сгорания (ДВС) сам по себе не может стронуть с места автомобиль, потому что поршни способны только на поступательное движение, которое должно быть преобразовано через коленвал в крутящий момент, обязательный для трансмиссии
Иными словами, последний служит передачей между ДВС и ведущими колесами, если не принимать во внимание ряд других узлов и механизмов
Из чего состоит коленвал
Как известно, гениальность – в простоте, и коленвал является ярким тому примером, так как устройство данного автомобильного узла не отличается сложностью, а эффективность его чрезвычайно высока.
Именно этот элемент кривошипно-шатунного механизма, выполненный из стали или чугуна, несет на себе основную нагрузку вращения колес, передавая им энергию двигателя.
Составлен вал из ряда колен (число их соответствует числу цилиндров ДВС), каждое из которых состоит из двух щек и соединяющей их шатунной шейки. Между собой колена связаны коренными шейками, снабженными одноименными подшипниками.
Преобразование поступательного движения в крутящее происходит за счет того, что оси шеек, соединенных через подшипники с шатунами, не совпадают с осью вращения всего вала.
К слову, во избежание возникновения центробежных сил во время работы узла щеки с противоположной стороны от шатунных шеек утяжелены противовесами.
Таково устройство коленчатого вала в целом, если не рассматривать маховик, устанавливаемый на одном конце узла, и соединение через ведомый диск с коробкой передач на другом конце.
Как работает коленчатый вал двигателя
Итак, в камерах двигателя внутреннего сгорания, после воспламенения нагнетенного туда горючего, образуются газы, которые, расширяясь, толкают поршни.
Те, в свою очередь, оказывают воздействие на присоединенные к ним шатуны через кинематическую пару (бронзовая втулка и палец, тончайший зазор между ними заполнен маслом, подающимся сквозь отверстие во втулке).
Шатун нижней головкой через подшипник соединен с шейкой колена, расположенного на валу, и каждое движение поршня, таким образом, проворачивает весь коленчатый вал двигателя.
Чтобы крутящий момент был передан на трансмиссию без ослабления, каждую коренную шейку охватывает специальный подшипник коленвала, состоящий из двух половинок, установленных внутри крышек картера.
В последнем предусмотрены ячейки для вращающихся колен, с отверстиями для шатунов в верхней части и поддоном для масла в нижней.
Между ячейками, по числу опорных шеек, располагаются подшипники, у каждого вместо элементов качения с внутренней стороны имеется канавка для масла.
Чтобы масло не вытекало из картера, на оба конца вала устанавливаются сальники, которые также имеются с каждой стороны от опорных подшипников.
https://youtube.com/watch?v=Ue6cDpSOKu4
Шестерня коленвала и ее значение
Когда картер полностью собран, снаружи устанавливается сальник, а затем – шестерня коленвала.
Необходима она для того, чтобы через зубчатый ремень или непосредственно через шестерню распределительного вала происходила его синхронизация с работой коленчатого вала.
В свою очередь распредвал посредством установленных на нем кулачков с определенной периодичностью открывает и закрывает клапаны газораспределительного механизма (ГРМ). Это необходимо для своевременной подачи в цилиндры ДВС топлива и отвода газов после его сгорания.
Если используется ременная передача, она попутно охватывает шкив насоса охлаждающей жидкости. К слову, натяжение ремня должно быть строго отрегулировано, для этого предусмотрен специальный ролик.
Если у шестерни вдруг обнаружится люфт, проверьте, насколько надежно сидит в своем гнезде шпонка коленвала. Даже после того, как последняя будет вынута, шестерня при натянутом ремне должна сидеть достаточно плотно.
Если люфт продолжается, значит, произошла деформация посадочного места, и не остается ничего другого, кроме как поменять вал. То же самое, если разбивает гнездо под шпонку.
Источник: https://ProAutoMarki.ru/kolenval/
Регулятор частоты вращения коленчатого вала дизельного двигателя
ОГЛАВЛЕНИЕ
- Двурежимный регулятор
- Центробежный регулятор всережимного типа
В отличие от бензинового двигателя дизельные двигатели не имеет во впускном трубопроводе дроссельной заслонки, позволяющей четко регулировать частоту вращения коленчатого вала за счет изменения подачи воздуха с одновременным изменением подачи топлива.
У дизельного двигателя не существует положения управляющей рейки, которое бы позволило двигателю поддерживать определенную частоту вращения коленчатого вала двигателя без помощи регулятора.
Например, при запуске холодного двигателя и его работе на холостом ходу, потери на трение кривошипно-шатунного, газораспределительного и других механизмов и приводимых от двигателя агрегатов начинают снижаться, а количество подаваемого топлива будет постоянным.
При отсутствии регулятора частота вращения будет увеличиваться и может достичь критической точки, при которой может произойти разрушение двигателя.
Регуляторы частоты вращения коленчатого вала дизельного двигателя устанавливаются на насосе высокого давления и приводятся в действие от кулачкового вала. Его работа основана, как и в автоматической муфте опережения впрыска, на использовании центробежных сил.
Например, при заданном положении педали управления подачи топлива и возникновении дополнительного сопротивления движению (на подъеме) частота вращения коленчатого вала двигателя будет уменьшаться, а скорость автомобиля падать.
Чтобы ее поддержать на заданном уровне, необходимо повысить крутящий момент двигателя. Это может быть достигнуто увеличением количества топлива, впрыскиваемого в цилиндры двигателя.
Регулятор воспринимает снижение частоты вращения коленчатого вала и автоматически увеличивает подачу топлива насосом высокого давления, благодаря чему скорость автомобиля восстанавливается до заданного значения.
Аналогичным образом регулятор изменяет подачу топлива при уменьшении нагрузки на двигатель, только в этом случае управляющее воздействие регулятора сводится к уменьшению количества впрыскиваемого топлива.
В результате при снижении нагрузки на двигатель происходит уменьшение скорости движения и доведение ее до заданного уровня.
Таким образом, регулятор автоматически изменяет подачу топлива при изменении нагрузки на двигатель и обеспечивает установку любого выбранного скоростного режима при отклонениях от него в пределах – 10…20%.
Различают двухрежимный и всережимные регулятора частоты вращения коленчатого вала.
Двухрежимный регулятор (типа RQ) поддерживающий определенную частоту вращения коленчатого вала на режимах минимальной и максимальной частоты вращения коленчатого вала. Всережимный регулятор (типа RSV) поддерживает необходимую частоту вращения на всех режимах работы двигателя.
Всережимные регуляторы устанавливаемые на небольших высокооборотистых двигателях позволяют поддерживать частоту вращения коленчатого вала в пределах 6…10%.
В топливных насосах применяют регуляторы с различными принципами работы:
- механические
- пневматические
- гидравлические
- комбинированные
Для автомобильных двигателей наиболее широко применяют механические центробежные регуляторы и реже пневматические регуляторы.
Центробежный регулятор представляет собой систему, состоящую из вращающихся грузов, пружин и рычагов, связанных с рейкой топливного насоса высокого давления, управляющей цикловой подачей топлива.
Двурежимный регулятор
В двухрежимных регуляторах механизм регулятора связан с рейкой насоса высокого давления при помощи дифференциального рычага, соединенного также и с тягой педали акселератора, которой управляет водитель.
Основными элементами двухрежимного центробежного регулятора являются большие 4 и малые 3 грузы.
Рис.
Схема работы двухрежимного центробежного регулятора
Грузы свободно посажены на пальцы крестовины 1 и упираются лапками в скользящую муфту 5, также свободно установленную на вращающемся валу 6 регулятора, связанном зубчатой передачей с валом топливного насоса. С противоположной стороны в скользящую муфту под действием слабой пружины 12, помещенной в стакане 13 и втулке 11, упирается основной (вильчатый) рычаг 7 регулятора.
Этот рычаг соединен при помощи двуплечего рычага 8 с рейкой 9 топливного насоса высокого давления и тягой 14 педали акселератора. Сильная пружина 10, установленная на втулке 11, упирается в неподвижную стенку корпуса регулятора.
Грузы со слабой пружиной и сильной пружинами образуют две последовательно действующие системы регулирования, в которых используется общий рычажный механизм.
Массы грузов и затяжку слабой пружины подбирают так, чтобы действующие на муфту составляющие центробежной силы грузов и силы пружины оказались равными, т.е. чтобы система была в равновесии при минимальной частоте вращения коленчатого вала.
Педаль акселератора во время работы двигателя на холостом ходу с минимальной частотой вращения коленчатого вала полностью отпущена и двуплечий рычаг находится в положении I.
При самопроизвольном уменьшении частоты вращения коленчатого вала двигателя центробежная сила грузов уменьшается и пружина 12, отклоняя вильчатый рычаг, перемещает рейку топливного насоса в сторону увеличения подачи топлива.
В случае самопроизвольного повышения частоты вращения коленчатого вала двигателя центробежная сила грузов увеличивается и муфта 5, отклоняя вильчатый рычаг и сжимая при этом пружину 12, перемещает рейку насоса в сторону уменьшения подачи топлива. Таким образом, одна система двухрежимного регулятора обеспечивает устойчивую работу дизеля при минимальной частоте вращения коленчатого вала на холостом ходу.
Массу грузов и затяжку сильной пружины подбирают так, чтобы равновесие системы обеспечивалось при максимальной частоте вращения коленчатого вала, допустимом для данного двигателя.
Педаль акселератора при работе двигателя с максимальной частотой вращения коленчатого вала полностью нажата, и двуплечий рычаг находится в положении II.
При этом большие грузы регулятора раздвигаются до упоров 2 и не изменяют своего положения, сжимая слабую пружину вильчатым рычагом настолько, что стакан 13 вдвигается до упора в торец втулки 11.
С дальнейшим увеличением частоты вращения коленчатого вала, которое может происходить при уменьшении нагрузки дизеля, центробежная сила грузов увеличивается и муфта 5, отклоняя вильчатый рычаг и сжимая при этом пружину 10, перемещает рейку насоса высокого давления в сторону уменьшения подачи топлива. Таким образом, вторая система двухрежимного регулятора ограничивает максимальную частоту вращения, не допуская его разноса, даже при его полной разгрузке.
На рисунке приведены скоростные характеристики дизеля с двухрежимным регулятором.
Рис.
Характеристики дизеля с двухрежимным регулятором:
Мкр – крутящий момент; Nе – мощность; n – частота вращения коленчатого вала
Кривые 1, 2 и 3 соответствуют различным положениям педали акселератора. Участок n1…n2 регулируется системой минимальной, а участок n3…n4 системой максимальной частоты вращения регулятора. В диапазоне между этими участками режим работы двигателя управляется только педалью акселератора без воздействия регулятора.
Центробежный регулятор всережимного типа
Центробежный регулятор всережимного типа также представляет собой систему, состоящую из вращающихся грузов, пружины и основного рычага, связанного с рейкой топливного насоса высокого давления, управляющей цикловой подачей топлива.
Особенность регулятора этого типа заключается в отсутствии непосредственной связи рейки топливного насоса с педалью акселератора. На рисунке дана схема всережимного центробежного регулятора.
Рис.
Схема работы всережимного центробежного регулятора
На вращающемся валу 9 регулятора, который при помощи шестерен связан с кулачковым валом топливного насоса, закреплена крестовина 6. В проушинах крестовины на пальцах 7 установлены качающиеся грузы 8 с лапками, которые упираются в подвижную муфту 10, надетую на вал регулятора.
С другой стороны в муфту упирается основной вильчатый рычаг 2, установленный на оси 11 и соединенный с пружиной 3 и рейкой 1 топливного насоса высокого давления.
Другой конец пружины соединен с рычагом 4, жестко связанным общей осью с рычагом 5 управления регулятором, который размещен с наружной стороны корпуса регулятора.
Система находится в равновесии, когда составляющие центробежной силы вращающихся грузов и силы пружины, действующие на подвижную муфту, равны между собой.
При повышении частоты вращения коленчатого вала двигателя и связанного с ним вала регулятора, происходящем при уменьшении нагрузки, центробежная сила грузов увеличивается, заставляя их раздвинуться и переместить подвижную муфту, вильчатый рычаг и связанную c ним рейку топливного насоса в сторону уменьшения подачи топлива. В случае понижения частоты вращения, происходящем при увеличении нагрузки дизеля, центробежная сила грузов уменьшается и пружина, воздействуя на вильчатый рычаг, перемещает рейку топливного насоса в сторону увеличения подачи топлива. Частоту вращения изменяют натяжением пружины, связанной с рычагом управления регулятором, причем для повышения частоты вращения коленчатого вала необходимо увеличить натяжение пружины.
На рисунке приведены скоростные характеристики дизеля с всережимным регулятором частоты вращения.
Рис.
Характеристики дизеля с всережимным регулятором:
Мкр – крутящий момент; Nе – мощность; n – частота вращения коленчатого вала
Каждому положению рычага управления регулятором соответствует определенная ветвь кривой – А1В1, А2В2 и т.д.
, характеризующая зависимость частоты вращения коленчатого вала от мощности и крутящего момента (нагрузки) двигателя в диапазоне от полной мощности, развиваемой при максимальной частоте вращения коленчатого вала, до холостого хода при минимальной частоте вращения коленчатого вала.
Из рассмотрения характеристик видно, что при постоянном положении рычага управления регулятором частота вращения мало зависит от изменения мощности в широких пределах.
Однако степень неравномерности увеличивается при уменьшении регулируемой частоте вращения и становится значительной (40…70%) при минимальной частоте вращения на холостом ходу. Это обусловливается постоянной жесткостью пружины и значительным уменьшением центробежной силы грузов при уменьшении частоты вращения вала регулятора.
Регуляторы принцип работы которых описан выше применяются на большинстве рядных ТНВД. На рисунке показан двухрежимный регулятор рядного ТНВД легкового автомобиля Мерседес.
Рис.
Двухрежимный регулятор:
1 – вакуумная камера остановки двигателя; 2 – контргайка; 3 – вакуумная камера увеличения частоты вращения коленчатого вала двигателя; 4 – ограничительный винт количества топлива на минимальной частоте вращения коленчатого вала двигателя; 5 – рычаг изменения подачи топлива; 6 – винт пружины регулятора; 7 – промежуточный рычаг; 8 – винт регулировки максимальной частоты вращения; 9 – центробежный регулятор; 10 – рейка; 11 – упорный рычаг; 12 – рычаг рейки
- На режиме пуска вследствие максимального сближения грузов центробежного регулятора 9 рейка регулирования подачи топлива 10 через систему рычагов занимает положение полной подачи топлива.
- При работе двигателя в режиме холостого хода, вследствие воздействия на рейку слабой пружины со стороны вертикального рычага и положения центробежных грузов, поддерживается стабильная частота вращения коленчатого вала.
- В режиме частичной или полной нагрузки воздействие на рейку насоса осуществляется только от педали акселератора, которая связана системой тяг с рычагом изменения подачи топлива на регуляторе и регулятор частоты вращения в работе не участвует.
При увеличении частоты вращения коленчатого вала во время торможения двигателем рейка насоса устанавливается в положение прекращения подачи. Если частота вращения коленчатого вала достигнет 5150 об/мин рейка устанавливается в положение прекращения подачи топлива, чем достигается ограничение максимальной частоты вращения, для предотвращения максимально допустимых нагрузок на двигатель.
Источник: https://ustroistvo-avtomobilya.ru/dizel-naya-toplivnaya-apparatura/regulyatory-chastoty-vrashheniya/
Коленчатый вал и его назначение
Подробно рассмотрим принцип работы коленчатого вала.
Среди всех элементов конструкции двигателя внутреннего сгорания именно коленчатый вал считается наиболее важным и дорогостоящим. И это неудивительно, ведь довольно трудно найти более ответственный элемент, чем коленчатый вал. Именно данный элемент ответственен за процесс преобразования в крутящий момент возвратно-поступательного движения поршней.
Восприятие переменных нагрузок, возникающих в результате действия сил давления газа, вращающихся и движущихся масс и их сил инерции – одна из важнейших задач, которая решается исключительно благодаря данному элементу конструкции.
Коленчатый вал является цельным элементом конструкции, потому правильнее будет дать ему название “деталь”. Методы ковки стали либо литья чугуна – вот главные способы изготовления этой детали.
Стоит отметить, что турбированные, а также дизельные силовые установки оснащаются коленчатыми валами из наиболее прочных видов стали, и они являются более надежными.
Схема коленчатого вала.
Рассмотрев конструкцию вала, можно увидеть, что эта деталь соединяет воедино шатунные(6) и коренные шейки(9), которые, в свою очередь, объединяются друг с другом при помощи щек(5). По количеству шеек коренные опережают шатунные на один элемент, а сам вал с подобной компоновкой называется “полноопорный”.
В сравнении с шатунными шейками, коренные обладают большим диаметром. Противовес(4) является естественным продолжением щеки(5) в направлении, противоположном шатунной шейке.
Основной задачей противовесов является создание условий для уравновешивания веса поршней и шатунов, что напрямую влияет на работу силовой установки, делая ее более плавной и размеренной.
Между щеками находится шатунная шейка, и она носит название “колено”.
Расположение колен напрямую зависит от нескольких факторов, среди которых: количество цилиндров, порядок их работы, расположение, а также тактность силовой установки.
Уравновешенность мотора обеспечивается за счет положения колен. Кроме того, от данного фактора зависит равномерность воспламенения, изгибающие моменты и наименее возможные крутильные колебания.
Шатунная шейка является важнейшей опорной поверхностью для шатунов. В V-образной силовой установке коленчатый вал создается при помощи специальных шатунных шеек удлиненной формы.
На этих шейках и основывается пара шатунов правого и левого ряда цилиндров.
На определенных валах таких двигателей спаренные шейки шатунов несколько сдвинуты друг против друга под углом в 18 градусов, за счет чего и обеспечивается равномерное воспламенение (данная технология более известна под названием Split-pin).
Переход к щеке от шейки считается элементом, который наиболее подвержен нагрузкам среди всех элементов конструкции коленчатого вала.
Чтобы добиться снижения концентрации напряжения, переход к щеке от шейки создается с определенным радиусом закругления, который также известен как галтель.
За счет галтелей длина коленчатого вала способна увеличиваться, а чтобы уменьшить длину вала, эти галтели создают с углублением в шейку либо щеку.
Подшипники скольжения – еще один важный элемент, ведь они обеспечивают вращение в шатунных шейках шатунов, а вала – в опорах. Роль подшипников выполняют специальные, произведенные из прочной стальной ленты разъемные вкладыши. На эту же ленту наносится антифрикционный слой.
Но почему вкладыши не проворачиваются вокруг шейки? Все потому, что они надежно фиксируются в опоре благодаря наличию выступа. Чтобы недопустить лишних перемещений вала, применяется упорный подшипник скольжения. Этот подшипник устанавливается на крайней, либо средней шейке.
Схема системы смазки.
Шатунные и коренные шейки являются частью системы смазки двигателя, при этом сама смазка производится под давлением. Конструкцией предусмотрен подвод масла для смазки к каждой конкретной опоре коренной шейки, начинающийся от общей магистрали. В дальнейшем к шатунным шейкам масло переходит по каналам, расположенным в щеках.
С коленчатого вала мощность отбирается с хвостовика, заднего конца, а к этому концу прикрепляется маховик.
Спереди на конце вала (его также называют носком) имеются посадочные места, и на этих местах закрепляется звездочка (шестерня) привода распределительного вала, специальный гаситель крутильных колебаний (во многих, но не во всех конструкциях) и шкив привода вспомогательных агрегатов.
Гаситель представляет собой 2 диска, которые крепятся друг к другу при помощи материала, обладающего высокой степенью упругости (резина, пружина и силиконовая жидкость). Благодаря данному упругому материалу происходит поглощение вибраций вала через внутреннее трение.
Что такое коленчатый вал (коленвал) видео, лекция:
Графическое видео о процессе работы коленвала:
Как изготавливают коленчатый вал (видео):
Источник: https://autoportal.pro/tekhnichka/kolenchatyj-val
Коленчатый вал ДВС
Коленчатый вал двигателя (коленвал) – деталь, которая принимает и затем преобразует усилие от шатуна в крутящий момент. Коленчатый вал испытывает периодические нагрузки, которые возникают от сил давления газов в результате сгорания топливно-воздушной смеси в камере сгорания, которые далее передаются на него через связку шатуна и поршня. Дополнительными силами воздействия на коленчатый вал является инерция, которая возникает в результате движения и вращения масс.
Материалом изготовления коленчатого вала становится сталь или высокопрочный чугун. Коленвал имеет коренные и шатунные шейки, которые соединяются щеками. Указанные щеки отвечают за то, чтобы сбалансировать механизм. Противовесом является продолжение щеки, которое находится в противоположном от шатунной шейки направлении. Противовес создан для того, чтобы уравнять вес шатунов и поршней. Так достигается необходимая плавность в процессе работы ДВС.
Коренные и шатунные шейки осуществляют вращение в специальных подшипниках скольжения, которые представляют собой разъемные тонкостенные вкладыши, изготовленные из стальной ленты, на которую дополнительно нанесен антифрикционный слой.
Шатунные шейки представляют собой опорную поверхность для каждого отдельного шатуна. Наибольшую нагрузку в конструкции коленвала испытывает место перехода от коренной или шатунной шейки к щеке. Для предотвращения того, чтобы коленчатый вал двигателя перемещался по оси, применяется упорный подшипник скольжения. Указанный подшипник устанавливают на средней или крайней коренной шейке коленвала.
Шейки и щеки коленчатого вала имеют высверленные внутри отверстия. Данные отверстия необходимы для подачи моторного масла, которое поступает под давлением к каждой отдельной шейке коленвала. Так реализован индивидуальный подвод смазки к каждой опоре коренной шейки от общей магистрали системы смазки. Моторное масло по каналам в щеках попадает к шатунным шейкам.
Мощность с коленчатого вала снимается с его заднего конца. Данный участок называется хвостовиком. Именно в этой части закреплен маховик, через который крутящий момент двигателя передается на коробку передач (КПП).Передний конец коленчатого вала называется носком коленвала, где располагаются места установки следующих элементов:
Коленвал испытывает постоянное воздействие, которое можно сравнить с тем, что его условно закручивает и раскручивает с определенной периодичностью. Результатом становится появление колебаний. По этой причине значительное число ДВС на носке коленвала имеют такой элемент, который получил название гаситель крутильных колебаний.
Данное решение конструктивно представляет собой два диска и упругий эластичный материал для их соединения, которым может быть резина, вязкая силиконовая или масляная жидкость, пружинное соединение и т.п. Основной задачей гасителя крутильных колебаний становится активное поглощение вибраций коленчатого вала, которое достигается благодаря наличию внутреннего трения.
Читайте также
Функции датчика коленчатого вала
Основные признаки, по которым можно самому определить проблемы с датчиком положения коленчатого вала ДПКВ. Причины сбоев, поломок, самостоятельная проверка.
Что такое коленчатый вал? (с иллюстрациями)
Коленчатый вал расположен в двигателе транспортного средства и преобразует силу, создаваемую поршнями двигателя, движущимися вверх и вниз, в силу, которая перемещает колеса по кругу, чтобы автомобиль мог двигаться вперед. Расположенный внутри двигателя автомобиля, он соединен со всеми поршнями в двигателе и с маховиком. Чтобы понять этот вал, важно понимать, как работают поршни и маховик.
Коленчатый вал преобразует силу, создаваемую поршнями автомобиля.Двигатель автомобиля производит движение, создавая внутри себя взрывы. Поршни, которые прикреплены к коленчатому валу в двигателе, смещаются вниз из-за взрывов внутри цилиндров. Когда поршни опускаются, коленчатый вал вращается. Поршни соединены с коленчатым валом, чтобы гарантировать, что он движется вместе с ними, и их движения регулируются.
Чтобы решить проблему слишком длинной коленчатого вала, двигатели имеют V-образную форму и вмещают два более коротких вала.Чтобы помочь сгладить резкие движения, создаваемые движущимися поршнями, маховик прикреплен к концу коленчатого вала. Во время движения вал вращает маховик круговыми движениями. Насечки на маховике помогают сгладить его движения и соединить его с другими деталями автомобиля, которые поворачивают колеса.Это превращает движение вверх и вниз, создаваемое двигателем, в круговое движение, необходимое для перемещения колес автомобиля.
Для правильной работы поршней, часть двигателя, называемая распределительным валом, должна вращаться и открывать впускные и выпускные клапаны.Эти клапаны открываются и закрываются, пропуская в цилиндр поток воздуха, необходимый для создания взрыва. Коленчатый вал соединен с распределительным валом и заставляет распределительный вал вращаться вместе с ним. Это гарантирует, что две части двигателя работают вместе и никогда не рассинхронизируются.
Проблемы возникают, когда коленчатый вал слишком длинный, потому что ему нужна дополнительная поддержка, чтобы справиться с давлением в цилиндрах двигателя.Чтобы решить эту проблему, двигатели часто делают V-образной формы с короткими валами вместо того, чтобы использовать прямую форму с длинными. V-образный двигатель имеет два набора цилиндров, по одному с каждой стороны, в то время как прямой двигатель имеет только один набор цилиндров, расположенных в ряд. У двигателя V8, например, будет по четыре цилиндра с каждой стороны вместо того, чтобы пытаться расположить восемь цилиндров по прямой.
Что такое шкив коленчатого вала? (с иллюстрациями)
Шкив коленчатого вала прикреплен к гармоническому балансировщику двигателя и приводит в движение вспомогательное оборудование двигателя с помощью резинового ремня или системы ремней, в зависимости от года выпуска и типа рассматриваемого транспортного средства.До середины 1980-х годов в большинстве автомобилей, производимых по всему миру, использовалась система клиновых ремней для привода вспомогательного оборудования двигателя. С тех пор один ремень, известный как змеевик, приводился в движение шкивом коленчатого вала и направлял мощность на все системы в моторном отсеке. В то время как шкив коленчатого вала змеевидного типа изготавливается с поверхностью, способной приводить в движение единственный ремень, в системе клиновых ремней используется шкив кривошипа, способный приводить в движение от одного до четырех клиновых ремней.
Коленчатый вал двигателя в большинстве случаев изготавливается из очень тяжелого чугуна, а в двигателях с очень высокими рабочими характеристиками — из прочной стали.Стандартный автомобильный двигатель оснащен функциями ременного привода для обеспечения зарядки электрической системы, циркуляции охлаждающей жидкости для двигателя и системы отопления, а также гидравлического давления в системе рулевого управления с усилителем. Дополнительными компонентами с ременным приводом являются компрессор кондиционера и тяжелые гидравлические насосы для пикапов и тягачей, а также агрегаты нагнетателя для высокопроизводительных автомобилей. Все эти компоненты приводятся в движение шкивом коленчатого вала.Некоторые автомобили также используют шкив коленчатого вала для запуска системы зажигания с летающими магнитами, установленными на шкиве или внутри него.
В двигателях автомобилей и мотоциклов обычно используются шкивные системы, например те, которые работают с генератором переменного тока.Коленчатый вал двигателя в большинстве случаев изготавливается из очень тяжелого чугуна, а в двигателях с очень высокими рабочими характеристиками — из твердой стали. Рыло коленчатого вала должно быть очень прочным, чтобы выдерживать нагрузку, возникающую при размещении шкива коленчатого вала, и напряжение, создаваемое при смещении всех компонентов с этого единственного шкива. Если бы шкив коленчатого вала качнулся, ремни или ремни легко соскочили бы со шкива, и компоненты, зависящие от мощности привода шкива, вышли бы из строя.К счастью, заводские крепежи и жидкости для фиксации резьбы обычно безотказны, а шкив коленчатого вала обычно остается затянутым и на месте в течение всего срока службы автомобиля.
В то время как шкив коленчатого вала вращается с частотой вращения, равной оборотам работающего двигателя, различные компоненты с ременным приводом вращаются со скоростью, в большинстве случаев намного большей, чем частота вращения двигателя.Это достигается путем чередования шкивов различных размеров со шкивами разных размеров для изменения передаточного числа главной передачи на более производительную скорость привода компонентов. Поместив на компоненты двигателя множество шкивов разного размера, каждый компонент может вращаться с разной скоростью, при этом вращаясь одним и тем же ведущим шкивом на коленчатом валу.
Компрессоры кондиционеров могут приводиться в движение шкивами коленчатого вала.Что такое картер? (с фотографиями)
Картер, являющийся неотъемлемой частью двигателя внутреннего сгорания, представляет собой просверленную металлическую раму, в которой размещены несколько частей, в частности коленчатый вал. Его основная универсальная функция — защищать коленчатый вал и шатуны от мусора. В простых двухтактных двигателях картер выполняет несколько функций и используется как камера наддува для топливно-воздушной смеси. В более сложных четырехтактных конструкциях он изолирован от этой смеси поршнями и вместо этого работает в основном для хранения и циркуляции масла.В четырехтактном двигателе он расположен под блоком цилиндров и в обоих типах составляет самую большую физическую полость двигателя.
Чистое масло имеет решающее значение для картера.Большинство современных картеров сделаны из алюминия, что обеспечивает легкую, но прочную конструкцию, способную выдерживать давление, оказываемое при нормальной работе двигателя. В четырехтактных двигателях без наддува, то есть в двигателях, которые не имеют турбонагнетателя , желателен небольшой уровень давления в корпусе, чтобы не допустить попадания пыли и других потенциально вредных частиц, при этом масло должно быть правильно размещено. Все двигатели при нормальной работе допускают утечку небольшого количества несгоревшего топлива и отработавших газов в картер.Этот коллективный материал известен как blow-by .
Картер представляет собой просверленную металлическую раму, в которой находятся несколько деталей, в частности коленчатый вал.Клапан принудительной вентиляции картера, или клапан PCV, обычно используется как часть общей системы контроля давления, чтобы регулировать количество продувки, выбрасываемой из картера. Проходя через клапан PCV, вытесненный прорыв возвращается через систему обратно в часть, известную как впускной коллектор , где он повторно используется в процессе сгорания.Эта конструкция была принята отчасти благодаря законодательному стимулу, поскольку более ранние конструкции не были закрытыми и позволяли выбросу прорыва непосредственно из двигателя, что приводило к значительному ущербу для окружающей среды. Системы PCV не используются в двухтактных двигателях, так как весь прорыв сжигается в нормальном потоке воздуха и топлива.
Правильный уход за картером и его внутренними компонентами важен для бесперебойной работы двигателя.Поддержание надлежащего количества чистого масла имеет решающее значение, и его можно измерить с помощью простого инструмента, известного как щуп , простой кусок металла, который визуально показывает уровень масла. Регулярная проверка показывает, сколько масла присутствует, но несгоревшее топливо, которое скапливается в картере, может отрицательно повлиять на смазочные качества масла, поэтому регулярная замена масла жизненно важна. Кроме того, неправильно обкатанный двигатель или двигатель с сухими, потрескавшимися поршневыми уплотнениями может позволить слишком большому количеству газа просочиться мимо поршней в картер, создавая опасно высокие уровни давления, которые могут вызвать повреждение и отказ двигателя.Ранние симптомы неисправности уплотнений включают утечку масла из клапана PCV или через щуп.
Что такое прогиб коленчатого вала?
Прогиб коленчатого вала происходит с течением времени при многократном и непрерывном использовании коленчатого вала.
Это процесс, который происходит в фоновом режиме во время работы двигателя, и, хотя его нельзя увидеть без прибора обнаружения, он вызывает значительные повреждения механизма.
- Без корректировки смещений коленчатого вала с течением времени машина будет изнашиваться неравномерно, вызывая чрезмерную нагрузку на поддерживающие компоненты.
- Это сократит срок службы двигателя и приведет к его преждевременному износу. Однако эту естественную проблему можно легко исправить с помощью небольших корректировок.
Знание того, когда и как регулировать коленчатый вал, продлит его срок службы, сэкономив время и деньги.
DI-5 и DI-5C от Prisma Tibro просты в использовании и могут быть запрограммированы и перепрограммированы для проверки положения каждого механизма в любое время.
Использование DI-5 или DI-5C для регулярной проверки отклонения коленчатого вала требует всего несколько минут вашего времени и может продлить срок службы двигателя на годы.
Раньше для определения перекоса коленчатого вала использовался индикатор с круговой шкалой.
Это потребовало гораздо более длительного процесса, с подробными показаниями, которые инженер снимал бы сам.
Требовалось считывать данные о коленчатом валу в каждом из пяти положений (по бокам, вверху и по два с каждой стороны от дна), а затем вручную интерпретировать эти числа, чтобы увидеть, как следует регулировать коленчатый вал.
- Для достижения точных измерений требовалось глубокое понимание процесса и кропотливые измерения, и даже если процесс был завершен правильно, не было гарантии, что манометр не будет слегка скользить, нарушая показания.
Кроме того, датчик требовал, чтобы инженер имел доступ к механизму со всех сторон, покрывая его грязью и жиром.
Благодаря автоматизации и компьютеризации измерительного устройства процесс занимает лишь часть времени, а измерения становятся намного точнее.
Устройства DI-5 и DI-5C надежно устанавливаются в
Коленчатые валы | Коленчатый вал Огайо
Ohio Crankshaft предлагает широкий спектр применений коленчатого вала для Ford, Small Block, Big Block и LS Chevrolet, Chrysler и Pontiac. Смотрите наши продукты ниже.
Ford 4340 Коленчатые валы
Номер детали | Модель | Цена |
---|---|---|
43023400 | 4340 SBF Цепь Ford с ходом 3,400 дюйма и шириной | $ 575 |
43514000 | 4340351W Ход 4.000 дюймов | $ 625 |
43514000C | 4340 Сеть Cleveland, ход 4.000 дюймов | $ 625 |
43514250C | 4340 Сеть Кливленд, ход 4250 дюймов | $ 695 |
44604140 | BBF 4340 4.140-тактный с шейкой BBC | 750 $ |
44604300 | BBF 4340 Ход 4,300 дюйма с шейкой стержня BBC | $ 750 |
44604500 | BBF ход 4,500 дюйма с шейкой стержня BBC | $ 750 |
44604600 | BBF 4340 Ход поршня 4,600 дюйма с шейкой стержня BBC | $ 825 |
«Новые» облегченные коленчатые валы SBC
Совершенно новая поковка, которая перемещает момент инерции наружу, чтобы сделать вал более легким с хорошими гармониками.Доступны модели с ходом от 3,48 до 4,125 дюйма, весят от 46 до 50 фунтов. Целевой вес боба. 550–720 долларов США
* Вес коленчатого вала является приблизительным, в зависимости от заданного веса снаряда.
Chevrolet Small Block Pro-Max Коленчатые валы
Номер детали | Модель | Цена |
---|---|---|
43503480PM | 4340 ProMax SBC 350 от сети, ход 3,48 дюйма 46 фунтов | $ 720 |
43503750PM | 4340 ProMax SBC 350 сеть, 3.Ход 75 дюймов 48 фунтов | 720 $ |
44003750PM | 4340 ProMax SBC 400 от сети, ход 3,75 дюйма 50 фунтов | $ 720 |
44003875PM | 4340 ProMax SBC 400 от сети, ход 3,875 50 фунтов | $ 720 |
44004000PM | 4340 ProMax SBC 400 от сети, ход 4,00 дюйма 50 фунтов | $ 720 |
44004125PM | 4340 ProMax SBC 400 от сети, ход 4,125 дюйма 50 фунтов | $ 720 |
Шевроле малый блок 4340 Коленчатые валы
Номер детали | Модель | Цена |
---|---|---|
43503250 | 4340 SBC 350 сеть, 3.Ход 250 дюймов | $ 595 |
43503480 | 4340 SBC 350, от сети, ход 3,480 дюйма | $ 595 |
43503625 | 4340 SBC 350, от сети, ход 3,625 дюйма | $ 625 |
43503750 | 4340 SBC 350, от сети, ход 3,750 дюйма | $ 595 |
43503750-1 | 4340 4340 SBC 350, сетевой, ход 3,750 «1 шт. Уплотнение | $ 595 |
43503800 | 4340 SBC 350 сеть, 3.Ход 800 дюймов | $ 625 |
43503875 | 4340 SBC 350, от сети, ход 3,875 дюйма | $ 625 |
43504000 | 4340 SBC 350, от сети, ход 4.000 дюймов | $ 625 |
44003480 | 4340 SBC 400, от сети, ход 3,480 дюйма | $ 595 |
44003750 | 4340 SBC 400, от сети, ход 3,750 дюйма | $ 595 |
44003800 | 4340 SBC 400 сеть, 3.Ход 800 дюймов | $ 625 |
44003875 | 4340 SBC 400, от сети, ход 3,875 дюйма | $ 625 |
44004000 | 4340 SBC 400, от сети, ход 4.000 « | $ 625 |
Коленчатые валы малых блоков Шевроле с шаровидным графитом
Номер детали | Модель | Цена |
---|---|---|
N3503480 | Чугун с шаровидным графитом SBC 350, ход 3,480 дюйма | $ 225 |
N3503750 | Электропитание SBC 350 из чугуна с шаровидным графитом, 3.Ход 750 дюймов | $ 245 |
N3503750-1 | Электропитание SBC 350 из чугуна с шаровидным графитом, ход 3,750 «1 шт. Уплотнение | $ 245 |
N4003750 | Электропитание SBC 400 из чугуна с шаровидным графитом, ход 3,750 дюйма | $ 225 |
Это азотированная поковка 4340 авиационного качества, которая имеет большой блок переднего балансира / носика амортизатора для дополнительной прочности для использования с принудительной индукцией или дополнительными приводами.
Также имеет профилированные противовесы для аэрозольной резки, прямые смазочные каналы и дополнительный паз под шпонку 1/4.* Целевой грузоподъемность 1900 грамм
Номер детали | Модель | Цена |
---|---|---|
43503480BB | 4340350 Сеть 3,480 ход 50 фунтов | $ 1095 |
43503750BB | 4340350 сеть 3,750 ход 50 фунтов | $ 1095 |
44003750BB | 4340400 от сети 3,750 ход 51 фунт | $ 1095 |
43503875BB | 4340350 сеть 3.875 ход 53 фунта | $ 1095 |
44003875BB | 4340400 сеть 3.875 ход 53 фунта | $ 1095 |
43504000BB | 4340350 Сеть 4,00 ход 53 фунта | $ 1095 |
44004000BB | 4340400 от сети 4,00 ход 53 фунта | $ 1095 |
SB Шатуны Chevrolet с носиком большого блока — коленчатые валы заготовки
Номер детали | Модель | Цена |
---|---|---|
B3504000BB | Заготовка SB 4.000 «Ход, 350 Сеть, 58 фунтов | $ 1295 |
Chevrolet Big Block ProMax Коленчатые валы
* Материал 4340 / EN24 термообработанный и азотированный * Перфорированный пистолет * Снятие напряжения и дробеструйная обработка * Профилированные противовесы * МикрополировкаНомер детали | Модель | Цена |
---|---|---|
4454400PM | 4340 ProMax BBC Ход 4,00 дюйма | $ 945 |
44544250PM | 4340 ProMax BBC 4.Ход 25 дюймов | $ 975 |
44544375PM | 4340 ProMax BBC Ход 4,375 дюйма | $ 1000 |
44544500PM | 4340 ProMax BBC Ход 4,50 дюйма | $ 1025 |
44544750PM | 4340 ProMax BBC Ход поршня 4,75 дюйма | $ 1045 |
Шевроле Большой блок 4340 Коленчатые валы
Номер детали | Модель | Цена |
---|---|---|
44543766 | 4340 BBC 3.Ход 766 дюймов | $ 825,00 |
44544000-1 | 4340 BBC Ход 4.000 «1 шт. Уплотнение | $ 695,00 |
44544000 | 4340 BBC Ход 4.000 « | $ 695,00 |
44544250 | 4340 BBC Ход 4,250 дюйма | $ 725,00 |
44544250-1 | 4340 BBC Ход 4,250 «1 шт. Уплотнение | $ 725,00 |
44544375 | 4340 BBC Ход 4,375 дюйма | 735 долл. США.00 |
44544500 | 4340 BBC Ход 4,500 дюйма | $ 750,00 |
44544625 | 4340 BBC Ход 4,625 дюйма | $ 775,00 |
44544750 | 4340 BBC Ход 4,75 дюйма | $ 795.00 |
Коленчатые валы
заготовки большого блока ШевролеНомер детали | Модель | Цена |
---|---|---|
B453760 | Заготовка 3.760 ход | $ 1295 |
B44544000 | Заготовка 4.000 ход | $ 1295 |
B44544125 | Заготовка 4,125 хода | $ 1350 |
B44544250 | Заготовка 4,250 ход | $ 1350 |
B44544375 | Заготовка 4,375 ход | $ 1350 |
B44544500 | Заготовка 4.500 ход | $ 1350 |
B44544625 | Заготовка 4.625 Ход | $ 1375 |
B44544750 | Заготовка 4,750 ход | $ 1375 |
B44545000 | Заготовка 5.000 ход | $ 1450 |
B44545250 | Заготовка 5,250 ход | $ 1525 |
B44545300 | Заготовка 5,300 ход | $ 1525 |
Chevrolet LS Series — 4340 Коленчатые валы
Номер детали | Модель | Цена |
---|---|---|
43463622LS | 4340 LS 3.625 «Ход 49 фунтов. Реле 24x или 58x | $ 745 |
43464000LS | 4340 LS 4.000 «Ход поршня, 49 фунтов. 24x или 58x Reluctor | $ 745 |
43464100LS | 4340 LS Ход поршня 4,100 дюйма, 49 фунтов, 24x или 58x | $ 745 |
43464250LS | 4340 LS 4,250 дюйма, ход 49 фунтов, 24x или 58x | $ 745 |
43464100LS7 | 4340 LS7 Ход поршня 4,100 дюйма, 49 фунтов, 24x или 58x | $ 745 |
Chevrolet LS Series — Заготовка коленчатого вала
Номер детали | Модель | Цена |
---|---|---|
43464000B | Заготовка LS 4.000 «Ход поршня, 59 фунтов, 24x или 58x Reluctor Центровзвешенный | $ 1295 |
* НОВИНКА * Шатуны Chrysler Billet 4340 Hemi для спирта с наддувом
Характеристики радиус 5/32 дюйма, центральные противовесы, плоский задний фланец и 4 шпоночных паза. Доступен с ходом 3,75 дюйма, 4,15 дюйма, 4,375 дюйма и 4,5 дюйма.
Chrysler 4340 Коленчатые валы
Номер детали | Модель | Цена |
---|---|---|
43404000 | 4340340 сеть, 4.000 «ход | $ 725 |
43604000 | 4340360 от сети, ход 4.000 дюймов | $ 725 |
44403750 | 4340 440 сеть, ход 3,750 дюйма | $ 725 |
44404150 | 4340 440 от сети, ход 4,150 дюйма | $ 725 |
44404250 | 4340 440 от сети, ход 4,250 «2,2» Журналы Chevy | 750 долл. США |
44404500 | 4340 440 сеть 4.Журналы Chevy, ход 500 дюймов, 2,2 дюйма | 775 $ |
44404750 | 4340 440 от сети 4,750 дюйма, ход 2,2 дюйма Журналы Chevy | $ 895 |
Внешний диаметр 7,4 дюйма добавить 50 долларов — внешний диаметр 7,3 дюйма добавить 100 долларов
Chrysler Billet Коленчатые валы
Номер детали | Модель | Цена |
---|---|---|
B4263750 | Выдувная заготовка, с цапфами Chrysler 3.Ход 75 дюймов | $ 1750 |
B4264150 | Заготовка выдувная алх. с журналами Chrysler, ход 4,150 дюйма | $ 1750 |
B4264375 | Заготовка выдувная алх. с журналами Chrysler, ход 4,375 дюйма | $ 1750 |
B4264500 | Заготовка выдувная алх. с журналами Chrysler, ход 4.500 « | $ 1750 |
Chrysler Nostalgia Nitro Special Коленчатые валы
Номер детали | Модель | Цена |
---|---|---|
4403750NI | 4340 кованые 426 x 3,750 Nostalgia Nitro | $ 1100 |
Chrysler Late Model 5.7 / 6.1 HEMI Коленчатые валы
Номер детали | Модель | Цена |
---|---|---|
4346050 | Цепь 4,050 «ход 2» — без реактора | $ 945 |
43723795 | 3.Цапфа 795 «ход 2» — без реактора | $ 900 |
УВЕДОМЛЕНИЕ ** Подшипники стержня Pontiac — Clevite / Mahle выпускает новый стержневой подшипник Pontiac под номером CB758HXN, который на 0,040 ″ уже. Работает на кривошипах с большим радиусом.
Pontiac 4340 Коленчатые валы
Номер детали | Модель | Цена |
---|---|---|
44003750P | 4340 кованое 400 3,750 хода с шейкой Pont | $ 750 |
44004210P | 4340 кованые 400 4.210 такт с цапфой Pont | 750 $ |
44004250P | 4340 кованое 400 Ход 4,250 с штифтом BBC | $ 750 |
44004500P | 4340 кованая 400 Ход 4,500 с штифтом BBC | $ 795 |
44004750P | 4340 кованое 400 4,750 хода с шейкой BBC | $ 825 |
44554210P | 4340 кованые 455 4,210 хода с шейкой Pont | $ 750 |
44554250P | 4340 кованые 455 4.250 ходов с журналом BBC | 750 $ |
44554500P | 4340 кованый 455 Ход 4,500 дюйма с штифтом BBC | $ 795 |
Pontiac Коленчатые валы с шаровидным графитом
Номер детали | Модель | Цена |
---|---|---|
N4554210P | Nodular Pontiac 455, ход 4,210 дюйма | $ 395 |
N4554250P | Pontiac 455 с шаровидным графитом, 4,250 дюйма с журналом BBC | 395 долл. США |
Как обрабатывать коленчатые валы
Создано: 1 августа 2005 г.
Обновлено: 29 октября 2010 г.
Нажмите на фотографии для более детального просмотра
Вероятно, существует больше способов удерживать консольный коленчатый вал для обработки шатунной шейки, чем способов вызвать непроизвольное нарушение целостности у кошек.Попытка покрыть их все сразу была бы сложной задачей, поэтому, пока я не почувствую себя благословленным излишним временем и энергией, эта страница техники будет ограничиваться наиболее распространенным типом шахты, которую, вероятно, сделает строитель домашнего магазина: выступом, одноходовой вал, выточенный из цельного прутка. Обсуждая эту тему с The Motor Boys, мы пришли к выводу, что у каждого из нас была своя любимая техника, и все они в некотором роде отличались друг от друга, что часто зависело от различных типов оборудования, которое у каждого из нас есть, и содержимого наших соответствующих ящиков для мусора.У каждого есть достоинства, и все работают. Естественно, я предпочитаю то, как я это делаю, но это изменилось 4 раза за эти годы, и может измениться снова. Так что используйте эту страницу как кладезь идей и посмотрите, что подойдет вам.
Поворот основного журнала
Я прочитал (и использовал) несколько подходов к изготовлению консольного вала. То, что предлагает Уэстбери в его книге Building the Atom Minor Mk III, должно занять первое место среди наиболее трудоемких, но «правильных» способов, включая тщательную разметку, сверление по центру на противоположных пустых поверхностях с последующим (по порядку) поворотом шатунная шейка, затем — главный журнал.Я на самом деле следил за этим на своем Atom Minor и произвел бесполезную шахту из-за неправильного прочтения рисунка, что дало ему больше хода, чем оставалось место для головы. Больше никогда. Что меня действительно убедило, так это то, что я ненавижу выделяться! Я давно разработал процесс, частично основанный на последовательности, описанной Дэвидом Оуэном в его хорошо продуманных инструкциях по обработке дизельного двигателя DIY Mate 2cc, который устраняет необходимость в какой-либо маркировке!Сначала несколько слов о передней части вала — долоте, которая будет нести опору.Большинство двигателей любительской сборки будут производиться из стали и оставаться в мягком состоянии. Термическая обработка вызывает деформацию, требующую обработки вала большего размера, затем шлифования до окончательного размера и выравнивания. Для «мягких» валов лучший выбор материала — «стрессоустойчивая» сталь, если она у вас есть. Этот станок подходит для работы с острыми инструментами. Старый добрый 12L14 делает обработку вала удовольствием, но он немного мягкий, особенно для двигателей большего размера.
Теперь, поскольку вал останется мягким, он уязвим для аварийного повреждения — как правило, в виде изгиба в месте выхода вала из переднего подшипника и уменьшения диаметра, где вал наиболее уязвим.Я обнаружил, что если диаметр здесь 3/16 дюйма или больше, он имеет приемлемую прочность. Если он меньше, даже устойчивость к нагрузкам будет немного слабее, поэтому для меньших валов я настоятельно рекомендую сверлить вал для ввинчивающаяся шпилька, сделанная из винта с отрезной головкой, или даже с использованием высокопрочного болта, если хотите. Многие коммерческие двигатели использовали эту функцию, и по той же причине: легче заменить изогнутую шпильку, чем выпрямить гнутый вал!
Теперь перейдем к валу без разметки.Вырежьте заготовку, которая примерно на 1/32 — 1/16 дюйма длиннее общей длины вала. Вставьте 3-х кулачковый самоцентрирующийся патрон (3AO) и обработайте концы с минимальным срезом. Отцентрируйте сверло вторую поверхность, затем вытяните заготовку вала так, чтобы она выступала из патрона достаточно, чтобы сформировать основную шейку. Слегка затянув кулачки патрона, поднимите мертвую точку задней бабки, чтобы выровнять заготовку, затем плотно затяните патрон. Все патроны имеют биение, особенно трехкулачковые самоцентрирующиеся. Но даже если 3АО не на 100% выровнено с осью, окончательная цапфа все равно будет сформирована правильно, если мы не будем беспокоить вещи во время чистовой резки.Это необработанная веб-часть, которая будет отсутствовать, и мы сможем исправить это позже.
Первые пропилы будут глубокими для удаления большого количества металла, поэтому наклоните инструмент к задней бабке, чтобы при отклонении назад глубина резания становилась меньше, а не глубже. Это защитит от ситуации с «положительной обратной связью», когда раскопки быстро становятся самовоспроизводящимися. Вы не сможете попасть в угол Интернета из этой настройки, но это можно исправить позже. Уменьшите размер журнала до 50 тыс., Затем установите инструмент для очистки около полотна и приготовьтесь к чистовой резке.
Мне нравится делать мои чистовые пропилы в три или более проходов на глубину не более 0,005 дюйма (0,010 дюйма в диаметре). Последний, который мне нравится делать только на 2 или 3 тысячи глубиной, чтобы оставить вал на 0,0005 дюйма, чтобы не более чем на 0,001 дюйма выше размера развернутой втулки. Так как вал на самом деле должен быть меньше этого размера, у нас осталось достаточно металла для отделки. Для этого я использую изготовленный в мастерской хонинг, который является копией старого дизайна Sunnen. Увы, отливка, из которой изготовлен этот инструмент, уже не в бизнесе.В качестве альтернативы можно использовать разрезанный пончик с размазанной изнутри алмазной пастой для притирки или даже кусок бумаги с зернистостью 600, подложенный под плоскую стальную линейку и много масла. Несмотря на то, что ваш вал может выглядеть гладким после чистовой обработки, это действительно очень тонкий винт, и микроскопический винтовой гребень необходимо удалить. Оттачивайте и полируйте до тех пор, пока она не станет хорошей ходовой частью в кустах — опыт поможет вам.
Если вал должен иметь резьбовое сечение с уменьшенным диаметром, поверните и обработайте его (но без резьбы) до чистовой обработки основной шейки.Заправка резьбы выполняется в последнюю очередь, так как для этой операции нам нужно удалить центр. Что касается центров, я считаю, что «живые» (вращающиеся) центры слишком неточны для чистовой обработки валов. Вы можете использовать один, когда загибаете бланк, но измените его на «1/2 мертвой точки» для чистовой обработки. Вырез в центре этого типа позволяет использовать наконечник инструмента по мере его уменьшения.
Диаметр шейки кривошипа теперь должен быть повернут так, чтобы он был концентрическим по отношению к главной шейке. Насколько концентрически, зависит от того, как вы будете формировать шатунную шейку.Если вы оставили достаточно выступающих из челюстей, хорошо — сделайте это при той же настройке. В противном случае захват вала на шейке в цанге будет прекрасным и даст очень точные результаты при условии, что у вас есть подходящая цанга. В отчаянии за вал можно легко ухватиться в 3AO с помощью прокладки из алюминиевой банки для напитков, используемой для защиты отделки. Это может вызвать несколько тысяч эксцентриситета в зависимости от состояния вашего патрона. Пуристы могут захватить 4-х кулачковый независимый патрон (4JIC) и точно измерить короткую, выступающую часть цапфы.Однако, если вы используете приспособления для смещения, описанные ниже, одна или две эксцентриситета между полотном и журналом не будут иметь никакого значения.
Поворот шатуна
Для этого потребуется специальный приспособление или приспособление. Я видел, как в журналах появлялись несколько довольно причудливых дизайнов — не говоря уже о том, что они были непрактичными, просто необычными — я уверен, что их дизайнеры любили их! Тем не менее, все они предназначены для выполнения одной и той же основной задачи: удерживать обработанную обработанную шейку вала параллельно оси токарного станка, но со смещением от нее, чтобы шатун после обработки был идеально выровнен и точно параллелен оси главной шейки.Кроме того, некоторые конструкции, особенно те, которые предназначены для высокой производительности, не выравнивают эти оси параллельно ! Это связано с тем, что шатун на перемычке консольного кривошипа будет отклоняться в разной степени в зависимости от давления, оказываемого на него шатуном. В точке наибольшего давления отклонение будет наибольшим, поэтому, когда штифт выходит из параллельности, трение будет максимальным. Смещая штифт, конструкторы пытаются уменьшить это трение во время рабочего хода, допуская, что трение будет выше, когда штифт находится под меньшей нагрузкой, но тем не менее надеются на общий выигрыш.Чтобы узнать, что вы добились успеха в этой игре, требуется довольно сложное измерительное оборудование и изготовление нескольких кривошипов (желательно запускать более чем в одном случае для учета производственных допусков). Мы просто стремимся сделать так, чтобы штифт был как можно более параллелен оси кривошипа.
Крепление пластины Keats
Вот приспособление, известное как «тарелка Китса» (или угловая пластина). Я полагаю, что название происходит от английской компании, которая впервые выпустила его в качестве коммерческого предмета из каталога.Его использование должно быть очевидным: основной корпус прикручен болтами к планшайбе токарного станка, а вал зажат в продольной ‘V’ при помощи меньшей зажимной пластины. Если на лицевой стороне конца бланка сделана отметка кернером, смещенная от центра ровно на половину требуемого броска, пластину Китса можно отрегулировать на лицевой пластине так, чтобы эта отметка проходила точно, а штифт повернулся.
Показанная здесь пластина (со стандартным 12-дюймовым цифровым штангенциркулем, показанным для сравнения размеров) гордо сидит на моей теневой доске и почти никогда не используется.Он был изготовлен (ваш покорный слуга) из набора чугунных отливок, импортированных из Англии за большие деньги. Я обнаружил:
- Это немного больше для маленьких кривошипов, и зажимная V-образная пластина может повредить отделку вала, если затянуть ее до такой степени, при которой вы абсолютно уверены, что вал не будет двигаться во время прерывистого резания.
- И наоборот, для больших валов V может быть на короткой стороне (в продольном направлении), а это означает, что длина неподдерживаемого вала, нависающего над приспособлением, может вызывать опасения.Добавьте к этому прерывистый рез, и появится возможность остаточной деформации.
- Наконец, существует проблема получения комбинации прорезей для пластин Китса и прорезей на лицевой пластине, которые дают правильный бросок.
Мой окончательный вывод состоит в том, что старый бедный прибор Китса на 90% бесполезен для той цели, которую я сделал. Иногда это идеальное решение (сразу приходит в голову центральная часть вала Taplin Twin), но в целом есть лучшие, более дешевые и более эффективные способы выполнения этой работы.
Использование 4-кулачкового патрона
Все мы знаем, что 4-кулачковый патрон способен удерживать заготовку в любом положении по отношению к оси токарного станка в пределах своих возможностей, так почему бы не использовать его? Две проблемы. Во-первых, это тенденция губок оставлять отметки на поверхности захватываемого материала. Ударные силы, возникающие при формировании шатунной шейки из-за прерывистого резания, довольно высоки, поэтому вал необходимо удерживать очень надежно. К тому времени, когда мы добираемся до шатунной шейки, шейка, как правило, окончательно обточена и отточена, поэтому вероятность того, что кулачки патрона повредят поверхность, высока.Во-вторых, по мере того, как расстояние от центра увеличивается — скажем, под воздействием челюстей №1 и 3, челюсти №2 и 4 постепенно смещаются «от центра». Когда ход большой по сравнению с радиусом цапфы, мы можем закончить тем, что кулачки №2 и 4 вообще не будут касаться заготовки и, следовательно, оставить наш вал практически неограниченным по одной оси.
Джим Фрю (Великобритания) предложил ответ на этот вопрос: набор небольших V-образных блоков, которые эффективно обеспечивают трехточечный зажим шейки (одна губка и две стороны V), обеспечивая при этом хорошее, близкое к центральная поверхность для зажима наших губок №2 и №4, что обеспечивает полное закрепление вала по обеим осям.Если у вас нет очень тяжелых рук с ключом патрона, тонкой прокладки из тонкой латуни или алюминия между цапфой вала и голой губкой будет достаточно, чтобы защитить вал от повреждений зажимным давлением. Видимые здесь приспособления Джима круглые, но с тем же успехом их можно сделать и из квадратной заготовки. V должен быть очень точным по отношению к «оси» блока, но этого нетрудно добиться при хорошей настройке на фрезере с использованием пазового сверла (фрезы с 2 или 3 канавками) для получения как V лица одновременно.
Таким образом, после установки вы можете либо отцентрировать на отмеченном центральном выступе на конце бланка с помощью воблера и DTI, либо просто синхронизировать пустой конец вала, чтобы достичь желаемого хода. Все, что вам нужно, — это набор блоков такого размера, чтобы при требуемом смещении губки № 2 и 4 приходились в разумное положение по центру зажимного блока, если он круглый (если используется квадратный блок, это становится гораздо менее критичным). Простое и близкое к универсальному решению. Единственными недостатками являются необходимость в точности изготовления V-образного блока и отсутствие положительного ограничения на кривошип, вращающийся под давлением чрезмерно амбициозного прерывистого резания.
Приспособление для смещения
Это популярная и простая джиг-приманка. Заглушка из стали (или алюминия, или даже латуни) удерживается в 4JIC так, что она вращается эксцентрично на величину, равную требуемому ходу. Затем зажимное приспособление просверливают и затачивают до размера шейки кривошипа. При желании этап развёртывания можно пропустить, поскольку полировка нам не нужна, так как вал в ней не вращается (надеюсь!). Однако при сверлении требуется осторожность, так как конечный результат будет зависеть от осевого расположения отверстия на зажимном приспособлении.Если сверло блуждает, вал не будет удерживаться на одной линии, параллельной оси токарного станка.После сверления реализуется одна из нескольких схем удержания вала в кондукторе. Они описаны ниже, и вы можете сделать свой выбор. При использовании зажимное приспособление просто захватывается в 3AO, автоматически смещая пустой конец вала для поворота штифта. Как мы увидим позже, у Берта Штрейглера есть инновационная альтернатива, которая усложняет использование, но делает приспособление «универсальным», вместо того, чтобы требовать по одному для каждого диаметра вала и комбинации хода.
Как только вал захвачен, штифт поворачивается. Всегда держите под рукой шатун, прежде чем делать это, если только вы не являетесь мастером-станочником, способным сделать штифты с ходовой посадкой в отверстии, которое еще не существует (в этом случае вы не будете читать эту чепуху!) Есть два основных способа для формирования штифта: выполнение ряда продольных проходов или выполнение еще большего количества радиальных проходов с последующими продольными чистовыми проходами. Первый позволяет снимать больше металла, но приводит к «прерывистому резанию», которое оказывает тяжелое воздействие на инструмент, инструменты и ваши нервы.Я предпочитаю делать радиальные проходы, удаляя от десяти до пятнадцати тысяч за проход, останавливаясь, когда инструмент только начинает делать полностью круговой рез. Да, это тоже прерывистый разрез, но как-то он кажется более добрым для инструмента и нервов. Прекратите делать проходы, когда вы находитесь в пределах десяти тысяч от полотна, затем начните делать тонкие продольные проходы до тех пор, пока не будет достигнут теоретический диаметр шатуна шатуна. Последний проход можно использовать, чтобы «повернуться лицом» к сети.
Посадка шатуна на шатун должна быть свободной и обеспечивать достаточный зазор для масляной пленки.Штифт полируется с использованием традиционной рукоятки 600 влажной и сухой, подкрепленной стальной линейкой и большим количеством масла. Полируйте до тех пор, пока (очищенный) штифт не войдет в шатуны плавно и без затяжки. Кстати, инструменту, который используется для чистовой обработки штифта, нужен небольшой радиус вершины (или фаска), чтобы не было резкого перехода к полотну, вызывающего напряжение. Естественно, на шатуне необходимо снять фаску, чтобы приспособиться к этому радиусу.
Теперь разберемся, как надежно удерживать кривошип в зажимном приспособлении.
Метод установочного винта
Я всегда называл это «установочный винт», но на самом деле для этого можно использовать винты с головкой под ключ или шестигранник ( Кроме того: читатели из США, скорее всего, будут знать «установочные» винты как «установочные» винты. винты без головки, которые могут полностью войти в резьбовое отверстие — отсюда и соединение с «зацепом», которое, кажется, пришло из Англии и прочно укоренилось в Австралии и Новой Зеландии. Просверливаются два отверстия, радиально пересекающие отверстие для вала в кондукторе.Затем на них нарезают два винта, которые при затяжке будут удерживать вал на месте в зажимном приспособлении. Чтобы кончики винтов не оставляли следов на валу, две медные пробки повернуты до диаметра чуть меньше меньшего диаметра резьбы. Вал вставлен и колодки опущены в отверстия. Когда винты затягивают над подушками, винт немного расширяется, и резьба вгрызается в них, удерживая их на месте, когда вал позже будет удален. В джиг-приманке, показанном здесь, винты были вынуты, так что слизняки были видны (личинки? Слизни? Для меня это похоже на банку с червями).
Мне этот метод никогда особо не нравился. Просверливание и нарезание резьбы отверстий, изготовление медных заготовок и т. Д. Требует значительных усилий. И давление, которое они оказывают на вал, в лучшем случае является минимальным, когда он удерживается от смещения при прерывистой резке. Этот метод действительно требует страховки в виде штифта, который входит в отверстие (или паз) в кривошипе. Я видел коммерческие шатуны с небольшой прорезью на ободе перемычки, которая, должно быть, задела стопорный штифт. В других просверлено отверстие в шатунной шейке.А также содействие статической балансировки, это еще один хороший для за вход предотвращения вращения пальца.
Положительным моментом является то, что вал может быть вставлен без снятия или осадки зажимного приспособления в патроне, он действительно пригоден для производственного использования и позволяет просверливать отверстие в зажимном приспособлении по центру и смещать в 4JIC с использованием воблер в самой лунке. Но я ленив; Если мне удастся избежать этой булавки и отверстия, которое должно совпадать с ней, я сделаю это и сделаю!
Сплит-джиг
Вы можете позволить патрону обеспечивать усилие зажима, просто пропилив часть зажимного приспособления, а затем сделав так, чтобы рез попал посередине между парой губок при затягивании.Так делают все маленькие приспособления, которые здесь можно увидеть. Усилие зажима теперь распределяется по большей площади по сравнению с двумя маленькими медными подушечками, описанными ранее. Я обнаружил, что для небольших валов этого достаточно, чтобы предотвратить нежелательное смещение, если вы будете осторожны и сделаете относительно мелкие надрезы. Также обратите внимание, что приспособления имеют штамп (в большинстве случаев) с тем, для чего они предназначены. Возможно, я никогда не сделаю еще одну, но если сделаю, то по крайней мере научусь использовать шляпную джигу!
Ссылаясь на фотографию выше, вы увидите некоторые изменения в положении пропила.После некоторых экспериментов я пришел к выводу, что показанная ориентация — это нижний правый угол (для ML Midge оптимальна для лучшего зажима — факт, который был бы сразу очевиден для Слепого Фредди и его собаки, но тем не менее мне потребовалось время. ..
Самая простая приманка из всех
И, наконец, мы подошли к моему предпочтительному приспособлению: как только отверстие просверлено, все готово — насколько это просто! Длина координатно такова, что propnut (и шайба, естественно) может быть использован, чтобы нарисовать вал очень твердо в зажимном приспособлении.Для валов меньшего размера винт с головкой под ключ в резьбовом отверстии для шпильки выполняет ту же работу. Я обнаружил, что это обеспечивает достаточную силу зажима для предотвращения вращения вала.
Если вы нервная диспозиции, пробуренное против вращения отверстия штыря, описанных ранее (и видно ниже в адаптации Берта этого кондуктора) может быть использованы для полного спокойствия. Еще одна уловка — центрировать отверстие шатунной шейки после установки зажимного приспособления и поднять половину центра задней бабки в качестве защиты от проворачивания.У меня бывали смещения валов в «раздельных» зажимных приспособлениях, но всегда из-за того, что я делал слишком глубокий надрез или позволял инструменту вонзиться в полотно при продольном резе при самодействии. Я полностью виноват. Обычно этого не происходит. Но даже в этом случае вал можно повернуть назад, так что частично сформированный штифт окажется где-то рядом с тем местом, где он был раньше. Пока вы находитесь близко, любой эксцентриситет будет устранен во время чистовых проходов, которые будут снимать не более десяти тысяч диаметров, а перемещение заготовки с такой небольшой силой резания неслыханно.Таким образом, любой из вышеперечисленных вариантов, со стопорным штифтом или без него, можно использовать довольно успешно. Развивайте собственную технику изготовления джигов, чтобы вам было удобно и уверенно. Но тарелка Китса, висящая на стене, — это всегда хороший вариант для необычной работы.
Никакой приманки!
Этот метод используется в серии Aeromodeller 1955 года Дэйва Сагдена, посвященной созданию высокопроизводительного дизельного двигателя объемом 2,5 куб.Так что я собираюсь называть это методом Сагдена, хотя оказалось, что это не редкость для инженеров-моделистов, поскольку у них есть трехкулачковые самоцентрирующиеся патроны. Откровение Дэйва состоит в том, что можно собрать кулачки патрона так, чтобы они не центрировали работу самостоятельно, !
Поместите пальцы на каждую губку патрона, прижимая их внутрь, открывая патрон ключом. Первой челюстью, которая выйдет из свитка, будет челюсть №3.Как только вы почувствуете, что он пересекает край начала прокрутки, остановитесь и уберите челюсть. Уловка состоит в том, чтобы закрыть патрон на несколько оборотов перед заменой кулачка №3. Патрон теперь будет «центрировать» пруток, смещенный к кулачку №3. Сколько будет зависеть от наклона вашего свитка и того, где челюсть вернулась по сравнению с двумя другими.
Сам Sugden Special имеет ход 0,600 «. На моем патроне я обнаружил, что два оборота смещения дают ход 0.593 «. Неплохо, но небольшая математика показывает, что это уменьшит рабочий объем двигателя с 2,49 куб. См до 2,46 куб. См. Таким образом, кусок алюминиевой ложи для напитков толщиной 0,004 дюйма был помещен под зажимы № 1 и 2. После того, как все было затянуто, DTI теперь показал, что полоса отклоняется от центра на 0,601 дюйма. Я бы сказал, что достаточно близко для джаза.
Как отметил Дэйв Сагден и как видно из фотографий, патрон моего Myford не может, как выразился Дэйв, «проглотить» стержень, поэтому при формировании штифта требуется поддержка задней бабки.Это может быть небольшой центр, и, если хотите, штифт можно сделать слишком длинным, а часть или весь центр осторожно повернуть в сторону, когда штифт будет готов. Если вы работаете с маленьким валом в достаточно большом патроне, опора не понадобится.
То, что мы действительно видим здесь, — это вариант использования 4-кулачкового независимого патрона для захвата ложи. Обратной стороной является то, что штифт должен быть сформирован перед цапфой, и для этого будет немного сложнее удерживать заготовку, так что в конце концов нам придется сделать небольшую приспособление.
Повернув штифт, но перед тем, как вернуть патрон в нормальный режим, зажать в патроне пруток того же диаметра (или большего), используя те же прокладки. Теперь просверлите отверстие в заглушке примерно на 0,010 дюйма больше шатунной шейки. Отверстие будет смещено от центра на тот же ход, что и на зародышевом валу. Дополнительный диаметр предназначен для защитной прокладки, поэтому отрегулируйте размер в соответствии с требованиями ваш шайб.
После того, как 3-кулачковый патрон снова будет полностью самоцентрирующимся, отцентрируйте оба конца заготовки коленчатого вала.Затем вставьте заглушку со смещенным отверстием и поверните ее лицевой стороной вниз так, чтобы в ее середине был «центр» под углом 60 градусов. Не трогайте эту деталь в патроне до полной сборки шейки вала. Если вам все-таки нужно его потревожить, снова проведите по центру под углом 60 градусов после повторного зажима, чтобы убедиться, что центр находится точно на оси токарного станка.
Оберните кусок 0,004-дюймовой банки для напитка вокруг штифта, чтобы защитить его, затем установите заглушку вала между центрами. Он будет приводиться в движение самим шатунным шатуном, который должным образом защищен, если вы не делаете серьезную черновую обработку порезы.Как и в случае любой другой работы между центрами, этот подход имеет то преимущество, что вал можно в любой момент снять с токарного станка для проверки и заменить со 100% точностью.
Этот метод, как некоторые из вас уже заметили, аналогичен использованию 4-кулачкового независимого патрона для точения со смещением. Его преимущество заключается в легкой повторяемости (при изготовлении заглушки), плюс не у всех в наши дни есть четырехкулачковые патроны. Наконец, хоть это и кажется немного странным, но работает, так что добавьте его в свой набор уловок.
Вариант Берта
Берт Стриглер добавил в метод, который я использовал, нововведение, которое имеет большой смысл и может побудить меня к изменениям. На фотографии показаны приспособления и приспособления, которые Берт сделал при сборке своего Pepperell. Приспособления для поворота шатунов — это цилиндр со штифтом и толстой «шайбой», видимые в нижнем левом углу кадра. Во-первых, вот Берт о том, как это работает:
[Крепления шатунов] типичны для тех, которые я делаю из обрезков лома.Основной корпус кривошипно-шатунного инструмента имеет разгрузку спереди, чтобы принять зону осевого давления вала, позволяя основной перемычке прилегать к инструменту заподлицо. Эта часть немного длиннее, чем площадь подшипника вала и рассверленная до размера вала. Имеется отверстие 1/8 дюйма для длины приспособления и кусок музыкального провода 1/8 дюйма, который равен длине основного корпуса прибора плюс еще около 1/16 дюйма. Это работает следующим образом: музыкальный провод заостренный на одном конце, и вал вставляется в рассверленное отверстие и устанавливается на плоской поверхности, затем проволочный штифт хорошо удаляется молотком, чтобы нанести удар по внутренней поверхности того, что станет шатуном.Вал удаляется, и на передней поверхности перемычки просверливается отверстие 1/8 дюйма глубиной примерно 1/16 дюйма. Теперь вал снова вставлен в приспособление, и штифт проталкивается в неглубокое отверстие, задняя часть, которая выглядит как толстая опорная шайба, надевается на резьбовую часть вала, а опорная гайка плотно затягивается на всем беспорядке, захватывая штифт на месте. Вал просто не может вращаться. Крепление лопаты вставляется в 4-кулачок с правильным смещением для хода, после чего штифт можно повернуть.Затем приспособление можно вставить в цангу и цанговый патрон для фрезерования противовеса и боковых рельефов.
Обратите внимание, что Берт просверливает свое приспособление в осевом направлении для вала, в отличие от тех, которые я показал выше, которые просверлены со смещением для требуемого хода. Метод Берта, как он говорит, означает, что у него есть приспособление, которое подойдет для любого вала расширенного размера и любого хода — при условии, что он сможет просверлить еще одно отверстие 1/8 дюйма на смещении хода кривошипа с точностью относительно отверстия. посередине (не невозможно или все так сложно).Затем приспособление необходимо установить в четырехкулачковом независимом патроне так, чтобы ось шатунной шейки двигалась точно. Это может быть достигнуто синхронизацией на внешней стороне кривошипа и неформованной заготовки пальца — при условии, что они были отрегулированы на той же настройке, которая использовалась для поворота и чистовой обработки основной шейки. Вариант, предложенный Дэвидом Оуэном, заключается в том, чтобы удерживать вал с помощью установочных винтов (нажимая на медные прокладки для защиты вала). Это позволяет отверстие штыря 1/8″ , чтобы быть установлено для запуска верно в 4JIC до того, как стержень вставлен-невыполнимая задача является валом удерживается в креплении его опора гайки.
Мой подход к сверлению со смещением отверстия упрощает настройку, так как его просто нужно вставить в трехкулачковый самоцентрирующийся патрон. Это значительно упрощает повторную работу; для меня это преимущество, так как я часто делаю более одного двигателя. Штифт для защиты от аварий также является хорошей идеей, хотя я обнаружил, что опорная гайка / винт очень прочно удерживает вал в приспособлении. А если он сдвигается, то обычно это происходит во время выполнения больших пропилов перед заключительными проходами света, поэтому вал можно переставить достаточно близко, чтобы все снова стало хорошо на последних чистовых пропилах.Обратной стороной моих приспособлений является то, что они предназначены для определенного размера шейки и хода кривошипа, хотя мне удалось проделать более одного смещенного отверстия в одном и том же приспособлении — подходяще проставив на каждом идентификатор двигателя для дальнейшего использования. Если я забываю (а у меня есть!), Я получаю кондуктор со смещенным сверлением в кондукторном ящике и не понимаю, для чего он нужен.
Балансировка
Еще одна небольшая задача, которую нечасто ждут с радостью, — это врезка противовесов в шейку коленчатого вала (профилирование шатунов, вырезы в стенке вала… есть ли какая-нибудь задача, которую мы, , с нетерпением ждем, которую с нетерпением ждем?) Я объясню причину этого нежелания. Для изготовления некоторых деталей требуется много усилий, а усилия равны времени. По мере того, как процесс приближается к завершению, затраты времени велики, и возможность удвоить время, затрачиваемое на наполнение того, что есть в руке, достигает максимума, особенно если какая-то заключительная операция требует не идеальной настройки. Вырезание вырезов в стенке кривошипа является одним из таких случаев, поскольку это связано с прерывистым резом, связанным с проблемой удержания заготовки.Целью снятия рельефа на перемычке коленчатого вала является достижение статического баланса. На одноцилиндровых двигателях, подобных нашему, невозможно достичь идеального динамического баланса. Лучшее, что мы можем ожидать, — это разумный компромисс, пытаясь уравновесить половину возвратно-поступательной массы двигателя, а именно поршень, штифт и маленький конец шатуна [LCM]. Обычно это достигается путем удаления металла с перемычки, так что шатунная шейка будет располагаться горизонтально, когда вес, равный половине возвратно-поступательной массы, действует через ось шатунной шейки.На фото здесь (из 5cc Sparey Project показан вал с острыми лезвиями, на шатунную шейку надевается пончик нужного веса. К сожалению, даже с массивными вырезами вал не находится в пределах досягаемости. На этом этапе можно попробовать придать поршню легкости, но тогда вы рискуете получить легко деформируемый поршень и, как следствие, потерю сжатия. Мне пришлось вытащить головку из одного такого легкого поршня — самое тревожное явление!
Очевидно, металл должен быть удален с половины шейки кривошипа, на которой находится шатун.Есть несколько способов сделать это; на рисунке показаны пять наиболее распространенных подходов. Я опишу их, прежде чем рассматривать удержание работ. Используемые имена никоим образом не являются «официальными». Я придумал их для описания (надеюсь). Обратите внимание, есть и другие способы. Это просто самые распространенные.
[A] Вырезы в виде полумесяца
Фрезы большого диаметра используются для вырезания выступов из перемычки по обе стороны от шатунной шейки. Центр дуги расположен таким образом, чтобы минимизировать количество металла рядом с штифтом, что позволяет сохранить некоторую прочность полотна.Нижняя часть будет на или немного ниже диаметра полотна. Вариант этой схемы — просверлить отверстия в перемычке по обе стороны от штифта. Я даже видел старые конструкции, в которых предлагалось заполнить эти отверстия алюминием. Идея состоит в том, чтобы добиться уменьшения массы без уменьшения объема. Другой вариант — просверлить отверстия на противоположной стороне и заглушить их свинцом, вольфрамом, обедненным ураном или другим легкодоступным тяжелым металлом.[B] Отрезки для плоских сегментов
Это похоже на [A], но не требует фрезы большого диаметра и предлагает некоторые другие возможности для удержания заготовки.Ключевым моментом этого подхода и подхода [A] является то, что вырез может выходить за пределы линии диаметра (показанной на 3D-рендеринге с небольшим преувеличением) для улучшения баланса. Причина в том, что до определенного момента количество металла, удаляемого резанием на «тяжелой» стороне, меньше, чем количество, удаляемое на «легкой» стороне, поэтому отношение тяжелого к легкому продолжает увеличиваться до критического значения. точка.[C] Вырезки под тупой угол
Это разновидность [B], которая сохраняет всю массу на «тяжелой» стороне полотна, поэтому вместо дуги у нас есть тупой угол.Обратной стороной является более сложная обработка, и вы должны быть осторожны, чтобы пересечение не было настолько резким, чтобы вызвать растрескивание. Этот стиль использовался на многих старых спаркерах, а также на некоторых более поздних проектах. Одна крайность, которую я видел на старой конструкции, уменьшила тупой угол до прямого![D] Периферийные вырезы в виде полумесяца
Еще одна разновидность [A], за исключением того, что вырезанные полумесяцы сделаны только по краям полотна. Затем тонкое кольцо обычно усаживают по диаметру полотна для герметизации края.Цель состоит в том, чтобы добиться эффекта полной перемычки на объеме картера при достижении некоторой степени баланса. Этот подход использовался в коммерческих двигателях и двигателях с высокими характеристиками. Это требует более толстого полотна, чем обычно.[E] Утончение сети
Обычная практика «полноразмерных» — привинчивать (или иным образом закреплять) груз на перемычке напротив шатуна. Разработчики моделей часто достигают того же эффекта, удаляя перемычку соосно шатунной шейке. Результат — больше массы там, где это нужно.Некоторые конструкции дополняются вырезами типа [A] или [B]. Нижняя сторона представляет собой усложнение профиля шатуна, чтобы избежать его забивания противовесом.Теперь перейдем к основанию для вырезания этих отверстий. Обычно это последняя операция, выполняемая на валу, поэтому вероятность того, что авария может испортить часы работы, максимальна. Вот как Берт Штрейглер делал вырезы типа [B]. Речь идет о валу коричневого цвета с вырезом в соответствии с этой новаторской конструкцией двигателя.Берт говорит:
Вот способ, который я придумал. У меня не так много средств измерения, поэтому я часто прибегаю к графическим методам настройки. На одном рисунке показан маленький рисунок, но с тех пор я даже не стал его использовать, а просто рисовал, а затем измерял, какая булавка нужна, чтобы получить то, что я хочу. Показаны три части, используемые в установке, и они состоят из чертежа для определения размера штифта, мягкого алюминиевого экрана с довольно большим вырезом, позволяющего зажать шатун без вмятин неизбежного радиуса в месте соединения штифта с валом. , и необходимый распорный штифт.
На втором рисунке показана установка. Все, что я делаю, это нажимаю на вал, чтобы убедиться, что он находится в хорошем контакте с верхней частью губки тисков, затем слегка покатываю его, пока он не будет в хорошем контакте с шатунной шейкой, а затем просто зажимаю его тисками и машиной. . Что касается другой стороны, просто немного ослабьте губку тисков, поверните вал в другую сторону и снова зажмите. Это дает идеально симметричный разрез с обеих сторон. Все зажимы производятся в сети.
Кен Крофт использовал аналогичный метод для коленчатого вала MS 1.24 (мы не всегда используем один и тот же метод):
Не знаю, как вы, ребята, это делаете, но когда мне нужно отрезать кусочки кривошипного диска для балансировки, у меня пока есть только неудачный метод настройки. Для этого нужно было нарисовать кривошипный диск в TurboCAD и распечатать его. Затем я вырезал рисунок, приклеил его к диску и на глаз установил под мельницу. Результаты далеки от идеальных, и я никогда не бываю доволен.
Так как это работа, которую я теперь должен выполнить на MS 1.2 копии, которую я делаю, я подумал и понял, насколько проста эта работа на самом деле.
Я нарисовал кривошипный диск в TurboCAD, затем использовал модель для некоторых измерений. Я просто установил вертикальный штифт на расстояние диска под мельницей, используя зонд с плоским концом и регистр нисходящей подачи [у меня есть дешевое УЦИ на мельнице].
Затем я фрезеровал концевую часть диска на нужную величину. Затем я повернул диск и снова установил штифт на размер диска, такой же, как и раньше, и удалил такое же количество с диска.В результате получается идеально симметричный диск с точно требуемыми размерами. Почему я этого еще не сделал?
Теперь мне нужно разработать простой метод для вырезания зубчатых вырезов. Это будет не так просто.
Берт и Кен использовали два разных метода измерения для обеспечения симметрии, но их основной подход остался тем же. Мы все согласны с тем, что захват полотна в тисках небезопасен, особенно если рукоятка небольшая. Опытные инженеры-моделисты не говорят, что резец должен быть острым, скорость должна быть высокой, а рез должен выполняться таким образом, чтобы зубья соответствовали рабочему смещению в одну сторону, чтобы производить «обычное» фрезерование (а не фрезерование «с подъемом»).Даже в этом случае с лучшими из нас могут случиться несчастные случаи.
Зажим на валу дает возможность для более надежной установки, но требует осторожности, чтобы не повредить то, что, вероятно, является идеально обработанной поверхностью. Поскольку оси фрезы и вала будут на одной линии при использовании этой установки, фреза будет пытаться повернуть вал, открывая для нас такой же большой риск, как и раньше, если только не может быть использован положительный антиротационный помощник. Вот как Дэвид Оуэн вырезал сегменты для серии GB5, которую он и Гордон Барфорд выпустили.
Я обычно рисую единичные экземпляры на самом кривошипно-шатунном диске, как и вы. Затем я зажимаю их цанговым патроном 5c в тисках станка. Выровняйте их по линии и зафиксируйте высоту штифта над столом с помощью штангенциркуля. Фактическое измерение бессмысленно. Я подрезаю до линии по мере необходимости и устанавливаю вертикальный упор. Затем я поворачиваю рукоятку до тех пор, пока штифт не окажется в таком же положении на другой стороне, и обрезаю до упора. Я использовал метод удержания Берта, но мне он не нравится по тем же причинам, что и вам.
На большинстве кривошипов, где разрез представляет собой прямую линию, расходящуюся от центра, удаление металла ниже центральной линии приведет к большим потерям над центром, что нам и нужно. У меня есть где-то математика для этого, показывающая пределы.
Для кривошипов с гребешком или параллельным срезом по бокам диаметр является пределом. На этот тип кривошипа я снова устанавливаю цангу 5c, но с вертикальным валом.
На производственных валах я всегда просверливал отверстие 1/8 дюйма позади шатунной шейки в качестве регистра.На прилагаемом изображении 5c вы увидите три отверстия под дюбели диаметром 1/8 дюйма, на которых показан вал GB 5cc. Центральное отверстие определяет вал для черновой обработки шатунной шейки из исходного диска полной глубины.
Итак, я получаю квадратный шатун примерно на 1 мм больше, чем готовый диаметр, и примерно 0,25 мм, чтобы оторваться от торца кривошипного диска. К этому этапу доработаны все валы. Затем дюбель перемещается в боковое отверстие и обрабатывается по одной боковой поверхности от каждого вала.
Дюбель перекладывается на другой штифт и вторая боковая поверхность срезается.Неряшливый кусок прокладки удерживает большую часть стружки от вертикальной цанги. Затем валы зажимаются в большом приспособлении со смещением 5c в Hardinge, шатун поворачивается на плюс 0,2 мм, а поверхность очищается до нуля. Затем валы закаляются и окончательно шлифуются.
Цанги 3C, используемые Дэвидом, являются коленями пчелы для этой работы. Цанга вставляется в доводчик, поэтому она не может вращаться. Затем вал прикрепляется к цанговому патрону с помощью штифта 1/8 дюйма (возможно, закаленного), поэтому вал не будет вращаться, и, следовательно, не требуется зажимание зубьев.Для одноразовых валов сверление цанги для штифта, вероятно, невозможно, но цанга правильного размера оказывает огромное зажимное усилие на заготовку, так что это по-прежнему лучший подход. Кстати, посмотрите на штифт в центре приспособления для поворота кривошипа со смещением, показанного на второй фотографии. Это также предотвратит нежелательное вращение вала во время поворота шатунной шейки. Стоит, особенно если вы делаете 150 штук вручную!
Я обычно делаю приспособление со смещением, чтобы удерживать вал при повороте шатунной шейки.Это приспособление можно удвоить, чтобы удерживать вал при обработке полотна (хотя цанги 3C в прочном держателе были бы намного лучше, если бы они у меня были). На фотографии здесь показано приспособление для дизельного двигателя AHC, которое было повторно использовано для дизельного двигателя Sparey 5cc. В этом случае вал фиксируется затягиванием гайки опоры, но такой штифт, как Дэвид, используемый с этим приспособлением 3C, будет хорошей страховкой. Удерживающее приспособление захватывается 3-х кулачковым патроном, привинченным к поворотному столу, установленному горизонтально под мельницей.Его также можно удерживать в тисках мельницы с помощью V-образного блока.
Кривошип помечается для вырезания с помощью шаблона, как у Берта. В случае AHC и Sparey концевая фреза 3/4 дюйма была самой большой из доступных, поэтому она устанавливает радиус серпа. Фреза расположена так, чтобы касаться как можно большей части отмеченной линии в неподвижном состоянии, а оси фрезы обнулены. Затем я «откусываю» полотно снаружи, используя подачу вниз, перемещая одну ось фрезы между резами и продвигаясь не более чем на 0.030 дюймов за один раз, с плотно сжатыми зубьями. При достижении «нулевой» точки перо фиксируется, затем стороны разреза очищаются путем наматывания по одной оси от нуля, затем обратно до нуля и наматывания другая ручка. Острый резак сделает это плавно. Тупой резак будет вздрагивать и натыкаться, пытаясь схватить работу. Даже острый резак поднимет легкий заусенец на краю реза. Это зачищается с помощью небольшой шлифовки камень в ручном инструменте Dremel — возьмем отличный футляр, чтобы не вызвать разбег, который ударяет по шатуну (требуется большее сжатие зубьев).
Изучение * партии * двигателей и чертежей в «спортивном» классе показывает, что ниже 2 куб. См (0,15 куб. Дюймов) большинство опытных дизайнеров не утруждают себя вырезанием паутины. Мой собственный опыт подтверждает это. Количество вибрации, испытываемой небольшими двигателями, невелико, и теория предполагает, что меньший объем картера, возникающий в результате полной перемычки, сделает двигатель лучшим топливным насосом — хотя, учитывая способность небольших двигателей заливаться водой, это не всегда серьезная проблема.
Ссылки:
[LCM] | Mason, LC: Эксперименты с Small I. |