Двигатель дизель: Дизельные двигатели: виды, принцип работы, преимущества дизельных двигателей
Особенности двигателя TDI в автомобилях Volkswagen
Двигатель TDI — это повышенная мощность при низком объеме вредных выбросов. Под аббревиатурой TDI (Turbo Diesel Injection) понимается дизельный силовой агрегат, который обладает повышенным крутящим моментом, незначительными топливными затратами и высокой мощностью. Какими же еще положительными сторонами и спецификой отличается подобный мотор?
Единственная модель Volkswagen, которая комплектуется TDI — полноприводный внедорожник Toaureg. Этот тип двигателя не самый популярный на автомобилях Volkswagen, в отличии от TSI. На Passat В8, Passat СС, Tiguan устанавливают сейчас (2016 года) только двигатели типа TSI. На Golf и Jetta кроме TSI устанавливают также MPI-двигатели.
Каждый современный мотор с турбонагнетателем, а также прямым впрыском в транспортных средствах «Volkswagen» помечают как TDI. Важной отличительной чертой для каждого такого мотора считается то, что топливный впрыск, который производится под повышенным давлением вместе с изменяющейся турбинной геометрией, дозволяет осуществлять сжигание предельно эффективно.
Во время применения технологии прямого топливного впрыска удается достичь уровня КПД максимум 45 процентов. В результате происходит преобразование значительной доли возможной топливной энергии в кинетическую, то есть в моторную мощность. Хотя для этого нужно, чтобы почти полностью и эффективно сгорало топливо. Достигается это с помощью особенной конфигурации камеры сгорания.
Главные положительные стороны TDI
Двигательное устройство TDI отличает экономное расходование. Важнейшими его положительными сторонами считаются:
- незначительное топливное потребление;
- небольшой объем выбросов вредоносных веществ;
- надобность лишь изредка проводить автосервисные работы и техобслуживание.
Непосредственно во время низких оборотов получается в значительной мере увеличить мощность до предельной вращательной частоты. Происходит улучшение показателей разгона, а заодно качества рабочей динамики. Повышенный крутящий момент заодно обеспечивает предельное удобство от вождения автомобиля, который оснащен двигательным устройством TDI.
Прямой либо предварительный топливный впрыск?
Двигатели с прямым топливным впрыском осуществляют довольно жесткое топливное сжигание. В итоге при охлажденном запуске, как правило, появляется отличительный гул. Во избежание этого дизельное топливо впрыскивается предварительно.
Перед главным циклом непосредственно в камеру сгорания происходит топливная подача в малом объеме. Давление в камере повышается не немедленно, а понемногу, поэтому сгорание становится «мягким».
Уменьшение вредоносных выбросов
После того, как топливо предварительно впрыскано, происходит постинжекционный процесс, приводящий к уменьшению выброса вредоносных веществ. Минимизируются азотные оксиды в выхлопе за счет того, что в камеру сгорания попадает немного топлива исходя от оборотов. Когда смешиваются воздух, который поглощается, а заодно выхлопные газы, в камере уменьшается температурный режим, поэтому происходит сокращение объема азотных оксидов.
Двигательный турбонагнетатель
В моторах TDI используется турбонагнетатель с изменяющейся геометрией, что дозволяет осуществлять сжимание воздуха, который поглощается. За счет этого увеличивается объем поглощаемого воздуха в камере. В итоге мощность мотора повышается при прежней объемности и на таких же оборотах.
Две турбины формируют устройство турбонагнетателя. Находящаяся в выпускном тракте турбина, начинает вращаться от исходящей массы выхлопных газов. Она начинает двигать компрессорное колесо, которое осуществляет сжатие воздуха непосредственно на впуске. Воздух, нагреваемый во время сжатия, подвергается охлаждению и затем поступает в камеру. Так как при снижении температурного режима объем воздуха также уменьшается, то и в камере его оказывается больше.
Изменение турбинной геометрии
Система VTG сегодня довольно успешно употребляется в моторах TDI. Во время малых оборотов и незначительном газовом объеме блок контроля меняет местоположение механических устремляющих лопастей, при которых происходит сужение диаметра. Это способствует ускорению газового потока и усилению давления. При повышении оборотов мотора происходит усиление выхлопного давления, поэтому блок контроля наоборот повышает трубопроводный диаметр. Подобные нагнетатели способствуют приданию дополнительной мощности мотору, уменьшая объем выбросов и увеличивая приемистость.
Рудольф Дизель – исчезнувший гений
Сегодня мировую автоиндустрию сложно представить без дизельного двигателя. По данным опроса онлайн-портала Autoscout24, почти каждый второй автомобиль, сходящий сегодня с немецкого конвейера, оборудован двигателем внутреннего сгорания, а свыше половины немцев (57 процентов) делают выбор в его пользу – не в последнюю очередь из-за его экономности.
О таком успехе на своей родине немец Рудольф Дизель мог лишь мечтать – при жизни изобретателя его детище пользовалось успехом по всей Европе и даже за океаном, но только не в родной Германии. Дизель, с детства увлекавшийся физикой и с отличием закончивший Мюнхенскую политехническую школу, мечтал создать аппарат для максимального преобразования энергии под воздействием горячего воздуха.
23 февраля 1893 года ученый получил в Берлинском императорском патентном бюро свой первый патент. Спустя четыре года при финансовой поддержке компании промышленника Фридриха Круппа и инженеров машиностроительного завода MAN он создал первый функционирующий двигатель: сжатие воздуха приводило к самовоспламенению топлива. КПД первого дизельного двигателя составляло всего 26 градусов (у современных моделей – до 45), что на порядок превосходило уже имеющийся бензиновый двигатель Отто.
Эффективность дизельного двигателя в первую очередь оценили вкораблестроении: начиная с 1903 года им стали оборудовать многие судна. На Всемирной выставке в 1900 году в Париже был продемонстрирован дизельный двигатель, работающий на арахисовом масле. Дизель-визионер уже тогда выступал за биотопливо, поддерживая использование натуральных растительных масел.
В 1912 году был выпущен первый дизельный локомотив, в Первую мировую войну – подводная лодка. Первые дизельные моторы были слишком громоздки, поэтому понадобилось время, чтобы начать использовать их в автоиндустрии. Поставить такой двигатель на грузовик удалось лишь в 1923 году, а спустя 13 лет компания Mercedes выпустила первый легковой автомобиль на дизельном топливе – Mercedes 260-D.
Будучи гениальным инженером, Дизель совсем не имел предпринимательской жилки. Еще в 1898 году он основал свою компанию по продаже дизельных двигателей, но в итоге все его время отнимали патентные процессы. Финансовый кризис 1913 года окончательно разорил ученого, и тот отправился на корабле в Лондон, чтобы обсудить с англичанами возможность продажи патента.
Что случилось в ночь на 30 сентября 1913 года в проливе Ла-Манш, доподлинно не знает никто. Накануне Рудольф Дизель сел на паром в Антверпене, несмотря на финансовые проблемы пребывал в отличном настроении, шутил с друзьями и охотно рассказывал попутчикам о своем изобретении. Затем он отправился в свою каюту, попросил стюарда разбудить его с утра и… исчез. На палубе были найдены его пальто и шляпа, а спустя несколько суток из вод пролива выловили его тело.
Расследование обстоятельств смерти ни к чему не привело. Знавшие Дизеля лично утверждали, что покончить с собой он не мог, да и слишком много фактов свидетельствовало против этого, равно как и против несчастного случая. Был ли он убит? Не исключен след немецких спецслужб: к тому моменту в воздухе уже витало предчувствие Первой мировой, и продажа немецкого изобретения англичанам была совсем не на руку кайзеровской Германии. Однако это всего лишь домыслы, и обстоятельства смерти Рудольфа Дизеля навсегда останутся еще одной загадкой истории.
Ирина Михайлина
Русский Дизель. Производство дизельных двигателей размерности 23/2х30, ДР 30/50 и запасных частей
«Русский дизель». Двигатели размерности 23/2х30, 40/46 и 30/50
ООО «Кингисеппский машиностроительный завод» производит дизельные двигатели и дизель-генераторные установки единичной мощности от 3,45 до 8 мВт. Основной специализацией предприятия является изготовление дизель-генераторов и силовых судовых и корабельных установок мощностью до 10000 л.с. на базе дизельных двигателей размерности 23/2х30 «Русский дизель».
Модельный ряд двигателей размерности 23/2Х30 «Русский дизель»
Модельный ряд дизельных двигателей размерности 23/2х30 производства Кингисеппского машиностроительного завода:
Модельный ряд двигателей размерности 23/2Х30
«58» 16ДПН23/2х30 мощность 4500 л. с.: 58Д-4А 58Д 58А 58Е-7А
«61» 16ДПН23/2х30 мощность 6000 л.с: 61Б, 61В
«67» 12ДРПН23/2х30 мощность 7000 л.с.: 67Е 67Б 67И
«68» 18ДПН23/2х30 мощность 8000 л.с.: 68Е 68Г 68Б 68В
«70» 18ДРПН23/2х30 мощность 6000 л.с.: 70Б
«78» 18ДРПН23/2х30 мощность 7990 л.с.: 78Г 78И
«82» 18ДПН23/2X30 мощность 6790 л.с.: 82А
«85» 18ДПН23/2X30 мощность 8300 л.с.: 85Д
«86» 18ДРПН23/2х30 мощность 8000 л.с.: 86Б
«88» 18ДПН23/2х30 мощность 8850 л.с.: 88Г
Судовой дизельный двигатель размерности 23/2х30 «Русский дизель»
Судовые автоматизированные дизель-генераторы на базе двигателей 23/2х30 «Русский дизель»
Судовые автоматизированные дизель-генераторы СДГ-5000 состоят из дизеля 68Г и синхронного генератора. Дизели 68Г является двухтактными, нереверсивным, простого действия с противоположно движущимися поршнями, с двумя рядами вертикально расположенных цилиндров, с четырьмя коленчатым валами, которые объединяются со встроенным мультипликатором (главной передачей), с прямоточно-щелевой продувкой, с газотурбинным наддувом и промежуточным охлаждением воздуха.
Управление дизель-генератором осуществляется посредством системы дистанционного автоматизированного управления, состоящей из системы автоматического и дистанционного управления двигателями судовых дизель-генераторов ДАУ СДГ-Т, блока реле-приставки и элементов дизельной автоматики.
Основными конструктивным отличием дизеля 705 от дизеля 68Б является главная передача, передаточное отношение которой обеспечивает другие выходные оборот дизеля. Дизели 70Б и 70Б-6 реверсивные, при этом дизель 70Б реверсируются как с местного поста, так и с пульта ДАУ.
Габаритный чертеж дизель-генератора на базе двигателя 16ДПН23/2х30
Система автоматизированного управления
Управление дизель-генератором осуществляется посредством системы дистанционного автоматизированного управления, состоящей из системы автоматического и дистанционного управления двигателями судовых дизель-генераторов ДАУ СДГ-Т, блока реле-приставки и элементов дизельной автоматики.
Работы по усовершенствованию дизелей 64Г, входящих в состав ДГ-4000 продолжаются. В частности, создан форсированный вариант 64ГФ с повышением мощности установки с 3,5 МВт до 4 МВт. Были выпущены модификации, работающие на природном газе – 61ГА и 64ГА, готовится дизель 96ГА, работающий на дизельном топливе и природном газе. Модификации ДГ совершенствуются по мере изменений потребностей народного хозяйства.Модификация АСД-6300 мощность 7 МВт и АСД-5600 мощность 5,6 МВт предназначены для установок резервного электроснабжения с ограниченным временем пуска. Дизель комплектуется приводным газотурбонагнетателем, что позволяет без дополнительных энергозатрат обеспечить готовность дизеля к приему нагрузки в течение 15 секунд после получения команды на пуск, а также обеспечивает устойчивую работу при внезапных набросах нагрузки, минимизируя провалы по частоте и напряжению.
Автоматизированные дизель-генераторы (дизельные электростанции) переменного тока с дизелями 18ДПН23/2Х30 предназначены для использования в качестве постоянных или аварийных (резервных) источников электроэнергии и благодаря малому времени пуска применяются на атомных электростанциях и у других потребителей, где прекращение подачи электроэнергии недопустимо.
Дизель-генераторы ДГ-4000 мощностью 3,5 МВт и АДГ-5000 мощностью 5 МВт используется как постоянные источники электроэнергии.
В состав дизель-генераторов (электростанций) входят и комплектно поставляются только отечественные комплектующие:
• стационарный дизель 18ДПН23/2Х30;
• синхронный генератор типа СБГД/ СГДМ с бесщеточной системой возбуждения и устройством управления;
• система автоматического управления;
• сигнализации и защиты;
• вспомогательное оборудование, обеспечивающее работу дизеля (насосы, фильтры, терморегуляторы и т. п.), поставляемое в виде комплектных блоков;
• глушитель и трубопроводы всасывания и выхлопа;
• бак расширительный и система подогрева воды и масла;
• баллоны пускового и управляющего воздуха;
• блоки осушки воздуха;
• компрессор высокого давления собственного производства завода.
Система автоматического управления, сигнализации и защиты выполнены в виде отдельных шкафов управления дизелем, генератором и агрегатом в целом и обеспечивают автоматический пуск при исчезновении напряжения во внешней сети или по сигналу диспетчера.
На панелях шкафов управления размещены измерительные приборы и световая сигнализация, а также устройство ручного управления агрегатом при необходимости.
Двигатель размерности 23/2х30 «Русский дизель» готов к отгрузке
Система автоматизированного управления, сигнализации и защиты оповещает о состоянии дизель-генератора и соответствии фактических значений контролируемых параметров заданиям, обеспечивает автоматическое и автоматизированное управление пуском и остановом дизель-генератора, автоматическое пополнение расходных ёмкостей топлива, масла и охлаждающей жидкости; автоматизированный и экстренный останов; ручной запуск и останов; защиту дизель-генератора по предельно допустимым параметрам дизеля и генератора.
Генератор предназначен для работы на АЭС в качестве резервного или аварийного источника электропитания систем безопасности во время аварийного расхолаживания, отвечает ОПБ 88/97 и относится к классу безопасности 2О и ответствует категории сейсмостойкости I по ПНАЭГ-5-006-87, поставляется в страны с умеренным и тропическим климатом.
Все дизель-генераторы могут работать параллельно между собой, а также с энергосистемами различной мощности и в параллель с сетью.
Процесс монтажа двигателей размерности 23/2х30 «Русский дизель»
Характеристики дизель-генераторной станции на базе двигателя размерности 23/2X30 позволяют обеспечивать работу на номинальной мощности на выходных клеммах генератора без ограничения по времени, и работу с 10% превышением номинальной мощности в течение двух часов с периодом повторного нагружения через 24 часа.
Изготовление запасных частей к двигателям размерности 23/2х30
ООО «Кингисеппский машиностроительный завод» успешно изготавливает запасные части, необходимые при техническом обслуживании и ремонте дизелей типа ДПН и ДРПН размерности 23/2×30 следующих заводских марок: 64Г, 67Е, 67И, 58Д-А, 58Д-Р, 58В, 61В-А, 64Г, 68Б, 68Г, 70Б, 78Г, 86, 82, 85, 88Г.
Процесс изготовления секции выхлопного коллектора 80-002-051 на двигатель «Русский дизель»
Стержни для литья секции газовыхлопа 80-002-051 Элемент газовыхлопа 23/2х30 после отливки
Новые секции газовыхлопа 80-002-051 на двигатель «Русский дизель» до мех. обработки
Новые секции газовыхлопа 80-002-051 на двигатель «Русский дизель» в сборе, процесс токарной обработки секции газовыхлопа
Новые секции газовыхлопа 80-002-051 на двигатель «Русский дизель» после отливки
Новые секции выхлопного коллектора 80-002-051 на двигатель «Русский дизель» на складе, упакованы и готовы к отгрузке
Процесс производства 68-014-002 Фланца втулки рабочего цилиндра «Русский дизель»
68-014-002 Фланец втулки рабочего цилиндра
Обработка заготовки воротника на станке с ЧПУ Заготовки воротников для втулки рабочего цилиндра
Процесс производства топливных насосов высокого давления на двигатель «Русский дизель»
Корпусы топливных насосов после после обработки на станках с ЧПУ
Топливные насосы высокого давления собраны и готовы к монтажу на двигатель
Процесс производства втулки рабочего цилиндра 68-014-134 «Русский дизель»
Заготовка втулки рабочего цилиндра 68-014-134 на двигатель 23/2х30 «Русский дизель»
Заготовка – центробежная отливка
Токарная и фрезерная обработки втулки рабочего цилиндра на двигатель 23/2х30 «Русский дизель»
Втулки рабочего цилиндра 68-014-134 после токарной, фрезерной, сверлильной и слесарной обработки
Новые втулки рабочего цилиндра 68-014-014 в сборе
Процесс производства 68-014-002 рубашки втулки рабочего цилиндра «Русский дизель»
Заготовки 68-014-002 рубашки втулки рабочего цилиндра «Русский дизель»
Обработка 68-014-002 Рубашки втулки рабочего цилиндра «Русский дизель» на станке
68-014-002 Рубашки втулки рабочего цилиндра «Русский дизель» готовы к сборке на ВРЦ 68-014-014
Теплообменное оборудование на двигатель размерности ДР 30/50 ДПРН 23х2/30 ЧН 40/46 «Русский дизель»
Новые воздухоохладители на дизель 68Б, 68Г, 70Б «Русский дизель»
vimeo.com/video/187648077″ frameborder=»0″ webkitallowfullscreen=»» mozallowfullscreen=»» allowfullscreen=»»>
Обработка втулки рабочего цилиндра 68-014-001 Русский Дизель from Kingiseppsk Machinery Plant on Vimeo.
Производство втулки рабочего цилиндра на двигатель Русский Дизель from Kingiseppsk Machinery Plant on Vimeo.
Втулки рабочего цилиндра 68-014-014 и кольца для двигателя Русский Дизель размерности ДР 30/50, ДПРН 23х2/30, ЧН 40/46
Изготовление поршня на двигатель размерности 6 ДР 30/50, ДПРН 23х2/30, ЧН 40/46
Остов дизеля 78-012-001 Русский Дизель Процесс сборки двигателя размерности 23/2х30
Модернизационные доработки дизельного двигателя размерности 23/2Х30
Модернизация затронула процессы смесеобразования и сгорания топлива. Это позволило повысить цилиндровую мощность дизеля, систему наддува воздуха. Изменена конструкция форсунок, оптимизирован график впрыска топлива для различных режимов работы. Изменена конструкция камеры сгорания. Всё это позволило повысить КПД дизеля и снизить удельный расход топлива. На дизеле могут применяться два вида топливных систем.
На дизелях применяется топливная система разделённого типа с механическим приводом топливовпрыскивающего плунжера (в ТНВД) и гидравлически управляемой иглой распылителя в форсунке (по два ТНВД и две форсунки на цилиндр) Система CommonRail или разделённая система с индивидуальными ТНВД, с управлением цикловой подачей и опережением впрыска, быстродействующими электроклапанами слива из плунжерной полости. В последней системе используется обычная современная форсунка, ТНВД упрощенной конструкции, и как следствие имеющий большую надежность, а также быстродействующий клапан с электрическим приводом.
Управление дизелем производится с электронного (пневматического) пульта дистанционного автоматизированного управления, расположенного вне дизеля. На дизеле предусмотрен резервный пост управления и переключатель для перевода управления с дистанционного пульта на резервный пост и наоборот.
На водяной и масляной системах установлено оборудование автоматического регулирования температуры.
Система автоматического управления, защиты и сигнализации обеспечивает контроль:
•за параметрами работы двигателя;
•за сигнализацией достижения контролируемыми параметрами предельных величин;
•за аварийной остановкой при достижении аварийных параметров;
•за автоматическим пуском и остановкой дизеля по команде дежурного;
•за управлением оборотами и нагрузкой при работе на ВРШ или при работе в генераторном режиме.
На двигатель устанавливается гидромеханический регулятор скорости (на судовых машинах) или электронно-гидравлический (на генераторных машинах).
Предприятием успешно проведены конструкторские работы и расчёты по созданию машин размерности 23/2х30 нового мощностного ряда. Данные исследований мы готовы предоставить по запросу заказчика.
Применение в автоматизированной системе управления современного программного обеспечения даёт неоспоримые преимущества:
• интуитивность и простота в эксплуатации;
• масштабируемость и гибкость;
• диагностика и предотвращение аварий;
• обработка данных и архивирование;
• контроль безопасности и доступа;
• надёжность.
Для работы с автоматизированной системой необходимо первоначальное обучение.
Предприятие ООО «Кингисеппский машиностроительный завод» завершает активную работу по подготовке к выпуску новой номенклатуры модернизированных дизельных двигателей повышенной мощности. Благодаря установленной системе турбонаддува, электронной управляемой топливной системе, цифровой системе управления и другим техническим доработкам, описанным выше, мощность двигателей составит от 10800 л.с. до 14500 л.с.(от 6 до 12 Мвт).
Следует отметить, что по специальному заказу предприятием изготавливаются дизели типа 23/2х30, работающие на тяжёлом топливе и природном газе.
Эксперты развеяли мифы о дизельных двигателях — Российская газета
Нашествие автомобилей с дизельными двигателями на наш рынок поставило автовладельцев в тупик. Что предпочесть: дизель или бензин? Этот вопрос встает практически перед каждым будущим собственником автомобиля.
Увы, ответ на него не так прост. Дизель имеет массу преимуществ перед бензиновым двигателем. Он также имеет массу недостатков. Шумный, очень шумный… Ленивый — с большим трудом заведешь при температуре ниже +5 градусов. Ленивый еще и потому, что не разгонишь его в горку. И вообще, зимой он не заводится, холодно в салоне, а еще он фыркает.
Этот перечень недостатков можно было бы продолжать. Но все они относятся к двигателям предыдущего поколения.
Современные дизели — другие.
Развеем мифы вокруг дизеля
Главный миф: зимой в лютые морозы двигатели не заводятся. Но это касается двигателей 20-летней давности.
Новые дизели работают с другим топливом, с другими системами подогрева и вообще по-другому. В новых автомобилях, ориентированных на северные регионы, предусмотрена система «Вебасто». Именно она подогревает в дороге двигатель и форсунки, через которые впрыскивается топливо. А еще производители устанавливают в них свечи накаливания, которые не дают искры, но нагревают саму камеру сгорания.
Дизель внутри двигателя не воспламеняется за счет искры, как в бензиновых двигателях. Он взрывается за счет очень высокой компрессии, то есть давления на него. Но если двигатель холодный, то старта не будет. Двигатель заработает, если топливо разогрето до нужной температуры, если свечи подогрева раскалены до красного состояния и если топливо соответствует сезону.
25 лет назад дизель получил те изменения, благодаря которым может конкурировать с бензиновыми двигателями сегодня. Он был вонючим потому, что не полностью перерабатывал топливо, громким потому, что перерабатывал топливо рывками. И это — его особенность.
Современные технологии позволили произвести в дизеле буквально революцию, которую заметили лишь специалисты. Теперь дизель заводится с пол-оборота, причем при любой погоде. В отличие от бензинового двигателя, никогда не требовал прогрева. Не требует и сейчас. Завел и поехал (Но про прогрев поговорим отдельно.)
Да, дизель не сможет стартануть с ревом и визгом на светофоре. Это тоже его особенность. Он довольно резво тронется с места, еще резвее наберет скорость и никогда не подведет вас на обгоне. Но ускоряться резво он будет только после набора определенного количества оборотов двигателя.
О плюсах дизеля детально
В последнее время дизель лишился таких неприятных моментов, как предварительный подогрев и выключение после остывания турбины. Все это за вас сделает техника.
То есть остались те же функции, что и у обычного бензинового двигателя: повернул ключ, завел, включил скорость, нажал на газ, поехал.
Я не даром разделил два понятия — выключил зажигание и заглушил машину. Дело в том, что на дизелях зажигание как таковое не предусмотрено. Поэтому старые модели могут завестись только потому, что поехали.
Разогрев дизеля, как это выглядит на машине с бензиновым двигателем, абсолютно бесполезен. На холостом ходу он не прогреется ни на йоту. Только в движении. Именно потому на него в наших климатических условиях необходимо ставить «Вебасто» — подогрев двигателя. Иначе вы зимой в пробке начнете мерзнуть. Двигатель работает, но при этом его рабочая температура сравнима с комнатной. А в салон автомобиля поступает воздух от охладительной системы.
Что касается запуска дизеля при температурах ниже нуля. Большой прогресс в последнее время случился в подготовке топлива. То есть зимняя солярка вполне обеспечит вам нормальный старт двигателя даже при минус 20. Еще 10 лет назад такого топлива на наших российских просторах было не отыскать днем с огнем. Теперь почти каждая заправка зимой готова предоставить его вам, но за несколько завышенную цену. И все равно соглашайтесь. Залить дизель неправильным топливом гораздо опаснее, чем обычный бензиновый двигатель. Если вы вместо 95-го зальете 80-й, то почувствуете это только при резком нажатии на педаль газа: машина не захочет двигаться дальше. Залив бензин в дизель, вы, во-первых, почувствуете почти взрыв, во-вторых, ваш автомобиль больше не заведется.
Обратная сторона медали
Именно дороговизна ремонта и обслуживания дизелей становится преградой на их пути к потребителю. А у нас в стране — еще и нехватка качественного топлива. Но серьезный и дорогой ремонт, при соблюдении ряда требований, может понадобиться только лет через 5. При этом надо внимательно отнестись к тому, что вам предложат отремонтировать.
Замена форсунок — самая дешевая часть ремонта, если бы не стоила в разы дороже, чем на бензиновых двигателях. У вас понизилась отдача двигателя, он стал вялым? Проблема в снабжении топливом. Но кто вам сказал, что форсунки в этом виноваты? Вы их заменили, ощутили улучшение ситуации. Но через пару тысяч км пробега все вернулось обратно. Опять форсунки менять? Проблема в насосах, которые качают дизель в эти форсунки. Они износились и гонят металлическую стружку по бензопроводу. А через форсунки эта стружка не пролезает. Итог: замена насосов и форсунок. А это уже очень дорогое удовольствие.
Стоит отметить еще несколько больших плюсов дизельных двигателей. Главный из них — высокая мощность при низких оборотах. Представим на примере. Чтобы выжать более-менее приемлемую мощность из бензинового двигателя «Жигулей», требуется раскрутить его до 3 тыс. оборотов. Дизель выдаст вам эту приемлемую мощность уже на 1,5 тысячи. Вы сможете тронуться на скользком льду, выехать из сугроба, просто пролезть по глубокой грязи только за счет двигателя, не включая пониженных передач и прочего. Вы почувствуете себя водителем внедорожника, несмотря на то что клиренс вашей переднеприводной машинки только при прыжке с бордюра составит 15 см.
Однако при таком преимуществе в грязи и на льду дизель проиграет высокооборотистым моторам на старте. То есть на светофоре он никого и никогда не сделает, если не будет особенным образом подготовлен к подобным стартам. Сколько цилиндров в него ни напихай, сколько турбин ни подключи, возможности быстро набрать высокие обороты ему это не прибавит. Тут однозначно преимущество за бензином. Дизель — не для резких водителей.
В последнее время даже цены на бензин и дизель почти сравнялись. 95-й стоит лишь на 50 копеек дешевле. Однако потребление топлива — это преимущество дизеля. Он ест в 1,3-1,5 раза меньше. Все зависит от двигателя и машины, на которой он установлен. И это довольно серьезная экономия в бюджете.
Однако стоит иметь в виду, что дизельные автомобили стоят заметно дороже своих бензиновых собратьев. Хотя в последнее время цена нивелируется.
Экологичность современных дизелей гораздо выше бензиновых двигателей. Это обусловлено самим топливом. Оно менее летучее.
первый дизель для авианалета на Берлин
Частично раскапотированный дизельный двигатель АЧ-30Б
В годы Великой Отечественной войны Москва сыграла одну из своих самых значимых ролей: будучи столицей, главный город страны стал и кузницей Победы. Первая бомбардировка Москвы произошла 22 июля 1941 года. Уже в декабре москвичи нанесли по противнику мощный контрудар, отбросив его от подступов к столице. Именно тогда был развеян миф о непобедимости фашистской армии и сорван план «молниеносной войны».
В эти суровые дни на военный лад перестраивалась вся жизнь столицы. В том числе, началась эвакуация предприятий. Только за 1941-1942 годы из Москвы было эвакуировано свыше 200 производств, некоторые из них было решено уничтожить. В их числе − Московское машиностроительное предприятие имени В. В. Чернышева (входит в ОДК). Благодаря самоотверженному труду и героизму сотрудников, завод удалось не только сохранить, но и справиться с ответственной задачей − освоить выпуск новых дизельных двигателей для военных самолетов. Именно они устанавливались на дальние бомбардировщики Ер-2, которые в сентябре 1941 года принимали участие в серии авианалетов на Берлин.
От звездообразных моторов до первого авиадизеля
Предприятие в московском Тушине было создано в 1932 году на базе авиаремонтных мастерских Гражданского воздушного флота. Здесь производили первые звездообразные поршневые моторы для легких гражданских самолетов «Сталь-2», Ш-7.
Со второй половины 1938 года жизнь завода № 82 полностью изменилась. На смену гражданским моторам пришел двигатель АН-51 (авиадизель нефтяной), который предназначался для дальних бомбардировщиков. Кроме того, НКВД «укомплектовал» завод опытными специалистами из ЦИАМ (Центральный институт авиационного моторостроения). Такая группа поддержки должна была оказывать помощь заводским специалистам в освоении серийного производства авиадизеля.
Авиационные специалисты под руководством А.Д. Чаромского
Главным конструктором ОКБ стал Алексей Дмитриевич Чаромский – создатель первого авиационного дизельного двигателя в нашей стране. Коллектив состоял из специалистов самого высокого класса: здесь, например, оказались Борис Сергеевич Стечкин, профессор с мировым именем, позднее основоположник теории воздушно-реактивных двигателей, Валентин Петрович Глушко, крупнейший двигателист, академик, позже один из основателей космонавтики.
Заводскому КБ удалось всего за полтора года спроектировать и построить совершенно новый, более мощный дизель М-30Б. В начале войны его переименовали в АЧ-30Б (в честь автора и разработчика проекта Алексея Чаромского).
Во время Великой Отечественной войны АЧ-30Б устанавливался на бомбардировщики Пе-8 и Ер-2, на которых наши летчики наносили удары в тылу противника. Уже в августе и сентябре 1941 года эти самолеты принимали участие в серии авианалетов на Берлин. Кроме самолетов, дизельный двигатель АЧ-30Б устанавливали также на танках, торпедных катерах, тепловозах, большегрузных автомобилях.
Труд для фронта, для победы
Надежный дизель М-30Б появился как нельзя кстати, перед самым началом боевых действий. Война буквально застала сотрудников завода за работой над новым двигателем. «В то памятное воскресное утро, − вспоминает ветеран завода А. Н. Малюшкин, − я трудился в КБ в связи со срочной работой над авиадизелем М-З0Б. Часов в 12 в отдел пришел заместитель главного конструктора Иван Ерофеевич Скляр и сообщил, что на нас напала фашистская Германия. Уже через четыре дня после начала войны завод стал готовиться к эвакуации в Казань: упаковывали техдокументацию, грузили на платформы оборудование».
Одним из участников эвакуации предприятия в Казань стал будущий футболист Лев Яшин. Дело в том, что его отец трудился шлифовальщиком на заводе и как сотни работников был эвакуирован с семьей в Поволжье.
Лев Яшин, лучший вратарь XX века
В своей книге «Счастье трудных побед» легендарный вратарь вспоминал: «Прошло не меньше четырех суток с тех пор, как мы уехали из Москвы, а дороге все не было конца. Наконец наш эшелон сделал последнюю остановку в голой степи, под Ульяновском, и мы стали разгружаться. Этот день я могу считать последним днем моего детства. Мне было в ту пору без малого двенадцать лет. Привыкать к трудностям тогда мы все научились очень быстро. А трудностей было много. Ползимы таскали по снегу через степь станки и устанавливали их в будущих цехах прямо под открытым небом. Завод мы достраивали и приводили в порядок сами… Поближе к концу зимы от наскоро построенных бараков до заводской проходной протянулась тонкая и прямая как струна тропинка в снегу. В шесть утра поднимались наши отцы, одевались, умывались, завтракали и шли на завод. Шли в глубокой темноте на свет заводской проходной. Потому и дорожка была такая прямая, что каждый боялся сделать лишний шаг, лишнее движение – экономили силы, тепло, энергию: предстоял долгий, напряженный рабочий день, когда нужно было отдать все труду для фронта, для победы».
Привыкать к трудностям тогда мы все научились очень быстро. А трудностей было много. Ползимы таскали по снегу через степь станки и устанавливали их в будущих цехах прямо под открытым небом. Завод мы достраивали и приводили в порядок сами…
Лев Яшин, советский футболист
Чуть позже на завод пошел работать и он сам, став весной 1943 года учеником слесаря. Здесь же в заводской проходной 15-летний слесарь третьего разряда Лев Яшин увидел на стене объявление, приглашение в футбольную секцию.
Возвращение и продолжение промышленных побед
Завод вернулся в Тушино 1 марта 1942 года. Предприятие решено было ликвидировать, а вернувшихся из Казани работников и оборудование передать заводу №45. Это был, пожалуй, одним из самых критических моментов в жизни завода. Однако главному инженеру А.Г. Таканаеву удалось отстоять завод на прежних площадях, правда, под другим названием. Здесь был организован опытный завод № 500. Основная задача предприятия остается прежней − выпуск дизелей АЧ-30Б.
Серийный бомбардировщик Ер-2 с двигателем АЧ-30Б
Следует отметить, что корпуса завода на московской площадке не впервые были спасены Таканаевым. Как и многие столичные предприятия, в 1941 году при подходе немцев к Москве завод был заминирован. Главный инженер Таканаев получил приказ немедленно нажать кнопку, но он ответил, что взорвет завод лишь в том случае, если увидит своими глазами хотя бы одного немца. Таким образом, предприятие удалось спасти.
В победном 1945-ом директором завода был назначен Михаил Koноненко, a главным инженером – Владимир Чернышев, с которым в дальнейшем будет связана целая эпоха реактивных двигателей и именем которого в 1983 году назовут завод.
Именно по разработанному Владимиром Васильевичем Чернышевым проекту, было организовано крупносерийное производство первых в стране турбореактивных двигателей РД-500. Их созданием и серийным выпуском полностью завершилась реконструкция завода: поршневые двигатели уступили первенство турбореактивным.
Двигатели завода № 500 использовались на самолетах конструкции Ильюшина, Лавочкина, Микояна, Сухого, Туполева, Яковлева. Двигатель ВК-1 позволил истребителю-перехватчику МиГ-15 увеличить дальность полета до 2000 км, а истребителю МиГ-17 стать первым отечественным самолетом, превысившем скорость звука. С 1958 года завод стал производить двигатели Р11Ф-300, которые помогли истребителям МиГ-21 установить рекорды скорости и высоты полета.
С 1982 года завод производит двухконтурный форсированный авиадвигатель РД-33 для фронтовых истребителей МиГ-29, на которых свое мастерство показывают знаменитые «Стрижи». И сегодня модификация этого двигателя РД-33МК для самолетов палубной авиации МиГ-29К и новейших истребителей МиГ-35 остается основной продукцией ММП им. В. В. Чернышева.
Производственная программа предприятия включает также серийное производство и ремонт турбореактивных двигателей РД-93 для самолета JF-17 китайского производства. ММП им. Чернышева активно участвует в программе импортозамещения: успешно возобновлено производство осевого компрессора для двигателя ВК-2500 для вертолетов семейства «Ми» и «Ка», а также налажено серийное производство двигателей семейства ТВ7-117 для самолетов Ил-114 и Ил-112 и вертолета Ми-38. И это является без преувеличения достойным продолжением промышленных побед легендарного завода.
Mazda создала бензиновый двигатель дизельного цикла
Mazda
Японская автомобильная корпорация Mazda Motor объявила о разработке нового двигателя внутреннего сгорания Skyactive-X, который будет устанавливаться на новые машины с 2019 года. Как сообщает Reuters, новая силовая установка работает по дизельному циклу, но в качестве горючего использует бензин.
В современных автомобилях используются три основных типа двигателей: газовые, бензиновые и дизельные. Вторые имеют наибольшее распространение на легковом транспорте. Во время работы бензинового двигателя в цилиндр подаются воздух и бензин, которые затем сжимаются. Сжатая смесь поджигается искрой от свечи зажигания. Этот цикл повторяется постоянно.
Дизельный двигатель отличается от бензинового тем, что в нем происходит самовоспламенение топлива при подаче в цилиндр с предварительно сжатым воздухом. Степень сжатия в цилиндрах даже тихоходного дизельного двигателя будет выше, чем в цилиндрах бензинового.
В целом дизельный двигатель по своей конструкции несколько проще бензинового, поскольку в нем отсутствует электрическая цепь свечей зажигания и система управления ими. Дизельный двигатель может работать практически на любом топливе, однако в этом случае его ресурс сократится в разы. Дизельный цикл считается более экономичным, чем бензиновый.
По данным Mazda, новый двигатель Skyactive-X будет на 20-30 процентов экономичнее других бензиновых двигателей в линейке компании. Интерес к новой силовой установке уже проявили автопроизводители Daimler и General Motors.
Следует отметить, что двигатели, работающие по дизельному циклу, рассматриваются в качестве силовых установок для пассажирских вертолетов будущего. В частности, исследования по использованию таких силовых установок проводятся в рамках европейской программы Clean Sky 2.
Предполагается, что вертолетные поршневые двигатели дизельного цикла, работающие на авиационном керосине, будут потреблять меньше топлива. Кроме того, считается, что такие двигатели будут более экологичными. При этом переход на дизельное топливо не рассматривается, поскольку при его сгорании выбрасываются опасные соединения серы и сажа.
Василий Сычёв
Выбор двигателя.
Дизель или бензин? / Полезные статьи / Атлант ММногие из автолюбителей при слове «дизель» невольно вспоминают чадящие грузовики, «неторопливые» трактора и экскаваторы, шум, грохот, копоть, малую скорость и помехи дорожному движению. Между тем за истекшие лет десять дизельные двигатели современных легковых автомобилей далеко ушли от бурчащих и неспешных «тракторов». Они обзавелись системами непосредственного впрыска топлива вроде Common Rail, турбокомпрессорами с изменяемой геометрией направляющего аппарата, как Volkswagen, и наделяют дизельные автомобили такой прытью и в таком диапазоне оборотов, про которые большинство бензиновых авто и мечтать не могут!
Чтобы далеко не «бегать» за примерами, возьмем двигательVolkswagen 2.0 TDI, который устанавливается на Golf, Jetta, Passat и Tiguan. Максимум крутящего момента в 320 Нм достигается в этом агрегате к 1750 об/мин, удерживается «полкой» до 2500 об/мин, а пик мощности приходится на 4200 об/мин. Только бензиновые турбодвигатели, или многоцилиндровые конструкции с немалым рабочим объемом способны выдать то, что без особого напряга выдает скромный дизельный «двухлитровик»! И только приглушенный, еле слышный в салоне рокоток выдает, что под капотом Volkswagen установлен «потомок» Рудольфа Дизеля. А еще дизельный мотор выдаст его скромный, мягко говоря, аппетит к топливу. Например, если мощный бензиновый двигатель на автомобиле класса Golf «попросит» на 100 км городского пробега не менее 8-9 литров 95-го бензина, то его дизельный собрат на такой же машине, немногим уступая в разгонной динамике, «съест» не более 7 литров. Дизельного топлива.
Но есть моменты, или нюансы (назовите, как хотите), которые я советую учесть, если вы склоняетесь к дизельным моторам.
Момент №1
Современный турбодизельный двигатель недешев. Впрыск топлива под огромным давлением, сплавы, способные долго выдерживать воспламенение от сжатия, турбокомпрессоры, в которых многие конструктивные решения позаимствованы из авиации – все это стоит денег! Поэтому если вы ездите много, от 30-40 тысяч км в год, то сие есть аргумент ЗА турбодизель. Вы его существенно окупите за пару тройку лет ввиду высокой экономичности. А если катаетесь немного – это аргумент ПРОТИВ.
Момент №2
Требования к качеству топлива. Например, присутствие воды в нем – смерть топливной аппаратуре, а избыток серы – постепенное «убийство» деталей цилиндропоршневой группы двигателя. Поэтому только в последние пару лет, по мере совершенствования стандартов и улучшения качества дизельного топлива, многие ведущие автоконцерны стали давать «добро» на поставки современных дизелей в Россию. Но вероятность того, что поехав в какой-нибудь Мухобийск Тьмутараканской области, можно залить в бак какой-нибудь гадости, все равно имеется. И гарантийным случаем отказ, при таком раскладе, не будет.
Момент №3
Морозы. При отрицательных температурах положено применять специальные зимние, или арктические виды дизельного топлива, которые сохраняют текучесть при -5-10 градусах и ниже, когда обычное летнее дизтопливо начинает кристаллизироваться. А разбавлять дизельное топливо низкооктановым бензином, или авиационным керосином, как это делали наши отцы и деды в танках и тракторах, в современных двигателях категорически запрещено. Поэтому, вероятность того, что сегодня вы заправитесь, а назавтра с утра «треснет» -25 и вы не заведетесь, остается.
Момент №4
Особенности эксплуатации. Например, как вы обычно выключаете двигатель автомобиля, когда приехали к месту назначения? «Вырубаю ключом сразу, о чем речь?» — скажете вы. И, для авто с бензиновым атмосферным мотором, будете совершенно правы. Но если так будете поступать с турбодизельным силовым агрегатом – через несколько десятков тысяч км, возможно, придется выбросить на свалку турбокомпрессор. Дело в том, что для турбодизельных двигателей есть такое понятие, как «турбо-пауза», то есть, 20-60 секунд, которые нужно «потарахтеть» на холостых оборотах перед выключением, чтобы выбег ротора до минимальных оборотов и остужение его подшипников было в присутствии смазки! Кстати, моторное масло не только смазывает турбокомпрессор, но и охлаждает его. А если мотор выключен, то и маслонасос «уснул».
Вот таков вот расклад в «деле», касающемся современных турбодизельных моторов. Выбирая двигатель для своего будущего автомобиля, учитывайте, пожалуйста, сказанное выше. Я, например, имеющий турбодизельный кроссовер, это учитываю, и не имею никаких проблем!
Если у Вас возники вопросы, смело задавайте, я с удовольствием отвечу.
История дизельных двигателей
1) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
2) Для получения информации о результатах программы и другой информации посетите сайт www.uti.edu/disclosures.
3) Приблизительно 8000 из 8400 выпускников UTI в 2019 году были готовы к трудоустройству. На момент составления отчета приблизительно 6700 человек были трудоустроены в течение одного года после даты выпуска, что составляет в общей сложности 84%. В эту ставку не включены выпускники, недоступные для работы по причине продолжения образования, военной службы, здоровья, заключения, смерти или статуса иностранного студента.В ставку включены выпускники, прошедшие специализированные программы повышения квалификации, а также работающие на должностях. которые были получены до или во время обучения в области ИМП, где основные должностные обязанности после окончания учебы соответствуют образовательным и учебным целям программы. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
5) Программы UTI готовят выпускников к карьере в различных отраслях промышленности с использованием предоставленного обучения, в первую очередь, для специалистов по автомобилям, дизельным двигателям, ремонту после столкновений, мотоциклетным и морским техникам.Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от в качестве технического специалиста, например: специалист по запчастям, специалист по обслуживанию, изготовитель, лакокрасочный отдел и владелец / оператор магазина. UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
6) Достижения выпускников ИТИ могут различаться. Индивидуальные обстоятельства и заработная плата зависят от личных качеств и экономических факторов. Опыт работы, отраслевые сертификаты, местонахождение работодателя и его программы компенсации влияют на заработную плату.ИМП образовательное учреждение и не может гарантировать работу или заработную плату.
7) Для завершения некоторых программ может потребоваться более одного года.
10) Финансовая помощь и стипендии доступны тем, кто соответствует требованиям. Награды различаются в зависимости от конкретных условий, критериев и состояния.
11) См. Подробную информацию о программе для получения информации о требованиях и условиях, которые могут применяться.
12) На основе данных, собранных из Бюро статистики труда США, прогнозы занятости (2016-2026), www.bls.gov, просмотрено 24 октября 2017 г. Прогнозируемое количество годовых вакансии по классификации должностей: Автомеханики и механики — 75 900; Специалисты по механике автобусов и грузовиков и по дизельным двигателям — 28 300 человек; Ремонтники кузовов и связанных с ними автомобилей, 17 200. Вакансии включают вакансии в связи с ростом и чистые замены.
14) Программы поощрения и право сотрудников на участие в программе остаются на усмотрение работодателя и доступны в определенных местах. Могут применяться особые условия.Поговорите с потенциальными работодателями, чтобы узнать больше о программах, доступных в вашем районе.
15) Оплачиваемые производителем программы повышения квалификации проводятся Группой специального обучения UTI от имени производителей, которые определяют критерии и условия приемки. Эти программы не являются частью аккредитации UTI.
16) Не все программы аккредитованы ASE Education Foundation.
20) Льготы VA могут быть доступны не на всех территориях кампуса.
21) GI Bill® является зарегистрированным товарным знаком U.S. Департамент по делам ветеранов (VA). Более подробная информация о льготах на образование, предлагаемых VA, доступна на официальном веб-сайте правительства США.
22) Грант «Приветствие за службу» доступен всем ветеранам, имеющим право на участие, на всех кампусах. Программа «Желтая лента» одобрена в наших кампусах в Эйвондейле, Далласе / Форт-Уэрте, Лонг-Бич, Орландо, Ранчо Кукамонга и Сакраменто.
24) Технический институт NASCAR готовит выпускников к работе в качестве технических специалистов по обслуживанию автомобилей начального уровня.Выпускники, которые выбирают специальные дисциплины NASCAR, также могут иметь возможности трудоустройства в отраслях, связанных с гонками. Из тех выпускников 2019 года, которые взяли факультативы, примерно 20% нашли возможности, связанные с гонками. Общий уровень занятости в NASCAR Tech в 2019 году составил 84%.
25) Расчетная годовая средняя заработная плата для специалистов по обслуживанию автомобилей и механиков в Службе занятости и заработной платы Бюро статистики труда США, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве автомобильных техников.Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от технических, например, сервисный писатель, смог. инспектор и менеджер по запчастям. Информация о заработной плате для штата Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве техников и механиков по обслуживанию автомобилей в Содружестве Массачусетс (49-3023) составляет от 29 050 до 45 980 долларов (данные по Массачусетсу, данные за май 2018 г., просмотр за 10 сентября 2020 г.). Информация о зарплате в Северной Каролине: The U.S. Согласно оценке Министерства труда США, средняя почасовая оплата в размере 50% квалифицированных автомобильных техников в Северной Каролине, опубликованная в мае 2019 года, составляет 19,52 доллара США. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 13,84 и 10,60 долларов соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. и Механика, просмотр 14 сентября 2020 года.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
26) Расчетная годовая средняя заработная плата сварщиков, резчиков, паяльщиков и паяльщиков в Бюро трудовой статистики США по занятости и заработной плате, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников-сварщиков. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от технических специалистов, например, сертифицированный инспектор и контроль качества.Информация о заработной плате в штате Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих сварщиками, резчиками, паяльщиками и брейзерами в штате Массачусетс (51-4121), составляет от 33 490 до 48 630 долларов. ( Массачусетс, данные за май 2018 г., данные за 10 сентября 2020 г.). Зарплата в Северной Каролине информация: Министерство труда США оценивает почасовую заработную плату в среднем 50% для квалифицированных сварщиков в Северной Каролине, опубликованную в мае 2019 года, и составляет 19 долларов.77. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-е и 10-й процентиль почасовой оплаты труда в Северной Каролине составляют 16,59 и 14,03 доллара соответственно. (Бюро статистики труда, Министерство труда, занятости и заработной платы США, май 2019 г. Сварщики, резаки, паяльщики и брейзеры, просмотрено в сентябре 14, 2020.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
27) Не включает время, необходимое для прохождения 18-недельной квалификационной программы предварительных требований плюс дополнительные 12 или 24 недели обучения, зависящего от производителя, в зависимости от производителя.
28) Расчетная годовая средняя заработная плата специалистов по ремонту кузовов и связанных с ними автомобилей в Бюро трудовой статистики США по вопросам занятости и заработной платы, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников по ремонту после столкновений. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от технических, например оценщик, оценщик. и инспектор. Информация о заработной плате для Содружества Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, занятых в качестве ремонтников автомобилей и связанных с ними ремонтных работ (49-3021) в Содружестве Массачусетса, составляет от 31 360 до 34 590 долларов США. ( Массачусетс, данные за май 2018 г., данные за 10 сентября 2020 г.).Зарплата в Северной Каролине информация: Министерство труда США оценивает почасовую заработную плату в размере 50% для квалифицированных специалистов по борьбе с авариями в Северной Каролине, опубликованную в мае 2019 года, и составляет 21,76 доллара США. Бюро статистики труда не публикует данные о заработной плате начального уровня. Тем не мение, 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 16,31 и 12,63 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2018 г. 14 сентября 2020.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
29) Расчетная годовая средняя заработная плата механиков автобусов и грузовиков и специалистов по дизельным двигателям в Службе занятости и заработной платы Бюро статистики труда США, май 2019 г. Программы UTI готовят выпускников к карьере в отраслях с использованием предоставленного обучения, в первую очередь в качестве техников по дизельным двигателям . Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от дизельных. техник по грузовикам, например техник по обслуживанию, техник по локомотиву и техник по морскому дизелю.Информация о заработной плате для штата Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих в качестве механиков автобусов и грузовиков. и специалистов по дизельным двигателям (49-3031) в штате Массачусетс составляет от 29 730 до 47 690 долларов США (Массачусетс, штат Массачусетс, данные за май 2018 г., просмотрено 10 сентября 2020 г.). Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в размере 50% для квалифицированных дизельных техников в Северной Каролине, опубликованная в мае 2019 года, составляет 22 доллара.04. Бюро статистики труда. не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 18,05 и 15,42 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2018. Механики автобусов и грузовиков и специалисты по дизельным двигателям, просмотр 14 сентября 2020 г.) UTI является образовательным учреждением и не может гарантировать трудоустройство или заработную плату.
30) Расчетная средняя годовая зарплата механиков мотоциклистов в США.С. Занятость и заработная плата Бюро статистики труда, май 2019 г. Программы MMI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве техников мотоциклов. Некоторые выпускники MMI получают работу в рамках своей области обучения на должностях, отличных от технических, например, сервисный писатель, оборудование. обслуживание и запчасти. Информация о заработной плате для Содружества Массачусетса: Средняя годовая заработная плата начального уровня для лиц, работающих в качестве механиков мотоциклов (49-3052) в Содружестве Массачусетса, составляет 28700 долларов США (данные по Массачусетскому труду и развитию рабочей силы, данные за май 2018 г., просмотренные 10 сентября 2020 г.) .Информация о зарплате в Северной Каролине: Министерство труда США оценивает почасовую заработную плату в размере 50% в среднем для Стоимость квалифицированных специалистов по мотоциклам в Северной Каролине, опубликованная в мае 2019 года, составляет 16,92 доллара. Бюро статистики труда не публикует данные о заработной плате начального уровня. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 13,18 и 10,69 долларов. соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г., Motorcycle Mechanics, дата просмотра 14 сентября 2020 г.).) MMI является образовательным учреждением и не может гарантировать работу или заработную плату.
31) Расчетная годовая средняя заработная плата механиков моторных лодок и техников по обслуживанию в Службе занятости и заработной платы Бюро статистики труда США, май 2019 г. Программы MMI готовят выпускников к карьере в отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве морских техников. Некоторые выпускники MMI получают работу в рамках своей области обучения на должностях, отличных от технических специалистов, например, в сфере обслуживания оборудования, инспектор и помощник по запчастям.Информация о заработной плате для Содружества Массачусетс: средний годовой диапазон заработной платы начального уровня для лиц, работающих механиками моторных лодок и техниками по обслуживанию (49-3051) в Содружестве Массачусетс. составляет от 31 280 до 43 390 долларов (данные за май 2018 г., Массачусетс, США, 10 сентября 2020 г.). Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированного морского техника в Северной Каролине, опубликованная в мае 2019 года, составляет 18 долларов.56. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 14,92 доллара и 10,82 доллара соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. Специалисты по обслуживанию, просмотр 2 сентября 2020 г.) MMI является образовательным учреждением и не может гарантировать работу или заработную плату.
34) Расчетная годовая средняя заработная плата операторов компьютерных инструментов с числовым программным управлением в США.С. Занятость и заработная плата Бюро статистики труда, май 2019 г. Программы UTI готовят выпускников к карьере в различных отраслях промышленности с использованием предоставленного обучения, в первую очередь в качестве технических специалистов по механической обработке с ЧПУ. Некоторые выпускники UTI устраиваются на работу в рамках своей области обучения на должности, отличные от технических, например, оператор ЧПУ, подмастерье. слесарь и инспектор по обработанным деталям. Информация о заработной плате для штата Массачусетс: средняя годовая заработная плата начального уровня для лиц, работающих в качестве операторов станков с компьютерным управлением, металла и пластика (51-4011) в Содружестве штата Массачусетс составляет 36 740 долларов (данные за май 2018 г., данные за май 2018 г., данные за 10 сентября, штат Массачусетс, 2020).Информация о зарплате в Северной Каролине: по оценке Министерства труда США почасовая оплата в среднем 50% для квалифицированных станков с ЧПУ в Северной Каролине, опубликованная в мае 2019 года, составляет 18,52 доллара. Бюро статистики труда не публикует данные начального уровня. данные о зарплате. Однако 25-й и 10-й процентили почасовой оплаты труда в Северной Каролине составляют 15,39 и 13,30 долларов соответственно. (Бюро статистики труда Министерства труда, занятости и заработной платы США, май 2019 г. Операторы инструмента, просмотр 14 сентября 2020 г.) UTI является образовательным учреждением и не может гарантировать работу или заработную плату.
37) Курсы Power & Performance не предлагаются в Техническом институте NASCAR. UTI является образовательным учреждением и не может гарантировать работу или заработную плату. Информацию о результатах программы и другую информацию можно найти на сайте www.uti.edu/disclosures.
38) На основе данных, собранных из Бюро статистики труда США, прогнозов занятости (2019-2029), www.bls.gov, просмотренных 8 сентября 2020 года. Прогнозируемые общие числа к 2029 г. — 728 800 техников по обслуживанию автомобилей и механики; Сварщики, резаки, паяльщики и паяльщики — 452 500 человек; Специалисты по механике автобусов и грузовиков и по дизельным двигателям — 290 800 человек; Ремонтники автомобильных кузовов и родственных материалов — 159 900; и компьютер в числовом отношении Контролируемые операторы инструмента, 141 700.
41) На основании данных, собранных из Бюро статистики труда США, прогнозов занятости (2019-2029), www.bls.gov, просмотренных 8 сентября 2020 года. Прогнозируемое среднее количество вакансий в год, Классификация должностей: Автомеханики и механики — 61 700 человек. Вакансии включают вакансии, связанные с ростом и чистым замещением.
42) На основе данных, собранных из Бюро статистики труда США, прогнозов занятости (2019-2029), www.bls.gov, просмотренных 8 сентября 2020 года.Прогнозируемое среднее количество рабочих мест в год вакансий по классификации должностей: сварщики, резаки, паяльщики и паяльщики — 43 400 человек. Вакансии включают вакансии, связанные с ростом и чистым замещением.
43) На основе данных, собранных из Бюро статистики труда США, прогнозов занятости (2019-2029), www.bls.gov, просмотренных 8 сентября 2020 года. Прогнозируемое среднее количество годовых вакансий по классификации должностей: Механики автобусов и грузовиков и специалисты по дизельным двигателям, 24 500 человек.Вакансии включают вакансии, связанные с ростом и чистым замещением.
46) Студенты должны иметь средний балл не ниже 3.5 и посещаемость 95%.
47) На основе данных, собранных из Бюро статистики труда США, прогнозов занятости (2019-2029), www.bls.gov, просмотренных 8 сентября 2020 года. Прогнозируемое общее число Техников и механиков по обслуживанию автомобилей к 2029 году составит 728,8 тыс. человек.
48) На основе данных, собранных из Бюро статистики труда США, прогнозы занятости (2019-2029), www.bls.gov, просмотрено 8 сентября 2020 г. Предполагаемое общее количество механиков автобусов и грузовиков и специалистов по дизельным двигателям к 2029 году составит 290 800 человек.
49) На основе данных, собранных из Бюро статистики труда США, прогнозов занятости (2019-2029), www.bls.gov, просмотренных 8 сентября 2020 года. Прогнозируемое общее число ремонтов кузовов и связанных с ними автомобилей к 2029 году составит 159 900 человек.
50) На основе данных, собранных из Бюро статистики труда США, прогнозы занятости (2019-2029), www.bls.gov, просмотрено 8 сентября 2020 г. Предполагаемое общее количество Сварщиков, резчиков, паяльщиков и паяльщиков к 2029 году составит 452 500 человек.
51) На основе данных, собранных из Бюро статистики труда США, прогнозов занятости (2019-2029), www.bls.gov, просмотренных 8 сентября 2020 года. Прогнозируемое общее количество компьютеров в числовом выражении Контролируемых операторов инструмента к 2029 году составит 141 700 человек.
Универсальный технический институт штата Иллинойс, Inc. одобрен Отделом частного бизнеса и профессиональных школ Совета по высшему образованию штата Иллинойс.
Рудольф Дизель | Lemelson
Рудольф Дизель, родившийся 18 марта 1858 года в Париже, создал тепловой двигатель с воспламенением под давлением, известный как дизельный двигатель. После окончания Мюнхенского политехнического института он начал работать инженером по холодильным машинам в компании Linde Ice Machine в Париже, а в 1890 году переехал в Берлин, чтобы руководить техническим отделом компании. Но его страсть к дизайну двигателей никогда не покидала его памяти. Дизель работал над идеей эффективного теплового двигателя в свободное время, завершив проект к 1892 году, на который он получил патент через год.
Дизель был разработан с целью повышения эффективности по сравнению с существующими двигателями того времени. Дизельный двигатель не требует внешнего зажигания смеси воздуха и топлива внутри. Скорее, это достигается за счет сжатия воздуха внутри цилиндра и его нагревания, так что топливо, которое будет контактировать с воздухом непосредственно перед окончанием периода сжатия, воспламенится само. В результате дизельный двигатель будет меньше и легче, чем традиционный двигатель, используемый в большинстве дорожных транспортных средств, и не потребует использования дополнительного источника топлива для зажигания.
Дизель хотел, чтобы его конструкция превратилась в настоящую работающую машину. Для этого он обратился за помощью к крупным производителям машин. В конце концов его наняли для производства испытательного двигателя, и в 1893 году он закончил прототип. Первые испытания дали опасные результаты; Дизель чуть не погиб, когда взорвался один из его двигателей. Но это испытание доказало, что топливо можно воспламенить без искры. Он усердно работал над улучшением своей модели двигателя, проведя свои первые успешные испытания в 1897 году.
Всего через год Дизель стал очень богатым человеком.Его двигатель, который работал с теоретической эффективностью 75 процентов по сравнению с теоретической эффективностью 10 процентов для традиционных паровых двигателей, был немедленно использован для привода автомобилей, грузовиков и лодок. Он также использовался для питания трубопроводов, электрических и водопроводных станций, а также в горнодобывающей промышленности, на заводах и нефтяных месторождениях. Даже современные дизельные двигатели основаны на оригинальной концепции изобретателя.
Дизельный двигатель оказал большое влияние во время промышленной революции, обеспечивая более эффективную и, следовательно, менее дорогостоящую передачу энергии в различных отраслях промышленности по всему миру.Поскольку его использование не требовало сжигания угля, железнодорожные и судоходные компании смогли сэкономить много денег. Однако это не было благом для угольной промышленности, которая могла потерять значительную часть своего бизнеса.
29 сентября 1913 года Дизель исчез с парохода, направлявшегося в Лондон. Через несколько дней его тело было обнаружено на берегу. Обстоятельства его смерти до сих пор остаются загадкой. Некоторые считают, что он, возможно, покончил жизнь самоубийством, в то время как другие предполагают, что его убили угольные промышленники.
Подробнее о загадочной смерти Дизеля:
http://www.history.com/this-day-in-history/inventor-rudolf-diesel-vanishes
Frontiers | Преимущества и недостатки дизельных одно- и двухтопливных двигателей
Введение
Бедная смесь с воспламенением от сжатия (CI) и прямым впрыском (DI) является наиболее эффективным двигателем внутреннего сгорания (ДВС) (Zhao, 2009; Mollenhauer and Tschöke, 2010). Он производит выбросы оксидов азота и твердых частиц (ТЧ) из двигателя, которые нуждаются в последующей обработке, чтобы соответствовать чрезвычайно низким пределам, установленным для транспортных средств (Lloyd and Cackette, 2001; Burtscher, 2005; Maricq, 2007), несмотря на то, что качество воздуха остается не только под влиянием транспортных выбросов, но и из многих других источников.Одних только стратегий сжигания (Khair and Majewski, 2006) было недостаточно для достижения пороговых значений выбросов, и требовались специальные катализаторы сжигания обедненной смеси, особенно для NOx в дополнение к фильтрам твердых частиц в выхлопных газах. Несмотря на свой экономический успех, дизельные двигатели во всем мире сталкивались со все более строгими законами о выбросах (Knecht, 2008; Zhao, 2009) ценой постепенного отказа от технологии, нацеленной на нереалистичные минимальные дополнительные улучшения.
У дизеля есть как все плюсы, так и минусы.Он имеет эффективность преобразования топлива при полной и частичной нагрузке, превышающую эффективность стехиометрических ДВС с искровым зажиганием (SI), как с прямым впрыском, так и с впрыском топлива в порт (PFI). CIDI ICE имеют пиковый КПД около 50% и КПД выше 40% на большинстве скоростей и нагрузок. Напротив, у SI ICE пиковый КПД составляет около 30%, и этот КПД резко снижается за счет снижения нагрузки. CI ICE поставляют механическую энергию по запросу с эффективностью преобразования топлива, которая также выше, чем эффективность электростанций на сжигании топлива, производящих электроэнергию.По данным EIA (2018), в 2017 году в США угольные парогенераторы работали со средней эффективностью 33,98%. Парогенераторы на нефтяном и природном газе работают примерно с одинаковым КПД — 33,45 и 32,96%. Газотурбинные генераторы работают с пониженным КПД 25,29% для нефти и 30,53% для природного газа. КПД генераторов с двигателями внутреннего сгорания выше, чем у газовых турбин и парогенераторов: 33,12% для нефти и 37,41% для природного газа. Только парогазовые генераторы, не работающие на нефти, имеют КПД 34.78%, но с природным газом, который имеет КПД 44,61%, превосходят генераторы внутреннего сгорания.
При сравнении электрической мобильности двигатели CIDI ICE по-прежнему имеют бесспорные преимущества для транспортных приложений (Boretti, 2018). Однако CIDI ICE страдает от плохой репутации, что ставит под угрозу его потенциал. Дизельные двигатели CIDI ICE в недавнем прошлом не смогли обеспечить удельные выбросы NOx для сертификационных циклов холодного пуска во время прогретых реальных графиков вождения, которые сильно отличались от сертификационных циклов (Boretti, 2017; Boretti and Lappas, 2019).Этот досадный случай был разыграен против CIDI ICE, чтобы создать впечатление, что этот двигатель экологически вреден для выбросов загрязняющих веществ, хотя это не так.
Значительные выбросы NOx двигателей CIDI ICE являются результатом большого образования NOx в цилиндрах, работающих в условиях избыточного обедненного воздуха стехиометрии, в сочетании с неправильной работой системы последующей обработки. Катализатор обедненного сжигания ДВС CIDI менее развит, чем трехкомпонентный каталитический преобразователь (TWC) стехиометрических ДВС SI (Heywood, 1988; Zhao, 2009; Mollenhauer and Tschöke, 2010; Reşitoglu et al., 2015). Кроме того, не учитывалась длительная разминка при эксплуатации (Boretti and Lappas, 2019). Кроме того, некоторые производители, применяющие впрыскивание мочевины при доочистке, решили вводить меньше мочевины, чем необходимо, если это не строго требуется сертификацией выбросов. Точно так же некоторые производители также сосредоточились на вопросах управляемости и экономии топлива, а не на выбросах, когда их строго не спрашивали, вдали от условий эксплуатации, вызывающих озабоченность при сертификации выбросов. Таким образом, несоблюдение требований по выбросам NOx в случайно выбранных условиях не было фундаментальным недостатком двигателей CIDI ICE в целом, а только конкретных продуктов, разработанных с учетом требований по выбросам и рыночных требований того времени.Противники CIDI ICE не считают, что эти двигатели оснащены уловителями твердых частиц с почти идеальной эффективностью, циркуляция автомобилей, оснащенных этими двигателями, в сильно загрязненных районах приводит к лучшим условиям для выхлопной трубы, чем условия впуска, для твердых частиц, что способствует для очистки воздуха.
Настоящая статья представляет собой объективный обзор плюсов и минусов экономичного сжигания, CIDI ICE, которые намного лучше, чем предполагалось. Поскольку ДВС, безусловно, потребуется в ближайшие десятилетия, дальнейшие улучшения сжигания обедненной смеси CIDI ICE будут полезны для экономики и окружающей среды.Помимо дизельных двигателей CIDI ICE, в этой работе также рассматриваются двухтопливные двигатели, работающие на дизельном СПГ (Goudie et al., 2004; Osorio-Tejada et al., 2015; Laughlin and Burnham, 2016), дизель-CNG (Maji et al. , 2008; Shah et al., 2011; Ryu, 2013) или дизель-СНГ (Jian et al., 2001; Ashok et al., 2015). Работа с небольшим количеством дизельного топлива и гораздо большим (с точки зрения энергии) количеством гораздо более легкого углеводородного топлива с пониженным содержанием углерода до водорода позволяет дополнительно снизить выбросы ТЧ из двигателя вне двигателя, а также CO . 2 и освобождаясь от компромисса PM-NOx, который влияет на стратегии впрыска только дизельного топлива, также снижает выбросы NOx из двигателя.Также рассмотрены тенденции развития двухтопливных двигателей CIDI ICE.
Использование биодизеля для производства низкоуглеродного дизельного топлива с использованием однотопливного подхода, безусловно, является еще одним вариантом сокращения выбросов CO 2 . Хотя эта возможность не влияет на выбросы загрязняющих веществ, производство биотоплива в целом растет, но не ожидаемыми темпами (IEA, 2019), и вопрос о соотношении продуктов питания и топлива (Ayre, 2007; Kingsbury, 2007; Inderwildi and King, 2009) также может иметь негативный вес в мире с прогнозируемым неизбежным водным и продовольственным кризисом (United Nations, 2019).Кроме того, преимущества биотоплива перед LCA являются давними и противоречивыми дебатами в литературе (McKone et al., 2011).
Существует возможность выбросов метана из двухтопливных дизельных двигателей, работающих на природном газе (Camuzeaux et al., 2015). Поскольку метан является мощным парниковым газом, этот аспект следует должным образом учитывать при сокращении выбросов парниковых газов. Существует не только возможность утечки метана из транспортных средств, оснащенных двухтопливными дизельными двигателями, работающими на СПГ. Также существуют выбросы метана при добыче нефти и газа.Помимо выбросов метана при добыче природного газа, существуют выбросы электроэнергии, связанные с эксплуатацией завода по производству СПГ. Хотя СПГ (и КПГ), безусловно, будет иметь преимущества по сравнению с дизельным топливом, это преимущество может быть меньше, чем то, что можно было бы вывести из отношения C-H в топливе. Безусловно, существует проблема сокращения выбросов метана, связанных с производством, транспортировкой и сжижением природного газа (Ravikumar, 2018).
Наконец, в то время как фумигация природного газа для двухтопливных дизельных двигателей широко используется, поскольку она намного проще и может быть достигнута с помощью низкотехнологичных преобразований, и, таким образом, большинство транспортных средств используют этот подход, дизельные двигатели переведены на дизельное топливо и фумигированный природный газ страдают от значительного снижения эффективности преобразования топлива по сравнению соригинальный дизель, как при полной, так и при частичной нагрузке, с пониженной мощностью и удельным крутящим моментом. Если природный газ смешивается (окуривается) с всасываемым воздухом перед впуском в цилиндр, а дизельное топливо используется в качестве источника воспламенения, количество вводимого природного газа ограничивается возможностью детонации предварительно смешанной смеси. Кроме того, нагрузка обычно регулируется дросселированием впуска, как в обычных бензиновых двигателях, а не количеством впрыскиваемого топлива, как в дизельном двигателе.Поскольку цель состоит в том, чтобы обеспечить равные или лучшие характеристики (мощность, крутящий момент, переходный режим) и выбросы новейшего дизельного топлива с двухтопливной конструкцией, эта двухтопливная конструкция должна предусматривать прямой впрыск дизельного и газообразного топлива.
Происхождение плохой репутации дизеля
Плохая репутация дизеля и, в целом, двигателя внутреннего сгорания (ДВС) является результатом действий Совета по воздушным ресурсам Калифорнии (CARB), а также Агентства по охране окружающей среды США (EPA) (Parker , 2019), а с « Дизель-Ворота » — всего лишь один шаг.
В те времена водородная экономика была более вероятной моделью будущего для транспорта, лучше, чем любая другая альтернатива, учитывая непостоянство производства энергии ветра и солнца (Crabtree et al., 2004; Muradov and Veziroglu, 2005; Marbán and Valdés- Солис, 2007). Предполагалось, что в автомобилях будут использоваться ДВС, работающие на возобновляемом водороде (H 2 -ICE), со всем, кроме кардинальных изменений, которые требовались в технологии двигателей, но усилия в основном были направлены на хранение и распространение.Примерно в те же дни была популярна идея метанольной экономики, когда метанол, полученный с использованием возобновляемого водорода и CO 2 , улавливаемый угольными электростанциями, был прямой заменой традиционного бензинового топлива (Olah, 2004 , 2005). H 2 -ICE стал историей после того, как CARB рассмотрел BMW Hydrogen 7, первый автомобиль с двигателем внутреннего сгорания, который был поставлен на рынок, не квалифицировался как автомобиль с нулевым уровнем выбросов (CO 2 ). В 2005 году BMW предложила автомобиль Hydrogen 7 как автомобиль с нулевым уровнем выбросов.При сжигании водорода в выхлопной трубе был в основном водяной пар и абсолютно не выделялся CO 2 , но Агентство по охране окружающей среды США не согласилось с нулевым уровнем выбросов CO 2 (Nica, 2016). Агентство по охране окружающей среды США заявило, что у транспортного средства все еще был ДВС, с возможностью того, что масло, используемое для смазки, могло попасть в цилиндр, образуя CO 2 . Тот факт, что общий расход масла составлял ничтожно малые 0,04 л масла на 1000 км, не учитывался. Из-за неофициальных обсуждений BMW отказалась от исследования водородных ДВС.Все остальные производители оригинального оборудования впоследствии прекратили свои исследования и разработки.
Что касается негативного отношения CARB и Агентства по охране окружающей среды США к ДВС в целом, в 2011 году BMW предложила в качестве концепт-кара аккумуляторно-электрический i3 с возможностью расширения запаса хода (Ramsbrock et al., 2013; Scott and Burton, 2013). . Расширителем запаса хода был небольшой бензиновый ДВС, приводивший в действие генератор для подзарядки аккумулятора. Внедрение расширителя диапазона позволило увеличить запас хода автомобиля и снизить стоимость, вес и объем аккумуляторной батареи, что является серьезной проблемой для экономики и окружающей среды.Поскольку производство планируется начать только в 2013 году, CARB сразу же поспешил установить правила, предотвращающие оптимизацию этой концепции, выпустив в 2012 году (CARB, 2012) чрезмерно долгое постановление, предписывающее, что расширитель диапазона должен использоваться только для достижения ближайшей подзарядки. точка. В промежутке между другими требованиями CARB запросил у транспортного средства с расширителем запаса хода номинальный запас хода на полностью электрической основе не менее 75 миль, диапазон меньше или равный диапазону заряда батареи от вспомогательной силовой установки, и, наконец, чтобы Вспомогательная силовая установка не должна включаться до тех пор, пока не разрядится аккумулятор.В результате всех этих ограничений BMW изо всех сил пыталась сделать расширитель диапазона конкурентоспособным, и в конечном итоге они недавно прекратили производство i3 с расширителем диапазона (Autocar, 2018).
Эти два события помогают объяснить « diesel-gate » 2015 года и последующее « дизель-фобию ». Дизельный двигатель был популярен (для легковых автомобилей) в основном в Европе, и ЕС продвигал дизельные автомобили для решения проблем изменения климата. В то время было ясно, что преждевременный переход к электромобильности мог привести к экономической и экологической катастрофе.Таким образом, концерн Volkswagen стал мишенью скандала « дизельные ворота ». Дизельные ДВС обеспечивали низкие выбросы CO 2 , конкурируя с аккумуляторными электромобилями при анализе жизненного цикла, при этом выделяя меньше, чем предписано, загрязняющих веществ в ходе испытаний, предписанных в то время. Легковые автомобили тестировались на соответствие правилам выбросов в течение заданного цикла, в лаборатории, в повторяемых условиях с правильным оборудованием. Международный совет по чистому транспорту (ICCT) организовал случайную езду по дорогам на различных дизельных транспортных средствах и измерения загрязняющих веществ с помощью PEM.Они обнаружили, что транспортные средства, оптимизированные для производства низких удельных выбросов CO 2 (на км) и выбросов загрязняющих веществ в определенных условиях, не могут обеспечить такие же удельные выбросы при любых других условиях, как это было логично. EPA выпустило уведомление о нарушении в отношении Volkswagen, что привело к огромному штрафу в следующих судебных исках. « Diesel-gate » обошлась VW более чем в 29 миллиардов долларов в виде штрафов, компенсаций и обратных закупок, в основном в США (физ.орг, 2018). Часть миллиарда долларов Volkswagen была направлена на поддержку мобильности аккумуляторных электромобилей, финансирование инфраструктуры подзарядки электромобилей в Соединенных Штатах отдельными поставщиками (O’Boyle, 2018). Затем « Diesel-gate » использовался для определения конца мобильности на базе ICE (Raftery, 2018; Taylor, 2018).
Предполагаемый избыточный выброс NOx транспортными средствами, оснащенными дизельными ДВС CIDI, которые начинались с « дизельный затвор », по-прежнему популярен, хотя и не соответствует действительности (Chossière et al., 2018) утверждает, что дизельные автомобили вызвали в 2015 году 2700 преждевременных смертей только в Европе из-за их выбросов NOx «на превышающих ». Эта работа не является объективной при анализе выбросов дизельного двигателя. Неверно утверждать, что дизельные автомобили в ЕС выбрасывают на дороге гораздо больше NOx, чем нормативные ограничения. Как было написано ранее, правила выбросов регулируют выбросы загрязняющих веществ в конкретных условиях лабораторных испытаний, а не во всех других возможных условиях.Неразумно ожидать определенной экономии топлива и выбросов регулируемых загрязнителей и углекислого газа, которые не зависят от конкретного испытания. Чтобы иметь выбросы «, превышение », сначала необходимо установить предел для конкретного применения, а затем мера «, превышение » при определенных условиях. Утверждение о преждевременной смертности, вызванной избыточными выбросами NOx от дизельных транспортных средств, основано на завышенной разнице выбросов NOx, предполагая, что выбросы намного хуже, чем фактические, и сравнивая этот выброс с невероятной эталонной ситуацией, близкой к нулю.Требование также основано на завышенной оценке количества смертей на счет этого дифференциального выброса. Эти два предположения не подтверждаются доказанными данными.
Поскольку более современные дизельные автомобили заменили еще больше загрязняющих окружающую среду автомобилей, единственное возможное объективное утверждение, которое можно сделать о выбросах старых и новых дизельных автомобилей в Европе, основанное на неоспоримых доказательствах, основано только на правилах рассмотрения жалоб на выбросы время их регистрации. Поскольку правила выбросов стали все более ограничительными, хотя и подтверждено только лабораторными сертификационными испытаниями, как показано в таблице 1, неверно предполагать, что дизельные ДВС CIDI выбрасывают больше NOx, чем раньше.В то время как дизельные пассажирские автомобили, соответствующие стандарту Евро 6, должны были выделять менее 0,08 г / км NOx при выполнении лабораторных испытаний NEDC, дизельные автомобили, соответствующие стандартам Евро 5–3, могли выделять 0,18, 0,25 и 0,50 г / км тот же тест, и дизельные автомобили, соответствующие стандартам Euro 1 и 2, должны были подтвердить только пороговые значения выбросов 0,7-0,9 и 0,97 г / км в одном и том же тесте. Нет никаких измерений, подтверждающих, что старые дизельные автомобили, соответствующие предыдущим правилам Евро, были более экологически чистыми по всем критериям загрязнения, включая NOx, во время реального вождения, чем новейшие дизельные автомобили.Кроме того, характеристики выбросов обычно ухудшаются с возрастом, а отсутствие технического обслуживания может еще больше усугубить ситуацию. Это делает заявление Chossière et al. (2018) непоследовательно.
Таблица 1 . Нормы выбросов Евросоюза для легковых автомобилей (категория M) положительного (бензин) и компрессионного (дизельного) исполнения.
Преимущества и недостатки экономичного двигателя CIDI
Основным преимуществом сжигания обедненной смеси, CIDI ICE является эффективность преобразования топлива, которая намного выше, чем у стехиометрических, SI ICE, как при полной нагрузке, так и, более того, при частичной нагрузке (Heywood, 1988; Zhao, 2009; Mollenhauer and Чёке, 2010).В то время как у легковых автомобилей с обедненной топливной смесью CIDI ICE на дизельном топливе пиковая эффективность преобразования топлива составляет около 45%, пиковая эффективность легковых автомобилей со стехиометрическими двигателями SI ICE, работающими на бензине, составляет всего около 35%. Снижение нагрузки за счет количества впрыскиваемого топлива, эффективности преобразования топлива при сжигании обедненной смеси, CIDI ICE является высоким в большей части диапазона нагрузок. И наоборот, при уменьшении нагрузки, дросселируя впуск, эффективность преобразования топлива стехиометрического, SI ICE резко ухудшается при уменьшении нагрузки.Это дает возможность легковым автомобилям, оснащенным системой сжигания обедненной смеси CIDI ICE, потреблять гораздо меньше топлива и, следовательно, выделять гораздо меньше CO 2 во время ездовых циклов (Schipper et al., 2002; Zervas et al., 2006; Johnson , 2009; Zhao, 2009; Mollenhauer, Tschöke, 2010; Boretti, 2017, 2018; Boretti, Lappas, 2019).
Бедное сжигание после обработки в целом (дизельные ДВС CIDI изначально работают на обедненной смеси, за исключением случаев экстремального использования рециркуляции выхлопных газов, EGR), однако, гораздо менее эффективны, чем стехиометрическая после обработки преобразователями TWC бензиновых ДВС SI (Lloyd and Cackette, 2001; Burtscher, 2005; Maricq, 2007).Следовательно, выбросы регулируемых загрязняющих веществ, в частности NOx, в течение рабочих циклов, которые в значительной степени отклоняются от сертификационных циклов, являются гораздо более продолжительными и требуют, чтобы двигатель работал в значительной степени полностью прогретым, намного больше в ДВС, работающем на обедненной смеси, чем стехиометрические ДВС. Кроме того, двигатели CIDI ICE, работающие на обедненной смеси, содержат твердые частицы, что является обычным недостатком, даже в меньшей степени, двигателей с прямым впрыском топлива, включая двигатели SI DI ICE. ТЧ возникают, когда закачиваемая жидкость, еще жидкая, взаимодействует с пламенем, образуя сажу.Сажа образуется в богатых топливом областях камеры сгорания (Hiroyasu and Kadota, 1976; Smith, 1981; Neeft et al., 1997). Постное сжигание, CIDI ICE, таким образом, нуждаются в ловушках для частиц (Neeft et al., 1996; Saracco et al., 2000; Ambrogio et al., 2001; Mohr et al., 2006). Однако это также есть возможность, поскольку циркуляция в областях с фоновыми частицами может обеспечить лучшее качество воздуха в выхлопной трубе, чем во впускной. Кроме того, двигатели CIDI ICE, работающие на обедненной смеси, эти двигатели, как правило, с турбонаддувом, стоят дороже.Двухтопливный режим работы с LPG, CNG или LNG не имеет никаких недостатков с точки зрения регулируемых загрязняющих веществ или CO 2 , а только дает преимущества.
Эффективность преобразования топлива
Без нацеливания на рекуперацию отработанного тепла (WHR) дизельные двигатели CIDI ICE доказали свою способность достигать максимальной эффективности преобразования топлива около 50%, обеспечивая при этом чрезвычайно высокое среднее эффективное давление при торможении в гонках на выносливость (Boretti and Ordys, 2018). Благодаря высокому давлению, высокой степени распыления, высокой скорости потока и быстродействию форсунок, несколько стратегий впрыска позволяют контролировать процессы сгорания, происходящие в объеме камеры сгорания, для наилучшего компромисса между работой давления, повышением давления и пиковое давление.
В то время как системы рекуперации отработанного тепла (WHR), безусловно, могут улучшить стационарную эффективность преобразования топлива в дизельных двигателях (Teng et al., 2007, 2011; Teng and Regner, 2009; Park et al., 2011; Wang et al., 2014; Yu et al., 2016; Shi et al., 2018), переходные процессы при холодном пуске — это ахиллесова пята традиционных WHR. Кроме того, WHR увеличивают вес, тепловую инерцию, проблемы с упаковкой и сложность. Инновационные концепции для WHR, использующие контур охлаждающей жидкости в качестве подогревателя модифицированного «турбокомпрессора » (Freymann et al., 2008, 2012) без необходимости использования двойного контура, требуют значительных усилий в области исследований и разработок.
Результаты, достигнутые Audi в гонках на выносливость (Audi, 2014) менее чем за десять лет разработок, очень важны. С 2006 по 2008 год Audi использовала двигатель V12 TDI в Audi R10 TDI. Двигатель объемом 5,5 л развивал крутящий момент 1100 Нм. На номинальной скорости очень тихий твин-турбо выдавал около 480 кВт. В 2009 и 2010 годах Audi перешла на V10 TDI в Audi R15 TDI. Он был короче и легче двенадцатицилиндрового.Рабочий объем 5,5 л был распределен на два цилиндра меньше. Двигатель имел примерно 440 кВт и крутящий момент более 1050 Нм. Верхний BMEP превышал 24 бара. Затем, с 2011 по 2013 год, Audi перешла на V6 TDI в Audi R18 TDI, R18 ultra и R18 e-Tron Quattro. Уменьшение объема двигателя позволило довести рабочий объем двигателя до 3,7 л. Легкий и компактный двигатель V6 TDI развивал более 397 кВт и крутящий момент более 900 Нм. Система Common Rail создавала давление до 2600 бар. Верхний BMEP превышал 30 бар.
Когда основное внимание уделялось экономии топлива, в 2014 году двигатель V6 TDI в Audi R18 e-Tron Quattro был оснащен переработанным двигателем V6 TDI с рабочим объемом 4,0 л. Максимальная мощность составляла 395 кВт, а максимальный крутящий момент — более 800 Нм. Давление закачки составило более 2800 бар. Расход топлива снизился более чем на 25% по сравнению с 3,7-литровым двигателем. Последняя (2016 г.) выходная мощность 4-литрового двигателя составляла 410 кВт, что соответствовало 870 Нм крутящего момента при максимальной скорости 4500 об / мин.Это преобразовалось в BMEP 27,3 бар в рабочей точке максимальной скорости / максимальной мощности. Последние двигатели имели ограниченный расход топлива, так что для системы рекуперации энергии 6 МДж (ERS) для торможения максимальный расход топлива составлял 71,4 кг / ч. Для дизельного топлива с низшей теплотворной способностью (НТС) 43,4 МДж / кг мощность потока топлива составила 860,8 кВт. Таким образом, максимальная мощность была получена при пиковом КПД торможения η = 0,475, что намного больше, чем максимальный КПД многих серийных высокоскоростных дизельных двигателей, которые могут работать, вплоть до максимального КПД η = 0.45 на более низких оборотах двигателя.
Из расчетов максимальный крутящий момент, а также максимальная эффективность торможения были получены при скоростях <4500 об / мин, что является технологическим пределом диффузионного горения (Boretti and Ordys, 2018). Из-за постоянного времени, необходимого для испарения топлива и смешивания с воздухом, фаза диффузионного сгорания имеет продолжительность в градусах угла поворота коленчатого вала, которая увеличивается с частотой вращения двигателя. Таким образом, на скоростях выше 4500 об / мин продолжительность фазы сгорания обычно становится чрезмерной, и гораздо лучшая мощность получается на более низких скоростях.Максимальный крутящий момент, скорее всего, превышал 916 Нм, что соответствует BMEP 29 бар. Пиковая эффективность преобразования топлива с большой вероятностью приближалась к η = 0,50. Дальнейшие разработки в области гонок были в пределах легкой досягаемости, в то время как деятельность была остановлена после « diesel-gate ». Более высокое давление впрыска и более совершенный турбонаддув, такой как современный F1 e-turbo или супер турбонаддув (Boretti and Castelletto, 2018; Boretti and Ordys, 2018), могли бы быть полезны для обычных серийных дизельных двигателей для легковых автомобилей.
Лабораторные испытания выбросов
Прошлая сертификация выбросов, которая проводилась производителями оригинального оборудования (OEM) и не подвергалась независимым испытаниям, была связана с неточностями в тестах и несоответствием цикла сертификации (Boretti, 2017; Boretti and Lappas, 2019). Короткий, сильно стилизованный новый европейский ездовой цикл (NEDC) был чрезвычайно далек от реальных условий вождения, с которыми сталкиваются европейские пассажиры. Поскольку более двух десятилетий OEM-производители были вынуждены сосредоточить свои RandD на производстве двигателей, соответствующих требованиям и экономичных во время этого цикла, из-за ухудшения состояния из-за холодного запуска, другие возможные применения не регулировались и оставались на усмотрение OEM.Неточности (и осторожность) в способе проведения испытаний привели к множеству несоответствий, начиная с большого разброса выбросов углекислого газа (CO 2 ) при потреблении теоретически одного и того же литра топлива (Boretti and Lappas, 2019). Новый согласованный во всем мире цикл испытаний легких транспортных средств (WLTC), который недавно заменил NEDC, из-за « diesel gate » (Chossière et al., 2018), лучше, будучи немного длиннее. Тем не менее, это по-прежнему связано с условиями вождения, отличными от тех, которые используются в часы пик в густонаселенных районах (Boretti and Lappas, 2019).
С исторической точки зрения, правила выбросов из года в год ужесточаются и ужесточаются, но заявлено, что они измеряются только в ходе предписанных лабораторных испытаний. В таблице 1 представлены нормы выбросов Европейского Союза (ЕС) для легковых автомобилей (категория M) с принудительным (бензин) и компрессионным (дизель) воспламенением. Несгоревшие углеводороды (HC) + NOx были предписаны для бензина и дизельного топлива только стандартами Euro 1 и 2. Выбросы были проверены через NEDC с использованием лабораторной процедуры динамометрического стенда.На протяжении многих лет от OEM-производителя требовалось производить автомобили, выбрасывающие меньше, чем регулируемый загрязнитель, в течение определенного цикла сертификации во время лабораторных испытаний. Реальное вождение было нематериальным понятием, не переведенным ни в одно конкретное законодательное требование. Снижение предельных значений выбросов NOx и PM в стандартах Euro 5 и 6 привело к резкому увеличению затрат на последующую обработку и к увеличению, а не снижению расхода топлива, иногда с проблемами управляемости.Еще раз важно понимать компромисс между экономией топлива и выбросами загрязняющих веществ и понимать, что чрезмерные запросы по одному критерию могут привести к невозможности удовлетворить другие критерии.
Выбросы от вождения в реальном мире
Только недавно Европейский Союз (ЕС) ввел тесты на выбросы выхлопных газов в реальных условиях движения (RDE). Выбросы от дорожных транспортных средств теперь измеряются с помощью портативных анализаторов выбросов (PEM). Тест RDE должен длиться 90–120 минут и включать один городской (<60 км / ч), один сельский (60–90 км / ч) и один автомагистральный (> 90 км / ч) сегмент равного веса, покрывающий расстояние. не менее 16 км.Затем в пределах выбросов RDE используются коэффициенты соответствия, которые относятся к лабораторным испытаниям на динамометрическом стенде. Что касается NOx, коэффициент соответствия составляет 2,1 с сентября 2017 года для новых моделей и с сентября 2019 года для всех новых автомобилей. Другие факторы соответствия еще предстоит определить. Хотя тест RDE по-прежнему не является репрезентативным для реального вождения в густонаселенных районах, он неточный, субъективный, невоспроизводимый и еще не определяющий (Boretti and Lappas, 2019), это, безусловно, шаг вперед.
Реальные данные по австралийским выбросам от вождения транспортных средств до введения новых правил предложены ABMARC (ABMARC, 2017). В отчете, подготовленном для Австралийской автомобильной ассоциации, представлены результаты испытаний на выбросы и расход топлива 30 различных легковых и легких коммерческих автомобилей, измеренные с помощью PEMS на австралийских дорогах. Большинство автомобилей соответствовали стандартам Euro 4, 5 и 6, а 1 из них соответствовал стандартам Euro 2. Реальный расход топлива протестированных автомобилей по сравнению с результатами цикла сертификации был в среднем на 23% выше, на 21% выше для автомобилей с дизельным двигателем, с 4% ниже до 59% выше и на 24% выше для автомобилей с бензиновым двигателем, начиная с 3% ниже до 55% выше.У одного транспортного средства, работающего на сжиженном нефтяном газе, реальный расход топлива на 27% выше, чем результат цикла сертификации. Один подключаемый к сети гибридный автомобиль имел реальный расход топлива на 166% выше, чем результат цикла сертификации с полным состоянием заряда, и на 337% выше при испытании с низким уровнем заряда. Данные о расходе топлива для автомобилей с дизельными сажевыми фильтрами включают поправочный коэффициент для учета регенерации фильтра.
Таким образом, расхождения между лабораторными испытаниями и реальным вождением были разными не только для автомобилей, оснащенных дизельными ДВС CIDI, но и для автомобилей с бензиновыми ДВС SI, а также с традиционными и гибридными силовыми агрегатами.Однако основным отличием были выбросы NOx дизельных двигателей CIDI. В последних правилах ЕВРО автомобили должны соответствовать все более строгим стандартам выбросов регулируемых загрязняющих веществ, а также сокращать выбросы CO 2 . Поскольку эти требования противоречили друг другу и их трудно было удовлетворить, несоответствие между реальным расходом топлива и результатами цикла сертификации увеличивается с увеличением стандарта. Автомобили, соответствующие стандарту Euro 6, имеют наибольшее расхождение между реальными результатами и результатами цикла сертификации.
Что касается выбросов, то у 13 транспортных средств превышены удельные выбросы NOx, предписанные для цикла сертификации. Из этих 13 автомобилей 11 были дизельными. Только 1 из 12 автомобилей с дизельным двигателем произвел выброс NOx в пределах цикла сертификации. Пять автомобилей с бензиновым двигателем превысили лимит выбросов CO в сертификационном цикле. Только 1 автомобиль с дизельным двигателем превысил лимит PM цикла сертификации. В среднем выбросы NOx и PM у автомобилей с дизельным двигателем были в 24 и 26 раз выше, чем у автомобилей с бензиновым двигателем, а выбросы CO у автомобилей с дизельным двигателем были в 10 раз ниже, чем у автомобилей с бензиновым двигателем.Транспортные средства с дизельным двигателем превысили предел NOx сертификационного цикла на 370%, а автомобили с бензиновым двигателем выбросили 43% от предельного значения NOx сертификационного цикла. Автомобили с бензиновым двигателем выбрасывают 95% предельного количества CO, установленного в сертификационном цикле. Автомобили с дизельным двигателем выбрасывают 20% от предельного количества CO, установленного в сертификационном цикле. Что касается ТЧ, то выбросы дизельных автомобилей составили 43% от предельного количества ТЧ сертификационного цикла, а от автомобилей с прямым впрыском 2-х бензинового бензина (GDI) выбрасывается 26% от предельного количества ТЧ сертификационного цикла.Что касается выбросов NOx от двигателей с обедненным горением CI, результаты измерений были лучше, чем заявленные для «, дизельные ворота » или заявленные в таких работах, как (Chossière et al., 2018).
Новые правила были введены после « дизельный затвор », а дизельные двигатели CIDI были улучшены. Европейские реальные данные о выбросах транспортных средств после введения новых правил представлены ACEA (2018a). В ходе правильно проведенной экспериментальной кампании, в повторяемых условиях, с соответствующим оборудованием и с применением научного метода, Европейская ассоциация автопроизводителей (ACEA) недавно показала, что все 270 протестированных автомобилей с дизельным двигателем были ниже пределов выбросов, установленных недавно. тесты по вождению в реальных условиях (RDE), как общие, так и городские.Ни один из транспортных средств не превышал установленный в настоящее время удельный выброс NOx в 165 мг / км (ACEA, 2018a), рис. 1. Подробные результаты утверждения типа для 270 типов дизельных транспортных средств, совместимых с RDE, доступны в ACEA (2018b). . Результаты RDE для отдельных автомобилей можно найти на сайте (ACEA, 2018c).
Новые данные, опубликованные ACEA, недвусмысленно свидетельствуют о том, что дизельные автомобили последнего поколения выделяют низкие выбросы загрязняющих веществ на дороге и являются экономичными. Испытания проводились в реальных условиях вождения водителями различных национальных органов по официальному утверждению типа.270 новых типов дизельных автомобилей, сертифицированных по последнему стандарту Euro 6d-TEMP, были представлены на европейском рынке в течение предыдущего года. Все эти дизельные автомобили показали очень хорошие результаты ниже порогового значения NOx теста RDE, которое теперь применяется ко всем новым типам автомобилей с сентября 2017 года. Большинство этих автомобилей имеют выбросы NOx значительно ниже более строгого порога, который будет обязательным с января 2020 года. test гарантирует, что уровни выбросов загрязняющих веществ, измеренные во время новых лабораторных испытаний WLTP, подтверждаются на дороге.Каждый протестированный автомобиль представляет собой « семейство » похожих автомобилей различных вариантов. Эта деятельность доказывает, что автомобили с дизельным двигателем, которые сейчас доступны на рынке, имеют низкий уровень выбросов в любом приемлемом состоянии. Немецкий автомобильный клуб (ADAC) недавно подсчитал, что на 30 октября 2018 года было доступно 1206 различных автомобилей, совместимых с RDE, как с бензиновым, так и с дизельным двигателем (ADAC, 2018a). Следовательно, дизельные ДВС CIDI не заслуживают плохой репутации, которую они получили из-за «дизельного затвора », что является скорее политическим, чем технологическим вопросом.
Современные дизельные автомобили, поддерживаемые политикой обновления парка и в сочетании с альтернативными силовыми агрегатами, могут сыграть важную роль в содействии городам в продвижении к соблюдению целевых показателей качества воздуха при одновременном повышении топливной эффективности и сокращении выбросов CO 2 в краткосрочной и среднесрочной перспективе . Недавние дорожные испытания, проведенные ADAC (2018b), показали, что новейшие автомобили с дизельным двигателем выбрасывают в среднем на 85% меньше NOx, чем автомобили стандарта Евро 5, а самые эффективные дизельные автомобили стандарта Евро 6, соответствующие требованиям RDE, выбрасывают на 95–99% меньше NOx по сравнению с автомобилями Euro 5.Каждый протестированный автомобиль выделяет меньше лимитов для каждого регулируемого загрязнителя. Эти автомобили также обеспечивают исключительную экономию топлива. Кроме того, есть возможность производить еще меньше CO 2 и менее регулируемых загрязнителей, переходя на двухтопливное дизельное топливо — СПГ, КПГ или СНГ.
PM Преимущества дизельных автомобилей
Дизельные двигатели не являются мишенью из-за того, что транспортный сектор вносит свой вклад в общее качество воздуха. Однако, поскольку качество воздуха во многих частях мира оставляет желать лучшего, и дизельные фильтры твердых частиц могут помочь улучшить качество воздуха, аргумент PM может фактически быть использован в пользу мобильности на основе дизельного топлива, а также против альтернатив, таких как электрические. мобильность.Хотя неверно утверждать, что более современные автомобили с дизельным двигателем выделяют « излишков » NOx и ухудшают качество воздуха, более современные автомобили с дизельным двигателем способствуют очистке воздуха в загрязненных зонах, например, от ТЧ. Из Таблицы 1 видно, что старые дизельные автомобили были произведены в соответствии с гораздо менее строгими правилами PM. Загрязнители воздуха выбрасываются из многих естественных и антропогенных источников, последние включают сжигание ископаемого топлива в электроэнергетике, промышленности, домашних хозяйствах, транспорте, промышленных процессах, использовании растворителей, сельском хозяйстве и переработке отходов.Следовательно, наличие транспортных средств с выбросами ТЧ из выхлопной трубы потенциально ниже, чем на впуске, — это возможность очистить воздух.
Табачный дым в окружающей среде (ETS) вызывает загрязнение помещений мелкими ТЧ, превышающее допустимые пределы для транспортных средств. Данные, сравнивающие выбросы ТЧ от ETS и автомобиля с дизельным двигателем Euro 3, показывают, что концентрации ТЧ в помещении в 10 раз превышают те, которые выбрасываются от двигателя с дизельным двигателем Euro 3 на холостом ходу (Invernizzi et al., 2004). Пределы PM были значительно улучшены для Euro 4, 5 и 6, а если быть точным, то в 10 раз.Исследование Всемирной организации здравоохранения (ВОЗ) (Martuzzi et al., 2006) показывает значительное воздействие PM 10 на здоровье городского населения 13 крупных итальянских городов, которое, по оценкам, составляет 8220 смертей в год, что связано с концентрациями PM 10 выше 20 мкг / м. Это 9% смертности от всех причин (без учета несчастных случаев) среди населения старше 30 лет. Эти уровни PM 10 не являются результатом использования новейших автомобилей с чистым дизельным двигателем.
Эффективность дизельных сажевых фильтров (DPF) относительно сложна (Fiebig et al., 2014). Новейшие технологии DPF более эффективны для больших размеров, в то время как менее эффективны или даже отрицательны для меньших нанометрических размеров. Мониторинг часто ограничивается PM 10 — частицами диаметром 10 микрометров — или PM 2,5 — частицами диаметром 2,5 микрометра. DPF может улавливать от 30% до более 95% микрометрических ТЧ (Barone et al., 2010). При оптимальном сажевом фильтре выбросы ТЧ могут быть снижены до 0,001 г / км или менее (Fiebig et al., 2014), что в 5 раз меньше, чем в настоящее время 0.005 of Euro 6. Хотя эта мера массы не учитывает загрязнение субмикрометрическими и нанометрическими частицами, в настоящее время нет контроля над этим типом загрязнителя из любого источника.
Если новые автомобили с дизельным двигателем не выбрасывают больше NOx, чем старые автомобили с дизельным двигателем, они, безусловно, выбрасывают гораздо меньше ТЧ и, возможно, при некоторых обстоятельствах способны очищать воздух от ТЧ, произведенных из других источников, которые не являются адекватным направлением деятельности директивных органов. . Случай Гонконга, который не является худшим на Земле, описан в Haas (2017).Помимо местных выбросов из различных источников, в том числе от легковых автомобилей, в Гонконг присутствует значительное количество загрязняющих веществ, привезенных из материкового Китая. Хотя данные о загрязнителях в Китае ограничены, хорошо известно, что Гонконг сталкивается с серьезными проблемами со здоровьем, связанными с загрязнением воздуха, в основном импортируемым с материка. Загрязнение воздуха в Гонконге не так ужасно, как в Китае или Индии, где токсичное облако, получившее название « airpocalypse », часто покрывает значительную часть этих стран, но это все еще один хороший пример того, что более современные дизельные автомобили заменяют на дорога старые автомобили оказывают положительное влияние.
Из многих типов аэрозольных частиц, циркулирующих в атмосфере, одним из самых разрушительных является PM 2,5 . Во многих районах Китая и Индии уровни PM 2,5 и PM 10 намного превышают рекомендованные ВОЗ, рис. 2. Руководящие принципы ВОЗ (среднегодовые): PM 2,5 из 10 мкг / м 3 и PM 10 из 20 мкг / м 3 . Во всем мире средний уровень загрязнения окружающего воздуха колеблется от <10 до более 100 мкг / м 3 для PM 2.5 , и от <10 до более 200 мкг / м 3 , для PM 10 . Случаи плохого качества воздуха широко распространены не только в Китае и Индии. Однако промышленный центр южного побережья Китая является одним из районов с наиболее высоким уровнем загрязнения, как Пекин и Дели. В то время как Пекин « airpocalypse » подавляется решительными мерами, в основном направленными на использование угля, но также ограничивающими движение любого транспортного средства (South China Morning Post, 2018), « airpocalypse » Дели достигает нового чрезвычайно высокий, в том числе благодаря « выжиганию стерни, » из окрестностей (Indiatimes, 2018).
Рисунок 2 . Карта PM 2.5 для Азии осенью 2018 года в режиме почти реального времени. Показаны только области, покрытые станциями. Изображение с Земли Беркли, www.berkeleyearth.org.
Качество воздуха в Гонконге не самое лучшее (Haas, 2017). Уровни загрязняющих веществ превышают стандарты ВОЗ более 15 лет. На пиках они более чем в пять раз превышают допустимые уровни. Выбросы от транспортных средств и судов являются одними из крупнейших местных источников загрязнения.Свою роль играют и электростанции, которые почти полностью зависят от ископаемого топлива, в основном угля. Однако около 60-70% PM поступает из материкового Китая. Этот поток чрезвычайно актуален, особенно зимой, когда импортируемые ТЧ составляют около 77% от общего количества. В последние годы резко возросли масштабы астмы и бронхиальных инфекций. Только в Гонконге было зарегистрировано более 1600 фактов, а не гипотетических, как у Chossière et al. (2018), преждевременная смерть в 2016 году только из-за загрязнения воздуха (Haas, 2017).
В дополнение к улучшенным стандартам топлива и расширению использования электромобилей, значительное распространение последних дизельных транспортных средств, оборудованных уловителями твердых частиц, может еще больше способствовать улучшению качества воздуха в городе, которое по-прежнему не соответствует ни одному руководству ВОЗ.Что касается возможности использовать электромобили, заряжаемые электростанциями, работающими на горючем топливе, электромобили могут фактически способствовать загрязнению ТЧ. Согласно Hodan and Barnard (2004), самый крупный источник PM 2,5 из антропогенных источников — это износ шин и дорожного покрытия. Поскольку электромобили тяжелее и имеют более высокий крутящий момент, чем автомобили на базе ДВС, они производят намного больше PM 2,5 . Следовательно, увеличение количества электромобилей сделает Гонконг еще более грязным по отношению к PM, поскольку они производят PM 2.5 , и они не могут сжигать ТЧ, произведенные из других источников, например дизельный ДВС CIDI, оснащенный уловителем твердых частиц.
Как показано на Рисунке 1 и в Таблице 1, автомобили, оснащенные новейшими двигателями ХИ, не производят избыточных NOx, а из Рисунков 2, 3 видно, что во многих регионах мира концентрация ТЧ в воздухе намного выше, чем можно найти. в выхлопной трубе автомобилей, оснащенных новейшими дизельными двигателями CIDI, таблица 1 и NO 2 концентрации также довольно велики. Двухтопливный режим работы на СПГ, КПГ или СНГ с неизменным в остальном транспортным средством, в котором установлен сажевый фильтр, может еще больше способствовать очистке окружающего воздуха от твердых частиц.
Рисунок 3 . Среднемесячные концентрации для Китая в январе 2015 г.: PM 2,5 , вверху, и NO 2 , внизу. Изображения с Земли Беркли, www.berkeleyearth.org.
Преимущества двухтопливного дизельного топлива — СПГ / СНГ / КПГ
Современные технологии
Дизель-СПГ (Goudie et al., 2004; Osorio-Tejada et al., 2015; Laughlin and Burnham, 2016), дизельное топливо-СПГ (Maji et al., 2008; Shah et al., 2011; Ryu, 2013) или дизельное топливо-СНГ (Jian et al., 2001; Ashok et al., 2015) двигатели обеспечивают эффективность преобразования дизельного топлива и удельную мощность, улучшая при этом выбросы как регулируемых загрязняющих веществ (PM, NOx), так и CO 2 . СПГ может использоваться для большегрузных автомобилей благодаря криогенному хранению. LPG (и CNG) может быть предпочтительнее в легковых и легких транспортных средствах.
Дизельные двигатели по-прежнему выделяют значительное количество диоксида углерода (CO 2 ) и выбросы твердых частиц (ТЧ) из двигателя из-за диффузионного сгорания тяжелых углеводородов, высокого отношения C / H и жидкого дизельного топлива.Выбросы оксидов азота (NOx) из двигателя также являются неотъемлемой частью процесса сжигания обедненной смеси в избыточном воздухе (Heywood, 1988). Как PM, так и NOx могут быть уменьшены посредством дополнительной обработки, хотя стратегии сжигания дизельного топлива часто определяются для наилучшего компромисса между NOx и PM.
Использование газообразного топлива с пониженным содержанием углерода, такого как природный газ, который в основном представляет собой метан CH 4 , в жидкой форме, как СПГ, или в газовой форме, как СПГ, или сжиженный нефтяной газ (СНГ), в основном пропан C 3 H 8 , имеет интуитивно понятные основные преимущества в выбросах CO 2 по сравнению сдизельное топливо переменного состава, но примерно C 13,5 H 23,6 . Поскольку испарение намного проще, существуют также преимущества для выбросов ТЧ из двигателя и, следовательно, косвенно также для выбросов NOx из двигателя по сравнению с дизельным топливом (Kathuria, 2004; Chelani and Devotta, 2007; Yeh, 2007; Engerer and Horn, 2010; Lin et al., 2010; Kumar et al., 2011).
СПГ, КПГ и СНГ имеют меньшее соотношение углерода и водорода. Следовательно, гораздо меньше CO 2 выбрасывается для получения такой же мощности с примерно такой же эффективностью преобразования топлива.CNG — это нагнетаемый газ. СПГ также является газом в нормальных условиях. LPG в обычных условиях жидкий, но испаряется намного быстрее, чем дизельное топливо. Это практически сводит к нулю выбросы твердых частиц (за исключением выбросов пилотного дизельного топлива). Поскольку СПГ, КПГ и СНГ представляют собой высокооктановое топливо с низким цетановым числом, их трудно использовать отдельно в двигателе с воспламенением от сжатия. Проблема решается при работе на двух видах топлива (westport.com, 2019a, b). Воспламенение вызывает небольшое количество дизельного топлива. СПГ, КПГ или СНГ, впрыскиваемые до или после зажигания впрыска дизельного топлива, могут затем сгореть в смеси с предварительным смешением или диффузией.Первая фаза сгорания вызывает быстрое повышение давления. Скорость сгорания второй фазы определяется скоростью впрыска СПГ, КПГ или СНГ и предназначена для поддержания давления во время первой части такта расширения.
Одной из основных проблем, связанных с использованием СПГ или КПГ, является удельный объем топлива, поскольку плотность газа в нормальных условиях низкая. Это создает проблемы для системы впрыска, которой требуются форсунки с гораздо большей площадью поперечного сечения дизельного топлива, и значительно затрудняет быстрое срабатывание и возможности многократного впрыска, характерные для новейших дизельных форсунок.Это также проблема для хранения, поскольку объем топлива, необходимый для данного количества энергии на борту транспортного средства, намного больше, чем у дизельного топлива. СПГ имеет лучшую объемную плотность, но для поддержания низкой температуры требуется криогенная система. КПГ имеет меньшую объемную плотность и дополнительно требует резервуаров под давлением.
Система Westport HPDI для дизельного топлива и КПГ / СПГ — это технология, хорошо зарекомендовавшая себя десятилетиями (Li et al., 1999; westport.com, 2015). Вначале HPDI представлял собой простой основной впрыск природного газа после пилотного / предварительного впрыска дизельного топлива.В последнее время HPDI развивается в сторону более сложных стратегий, регулирующих предварительно смешанное и диффузионное сжигание природного газа, как было предложено Боретти (2013).
Традиционный HPDI в тяжелых ДВС позволяет ДВС, работающему на природном газе, сохранять рабочие характеристики, аналогичные характеристикам дизеля, при этом большая часть энергии обеспечивается за счет природного газа. Небольшой пилотный впрыск дизельного топлива (5–10% энергии топлива) используется для зажигания непосредственно впрыскиваемой газовой струи. Природный газ горит в режиме диффузионного горения с контролируемым смешением (Li et al., 1999; westport.com, 2015).
Технологии будущего
В нескольких работах описаны тенденции развития технологии HPDI. McTaggart-Cowan et al. (2015) отчет о двухтопливных форсунках 600 бар для СПГ. Событие сгорания СПГ ограничено давлением впрыска, которое определяет скорость смешения и сгорания. Значительное повышение эффективности и снижение PM достигаются при высоких нагрузках, и особенно на высоких скоростях, за счет увеличения давления впрыска с традиционных 300 бар до последних 600 бар.Скорость горения ограничена. McTaggart-Cowan et al. (2015) сообщают о выгодах эффективности от более высоких давлений около 3%, добавленных к сокращению выбросов твердых частиц на 40–60%.
Различные формы сопла были рассмотрены Mabson et al. (2016). Инжектор « сопла с парными отверстиями » был разработан для уменьшения образования твердых частиц за счет увеличения уноса воздуха из-за взаимодействия струи. Выбросы CO и PM были наоборот в 3–10 раз выше при использовании сопел с парными отверстиями. Сопло с парными отверстиями давало более крупные агрегаты сажи и большее количество частиц.
Mumford et al. сообщают об улучшениях Westport HPDI 2.0 (Mumford et al., 2017). HPDI 2.0 обеспечивает лучшие характеристики и уровень выбросов по сравнению с HPDI первого поколения, а также только с базовым дизельным двигателем. Мамфорд и др. (2017) также обсуждают потенциал и проблемы более высокого давления нагнетания.
Стратегии сжигания с контролируемой диффузией и с частичным предварительным смешиванием рассматриваются Florea et al. (2016) с помощью Westport HPDI. Сгорание с частичным предварительным смешиванием, называемое DI 2 , является многообещающим, повышая эффективность двигателя более чем на 2 пункта по сравнению со стратегией сгорания с контролируемой диффузией.Модуляция двух фаз горения, потенциально более полезная, в работе не исследуется.
Режим горения DI 2 также исследован в Neely et al. (2017). Природный газ впрыскивается во время такта сжатия до зажигания впрыска дизельного топлива. Показано, что такое сгорание природного газа с частичной предварительной смесью улучшает как термическую эффективность, так и эффективность сгорания по сравнению с традиционным режимом двухтопливного сгорания с фумигацией. Сгорание природного газа с частичной предварительной смесью также обеспечивает повышение теплового КПД по сравнению с сжиганием с регулируемой диффузией по базовой линии, когда впрыск природного газа происходит после впрыска дизельного зажигания.
Влияние стратегий впрыска на выбросы и характеристики двигателя HPDI изучено Faghani et al. (2017а, б). Они исследуют влияние позднего дополнительного впрыска (LPI), а также сгорания с небольшим предварительным смешиванием (SPC) на выбросы и характеристики двигателя. При использовании SPC впрыск дизельного топлива задерживается. Работа SPC при высокой нагрузке снижает PM более чем на 90% с улучшением топливной эффективности на 2% при почти таком же уровне NOx. Однако SPC имеет большие колебания от цикла к циклу и чрезмерную скорость нарастания давления.ТЧ не увеличивается для SPC с более высоким уровнем рециркуляции отработавших газов, более высоким глобальным коэффициентом эквивалентности на основе кислорода (EQR) или более высокой контрольной массой, что обычно увеличивает количество ТЧ при сгорании HPDI с регулируемым смешиванием. LPI, пост-впрыск 10–25% от общего количества топлива, происходящий после основного сгорания, приводит к значительному сокращению выбросов твердых частиц с незначительным влиянием на другие выбросы и характеристики двигателя. Основное сокращение PM от LPI связано с уменьшением количества топлива при первом впрыске. Вторая закачка дает незначительный нетто-вклад в общие PM.
Двухтопливный инжектор дизель-СПГ Westport HPDI дает отличные результаты. Однако у этого подхода есть фундаментальный недостаток. Он не обладает такими же характеристиками, как дизельные форсунки последнего поколения, как по расходу, так и по скорости срабатывания и распылению дизельного топлива. Таким образом, может быть предпочтительным соединение с одним дизельным инжектором последнего поколения со специальным инжектором для второго топлива, чтобы обеспечить лучшие характеристики впрыска как для дизельного, так и для второго топлива.Более высокое давление впрыска и более быстрое срабатывание являются движущими силами улучшенных режимов сгорания.
Двухтопливные дизель-водородные ДВС CIDI с возможностью установки двух прямых форсунок на цилиндр были изучены, например, в (Boretti, 2011b, c). Один инжектор использовался для дизельного топлива, а другой — для водорода. Смоделированный дизельный двигатель, преобразованный в двухтопливный дизель-водород после этого подхода, продемонстрировал КПД при полной нагрузке до 40–45% и снижение потерь в КПД, снижая нагрузку, работающую немного лучше, чем базовое дизельное топливо в каждой рабочей точке.Хотя использование двух форсунок на цилиндр не представляет проблемы для новых двигателей, сложно установить две форсунки при модернизации существующих дизельных двигателей. Специализированные форсунки прямого действия для СПГ, СНГ или КПГ требуют дальнейшего развития для конкретного применения.
Использование двух специализированных форсунок, а не одной двухтопливной форсунки с более высоким давлением впрыска, более быстрым срабатыванием и полной независимостью от впрыска отдельных видов топлива, обеспечивает большую гибкость в формировании впрыска.Двухтопливный режим обычно характеризуется предварительным / предварительным впрыском дизельного топлива, за которым следует основной второй впрыск топлива. Предпочтительно, чтобы второе топливо не впрыскивалось полностью после зажигания впрыска дизельного топлива. Его можно впрыскивать до или одновременно с дизельным топливом или после дизельного топлива, причем не только за один впрыск, но и за несколько впрысков. Таким образом, второе топливо может гореть частично предварительно смешанным и частично диффузионным.
Возможны разные режимы горения. « Controlled » HCCI — один из таких режимов.В управляемом HCCI второе топливо впрыскивается первым, и воспламенение дизельного топлива происходит до ожидаемого начала самовоспламенения HCCI (Boretti, 2011a, b). HCCI не имеет преимуществ с точки зрения эффективности преобразования топлива по сравнению с объемным сгоранием в центре камеры, окруженной воздушной подушкой. Однородное горение всегда страдает большими потерями тепла на стенках и неполным сгоранием на гашение пламени. HCCI также не создает пикового давления во время такта расширения, обеспечивая пиковое давление точно в верхней мертвой точке.Однако HCCI может иметь преимущества для выбросов из двигателя, поскольку это чрезвычайно низкотемпературный процесс, и это событие сгорания намного ближе к теоретически лучшему изохорному сгоранию из анализов цикла давления.
Наиболее интересные режимы — это предварительное смешение, диффузия или модулированное предварительное смешение и диффузия в центре камеры. При предварительно смешанном, но стратифицированном сгорании второе топливо впрыскивается в центр камеры и сжигается за счет впрыска дизельного топлива до однородного заполнения всей камеры.При диффузионном сгорании второе топливо впрыскивается в центр камеры после того, как воспламенение впрыска дизельного топлива создает подходящие условия для того, чтобы следующее сгорание продолжалось, управляемое диффузией, и там оно горит. Существует возможность для предварительного впрыска второго топлива, а также для современного или последующего впрыска второго топлива в отношении пилотного / предварительного впрыска дизельного топлива, которые должны быть тщательно сформированы для обеспечения наилучшей эффективности преобразования топлива. в пределах ограничений по выбросам из двигателя, скорости нарастания давления и пиковому давлению.
Альтернатива электрической мобильности все еще преждевременна
Экологичность и экономичность дизельной мобильности не признается многими странами, которые в противном случае задумывались о преждевременном переходе к электрической мобильности, не решив сначала многие проблемы электромобилей, т. Е. Высокую экономичность и экономичность. экологические затраты на строительство, эксплуатацию и утилизацию автомобилей, ограниченные характеристики этих тяжелых транспортных средств из-за все еще неадекватных технологий аккумуляторов, отсутствие инфраструктуры для подзарядки только за счет возобновляемых источников энергии.
Номинально для решения проблемы глобального потепления, а не загрязнения воздуха, Великобритания, Франция и Китай обсуждали прекращение мобильности на базе ДВС к 2040 году. Однако данные МЭА (IEA, 2018) показывают, что производство геотермальной электроэнергии, Солнце, ветер, приливы, волны и океан по-прежнему составляли около 1% от общего количества в 2015 году, при этом общий объем первичной энергии (ОППЭ) значительно превышает производство электроэнергии. Поскольку доля солнечной и ветровой энергии в TPES по-прежнему невелика, нет смысла предлагать только электромобили, даже если забыть о других ключевых моментах, связанных с поиском электрической мобильности.
В настоящее время анализ жизненного цикла выбросов CO 2 (LCA) не показывает явного преимущества электрической мобильности по сравнению с мобильностью на базе ДВС (Boretti, 2018). Пример LCA для электрической мобильности критически зависит от того, как вырабатывается электричество, которое без огромного увеличения накопления энергии, а не просто увеличение зарегистрированной мощности ветра и солнца, нуждается в поддержке ископаемым топливом. С 1990-х годов в аккумуляторных технологиях произошел прогресс, но пока еще не произошло необходимого прорыва.Производство, использование и утилизация электромобилей по-прежнему слишком дорого с экономической и экологической точек зрения, а также возникают дополнительные проблемы, связанные с материалами, необходимыми для производства батарей, которые подвержены большему риску истощения, чем ископаемое топливо (Boretti, 2018). . Кроме того, эти материалы добываются неэтично в очень немногих местах.
Amnesty International (Onstad, 2019) недавно отметила, что индустрия электромобилей (EV) продает себя как экологически чистые, но при этом многие из своих аккумуляторов производят с использованием ископаемого топлива и минералов, полученных из неэтичных источников, зараженных нарушениями прав человека.Маловероятно, что имеется достаточно сырья для удовлетворения ожидаемого резкого спроса на литий-ионные батареи электромобилей и подключенных к сети аккумуляторных систем для хранения периодически возобновляемой энергии ветра и солнца (Jaffe, 2017). Более того, без учета какого-либо четкого пути рециркуляции и отрицательных прошлых (и настоящих) примеров рециркуляции промышленно развитыми странами за счет экологического ущерба в развивающихся странах (Minter, 2016) электрическая мобильность может нанести значительный ущерб экономике и окружающая среда.
Хотя электрическая мобильность, безусловно, может решить некоторые из проблем загрязнения воздуха, связанных с транспортом, маловероятно, что это может произойти в ближайшее время, она не решает проблемы загрязнения из других источников, и в целом это еще не так. , где все включено. Потребление топлива для сжигания все еще резко увеличивается, и существует очень мало примеров технологических возможностей для преобразования химической энергии топлива в механическую или электрическую энергию с более высокой эффективностью преобразования энергии топлива и снижением выбросов загрязняющих веществ дизельных ДВС CIDI.Переход на электрическую мобильность в транспортном секторе потребует огромных затрат, в том числе с точки зрения выбросов парниковых газов.
Обсуждение и выводы
Хотя ICCT, Агентство по охране окружающей среды США и CARB описывают автомобили с дизельным двигателем как вредные для окружающей среды, последние испытания вождения, проведенные ACEA, показывают, что это неверно. Современные дизельные автомобили имеют относительно низкие выбросы CO 2 и загрязняющих веществ, включая NOx и PM. Само по себе движение дизельных автомобилей в сильно загрязненных районах может улучшить качество воздуха, загрязненного другими источниками, а не только старыми дизельными автомобилями.
Дизельные ДВСCIDI можно улучшить и сделать более экологичными благодаря дальнейшим усовершенствованиям в системе впрыска, а также в системе дополнительной обработки. ДВС CIDI также можно улучшить, просто приняв двухтопливную конструкцию со сжиженным нефтяным газом, сжатым природным газом или сжиженным природным газом в качестве второго топлива. Эти альтернативные виды топлива обеспечивают такие же или лучшие характеристики ДВС, работающего только на дизельном топливе, в том, что касается установившегося крутящего момента, мощности и эффективности преобразования топлива, а также переходных процессов, при этом значительно улучшая выбросы CO 2 , а также Выбросы ТЧ и NOx из двигателя.
В дополнение к лучшему соотношению CH для выбросов CO 2 , преимущества двухтопливных двигателей CIDI ICE с СПГ, КПГ или СНГ также проистекают из возможности регулирования фаз предварительного смешивания и диффузии сгорания с впрыском второго топливо, которое намного легче испаряется и менее склонно к самовоспламенению до, после или после предварительного / пилотного дизельного топлива. Также особенно важен для СПГ охлаждающий эффект за счет криогенного впрыска. Дальнейшие разработки в системе впрыска являются предметом особого внимания при разработке этих новинок двухтопливных ДВС CIDI.
Преимущества дизельных или двухтопливных двигателей CIDI ICE по сравнению с любыми другими альтернативными решениями для транспортных приложений в настоящее время не признаются ни одним директивным органом. Европейские автопроизводители уже приостановили свои планы исследований и разработок своих ДВС, чтобы сосредоточиться только на электромобилях. Учитывая нерешенные проблемы, связанные с электромобильностью, это может вскоре оказаться неправильным для экономики и окружающей среды. Использование более современных дизельных транспортных средств и транспортных средств, работающих на двухтопливном дизельном топливе, может только спасти жизни, но не привести к смертности, улучшая качество воздуха, ограничивая при этом истощение природных ресурсов и выбросы CO 2 , не требуя непозволительных усилий и кардинальные изменения.
Авторские взносы
Автор подтверждает, что является единственным соавтором этой работы, и одобрил ее к публикации.
Конфликт интересов
Автор заявляет, что исследование проводилось при отсутствии каких-либо коммерческих или финансовых отношений, которые могут быть истолкованы как потенциальный конфликт интересов.
Список литературы
Амброджио, М., Саракко, Г., и Спеккиа, В. (2001). Сочетание фильтрации и каталитического сжигания в уловителях твердых частиц для обработки выхлопных газов дизельных двигателей. Chem. Англ. Sci. 56, 1613–1621. DOI: 10.1016 / S0009-2509 (00) 00389-4
CrossRef Полный текст | Google Scholar
Ашок Б., Ашок С. Д. и Кумар К. Р. (2015). Дизельный двухтопливный двигатель LPG — критический обзор. Александр. Англ. J. 54, 105–126. DOI: 10.1016 / j.aej.2015.03.002
CrossRef Полный текст | Google Scholar
Бароне Т. Л., Стори Дж. М. и Доминго Н. (2010). Анализ характеристик отработанного в полевых условиях сажевого фильтра: выбросы твердых частиц до, во время и после регенерации. J. Управление отходами воздуха. Доц. 60, 968–976. DOI: 10.3155 / 1047-3289.60.8.968
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Боретти А. (2011a). Дизельный и HCCI-подобный режим работы двигателя грузовика, преобразованного на водород. Внутр. J. Hydr. Energy 36, 15382–15391. DOI: 10.1016 / j.ijhydene.2011.09.005
CrossRef Полный текст | Google Scholar
Боретти А. (2011b). Достижения в двигателях внутреннего сгорания с воспламенением от сжатия водорода. Внутр. J. Hydr. Энергия 36, 12601–12606. DOI: 10.1016 / j.ijhydene.2011.06.148
CrossRef Полный текст | Google Scholar
Боретти А. (2011c). Преимущества прямого впрыска дизельного топлива и водорода в двухтопливном h3ICE. Внутр. J. Hydr. Энергия 36, 9312–9317. DOI: 10.1016 / j.ijhydene.2011.05.037
CrossRef Полный текст | Google Scholar
Боретти А. (2013). Рассматриваются новейшие концепции систем сжигания и утилизации отработанного тепла для водородных двигателей. Внутр. J. Hydr. Энергия 38, 3802–3807. DOI: 10.1016 / j.ijhydene.2013.01.112
CrossRef Полный текст | Google Scholar
Боретти А. (2017). Будущее двигателей внутреннего сгорания после «Diesel-Gate. Warrendale, PA: SAE Technical Paper 2017-28-1933. DOI: 10.4271 / 2017-28-1933
CrossRef Полный текст | Google Scholar
Боретти А. (2018). Анализ жизненного цикла Сравнение мобильности на основе электрических двигателей и двигателей внутреннего сгорания .Варрендейл, Пенсильвания: Технический документ SAE 2018-28-0037. DOI: 10.4271 / 2018-28-0037
CrossRef Полный текст | Google Scholar
Боретти, А., Кастеллетто, С. (2018). «Бензиновый двигатель с турбонаддувом и прямым впрыском», в Труды Всемирной автомобильной конференции FISITA, 2–5> ОКТЯБРЬ 2018, (Ченнаи).
Google Scholar
Боретти, А., Лаппас, П. (2019). Комплексные независимые лабораторные испытания, подтверждающие экономию топлива и выбросы в реальных условиях вождения. Adv. Technol. Innovat. 4, 59–72.
Google Scholar
Боретти А., Ордис А. (2018). Супер-турбонаддув двухтопливного дизельного двигателя с системой зажигания . Технический документ SAE 2018-28-0036. DOI: 10.4271 / 2018-28-0036
CrossRef Полный текст | Google Scholar
Burtscher, Х. (2005). Физические характеристики выбросов твердых частиц из дизельных двигателей: обзор. J. Aerosol. Sci. 36, 896–932. DOI: 10.1016 / j.jaerosci.2004.12.001
CrossRef Полный текст | Google Scholar
Камузо, Дж. Р., Альварес, Р. А., Брукс, С. А., Браун, Дж. Б. и Стернер, Т. (2015). Влияние выбросов метана и эффективности транспортных средств на воздействие большегрузных грузовиков, работающих на природном газе, на климат. Environ. Sci. Technol. 49, 6402–6410. DOI: 10.1021 / acs.est.5b00412
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Шоссьер, Г. П., Малина, Р., Аллрогген, Ф., Истхэм, С. Д., Спет, Р. Л., и Барретт, С. Р. (2018). Атрибуция на уровне страны и производителя воздействия на качество воздуха из-за чрезмерных выбросов NOx от дизельных легковых автомобилей в Европе. Атмос. Environ. 189, 89–97. DOI: 10.1016 / j.atmosenv.2018.06.047
CrossRef Полный текст | Google Scholar
Крэбтри, Г. В., Дрессельхаус, М. С., и Бьюкенен, М. В. (2004). Водородная экономика. Phys. Сегодня 57, 39–44. DOI: 10.1063 / 1.1878333
CrossRef Полный текст | Google Scholar
Энгерер, Х., и Хорн, М. (2010). Автомобили, работающие на природном газе: вариант для Европы. Энергетическая политика 38, 1017–1029. DOI: 10.1016 / j.enpol.2009.10.054
CrossRef Полный текст | Google Scholar
Faghani, E., Kheirkhah, P., Mabson, C., McTaggart-Cowan, G., et al. (2017a). Влияние стратегий нагнетания на выбросы от экспериментального двигателя прямого впрыска природного газа — Часть I: Поздний дополнительный впрыск . Варрендейл, Пенсильвания: SAE Paper 2017-01-0774. DOI: 10.4271 / 2017-01-0774
CrossRef Полный текст | Google Scholar
Фагани, Э., Kheirkhah, P., Mabson, C., McTaggart-Cowan, G., et al. (2017b). Влияние стратегий впрыска на выбросы от экспериментального двигателя прямого впрыска природного газа — Часть II: Горение с небольшим предварительным смешиванием . Warrendale, PA: SAE Technical Paper 2017-01-0763. DOI: 10.4271 / 2017-01-0763
CrossRef Полный текст | Google Scholar
Фибиг М., Виарталла А., Холдербаум Б. и Кисоу С. (2014). Выбросы твердых частиц из дизельных двигателей: взаимосвязь между технологией двигателя и выбросами. J. Occup. Med. Toxicol. 9: 6. DOI: 10.1186 / 1745-6673-9-6
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Флореа Р., Нили Г., Абидин З. и Мива Дж. (2016). КПД и характеристики выбросов при сжигании двух видов топлива с частичной предварительной смесью путем совместного впрыска природного газа и дизельного топлива (DI2) . Warrendale, PA: SAE Paper 2016-01-0779. DOI: 10.4271 / 2016-01-0779
CrossRef Полный текст | Google Scholar
Фрейманн, Р., Ринглер, Дж., Зайферт, М., и Хорст, Т. (2012). Турбопарогонщик второго поколения. MTZ Worldwide 73, 18–23. DOI: 10.1365 / s38313-012-0138-1
CrossRef Полный текст | Google Scholar
Фрейманн Р., Штробл В. и Обьегло А. (2008). Турбопарогенератор: система, внедряющая принцип когенерации в автомобильную промышленность. MTZ Worldwide 69, 20–27. DOI: 10.1007 / BF03226909
CrossRef Полный текст | Google Scholar
Гуди, Д., Данн, М., Мунши, С. Р., Лайфорд-Пайк, Э., Райт, Дж., Дуггал, В. и др. (2004). Разработка сверхмощного экспериментального двигателя с воспламенением от сжатия, работающего на природном газе, с низким уровнем выбросов NOx (№ 2004-01-2954) . Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / 2004-01-2954
CrossRef Полный текст | Google Scholar
Хейвуд, Дж. Б. (1988). «Сжигание в двигателях с воспламенением от сжатия», in Internal Combustion Engine Fundamentals (New York, NY: McGraw-Hill), 522–562.
Google Scholar
Хироясу Х. и Кадота Т. (1976). Модели сгорания и образования оксида азота и сажи в дизельных двигателях с прямым впрыском. SAE Trans. 85, 513–526. DOI: 10.4271 / 760129
CrossRef Полный текст | Google Scholar
Invernizzi, G., Ruprecht, A., Mazza, R., Rossetti, E., Sasco, A., Nardini, S., et al. (2004). Твердые частицы табака по сравнению с выхлопными газами дизельных автомобилей: образовательная перспектива. Tobacco Control 13, 219–221.DOI: 10.1136 / tc.2003.005975
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Джаффе, С. (2017). Уязвимые звенья в цепочке поставок литий-ионных аккумуляторов. Джоуль 1, 225–228. DOI: 10.1016 / j.joule.2017.09.021
CrossRef Полный текст | Google Scholar
Цзянь Д., Сяохун Г., Гешэн Л. и Синьтан З. (2001). Исследование двухтопливных двигателей дизель-СНГ (№ 2001-01-3679) . Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / 2001-01-3679
CrossRef Полный текст | Google Scholar
Джонсон, Т.В. (2009). Обзор дизельных выбросов и контроль. Внутр. J. Eng. Res. 10, 275–285. DOI: 10.1243 / 14680874JER04009
CrossRef Полный текст | Google Scholar
Катурия В. (2004). Воздействие КПГ на загрязнение автотранспортом в Дели: примечание. Транспорт. Res. Часть Д. 9, 409–417. DOI: 10.1016 / j.trd.2004.05.003
CrossRef Полный текст | Google Scholar
Хайр, М. К., Маевски, В. А. (2006). Выбросы дизельных двигателей и их контроль (Vol.303). Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / R-303
CrossRef Полный текст | Google Scholar
Кнехт, В. (2008). Разработка дизельного двигателя с учетом пониженных стандартов выбросов. Energy 33, 264–271. DOI: 10.1016 / j.energy.2007.10.003
CrossRef Полный текст | Google Scholar
Кумар, С., Квон, Х. Т., Чой, К. Х., Лим, В., Чо, Дж. Х., Так, К. и др. (2011). СПГ: экологически чистое криогенное топливо для устойчивого развития. Заявл. Энергия 88, 4264–4273. DOI: 10.1016 / j.apenergy.2011.06.035
CrossRef Полный текст | Google Scholar
Лафлин, М., и Бернхэм, А. (2016). Пример : региональные грузовые автомобили для перевозки природного газа (№ DOE / CHO-AC02-06Ch21357-1603). Аргонн, Иллинойс; Колумбия, Мэриленд: Энергетика; Аргоннская национальная лаборатория.
Google Scholar
Ли Г., Уэллетт П., Думитреску С. и Хилл П. Г. (1999). Исследование оптимизации прямого впрыска природного газа с пилотным зажиганием в дизельные двигатели .Warrendale, PA: SAE Paper 1999-01-3556. DOI: 10.4271 / 1999-01-3556
CrossRef Полный текст | Google Scholar
Линь В., Чжан Н. и Гу А. (2010). СПГ (сжиженный природный газ): необходимая часть будущей энергетической инфраструктуры Китая. Energy 35, 4383–4391. DOI: 10.1016 / j.energy.2009.04.036
CrossRef Полный текст | Google Scholar
Mabson, C., Faghani, E., Kheirkhah, P., Kirchen, P., et al. (2016). Горение и выбросы парных сопел в газовом двигателе прямого впрыска с пилотным зажиганием .Warrendale, PA: SAE Paper 2016-01-0807. DOI: 10.4271 / 2016-01-0807
CrossRef Полный текст | Google Scholar
Маджи С., Пал А. и Арора Б. Б. (2008). Использование КПГ и дизельного топлива в двигателях CI в двухтопливном режиме (№ 2008-28-0072). Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / 2008-28-0072
CrossRef Полный текст | Google Scholar
Марбан, Г., и Вальдес-Солис, Т. (2007). К водородной экономике? Внутр. J. Hydr. Энергия 32, 1625–1637.DOI: 10.1016 / j.ijhydene.2006.12.017
CrossRef Полный текст | Google Scholar
Марик, М. М. (2007). Химическая характеристика выбросов твердых частиц из дизельных двигателей: обзор. J. Aerosol. Sci. 38, 1079–1118. DOI: 10.1016 / j.jaerosci.2007.08.001
CrossRef Полный текст | Google Scholar
Мартуцци М., Митис Ф., Явароне И. и Серинелли М. (2006). Воздействие PM10 и озона на здоровье в 13 городах Италии . Европейское региональное бюро ВОЗ.
Google Scholar
McKone, T. E., Nazaroff, W. W., Berck, P., Auffhammer, M., Lipman, T., Torn, M. S., et al. (2011). Основные задачи оценки жизненного цикла биотоплива. Environ. Sci. Technol. 45, 1751–1756. DOI: 10.1021 / es103579c
PubMed Аннотация | CrossRef Полный текст | Google Scholar
McTaggart-Cowan, G., Mann, K., Huang, J., Singh, A., et al. (2015). Прямой впрыск природного газа под давлением до 600 бар в двигатель большой мощности с пилотным зажиганием. SAE Int. J. Eng. 8, 981–996. DOI: 10.4271 / 2015-01-0865
CrossRef Полный текст | Google Scholar
Мор М., Форсс А. М. и Леманн У. (2006). Выбросы твердых частиц от дизельных легковых автомобилей, оборудованных уловителем твердых частиц, по сравнению с другими технологиями. Environ. Sci. Technol. 40, 2375–2383. DOI: 10.1021 / es051440z
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Молленхауэр К. и Чёке Х. (ред.). (2010). Справочник по дизельным двигателям, Vol. 1. Берлин: Springer. DOI: 10.1007 / 978-3-540-89083-6
CrossRef Полный текст | Google Scholar
Мамфорд Д., Гоуди Д. и Сондерс Дж. (2017). Возможности и проблемы HPDI . Warrendale, PA: SAE Paper 2017-01-1928. DOI: 10.4271 / 2017-01-1928
CrossRef Полный текст | Google Scholar
Мурадов Н. З., Везироглу Т. Н. (2005). От углеводородной к водородно-углеродной к водородной экономике. Внутр.J. Hydr. Энергия 30, 225–237. DOI: 10.1016 / j.ijhydene.2004.03.033
CrossRef Полный текст | Google Scholar
Нефт, Дж. П., Макки, М., и Мулиджн, Дж. А. (1996). Контроль выбросов твердых частиц из дизельного топлива. Топливный процесс. Technol. 47, 1–69. DOI: 10.1016 / 0378-3820 (96) 01002-8
CrossRef Полный текст | Google Scholar
Нефт, Дж. П., Найджуис, Т. X., Смакман, Э., Макки, М., и Мулиджн, Дж. А. (1997). Кинетика окисления дизельной сажи. Топливо 76, 1129–1136. DOI: 10.1016 / S0016-2361 (97) 00119-1
CrossRef Полный текст | Google Scholar
Нили, Г., Флореа, Р., Мива, Дж., И Абидин, З. (2017). КПД и характеристики выбросов при сжигании двух видов топлива с частично предварительно приготовленной смесью путем совместного прямого впрыска ПГ и дизельного топлива (DI2) — Часть 2 . Warrendale, PA: SAE Paper 2017-01-0766. DOI: 10.4271 / 2017-01-0766
CrossRef Полный текст | Google Scholar
Осорио-Техада, Дж., Ллера, Э., и Скарпеллини, С. (2015). СПГ: альтернативное топливо для грузовых автомобильных перевозок в Европе. WIT Trans. Встроенная среда. 168, 235–246. DOI: 10.2495 / SD150211
CrossRef Полный текст | Google Scholar
Парк Т., Тенг Х., Хантер Г. Л., ван дер Велде Б. и Клавер Дж. (2011). Система цикла Ренкина для рекуперации отработанного тепла дизельных двигателей HD — экспериментальные результаты (№ 2011-01-1337). Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / 2011-01-1337
CrossRef Полный текст | Google Scholar
Рэмсброк, Дж., Вилимек, Р., Вебер, Дж. (2013). «Изучение удовольствия от вождения на электромобиле — пилотные проекты BMW EV», Международная конференция по взаимодействию человека и компьютера (Берлин; Гейдельберг: Springer), 621–630. DOI: 10.1007 / 978-3-642-39262-7_70
CrossRef Полный текст | Google Scholar
Решитоглу И. А., Алтинишик К. и Кескин А. (2015). Выбросы загрязняющих веществ от автомобилей с дизельными двигателями и систем нейтрализации выхлопных газов. Clean Technol. Environm. Политика 17, 15–27.DOI: 10.1007 / s10098-014-0793-9
CrossRef Полный текст | Google Scholar
Рю, К. (2013). Влияние времени предварительного впрыска на характеристики сгорания и выбросов в дизельном двигателе, использующем биодизель-КПГ. Заявл. Энергия 111, 721–730. DOI: 10.1016 / j.apenergy.2013.05.046
CrossRef Полный текст | Google Scholar
Сарако, Г., Руссо, Н., Амброджо, М., Бадини, К., и Спеккиа, В. (2000). Снижение выбросов твердых частиц дизельного топлива с помощью каталитических ловушек. Catal. Сегодня , 60, 33–41. DOI: 10.1016 / S0920-5861 (00) 00314-X
CrossRef Полный текст | Google Scholar
Шиппер Л., Мари-Лиллиу К. и Фултон Л. (2002). Дизели в Европе: анализ характеристик, моделей использования, экономии энергии и последствий выбросов CO2. J. Transp. Экон. Политика 36, 305–340.
Google Scholar
Шах, А., Типсе, С. С., Тьяги, А., Райрикар, С. Д., Кавтекар, К. П., Марате, Н. В. и др. (2011). Обзор литературы и моделирование двухтопливных дизельных двигателей, работающих на КПГ (№ 2011-26-0001). Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / 2011-26-0001
CrossRef Полный текст | Google Scholar
Ши, Л., Шу, Г., Тиан, Х., и Дэн, С. (2018). Обзор модифицированных органических циклов Ренкина (ORC) для рекуперации отработанного тепла двигателей внутреннего сгорания (ICE-WHR). Обновить. Поддерживать. Energy Rev. 92, 95–110. DOI: 10.1016 / j.rser.2018.04.023
CrossRef Полный текст | Google Scholar
Смит, О.I. (1981). Основы образования сажи в пламени применительно к выбросам твердых частиц дизельных двигателей. Prog. Энергия сгорания. Sci. 7, 275–291. DOI: 10.1016 / 0360-1285 (81)
-2
CrossRef Полный текст | Google Scholar
Teng, H., Klaver, J., Park, T., Hunter, G. L., and van der Velde, B. (2011). Система цикла Ренкина для рекуперации отработанного тепла дизельных двигателей высокого давления — Разработка системы WHR (№ 2011-01-0311) . Warrendale, PA: SAE Technical Paper.DOI: 10.4271 / 2011-01-0311
CrossRef Полный текст | Google Scholar
Teng, H., and Regner, G. (2009). Повышение экономии топлива для дизельных двигателей HD с циклом Ренкина, управляемым за счет отвода тепла охладителя EGR (№ 2009-01-2913). Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / 2009-01-2913
CrossRef Полный текст | Google Scholar
Teng, H., Regner, G., and Cowland, C. (2007). Рекуперация отходящего тепла дизельных двигателей большой мощности с помощью органического цикла Ренкина, часть I: гибридная энергетическая система дизельного двигателя и двигателя Ренкина (No.2007-01-0537). Warrendale, PA: SAE Technical Paper. DOI: 10.4271 / 2007-01-0537
CrossRef Полный текст | Google Scholar
Ван Т., Чжан Ю., Чжан Дж., Пэн З. и Шу Г. (2014). Сравнение преимуществ системы и термоэкономики для рекуперации энергии выхлопных газов в дизельном двигателе большой мощности и бензиновом двигателе малой грузоподъемности. Energy Conv. Управлять. 84, 97–107. DOI: 10.1016 / j.enconman.2014.04.022
CrossRef Полный текст | Google Scholar
А, С.(2007). Эмпирический анализ внедрения транспортных средств, работающих на альтернативном топливе: на примере транспортных средств, работающих на природном газе. Энергетическая политика 35, 5865–5875. DOI: 10.1016 / j.enpol.2007.06.012
CrossRef Полный текст | Google Scholar
Ю. Г., Шу Г., Тиан Х., Хо Ю. и Чжу В. (2016). Экспериментальные исследования каскадной системы парового / органического цикла Ренкина (RC / ORC) для рекуперации отработанного тепла (WHR) дизельного двигателя. Energy Conv. Управлять. 129, 43–51. DOI: 10.1016 / j.enconman.2016.10.010
CrossRef Полный текст | Google Scholar
Зервас Э., Пулопулос С. и Филиппопулос К. (2006). CO 2 изменение выбросов в результате внедрения дизельных легковых автомобилей: пример Греции. Energy 31, 2915–2925. DOI: 10.1016 / j.energy.2005.11.005
CrossRef Полный текст | Google Scholar
Чжао, Х. (ред.). (2009). Передовые технологии и разработки двигателей внутреннего сгорания с прямым впрыском топлива: дизельные двигатели .Кембридж: Издательство Вудхед.
Google Scholar
Что такое дизельный двигатель? Как это работает? — Welland Power
Что такое дизельный двигатель?
Дизельный двигатель — это тип двигателя внутреннего сгорания, в котором воспламенение от сжатия используется для преобразования энергии дизельного топлива в механическую энергию вращения. Дизельный двигатель был назван в честь его изобретателя Рудольфа Дизеля, который родился в Париже в 1958 году. Первый дизельный двигатель был создан в 1893 году и первоначально был разработан для работы на арахисовом масле.
Дизельное топливо было названо так потому, что оно использовалось для работы дизельных двигателей, дизельные двигатели не были названы в честь топлива, которое во времена первого дизельного двигателя было бесполезным побочным продуктом при извлечении парафина и керосина из сырой нефти. В 1894 году этот продукт отходов получил окончательное название «дизельное топливо».
Как работает дизельный двигатель?
Дизельный двигатель использует поршни для сжатия смеси воздуха (содержащего кислород) с дизельным топливом. Когда этот воздух сжимается в соотношении примерно 15: 1, смесь взрывается, заставляя поршень подниматься и создавая возвратно-поступательное движение.Затем это движение преобразуется коленчатым валом двигателя во вращательное.
Какие основные компоненты в дизельном двигателе?
Топливная система двигателя
Топливная система включает топливный насос высокого давления, подъемный насос, форсунки и все топливопроводы. Также будут некоторые топливные фильтры и, возможно, водоотделитель, предотвращающий повреждение дизельного двигателя некачественным топливом.
Система смазки двигателя / масляная система
Система смазки обеспечивает бесперебойную работу двигателя, предотвращая износ движущихся частей за счет использования масла под давлением для смазки и уменьшения трения.Масляная система будет иметь масляный насос и масляные фильтры, чтобы масло было чистым от загрязнений.
Система охлаждения двигателя
Система охлаждения обрабатывает охлаждающую жидкость двигателя — обычно смесь дистиллированной воды и гликоля с некоторыми дополнительными присадками для предотвращения коррозии. На некоторых двигателях также может быть фильтр охлаждающей жидкости и «водяной насос», который на самом деле является насосом охлаждающей жидкости. Насос охлаждающей жидкости используется для проталкивания охлаждающей жидкости вокруг двигателя и любого устройства, используемого для охлаждения жидкости — обычно радиатора, но иногда и теплообменника.
Выхлопная система двигателя
Очень важно избавиться от отработавших газов сгорания — отводить отработанные газы из цилиндров двигателя через выпускной коллектор в основную систему глушителя, что снижает уровень шума. Глушитель обычно не является частью двигателя, а является дополнением для снижения шума в соответствии с требованиями клиентов. Выхлопные газы проходят через турбонагнетатель, заставляя его вращаться там, где он установлен.
Двигатели Турбонагнетатель
Большинство двигателей оснащено турбонаддувом.Это устройство сжимает воздух для горения, чтобы сделать двигатель более мощным.
Дизельный двигатель состоит из сотен компонентов, но каковы основные части дизельного двигателя?
- Блок двигателя
- Поршни
- Вал коленчатый
- ТНВД и система управления двигателем
- Форсунки
- Стартер
- Головка
- Клапаны
- Часто Турбокомпрессор
- Топливные фильтры
- Масляные фильтры
- Воздушные фильтры
- Маховик
Объяснение функции двигателей с воспламенением от сжатия
Дизельные двигатели — это рабочие лошадки как в промышленности, так и в производительности.Но чтобы по-настоящему оценить их, важно понять, как они работают.
Дизельные двигатели являются основным двигателем в промышленности. Применение дизельных двигателей в тяжелых условиях, требующих высокого крутящего момента, долговечности и превосходной экономии топлива, повсеместно. Отрасли автомобильного, морского и железнодорожного транспорта в значительной степени полагаются на дизельные двигатели, а не на бензиновые двигатели. Даже многие электростанции вырабатывают электроэнергию с помощью больших дизельных двигателей. И, конечно же, почти все тяжелое строительное, сельскохозяйственное и горнодобывающее оборудование работает на дизельном топливе.Мировая торговля эффективно работает на дизельной энергии. Несмотря на то, что они похожи по внешнему виду, важные различия отделяют дизельные и бензиновые двигатели друг от друга и определяют, какой тип двигателя лучше всего подходит для любого конкретного применения, включая грузовики и автомобили.
В отличие от обычного бензинового двигателя, дизельный двигатель впрыскивает топливо непосредственно в цилиндр во время рабочего такта, который затем воспламеняется из-за высоких температур в цилиндре.Дизельные и бензиновые двигатели относятся к двигателям внутреннего сгорания (ВС).Топливо и воздух объединяются и сжигаются внутри двигателя для получения энергии. Подобно бензиновому двигателю, дизельный двигатель имеет цилиндры, коленчатый вал, шатуны и поршни для передачи энергии топлива от линейного движения к вращательному. Основное различие заключается в способе воспламенения топливно-воздушной смеси. Бензиновые двигатели — это двигатели с искровым зажиганием, а дизельные двигатели — это двигатели с воспламенением от сжатия.
Четырехтактный двигатель внутреннего сгорания, циклы
- Впуск
- Сжатие
- Сгорание (расширение)
- Выхлоп
Эти циклы по существу одинаковы для обоих типов двигателей, за исключением цикла сгорания, когда бензиновый двигатель запускается искрой, а дизель — сжатием.Разница является ключевой в превосходстве дизеля для применений, требующих высокой эффективности и высокого крутящего момента с хорошей топливной экономичностью.
ГОРЕНИЕ
Бензиновый двигатель внутреннего сгорания забирает предварительно смешанное топливо и воздух через систему впуска, сжимает его в каждом цилиндре с помощью поршня и воспламеняет смесь с помощью свечи зажигания. Топливо добавляется во время такта впуска, чтобы создать желаемую топливно-воздушную смесь, готовую к сгоранию. Последующий цикл сгорания расширяет горящую смесь и повышает давление в цилиндре, чтобы толкнуть поршень вниз и создать крутящий момент.
В дизельном двигателе воздух и топливо предварительно не смешиваются. Воздух вводится в цилиндры и сжимается поршнем до гораздо более высокого давления, чем в бензиновом двигателе; в некоторых случаях до 25: 1. Это механическое или адиабатическое сжатие перегревает воздух до 400 ° или более. В этот момент топливо впрыскивается в горячий сжатый воздух, вызывая его мгновенное возгорание. Создается более высокое давление в цилиндре, создавая больший крутящий момент для привода автомобиля.
Вот деталь, которую вы не найдете в дизельном двигателе.В отличие от бензиновых двигателей, которым требуется триггерное событие — сильный электрический разряд — для инициирования сгорания, дизельные двигатели полагаются исключительно на температуру сжатого воздуха в верхней мертвой точке.КАЧЕСТВО СМЕСИ
Дизельные двигателиобеспечивают более высокий КПД по нескольким причинам. Одна веская причина заключается в том, что более высокое давление в цилиндре во время впрыска топлива создает гораздо более плотную смесь, которая обладает более сильным ударом; плотность смеси имеет первостепенное значение для создания энергии.Более высокая степень сжатия также заставляет топливо сгорать более полно, высвобождая больше энергии, поскольку дизельное топливо дает более высокую плотность энергии. Кроме того, уникальная способность дизеля впрыскивать топливо на протяжении большей части рабочего хода помогает создать более высокое среднее давление в цилиндре, чем сопоставимый бензиновый двигатель. Дизельное топливо также имеет смазывающий компонент, который помогает снизить трение в цилиндрах.
Камера сгорания в головке поршня дизельного двигателя представляет собой неглубокую камеру с центральным конусом для облегчения распределения смеси из топлива под высоким давлением, впрыскиваемого непосредственно над ней.«В приложениях с высокими эксплуатационными характеристиками решающее значение имеет сочетание угла распыления впрыска и конструкции тарелки», — отмечает JJ Zimmerman из Diamond Pistons. «Большая часть нашего времени инженеров тратится на эту конкретную арену, поскольку именно здесь можно выиграть или проиграть гонки».Хотя начало сгорания отличается от типичного бензинового двигателя, фундаментальное различие также существует в конструкции камеры сгорания для оптимизации распыления топлива. Большинство бензиновых двигателей имеют камеру сгорания в головке блока цилиндров, но в дизельном двигателе камера сгорания расположена внутри головки поршня.Поршень дизеля имеет контурное углубление или чашу в центре днища поршня, где происходит сгорание. В центре чаши конусообразный выступ находится прямо под топливной форсункой.
Конус и камера захваченного поршня под головкой блока цилиндров способствуют оптимизированному распылению топлива в пространстве сгорания под высоким давлением. Эта форма камеры с конусом в короне обычно упоминается как конструкция «мексиканской шляпы» (сомбреро), и она почти универсальна для дизельных поршней.Высокоэффективная камера в центре поршня централизует большую часть силы, создаваемой циклом расширения (сгорания), и направляет ее прямо вниз по шатуну к ходу коленчатого вала.
Кованые сменные поршни из сплава 2618 компании Diamond Pistons для Cummins, Duramax и Power Stroke (показаны) заполняют пустоту для специалистов по восстановлению рабочих характеристик, нуждающихся в высококачественных сменных поршнях, соответствующих степеням сжатия OEM, с полным покрытием поршней и пальцами из инструментальной стали DLC h23.Другое отличие состоит в том, что дизельный двигатель дросселируется за счет подачи топлива, а бензиновый двигатель дросселируется за счет подачи воздуха. Поскольку воздушный поток не дросселируется, дизельный двигатель также не создает вакуума. Подача топлива осуществляется прямым впрыском в цилиндр, направленным прямо на верхнюю часть поршня. Это очень важно для качества топливной смеси и последующей эффективности сгорания.
Прямой впрыск делает процесс сгорания проще и эффективнее.Дизельные двигатели работают при значительно более бедном соотношении воздух-топливо, чем бензиновые двигатели, обычно от 25: 1 до 40: 1 по сравнению с обычным бензиновым диапазоном от 12: 1 до 15: 1. Современные дизельные двигатели с прямым впрыском впрыскивают топливо при давлении, приближающемся (или в некоторых случаях превышающем) 30 000 фунтов на квадратный дюйм. Это обеспечивает наилучшее распыление не только для эффективного сжигания, но и с низким уровнем отходящего тепла. А бедные смеси являются ключевой причиной такой топливной экономичности дизелей.
СРОКИ
Еще одно интересное различие между дизельным и бензиновым двигателями — это синхронизация форсунок по сравнению с синхронизацией зажигания.В бензиновых двигателях момент зажигания относится к точке, в которой горение инициируется свечой зажигания. В дизельном двигателе синхронизация относится к началу события впрыска топлива, которое рассчитывается по времени, чтобы воспользоваться точкой максимального сжатия смеси.
Хотя в основном он используется в грузовых автомобилях, дизельные двигатели нашли большой успех в грузовых автомобилях. 6,8-литровый автомобиль Ryan Milliken с двигателем Cummins ’66 Nova — это автомобиль с радиальными шинами, который доказывает, что дизельное топливо многогранно. В двигателе используются поршни Diamond Pistons и турбонагнетатель Massive Garrett GTX5533R, позволяющий совершать дымные пасы на четверть мили.ТУРБОНАДДУВ
Для дизельных двигателейтребуются более прочные компоненты, прежде всего из-за более высокого давления в цилиндрах и высокого крутящего момента. Давление в цилиндрах возрастает до 3600 фунтов на квадратный дюйм в современных приложениях с турбонаддувом и до более 8000 фунтов на квадратный дюйм в приложениях с высокой производительностью. На 4-дюймовом отверстии это может составлять 45 000 фунтов давления, толкающего поршень вниз. Таким образом, блок цилиндров, коленчатый вал, шатуны, поршни, головки цилиндров и клапаны значительно более прочны, чем у бензинового двигателя.Поскольку они предназначены для работы под высоким давлением, большая часть дизельных двигателей оснащена турбонаддувом.
Турбокомпрессорыидеально подходят для дизелей, поскольку они повторно используют отработанные выхлопные газы для эффективного наддува двигателя, который уже разработан для работы при высоком давлении в цилиндрах. Тепловой КПД дизельного двигателя эффективно повышается за счет турбонаддува, поскольку он существенно увеличивает объем воздуха, поступающего в двигатель, что позволяет впрыскивать больше топлива.Топливо создает энергию, но для ее разблокировки требуется воздух.
Отношение крутящего момента к мощности дизельных двигателей обычно составляет около 2: 1, но многие промышленные двигатели достигают отношения 3: 1 или 4: 1 в отличие от типичного отношения 1: 1, создаваемого бензиновым двигателем. Дизели эффективны по крутящему моменту, потому что они создают высокое давление в цилиндре за счет очень эффективного сгорания, и они применяют его к длинному ходу коленчатого вала, что увеличивает рычаг. Турбонаддув добавляет совершенно новый фактор в уравнение крутящего момента, поскольку он снижает насосные потери во время такта впуска и значительно увеличивает давление в цилиндре во время рабочего такта.Дизели любят повышать давление. Дизельные двигатели нередко работают в два, три или более раз над давлением наддува, обычно используемым в бензиновых двигателях.
На отечественном рынке дизельных двигателей преобладают двигатели GM Duramax, Dodge Cummins и Ford PowerStroke.УПРАВЛЕНИЕ ВПРЫСКАМИ
Среди других распространенных практик настройки увеличение времени впрыска и его более ранний запуск создает большее давление в цилиндре. Множественные события впрыска (пилотный впрыск) за цикл мощности теперь также являются обычным явлением.Таким образом, сгорание инициируется и усиливается за счет дополнительных впрысков в течение каждого цикла. Это позволяет максимально использовать преимущества более высоких уровней наддува с эффективностью сгорания для создания более высокого давления в цилиндрах.
По своей природе процесс сгорания дизельного двигателя имеет тенденцию сопротивляться плавности и однородности, в первую очередь из-за колебаний нагрузки и температуры. Важнейшей целью ужесточения контроля за процессом впрыска является уменьшение отклонений сгорания от цикла к циклу. Современные датчики и система управления двигателем помогают сгладить ситуацию, а современные дизели тише и мощнее, чем когда-либо.Системы управления и впрыск Common Rail с более высоким давлением теперь способны производить до трех впрысков на одно событие сгорания, и они могут варьировать каждый впрыск с большим или меньшим количеством топлива и более высоким или более низким давлением, что считается необходимым для оптимального сгорания.
Diamond предлагает поршни для популярных дизелей в кованых конфигурациях 2618, а также термическое покрытие и покрытие юбки, а также штифты из инструментальной стали.УПРАВЛЕНИЕ ДИЗЕЛЬНЫМ ПОРШНЕМ
Все это делает поршень главным героем в повышении давления сгорания.В то время как дизели обычно имеют очень прочную архитектуру, поршень — это игрок, которому необходимо постоянно совершенствовать свою игру.
Diamond Pistons представляет собой полную линейку сменных поршней из кованого алюминия для всех распространенных дизельных платформ последних моделей. Из них основными игроками являются Dodge Cummins, GM Duramax и Ford Power Stroke. Эти поршни поддерживают рынок дизельных двигателей, восстанавливающих рабочие характеристики, благодаря стандартным и негабаритным поршням из сплава 2618 из сплава 2618, которые жестко анодированы и поставляются с наручными штифтами из инструментальной стали H23 с алмазоподобным покрытием (DLC) — отличный шаг в обеспечении высококачественных поршней для соревнований и гоночных дизелей Приложения.
Рынок дизельного топлива стремительно растет уже более десяти лет. OEM-производители и энтузиасты бешено продвигают технологию. Diamond быстро реагирует на растущий рыночный спрос, чтобы гарантировать, что они могут поставлять поршни, которые удовлетворят все потребности своих клиентов в производительности.
7 фактов о дизельном топливе, которых вы могли не знать
1. Дизельные двигатели более эффективны, чем бензиновые.КПД газового двигателя составляет всего около 20%.Это означает, что только 20% топлива фактически перемещает автомобиль, а остальное теряется на трение, шум или функции двигателя, или уходит в виде тепла в выхлопных газах. Но дизельные двигатели могут достигать КПД 40% и выше. Вот почему они так популярны для перевозки тяжелых транспортных средств, таких как грузовики, где дополнительное топливо действительно начинает дорожать.
2. Если бросить зажженную спичку в лужу с дизельным топливом, она погаснет.Это потому, что дизельное топливо гораздо менее воспламеняемо, чем бензин.В автомобиле для зажигания дизельного топлива требуется сильное давление или устойчивое пламя. С другой стороны, если вы бросите спичку в лужу с бензином, она даже не коснется поверхности — она воспламенит пары над поверхностью. (Пожалуйста, не делайте этого дома!)
3. Сейчас мы производим биодизеля примерно в 100 раз больше, чем 10 лет назад.В 2002 году Соединенные Штаты произвели около 10 миллионов галлонов биодизеля. В 2012 году это число составляло 969 миллионов.
4. На большой высоте дизельные двигатели получают большую мощность, чем бензиновые.Бензиновые двигатели работают с очень специфическим соотношением топлива и воздуха. На больших высотах воздух тоньше — буквально: на кубический фут меньше молекул воздуха. Это означает, что в горах бензиновые двигатели должны добавлять меньше топлива, чтобы поддерживать идеальное передаточное число, что влияет на производительность. Дизельные двигатели имеют турбонагнетатели, которые нагнетают больше воздуха в камеры сгорания на больших высотах, что помогает им работать лучше.
5. Дизель не такой уж грязный.The U.S. EPA теперь требует, чтобы дизельные двигатели соответствовали тем же критериям загрязнения, что и бензиновые двигатели. Автопроизводители добавили устройство, называемое сажевым фильтром, которое удаляет видимый дым. «Если вы покупаете автомобиль с дизельным двигателем 2007 года выпуска или позже, он не грязнее, чем автомобиль с бензиновым двигателем», — говорит инженер-механик из Аргонна Стив Чиатти.
6. Дизельные двигатели демонстрируют максимальную производительность при скорости ниже 65 миль в час.Они получают пиковую мощность при низких оборотах двигателя в минуту (об / мин), как правило, на скоростях ниже 65 миль в час.Бензиновые двигатели, напротив, достигают максимальной мощности, работая быстро и на высоких оборотах и при 5000 оборотах в минуту (то есть с педалью до упора).
7. Дизель — интересный вариант для экологов.Поскольку они производят меньше углекислого газа, работают более эффективно, увеличивают расход топлива на галлон и очищают свои выбросы, автомобили с дизельным двигателем являются альтернативой для тех, кто хочет уменьшить свой углеродный след. Поскольку технология уже хорошо развита, они, как правило, также относительно дешевы.
Что, если бы вы могли объединить лучшее, что есть в бензиновых и дизельных двигателях? Именно этим занимается аргоннский инженер Стив Чиатти.
Дизельный двигатель — Scientific American
ЛЮБОЙ, кто видел в работе большой судовой двигатель тройного расширения, был впечатлен механической красотой этой машины. Легкий и мощный, но легкий в управлении, со сложной структурой, но простой в механическом отношении, кажется, что этот тип двигателя наконец-то достиг совершенства.И все же сегодня он готов к замене новым типом двигателя и движущей силы; движущая сила, которую еще несколько лет назад в значительной степени высмеивали за ее ненадежность. Газовый двигатель завоевывает землю, покорил воздух и теперь начинает завоевывать море. Все двигатели внутреннего сгорания делятся на два основных класса: те, в которых сгорание происходит при постоянном объеме, и те, в которых сгорание происходит при постоянном давлении; первый известен как тип Отто, а второй — как тип Брайтона или Дизеля.Чтобы сделать разницу между этими двумя типами более ясной, будет хорошо проследить цикл операций в каждом случае. В четырехтактном двигателе Отто поршень на первом такте вниз всасывает горючую смесь. Затем происходит ход вверх, сжимая заряд до давления, ограниченного температурой воспламенения используемого заряда. Обычно это от 60 до 120 фунтов на дюйм; в верхней части этого хода заряд воспламеняется, и поршень опускается под давлением, создаваемым взрывом заряда.Затем следует четвертый удар; поршень поднимается и продукты выхлопа выходят через открытый выпускной клапан. В дизельном цикле первый ход поршня втягивает чистый воздух в цилиндр; затем поршень поднимается, сжимая воздух до давления 500 или 600 фунтов на квадратный дюйм и тем самым повышая его температуру примерно до 500 градусов. C. Это высокое давление достигается за счет очень малого зазора. В верхней части такта сжатия открывается масляный клапан в головке блока цилиндров, и масло нагнетается в цилиндр в виде тонкой струи.Он сразу же воспламеняется от сильно нагретого воздуха и продолжает гореть до тех пор, пока масло не прекратится примерно на четверти или одной трети хода поршня вниз. Расширение следует до конца гребка, а затем происходит четвертый гребок, как в цикле Отто. В двухтактных двигателях любого класса поршень открывает отверстия в конце своего движения вниз, продукты выхлопа выходят через один набор отверстий, в то время как новый заряд вдувается в цилиндр под небольшим давлением через другие отверстия.Заряд, конечно, состоит из горючей смеси в двигателе Отто и воздуха в дизельном двигателе. Затем следуют сжатие и рабочий ход, как в случае с четырехтактным двигателем. Сразу отметим три пункта превосходства Дизельного двигателя над двигателем Отто. Первый из них заключается в том, что в дизельном двигателе нет воспламенителя, и поэтому проблемы с зажиганием возникнуть не могут. Также не возникнет проблем с предварительным зажиганием, поскольку во время хода поршня вверх в цилиндре нет топлива.Во-вторых, нет проблем с карбюрацией или смесью. В двигателе типа Отто всегда присутствует различное количество продуктов выхлопа, присутствующих в смеси на различных скоростях, что требует точного регулирования подачи топлива. В дизельном двигателе скорость и мощность двигателя полностью контролируются путем регулирования точки рабочего хода, в которой прекращается подача топлива. Последним моментом в пользу дизельного двигателя является тот факт, что изменение давления не является резким, как в случае с двигателем Отто, а постепенно увеличивается во время такта сжатия, достигая максимума в конце такта, а затем остается примерно постоянным, пока не произойдет отключение подачи топлива.Цилиндры дизельного двигателя малопроходные с большим ходом. . Поршни должны быть хорошо подогнаны, чтобы сохранять высокую степень сжатия. Иногда для этого используют до десяти поршневых колец. В дизельном двигателе можно использовать различные виды топлива, от самых легких углеводородов до самых тяжелых нефтей. Поскольку топливо должно быть полностью распылено на входе в цилиндр, мы находим множество различных типов клапанов для различных марок масла. Однако клапаны делятся на два основных класса: Те, которые используются.топливного насоса для нагнетания топлива в цилиндр и насосов, которые используют сжатый воздух для его вдувания. Клапаны первого типа содержат небольшой проход через головку цилиндра с игольчатым клапаном для регулировки форсунки или распылителя, который открывается в цилиндр. Топливо подается в этот распылительный клапан с помощью небольшого плунжерного насоса одностороннего действия под давлением 750 фунтов на квадратный дюйм, причем длина хода плунжера насоса обычно регулируется, чтобы обеспечить время подачи топлива на работу. двигателя.Впускной клапан сжатого воздуха для подачи топлива используется более широко, чем только что описанный тип. Этот клапан обычно состоит из полой пробки в головке блока цилиндров двигателя и содержит открывающийся внутрь обратный клапан на внутреннем конце. Отверстие в центре этой пробки принимает заряд масла под давлением в несколько фунтов во время такта сжатия двигателя, а затем воздух под высоким давлением при 750 фунтах поступает в пробку с камерой, и масло вдувается в цилиндр двигателя. двигатель в виде штрафа Инжир.I Реверсивная передача зависит от изменения положения кулачков относительно коленчатого вала. спрей. Клапан этого типа, конечно, требует использования отдельного воздушного компрессора, но он обычно необходим в любом случае для подачи сжатого воздуха для запуска двигателя. Для запуска двигателя сжатым воздухом имеется вспомогательный впускной клапан для пускового воздуха, который приводится в действие кулачком на распределительном валу и пропускает воздух под высоким давлением на части рабочего хода двигателя, таким образом, он работает как обычный воздушный двигатель.Как только двигатель набирает обороты, воздушные клапаны выходят из строя путем снятия коромысел с кулачков или другим эквивалентным способом, и двигатель возобновляет свой обычный цикл. При использовании в морских целях двигатель также должен быть реверсивным. В случае низкого Рис. 2. — Реверсирование с помощью двух комплектов кулачков, по одному на каждое направление вращения. Для мощных и небольших двигателей можно использовать либо муфту заднего хода, либо реверсивный винт, но такая практика невозможна для двигателей мощностью в тысячу лошадиных сил и более.На практике используются два метода реверсирования судовых двигателей. Первый заключается в изменении углового положения кулачков относительно коленчатого вала и друг друга. На рис. 1 показан небольшой судовой дизельный двигатель, использующий этот метод реверсирования. Этот двигатель обладает очень необычными характеристиками в отношении запуска. Он двухтактный, с выпускными отверстиями, управляемыми поршнем, и имеет цилиндр сжатия воздуха для каждого цилиндра двигателя. Для запуска сжатый воздух из воздушных резервуаров поступает в цилиндры насоса, которые приводят в движение двигатель до тех пор, пока он не возобновит свой цикл.В этом двигателе используются два отдельных распределительных вала, один из которых управляет масляными клапанами, а другой — насосами. «Регулировка вала осуществляется с помощью скользящих спиральных шестерен, которые приводят в движение распредвалы. Эти скользящие спиральные шестерни управляются более длинным рычагом на левой стороне двигателя. Короткий рычаг управляет пусковым воздухом. Другой метод — использовать два набора кулачков, по одному для каждого направления вращения. Эти кулачки иногда размещаются на одном и том же кулачковом валу, который регулируется в продольном направлении под подъемниками. В модификации используются два кулачковых вала, один впереди, а другой сзади.Эти валы можно поворачивать под толкатели клапана. Такое расположение показано на рис.2. Реверсивный механизм для двухтактных двигателей не так сложен, как для четырехтактных, единственный необходимый клапанный механизм — это пусковой и топливный клапаны. Вероятно, одна из особенностей дизельного двигателя, которая больше всего побуждает его использовать в морской сфере, — это его эффективность. Были проведены испытания больших двигателей этого типа, которые показали почти замечательные цифры 0.38 фунтов топлива израсходовано на час мощности тормозной системы. Это для сырой нефти. Используемые в настоящее время судовые двигатели этого типа в среднем расходуют от 0,40 до 0044 фунта топлива на одну тормозную мощность в час при работе с полной нагрузкой. Когда мы сравниваем эти цифры с показателями лучших судовых двигателей тройного расширения, которые сжигают 1,46 фунта угля за час мощности тормозной системы, мы сразу же видим огромное преимущество дизельного двигателя. Выражаясь круглыми цифрами, дизельный двигатель на 100 тоннах топлива будет вести корабль так же быстро и так же далеко, как паровой двигатель на 350 тоннах угля.Кроме того, жидкое топливо может храниться в баках, размещенных в двойном дне корабля; Таким образом, пространство, ранее занимаемое котлами и угольными бункерами, уступает место пассажирам и грузовым помещениям. Таким образом увеличивается доходность корабля; машинное отделение, необходимое для нефтяного двигателя, примерно такое же, как машинное отделение, необходимое для оборудования парового двигателя. Аксессуары, необходимые для дизельного двигателя, занимают примерно столько же места, что и конденсатор и насосы парового двигателя. Судовой нефтяной двигатель, кажется, строится в соответствии со стандартными принципами, установленными практикой паровых двигателей; все крупные масляные двигатели, построенные до сих пор, имеют короткий поршень, плоские направляющие и крестовину с обычной открытой конструкцией.Было заявлено, что использование ствольного поршня является плохой практикой из-за небольшого продольного перемещения коленчатого вала по мере износа упорных подшипников. С плоскими направляющими этот небольшой люфт не будет иметь значения, а открытая конструкция также облегчает осмотр. Воздушный насос для получения воздуха для запуска и для впрыска топлива обычно получается из трехступенчатого воздушного компрессора, который приводится в действие поперечными головками трех цилиндров, причем воздух охлаждается между ступенями компрессора.Циркуляционные насосы также приводятся в действие от главного двигателя; но вспомогательный воздушный компрессор и вспомогательные циркуляционные насосы, приводимые в действие меньшими масляными двигателями, предназначены для аварийных целей. Трюмные и пожарные насосы имеют либо электрический привод, либо привод от отдельного двигателя, а электрический ток для света и энергии вырабатывается генераторами с прямой связью, приводимыми в действие масляными двигателями. Масляные двигатели, которые используются в настоящее время и строятся, включают как двух-, так и четырехтактные двигатели одинарного и двойного действия.У каждого типа есть много собственных хороших характеристик, и еще слишком рано говорить, что лучше; Конструкция двухтактного двигателя двустороннего действия сложна, но количество цилиндров уменьшается для заданной мощности. С другой стороны, в двигателе с восемью цилиндрами один цилиндр может не выходить из строя, не влияя в очень большой степени на мощность двигателя. Можно с уверенностью сказать, что разработка масляного двигателя в этой новой роли будет идти быстрыми темпами. С несколькими немецкими фирмами, строящими большие суда, оснащенные нефтяными двигателями, с сообщением о том, что Адмиралтейство Германии строит крейсер, который будет оснащен двумя шестицилиндровыми двигателями мощностью 6000 лошадиных сил каждый, и с несколькими фирмами из Глазго, строящими суда с аналогичным оборудованием, скоро увидим, как масляный двигатель прошел обширные испытания.7 октября 1911 г. 315 [Редакция не несет ответственности за высказывания, сделанные в колонке для корреспонденции. Анонимное общение не может быть рассмотрено, но имена корреспондентов при желании не разглашаются.] Возрождение торгового флота Редактору журнала Scientific American: Я пишу, чтобы выразить мою высокую оценку огромного интереса, который вы проявляете с 1 апреля к строительству американского торгового флота. Все, что публикуется на эту тему, будь то в ваших редакционных или заочных колонках, с жадностью поглощается этим писателем, который в течение последних двенадцати лет провел специальное исследование судовых субсидий, почтовых субсидий, почтовых субсидий, льготных пошлин, бесплатных судов и любые другие меры, предложенные человеческой изобретательностью для восстановления той отрасли нашего торгового флота, которая занималась иностранной или глубоководной торговлей, до того гордого положения, которое она раньше занимала.Самая большая трудность в этом, по-видимому, состоит в том, чтобы заставить людей, живущих в глубине континента, вдали от побережья, проявить интерес или получить информацию по таким вопросам. Писатель желает вам удачи в работе, которую вы предлагаете предпринять. Джеймс Дж. Макбрайд. Кантон, мисс. Человек, который видел метеоритный поезд Редактору журнала Scientific American: Что касается письма на вашей странице 275 о «Поезде Метеора», то я был одним из примерно дюжины людей в Мамаронеке, штат Нью-Йорк, которые видели внешний вид в основном так, как описал г-нПфарре. Филадельфия, Пенсильвания. Эдвард Т. Чайлд. Уроки летающей гонки Гордона Беннета. Редактору журнала Scientific American: Что касается вышеупомянутой темы в вашем номере от 19 августа, не позволите ли вы сделать несколько дополнительных замечаний в соответствии с мнением г-на Гровера Лёнинга по этому поводу? Ваш автор обращает особое внимание на трудности, с которыми сталкиваются такие талантливые сторонники, как Вейман и Леблан, при резком повороте у каждого пилона, и, с другой стороны, подчеркивает удобство, а также изумительный «крен», выполненный Огилви на «Бэби Райт».» Конечно, верно, что этот подвиг всегда затруднен с такой непропорциональной площадью поверхности в случае 60 квадратных футов поверхности обрезанного Блерио, но также точно1 то, что центробежная сила, создаваемая одним трактором -винт — фактор, который нельзя упускать из виду. Диаметр у Ньюпора составлял 7 футов, у Блерио — 8 & percnt; футов, в то время как двойные пропеллеры Райта 8 & percnt; футов каждая, причем последний вращается в противоположных направлениях и, таким образом, противодействует центробежному действию, усиленному в монопланах.Следовательно, Wright — или его аналог, моноплан со сдвоенными винтами — способен резко «крениться» при прохождении поворотов, что потребовало бы широких поворотов с одновинтовым типом или альтернативной потери устойчивости и катастрофы. Еще одним важным моментом для монопланов, приводимых в движение двумя винтами, является большая скорость, достижимая по сравнению с бипланом, управляемым аналогичным образом, и, кроме того, возможность преодолевать более сильный ветер — настоящее желание. Действительно необычно отметить в настоящий момент непрерывное повсеместное копирование патентной системы деформации Райта, либо грубо имитирующее изгиб задних краевых концов в сочетании с ножным вертикальным рулем направления, либо виртуальное воспроизведение того же самого с помощью средства элеронов — система, которая, хотя и скопирована с натуры, отнюдь не является самой мощной в управлении птицей боковой устойчивостью.Этот совершенный летчик среди других методов демонстрирует нам, что, искривляя или, скорее, вдавливая внешнюю половину одного крыла и, соответственно, поднимая другую, он устраняет всякую опасность судебного разбирательства, посягая на патент Райта! Г-н Гровер Лоулинг в своей умной статье мог бы сослаться на подчеркивание необходимости моноплана с «переменной поверхностью», показанного гонкой Гордона Беннета. Принятие птичьего выигрыша позволит не только увеличить скорость, но также автоматически обеспечит естественную или естественную устойчивость при сильных ветрах за счет гибкой конструкции в дополнение к этой насущной потребности в переменной поверхности.Таким образом, уроки, продемонстрированные не только гонкой Гордона Беннета, но и ежедневными полетами по всему земному шару для создания и развития идеального механического летательного аппарата, могут быть кратко изложены в следующих требованиях: (1) Улучшение летательного аппарата. автомобиль или фюзеляж в более тонкой обтекаемой форме Ньюпора; (2) сдвоенные пропеллеры большого диаметра, чтобы, таким образом, задействовать больший объем воздуха или «дисковую площадь» и вращаться в противоположных направлениях, чтобы минимизировать чрезмерную центробежную силу; (3) построение основных плоскостей гибкими с небольшим изгибом, высоким соотношением сторон и одинарной поверхностью; (4) превосходным боковым контролем, отличным от того, который используется в биплане Райтов, и обеспечиваемым смещением основных лонжеронов к концам; (5) изменяемым всплытием основных самолетов или крыльев для обеспечения более высоких скоростей и восприимчивости к безопасному столкновению с более высокими скоростями ветра за счет такого уменьшения и увеличения площади опоры; (6) отказ от вертикального руля направления, действующего вместе с главными плоскостями для управления в горизонтальной плоскости; (7) необходимость компактного складывания крыльев у борта автомобиля, когда он не используется или спускается по воде; (8) и средства увеличения или уменьшения угла падения основных плоскостей в соответствии с требованиями условий полета.Все вышеперечисленные существенные особенности отнюдь не невозможно воспроизвести в одной конструкции, и они определенно позволят моноплану подниматься и спускаться с воды, а со временем перелетать через Атлантику. Лондон, Англия. Эдгар Э. Уилсон. Предлагаемый дроссель локомотива остановки безопасности Редактору журнала Scientific American: В отделе корреспонденции вашего номера от 19 августа на странице 167 я заметил статью Обри Д. Бейдельмана из Брейнтри, штат Массачусетс, озаглавленную: «Крушение железной дороги Бриджпорта.» В последнем абзаце своего сообщения он предлагает снабдить ручку дроссельной заслонки и тормозного клапана средствами для автоматического приведения их в положения, которые отключили бы пар и задействовали тормоза в случае выхода инженера из строя по любой причине. Цитируя его статью, «инженеру необходимо было бы оказать на них небольшое давление», чтобы предотвратить их действия подобным образом. Он сомневается, что такое устройство неудобно.На мой взгляд, это было бы невыносимо. При движении по холмистой местности машинисту необходимо часто менять положение рычага заднего хода, что требует использования по крайней мере одной, а обычно и обеих рук. Иногда ему необходимо использовать инжектор на своей стороне двигателя из-за неспособности инжектора на стороне пожарного подавать в котел достаточное количество воды. Для машиниста нередко бывает необходимо заправить лубрикатор в дороге.Все это требует времени; и пока он ухаживал за ними, подача пара прекращалась, а тормоза приводились в действие, что приводило к значительному и нежелательному снижению скорости. • В дополнение к своим физическим обязанностям он должен помнить о полученных им приказах, которые регулируют его движение по отношению к другим поездам, которые могут быть на дороге, их встречи и точки пересечения, а также то, в какое время у него есть заданная точка перед другим поездом. Это было бы чрезвычайно сложно для человека, находящегося под постоянным физическим напряжением, которое потребовалось бы для поддержания этих двух рычагов в рабочем положении, особенно в случае дроссельной заслонки, поскольку ему пришлось бы приложить значительную силу, чтобы удерживать ее в открытом положении относительно устройства, которое имел бы любую ценность как положительный механизм закрытия.Условия, в которых сейчас работает машинист, нельзя назвать спокойными. Постоянно грохочут, как локомотив по сравнению с каретой едет так же легко, как фургон с сеном по сравнению с лимузином. Если бы в дополнение к этому человек был вынужден поддерживать постоянное и неослабевающее давление в течение периода от трех до семи часов, средняя продолжительность пассажирского пробега, это было бы почти, если не совсем, за пределами человеческой выносливости. Лос-Анджелес, Оал. Дж. Б. Уэллс. Дополнительная энергия для орошения Новое совместное использование наших каналов.Редактору журнала Scientific American: Чтобы получить мощность, получаемую от водопадов, за удобную основу для расчета любой мощности берется высота в 10 футов. Один кубический фут воды, вес 62 & percnt; фунтов, падение с 10 футов дает 625 футов фунтов. Потребность в одной лошадиной силе, 33000 фунтов, разделенные на 625, дает 52,8 кубических фута, требуемых для одной теоретической лошадиных сил в минуту. Но поскольку КПД колеса редко превышает 75 процентов, мы прибавляем треть к 52.8 или 70,4 кубических футов воды, что достаточно для покрытия 844 квадратных футов, или одной пятьдесят секунд акра. Таким образом, количество воды, необходимое для производства одной лошадиной силы за 52 минуты, покрыло бы один акр на один дюйм глубиной, если бы ничего не было потрачено впустую. Но поскольку отходы значительны, давайте предположим, что требуется два часа, чтобы покрыть один акр на один дюйм, или за десять часов вода, необходимая для производства одной лошадиной силы, покроет пять акров глубиной в один дюйм. Теперь, когда энергия может вырабатываться даже небольшими агрегатами по цене не более 20 центов за каждую лошадиную силу в течение десяти часов, а в больших единицах — гораздо меньше, у нас есть один дюйм воды стоимостью четыре цента за акр, тогда как для некоторых культур она будет стоить в пятьдесят раз больше, а другие — намного больше, так как эта вода является теплой дождевой водой и намного превосходит колодезную воду для целей орошения.Принимая во внимание вышеприведенные утверждения, можем ли мы с уверенностью заключить, что наши каналы или, по крайней мере, их участки, которые находятся в выгодном месте, следует поддерживать для орошения, что, как объясняется ниже, также может немного снизить их ценность для энергии воды? Во многих случаях канал расположен так, что вся лишняя вода может естественным образом стекать на землю, а в некоторых случаях может потребоваться канава к следующему шлюзу, чтобы вода была достаточно высокой. Я думаю, что очень благоприятные результаты некоторых небольших экспериментов по ирригации в нашей секции полностью оправдают наши ценные экспериментальные станции при изучении имеющихся земель и в подготовке необходимой информации относительно подходящих культур, удобрений, перемешивания песка для облегчения тяжелых почв и т.Это может позволить в полной мере реализовать значительный рост урожая за счет орошения. Теперь, если энергетик, которому обычно не хватает энергии для производства или продажи электроэнергии, разместит свои водяные колеса и т. Д. Так, чтобы дать ему полную мощность падения, скажем, на лучшие шесть месяцев из год, и будет устанавливать двигатели, достаточные для выработки того же количества энергии, которое будет использоваться, когда воды недостаточно для всего необходимого, что, если для освещения будет меньше, когда уровень воды самый низкий, он может иметь энергию воды для всех своих нужд. в течение шести или более месяцев, и почти все остальное время часть воды, фактически большая ее часть.Там, где вода используется только в течение десяти часов для электричества, полив можно проводить ночью, как на Западе. Таким образом, энергетик может оказаться в лучшем положении после оплаты первой стоимости установки двигателя, чем если бы он полностью зависел от гидроэнергии, поскольку он будет иметь не только увеличенную мощность, но и мощность, от которой можно полностью зависеть. Я верю, что вышеизложенное будет, в некотором роде, предложением, которое принесет пользу сообществу и государству при использовании его каналов. Дейтон, О.Дж. Х. Стивенс. Автоматическая устойчивость самолетов — предложение Редактору журнала Scientific American: Вы позволите мне выразить. из вашей ценной бумаги мое мнение о возможном решении проблемы автоматической поперечной устойчивости летательных аппаратов? Многие устройства, разработанные и испытанные для поддержания автоматической стабильности, пока не достигли желаемого успеха. От появления такого устройства зависит весь дальнейший прогресс и коммерциализация аэронавигации.Мое собственное предложение может привести к возможному решению этой проблемы. Я описываю свою идею с целью поощрения конструкторов летательных аппаратов к экспериментам в этом направлении. Мой автоматический боковой стабилизатор состоит из ласт, сделанных из легкого каркаса из дерева или металла, обтянутого подходящей тканью. Эти плавники шарнирно закреплены под поверхностью на крайних концах плоскости (выигрыш, наконечники) и могут качаться в обе стороны. При повороте внутрь такой плавник может перемещаться, пока не будет лежать ровно под поверхностью, но в направлении наружу. ремешок предотвращает обнуление.раскачивается более чем на 45 градусов. Функцию устройства можно представить следующим образом: Когда самолет находится в движении и пока на него не действует сила, вызванная боковым ветром, киля будут удерживаться в вертикальном положении. Но когда ветер ударяет самолет под углом к направлению движения, плавник, ближайший к стороне, с которой дует ветер, будет лежать плашмя под поверхностью самолета. В то же время. Плавник на противоположной стороне поворачивается наружу под углом 45 градусов к плоскости и будет оказывать сопротивление, соответствующее естественному сопротивлению с наветренной стороны.Это расположение. по-видимому, хорошо работает, когда выполняются прямые полеты, и даже в поворотах он, вероятно, выполняет все необходимые крены; но для того, чтобы выпрямить самолет после или по окончании разворота, может оказаться необходимым прибегнуть к работе элеронов. Даже если это устройство время от времени необходимо дополнять элеронами, оно во многом избавит оператора самолета от постоянной нагрузки, связанной с рычажным механизмом, приводящим в действие средства поперечной и продольной устойчивости.Одним из основных требований было бы, чтобы размер плавников был в правильном соотношении с плоскостью, в которой они используются в качестве выравнивателя. Такое устройство можно использовать на самолетах любой конструкции, и для упрощения крепления этих килей последние пять или шесть ребер с обеих сторон должны постепенно расплющиваться, чтобы крайние концы самолета были почти плоскими.