Для чего служит маховик: Что такое маховик в автомобиле и для чего он нужен

Содержание

Маховик — Википедия

Маховик со сферическими грузами, построенный по чертежам Леонардо да Винчи. Кадр из видео.

Маховик (маховое колесо) — массивное вращающееся колесо, использующееся в качестве накопителя (инерционный аккумулятор) кинетической энергии или для создания инерционного момента как это используется на космических аппаратах.

Использование

Используется в машинах, имеющих неравномерное поступление или использование энергии, накапливая энергию, когда поступление энергии выше чем расход, и отдавая её, когда потребление превышает поступление энергии. Также используется в гибридном двигателе в качестве накопителя энергии и для рекуперативного торможения.

Часто функцию маховика выполняет массивный вращающийся элемент механизма. Такие как гончарный круг, массивные колеса водяной мельницы или массивные зубчатые колеса.

Помимо энергии, вращающийся маховик (как и любое вращающееся тело) обладает ещё и моментом импульса, с чем связано наблюдение гироскопического эффекта, заключающегося в прецессии оси вращения вокруг своего первоначального направления при появлении внешней силы, не совпадающей с направлением оси вращения.

Первым примером использования гироскопического эффекта можно считать изобретение игрушки «волчок» («йо-йо»).

Одним из первых применений гироскопического эффекта стал переход от стрельбы круглыми ядрами к продолговатым снарядам, вращение которых позволило сохранять их ориентацию в пространстве, а продолговатая форма — значительно увеличить их массу (болванка) или же разрывной заряд.

Маховиком является и ротор гироскопа, используемого в гирокомпасах и вообще в гироскопических устройствах ориентации в пространстве, в частности торпед (прибор Обри), ракет и космических аппаратов. Наиболее привычные примеры маховика — велосипедное колесо или вращающийся диск электро-проигрывателя виниловых пластинок.

Свойство маховика сохранять направление оси вращения используется в успокоителях качки корабля.

В повседневной жизни маховик наиболее часто применяется на автомобилях: любой поршневой двигатель снабжён маховиком, часто совмещающим функции как часть сцепления и системы пуска (маховики снабжают зубчатым венцом для передачи момента от стартера). {2})}

История

Эффект маховика использовался с древнейших времен. Например в гончарном круге, ветряных мельницах. Вероятно, одним из древнейших примеров использования маховика стала археологическая находка из Междуречья (в районе города Ур) — гончарный станок с диском из обожжённой глины, около метра в поперечнике и весом не менее центнера. Подобные изобретения неоднократно появлялись и в Китае.[1]

Маховик со старой фабрики

Согласно американскому медиевисту Линну Уайту немецкий монах Теофил упоминает в своём трактате «О различных искусствах» несколько машин, в которых применяется маховик.

[2]

Во время промышленной революции, Джеймс Уатт применил маховик в паровой машине для выравнивания движения и преодоления мертвых положений поршня[3], и его современник Джеймс Пикард использовал маховик в сочетании с кривошипно-шатунным механизмом для преобразования возвратно-поступательного движения во вращательное[4].

В 20-30-х годах XX века советский изобретатель А. {9}} Н/м2. Энергоемкость маховика из плавленого кварца объёмом 0,1{\displaystyle 0,1} м3 и весом 200{\displaystyle 200} кг будет равна энергоемкости 13{\displaystyle 13} л бензина[6].

Супермаховик

В мае 1964 года Н. В. Гулия подал заявку на изобретение супермаховика — энергоёмкого и разрывобезопасного маховика. В отличие от классического монолитного маховика, супермаховик намотан из тонкой ленты, проволоки или синтетических волокон, которые обладают значительно большей удельной прочностью, чем монолитная деталь (отливка или поковка), поэтому энергоемкость такого маховика значительно выше (по утверждению изобретателя, до 1,8 МДж/кг). Кроме того, в случае разрыва супермаховика не образуется крупных осколков: концы разорванной ленты или волокон начинают тормозиться о кожух, и маховик постепенно останавливается.

См. также

Примечания

  1. Родионов В. Г. Оптимизация структуры генерирующих мощностей. Аккумуляторы – накопители энергии // Энергетика: проблемы настоящего и возможности будущего.  — М.: ЭНАС, 2010. — С. 65. — 352 с. — ISBN 978-5-4248-0002-3.
  2. ↑ Lynn White, Jr., «Theophilus Redivivus», Technology and Culture, Vol. 5, No. 2. (Spring, 1964), Review, pp. 224—233 (233)
  3. Элла Цыганкова У истоков дизайна
  4. ↑ Encyclopedia of the Industrial Revolution, 1750—2007: Steam Engine Архивная копия от 6 октября 2008 на Wayback Machine (англ.)
  5. Ветроэлектрическая станция — статья из Большой советской энциклопедии. 
  6. Орир Дж Физика. Том 1. — М., Мир, 1981. — c. 167

Ссылки

Маховик — Flywheel — qaz.wiki

Механическое устройство для хранения энергии вращения

В паровозе Тревитика 1802 года использовался маховик для равномерного распределения мощности его единственного цилиндра. Маховик движения Промышленный маховик

Маховик представляет собой механическое устройство , специально предназначенное для использования сохранения углового момента таким образом , чтобы эффективно хранить энергию вращения ; форма кинетической энергии, пропорциональная произведению его момента инерции на квадрат скорости вращения .

В частности, если мы предположим, что момент инерции маховика постоянен (т. Е. Маховик с фиксированной массой и вторым моментом площади, вращающийся вокруг некоторой фиксированной оси), то накопленная (вращательная) энергия напрямую связана с квадратом его скорости вращения. .

Поскольку маховик служит для хранения механической энергии для последующего использования, естественно рассматривать его как аналог кинетической энергии электрического индуктора . После подходящего абстрагирования этот общий принцип хранения энергии описывается в обобщенной концепции аккумулятора . Как и в случае с другими типами аккумуляторов, маховик по своей сути сглаживает достаточно малые отклонения выходной мощности системы, тем самым эффективно играя роль фильтра нижних частот по отношению к механической скорости (угловой или иной) системы. Точнее, накопленная энергия маховика будет давать скачок выходной мощности при падении потребляемой мощности и, наоборот, поглощать любую избыточную потребляемую мощность (мощность, генерируемую системой) в виде энергии вращения.

Обычно маховик используется:

  • Сглаживание выходной мощности источника энергии. Например, маховики используются в поршневых двигателях, потому что активный крутящий момент от отдельных поршней является прерывистым.
  • Системы накопления энергии
  • Доставка энергии со скоростью, превышающей возможности источника энергии. Это достигается за счет накопления энергии в маховике с течением времени, а затем ее быстрого высвобождения со скоростью, превышающей возможности источника энергии.
  • Управление ориентацией механической системы, гироскопа и реактивного колеса

Маховики обычно изготавливаются из стали и вращаются на обычных подшипниках; они обычно ограничиваются максимальной частотой вращения в несколько тысяч об / мин. Маховики с высокой плотностью энергии могут быть изготовлены из композитных материалов из углеродного волокна и оснащены магнитными подшипниками , что позволяет им вращаться со скоростью до 60 000 об / мин (1 кГц).

Недавно были произведены маховиковые батареи из углеродного композита, которые доказали свою пригодность в реальных испытаниях на обычных автомобилях. Кроме того, их утилизация более экологична, чем традиционные литий-ионные батареи.

Приложения

Landini Трактор с открытым маховиком

Маховики часто используются для обеспечения непрерывной выходной мощности в системах, где источник энергии не является непрерывным. Например, маховик используется для сглаживания быстрых колебаний угловой скорости коленчатого вала в поршневом двигателе. В этом случае маховик коленчатого вала накапливает энергию, когда крутящий момент прилагается к нему запускающим поршнем , и возвращает ее поршню для сжатия свежего заряда воздуха и топлива. Другой пример — фрикционный двигатель, приводящий в действие такие устройства, как игрушечные машинки . В ненагруженных и недорогих случаях для экономии средств основная масса маховика направляется к ободу колеса.

Отталкивание массы от оси вращения увеличивает инерцию вращения для данной общей массы.

Маховик современного автомобильного двигателя

Маховик также может использоваться для подачи прерывистых импульсов энергии на уровнях мощности, которые превышают возможности его источника энергии. Это достигается за счет накопления энергии в маховике в течение определенного периода времени со скоростью, совместимой с источником энергии, а затем высвобождения энергии с гораздо большей скоростью в течение относительно короткого времени, когда это необходимо. Например, маховики используются в механических перфораторах и клепальных станках .

Маховики могут использоваться для управления направлением и противодействия нежелательным движениям, см. Гироскоп . Маховики в этом контексте имеют широкий спектр применений: от гироскопов для измерительных приборов до стабилизации корабля и стабилизации спутника ( реактивное колесо ), для удержания вращения игрушки ( двигатель трения ), для стабилизации объектов, находящихся в магнитной левитации ( магнитная левитация со стабилизацией вращения ).

Маховики также могут использоваться в качестве электрического компенсатора, такого как синхронный компенсатор , который может либо производить, либо поглощать реактивную мощность, но не влияет на реальную мощность. Целью этого приложения является улучшение коэффициента мощности системы или регулировка напряжения сети. Обычно маховики, используемые в этой области, аналогичны по конструкции и установке синхронному двигателю (но в этом контексте он называется синхронным компенсатором или синхронным конденсатором). Существуют также некоторые другие виды компенсаторов, использующие маховики, например, однофазные индукционные машины. Но основные идеи здесь те же, маховики управляются, чтобы вращаться точно с частотой, которую вы хотите компенсировать. Для синхронного компенсатора вам также необходимо поддерживать напряжение ротора и статора в фазе, что аналогично удержанию магнитного поля ротора и общего магнитного поля в фазе (во вращающейся системе отсчета ).

История

Принцип маховика можно найти в неолитическом веретене и гончарном круге , а также в круглых точильных камнях в древности.

Механический маховик, используемый для сглаживания передачи мощности от приводного устройства к ведомой машине и, по сути, для подъема воды с гораздо больших глубин (до 200 метров (660 футов)), был впервые использован Ибн Бассалом ( fl. 1038–1075), Аль-Андалус .

Использование маховика в качестве общего механического устройства для выравнивания скорости вращения, согласно американскому медиевисту Линн Уайт , зафиксировано в De diversibus artibus (О различных искусствах) немецкого мастера Теофила Пресвитера (ок. 1070–1125). который записывает применение устройства на нескольких своих машинах.

В промышленной революции , Джеймс Уатт способствовали развитию маховика в паровом двигателе , и его современник Джеймс Пикард использовал маховик в сочетании с кривошипно для преобразования возвратно — поступательного движения во вращательное движение.

Физика

Маховик — это вращающееся колесо, диск или ротор, вращающийся вокруг своей оси симметрии. {2} \}

где:

  • σ т {\ displaystyle \ sigma _ {t}} — растягивающее напряжение на ободе цилиндра
  • ρ {\ displaystyle \ rho} плотность цилиндра
  • р {\ displaystyle r} — радиус цилиндра, а
  • ω {\ displaystyle \ omega} — угловая скорость цилиндра.

Маховик с приводом от электрической машины — обычное дело. Выходная мощность электрической машины примерно равна выходной мощности маховика.

Выходная мощность синхронной машины составляет:

п знак равно ( V я ) ( V т ) ( грех ⁡ ( δ ) Икс S ) {\ displaystyle P = (V_ {i}) (V_ {t}) \ left ({\ frac {\ sin (\ delta)} {X_ {S}}} \ right)}

где:

  • V я {\ displaystyle V_ {i}} напряжение на обмотке ротора, создаваемое полем, взаимодействующим с обмоткой статора.
  • V т {\ displaystyle V_ {t}} напряжение статора
  • δ {\ displaystyle \ delta} угол крутящего момента (угол между двумя напряжениями)

Выбор материала

Маховики изготавливаются из самых разных материалов; приложение определяет выбор материала. Маленькие маховики из свинца встречаются в детских игрушках. Чугунные маховики используются в старых паровых двигателях. Маховики, используемые в автомобильных двигателях, изготавливаются из чугуна или чугуна с шаровидным графитом, стали или алюминия. Маховики, изготовленные из высокопрочной стали или композитов, были предложены для использования в системах аккумулирования энергии и тормозах транспортных средств.

Эффективность маховика определяется максимальным количеством энергии, которое он может хранить на единицу веса. По мере увеличения скорости вращения или угловой скорости маховика запасенная энергия увеличивается; однако напряжения также увеличиваются. Если кольцевое напряжение превышает предел прочности материала, маховик развалится. Таким образом, предел прочности при растяжении ограничивает количество энергии, которое может накапливать маховик.

В этом контексте использование свинца в качестве маховика в детской игрушке неэффективно; однако скорость маховика никогда не приближается к своей взрывной скорости, потому что предел в этом случае — тяговое усилие ребенка. В других приложениях, таких как автомобиль, маховик работает с заданной угловой скоростью и ограничен пространством, в котором он должен поместиться, поэтому цель состоит в том, чтобы максимизировать запасенную энергию на единицу объема. Поэтому выбор материала зависит от области применения.

В таблице ниже приведены расчетные значения материалов и комментарии по их применимости для маховиков. CFRP означает полимер , армированный углеродным волокном , а GFRP означает полимер, армированный стекловолокном .

Материал Удельная прочность на разрыв

Как выбрать б/у двухмассовый маховик?

 15.11.2019

Если говорить совсем простым языком, двухмассовый маховик призван сглаживать неравномерность работы двигателя. Откуда возникает эта «неравномерность»? Во-первых, коленвал испытывает на себе неравномерные нагрузки, возникающие в моменты воспламенения рабочей смеси в цилиндрах и в моменты ее сжатия. Во-вторых, в самом коленвале из-за неравномерных нагрузок возникают крутильные колебания. Это упругие колебания вдоль его оси вращения, по часовой стрелке и против. Чем мощнее двигатель, тем сильнее эти колебания. Более того, если частота «вспышек» в цилиндрах совпадет с частотой крутильных колебаний или будет кратна им, то возникнет резонанс, и коленвал развалится.

Соответственно, для гашения неравномерностей в работе двигателя и крутильных колебаний и создан двухмассовый маховик. Его присутствие позволяет инженерам не усиливать и не утяжелять коленвал, он защищает коробку передач от вибраций и продляет срок службы сцепления на мощных двигателях, устраняет необходимость увеличивать жесткость диафрагменной пружины корзины сцепления. В целом двухмассовый маховик даже помогает экономить топливо, т. к. гасит колебания, направленные против вращения коленвала. К тому же, масса двухмассового маховика в целом ниже, чем одномассового.

Серийное применение двухмассовых маховиков началось в 1985 году. Сегодня ими оснащается порядка 80% новых двигателей. Двухмассовые маховики положены двигателям, работающим в паре с МКПП, вариаторами, «автоматами» с двойным сцеплением.

 

На нашем YouTube-канале вы можете посмотреть видео о двухмассовых маховиках.

 

 

Выбрать и купить б/у двухмассовый маховик вы можете в нашем каталоге контрактных запчастей.

 

Как устроен двухмассовый маховик

На словах конструкция двухмассового маховика простая. Одна его часть – ведущий диск – жестко привинчивается к коленвалу. Вторая часть – ведомый диск – соединена с корзиной сцепления. Между ними – система демпфирования. Таким образом, обе части двухмассового маховика могут вращаться относительно друг друга на некоторые углы, то есть, совершать взаимные качательные движения вокруг общей центральной оси.

 

Подшипник

Так как ведущий и ведомый диск не жестко соединены и качаются относительно друг с друга, нужно сохранять их соосность. Для этого применяется поворотный подшипник. Он жестко закреплен на ступице ведущего диска. На его выступ в сторону трансмиссии выступ посажен ведомый диск.

На ранних вариантах ДММ использовались шариковые подшипники, затем они уступили место подшипникам скольжения, т.е. по сути, обычным втулкам. В двухмассовых маховиках Sachs всегда использовались подшипники скольжения.

 

Фланец

Передача момента от ведущего диска к ведомому осуществляется через пружинный демпфер и далее на фланец, который жестко соединен с ведомым диском. В самом простом варианте, в ведущем диске находятся две дуговые пружины, которые своими концами упираются в выступы фланца.

 

 

Демпфирующая система

Как было упомянуто выше, классический демпфер двухмассового маховика представляет собой пару дуговых пружин, помещенные в направляющие желоба ведущего диска. Эта пружина может быть одинарной, может быть двойной, т.е. представлять собой две помещенные одна в одну пружины разного диаметра. В самых мудреных вариантах пружины могут быть тройными. Т.е. в каждой дуге будет собрано по 3 пружины, способные гасить весь диапазон крутильных колебаний. Но и это еще не все.

В более новых вариантах двухмассовых маховиков предусмотрены дополнительные прямые пружины во фланце. Эти дополнительные пружины во фланце демпфируют колебания в тех режимах, когда дуговые пружины «отключаются». Как они могут «отключиться»? Дело в том, что на высокой скорости вращения маховика под действием центробежной силы дуговые пружины прижимаются к направляющим вдоль наружного края. Из-за этого их сила демпфирования сильно снижается. В этом случае функция демпфирования перекладывается на короткие прямые пружины: они легче, ближе расположены к центру, а потому центробежная сила слабо влияет на них.

Также есть ДММ с фрикционной муфтой, которая не жестко соединяет фланец с ведомым диском. То есть, в этом случае фланец не приклепан к ведомому диску. Крутящий момент передается от ведущего диска к ведомому за счет сильного трения фрикционной муфты. Такая муфта дополнительно защищает маховик от перегрузок и является демпфером.

 

Двухмассовый маховик от Sachs для дизелей и DSG

Двухмассовые маховики от Sachs (ZF) для дизелей 1.9 TDI и 2.0 TDI, работающий в паре с коробками DSG, наделены сложным направляющим планетарным механизмом.

 

Признаки износа и проверка двухмассового маховика на автомобиле

На износ двухмассового маховика указывают появившиеся вибрации. Во-первых, жесткая вибрация на холостых оборотах, слышимые стуки при глушении двигателя. Маховики, работающие в паре с коробками DSG «брынчат» на холостом ходу. Во-вторых, вибрации на ходу при равномерной скорости и при увеличении оборотов двигателя.

В некоторых случаях разбитый двухмассовый маховик может быть причиной троения двигателя. Из-за того, что обе массы хаотично гуляют относительно друг друга, на коленвале возникают посторонние ускорения, которые ЭБУ пытается «отловить», корректируя впрыск. Такое троение двигателя на холостых оборотах пропадает при выжиме педали сцепления.

Двухмассовый маховик можно проверить на неподвижном автомобиле. Для этого на нейтральной передаче нужно плавно нажимать на газ. Если вибрации и их характер будут изменяться с ростом оборотов, то двухмассовый маховик неисправен. На ходу его можно проверить следующим образом: разгоняемся с 10-20 км/ч на 2-й передаче с нажатой до упора педалью акселератора. Если возникают вибрации, то пора менять двухмассовый маховик.

При разрушении двухмассового маховика с обрывом его фланца, автомобиль просто не будет ехать на передаче.

 

 

Двухмассовый маховик не всегда виноват

В некоторых случаях при работе двигателя на холостых оборотах можно чувствовать вибрации и даже слышать посторонние звуки демпферов двухмассового маховика. При этом на ходу, при разгоне и наборе оборотов сильные вибрации не будут возникать. В данном случае, скорее всего, двухмассовый маховик исправен, а вибрации в трансмиссии и шумы его демпферов вызваны тем, что двигатель неисправен, т.е. троит. В этом случае нужно разбираться с двигателем и как можно скорее, т.к. двухмассовый маховик выйдет из строя преждевременно.

При износе сцепления, а не маховика, при трогании с места отсутствует плавность и появляются удары.

Трещины на корпусе ведущего диска ДММ появляются из-за люфта коленвала.

 

Как проверить б/у маховик?

Проверке подлежат не только б/у, но и новые двухмассовые маховики из коробок. У производителей LuK и Sachs есть базовые рекомендации по проверке маховиков, они общие как для новых изделий, так и бывших в эксплуатации. То есть, перед заменой по таким рекомендациям можно и нужно проверить старый маховик.

 

Базовые рекомендации для проверки двухмассовых маховиков

Sachs

LuK

Свободный ход: перемещение до 3 зубьев. Если обе массы перемещаются более чем на 4 зубца, то маховик неисправен.

Или: маховик должен перемещаться в обе стороны на одинаковый угол и с одинаковыми усилиями, без заеданий и звуков.

 

Если ощущается сопротивление пружин, установленных внутри маховика, двухмассовый
маховик исправен.

 

Радиальный люфт: должен быть не более 0,15 мм, т.е. минимальный и без стуков.

Свободный ход: перемещение по зубьям: до 7 зубьев. 20° максимум. Люфт более 8 зубцов – выход за пределы нормы, неисправен.

 

Радиальный люфт:

1,6 мм максимум (в обе стороны) для ДММ с шариковым подшипником.

2,9 мм для ДММ на основе подшипника скольжения.

 

Ни при каких обстоятельствах не должно быть соударения ведущего и ведомого диска.

 

Двухмассовые маховики LuK и Sachs для дизельных двигателей очень жесткие, т.к. снабжены дополнительным фрикционным кольцом. Поэтому для проверки работоспособности такого маховика нужно использовать рычаг, который может увеличить силу для преодоления сопротивления фрикционного кольца и проверки угла взаимного вращения дисков.

 

Общие рекомендации по проверке двухмассовых маховиков:

Должны отсутствовать посторонние звуки при вращении / перемещении масс.

Усилие пружин должно быть равномерным в обе стороны.

Усилие пружин должно нарастать плавно.

Радиальный люфт, т.е. смещение одной массы относительно другой, должен быть минимальным.

 

Дополнительно проверяем:

Грузы должны быть на месте.

Смазка не должна течь.

Не должно быть синевы на диске сцепления.

Не должно быть трещины из-за люфта.

 

Причины выхода из строя двухмассового маховика

Двухмассовый маховик может преждевременно выйти из строя из-за следующих причин:

  • Разная компрессия в цилиндрах;
  • Проблемы со впрыском топлива, его распылом и сгоранием – как следствие, троение двигателя;
  • Разрушенные опоры двигателя;
  • Разрушенный демпферный шкив коленвала;
  • Неисправная обгонная муфта генератора;
  • Проблемы в КПП;
  • Проблемы со стартером

 

Также добавим, что ресурс ДММ сокращает чип-тюнинг, частая езда «в натяг» на малых оборотах, буксование и даже оставление машины на стоянке под уклоном на передаче.

 

Установка б/у двухмассового маховика

Перед установкой двухмассового маховика, как нового, так и б/у, нужно удостовериться, что устранены факторы, которые привели к выходу из строя предыдущего маховика.

 

Если двигатель исправен, нет проблем в трансмиссии, то можно устанавливать маховик. При затяжке болтов, крепящих маховик к коленвалу, нужно соблюдать рекомендации производителя. Например, болты могут затягиваться с усилием 60 Нм и доворотом на 90°. Затягивать его «на глаз» крайне не рекомендуется.

Когда маховик закреплен на коленвале, то нужно провести его проверку. Т.е. зафиксировать его ведущий диск и покачать ведомый – убедиться в отсутствии шумов, еще раз оценить люфт.

Нужно провести ту же самую проверку после установки двухмассового маховика на двигатель.

При установке нажимного диска также нужно соблюдать порядок затяжки болтов.

 

У нас в наличии большой выбор двухмассовых маховиков для автомобилей любых марок.

Как маховики накапливают энергию?

Криса Вудфорда. Последнее изменение: 10 марта 2020 г.

Стоп … старт … стоп … старт — это не способ водить машину! Каждый раз, когда вы замедляете или останавливаете автомобиль или машину, вы впустую тратить накопленный заранее импульс, превращая его кинетическую энергию (энергия движения) в тепловую энергию в тормозах. Было бы лучше, если бы вы могли как-то хранить эту энергию, когда вы остановился и вернуть его снова при следующем запуске? Это один работ, которые маховик может сделать за вас.Впервые использован в гончарные круги, которые тогда очень популярны в гигантских двигателях и машинах во время промышленной революции маховики теперь возвращение во всем, от автобусов и поездов до гоночных автомобилей и мощности растения. Давайте подробнее рассмотрим, как они работают!

Фото: Старый маховик парового двигателя в Think Tank, музее науки и промышленности в Бирмингеме, Англия. Маховик — это колесо со спицами сзади. Обратите внимание, что это в основном пустое пространство с длинными спицами и большим тяжелым ободом.

Зачем нужны маховики

Фото: Типичный маховик газоперекачивающего двигателя. Маховик — это большее из двух черных колес с тяжелым черным ободом в центре. Это один из многих увлекательных двигателей, которые вы можете увидеть в Think Tank, музее науки в Бирмингеме, Англия.

Двигатели самые счастливые и самые эффективные когда они вырабатывают мощность с постоянной относительно высокой скоростью. Единственная проблема в том, что автомобили и машины, которыми они управляют, должны работают на самых разных скоростях и иногда необходимо полностью остановиться.Отчасти эту проблему решают муфты и шестерни. (Клатч — это механический «выключатель», который может отключить двигатель от машины он движется, в то время как шестерня — это пара заблокированных колеса с зубьями который изменяет скорость и крутящий момент (усилие вращения) машины, поэтому он может ехать быстрее или медленнее, даже если двигатель работает с одинаковой скоростью. ) Но чего не могут сделать сцепления и шестерни, так это сэкономить энергию, которую вы тратите впустую. когда вы тормозите и отдаете позже. Это работа маховика!

Что такое маховик?

Маховик — это очень тяжелое колесо, которое нужно много силы, чтобы вращаться.Это может быть большой диаметр колесо со спицами и очень тяжелым металлическим ободом, или это может быть цилиндр меньшего диаметра, сделанный из чего-то вроде углеродного волокна композитный. В любом случае, это колесо, которое нужно толкать действительно сложно настроить его вращение. Так же, как маховику нужно много силы, чтобы запустить его, поэтому для его остановки требуется много силы. В виде в результате, когда он вращается на высокой скорости, он стремится к продолжайте вращаться (мы говорим, что у него большой угловой момент), что означает, что он может хранить большое количество кинетической энергии.Вы можете думать об этом как об «механический аккумулятор», но он накапливает энергию в виде движения (другими словами, кинетическая энергия), а не энергия, запасенная в химическая форма внутри традиционной электрической батареи.

Маховики бывают всех форм и размеров. Законы физики (кратко объясненные в поле ниже — но вы можете пропустить их, если вам это не интересно или вы знаете про них уже) скажите что большого диаметра и тяжелых колес хранят больше энергии, чем колеса меньшего размера и легкости, а маховики которые вращаются быстрее, хранят гораздо больше энергии, чем те, которые вращаться медленнее.

Современные маховики немного отличаются от тех, что были популярны во время промышленной революции. Вместо широкого и тяжелого стальные колеса с еще более тяжелыми стальными ободами, маховики 21-го века, как правило, более компактные и изготовленные из углеродного волокна или композитных материалов, иногда со стальными ободами, которые работают, возможно, на четверть тяжелее.

Физика маховиков

Вещи, движущиеся по прямой линии, имеют импульс (своего рода «сила» движения) и кинетическая энергия (энергия движения) потому что у них есть масса (сколько «материала» они содержат) и скорость (насколько быстро они движутся). в таким же образом вращающиеся объекты обладают кинетической энергией, потому что они то, что называется моментом инерции (сколько «хлама» они сделаны из и как это распределено) и угловой скорости (как они быстро вращаются). Момент инерции эквивалентен массе вращающихся объектов, а угловая скорость аналогична обычной. скорость только ходит по кругу.

Так же, как кинетическая энергия объекта, движущегося по прямой линии, определяется этим уравнением:

E = ½mv2

(где m — масса, а v — скорость), поэтому эквивалентный кинетический энергия вращающегося объекта дается этим:

E = ½Iω2

(где I — момент инерции, а ω — угловая скорость).

«Момент инерции» звучит ужасно абстрактно и сбивает с толку, но понять его гораздо проще, чем вы могли бы считать. На самом деле это означает, что с точки зрения кинетической энергии и количества движения эффективная масса вращающегося объекта зависит не только от того, сколько фактической массы он имеет, но и от того, где эта масса расположена по отношению к точка, она вращается. Чем дальше от центра находится масса, тем большее влияние он оказывает на импульс и кинетическую энергию объекта — и мы количественно оцениваем это, говоря, что масса имеет более высокий момент инерции.Так что большой диаметр, легкий, со спицами маховик с очень тяжелым стальным ободом может иметь более высокий момент инерции, чем у прочного маховика гораздо меньшего размера, потому что больше его масса дальше от точки вращения.

Законы о сохранении

Законы сохранения энергии и закон сохранения импульса применяется к вращающимся объектам так же, как они применяется к объектам, движущимся по прямой линии. Так что то, что крутится с определенное количество энергии и углового момента (вращение эквивалент обычного прямолинейного количества движения) сохраняет свое угловой момент, если только сила (например, трение или сопротивление воздуха) крадет это.Этот закон называется сохранением угловой импульс.

Когда фигурист вытягивает руки, некоторые из их масса находится дальше от центра их тела (точки вращения) значит, у них более высокий момент инерции. Если они быстро крутятся с вытянутыми руками, но затем внезапно подносят руки к центр, они мгновенно уменьшают свой момент инерции. Но закон сохранения углового момента говорит, что их полный угловой момент должны оставаться такими же, и это может случиться только в том случае, если они вверх.Вот почему вращающийся фигурист будет вращаться быстрее, когда он прижать руки к телу (и замедлить движение, когда они снова руки).

Artwork: Если вы медленно вращаетесь (стоя на вращающемся подносе без электропитания или сидите на офисном стуле) и быстро прижимаете руки к телу, вы будете вращаться намного быстрее. Ваш момент инерции уменьшается, поэтому ваша скорость должна увеличиваться, чтобы «сохранить» ваш угловой момент (оставьте его неизменным).

Какая лучшая конструкция для маховика?

Из этих основных законов физики следует, что маховик будет накапливать больше энергии, если он имеет более высокий момент инерция (большая масса или масса расположена дальше от ее центра) или если он вращается с большей скоростью. А поскольку кинетическая энергия вращающийся объект (E в приведенном выше уравнении) связан с квадратом его угловой скорости (ω2), вы Вы можете видеть, что скорость имеет гораздо большее влияние, чем момент инерции. Если взять маховик с ободом из тяжелого металла и заменить его на обод, который вдвое тяжелее (удваивает его момент инерции), он накапливает вдвое больше энергии, когда вращается с той же скоростью. Но если вы берете оригинальный маховик и вращаете его в два раза быстрее (вдвое больше угловая скорость), вы в четыре раза увеличите запас энергии.Вот почему конструкторы маховиков обычно стараются использовать высокоскоростные колеса. а не массивные. (Компактные, высокоскоростные маховики тоже более практично в таких вещах, как гоночные автомобили, не в последнюю очередь потому, что большие маховики имеют тенденцию добавить слишком много веса.)

Сила на маховике увеличивается со скоростью, а энергия, которую колесо может накапливать, равна ограничено прочностью материала, из которого он изготовлен: вращать маховик слишком быстро, и вы в конечном итоге достигнете точки, в которой сила настолько велика, что разбивает колесо на осколки. Прочные и легкие материалы лучше всего подходят для маховиков, поскольку они могут быстрее всего вращаться без разваливается. Современные маховики обычно изготавливаются из таких материалов, как сплавы, композиты из углеродного волокна, керамика и кристаллические материалы, такие как монокристаллы кремния. Некоторые специально разработаны, чтобы безопасно разбиться на крошечные фрагменты, если они будут вращаться слишком быстро.

Произведения: Маховики имеют фиксированный диаметр и массу, а значит, фиксированный момент инерции — или есть? Эта гениальная система маховика 1959 года, разработанная Бертрамом Шмидтом, может складываться и раскладываться для увеличения или уменьшения запасаемой энергии.Как это работает? Приводной двигатель (зеленый, справа) приводит в действие груз (оранжевый, слева) через ось (желтый) и систему шкивов (серый). При изменении скорости оси центробежный регулятор (темно-синий) и электрическая цепь (вверху справа) включают или выключают небольшой электродвигатель (розовый), перемещая рычажный механизм (коричневый) влево или вправо, перемещая другой рычажный механизм ( синий), поэтому маховик (красный) складывается или раскладывается по мере необходимости. Из патента США 2 914 962: Система маховика Бертрама Шмидта, опубликованного 1 декабря 1959 г., любезно предоставлено Управлением по патентам и товарным знакам США.

Как маховик может сохранять свою энергию?

Фото: Маховики в конечном итоге перестают вращаться из-за трения и сопротивления воздуха, но если мы установим их на подшипники с очень низким коэффициентом трения, они сохранят свою энергию в течение нескольких дней. В этом экспериментальном маховике используется сверхпроводящий подшипник без трения, который вращается внутри вакуумной камеры, чтобы сопротивление воздуха не замедляло его. Фото любезно предоставлено Министерством энергетики США / Аргоннской национальной лабораторией.

Законы физики (точнее, первый закон движения Ньютона) говорят нам, что движущийся объект будет продолжать двигаться, если на него не действует сила.Вы можете подумать, что маховик будет вращаться вечно. Единственная проблема заключается в том, что маховики вращаются на подшипниках, поэтому, даже когда они хорошо смазаны, сила трения замедляет их. Есть еще одна проблема: поскольку маховики вращаются в воздухе, сопротивление воздуха или сопротивление также замедляют их. Современные маховики решают эти проблемы, устанавливая их на подшипниках с низким коэффициентом трения. подшипники и герметизированы внутри металлических цилиндров, поэтому они не теряют столько энергия на трение и сопротивление воздуха, как это делали бы традиционные маховики.Самые сложные маховики плавают на сверхпроводящих магнитах (поэтому они почти полностью вращаются без трение) и герметизированы внутри вакуумных камер (поэтому нет потерь на сопротивление воздуха).

Что делает маховик?

Фото: Типичный современный маховик даже не похож на колесо! Он состоит из вращающегося цилиндра из углеродного волокна, установленного внутри очень прочного контейнера, который предназначен для остановки любых высокоскоростных осколков, если ротор сломается. Такие маховики имеют присоединенный электродвигатель и / или генератор, который накапливает энергию в колесе и возвращает ее позже, когда это необходимо. Фото любезно предоставлено Исследовательским центром Гленна НАСА (NASA-GRC).

Считайте что-то вроде старомодного пара тяговый двигатель — по сути, тяжелый старый трактор с приводом от паровой двигатель, который движется по дороге, а не по рельсам. Допустим, у нас есть тяговый двигатель с большим маховиком, который находится между двигателями производя мощность и колеса, которые принимают эту мощность и перемещение двигателя по дороге. Далее, допустим, маховик имеет муфты, поэтому его можно подключать или отключать от паровой двигатель, ведущие колеса или и то, и другое.Маховик может сделать три очень полезная работа для нас.

Во-первых, если паровой двигатель вырабатывает мощность с перерывами (возможно, потому, что у него только один цилиндр), маховик помогает сгладить мощность, получаемую колесами. Так что пока цилиндр двигателя может добавлять мощность на маховик каждые тридцать секунд (каждый раз, когда поршень выталкивается из цилиндра), колеса могли получать мощность от маховика на устойчивой, непрерывной скорость — и двигатель будет плавно катиться, а не дергаться в уходит и запускается (как если бы он приводился в действие непосредственно поршнем и цилиндр).

Во-вторых, маховик можно использовать для замедления автомобиль, как тормоз, но тормоз, поглощающий энергию автомобиля вместо того, чтобы тратить его как обычный тормоз. Предположим, вы ведете тяга двигателя по улице, и вы внезапно хотите остановиться. Вы может отключить паровой двигатель с помощью сцепления, так что транспортное средство начал бы замедляться. При этом будет передаваться энергия от транспортного средства к маховику, который набирает скорость и сохраняет спиннинг. Затем вы можете отключить маховик, чтобы автомобиль полностью прекратить.В следующий раз, когда вы снова отправитесь в путь, вы должны использовать сцепление, чтобы повторно подсоедините маховик к ведущим колесам, чтобы маховик отдать большую часть двигателя, поглощенного им при торможении.

В-третьих, маховик может использоваться для временного дополнительная мощность, когда двигатель не может производить достаточно. Предположим, вы хотите обгонять медленно движущуюся лошадь и телегу. Допустим, маховик вращается в течение некоторого времени, но в настоящее время не подключен ни к одному из двигатель или колеса. Когда вы снова подключаете его к колесам, он как второй двигатель, обеспечивающий дополнительную мощность.Это только работает однако временно, потому что энергия, которую вы подаете на колеса, должна потеряться от маховика, что приведет к его замедлению.

Краткая история маховиков

Древние маховики

Вы можете возразить, что маховики — одно из старейших изобретений: самые ранние колеса были сделаны из тяжелого камня или цельного дерева и, поскольку у них был высокий момент инерции, работали как маховики, предназначались они для этого или нет. Гончарный круг (возможно, самая старая из существующих форм круга — даже старше, чем круги используется при транспортировке) полагается на то, что его поворотный стол будет прочным и тяжелым (или с тяжелым ободом), поэтому он имеет высокий момент инерции, благодаря которому он вращается сам по себе пока вы лепите сверху глину руками.Водяные колеса, которые производят энергию из рек и ручьев, также имеют форму маховиков, с прочными, но легкими спицами и очень тяжелыми ободами, поэтому они продолжают вращаться с постоянной скоростью и питание мельниц на постоянной скорости. Такие водяные колеса стали популярными со времен Римской империи.

Фото: Гидравлические колеса используют простой принцип маховика для поддержания постоянной скорости вращения. Это модель подводного водяного колеса (приводимое в движение рекой, протекающей под ним).

Маховики промышленной революции

Самые известные маховики времен Промышленного Revolution и используются в таких вещах, как заводские паровые машины и тяговые двигатели. Присмотритесь практически к любой заводской машине из 18-го или 19-го века, и вы увидите огромный маховик где-то в механизм. Поскольку маховики часто бывают очень большими и вращаются с большой скоростью скорости, их тяжелые диски должны выдерживать экстремальные нагрузки. Они также должны быть выполнены с высокой точностью, так как даже если они немного разбалансированы, они будут слишком сильно раскачиваться и дестабилизировать все, что к ним прикреплено к.Широкая доступность чугуна и стали в Промышленная революция сделала возможным создание качественных, высоких прецизионные маховики, которые сыграли жизненно важную роль в обеспечении работы двигателей и машин плавно и качественно.

После работ таких пионеров электричества 19 века, как Томас Эдисон, электроэнергия вскоре стала широко доступны для управления заводскими машинами, которым больше не нужны маховики для сглаживания неустойчивости, угольные паровые машины. Между тем, автотранспорт, корабли, поезда и самолеты использовали двигатели внутреннего сгорания, работающие от бензин, дизельное топливо и керосин.Маховики обычно были большими и тяжелыми и не было места внутри чего-то вроде автомобильного двигателя или корабля, не говоря уже о самолете. В результате технология маховиков несколько упала на на обочине по мере развития 20-го века.

Современные маховики

С середины 20 века интерес к маховикам снова поднялся, в основном потому, что людей стало больше обеспокоены ценами на топливо и воздействием на окружающую среду используя их; имеет смысл экономить энергию — и маховики очень хороши в этом.Примерно с 1950-х годов европейские производители автобусов такие как M.A.N. и Mercedes-Benz экспериментировали с технология маховика в транспортных средствах, известных как гиробусы. Основная идея — установить тяжелый стальной маховик (диаметром около 60 см или пару футов, вращающийся со скоростью около 10000 об / мин). между задним двигателем автобуса и задней осью, поэтому он действует как мост между двигателем и колеса. Когда автобус тормозит, маховик работает как рекуперативный тормоз, поглощение кинетической энергии и замедление транспортного средства.Когда автобус снова заводится, маховик возвращается его энергия передается в трансмиссию, экономя большую часть энергии торможения, которая в противном случае были потрачены впустую. Современная железная дорога и в поездах метро также широко используются рекуперативные тормоза с маховиком, что может дать общую экономию энергии, возможно, на треть или более. Некоторые производители электромобилей предложили использовать сверхбыстрые вращающиеся маховики. в качестве накопителей энергии вместо батарей. Одним из больших преимуществ этого является то, что маховики потенциально может прослужить в течение всего срока службы автомобиля, в отличие от аккумуляторов, которые могут потребуется очень дорогая замена примерно через десять лет.

Фото: Современный маховик, разработанный НАСА для использования в космосе. Обратите внимание, как серебристый центр колеса в основном это пустое пространство и спицы, а масса колеса сосредоточена вокруг обода. Это дает колесо то, что известен как высокий момент инерции (более подробно объясняется ниже) и позволяет ему накапливать больше энергии. Фото любезно предоставлено Исследовательским центром Гленна НАСА (NASA-GRC).

За последние несколько лет болиды Формулы 1 также использовали маховики, но больше для увеличения мощности, чем для экономии энергии.Технология называется KERS (Kinetic Energy Recovery System) и состоит из очень компактного, очень скоростного маховика. (вращение со скоростью 64000 об / мин), которая поглощает энергию, которая обычно теряется в виде тепла при торможении. Водитель может нажмите переключатель на рулевом колесе, чтобы маховик временно взаимодействует с трансмиссией автомобиля, обеспечивая кратковременный прирост скорости при для разгона нужна дополнительная мощность. С таким скоростным маховиком, соображения безопасности становятся чрезвычайно важными; маховик установлен внутри сверхпрочного контейнера из углеродного волокна, чтобы не повредить драйвер, если он взорвется.(В некоторых формах KERS используются электродвигатели, генераторы, и аккумуляторы для хранения энергии вместо маховиков, аналогично гибридным автомобилям.)

Так же, как маховики — в виде водяные колеса — играли важную роль в попытках человека использовать энергии, поэтому они возвращаются в современное производство электроэнергии. Один трудностей с силовыми установками (а тем более с формы возобновляемой энергии, такие как энергия ветра и солнца) заключается в том, что они не обязательно производить электричество постоянно или таким образом, чтобы точно соответствует росту и падению спроса в течение день.Связанная с этим проблема заключается в том, что производить электричество намного проще, чем стоит хранить его в большом количестве. Маховики предлагают решение это. Иногда, когда предложение электроэнергии превышает спрос (например, ночью или в выходные) электростанции могут кормить их избыток энергии в огромные маховики, которые будут хранить ее в течение периоды от минут до часов и время от времени отпускайте его снова пиковой потребности. На трех заводах в Нью-Йорке, Массачусетсе и Пенсильвании. Компания Beacon Power первой использовала маховики, чтобы обеспечить накопление энергии до 20 мегаватт для удовлетворения временных пиков потребления энергии. потребность.Они также используются в компьютерных центрах обработки данных, чтобы обеспечивать аварийное, резервное питание на случай отключения электроэнергии.

Преимущества и недостатки маховиков

Маховики — это относительно простая технология с множество плюсов по сравнению с конкурентами, такими как аккумуляторные батареи: с точки зрения начальной стоимости и текущих обслуживание, они обходятся дешевле, служат примерно в 10 раз дольше (Есть еще много работающих маховиков, начиная с Industrial Revolution), безвредны для окружающей среды (не производят выбросов углекислого газа и не содержат опасных химикатов, вызывающих загрязнение), работают практически в любом климате и очень быстро набирают обороты. (в отличие, например, от батарей, для зарядки которых может потребоваться много часов).Они также чрезвычайно эффективен (может быть 80 процентов или более) и занимает меньше пространство, чем батареи или другие формы хранения энергии (например, накачанные водохранилища).

Фото: Маховики — отличная альтернатива батареям. Здесь маховик (справа) используется для хранения электроэнергии, производимой солнечной панелью. Электричество от панели приводит в действие электродвигатель / генератор, который раскручивает маховик до нужной скорости. Когда электричество необходимо, маховик приводит в действие генератор и снова производит электричество.Фото Уоррена Гретца любезно предоставлено Министерством энергетики США / NREL

Самый большой недостаток маховиков (конечно что касается транспортных средств) — это вес, который они добавляют. Полная Формула 1 KERS система маховика (включая необходимый контейнер, гидравлику и электронные системы управления) около 25 кг к весу автомобиля, что является значительной дополнительной нагрузкой. Другая проблема (особенно для гонщиков Формулы 1) в том, что большое тяжелое колесо вращение внутри движущегося автомобиля будет действовать как гироскоп, сопротивляться изменениям в своем направлении и потенциально влиять на управляемость автомобиля (хотя есть разные решения, включая установку маховиков на карданы, как корабельный компас).А дальнейшая трудность заключается в огромных напряжениях и деформациях, которые маховики опыт, когда они вращаются с чрезвычайно высокой скоростью, что может вызвать их разбить и взорвать на осколки. Это действует как ограничение на как быстро могут вращаться маховики и, следовательно, сколько энергии они можно хранить. В то время как традиционные колеса делались из стали и вращались на открытом воздухе современные чаще используют высокоэффективные композиты или керамика и быть запечатанными внутри контейнеров, что делает возможны более высокие скорости и энергия без ущерба для безопасности.

разница между маховиком и губернатором разница между

Маховик и регулятор — это механические устройства, которые используются в основном для одной и той же цели; то есть контролировать или регулировать колебания скорости, за исключением точки удара.

В то время как маховик регулирует изменение скорости коленчатого вала, регулятор регулирует изменение скорости, вызванное изменением нагрузки.

Основное различие между ними заключается в том, что маховик всегда находится в рабочем состоянии, когда двигатель работает, и работа является непрерывной от цикла к циклу, тогда как работа является прерывистой в случае регулятора, что означает, что он работает только тогда, когда двигатель работает. не бежать со средней скоростью.

Ну, оба стремятся стабилизировать скорость при колебаниях, так что разница вроде бы в основном в работе. Давайте внимательно посмотрим на них.

Что такое маховик?

Маховик — это тяжелое вращающееся колесо, прикрепленное к вращающемуся валу, которое сглаживает передачу мощности поршневым двигателем из-за разницы между крутящим моментом привода и активным крутящим моментом в течение рабочего цикла.

По сути, это механическое устройство, специально разработанное для хранения энергии вращения. Он действует как резервуар, что означает, что он накапливает энергию, когда подача энергии больше, чем требуется для работы, и высвобождает ее, когда подача меньше, чем требуется.

Проще говоря, маховик накапливает избыток энергии вращения для периодического использования. Он обеспечивает непрерывную энергию, когда источник энергии прерывается. В автомобильных двигателях он накапливает энергию, помогающую двигателю преодолевать холостой ход поршня. При подключении к автоматической коробке передач ее часто называют гибкой пластиной.

Что такое губернатор?

Регулятор — это также механическое устройство, которое регулирует среднюю скорость двигателя при изменении нагрузки. По сути, это устройство регулятора скорости, используемое для измерения и регулирования скорости машины независимо от колебаний нагрузки. Он поддерживает скорость двигателя в заданных пределах независимо от колебаний нагрузки.

Регулятор изменяет конфигурацию при изменении нагрузки на двигатель и соответственно регулирует подачу топлива. В отличие от маховика, он может регулировать скорость, но не может накапливать и подавать энергию при необходимости. Он используется в большинстве систем с приводом от двигателя, таких как тракторы, газонокосилки, автомобили и т. Д. Он действует как механизм круиз-контроля, который поддерживает работу двигателя на заданном пределе скорости по вашему выбору, независимо от изменений нагрузки. Он определяет изменения нагрузки и соответствующим образом регулирует дроссельную заслонку.

Разница между маховиком и регулятором

  1. Основные сведения о маховике и регуляторе

Оба являются механическими устройствами, используемыми для регулирования / контроля скорости для компенсации изменений скорости, но с разными точками удара.Маховик поддерживает постоянную скорость при различных условиях нагрузки для каждого термодинамического цикла. С другой стороны, регулятор также контролирует работу двигателя и его основную скорость, но средства отличаются от маховика.

  1. Функция маховика и регулятора

В маховике накапливается избыточная энергия вращения для периодического использования. Он накапливает энергию, когда подача больше, чем требуется для работы, и высвобождает ее, когда подача меньше, чем требуется.Регулятор регулирует поток топлива для поддержания постоянной средней скорости в течение всего цикла независимо от изменений нагрузки.

  1. Работа маховика и регулятора

Маховик — это тяжелое вращающееся металлическое колесо, которое сопротивляется изменениям скорости вращения, обеспечивая энергию, когда источник энергии прерывается. Импульс инерции — это то, что приводит в движение маховик, и он вращается с переменной угловой скоростью. Несмотря на колебания энергии, коленчатый вал вращается с постоянной скоростью на каждом такте цикла.Губернатор, с другой стороны, контролирует и поддерживает скорость двигателя, регулируя количество топлива, подаваемого в двигатель.

  1. Скорость маховика и регулятора

Маховик вращается с переменной угловой скоростью, которая увеличивается при накоплении энергии и уменьшается при ее отпускании. Он поглощает механическую энергию, увеличивая свою угловую скорость, и высвобождает энергию, уменьшая угловую скорость. С другой стороны, регулятор минимизирует колебания средней скорости, возникающие из-за изменения нагрузки.Он увеличивает расход топлива, чтобы средняя скорость оставалась постоянной.

  1. Применение маховика и регулятора

Маховик больше похож на внутрицикловое устройство, которое в основном используется в поршневых двигателях, где источник энергии варьируется, например, в автомобильных двигателях или производственных машинах, таких как прокатный стан, штамповочные станки и т. Д. Регулятор, напротив, похож на устройство регулятора скорости, используемое для регулирования скорости машины и в основном используется в транспортных средствах, валах турбин, центробежных регуляторах и т. д.

Маховик и регулятор: сравнительная таблица

Обзор маховика и регулятора

В то время как функция маховика заключается в регулировании колебаний скорости во время каждого цикла, функция регулятора заключается в поддержании постоянной средней скорости двигателя на протяжении всего цикла. Маховик накапливает энергию вращения, когда подводимая механическая энергия превышает необходимую для работы, тогда как регулятор регулирует подачу топлива в соответствии с изменяющимися условиями нагрузки.Хотя гипотетически оба служат одной и той же цели, то есть контролю скорости, они делают это по-разному. На самом деле главное отличие заключается в точке удара. В этой статье они сравниваются по различным аспектам.

Сагар Хиллар — плодовитый автор контента / статей / блогов, работающий старшим разработчиком / писателем контента в известной фирме по обслуживанию клиентов, базирующейся в Индии. У него есть желание исследовать самые разные темы и разрабатывать высококачественный контент, чтобы его можно было лучше всего читать.Благодаря его страсти к писательству, он имеет более 7 лет профессионального опыта в написании и редактировании услуг на самых разных печатных и электронных платформах.

Вне своей профессиональной жизни Сагар любит общаться с людьми разных культур и происхождения. Можно сказать, что он любопытен по натуре. Он считает, что каждый — это опыт обучения, и это приносит определенное волнение, своего рода любопытство, чтобы продолжать работать. Поначалу это может показаться глупым, но через некоторое время это расслабляет вас и облегчает начало разговора с совершенно незнакомыми людьми — вот что он сказал.»

Последние сообщения Сагара Хиллара (посмотреть все)

Что такое двухмассовый маховик и как он работает? Инженер

Двухмассовый маховик, или DMF, является крупным технологическим достижением в автомобильных трансмиссионных системах

Стремление к устойчивости в транспортном секторе привело к революции гибридных и электрических автомобилей, но даже в обычных транспортных средствах с бензиновым двигателем наблюдается значительный прогресс в экономии топлива, что приводит к снижению общих выбросов CO 2 .

Большая часть этих достижений является прямым результатом меньших двигателей. Автопроизводители сейчас проектируют автомобили с трех- и даже двухцилиндровыми двигателями, и, хотя эти двигатели меньшего размера добились успеха в снижении расхода топлива, теперь их просят обеспечить крутящий момент и мощность гораздо более крупных двигателей. В результате значительно увеличивается вибрация и шум, особенно на низких скоростях.

Как автомобильная промышленность справилась с этой повышенной вибрацией и шумом? Двухмассовый маховик .

DMF действует примерно так же, как традиционный одиночный маховик — они обеспечивают прямой контакт между двигателем и узлом сцепления в механических коробках передач. Отличия DMF от одиночных маховиков заключается не только в наличии двух маховиков, а не в одном — все дело в том, что происходит между двумя маховиками.

В DMF

между маховиками имеется ряд пружин, которые действуют как гасители колебаний. Там, где вибрации и шуму в трансмиссиях, использующих один маховик, некуда идти, кроме как непосредственно в систему трансмиссии, пружинная система DMF гасит эту вибрацию двигателя, в результате чего снижается уровень шума, повышается комфорт для водителя и увеличивается срок службы трансмиссии.

В чем обратная сторона? Установка DMF обычно означает более высокие затраты на техническое обслуживание для водителей. Замена сцепления часто требовала замены DMF одновременно, а установка DMF традиционно была дорогостоящей и отнимала много времени для мастерских.

Но некоторые недавние разработки делают замену DMF намного более доступной.

Основные производители ДМФ, такие как Valeo, производят ДМФ, которые механики легко монтируют и не требуют специальных инструментов, что означает значительное снижение затрат на установку.

Valeo также недавно представила новый тип DMF, VBlade TM . Вместо набора пружин между двумя маховиками в VBlade TM используются два глушителя вибрации. В результате получается невероятно прочный DMF, который означает снижение затрат на техническое обслуживание для водителей.

Двухмассовые маховики Valeo VBladeTM DMF

оказались настолько успешными в снижении вибрации и шума, что теперь каждый второй автомобиль, сходящий с конвейера, оснащен DMF *.Скорее всего, он сейчас у тебя в машине.

И поскольку такие производители, как Valeo, продолжают развивать технологию DMF, увеличивая их долговечность и снижая стоимость, DMF выглядит так, как будто они будут основной частью автомобильных систем трансмиссии на долгие годы.

* Источник: valeoservice.co.uk

мест | Местный FAQ

Вы должны быть клиентом Flywheel, чтобы использовать Local?

Вовсе нет! Хотя Local, скорее всего, будет работать, выглядеть и чувствовать себя лучше всего, если вы используете его с Flywheel, это автономное приложение для локальной разработки.Наслаждайтесь! 🙂


Как мне перевести мой сайт с местного на маховик?

Убедитесь, что у вас установлена ​​последняя версия Local. После того, как вы настроены и работаете, перейдите на вкладку Connect to Flywheel, чтобы зарегистрироваться (или войти!) В Flywheel.


Каковы минимальные требования для работы в локальном режиме?

Минимальные требования для Mac:

  • 4 ГБ ОЗУ
  • 1 ГБ дискового пространства
  • macOS 10.13 High Sierra и более поздние версии

И в Windows:

  • 4 ГБ ОЗУ
  • 1 ГБ на диске
  • Windows 7, 8, 8.1, или 10

Вот и все!


Где мне найти версию Local, которую я использую?

Пользователи Mac

  1. Open Local
  2. Щелкните «Local» в верхнем левом углу окна Mac.
  3. Выберите «About Local»
  4. Здесь вы узнаете, какая версия Local вы используете

Пример поиска локальной версии на Mac

Пользователи Windows

  1. Open Local
  2. Щелкните гамбургер-меню в верхнем левом углу приложения
  3. Щелкните «About Local»
  4. Здесь вы узнаете, какую версию Local вы используете

Пример поиска локальной версии в Windows


Работает ли Local с сайтами не на WordPress?

Да! Вы также можете сохранить свои настройки, не относящиеся к WordPress, как Blueprints, чтобы использовать их повторно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *