Дизельные двс: Дизельные двигатели: виды, принцип работы, преимущества дизельных двигателей

Содержание

Преимущества и недостатки дизельных двигателей

Споры между сторонниками бензиновых и дизельных двигателей в последние годы поутихли. Дизели постепенно избавились от своих неприглядных особенностей: стали тише, их меньше трясет, они по-прежнему экономные и теперь соответствуют современным экологическим стандартам. Последним аргументом против моторов на тяжелом топливе была скорость. Даже хороший крутящий момент на низких оборотах не позволял машине набирать высокую скорость авто. Так было раньше, а сейчас технологии вроде уникальных систем впрыска и турбин помогли дизелям на равных соперничать с «традиционными» бензиновыми собратьями даже в спортивных автомобилях.

И все-таки, при выборе той или иной модели необходимо знать про преимущества и недостатки дизельных двигателей.

Преимущества современного «дизеля»

  • Низкий расход топлива. Дизельные ДВС потребляют примерно на треть меньше горючего, чем бензиновые двигатели.
  • Уверенный разгон при отличной тяге.
    Большой крутящий момент помогает автомобилю ровно и уверенно разгоняться на любой скорости.
  • Низкий уровень токсичности вредных выбросов. Эффективные системы переработки топлива сделали из «грязного» дизеля миф прошлых лет.
  • Большой ресурс. Дизельные агрегаты обычно служат на порядок больше, чем бензиновые аналоги.
  • Высокий КПД. Дизельное топливо сгорает с большей «отдачей», чем бензиновое, благодаря особому способу воспламенения и продуманной конструкции камеры сгорания. Оптимальное давление, создаваемое в камере с высокой степенью сжатия, обеспечивает экономичный расход топлива с достижением максимальной мощности. Получается, что дизельный двигатель вырабатывает больше энергии, а значит — способен выдавать больше мощности, по сравнению с мотором на бензине.

Несмотря на очевидные преимущества дизельного двигателя над бензиновым, такой силовой агрегат, как и любое сложное техническое устройство, имеет свои недостатки. Так почему же многие автолюбители по-прежнему выбирают автомобили на бензине?

Недостатки дизельных моторов:

  • Стоимость. Цена на машину с дизельным агрегатом обычно на треть выше. Низкий расход топлива иногда очень долго окупает эту разницу, если автомобиль ездит мало.
  • Низкая цена на вторичном рынке. Через 5-7 лет эксплуатации дизельные варианты продаются сложнее. Все знают, что ремонт мотора с большим пробегом может обойтись в копеечку. Отсюда следующий пункт.
  • Дорогой ремонт. Восстановление работоспособности форсунок и прочие вещи, связанные с ремонтов дизельного двигателя нагоняют ужас на будущих владельцев. Это вовсе не значит, что бензиновые двигатели всегда дешевле в обслуживании, но обычно именно агрегаты на тяжелом топливе тянут с владельцев много денег (если что-то случилось).
  • Долгий прогрев двигателя в холодную погоду. Экономичное потребление топлива при высоком КПД делает дизельный агрегат более «холодным». Минимальный расход энергии на «самообслуживание» увеличивает время прогрева мотора.

Учитывая все плюсы и минусы дизельного двигателя, важно знать об особенностях его эксплуатации в зимний период. В отличие от бензиновых моторов, прогреть «дизель» тяжелее. Силовые агрегаты такого вида разогреваются до оптимальной температуры только в пути, когда нагрузка на систему достаточно велика. К сожалению, подобный принцип работы может стать причиной сокращения ресурса ДВС.

Большинство владельцев автомобиля с дизельным двигателем знают и о том, как долго прогревается салон в холодную погоду. Решается это проблема с помощью дополнительной климатической техники, за которую, конечно, придется доплатить.

Особенно пристальное внимание следует обратить на качество топлива для дизельного двигателя. Так называемая солярка бывает как летней, так и зимней. Летняя на морозе быстро становится густой массой из-за образования в ней парафина, в то время как в зимнее топливо добавляют присадки против кристаллизации. Чтобы избежать дорогостоящего ремонта необходимо искать заправочные станции с качественным горючим и не забывать вовремя переходить на зимнее топливо. Специально для облегчения процесса холодного пуска двигателя разработаны системы предпускового подогрева.

Исправное состояние свечей накаливания гарантируют своевременный прогрев камеры сгорания, предваряющий запуск мотора.

Очевидно, что обслуживание и ремонт дизельного двигателя обходятся дороже, чем устранение неисправностей бензинового мотора. Независимо от объема, агрегат требует более частой замены масла, смазки и фильтров. Межсервисный интервал для машин с дизельным ДВС примерно в два раза короче, чем для авто с бензиновым «движком».

При любой неисправности двигателя и появлении значка индикации на панели управления незамедлительно обращайтесь к профессионалам сервисных станций. Специалисты технических центров ГК FAVORIT MOTORS оказывают весь перечень услуг по ремонту и обслуживанию автомобилей с дизельными двигателями любой модификации. Все работы выполняются с помощью современного оборудования и с использованием качественных запасных частей. Не рискуйте дорогостоящей силовой установкой вашего автомобиля. Только квалифицированный мастер, прошедший обучение в учебных центрах автопроизводителя, способен найти верное решение возникшей проблемы.


Принцип работы и устройство дизельного двигателя

Принцип работы и устройство дизельного двигателя

Конструктивные особенности и эксплуатационные характеристики предопределили страсть или отторжение автомобилистов по отношению к агрегатам на “тяжелом топливе”. Так как же работает дизельный двигатель, каково его устройство, принцип работы и преимущества?

Времена, когда автомобиль с дизельными моторами ассоциировались с чадящими и тихоходными, давно остались за поворотом. Каждый автомобилист знает, что транспортное средство с агрегатом на “тяжелом топливе” издает характерные тарахтящие звуки, его выхлоп странно пахнет. Современные моторы награждают своих владельцев умеренным расходом топлива, впечатляющей эластичностью (крутящим моментом, доступным в относительно широком диапазоне оборотов) и иногда ошеломительной динамикой на зависть некоторым бензиновым автомобилям. Но при этом они требовательны к качеству солярки, а ремонт компонентов топливной системы может быть весьма дорогим.

Особенности конструкции

Дизельные двигатели, разумеется, не имеют таких колоссальных отличий как роторно-поршневой двигатель Ванкеля, устройство которого абсолютно не похоже на “анатомию” традиционного ДВС, но у него имеется ряд особенностей, которые проводят между ним и бензиновыми моторами черту.

У дизеля также есть кривошипно-шатунный механизм, но его степень сжатия существенно выше – 19-24 единицы против 9-11 единиц соответственно. Принципиальное отличие дизельного двигателя от бензинового заключается в том, как формируется, воспламеняется и сгорает топливно-воздушная смесь.
У дизельного ДВС отсутствуют свечи зажигания и, соответственно, воспламенение топливно-воздушной смеси происходит от сжатия. При этом, воздух и солярка подаются раздельно. Также следует отметить, что практически ни один современный дизель не обходится без системы наддува, которая используется для повышения рабочих характеристик агрегата. Для оптимизации наддува в максимально широком диапазоне оборотов используются турбонагнетатели с изменяемой геометрией. Дизельный агрегат имеет более высокий коэффициент полезного действия, но он тяжелее и выдает больший крутящий момент при низких оборотах, нежели бензиновый ДВС.

Принцип работы дизельного двигателя

Как работает дизельный двигатель и, самое главное, как происходит воспламенение топлива в камере сгорания, если у агрегата данного типа нет свечей зажигания? Сперва воздух поступает в цилиндры. В конце такта сжатия, когда поршень почти достиг верхней мертвой точки, температура воздуха в камере сгорания достигает высоких значений (порядка 700-800 градусов) и затем в цилиндры впрыскивается дизельное топливо, которое воспламеняется самостоятельно, без искрового зажигания. Тем не менее, свечи в дизельном агрегате все-таки есть, но то – свечи накаливания, а не зажигания, которые нагревают камеру сгорания для облегчения запуска двигателя в холодное время.
Они представляет собой спираль (бывают с металлической и керамические), могут быть установлены в вихревой камере или в форкамере (если речь идет об агрегатах с раздельной камерой сгорания) или непосредственно в камере сгорания (если она нераздельная).

При включении зажигания свечи накаливания практически мгновенно, за считанные секунды они раскаляются до температур в районе тысячи градусов и нагревают воздух в камере сгорания, облегчая процесс самовоспламенения топливно-воздушной смеси.

Типы дизельных двигателей

Широко распространены моторы с раздельной камерой сгорания – топливо впрыскивается в специальную камеру в головке блока над цилиндром и соединенную с ним каналом, а процесс горения происходит не совсем так как у бензиновых ДВС. В этой вихревой камере поток воздуха интенсивнее закручивается, что способствует более эффективному смесеобразованию и самовоспламенению, которое продолжается в основной камере сгорания. Кстати, дизельные моторы с раздельной камерой сгорания менее шумные из-за того, что применение вихревой камеры снижает интенсивность нарастания давления при самовоспламенении.

У дизелей с неразделенной камерой сгорания процесс самовоспламенения происходит непосредственно в надпоршневом пространстве.

Агрегаты данного типа несколько шумнее.

Что такое Common Rail

Common Rail – современная система впрыска топлива, разработанная компанией Bosch и использующая принцип подачи солярки к форсункам от топливной рампы, являющейся аккумулятором высокого давления. Common Rail позволяет сделать агрегат тише, при этом более экономичным и экологичным. Еще одним преимуществом использования общей топливной рампы являются широкие возможности регулировки давления топлива и момента его впрыска, поскольку эти процессы разделены.

Система включает в себя ТНВД (топливный насос высокого давления), пьезоэлектрические форсунки, топливную рампу, регулятор давления топлива и клапан дозирования топлива. Интересно, что на заре своей эволюции дизельные агрегаты имели не в пример более простую топливную аппаратуру с механическими форсунками и несопоставимо более низким давлением солярки на фоне современных систем.

Дитя прогресса

Не так давно дизельные моторы были экологически “грязными” и достаточно слабыми, но с некоторых пор агрегаты данного типа кардинально изменились, а отдельные представители племени достойны спорткаров. К таковым относится рядный шестицилиндровый мотор BMW объемом 3,0 л с четырьмя турбонагнетателями.
Кстати, конструкция этого мотора наглядно демонстрирует собой прогресс агрегатов на “тяжелом топливе”. Техношедевр оснащен двумя малоинерционными турбонагнетателями низкого давления и еще двумя высокого, причем один из них вступает в дело за пределами 2500 об/мин. Пьезофорсунки впрыскивают топливо под колоссальным давлением в 2500 бар. На выходе – 400 л.с. и 760 Нм. Интересно, что 450 Нм доступны уже при 1000 об/мин! Вот такие они, современные дизельные двигатели.

Самые надёжные дизельные двигатели | АВТО INFO

Последние 30 лет дизельные двигатели внутреннего сгорания непрерывно совершенствовались и по техническим характеристикам практически догнали своих бензиновых собратьев, благодаря чему стали довольно популярны.

Однако, в связи с ужесточением экологических норм, многие автопроизводители начали отказываться от производства автомобилей с дизельными двигателями. Тем не менее, произведённые ранее автомобили с дизельными двигателями всё ещё ездят по российским дорогам и неплохо продаются на вторичном рынке.

К сожалению далеко не все современные дизельные двигатели, впрочем, как и бензиновые, достаточно надёжны, и для тех, кто решил приобрести подержанный автомобиль с дизельным двигателем, я решил написать эту статью, в которой коротко расскажу о самых надёжных современных дизельных двигателях.

Да, у представленных ниже двигателей тоже бывают проблемы, но они не так часты и не настолько серьёзны, как у других двигателей, некоторые из которых не выдерживают даже гарантийного срока.

BMW M57

6-цилиндровые, 24-клапанные дизельные двигатели BMW M57 получились довольно удачными. На столько удачными, что при своевременном техническом обслуживании автомобиль с любым из этих двигателей способен без проблем преодолеть 600 000 километров пробега. Семейство двигателей M57 производилось в период с 1998 по 2010 года и имело три варианта блока цилиндров, с объёмом 2497 см³ (M57D25, M57TUD25), 2926 см³ (M57D30) и 2993 см³ (M57TUD30, M57TU2D30), из которых наиболее надёжным считается вариант с объёмом 2926 см³ (M57D30).

Встречается на автомобилях: BMW 3-Series (E46, E90), BMW 5-Series (E39, E60), BMW 6-Series (E63), BMW 7-Series (E38, E65), BMW X3 (E83), BMW X5 (E53, E70), BMW X6 (E71), Land Rover L322, Opel Omega B FL (C).

Fiat 1.9 JTD

Это первые дизельные двигатели с системой впрыска топлива Common Rail. Наиболее надёжными считаются двигатели с 8-клапанной головкой блока цилиндров, однако 16-клапанные версии не на много хуже, просто со временем требуют замены впускного коллектора. Эти двигатели производились в период с 1997 по 2010 года и имеют около двадцати модификаций, любая из которых способна без проблем преодолеть до 500 000 километров пробега.

Встречается на автомобилях: Alfa Romeo 145, Alfa Romeo 146, Alfa Romeo 156, Alfa Romeo 159, Fiat Punto II, Fiat Grande Punto, Fiat Punto Evo, Fiat Bravo, Fiat Brava, Fiat Croma, Fiat Stilo, Fiat Sedici, Fiat Marea, Fiat Doblo, Lancia Delta III, Lancia Lybra, Opel Astra III, Opel Vectra C, Opel Signum, Opel Zafira B, Saab 9-3, Saab 9-5, Suzuki SX-4.

Fiat 2.0 JTD

Двигатели Fiat 2.0 JTD производятся с 2008 года по сей день, и не смотря на то, что они имеют некоторые проблемы, несвоевременное устранение которых чаще всего заканчивается дорогим ремонтом, в целом эти двигатели достаточно надёжны и при соблюдении правил эксплуатации способны преодолеть от 300 000 до 500 000 километров пробега.

Встречается на автомобилях: Alfa Romeo Giulietta, Alfa Romeo 159, Alfa Romeo Brera, Fiat Bravo, Fiat Doblo, Fiat Sedici, Fiat Freemont, Lancia Delta, Opel Astra J, Ope Insignia A, Ope Zafira C, Saab 9-5 II, Suzuki SX-4.

Kia-Hyundai D4FB (1.6 CRDi)

Разработанный в 2007 году корейскими инженерами 16-клапанный дизельный двигатель D4FB оказался не только экономичным, но и очень надёжным, благодаря своей простоте, а так же системе впрыска топлива Bosch и приводу газораспределительного механизма посредством цепи. В среднем ресурс этого двигателя составляет около 500 000 километров пробега.

Встречаются на автомобилях: Hyundai i20, Hyundai i30, Hyundai Accent, Kia Cerato, Kia Venga, Kia Soul, Kia cee’d, Kia Sportage.

Honda N22A, N22B, 5N22B1 (2.2 CTDi, 2.2 i-DTEC)

В 2003 году инженеры японской компании Honda разработали свой первый дизельный двигатель с системой впрыска топлива Common Rail. Новые дизельные двигатели серии N, особенно 2,2-литровый N22A, получились невероятно надёжными, и при своевременном техническом обслуживании их ресурс составляет около 600 000 километров. Двигатель 2.2 CTDi (N22A) производился до 2010 года, после чего ему на смену пришли не менее надёжные двигатели 2.2 i-DTEC (N22B, 5N22B1).

Встречаются на автомобилях: Honda Civic, Honda Accord, Honda FR-V, Honda CR-V.

Mercedes-Benz OM611

Современный дизельный двигатель Mercedes-Benz OM611 не настолько хорош, как знаменитые ОМ615 и ОМ616, однако способен без проблем преодолеть 600 000 километров пробега, что на фоне других современных двигателей очень даже не плохой результат. Этот 2,2 литровый двигатель производился в период с 1997 по 2006 год.

Встречается на автомобилях: Mercedes-Benz C-Class (W202, W203), Mercedes-Benz E-Class (W210), Mercedes-Benz Sprinter (W901, W902, W903, W904), Mercedes-Benz Vito (W638), Chrysler PT Cruiser.

PSA-Ford DV4 / DLD-414, DV6 / DLD-416 (1.4 HDi / TDCi, 1.6 HDi / TDCi)

В конце 1990-х и в начале 2000-х годов Groupe PSA (Peugeot Société Anonyme) совместно с Ford разработали два очень надёжных малолитражных дизельных двигателя, 1,4-литровый и 1,6-литровый, которые у французов обозначались как DV4 и DV6, а у американцев DLD-414 и DLD-416 соответственно. DV4 / DLD-414 производились до 2015 года, а DV6 / DLD-416 до 2018 года. Кроме того, что эти двигатели достаточно надёжны и их ресурс в среднем составляет около 400 000 километров пробега, они ещё и очень дешёвые как в обслуживании, так и в ремонте.

Встречаются на автомобилях: Citroen C1, Citroen C2, Citroen C3, Citroen C4, Citroen C5, Citroen DS3, Citroen Xsara, Citroen Xsara Picasso, Citroen Picasso, Citroen C4 Picasso, Citroen Berlingo, Peugeot 107, Peugeot 1007, Peugeot 206, Peugeot 207, Peugeot 208, Peugeot 307, Peugeot 308, Peugeot 3008, Peugeot 407, Peugeot 508, Ford Fiesta, Ford Fusion, Ford Focus, Ford C-Max, Mazda 2, Mazda 3, Mazda 5, Suzuki SX-4, Suzuki Liana, Toyota Aygo, Mini Cooper D, Volvo C30, Volvo S40, Volvo V40, Volvo V50, Volvo S60, Volvo V60, Volvo V70, Volvo S80.

PSA DV10 (2.0 HDi)

2,0 литровый двигатель DV10 стал первым, полностью разработанным Groupe PSA (Peugeot Société Anonyme) дизельным двигателем с системой впрыска топлива Common Rail. Не смотря на то, что данный двигатель имеет около пятнадцати различных модификаций, все они очень надёжны и просты в ремонте. Средний ресурс этого двигателя составляет около 500 000 километров пробега.

Встречается на автомобилях: Ford Focus II, Ford Focus III, Ford C-Max, Ford S-Max, Ford Galaxy, Ford Mondeo IV, а так же почти на всех автомобилях Peugeot и Citroen производимых после 2002 года.

Toyota 1ND-TV (1.4 D-4D)

Несмотря на то, что неудачные 2,0 и 2,2-литровые дизельные двигатели семейства AD серьезно подпортили репутацию Toyota, появившемуся в 2002 году 1,4-литровому двигателю 1ND-TV это не помешало стать лучшим дизельным двигателем в истории Toyota. Этот двигатель способен без проблем преодолеть 400 000 километров пробега, однако, в случае поломки, его ремонт не дешёвый.

Встречается на автомобилях: Toyota iQ, Toyota Yaris I, Toyota Yaris II, Toyota Yaris III, Toyota Auris I, Toyota Auris II, Toyota Corolla IX, Toyota Corolla X, Toyota Corolla XI, Toyota Urban Cruiser, Toyota Verso-S.

Volkswagen EA188 (1.9 TDI)

В 1999 году компания Volkswagen создала 1,9-литровый дизельный двигатель, который благодаря своей простоте и надёжности стал невероятно популярным. Ещё бы, ведь его ресурс в среднем составляет около 700 000 километров пробега. Очень жаль, что производство этих двигателей было прекращено в 2010 году.

Встречается на автомобилях: Audi A3 (8L), Audi A3 (8P), Audi A4 (B5), Audi A4 (B6), Audi A4 (B7), Audi A6 (C5), Skoda Fabia I, Skoda Fabia II, Skoda Roomster, Skoda Octavia I, Skoda Octavia II, Skoda Superb I, Skoda Superb II, Seat Ibiza III, Seat Cordoba II, Seat Leon I, Seat Leon II, Seat Toledo II, Seat Toledo III, Seat Alhambra, Volkswagen Golf IV, Volkswagen Golf V, Volkswagen Bora, Volkswagen Passat (B5), Volkswagen Passat (B6), Volkswagen Sharan I.

Volkswagen EA189, EA288 (1.6 TDI)

Появившийся в 2009 году дизельный двигатель EA189 и пришедший ему на смену в 2012 году EA288, являются не только очень надёжными, но и экономичными двигателями. Средний расход топлива этих двигателей в загородном цикле составляет 4,0 л. / 100 км, а ресурс около 350 000 километров пробега.

Встречаются на автомобилях: Audi A1 (8X), Audi A3 (8P), Audi A3 (8V), Skoda Fabia II, Skoda Roomster, Skoda Octavia II, Skoda Octavia III, Skoda Yeti, Skoda Superb II, Seat Ibiza IV, Seat Leon III, Seat Toledo IV, Volkswagen Golf IV, Volkswagen Golf VII, Volkswagen Jetta VI, Volkswagen Passat (B7), Volkswagen Passat (B8).

Volvo D5

В течение многих лет шведская компания Volvo использовала в своих автомобилях дизельные двигатели Volkswagen, но в 2001 году шведские инженеры решили разработать собственный дизельный двигатель и стоит отметить, что получилось у них довольно не плохо. Настолько не плохо, что все три поколения дизельных двигателей Volvo серии D5, объёмом 2,4 литра, очень надёжны. Все они обладают достаточно большим ресурсом, который составляет около 700 000 километров пробега.

Встречается на автомобилях: Volvo S60 , Volvo V70, Volvo S80, Volvo XC70, Volvo XC90.

Ещё публикации по теме:

«15 очень дорогих в ремонте дизельных двигателей»

Понравилась публикация? Поделись!

Чем отличается бензиновый двигатель от дизельного

Бензин против Дизеля: в чем разница?

На самом базовом уровне современные двигатели внутреннего сгорания работают по принципу четырех простых шагов: всасывание, сжатие, воспламенение и выхлоп. Этот цикл повторяется снова и снова, когда двигатель находится в рабочем состоянии. Таким образом, создается крутящий момент, который и передается на трансмиссию, а затем на колеса. Причем эти шаги работы двигателя не зависят от типа используемого мотора, будь то дизельный или бензиновый двигатель. Но в этих двух моторах есть различия в том, как они выполняют эти циклы работы. 

 

Различия в работе бензиновых и дизельных двигателей

 

Для бензиновых двигателей этап впуска обычно заключается во всасывании воздуха и топлива в камеру сгорания. Если сравнивать работу с дизельным мотором, то в этот рабочий момент дизельный агрегат только всасывает воздух без топлива. Далее происходит сжатие воздуха в камере сгорания. 

 

Зажигание контролируется в каждом типе двигателей по-разному. Бензиновые моторы используют свечи зажигания, которые с помощью электрической искры воспламеняют топливную смесь (кислород + бензин) в камере сгорания, тем самым запуская двигатель. В результате воспламенения топлива образуется энергия, которая начинает двигать поршни в моторе. 

 

Что касаемо дизельного двигателя, то в отличие от бензинового силового агрегата воспламенение дизельного топлива в камере сгорания происходит от силы сжатия. То есть, происходит самовоспламенение топливной смеси. Происходит все очень просто.

 

Как мы уже сказали, сначала в камеру сгорания дизельного мотора подается только воздух, который сжимается по ходу движения поршня. В результате сильного сжатия кислород в камере сгорания сильно нагревается. В этот момент и подается дизельное топливо, которое самовоспламеняется от горячего кислорода в камере сгорания, запуская мотор. 

 

Смотрите также: Почему двигатели V4 редко встречаются в автомобилях?

 

Таким образом, момент воспламенения топлива в дизельных моторах контролируют топливные форсунки, тогда как в бензиновых моторах, это регулируют свечи зажигания.

 

Стоит отметить, что, как правило, оба типа двигателей используют одинаковую систему выпуска, чтобы выпустить из камеры сгорания скопившиеся газы в результате воспламенения топлива. Это регулируется клапанами путем их открытия / закрытия, которые когда это необходимо и выпускают отработанные газы, направляя их в выхлопную систему автомобиля.

 

Какой двигатель эффективней: Дизель или бензин?

 

 

Дизельные двигатели продолжают совершенствоваться в экологическом плане, постепенно, доказывая, что уровень вредных веществ в выхлопе может быть почти таким же, как в бензиновых автомобилях. Но пока что все равно бензиновые двигатели считаются более экологичными. Но есть в дизельных двигателях неоспоримое преимущество, которое заключается в том, что они, по сравнению с бензиновыми, намного экономичнее.

 

Действительно, в большинстве случаев дизельные двигатели значительно превосходят бензиновые по топливной эффективности. 

 

Это объясняется особенностью температуры самовоспламенения дизельного топлива в камере сгорания. Температура самовоспламенения — это температура, при которой соотношение в смеси кислорода-топлива будет приводить к самовоспламенению топливной смеси.  

 

В бензиновых моторах наоборот важно, чтобы температура в соотношении бензин-кислород в камере сгорания не приводила к самовоспламенению бензина во время сжатия, поскольку это может привести к воспламенению топлива до подачи свечами зажигания искры. Это может привести к повреждению двигателя. 

 

Чтобы этого не происходило, бензиновые моторы имеют довольно низкие коэффициенты сжатия (такт сжатия, когда определенное количество кислорода и бензина попадают в камеру сгорания). Это необходимо чтобы во время сжатия резко не повышалась температура воздуха. 

 

Поскольку дизельные моторы не имеют во время такта сжатия (впуска) в камере сгорания дизельного топлива, они могут сжимать всасываемый кислород намного больше, чем бензиновые двигатели. В результате сильного сжатия воздух в камере сгорания сильно нагревается, после чего в камеру сгорания попадает дизельное топливо, которое в итоге самовоспламеняется.

 

Другим преимуществом эффективности дизельного двигателя является отсутствие дроссельной заслонки. Когда вы нажимаете педаль газа в бензиновом автомобиле, это открывает впускные клапана в двигателе, что позволяет большому количеству воздуха попадать в мотор.

 

Соответственно чем больше кислорода, тем больше энергии образуется в результате воспламенения топлива, которое также в этом случае начинает подаваться в повышенном объеме. Стоит отметить, что этот процесс контролирует компьютер, который и определяет необходимое количество топлива. 

 

В дизельных моторах дроссельные клапаны не нужны. При нажатии педали газа компьютер просто определяет, какое количество топлива необходимо подать в камеру сгорания.

 

В результате этого при работе дизельного мотора теряется не много топлива, в отличие от бензиновых моторов, которые большой процент бензина сжигают зря. 

 

Разница в соотношении топливной смеси: воздух / топливо

 

 

Дизельные двигатели имеют способность работать в очень широком диапазоне соотношения кислорода / топлива в топливной смеси, подаваемой в камеру сгорания.

 

Бензиновые моторы обычно работают в диапазоне от 12 до 18 частей воздуха на 1 часть топлива (по массе).

Обычно это соотношение остается близким к 14,7:1. Дело в том, что при этом коэффициенте соотношения кислорода и топлива, вся топливная смесь полностью сгорает в камере сгорания. 

 

Однако в дизельных моторах все по-другому. Например, как правило, дизельный мотор работает в соотношениях кислорода от 18:1 до 70:1

 

Когда вы нажимаете педаль газа в дизельной машине это приводит к уменьшению соотношения воздух / дизельное топливо за счет увеличения впрыска дизеля в камеру сгорания.

 

Соответственно чем больше топлива, тем больше мощность. Правда когда дизельные моторы работают при низком соотношении кислород / топливо, в процессе сгорания образуется много сажи.

 

Именно поэтому, несмотря на наличие системы очистки, мы часто видим черный дым от грузовиков, когда они трогаются с места. В этот момент водители грузовиков сильно нажимают педаль газа, чтобы сдвинуть с места тяжелую машину.

 

В этот самый момент в дизельный двигатель начинает поступать меньше кислорода, но больше топлива.

 

Помимо этого существует еще множество отличий дизельных моторов от бензиновых. Например, каждый тип мотора по-разному может замедлять транспортное средство при торможении двигателем. 

 

Для получения дополнительной информации посмотрите несколько видео роликов ниже. 

Перед просмотром включите показ субтитров и их перевод.

 

 

Система впрыска дизельного двигателя | автомеханик.ру

Содержание статьи:

  1. Воспламенение дизельного топлива
  2. Нагрев воздуха в камере сгорания
  3. Как происходит воспламенение
  4. Увеличение мощности двигателя
  5. Увеличение объёма воздуха в камере сгорания
  6. Классическая система впрыска топлива
  7. Система Комон рейл
  8. Система common rail принцип работы
  9. Устройство системы комон рейл

Система впрыска дизельного двигателя отличается от бензинового.  В камере сгорания дизельного двигателя происходит воспламенение топлива. В бензиновом поджигается топливная смесь. Приготовленная, вне камеры сгорания и  в определенном соотношении. 

Поэтому воспламенение топлива дизельного двигателя имеет свои особенности. Основываются ни на физических свойствах воздуха и непосредственно дизельного топлива. Эти свойства определяют конструктивные особенности. Различных систем впрыска топлива.

Воспламенение дизельного топлива.

Поршень сжимает воздух в камере сгорания. Поршневая группа позволяет создать компрессию в камере сгорания выше 25 вар. Если это происходит. Температура сжимаемого воздуха поднимается до 700- 900 градусов по цельсию.

Нагрев воздуха в камере сгорания

Нагрев воздуха происходит. Из а того , что при сжатии уменьшаются расстояния  между молекулами воздуха . Молекулы находятся в постоянном движении. И чем меньше между ними расстояние. тем чаще они сталкиваются друг с другом. В результате выделяется большое количество кинетической  энергии. Которая переходит в тепловую.  Чем сильнее давление на воздух тем меньше расстояние между молекулами. Те выше поднимается температура сжимаемого воздуха.

Как происходит воспламенение.

Сжатый воздух нагрет  до температуры 700-900 градусов. В момент когда поршень начинает подходить к верхней мертвой точке. Форсунка впрыскивает топливо под давлением. Топливо распыляется на мелкие капли. Капля от движения начинает испаряться и вокруг неё образуется облако пара.  Температура воспламенения дизельного топлива составляет 350 градусов по Цельсию. То есть при температуре сжатого воздуха  даже в 500 градусов. Пары топлива гарантированно самовоспламеняются.  И от горения начинают расширяться. Создаётся  давление в цилиндре. К моменту когда поршень подойдет к верхней мертвой точке. Топливо воспламенится все полностью и создаст максимальное давление в камере сгорания. Это давление и будет совершать работу двигателя. По мере удаления поршня от верхней мертвой точки топливо догорает.  Создавая тем самым дополнительное давление на поршень.

Качество сгорания топлива во многом определяет давление с которым происходит впрыск топлива в камеру сгорания. Чем быстрее и эффективнее сгорает топливо тем выше создаваемое им давление.  Чем выше давление распыления в форсунках. Тем капли мельче и быстрее движутся. Соответственно быстрее сгорают.  Поэтому при одном и том же объёме камеры сгорания можно достичь повышение мощности двигателя за счет увеличения давления впрыска топлива.

Увеличение мощности двигателя

 Современные системы впрыска позволяют поднять давление распыления до 2000 Вар. Выше создать давление не получается из за конструктивных особенностей двигателя внутреннего сгорания.  То есть двигатель может не справиться с возникающим давлением и разрушится

Увеличение объёма воздуха в камере сгорания

Мощность двигателя можно повысить за счет увеличения объема воздуха поступающего в камеру сгорания. Так как воздух содержит кислород. И чем его больше тем интенсивнее происходит сгорание топлива.  Цилиндр имеет рабочий объём, который изменить нельзя. Но можно в этот объём разместить большее количество воздуха. Если предварительно его сжать.

 Происходит это с помощью турбокрмпрессора.  Он создаёт избыточное давление поступающего в цилиндр воздуха. В результате его попадет большее количество. Если бы поршень закачивал воздух самостоятельно. Но в результате попадания воздуха в турбокомпрессор он нагревается от температуры турбины и от создаваемого им сжатия.  Требуется его охлаждение.

При охлаждении движение молекул замедляется. В результате чего они начинают занимать меньший  объём в пространстве. Технически  охлаждение  воздуха происходит  путем применения радиатора.  Его называют интеркулер. В интеркулере воздух охлаждается встречным потоком воздуха. При движении автомобиля. Сжатый воздух дополнительно охлаждается и подаётся в цилиндры. Но применение интеркулера возможно  только при наличии турбокомпрессора. Потому что если применять его отдельно, он затруднит поступление воздуха в цилиндры. И повышения мощности не произойдет.

Топливо попавшее в цилиндр должно сгореть полностью. От этого зависит эффективная работа двигателя. Безусловно дополнительная порция воздуха помогает это сделать. Но не решает проблемы в целом. Двигатель работает в разных режимах. При увеличении оборотов. Уменьшается время на горение топлива. А не полное его сгорания снижает мощность работы. В связи с уменьшением  возникающего давления на поршень. Автомобили несут на себе разную нагрузку.  При одних и тех же оборотах двигателя требуется разное количество топлива для движения автомобиля. Поэтому постоянно разрабатываются различные системы впрыска топлива.  Которые пытаются более точно регулировать объём поступающего топлива в цилиндры. При работе на разных режимах работы двигателя.

Классическая система впрыска топлива.

Основана на использовании топливного насоса высокого давления. Он распределяет давление топлива по цилиндрам. В зависимости от схемы работы данного двигателя.  Полость ТНВД наполняется топливом при помощи подкачивающего насоса. Который расположен на корпусе ТНВД и приводится в действие от вала ТНВД. Подкачивающий насос закачивает топливо из бака Направляет его в фильтры тонкой очистки. И затем топливо попадает в ТНВД. Полость топливного насоса высоко давления наполняется. В ней находятся плунжерные пары. Они захватывают топливо. И создают высокое давление. Которое и подаётся к форсункам. Форсунка устроена таким образом. Что накапливает получаемое давление от плунжера. И при достижении нужного давления открывает каналы через которые распыляется топливо. Это классическая схема. Насос позволяет менять частоту вращения коленчатого вала двигателя. Путем изменения количества подаваемого топлива в цилиндры.

 Кроме этого некоторые насосы имеют возможность изменять угол опережения зажигания. За счет применения центробежных грузиков. При увеличении числа оборотов двигателя происходит смещение вала насоса относительно привода. Эта система рассчитывается на средние показатели работы двигателя. На различных предполагаемых режимах работы. И не может влиять на не предусмотренные нагрузки. Такие как уменьшение или увеличении перевозимого груза. Спуск подъем. Дорожное покрытие. Количество топлива будет соответствовать только количеств требуемых оборотов двигателя.

Соответственно топлива будет либо не хватать. Либо подаваться избыточное количество. В результате не достигается полное  сгорание топлива в цилиндрах, и как результат низкий коэффициент полезного действия. Влияющий отрицательно на расход топлива и мощность двигателя и показатели экологии. Требования предъявляемые к экологии в конечном итоге оказались главным фактором эволюции системы впрыска. Чем топливо лучше сгорает в камере сгорания. Тем образуется  меньше вредных выбросов окружающую среду. Соответственно чем эффективнее сгорание топлива  лучше характеристики двигателя. Конструктора длительное время усовершенствовали систему впрыска дизельного топлива.

Но всё это были как правило вариации на тему ТНВД. Впрыск топлива производился в полном объёме. Поэтому при работе дизельного  двигателя слышен характерный стук. Воспламеняется топливо поданное в цилиндр, давление возрастает  В ВМТ до максимальной величины. И происходит сильный удар.

Современная система впрыска дизельного двигателя способна производить подачу впрыска в несколько этапов. Как производить производить предварительный поджог  топлива. Предварительная подача топлива называется пилотным впрыском. Когда поршень проходит отметку угла опережения зажигания происходит предварительный впрыск топлива. Небольшое количество топлива загорается. Затем даётся еще какое то количество топлива.

Таких предварительных впрысков может достигать до 5. После  пилотного впрыска происходит основной впрыск. Уже в горящее топливо. Основное количество топлива быстрее загорается  и  сгорает более эффективно. В результате двигатель работает плавно без резких ударов. А более полное сгорание топлива обеспечивает низкий уровень выброса вредных веществ и повышение мощностных характеристик двигателя. Подобный впрыск может обеспечить только система  Комон рейл

Система Комон рейл

Управление впрыском топлива происходит при помощи электронного блока управления. Количество подаваемого топлива учитывается от числа оборотов двигателя, скорости движения и возникающих нагрузок в процессе движения автомобиля. Система впрыска дизельного двигателя комон рейл позволят достичь максимально возможного давления впрыска топлива. Поэтому она и получила широкое распространение на современных двигателях.

Система common rail принцип работы

Насос создаёт высокое давление не для каждой форсунки в отдельности  а для всех сразу. Давление аккумулируется в расширительной трубке рейле.  Все форсунки соединены с рейлом.  Впрыск топлива осуществляется за счет работы электро магнитного клапана в форсунках. Управление клапанами осуществляет электронный блок.  На основании данных которые он получает от датчиков.

  • положение коленчатого  вала
  • положение распределительного вала
  • температуры поступающего воздуха-
  • температуры двигателя
  • давление топлива в рейл
  • количество сгоревшего топлива
  • положение педали газа

В зависимости от полученных данных ЭБУ определяет время открытия и закрытия форсунок. То есть количество необходимого топлива. Угол опережения зажигания.

Достигается максимальное сгорание топлива на разных режимах работы двигателя.

Устройство системы комон рейл

Система комон рейл состоит из элементов низкого и высокого давления топлива.

Элементы низкого давления обеспечивают подачу топлива до насоса высокого давления. Низкое давление является составной частью нагнетания высокого. То есть оно должно иметь определённую величину. Чтобы насос высокого давления эффективно работал.

В систему низкого давления входят топливоподводящие трубки. Фильтра грубой и тонкой очистки топлива. И как правило шестеренный насос низкого давления.

Элементы высокого давления производят нагнетание рабочего давления топлива в камере сгорания.

К ним относятся:

  • Насос высокого давления
  • Подводящие трубки к форсункам
  • Форсунки распыляющие топливо в камере сгорания

В связи с тем что система подводит давление к форсункам одновременно. Затрудняется поиск неисправностей. Если одна форсунка вышла из строя. Например перестала сдерживать рабочее давление. Двигатель работать не сможет. Потеря давления в одной форсунке не позволит создать давление во всей системе.

Неплотное соединение между элементами высокого давления так же позволит создать давление нагнетания.

Например очень часто форсунки подключаются к рейл при помощи удлинителей(морковок) Форсунка имеет конусное отверстие. И в это отверстие прилегает конус удлинителя. Если в соединении трубки удлинителя и форсунки будет повреждение. И трубка не плотно приляжет к форсунке. Давление в системе уже не создаться. И двигатель не заведется.  Все соединения должны быть надёжными и предельно прочными. Попадание малейших частиц грязи приведет к неисправности. Иногда  требуется ремонт форсунок. Их снимают везут в мастерскую. Соединительные трубки остаются в пыли и грязи ждать форсунки. При установке отремонтированных форсунок их прикручивают как они и лежали. Мотор естественно не заводится из за попавшей грязи в форсунки. А винить начинают мастеров. Диагностика неисправности системы впрыска комон рейл производится при помощи тестера. Который считывает коды ошибок выдаваемых электронным блоком. Но этих данных бывает недостаточно для определения истинной причины неисправности.

Система впрыска дизельного двигателя подвергается постоянной эволюции. Связано это с требованиями экологии. По уменьшению  вредных выбросов отработанных газов. А это в свою очередь и есть путь к повышению эффективности работы двигателя и экономии топлива.

Дизельные двигатели

ООО «Компания Дизель» — российский лидер по производству дизельных электростанций (ДЭС) исключительно на основе двигателей европейского / российского производства. Дизельные двигатели – являются ключевым элементом выпускаемых нами дизель-генераторов и силовых приводов. От их качества напрямую зависит надежность и долговечность и потребительские свойства оборудования, которое Вы приобретаете.

Поэтому за 9 лет работы мы рассмотрели, испробовали и протестировали большое количество вариантов, представленных на российском и мировом рынке. Основные критерии, которые мы предъявляли к данному виду комплектующих – это высокое качество сборки (обязательно оригинальная), длительная безотказная работа, топливная экономичность, достаточный диапазон мощностей, по возможности – адаптация к топливу среднего качества, короткие сроки поставок (наличие на складах в России), оптимальная цена.

Нельзя было не учесть высокий спрос среди российских покупателей на дизель-генераторы (ДГУ) на базе отечественных двигателей – крайне простых в обслуживании и ремонте, отлично приспособленных для работы в российских условиях. Для дизельных двигателей зарубежного производства важнейшим критерием также стала развитая официальная сервисная поддержка и доступность оригинальных запчастей в России – чтобы наших покупатели не столкнулись с эксплуатационными проблемами на протяжении всего периода использования дизельных электростанций производства ООО «Компания Дизель».

В результате, сегодня на заводе Компании Дизель под Ярославлем производятся силовое оборудование на основе двигателей 3-х отечественных производителей – ЯМЗ (Россия), ТМЗ (Россия), ММЗ (Беларусь) и дизельных двигателей 6-ти марок зарубежного производства — Scania (Швеция), FPT-Iveco (Италия), John Deere (США, Франция), Perkins (Англия), Volvo Penta (Швеция), Doosan (Южная Корея)

В частности, согласно данному делению, Компанией Дизель сформированы две продуктовые линейки ДЭС:

  • Дизельные электростанции professional (серии ДГУ ЯМЗ, ДГУ ММЗ, ДГУ ТМЗ,). Это оборудование высочайшего уровня сборки от Компании Дизель, отлично приспособленное для выработки электроэнергии в непростых российских условиях – надежное, простое, неприхотливое в эксплуатации. Мощности – от 15 до 400 кВт.
  • Дизельные электростанции Premium (серии ДГУ Scania, ДГУ FPT-Iveco, ДГУ John Deere, ДГУ Perkins, ДГУ Volvo Penta). Это оборудование, собранное по европейским стандартам, из европейских комплектующих – безотказное, очень долговечное (30 000 – 40 000 моточасов), выносливое и экономичное. Это прямой аналог по качеству и функционалу дизельным электростанциям мировых лидеров — Cummins, FG Wilson, Caterpillar, SDMO – по гораздо более «гуманной» цене – без переплаты за бренд и стоимость американской / европейской сборки.

Обращаем внимание, что ООО «Компания Дизель» является единственным в России официальным OEM-производителем электрогенераторов на дизельных двигателях Scania.

По всем перечисленным дизельным двигателям специалисты Компании Дизель готовы оказать полную сервисную поддержку, подобрать и поставить запчасти, «расходники», комплекты ЗИП. Звоните!

двигатель внутреннего сгорания | Определение и факты

Двигатель внутреннего сгорания , любое из группы устройств, в которых реагенты сгорания (окислитель и топливо) и продукты сгорания служат рабочими жидкостями двигателя. Такой двигатель получает энергию за счет тепла, выделяемого при сгорании непрореагировавших рабочих жидкостей, топливно-окислительной смеси. Этот процесс происходит внутри двигателя и является частью термодинамического цикла устройства. Полезная работа, создаваемая двигателем внутреннего сгорания (ВС), является результатом воздействия горячих газообразных продуктов сгорания на движущиеся поверхности двигателя, такие как поверхность поршня, лопатка турбины или сопло.

Двигатель внутреннего сгорания

Двигатель внутреннего сгорания автомобиля.

© Роб Байрон / Shutterstock.com

Британская викторина

Изобретатели и изобретения

Наши самые ранние человеческие предки изобрели колесо, но кто изобрел шарикоподшипник, уменьшающий трение вращения? Позвольте колесам в вашей голове крутиться, проверяя свои знания об изобретателях и их изобретениях в этой викторине.

Двигатели внутреннего сгорания являются наиболее широко применяемыми и широко используемыми энергогенерирующими устройствами из существующих в настоящее время. Примеры включают бензиновые двигатели, дизельные двигатели, газотурбинные двигатели и ракетные двигательные установки.

автомобильный плуг

Железный колесный «Фордсон» Генри Форда был представлен в 1907 году и приводился в движение двигателем внутреннего сгорания.

© Everett Historical / Shutterstock.com

Двигатели внутреннего сгорания делятся на две группы: двигатели непрерывного сгорания и двигатели периодического сгорания.Двигатель непрерывного внутреннего сгорания характеризуется стабильным поступлением топлива и окислителя в двигатель. Внутри двигателя (например, реактивного двигателя) поддерживается стабильное пламя. Двигатель прерывистого сгорания характеризуется периодическим воспламенением воздуха и топлива и обычно называется поршневым двигателем. Отдельные объемы воздуха и топлива обрабатываются циклически. Бензиновые поршневые двигатели и дизельные двигатели являются примерами этой второй группы.

бензиновые двигатели

Типы бензиновых двигателей включают (A) двигатели с оппозитными поршнями, (B) роторные двигатели Ванкеля, (C) рядные двигатели и (D) двигатели V-8.

Encyclopædia Britannica, Inc.

Двигатели внутреннего сгорания можно разделить на ряд термодинамических явлений. В двигателе непрерывного сгорания термодинамические события происходят одновременно, так как окислитель, топливо и продукты сгорания постоянно проходят через двигатель. В двигателе прерывистого сгорания, напротив, события происходят последовательно и повторяются для каждого полного цикла.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.Подпишитесь сейчас

За исключением ракет (как твердотопливных ракетных двигателей, так и жидкостных ракетных двигателей), двигатели внутреннего сгорания заглатывают воздух, затем либо сжимают воздух и вводят топливо в воздух, либо подают топливо и сжимают топливно-воздушную смесь. Затем, как и во всех двигателях внутреннего сгорания, сжигается топливно-воздушная смесь, работа извлекается из расширения горячих газообразных продуктов сгорания, и в конечном итоге продукты сгорания выбрасываются через выхлопную систему.Их работа может быть противопоставлена ​​работе двигателей внешнего сгорания (например, паровых двигателей), в которых рабочая жидкость не вступает в химическую реакцию, а выигрыш энергии достигается исключительно за счет передачи тепла рабочему телу посредством теплообменника.

Пневматические двигатели

Часть воздуха, всасываемого ТРДД (вверху), поступает в компрессор; остальное обходит главный двигатель. В турбовинтовых двигателях (внизу) горячие газы приводят в действие турбину, которая приводит в действие компрессор и гребной винт и обеспечивает реактивную тягу.

Encyclopædia Britannica, Inc.

Наиболее распространенным двигателем внутреннего сгорания является четырехтактный бензиновый двигатель с однородным зарядом и искровым зажиганием. Это связано с его выдающимися характеристиками в качестве основного двигателя в отрасли наземного транспорта. Двигатели с искровым зажиганием также используются в авиационной промышленности; однако авиационные газовые турбины стали основным двигателем в этом секторе из-за того, что авиационная промышленность делает упор на дальность полета, скорость и комфорт пассажиров.Сфера двигателей внутреннего сгорания также включает такие экзотические устройства, как сверхзвуковые прямоточные воздушно-реактивные двигатели внутреннего сгорания (ГПВРД), например, предложенные для гиперзвуковых самолетов, и сложные ракетные двигатели и двигатели, такие как те, что используются на космических челноках США и других космических аппаратах.

Сгорание в дизельных двигателях

Сгорание в дизельных двигателях

Ханну Яэскеляйнен, Магди К. Хаир

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Abstract : В дизельных двигателях топливо впрыскивается в цилиндр двигателя ближе к концу такта сжатия. Во время фазы, известной как задержка воспламенения, распыляемое топливо распыляется на мелкие капли, испаряется и смешивается с воздухом. По мере того, как поршень продолжает двигаться ближе к верхней мертвой точке, температура смеси достигает температуры воспламенения топлива, вызывая воспламенение некоторого количества предварительно смешанного топлива и воздуха.Остаток топлива, которое не участвовало в сгорании с предварительной смесью, расходуется на фазе сгорания с регулируемой скоростью.

Компоненты процесса горения

Сгорание в дизельных двигателях очень сложно, и до 1990-х годов его подробные механизмы не были хорошо изучены. В течение десятилетий его сложность, казалось, не поддавалась попыткам исследователей раскрыть его многочисленные секреты, несмотря на доступность современных инструментов, таких как высокоскоростная фотография, используемая в «прозрачных» двигателях, вычислительная мощность современных компьютеров и множество математических моделей, предназначенных для имитации горения в дизельном топливе. двигатели.Применение лазерного изображения к обычному процессу сжигания дизельного топлива в 1990-х годах было ключом к значительному углублению понимания этого процесса.

В этой статье мы рассмотрим наиболее распространенную модель сгорания для обычного дизельного двигателя . Это «обычное» сгорание дизельного топлива в первую очередь регулируется смешиванием, возможно, с некоторым сгоранием с предварительным смешиванием, которое может происходить из-за смешивания топлива и воздуха перед зажиганием. Это отличается от стратегий сжигания, которые пытаются значительно увеличить долю происходящего горения предварительно приготовленной смеси, например, различные ароматы низкотемпературного горения.

Основная предпосылка сжигания дизельного топлива — это его уникальный способ высвобождения химической энергии, хранящейся в топливе. Для выполнения этого процесса кислород должен поступать в топливо определенным образом, чтобы способствовать сгоранию. Одним из наиболее важных аспектов этого процесса является смешивание топлива и воздуха, которое часто называют подготовка смеси .

В дизельных двигателях топливо часто впрыскивается в цилиндр двигателя ближе к концу такта сжатия, всего на несколько градусов угла поворота коленчатого вала до верхней мертвой точки [391] .Жидкое топливо обычно впрыскивается с высокой скоростью в виде одной или нескольких струй через небольшие отверстия или сопла в наконечнике инжектора. Он распыляется на мелкие капельки и проникает в камеру сгорания. Распыленное топливо поглощает тепло из окружающего нагретого сжатого воздуха, испаряется и смешивается с окружающим высокотемпературным воздухом под высоким давлением. По мере того как поршень продолжает приближаться к верхней мертвой точке (ВМТ), температура смеси (в основном воздуха) достигает температуры воспламенения топлива. Быстрое воспламенение некоторого количества предварительно смешанного топлива и воздуха происходит после периода задержки зажигания.Это быстрое зажигание считается началом сгорания (также концом периода задержки зажигания) и отмечается резким повышением давления в цилиндре по мере сгорания топливно-воздушной смеси. Повышенное давление, возникающее в результате предварительно смешанного сгорания, сжимает и нагревает несгоревшую часть заряда и сокращает задержку перед воспламенением. Это также увеличивает скорость испарения оставшегося топлива. Распыление, испарение, смешивание паров топлива с воздухом и сгорание продолжаются до тех пор, пока все впрыскиваемое топливо не сгорит.

Сгорание дизельного топлива характеризуется обедненным общим соотношением A / F. Наименьшее среднее соотношение A / F часто наблюдается в условиях максимального крутящего момента. Чтобы избежать чрезмерного дымообразования, соотношение A / F при пиковом крутящем моменте обычно поддерживается выше 25: 1, что намного выше стехиометрического (химически правильного) отношения эквивалентности около 14,4: 1. В дизельных двигателях с турбонаддувом соотношение A / F на холостом ходу может превышать 160: 1. Следовательно, избыточный воздух, присутствующий в цилиндре после сгорания топлива, продолжает смешиваться с горящими и уже сгоревшими газами в процессе сгорания и расширения.При открытии выпускного клапана происходит выброс лишнего воздуха вместе с продуктами сгорания, что объясняет окислительный характер выхлопных газов дизельных двигателей. Хотя сгорание происходит после того, как испаренное топливо смешивается с воздухом, образует локально богатую, но горючую смесь, и достигается надлежащая температура воспламенения, общее соотношение A / F бедное. Другими словами, большая часть воздуха, подаваемого в цилиндр дизельного двигателя, сжимается и нагревается, но никогда не участвует в процессе сгорания. Кислород в избыточном воздухе способствует окислению газообразных углеводородов и окиси углерода, снижая их концентрацию в выхлопных газах до чрезвычайно малых.

Следующие факторы играют основную роль в процессе сгорания дизельного топлива:

  • Модель нагнетаемого воздуха , его температура и кинетическая энергия в нескольких измерениях.
  • Распыление , проницаемость, температура и химические характеристики впрыскиваемого топлива .

Хотя эти два фактора являются наиболее важными, существуют и другие параметры, которые могут существенно повлиять на них и, следовательно, играть второстепенную, но все же важную роль в процессе горения.Например:

  • Конструкция впускного канала , которая оказывает сильное влияние на движение наддувочного воздуха (особенно при его поступлении в цилиндр) и, в конечном итоге, на скорость смешения в камере сгорания. Конструкция впускного канала также может влиять на температуру наддувочного воздуха. Это может быть достигнуто за счет передачи тепла от водяной рубашки нагнетаемому воздуху через площадь поверхности впускного отверстия.
  • Размер впускного клапана , который контролирует общую массу воздуха, вводимого в цилиндр за конечный промежуток времени.
  • Степень сжатия , которая влияет на испарение топлива и, следовательно, на скорость смешивания и качество сгорания.
  • Давление впрыска , которое контролирует продолжительность впрыска для данного размера отверстия сопла.
  • Геометрия отверстия сопла (длина / диаметр), которая контролирует проникновение струи, а также распыление.
  • Геометрия распылителя , которая напрямую влияет на качество сгорания за счет использования воздуха. Например, при большем угле распылительного конуса топливо может располагаться наверху поршня и за пределами чаши сгорания в дизельных двигателях DI с открытой камерой.Это состояние может привести к чрезмерному дыму (неполному сгоранию) из-за лишения топлива доступа к воздуху, имеющемуся в чаше сгорания (камере). Большой угол конуса также может привести к разбрызгиванию топлива на стенки цилиндра, а не внутри камеры сгорания, где это необходимо. Топливо, разбрызгиваемое на стенку цилиндра, в конечном итоге соскребает вниз в масляный поддон, где сокращает срок службы смазочного масла. Поскольку угол распыления является одной из переменных, влияющих на скорость смешивания воздуха с топливным жиклером рядом с выходным отверстием форсунки, он может оказывать значительное влияние на общий процесс сгорания.
  • Конфигурация клапана , который регулирует положение форсунки. Двухклапанные системы обеспечивают наклонное положение форсунки, что подразумевает неравномерное распыление, что приводит к нарушению смешивания топлива и воздуха. С другой стороны, конструкции с четырьмя клапанами допускают вертикальную установку форсунок, симметричное расположение распылителей топлива и равный доступ к доступному воздуху для каждого из распылителей топлива.
  • Положение верхнего поршневого кольца , которое регулирует мертвое пространство между верхней контактной площадкой поршня (область между верхней канавкой поршневого кольца и верхней частью днища поршня) и гильзой цилиндра.Это мертвое пространство / объем улавливает воздух, который сжимается во время такта сжатия и расширяется, даже не участвуя в процессе сгорания.

Поэтому важно понимать, что система сгорания дизельного двигателя не ограничивается чашей сгорания, распылителями форсунок и их непосредственным окружением. Скорее, он включает в себя любую часть, компонент или систему, которые могут повлиять на конечный результат процесса сгорания.

###

PPT — Двигатели внутреннего сгорания — Презентация Diesel PowerPoint

  • Двигатели внутреннего сгорания — Дизель

  • Цели • Использование для двигателей внутреннего сгорания • Применяемые термодинамические принципы • Компоненты и назначение каждого • Работа систем • Двухтактные двигатели • Четырехтактные двигатели

  • Diesel is a Hacker

  • Использует двигатель • Аварийные дизельные генераторы (EDG) • Силовая установка • Некоторые десантные корабли • Противоминные корабли • Патрульные катера • Буксиры • Небольшие лодки • Подвесные моторы

  • Принципы термодинамики • Полностью внутреннее сгорание • Открытый цикл, подогреваемый двигатель • Бензиновый двигатель (Otto) • Искровое зажигание • Сжимает воздушно-топливную смесь • Дизельный двигатель • Компрессорное зажигание • Сжимает только воздух

  • Конструктивные элементы • Блок цилиндров • Часть Рама двигателя, содержащая цилиндры, в которых движется поршень • Поддерживает гильзы и головку

  • Конструктивные элементы • Головка цилиндра / узел • Служит для впуска, ограничения и выпуска топлива / воздуха • Крышка блока цилиндров • Поддерживает клапанный механизм • Картер • Секция рамы двигателя, в которой находится коленчатый вал • Масляный поддон • Резервуар для сбора и хранения смазочного масла

  • Движущиеся компоненты • Три группы — в зависимости от движения • Только возвратно-поступательное движение (поршни и клапаны) • Возвратно-поступательное движение (шатуны) • Только вращающиеся (коленчатые и распределительные валы)

  • Движущиеся компоненты • Поршень • Воздействует на газы сгорания • Легкий, но прочный / долговечный • Поршневые кольца • Передача тепла от поршня к цилиндру • Герметизация цилиндра и распределение смазочного масла • Поршневой палец • Точка поворота, соединяющая поршень с шатуном • Шатун • Соединяет поршень и коленчатый вал • возвратно-поступательное движение

    900 83
  • Движущиеся компоненты • Коленчатый вал • Объединяет работу, выполняемую каждым поршнем • Приводит в движение распределительные валы, генератор, насосы и т. Д.• Маховик • Поглощает и высвобождает кинетическую энергию ходов поршня -> сглаживает вращение коленчатого вала

  • Движущиеся компоненты • Клапаны • Впуск: открыт для впуска воздуха в цилиндр (с топливом в цикле Отто) • Выпуск: открыт для впуска газов должен быть отклонен • Распредвал и кулачки • Используется для добавления впускных и выпускных клапанов по времени • Управляет клапанами с помощью толкателей и коромысел

  • Операция • Повышенное давление газов сгорания действует на поршень -> преобразуется во вращательное движение • Может быть 2- или 4-тактными двигателями • 2-тактный: 1 рабочий ход на 1 оборот коленчатого вала • 4-тактный: 1 рабочий ход на 2 оборота коленчатого вала

  • Эксплуатация • Ход двигателя • Ход — это одинарный ход цилиндра поршнем (от ВМТ до НМТ) • 1 оборот коленчатого вала = 2 хода поршня

  • Четырехтактный дизельный двигатель • Такт впуска • Впускной клапан открыт, выпускной клапан закрыт • Поршень tr Переходит от ВМТ к НМТ • Воздух всасывается • Ход сжатия • Впускные и выпускные клапаны закрываются • Поршень перемещается от НМТ к ВМТ • Повышение температуры и давления воздуха

  • Четырехтактный дизельный двигатель • Рабочий ход • Впуск и выпуск клапаны закрываются • Топливо впрыскивается в цилиндр и воспламеняется • Поршень перемещается из ВМТ в НМТ • Ход выпуска • Впускной клапан закрыт, выпускной клапан открыт • Поршень перемещается из НМТ в ВМТ • Выхлопные газы выбрасываются

  • Четырехтактный дизельный двигатель • Такты • Впуск • Сжатие • Мощность • Выпуск

  • Двухтактный дизельный двигатель • 1 рабочий ход на каждый оборот коленчатого вала (т. Е. Каждые два при 4-тактном двигателе) • Использует сжатый воздух для одновременной подачи нового воздуха и удаления продуктов сгорания • Удаление продувки • Выпускной клапан открыт, впускное отверстие открыто • Воздух под давлением входит, удаляет газообразные продукты сгорания • Поршень около BDC

  • Двухтактный дизельный двигатель • Сжатие • Впускные и выпускные клапаны закрываются • Поршень перемещается из НМТ в ВМТ • Повышение температуры и давления воздуха • Рабочий ход • Впускные и выпускные клапаны закрываются • Топливо впрыскивается в цилиндр и воспламеняется • Поршень принудительно из ВМТ до НМТ

  • Двухтактный дизельный двигатель • Такты • Компрессия • Мощность • (Впуск / Выпуск)

  • Два vs.Четырехтактные двигатели • Преимущества двухтактных • Более высокое соотношение мощности и веса • Менее сложный клапанный механизм • Преимущества четырехтактных двигателей • Более эффективный процесс горения • По мере увеличения габаритов соотношение мощности и веса улучшается

  • Бензин vs . Дизельный двигатель

  • Вспомогательные системы • Воздушная система • Подает и удаляет воздух / газы • Воздух, подаваемый при постоянном давлении вентилятором / компрессором • Топливная система • Карбюратор: смешивает воздух и топливо в надлежащих пропорциях (НЕ на дизелях) • Топливная форсунка: распыляет топливо (более эффективно)

  • Вспомогательные системы • Система зажигания • Дизель имеет воспламенение от сжатия • Бензин имеет свечи зажигания • Система охлаждения • Использует пресную и / или соленую воду для охлаждения • Система смазки • Обеспечьте смазку и охлаждение • Привод — прямой или косвенный

  • Меры предосторожности • Шум • Воспламеняемость топлива • Техническое обслуживание • Проблемы с водой

    9 0083
  • Вопросы?

  • Альтернативные виды топлива для двигателей внутреннего сгорания

    1.Введение

    Масло является бесспорным крупнейшим источником энергии для двигателей внутреннего сгорания (ДВС). Однако быстрое истощение запасов нефти из-за увеличения количества транспортных средств, выбросов загрязняющих веществ в продуктах сгорания, которые угрожают экологической системе, и опасения по поводу надежности поставок из-за неравномерно распределенных запасов нефти по всему миру, из которых около 50 % находится на Ближнем Востоке, поощряет поиск источников топлива, которые являются более экологически чистыми и имеют обширные запасы в мире [1].

    Бензин и дизельное топливо, которые производятся из сырой нефти, также могут быть получены синтетически из газов CO и H 2 методом, обнаруженным немецкими химиками Францем Фишером и Гансом Тропшем в 1923 году. Синтез Фишера-Тропша, запатентованный с тех пор метод. 1926, обеспечивает получение синтетического жидкого топлива из многих видов углеродного и водородного сырья. Обычно уголь, природный газ и метан используются для получения больших количеств газов CO и H 2 , которые необходимы для реакций синтеза.Сегодня Германия, Индия, Китай и Южная Африка, располагающие крупными запасами угля, производят коммерчески синтетическое топливо с синтезом Фишера-Тропша [2, 3, 4]. Однако, поскольку состав синтетического бензина и дизельного топлива аналогичен составу природного бензина и дизельного топлива, их влияние на выбросы загрязняющих веществ в результате транспортных средств также аналогично.

    В этой главе, с целью снижения выбросов загрязняющих веществ в результате работы двигателей внутреннего сгорания, описываются характеристики водорода, природного газа, ацетилена и этанола, которые являются альтернативными видами топлива и могут использоваться без конструктивных изменений двигателей SI и CI, и их влияние на характеристики двигателя и выбросы выхлопных газов.Физические и химические характеристики бензина, дизельного топлива и альтернативных видов топлива, упомянутых в этой главе, показаны в таблице 1.

    7
    Свойства Ацетилен Водород CNG Бензин Дизель
    Формула C 2 H 2 H 2 CH 4 C 4 –C 12 C 8 –C 20
    Плотность (1 атм, 20 ° C (кг / м 3 )) 1.092 0,08 0,65 809,9 720–780 820–860
    Температура самовоспламенения (° C) 305 572 540 3632 540 363
    Стехиометрическое соотношение (кг / кг) 13,2 34,3 17,2 9 14,7 14,5
    Октановое число двигателя 45–3 105324 45–50 95–97
    Пределы воспламеняемости в воздухе (% об.) 2,5–81 4–74,5 5,3–15 3–19 1,4–7,6 0,6 –5,5
    Температура адиабатического пламени (K) 2500 2400 2320 2193 2300 2200
    Мин. Диаметр закалки (мм) 0,85 0,9 3,53 2.97 2,97
    Мин. энергия воспламенения (МДж) 0,019 0,02 0,29 0,23 0,23
    Максимальная скорость пламени (м / с) 1,5
    3,5 0,42 0,3
    Нижняя теплотворная способность (кДж / кг) 48,225 120,000 49,990 26,700 43.000 42,500

    Топливо, используемое в ДВС, обычно производится из первичных ресурсов. Чтобы преобразовать источник в топливо и доставить это топливо к транспортному средству, проводится анализ от скважины к резервуару (WTT) с точки зрения потребления энергии и выбросов парниковых газов. Балансы энергии и парниковых газов, полученные на основе анализа WTT на основе 2010–2020 + годов для альтернативных видов топлива в ЕС, показаны в таблице 2. Когда таблица 2 исследуется в соответствии с типами топлива, максимальная энергия потребляется для производства газообразного водорода и минимальные затраты энергии на бензиновое топливо.С другой стороны, когда таблица 2 сравнивается с точки зрения ресурсов, наибольшее потребление энергии получается как 3,11 МДж / МДж при использовании электролиза при производстве водорода, в то время как наименьшее потребление энергии составляет 0,1 МДж / МДж при производстве должен газ убирать из географии ЕС. Из таблицы 2 видно, что наибольшее значение CO 2 образуется при получении газообразного водорода, а наименьшее значение выбросов выделяется для бензинового топлива. Что касается ресурсов, то при производстве водорода из угля наибольшее значение выбросов парниковых газов составляет 237 г CO 2 / МДж, а наименьшее количество парниковых газов составляет 3.3 г CO 2 / МДж при производстве синтетического природного газа из ветровой электроэнергии.

    9032
    Топливо Ресурс Затраченная энергия [МДж / МДж топливо] Выбросы парниковых газов [г CO 2 / МДж]
    13,8
    Дизель Сырая нефть 0,20 15,4
    Природный газ EU-mix NG 0.17 13,0
    Импортированный НГ 7000 км 0,29 22,6
    Импортируемый НГ 4000 км 0,21 16,1
    9032 9032 9032 90le 0,10 7,8
    Синтетическое из ветряной электроэнергии 1,05 3,3
    Этанол Сахар * 1,20 28.4
    Пшеница * 1,31 55,6
    Прочее * 1,66 41,4
    Водород Природный газ * 11819 1,10 237
    Биомасса * 1,05 14,6
    Электроэнергия * 3,11 190

    Таблица 2.

    Баланс энергоносителей и парниковых газов в ЕС 2020+) [154].

    2. Ацетилен

    Ацетилен использовался в качестве топлива в двигателях внутреннего сгорания в начале 1900-х годов. В 1901 году Гюстав Уайтхед использовал двигатель мощностью 15 кВт, приводимый в движение ацетиленом, на своем летательном аппарате. К 1940-м годам ацетилен начал использоваться в автомобилях. В те годы было выдано около 4000 лицензий на перевод автомобилей на альтернативные виды топлива, причем более половины из них приходилось на перевод на ацетилен [5]. В настоящее время ацетилен используется только в металлургической и химической промышленности и не используется в автомобилях.Тем не менее, экспериментальные исследования по использованию ацетилена в ДВС в последние годы набирают обороты из-за высокой скорости пламени и плотности энергии.

    Ацетилен был впервые открыт Эдмундом Дэви в 1836 году. Но впоследствии о нем забыли. Марселлен Бертло заново открыл это углеводородное соединение в 1860 году. Он придумал этому соединению название «ацетилен» [6].

    Ацетилен, первый член алкинов (C n H 2n − 2 ), представляет собой газ без цвета и запаха, но с запахом, похожим на запах чеснока, если он получен из карбида кальция.Газообразный ацетилен в природе не встречается в больших количествах, но обычно его получают в результате реакции карбида кальция с водой [7]. Карбид кальция (CaC 2 ) получают нагреванием смеси негашеной извести и кокса в электродуговых печах до 2000–2100 ° C. Негашеную известь (CaO) получают путем нагревания карбоната кальция (CaCO 3 ) примерно до 900 ° C. На рис. 1 схематически представлена ​​комплексная установка по производству карбида кальция [8]. Более того, процессы видны в уравнениях.(1) и (2) [8, 9, 10].

    Рисунок 1.

    Комплексное производство карбида кальция [8].

    CaCO3 + тепло → CaO + CO2E1

    CaO + 3C → CaC2 + COE2

    Ацетилен имеет более высокую скорость пламени и плотность энергии, чем бензин и дизельное топливо [11], следовательно, ацетиленовые двигатели могут больше приблизиться к термодинамически идеальному КПД цикла двигателя. Но октановое число ацетилена ниже, чем у других видов топлива, которые используются в двигателях внутреннего сгорания [12]. Поэтому максимальный расход ацетилена ограничивается началом детонации.Более низкая энергия воспламенения, высокая скорость пламени, широкие пределы воспламеняемости и более низкое октановое число приводят к преждевременному воспламенению и нежелательному явлению горения, называемому детонацией [13, 14]. Это основные проблемы, возникающие при использовании ацетилена в качестве топлива в двигателях внутреннего сгорания.

    В двигателях SI ацетилен и бензин впрыскиваются во впускной коллектор или непосредственно в цилиндр, и смесь воспламеняется свечой зажигания в конце такта сжатия. В дизельных двигателях ацетилен либо всасывается вместе с всасываемым воздухом, либо впрыскивается непосредственно в цилиндр и сжимается.Однако смесь ацетилен-воздух не самовоспламеняется из-за очень высокой температуры самовоспламенения. Небольшое количество дизельного топлива, называемого пилотным топливом, впрыскивается в смесь в конце такта сжатия. Пилотное дизельное топливо автоматически воспламеняется первым и воспламеняет смесь ацетилена с воздухом, такую ​​как свеча зажигания. Таким образом, двухтопливные дизельные двигатели сочетают в себе черты двигателей SI и CI [15, 16, 17].

    Основные преимущества использования ацетилена в качестве бензин-ацетиленовых смесей в двигателях SI [5, 18, 19, 20, 21]:

    • Смеси ацетилена и бензина могут использоваться в двигателях SI при любой нагрузке от низкой до полной. нагрузка.Однако его также можно использовать в качестве единственного топлива при частичных нагрузках.

    • Если ацетилен смешать с бензином в стехиометрических условиях, это приведет к снижению расхода бензина при постоянной выходной мощности, как показано в таблице 3. В то же время, как видно на рисунке 2, выбросы углеводородов были значительно сокращены. нагрузок и, как видно на Рисунке 3, выбросы NO снизились при полной нагрузке в соответствии с работой с бензином [18]. Экспериментальные исследования [18] проводились при 1500 об / мин и стехиометрическом соотношении в условиях 25, 50, 75% и полной нагрузки.Ацетилен впрыскивался во впускной коллектор испытательного двигателя через газовую форсунку 500 и расход газа 1000 г / ч.

    • Ацетилен увеличивает предел плохого сгорания при частичных нагрузках в двигателях SI. Двигатель может работать в обедненных условиях на бензино-ацетиленовых смесях. Как видно на рисунках 4 и 5, термический КПД двигателя увеличивается, а удельный расход топлива уменьшается. Кроме того, при высоких коэффициентах эквивалентности наблюдаются довольно низкие выбросы выхлопных газов.Выбросы NO практически отсутствуют, поскольку в обедненных топливно-воздушных смесях температура в цилиндрах снижается, а выбросы несгоревших углеводородов значительно снижаются по сравнению с работой на бензине в двигателях SI, как это видно на рисунках 6 и 7. С использованием ацетилена в качестве альтернативы. топлива в двигателях SI, загрязнение воздуха от автомобилей с двигателями SI в крупных городах может быть значительно снижено [19].

    • Ацетилен работает в дизельных двигателях с двухтопливным режимом за счет небольшой модификации двигателя и при этом снижает выбросы NOx, HC, CO и CO 2 , способствуя значительному снижению расхода дизельного топлива [16].Ацетилен нельзя использовать в качестве единственного топлива в дизельных двигателях из-за высокой степени сжатия. В этом исследовании испытания проводились на четырехтактном дизельном двигателе с номинальной выходной мощностью 4,4 кВт при 1500 об / мин с небольшими изменениями во впускном коллекторе для крепления газового инжектора. Расход газа 110, 180 и 240 г / ч и оптимизированное время впрыска устанавливались с помощью ЭБУ. В таблице 4 показано соотношение доли энергии дизельного топлива и ацетилена при расходе 240 г / ч [16].

    • В странах с большими запасами угля и небольшими запасами нефти или без них ацетилен может использоваться в автомобилях, которые составляют большую часть транспортных потоков.Таким образом можно уменьшить потребность страны в нефти.

    Таблица 3.

    Массовые потоки топлива, пиковое давление и опережение искры [18].

    * 2 CA после верхней мертвой точки

    Рисунок 2.

    Разновидность HC с тормозным усилием (1500 об / мин, различные нагрузки) [18].

    Рисунок 3.

    Разновидность NO с тормозным усилием (1500 об / мин, разные нагрузки) [18].

    Рисунок 4.

    Изменение BTE с коэффициентом избытка воздуха (1500 об / мин, нагрузка 25%) [19].

    Рисунок 5.

    Вариация BSFC с коэффициентом избытка воздуха (1500 об / мин, нагрузка 25%) [19].

    Рисунок 6.

    Изменение количества NO в зависимости от коэффициента избытка воздуха (1500 об / мин, нагрузка 25%) [19].

    Рисунок 7.

    Вариация UHC с коэффициентом избытка воздуха (1500 об / мин, нагрузка 25%) [19].

    Нагрузка (%) Энергетический эквивалент дизельного топлива (кВт) Энергетический эквивалент ацетиленового топлива (кВт) Энергетическая доля газа (%) Энергетическая доля дизельного топлива ( %)
    0 4.01 3,21 44 56
    25 5,31 3,21 38 62
    50 7,79 9,33 3,21 26 74
    100 10,39 3,21 24 76

    Таблица 4. Соотношение

    и доли энергии [16].

    Основные недостатки ацетилена как альтернативного моторного топлива [22, 23, 24, 25, 26]:

    • Ацетилен — очень взрывоопасный газ, чувствительный к давлению и температуре. По этой причине в транспортных средствах, которые используют ацетилен в качестве топлива, следует серьезно относиться к мерам безопасности, и их не следует парковать в закрытых помещениях.

    • Ацетилен — это топливо с очень низкой энергией воспламенения, которое может вызвать возгорание во впускном коллекторе.

    • Поскольку детонационная стойкость ацетилена низкая, во избежание детонации необходимо точно отрегулировать соотношение воздух-топливо.

    • Ацетилен может использоваться в качестве единственного топлива в двигателях SI только в условиях очень бедной топливовоздушной смеси. В очень обедненных условиях мы не можем получить от двигателя максимальную мощность.

    • Хранение ацетилена в автомобилях — нерешенная проблема. Поскольку ацетилен разлагается под давлением 2,5 бар, его нельзя хранить в виде сжатого газа, как другие газы. Ацетилен хранится растворенным в ацетоне, содержащемся в металлическом цилиндре с пористым наполнителем под давлением 18 бар.Когда баллоны с ацетиленом пусты, заполнение на месте невозможно. Следовательно, разборка и монтаж цилиндра являются серьезным недостатком. Несмотря на то, что баллоны из ацетилена изготавливаются разных размеров, вместимость 8,7 м 3 имеет объем около 60 литров и средний вес (полный) 70 кг [27]. Эта ситуация вызывает большие трудности на практике.

    • Другой метод — это производство ацетилена из карбида, как в 1940-х годах, и использование его без хранения. Этот метод требует сложной системы, как показано на рисунке 1.Утилизация остатка, называемого гидроксидом кальция, является еще одной важной проблемой бортовой топливной системы.

    3. Природный газ

    Природный газ — это ископаемое топливо, обнаруженное в природных заповедниках, связанное или не связанное с нефтью [28]. Стоимость получения от природы ниже, чем у других ископаемых видов топлива. Природный газ состоит примерно на 90% из метана, 3% этана, 3% азота, 2% пропана и других газовых примесей. Метан, который всегда является доминирующим компонентом природного газа, является первым членом семейства алканов.Благодаря высокому соотношению H / C природный газ известен как самое чистое топливо из ископаемых видов топлива. Благодаря своим экологическим преимуществам во многих странах городские автобусы работают с двигателями, работающими на природном газе. Газ CO 2 , содержание которого в атмосфере обычно должно составлять от 180 до 280 частей на миллион, по состоянию на сентябрь 2018 года достиг 405 частей на миллион из-за чрезмерного использования ископаемого топлива [29]. Поэтому многие страны поощряют использование в транспортных средствах природного газа вместо бензина и дизельного топлива. Поскольку природный газ идеально смешивается с воздухом, он легко воспламеняется, обеспечивает чистое сгорание и дает большое количество тепла.Тепловой КПД двигателей, работающих на природном газе, выше, чем у бензиновых двигателей, так как эти двигатели имеют более высокую степень сжатия, чем бензиновые двигатели [28, 29, 30, 31, 32, 33, 34, 35].

    В отличие от бензиновых и дизельных двигателей, двигатели внутреннего сгорания, работающие на природном газе, не требуют обогащения топлива при холодном запуске, а выбросы выхлопных газов не зависят от низких температур. Транспортные средства, работающие на природном газе (NGV), производят выбросы ниже нормы EURO 6 в соответствии с транспортными средствами, использующими топливо, полученное из нефти [30].

    Согласно отчету NGV Global, количество газомоторных автомобилей и заправочных станций в мире быстро растет (Рисунки 8 и 9). По данным на 2018 год, Китай занимает первое место в парке газомоторных автомобилей с 6080000 автомобилей и 8400 АЗС. По количеству газомоторного топлива Иран, Индия и Пакистан идут после Китая. Общее количество газомоторных автомобилей на июнь 2018 г. достигло 26 130 000 [31].

    Рисунок 8.

    Количество автомобилей, работающих на природном газе в мире по годам [31].

    Рисунок 9.

    Количество газозаправочных станций в мире по годам [31].

    Самый большой недостаток для сектора транспортировки природного газа — это проблема хранения природного газа. Природный газ легче воздуха. Хотя плотность воздуха на уровне моря при 15 ° C составляет 1,225 кг / м 3 , хотя плотность природного газа зависит от его состава, она составляет около 0,71 кг / м 3 . Поскольку природный газ является легким газом, плотность энергии на единицу объема невысока, и для обеспечения разумного расстояния перемещения объем хранилища следует выбирать большим.К счастью, технология развилась, и природный газ начал храниться в стальных или углеродных трубах под давлением 200 бар с помощью компрессоров высокого давления. Парковка автомобилей на природном газе в закрытых помещениях опасна из соображений безопасности. В настоящее время автомобили с двигателями, работающими на природном газе, имеют запас хода более 300 миль с одной заправкой. Кроме того, природный газ не является возобновляемым источником энергии, как другие ископаемые виды топлива [35, 36, 37].

    Высокая детонационная стойкость природного газа позволяет использовать его в двигателях с более высокой степенью сжатия по сравнению с бензиновыми двигателями.Эксплуатация автомобилей, работающих на природном газе, при более высоких степенях сжатия, чем автомобили с бензиновым двигателем, увеличивает термический КПД. Как видно на Рисунке 10, при испытаниях, проведенных при различных степенях сжатия природного газа и смесей природного газа с водородом (HCNG), был получен минимальный расход топлива для степени сжатия 12,5. На рисунке 11 показано, что выбросы THC ниже стандартов Euro VI во всех степенях сжатия [30]. Эксперименты проводились на доработанном дизельном двигателе, имеющем 9.6, 12,5 и 15 различных степеней сжатия при 1500 об / мин в условиях полной нагрузки, работающих на смеси обогащенного водородом сжатого природного газа (100% CNG, 95% CNG + 5% H 2 , 90% CNG + 10% H 2 и 80% CNG + 20% H 2 ). Характеристики двигателя и параметры выбросов были получены при опережения зажигания 10 ° CA BTDC и различных коэффициентах избытка воздуха (λ = 0,9–1,3).

    Рис. 10.

    Значения THC в зависимости от степени избытка воздуха с использованием различных степеней сжатия [30].

    Рисунок 11.

    Значения BSFC в зависимости от степени избытка воздуха с использованием различных степеней сжатия [30].

    Значения NO X для λ = 1,0 и λ = 1,15 показаны в таблице 5. Как видно из таблицы, увеличение степени сжатия и значений доли водорода приводит к увеличению значений NO X .

    12324 9032 9032 9032 9032 2045
    CR H 2 (%) λ = 1,0 λ = 1,15
    9.6 0 2000 3620
    5 2100 3825
    10 1710 4185
    0 2040 4410
    5 1940 4200
    10 2260 4520
    20 9032 9032 4465
    5 2570 4700
    10 2660 4565
    20 3030 90.

    NO X значений (ppm) для λ = 1,0 и λ = 1,15 [30].

    4. Этанол

    Этанол обычно производится из возобновляемых источников, таких как биомасса и сельскохозяйственное сырье [38, 39]. Итак, этанол получил широкое распространение в качестве альтернативного топлива в двигателях внутреннего сгорания. Октановое число этанола выше, чем октановое число бензина. Высокое октановое число этанола позволяет использовать этанол в качестве топлива в двигателе SI с более высокой степенью сжатия [40].Скрытая теплота испарения этанола увеличивает охлаждающий эффект в цилиндре, эта ситуация приводит к увеличению объемного КПД [41]. Этанол горит чище, чем бензин и дизельное топливо, и производит меньше CO, CO 2 и NO x . Он имеет низкий коэффициент диффузии и трудность воспламенения при низкой температуре, поэтому сгорание не завершается при низкой температуре и содержание углеводородов увеличивается по сравнению с бензином при использовании этанола. Химический состав этанола: C 2 H 5 OH.Процент водорода в этаноле выше, чем в бензине.

    Недавно природоохранные органы в крупных городских центрах выразили обеспокоенность по поводу истинного эффекта от использования смесей этанола, содержащих до 20% в используемых транспортных средствах без каких-либо изменений в настройке блока управления двигателем (ЭБУ), а также по поводу вариантов эти эффекты за годы эксплуатации этих автомобилей [40].

    Чистый этанол можно использовать в двигателях внутреннего сгорания, но есть некоторые проблемы [42, 43, 44, 45].Вот эти проблемы;

    1. Этанол имеет низкую скорость пламени. Значит, у него плохая функция холодного пуска. Использование в качестве топлива в зимние месяцы затруднено.

    2. Легковых автомобилей, рассчитанных на 100% этанол, не существует. Использование чистого этанола может повредить двигатели. Даже двигатели, которые могут работать со смесями бензина и этанола, могут содержать до 85% этанола.

    3. Этанол — коррозионно-агрессивное топливо. Итак, материалы и поверхности деталей камеры сгорания, все пластмассы, контактирующие с топливом и системой впрыска топлива, должны быть улучшены.

    5. Водород

    Хотя водород является наиболее распространенным элементом в мире, и он не существует в природе в чистом виде, его необходимо получать из таких источников, как вода и природный газ. Воздействие водорода на окружающую среду и энергоэффективность зависят от того, как он производится [46, 47].

    Водород давно изучается как альтернативное газовое топливо. Водород не имеет некоторых проблем, связанных с жидким топливом, таких как паровая пробка, закалка с холодной стенкой, недостаточное испарение и бедное смешение.Водород имеет чистое горение. При сжигании водорода выделяется в основном вода. При сгорании водорода не выделяются токсичные продукты, такие как углеводороды, монооксид углерода и диоксид углерода [48]. Самым важным преимуществом водорода является то, что он не производит газа CO 2 , который является одним из важнейших источников глобального потепления. Кроме того, водород имеет более широкий предел воспламеняемости, чем бензин, дизельное топливо и природный газ [49, 50]. Кроме того, водород имеет высокую скорость пламени и высокую температуру самовоспламенения [51].Также водород легко может гореть в сверхбедных смесях [52]. Энергия, необходимая для воспламенения водородно-воздушной смеси, составляет всего 0,02 МДж. Поэтому он идеален для слабых смешанных ожогов [50]. Наконец, водород можно использовать при широких степенях сжатия в двигателях внутреннего сгорания, поскольку температура самовоспламенения водорода слишком высока [53]. Благодаря этим свойствам было проведено множество исследований по использованию водорода в двигателях внутреннего сгорания [54, 55, 56].

    Из-за низкой энергии, необходимой для воспламенения водорода, смесь немедленно воспламеняется при контакте с горячей точкой в ​​цилиндре.В результате может возникнуть детонация [56, 57]. Как видно из рисунка 12, еще одним недостатком водорода является его низкая плотность энергии [58]. Кроме того, образование выбросов NO X увеличивается при горении водорода из-за высокой температуры пламени [59, 60]. Увеличение NO X с водородом можно увидеть на Рисунке 13.

    Рисунок 12.

    Энергетическая плотность некоторых видов топлива [145].

    Рис. 13.

    Изменения NOX при разных оборотах двигателя (a) [61] и разном коэффициенте избытка воздуха (b) [62] при добавлении водорода к бензину.

    Эксперименты, включенные в исследование на чистом водороде и бензине [61], в которых был взят рисунок 13, проводились на четырехцилиндровом, четырехтактном двигателе SI с карбюратором, имеющем степень сжатия 8,8: 1. Момент зажигания был установлен на 10 ° перед верхней мертвой точкой (ВМТ). Двигатель работал в диапазоне частот от 2600 до 3800 об / мин. В экспериментальном исследовании [62] испытания проводились при частоте вращения двигателя 1400 об / мин, давлении воздуха в коллекторе 61,5 кПа, времени зажигания MBT и различных соотношениях избытка воздуха (1.0–2,6). В этом исследовании, чтобы моделировать водород, мольное отношение водорода к кислороду было зафиксировано на уровне 2: 1 посредством регулировки продолжительности впрыска водорода и кислорода. Кроме того, в испытаниях были приняты три стандартные объемные доли кислорода в общем поступающем газе, равные 0, 2 и 4%.

    6. Водородная смесь

    Поскольку водород оказывает отрицательное воздействие на двигатель внутреннего сгорания, он используется в виде смеси, а не в чистом виде. Наиболее распространенной смесью водорода является HCNG. Смесь образована смешением природного газа.Смеси природного газа и водорода (HCNG), которые считаются альтернативным топливом для обычных двигателей, представляют собой смеси, созданные для объединения превосходных свойств природного газа и водорода. Существует множество исследований [63, 64, 65, 66, 67, 68, 69, 70] с использованием HCNG в качестве альтернативного топлива.

    Как видно на рисунке 14, добавление водорода вызывает увеличение теплового КПД и вызывает расширение пределов воспламеняемости. Кроме того, при рассмотрении цифр видно, что добавление водорода увеличивает стабильность горения и значение тормозной мощности, а также снижает удельный расход топлива.

    Рис. 14.

    Значения BTE, COV, мощности и BSFC в зависимости от соотношения эквивалентности при 2200 об / мин, 50% WOT с синхронизацией MBT и различным процентным содержанием водорода [69].

    Более того, как видно на Рисунке 15, добавление водорода к природному газу приводит к снижению выбросов CO и HC и увеличению значений NO X . В экспериментальном исследовании, на котором был взят рисунок 15, эксперименты проводились при 2000, 2400 и 2800 об / мин с широко открытой дроссельной заслонкой и изменением степени эквивалентности.Двигатель с одноцилиндровым двигателем, имеющий степень сжатия 7,25: 1, работал на сжатом природном газе, а смеси водорода в КПГ составляли 5, 10, 15 и 20% энергии.

    Рис. 15.

    Значения выбросов в зависимости от коэффициента эквивалентности при 2000 об / мин (a), 2400 об / мин (b) и 2800 об / мин (c) и при различных скоростях подачи водорода [70].

    Другой смесью, приготовленной с использованием водорода, является смесь этанола и водорода. В литературе можно найти множество исследований по использованию водорода и этанола в двигателях внутреннего сгорания [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85].

    В экспериментальном исследовании [85], в котором был взят рисунок 16, эксперименты проводились на двигателе с воспламенением от сжатия, модифицированном для работы в режиме искрового зажигания, работающем на комбинированном топливе водород-этанол с различным процентным содержанием водорода (0– 80%) в условиях степени сжатия 7: 1, 9: 1 и 11: 1 путем изменения момента зажигания искры при постоянной скорости 1500 об / мин.

    Рис. 16.

    Изменения BSFC в зависимости от времени воспламенения при степенях сжатия 7: 1 и 11: 1 для различных смесей этанола и водорода [85].

    В исследовании, проведенном со смесью водород-ацетилен, Sampath Kumar et al. [86] были исследованы характеристики и поведение выбросов двигателя SI, работающего на водородно-ацетиленовом топливе. Результаты показали, что термический КПД тормозов увеличился, а значения выбросов снизились по сравнению с бензином.

    В другом исследовании Tangöz et al. [87] были проанализированы характеристики и выбросы двигателя SI, работающего на ацетилен-водороде при фиксированном значении BMEP, равном 2.095 бар, нагрузка 30 Нм и частота вращения двигателя 1500 об / мин в условиях обедненной смеси (λ = 1,3–2,8). Как видно из рисунков 17 и 18, экспериментальные результаты показали, что значения удельного расхода топлива снижаются между 18,5 и 20,1% за счет добавления водорода в смесь. Значения термического КПД тормозов снижаются от 6,2 до 3,3% при добавлении водорода в смесь. Кривые давления в цилиндре и скорости тепловыделения продвигаются в верхнюю мертвую точку за счет добавления водорода к ацетилену.Добавление водорода в ацетилен приводит к снижению выбросов CO и HC и увеличению значений NO X для фиксированной лямбды.

    Рис. 17.

    Значения SFC и BTE в зависимости от различных фракций водорода [87].

    Рис. 18.

    Выбросы CO и HC в зависимости от различных долей водорода [87].

    7. Альтернативные виды топлива для новых двигателей внутреннего сгорания

    Сегодня одной из наиболее важных проблем при использовании двигателей внутреннего сгорания является производство вредных выхлопных газов.По этой причине было проведено множество исследований по снижению выбросов при сохранении рабочих характеристик двигателя с помощью новых приложений ICE, таких как HCCI, RCCI, PCCI и PPC. Более того, с целью сокращения выбросов некоторые из этих исследований были сосредоточены на использовании альтернативных видов топлива. В новых двигателях есть процесс, в котором гомогенная смесь воздуха и топлива сжимается в условиях, когда самовоспламенение происходит ближе к концу такта сжатия, за которым следует сгорание, которое значительно быстрее, чем сгорание обычного дизельного топлива или топлива Отто. .Самовоспламенение и фазировка сгорания в цилиндре регулируются расслоением смеси и синхронизацией впрыска топлива [88, 89, 90, 91, 92, 93]. Применение этих двигателей по сравнению с обычными двигателями позволяет снизить выбросы оксидов азота и сажи и достичь более высокого теплового КПД [94, 95, 96, 97, 98]. Однако в этих двигателях очень сложно управлять автоматическим зажиганием. Было проведено множество исследований для управления процессом самовоспламенения в двигателях с использованием альтернативных видов топлива, имеющих высокую температуру самовоспламенения, низкую реактивность или высокое октановое число.

    Одним из наиболее важных новых приложений ДВС является воспламенение от сжатия однородного заряда (HCCI). Для управления процессом самовоспламенения в двигателе HCCI некоторые виды топлива с высокой температурой самовоспламенения используются в качестве альтернативного топлива. При рассмотрении этих исследований видно, что исследования были сосредоточены на природном газе [99, 100, 101, 102, 103, 104], этаноле [105, 106, 107, 108], ацетилене [109, 110, 111, 112, 113, 114] и водород [115, 116, 117, 118, 119, 120, 121, 122]. Воспламенение от сжатия с контролируемой реактивностью (RCCI), воспламенение от сжатия с предварительным смешиванием заряда (PCCI) и сгорание с частичным предварительным смешиванием (PPC) — это другие новые применения ДВС.В двигателях топливо с низкой реакционной способностью вводится из порта впрыска для образования гомогенной смеси в цилиндре, а топливо с высоким цетановым числом впрыскивается непосредственно в цилиндр для управления фазированием и продолжительностью сгорания. Топливо с высоким октановым числом или низкой реакционной способностью с устойчивостью к самовозгоранию более благоприятно для горения RCCI, PCCI и PPC. По этой причине большинство исследований двигателей RCCI, PCCI и PPC сосредоточено на природном газе [89, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133] и этаноле [ 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144] в качестве альтернативного топлива.

    В результате было отмечено, что рабочие параметры, такие как тип топлива, состав топлива, соотношение воздух-топливо и температура на входе, существенно влияют на рабочий режим новых приложений ДВС. Однако считается, что полная структура для каждого режима приложения ICE не была предоставлена. Более того, несмотря на значительное снижение NO X и выбросов сажи в приложениях, работающих на альтернативных видах топлива, значительные количества образующихся выбросов HC и CO все еще остаются проблематичными.

    8. Заключение

    Ацетилен обладает некоторыми подходящими свойствами, такими как высокая плотность энергии, высокая температура пламени, высокая скорость пламени и низкий уровень выбросов. По этой причине считается, что в будущем можно будет использовать важное топливо или альтернативное топливо для двигателей внутреннего сгорания. Он увеличивает термический КПД тормозов и способствует снижению расхода топлива и всех значений выбросов. Однако следует провести некоторые исследования для повышения ударопрочности ацетилена.Более того, для использования ацетилена в качестве альтернативного топлива в транспортных средствах необходимо разработать эффективные методы производства и новые методы хранения. Наконец, чтобы определить, является ли ацетилен экономичным или нет, необходимо провести анализ до резервуара.

    При рассмотрении современных приложений становится очевидным, что топливо из природного газа является подходящим топливом, особенно для двигателей SI, имеющих высокую степень сжатия из-за высокой детонационной стойкости. Эксплуатация автомобилей, работающих на природном газе, при более высоких степенях сжатия, чем автомобили с бензиновым двигателем, снижает BSFC.С другой стороны, природный газ, наиболее чистое ископаемое топливо из-за высокого отношения H / C, обеспечивает большее сокращение выбросов THC, чем стандарт Euro VI, при соблюдении подходящей степени сжатия. Однако, чтобы его можно было использовать во всех двигателях, необходимо устранить проблему хранения. Кроме того, необходимо провести исследования по увеличению плотности энергии.

    Этанол имеет высокое октановое число. Однако он дороже ископаемого топлива и имеет коррозионные свойства. Кроме того, даже двигатели, которые могут работать со смесями бензин-этанол, могут содержать до 85% этанола.Этанол можно смешивать с другим альтернативным топливом для повышения плотности энергии. Этанол горит чище, чем бензин и дизельное топливо, и производит меньше CO, CO 2 и NO x , но содержание HC увеличивается из-за его низкого коэффициента диффузии и трудности воспламенения при низкой температуре.

    Водород — чистое топливо с очень высокой удельной массой энергии. Характеристики быстрого горения водорода позволяют двигателю работать на высоких оборотах, и для водорода возникают меньшие потери тепла, чем для бензина. NO x Выбросы двигателя, работающего на водороде, примерно в 10 раз ниже, чем у двигателя, работающего на бензине, если он работает на обедненной смеси.Поскольку водород имеет некоторые недостатки, такие как очень низкая энергия зажигания и объемная плотность энергии, он смешивается с другими видами топлива, особенно с природным газом, для использования в двигателях SI.

    Для решения проблем хранения и достижения желаемого уровня использования в двигателях внутреннего сгорания необходимо провести интенсивные исследования, такие как использование водорода в жидком состоянии. Также следует изучить методы или смеси, которые уменьшают образование NO x .

    Несмотря на значительное сокращение выбросов NO X и сажи в новых приложениях ДВС, таких как HCCI, RCCI, PCCI и PPC, работающих на альтернативных видах топлива, образование значительных объемов выбросов HC и CO по-прежнему остается проблематичным.

    Следовательно, каждое топливо имеет положительные и отрицательные свойства для использования в двигателях внутреннего сгорания. Существуют различия во влиянии каждого альтернативного топлива на выбросы и работу двигателя. Дальнейшие исследования могут быть выполнены для получения подходящего гибридного топлива путем сравнения этих альтернативных видов топлива для уменьшения всех выбросов и улучшения характеристик двигателя.

    Сокращения

    природный газ
    BMEP среднее эффективное давление тормоза
    BSFC удельный расход топлива тормоза
    BTE термический КПД тормоза
    верхний мертвый угол CA BTDC 9032
    CI Двигатель с воспламенением от сжатия
    COV Коэффициент вариации
    CR Степень сжатия
    EU Европейский Союз
    водород
    ICE двигатель внутреннего сгорания
    MBT максимальный тормозной момент
    NGV автомобили на природном газе
    SI с искровым зажиганием с открытым дросселем
    WTT колодец к резервуару

    Двигатели внутреннего сгорания — 1-е издание

    перейти к содержанию