Двигатель внутреннего сгорания кпд: КПД двигателя внутреннего сгорания. Сколько приблизительно равен, а также мощность в процентах

Изобретатель из Тольятти создал двигатель внутреннего сгорания с механическим КПД 95%: wowavostok — LiveJournal
Я в подобные сенсации не очень верю, но поскольку этот блог посвящен распространению вечного и доброго (но не только этому)), как говорится, не могу пройти мимо.
Тем более у меня есть давно забытый тэг «Производство»

(плохо разбираюсь в этой тематике, комментировать не буду… но помню, что где-то что-то читал…)

Журнал «Эксперт»: Изобретатель из Тольятти создал двигатель внутреннего сгорания с механическим КПД 95%.
Если этот проект получит должное внимание стратегических инвесторов и государства, он может создать серьезную конкуренцию электромобилю.

Двигатель внутреннего сгорания (ДВС) с механическим КПД 95% практически не имеет вредных выхлопных газов и способен при расходе топлива три литра на 100 км развивать мощность 300 л. с. А общий КПД чудо-двигателя, работающего на бензине, составляет порядка 60%. Это кажется невероятным, ведь КПД массовых автомобильных бензиновых ДВС не превышает 25%, дизельных — 40%. Этот проект — реально работающий прототип, собранный в «подвале» небольшого мебельного завода. Новые технологии, примененные в этом движке, запатентованы в России, США и даже в Японии. Все попытки зарубежных компаний купить эти разработки патриотом-кулибиным были отвергнуты, хотя предлагались суммы, в 20 раз превышающие стоимость всего его бизнеса. Представляется, что этот проект может создать серьезную конкуренцию электромобилю.

Ротор для аммиака и сварочный трансформатор
Создатель двигателя оказался автором более 50 патентов, в том числе международных. Александр Николаевич Сергеев — разработчик оригинальной технологии сварки роторов для производства аммиака, источников питания сварочной дуги, аэродинамических спойлеров для вазовских автомобилей и еще более 50 изделий, до сих пор применяющихся в шести отраслях промышленности. Свой первый патент на изобретение Сергеев получил, еще будучи студентом, в 1970-х, и был удостоен почетного тогда звания «Молодой ученый года», а через три года, поступив на работу инженером на завод «Азотреммаш» (ныне часть холдинга «Тольяттиазот» — крупнейшего в мире производителя азота), произвел технологическую революцию в отрасли. Разработанная им технология сварки рабочих колес центробежных компрессоров позволила увеличить ресурс работы этих агрегатов в несколько раз и отказаться от поставок аналогичных устройств из США.

20-01c.jpg

— Мы впервые в мире сделали цельносварной ротор, — объясняет Александр. — Это основной в производстве аммиака узел — узел сжатия газа до давления свыше 300 атмосфер при гиперзвуковых окружных скоростях рабочих колес компрессоров. По теме сварки магнитоуправляемой дугой у меня порядка пятнадцати авторских. Если вкратце, там, по сути, было сделано открытие по влиянию электромагнитного поля на электропроводность и теплопроводность.

Наработки в области сварки, созданные в рамках химпрома, пригодились в других отраслях.
Сергеевым был разработан сварочный трансформатор, по своим характеристикам превышающий те, что продавались на рынке, при этом его стоимость была на 30% ниже, а площадь занимаемого пространства сократилось в пять раз.
В 1980-х годах изобретатель хотел предложить свои разработки начальству, однако в стране грянула перестройка, началось кооперативное движение; Сергеев ушел с завода и, прихватив с собой костяк своей команды, организовал предприятие, выпускающее промышленное сварочное оборудование.

=============

Механический КПД предлагаемого двигателя в 95% достигается за счет использования кинематической схемы бесшатунного механизма (механизма Баландина), при которой значительно уменьшаются потери на преодоление сил трения за счет исключения бокового давления поршня на стенки рабочего цилиндра. У лучших ДВС с кривошипно-шатунным механизмом механический КПД остается на уровне 90%.

Топливная эффективность двигателя Александра Сергеева достигает 98% за счет организации нового запатентованного процесса смесеобразования и сжигания топлива, обеспечивающего полное сжигание топлива в рабочем цилиндре.

Термодинамический КПД предлагаемой разработки составляет 60–65% за счет организации работы бензинового двигателя в двухтактном цикле с полным наполнением рабочего цилиндра атмосферным воздухом на всех режимах его работы, при степени сжатия ε = 14÷20 без детонации.

Разработанный двигатель устойчиво работает в двухтактном цикле с двойной продувкой, в режимах холостого хода и частичной нагрузки (основные режимы работы двигателя в городском режиме и движении по трассе, что составляет ≈80÷85% работы ДВС), то есть один ход рабочий, следующий продувочный, что идеально готовит рабочий цилиндр к следующему рабочему циклу. Это позволяет дополнительно уменьшить расход топлива и обеспечить оптимальный температурный режим работы двигателя, что также способствует повышению теплового (термодинамического) КПД двигателя.

Принципиальное устройство бесшатунного двигателя
20-01c.jpg

Объёмный КПД двигателя внутреннего сгорания — Карта знаний
  • Объёмный КПД двигателя внутреннего сгорания отражает эффективность всасывания в цилиндр и выпуска из цилиндра рабочей среды (то есть, топливо-воздушной смеси или выхлопных газов). Говоря более строго, объёмный КПД — это отношение (или процентное соотношение) количества рабочей среды, фактически всасываемой в цилиндр, к объёму самого цилиндра (при неизменных условиях). Поэтому те двигатели, которые могут создавать давления на входах в трубопроводы выше давления окружающей среды, могут иметь объёмный КПД больший 100 %.

    Объёмный КПД может быть улучшен несколькими путями. В частности, к ним относятся выбор оптимальной степени открытия клапанов (относительно объёма цилиндров) и выбор обтекаемой конструкции портов.

    Двигатели с высоким объёмным КПД в общем случае способны работать с бо́льшими скоростями и способны вырабатывать бо́льшую полную мощность из-за меньших потерь при паразитическом перемещении воздуха внутрь и вне двигателя.

    Общим, принятым производителями, подходом по увеличению объёмного КПД является использование больших по размеру клапанов или систем с числом клапанов на цилиндр, бо́льшим двух (мультиклапанных систем).

    Увеличенные клапана улучшают всасывание и впуск воздуха, но имеют повышенную массу. Мультиклапанная система включает в себя два или более клапанов с общей площадью большей, чем площадь одного большого клапана, в то время как мультиклапанная система имеет меньшую массу.

    Во многих автомобилях спортивного типа используют точно рассчитанное расположение впускных отверстий и настройки выхлопной системы для перемещения воздуха внутрь и наружу двигателя, используя резонанс системы. В двухтактных двигателях эта идея реализуется в применении камер расширения, которые возвращают утечки топливо-воздушной смеси обратно в цилиндр. Более современная технология — изменяемые фазы газораспределения, задачей которой является учитывать влияние на объёмный КПД скорости двигателя: при более высоких скоростях двигатель нуждается в том, чтобы клапаны были открыты больший процент времени от продолжительности цикла для перемещения рабочей среды внутрь и наружу двигателя.

    Объёмный КПД более 100 % может быть получен путём использования нагнетателей или турбонагнетателей — устройств, принудительно нагнетающих воздух в цилиндры. При должных настройках, можно получить объёмный КПД более 100 % и в атмосферных двигателях. Предельное значение объёмного КПД таких двигателей составляет около 137 %; такие двигатели обычно имеют два распредвала в головке цилиндров и четыре клапана на цилиндр.

    Более радикальные решения задачи повышения объёмного КПД включают в себя использование гильзовых клапанов, в которых вместо тарельчатого клапана установлена вращающаяся вокруг поршня гильза, или в других случаях вращающаяся под цилиндрическими головками гильза. В такой системе порты могут быть настолько большими, насколько это необходимо. Однако имеется практическое ограничение, накладываемое прочностью гильзы: при слишком больших размерах портов гильза может продавливаться в них под действием давления в цилиндре.

Источник: Википедия

Содержание

Связанные понятия

Система изменения фаз газораспределения (англ. variable valve timing, VVT) в двигателях внутреннего сгорания предназначена для изменения времени открытия клапанов и часто применяется для улучшения показателей эффективности, экономичности и токсичности. Система все более часто используется совместно с системой изменения высоты подъема клапанов. Изменение фаз газораспределения может достигаться разными способами: полностью механическим, электро-гидравлическим и при конструкции двигателей без использования… Четырёхтактный двигатель — поршневой двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за два оборота коленчатого вала, то есть за четыре хода поршня (такта). Начиная с середины XX века — наиболее распространённая разновидность поршневого ДВС, особенно в двигателях средней и большой мощности. Турбореактивный двигатель (ТРД, англоязычный термин — turbojet engine) — воздушно-реактивный двигатель (ВРД), в котором сжатие рабочего тела на входе в камеру сгорания и высокое значение расхода воздуха через двигатель достигается за счёт совместного действия встречного потока воздуха и компрессора, размещённого в тракте ТРД сразу после входного устройства, перед камерой сгорания. Карбюра́тор (фр. Carburateur) — узел системы питания ДВС, предназначенный для приготовления горючей смеси наилучшего состава путём смешения (карбюрации, фр. carburation) жидкого топлива с воздухом и регулирования количества её подачи в цилиндры двигателя. Имеет широчайшее применение на различных двигателях, обеспечивающих работу самых разнообразных устройств. На массовых автомобилях с 80-х годов XX века карбюраторные системы подачи топлива вытесняются инжекторными. Газораспределительный механизм (ГРМ) — механизм, обеспечивающий впуск и выпуск рабочего тела в двигателях внутреннего сгорания. Может иметь как фиксированные фазы газораспределения, так и регулируемые в зависимости от частоты вращения коленвала и других факторов. Дви́гатель вну́треннего сгора́ния (ДВС) — двигатель, в котором топливо сгорает непосредственно в рабочей камере (внутри) двигателя. ДВС преобразует тепловую энергию от сгорания топлива в механическую работу. Гидроаккумуля́тор — сосуд, работающий под давлением, который позволяет накапливать энергию сжатого газа или пружины и передавать её в гидросистему потоком жидкости, находящейся под давлением. Пятитактный двигатель — двигатель, снабжённый «цилиндрами пятого такта», служащими для дополнительного расширения выхлопных газов, совершающих при этом работу. Преследует те же цели, что двигатель Аткинсона и двигатель Миллера. Парова́я маши́на — тепловой двигатель внешнего сгорания, преобразующий энергию водяного пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. Система холостого хода (СХХ) — одна из систем карбюратора, которая обеспечивает работу двигателя внутреннего сгорания на холостом ходу и на переходном режиме, а также компенсацию состава смеси на всех остальных режимах работы двигателя. Гидравлические механизмы — аппараты и инструменты, использующие в своей работе кинетическую или потенциальную энергию жидкости. К гидравлическим механизмам относят гидравлические машины. Жи́дкостный раке́тный дви́гатель (ЖРД) — химический ракетный двигатель, использующий в качестве топлива жидкости, в том числе сжиженные газы. По количеству используемых компонентов различаются одно-, двух- и трёхкомпонентные ЖРД. Цикл Аткинсона — модифицированный цикл Отто 4-тактного двигателя внутреннего сгорания. Цикл Миллера — термодинамический цикл, используемый в четырёхтактных двигателях внутреннего сгорания. Двигатель Ленуара — исторически первый серийно выпускавшийся двигатель внутреннего сгорания, запатентованный 24 января 1860 г. бельгийским изобретателем Жаном Жозефом Этьеном Ленуаром. Интеркулер — промежуточный охладитель наддувочного воздуха, представляющий собой теплообменник (воздухо-воздушный, водо-воздушный), чаще радиатор, для охлаждения наддувочного воздуха. В основном используется в двигателях с системой турбонаддува. Комбинированный двигатель внутреннего сгорания (комбинированный ДВС) — двигатель внутреннего сгорания, представляющий собой комбинацию из поршневой (роторно-поршневой) и лопаточной машины (турбина, компрессор), в котором в осуществлении рабочего процесса участвуют обе машины. Двухта́ктный дви́гатель — двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за один оборот коленчатого вала, то есть за два хода поршня. Такты сжатия и рабочего хода в двухтактном двигателе (за исключением двигателя Ленуара) происходят так же, как и в четырёхтактном (а значит, возможна реализация тех же термодинамических циклов, кроме цикла Аткинсона), но процессы очистки и наполнения цилиндра совмещены и осуществляются не в рамках отдельных тактов, а за… Сопло́ Лава́ля — газовый канал особого профиля, разгоняющий проходящий по нему газовый поток до сверхзвуковых скоростей. Широко используется на некоторых типах паровых турбин и является важной частью современных ракетных двигателей и сверхзвуковых реактивных авиационных двигателей. Бензиновые двигатели — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.

Подробнее: Бензиновый двигатель внутреннего сгорания

Спира́льный компре́ссор — разновидность компрессора (насоса) объёмного типа, в котором сжатие рабочей среды происходит при взаимодействии двух спиралей. Одна спираль остаётся неподвижной, а другая — совершает эксцентрические движения без вращения, благодаря чему обеспечивается перенос рабочей среды из полости всасывания в полость нагнетания. Помпа́ж (фр. pompage — колебания, пульсация) — срывной режим работы авиационного турбореактивного двигателя, нарушение газодинамической устойчивости его работы, сопровождающийся хлопками в газовоздушном тракте двигателя из-за противотока газов, дымлением выхлопа двигателя, резким падением тяги и мощной вибрацией, которая способна разрушить двигатель. Воздушный поток, обтекающий лопатки рабочего колеса, резко меняет направление, и внутри турбины возникают турбулентные завихрения, а давление на входе… Компрессор (от лат. compressio — сжатие) — энергетическая машина или устройство для повышения давления (сжатия) и перемещения газообразных веществ. Ди́зельный дви́гатель (в просторечии — дизель) — поршневой двигатель внутреннего сгорания, работающий по принципу самовоспламенения распылённого топлива от воздействия разогретого при сжатии воздуха. Применяется в основном на судах, тепловозах, автобусах и грузовых автомобилях, тракторах, дизельных электростанциях, а к концу XX века стал распространен и на легковых автомобилях. Назван по имени изобретателя. Первый двигатель, работающий по такому принципу, был построен Рудольфом Дизелем в 1897 году… Опереже́ние зажига́ния — воспламенение рабочей смеси в цилиндре двигателя до достижения поршнем верхней мёртвой точки. Блок цили́ндров — основная деталь кривошипно-шатунного механизма (КШМ) двух- и более цилиндрового поршневого двигателя внутреннего сгорания. Является цельнолитой деталью, объединяющей собой цилиндры двигателя. Отливается как правило из чугуна, реже — литейных алюминиевых или магниевых сплавов. На блоке цилиндров имеются опорные поверхности для установки коленчатого вала. К верхней части блока, как правило, крепится головка блока цилиндров, нижняя часть образует верхнюю часть картера. Таким образом… Тормоз-замедлитель, ретардер (англ. retarder), — устройство, предназначенное для снижения скорости транспортного средства без задействования основной тормозной системы. Использование тормоза-замедлителя необходимо для эксплуатации транспортных средств (преимущественно грузовых автомобилей и автобусов, а также поездов) в горных условиях на длительных спусках. Из большого количества схем чаще всего применяются электромагнитная и гидравлическая. Преимущество гидравлического тормоза-замедлителя в стабильности… Пожарный комбинированный насос — это устройство для подачи воды и огнетушащих средств к месту тушения, включающее в себя два последовательно соединенных насоса: насос нормального давления и насос высокого давления, имеющие общий привод. Клиновозду́шный ракетный двигатель (англ. Aerospike engine, Aerospike, КВРД) — тип жидкостного ракетного двигателя (ЖРД) с клиновидным соплом, который поддерживает аэродинамическую эффективность в широком диапазоне высот над поверхностью Земли с разным давлением атмосферы. КВРД относится к классу ракетных двигателей, сопла которых способны изменять давление истекающей газовой струи в зависимости от изменения атмосферного давления с увеличением высоты полета (англ. Altitude compensating nozzle). Двигатель… Шестицили́ндровые дви́гатели — двигатели внутреннего сгорания, имеющие шесть цилиндров, размещённые чаще всего друг напротив друга под углом 60° или 90°. Моде́льный электродви́гатель — электрический двигатель, приводящий в движение летающую, плавающую, вообще какую-либо движущуюся модель, например модель автомобиля. Свободно-поршневой двигатель внутреннего сгорания (СП ДВС) — двигатель внутреннего сгорания, в котором отсутствует кривошипно-шатунный механизм, а ход поршня от нижней мёртвой точки в верхней мёртвой точки осуществляется под действием давления воздуха, сжатого в буферных ёмкостях, пружины или веса поршня. Указанная особенность позволяет строить только двухтактные СП ДВС. СП ДВС могут использоваться для привода машин, совершающих возвратно-поступательное движение (дизель-молоты, дизель-прессы, электрические… Камера сгорания — объём, образованный совокупностью деталей двигателя или печи (в последнем случае камера сгорания называется топкой) в котором происходит сжигание горючей смеси или твёрдого топлива. Конструкция камеры сгорания определяется условиями работы и назначением механизма или печи в целом; как правило используются жаропрочные материалы. Турбонаддув — один из методов агрегатного наддува, основанный на использовании энергии отработавших газов. Основной элемент системы — турбокомпрессор. Газотурбинный двигатель (ГТД) — это двигатель, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины. Шеститактный двигатель — это тип двигателя внутреннего сгорания, для которого за основу взят четырёхтактный двигатель, в котором полный цикл работы происходит за шесть движений поршня. К шеститактным двигателям относят также двигатель типа M4+2, имеющий два поршня, в котором за полный рабочий цикл один поршень совершает 4 движения, а второй — 2. Крейцкопф (нем. Kreuzkopf , англ. crosshead), ползун — деталь кривошипно-ползунного механизма, совершающая возвратно-поступательное движение по неподвижным направляющим. Винтовой воздушный компрессор — промышленное устройство объемного сжатия воздуха для промышленно-производственных нужд (пневмоцилиндры, пневмоинструмент, производственные линии и механизмы), основным элементом сжатия которого является пара конусообразных роторов (винтов). Взлётный режим — режим работы авиационного двигателя, обеспечивающий максимальную мощность и тяговое усилие. Взлётный режим характеризуется максимальным значением механических и тепловых нагрузок на двигатель, отчего его применение строго лимитировано, в отличие от номинального режима, близкого к взлётному, но допустимого в течение длительного времени. Транспортные средства на сжатом воздухе приводятся в движение пневмодвигателями, использующими сжатый воздух, запасённый в баллонах. Такой привод называется пневматическим. Вместо смеси топлива с воздухом и её сжигания в двигателе, и последующей передачи энергии поршням от горячих расширяющихся газов, в транспортных средствах на сжатом воздухе передача энергии поршням осуществляется от сжатого воздуха. Гидравлические и пневматические подшипники часто используются при высоких нагрузках, высоких скоростях и при необходимости обеспечить точную посадку вала, когда обычные шарикоподшипники создают слишком большую вибрацию, слишком большой шум или не удовлетворяют условиям компактности оборудования или условиям долговечности. Они всё чаще и чаще используются вследствие снижающейся стоимости. Например, компьютерные жёсткие диски, у которых вал электродвигателя посажен на гидравлические подшипники, работают… Сверхзвуковой воздухозаборник — воздухозаборник реактивного двигателя, предназначенный для работы при сверхзвуковых скоростях набегающего потока воздуха. Это тщательно спроектированная и изготовленная конструкция, от исполнения которой зависит надёжность работы авиационного двигателя и достижения им требуемых характеристик во всех эксплуатационных режимах полёта. Картофельная пушка (англ. «potato cannon», «spud cannon», «spudzooka») — дульнозарядное орудие, приводимое в действие сжатым воздухом или за счёт энергии, образующейся при воспламенении смеси горючего газа и воздуха (кислорода), для придания снарядам высокой скорости. Предназначена в основном для развлекательной стрельбы кусками картофеля или другими предметами. При использовании необходимо соблюдать меры предосторожности, поскольку попадание снаряда в человека может привести к травмам, опасным для… Инверторный кондиционер — торговое название кондиционеров воздуха, у которых имеется возможность изменения частоты вращения двигателя компрессора (инвертор — от лат. inverto — переворачиваю, обращаю, изменяю). Блок управления в таких кондиционерах преобразует переменный ток питания в постоянный и затем преобразует в переменный ток необходимой частоты. Этот процесс называется инвертированием. Такое преобразование позволяет в широких пределах регулировать скорость вращения двигателя компрессора, в… Тягодутьевые машины — устройства, обеспечивающие принудительное (не зависящее от разницы плотностей нагретых газов в системе и наружного воздуха) перемещение воздуха и дымовых газов в технологических системах котельных установок, промышленных печей и других системах сжигания топлива в топках. В настоящее время, как правило, представляют собой ротационные лопастные нагнетательные машины с 1—2 ступенями, повышающие давление среды на 0,7—3 кПа. Если требуется большее повышение давления и большее число… Управление вектором тяги (УВТ) реактивного двигателя — отклонение реактивной струи двигателя от направления, соответствующего крейсерскому режиму. По́ршень — основная деталь насосов, компрессоров и поршневых двигателей внутреннего сгорания, служащая для преобразования энергии сжатого газа в энергию поступательного движения (в компрессорах — наоборот). Для дальнейшего преобразования энергии в крутящий момент служат остальные детали КШМ — шатуны и коленчатый вал. Первый поршневой ДВС создан французским инженером Ленуаром в 1861 году, до этого поршни применялись в паровых машинах и насосах. «Цикл с фазовым переходом» (ЦФП, англ. Expander cycle) — безгенераторная схема работы жидкостного ракетного двигателя (ЖРД), которая предназначена для увеличения эффективности топливного цикла. При схеме ЦФП топливо нагревается до его сжигания, обычно используя ту часть теряемого тепла главной камеры сгорания, которое идет на обогрев стенок камеры, и претерпевает фазовый переход. Полученная за счет превращения топлива в газ разность давления используется для подачи топливных компонентов, сохранения… Регулятор — техническое устройство, предназначенное для снижения давления газа, поступающего из баллона до величин, позволяющих осуществлять дыхание без каких-либо вредных последствий, а также для подачи газа для вдоха и отведение продуктов выдоха. Амортиза́тор (от фр. amortisseur) — устройство для гашения колебаний (демпфирования) и поглощения толчков и ударов подвижных элементов (подвески, колёс), а также корпуса самого транспортного средства, посредством превращения механической энергии движения (колебаний) в тепловую.

Мотор в будущее – Огонек № 31 (5527) от 20.08.2018

У двигателя внутреннего сгорания, без которого невозможно представить современный транспорт, юбилей — 195 лет. Однако полноценной замены имениннику так и не изобрели

Современный автомобиль, каким мы его знаем, рождался, наверное, целый век, и каждый из его дней рождения — исторический. Судите сами: 125 лет назад двумя венгерскими учеными, Донатом Банки и Яношем Чонка, запатентован карбюратор — устройство, где готовится горючая смесь для автомобильного двигателя. Долгое время его изобретателем вообще-то считался немец Вильгельм Майбах, запатентовавший карбюратор раньше венгерских коллег, и лишь после специальной экспертизы выяснилось — Банки и Чонка опередили его с публикацией. Счет шел на месяцы!

Но, пожалуй, еще важнее другая дата: в 1823 году, то есть 195 лет назад, другой инженер, британец Сэмуэль Браун, запатентовал первый получивший успех и коммерческое приложение двигатель внутреннего сгорания (ДВС)! Оговоримся: и на этот почетный титул — изобретателя ДВС — также претендует множество инженеров, выбирай любого. Вот, к примеру, один из претендентов — француз Жозеф Нисефор Ньепс больше известный как один из изобретателей фотографии. Он еще в 1807 году вместе с братом создал прототип ДВС, названный пирэолофором. Пирэолофор был установлен на корабль и успешно испытан, после чего братьям выдали патент, подписанный самим Наполеоном. Был в истории ДВС и русский след: бензиновый двигатель внутреннего сгорания с электрическим зажиганием — разработка российского конструктора сербского происхождения Огнеслава Костовича, известного проектами дирижабля, вертолета и даже рыбы-лодки.

Парадокс в другом: ни один из изобретателей этого чуда техники не был уверен, что его усилия пригодятся. Сегодня об этом уже не помнят, но с ДВС тогда конкурировали паровой и… электрический двигатель, изобретенный еще в 1828 году!

— Период, когда люди выбирали тип двигателя для безлошадных повозок (так называемое осевое время автомобилизма), пришелся как раз на конец XIX века,— говорит шеф-редактор журнала «Авторевю» Леонид Голованов.— Так вот, вплоть до середины 1900-х параллельно выпускались машины со всеми тремя типами силовых установок: ДВС, электроприводом и паровым двигателем. В результате победил двигатель внутреннего сгорания, причем заслуженно — он оказался эффективнее, проще в эксплуатации и более пригоден для массового производства. Но главное — сочетание энергоемкости, цены и скорости заправки, которое обеспечивало моторное топливо. Альтернативы этому не было!

О «нефтяном факторе» в успехе двигателя внутреннего сгорания говорит и декан транспортного факультета Московского политехнического университета Пабло Итурралде. По его словам, выпуск машин на ДВС в начале ХХ века получил поддержку у нефтяной отрасли — ей нужен был мощный потребитель производимой продукции, и автомобили, работающие на бензине, идеально подошли для этого.

Парадокс нынешнего момента, впрочем, в другом: топливо, которое когда-то помогло двигателю внутреннего сгорания победить конкурентов, сегодня может… его похоронить.

Разберемся.

«Топливо-изгой», «Европа отказывается от двигателей внутреннего сгорания», «Объявлена война дизелю»… Европейские СМИ предупреждают: в Старом Свете решили всерьез взяться за ДВС. Повод нашелся в 2015-м, когда в результате так называемого Дизельгейта выяснилось: крупнейший европе

Двигатель внутреннего сгорания — история создания / Техника / stD

Это вступительная часть цикла статей посвящённых Двигателю Внутреннего Сгорания, являющаяся кратким экскурсом в историю, повествующая об эволюции ДВС. Так же, в статье будут затронуты первые автомобили.

В следующих частях будут подробно описаны различные ДВС:

• Шатунно-поршневые
• Роторные
• Турбореактивные
• Реактивные

Паровая машина, послужившая прародителем ДВС, по своей сути являлась двигателем внешнего сгорания, так как горение топлива происходило в отдельно стоявшем котле, а рабочее тело (пар) подавалось в цилиндр по трубам.
Такая конструкция приводила к большим потерям тепла (энергии) и черезмерному расходу топлива.

Для преодоления этих недостатков необходимо было сделать так, чтоб топливо сгорало непосредственно в самом цилиндре. Реализацией этой идеи и стал Двигатель Внутреннего Сгорания.

ДВС различного действияДвухтактный ДВС — на первом такте происходит впуск и сжатие горючей смеси, а на втором такте расширение и выпуск отработанных газов.

Четырёхтактный ДВС — на первом такте происходит впуск, на втором сжатие, на третьем расширение, на четвёртом выпуск.

Звёздообразный, или радиальный ДВС — имеет небольшую длину и позволяет компактно размещать большое количество цилиндров.

Ротативный ДВС — двигатель вращается вокруг неподвижного коленчатого вала.

Роторный ДВС — за один оборот двигатель выполняет один рабочий цикл.


Слово «Детонация» здесь неуместно, правильно будет — расширение. Детонация же, это разрушительное следствие неправильной работы двигателя.

Турбореактивный ДВС — в основном используются на самолётах.

Реактивный ДВС — используется в ракетах.



К первым попыткам создать ДВС (если не брать в расчёт артиллерийские орудия) можно отнести проект порохового двигателя в виде цилиндра с поршнем, предложенный Христианом Гюйгенсом и Дени Папеном, в 17 веке.

Идея заключалась в том, что насыпанный внутрь цилиндра и подожжённый порох, выталкивал поршень вверх.
Конечно, назвать эту конструкцию двигателем можно лишь с большой натяжкой, однако нужно помнить что на дворе был 1690 год.

           

Чуть позже, Папен, вместо пороха залил в цилиндр воду, которая доводилась до кипения костром, разожженным под цилиндром, а образующийся пар толкал поршень.
Тогда эта идея, отчасти, поспособствовала созданию паровой машины, а сейчас поршень и цилиндр используется в современных шатунно-поршневых ДВС.

Существовали и другие изобретатели 17-18 веков пытавшиеся создавать ДВС, но им не удалось добиться сколько-нибудь значимых результатов, да и информации о них крайне мало.


    В 1801 году, Филипп Лебон — французский инженер и изобретатель газового освещения, зарегистрировал патент на двигатель внутреннего сгорания работающий на смеси газа и воздуха.

В двигателе Лебона были предусмотрены два компрессора и камера смешивания. Один компрессор должен был накачивать в камеру сжатый воздух, а другой — сжатый «светильный газ» из газогенератора. Газовоздушная смесь поступала в рабочий цилиндр, где и воспламенялась.

В связи со смертью Лебона, в 1804 году, двигатель так и остался проектом на бумаге.

К сожалению, не нашёл никаких картинок.


В 1806 году, французский изобретатель Джозеф Ньепс вместе со своим братом Клодом, сконструировали прототип двигателя внутреннего сгорания и назвали его «Pyreolophore».

Двигатель был установлен на лодку, которая смогла подняться вверх по течению реки Сона. Спустя год, после испытаний, братья получили патент на своё изобретение, подписаный Наполеоном Бонопартом, сроком на 10 лет.

Правильнее всего, было бы назвать этот двигатель реактивным, так как его работа заключалась в выталкивании воды из трубы находящейся под днищем лодки…

Двигатель состоял из камеры поджигания и камеры сгорания, сильфона для нагнетания воздуха, топливо-раздаточного устройства и устройства зажигания. Топливом для двигателя служила угольная пыль.

Сильфон впрыскивал струю воздуха смешанную с угольной пылью в камеру поджигания где тлеющий фитиль зажигал смесь. После этого, частично подожжённая смесь (угольная пыль горит относительно медленно) попадала в камеру сгорания где полностью прогорала и происходило расширение.
Далее давление газов выталкивало воду из выхлопной трубы, что заставляло лодку двигаться, после этого цикл повторялся.
Двигатель работал в импульсном режиме с частотой ~12 и/минуту.

Спустя некоторое время, братья усовершенствовали топливо добавив в него смолу, а позже заменили его нефтью и сконструировали простую систему впрыска.
В течении следующих десяти лет проект не получил никакого развития. Клод уехал в Англию с целью продвижения идеи двигателя, но растратил все деньги и ничего не добился, а Джозеф занялся фотографией и стал автором первой в мире фотографии «Вид из окна».

Принято считать, что братья Ньепс были авторами первой в мире системы впрыска.

Во Франции, в доме-музее Ньепсов, выставлена реплика «Pyreolophore».

Справа стоит самокат (дрезина — лат. быстроя нога), который Джозеф Ньепс построил в 1817 году.


В том же 1807 году, швейцарский изобретатель Франсуа Исаак де Рива сконструировал двигатель внутреннего сгорания с электрическим зажиганием. Топливом для двигателя служил водород, а идею электрического поджига, де Рива позаимствовал у Алессандро Вольта.

Чуть позже, де Рива водрузил свой двигатель на четырёхколёсную повозку, которая, по мнению историков, стала первым автомобилем с ДВС.

Про Алессандро ВольтаВольта впервые поместил пластины из цинка и меди в кислоту, чтобы получить непрерывный электрический ток, создав первый в мире химический источник тока («Вольтов столб»).

В 1776 г. Вольта изобрел газовый пистолет — «пистолет Вольты», в котором газ взрывался от электрической искры.

В 1800 году построил химическую батарею, что позволило получать электричество с помощью химических реакций.

Именем Вольты названа единица измерения электрического напряжения — Вольт.


A — цилиндр, B — «свеча» зажигания, C — поршень, D — «воздушный» шар с водородом, E — храповик, F — клапан сброса отработанных газов, G — рукоятка для управления клапаном.

Водород хранился в «воздушном» шаре соединённым трубой с цилиндром. Подача топлива и воздуха, а так же поджиг смеси и выброс отработанных газов осуществлялись вручную, с помощью рычагов.

Принцип работы:

• Через клапан сброса отработанных газов в камеру сгорания поступал воздух.
• Клапан закрывался.
• Открывался кран подачи водорода из шара.
• Кран закрывался.
• Нажатием на кнопку подавался электрический разряд на «свечу».
• Смесь вспыхивала и поднимала поршень вверх.
• Открывался клапан сброса отработанных газов.
• Поршень падал под собственным весом (он был тяжёлый) и тянул верёвку, которая через блок поворачивала колёса.

После этого цикл повторялся.

В 1813 году де Рива построил ещё один автомобиль. Это была повозка длиной около шести метров, с колесами двухметрового диаметра и весившея почти тонну.
Машина смогла проехать 26 метров с грузом камней (около 700 фунтов) и четырьмя мужчинами, со скоростью 3 км/ч.
С каждым циклом, машина перемещалась на 4-6 метров.

Мало кто из его современников серьезно относился к этому изобретению, а Французская Академия Наук утверждала, что двигатель внутреннего сгорания никогда не будет конкурировать по производительности с паровой машиной.

В Парижском «Музее искусств и ремёсел» экспонируется модель автомобиля Франсуа де Рива.


В 1825 году, английский инженер и изобретатель Сэмюэль Браун, создал двигатель работающий на газе (водород).

Принцип работы двигателя основывался на сжигании воздуха в цилиндре, что приводило к созданию вакуума и втягивании поршня, а для более эффективного охлаждения, цилиндр окружала водяная рубашка.

Двигатель использовался для перекачки воды и для приведения в движение речных судов. Браун создал компанию по производству двигателей для лодок и барж, некоторые из которых достигали скорости 14 км/ч. Тем не менее, предприятие оказалось неудачным из-за перебоев с поставками топлива и высокой стоимости.


В 1826 году, Сэмюэль Мори, пионер американского «паростроения», запатентовал двигатель внутреннего сгорания работающий на скипидаре и спирте.

Двигатель имел много общего с современными, он состоял из двух цилиндров с водяной рубашкой, карбюратора и выпускных клапанов.

Информации очень мало, поэтому пишу что есть:

Мори продемонстрировал свой ​​двигатель в Нью-Йорке и Филадельфии, о чём есть свидетельства очевидцев. Двигатели были установлены на лодку и на телегу. Во время демонстрации «автомобиля», Мори не справился с управлением и съехал в канаву. Это была первая в США поездка на автомобиле. Несмотря на успех, Мори не смог найти покупателя.

Популяризатором идеи Мори был Чарльз Дьюри, изобретатель, сконструировавший первый бензиновый двигатель в Америке. Он профинансировал создание двух рабочих реплик двигателя Мори, одна из которых находится в распоряжении Смитсоновского института, а другая принадлежит Дин Камен.


В 1833 году, американский изобретатель Лемюэль Веллман Райт, зарегистрировал патент на двухтактный газовый двигатель внутреннего сгорания с водяным охлаждением.

Дугалд Клерк (см. ниже) в своей книге «Gas and Oil Engines» написал о двигателе Райта следующее:

«Чертеж двигателя весьма функционален, а детали тщательно проработаны. Взрыв смеси действует непосредственно на поршень, который через шатун вращает кривошипный вал. По внешнему виду двигатель напоминает паровую машину высокого давления, в которой газ и воздух подаются с помощью насосов из отдельных резервуаров. Смесь, находящаяся в сферических ёмкостях поджигалась во время подъёма поршня в ВМТ (верхняя мёртвая точка) и толкала его вниз/вверх. В конце такта открывался клапан и выбрасывал выхлопные газы в атмосферу.»

Неизвестно, был ли когда-либо этот двигатель построен, однако есть его чертёж:


В 1838 году, английский инженер Уильям Барнетт получил патент на три двигателя внутреннего сгорания.

Первый двигатель — двухтактный одностороннего действия (топливо горело только с одной стороны поршня) с отдельными насосами для газа и воздуха. Поджиг смеси происходил в отдельном цилиндре, а потом горящая смесь перетекала в рабочий цилиндр. Впуск и выпуск осуществлялся через механические клапана.

Второй двигатель повторял первый, но был двойного действия, то есть горение происходило попеременно с обоих сторон поршня.

Третий двигатель, так же был двойного действия, но имел впускные и выпускные окна в стенках цилиндра открывающееся в момент достижения поршнем крайней точки (как в современных двухтактниках). Это позволяло автоматически выпускать выхлопные газы и впускать новый заряд смеси.

Отличительной особенностью двигателя Барнетта было то, что свежая смесь сжималась поршнем перед воспламенением.

Чертёж одного из двигателей Барнетта:


В 1853-57 годах, итальянские изобретатели Еугенио Барзанти и Феличе Маттеуччи разработали и запатентовали двухцилиндровый двигатель внутреннего сгорания мощность 5 л/с.
Патент был выдан Лондонским бюро так как итальянское законодательство не могло гарантировать достаточную защиту.

Строительство прототипа было поручено компании «Bauer & Co. of Milan» (Helvetica), и завершено в начале 1863 года. Успех двигателя, который был гораздо более эффективным чем паровая машина, оказался настолько велик, что компания стала получать заказы со всего света.

Ранний, одноцилиндровый двигатель Барзанти-Маттеуччи:

Модель двухцилиндрового двигателя Барзанти-Маттеуччи:

Маттеуччи и Барзанти заключили соглашение на производство двигателя с одной из бельгийских компаний. Барзанти отбыл в Бельгию для наблюдения за работой лично и внезапно умер от тифа. Со смертью Барзанти все работы по двигателю были прекращены, а Маттеуччи вернулся к своей прежней работе в качестве инженера-гидравлика.

В 1877 году, Маттеуччи утверждал, что он с Барзанти были главными создателями двигателя внутреннего сгорания, а двигатель построенный Августом Отто очень походил на двигатель Барзанти-Маттеуччи.

Документы касающиеся патентов Барзанти и Маттеуччи хранятся в архиве библиотеки Museo Galileo во Флоренции.

Национальный музей науки и техники Леонардо да Винчи в Милане.


В 1860 году, бельгийский инженер Жан Жозеф Этьен Ленуар построил двигатель внутреннего сгорания с водяным охлаждением, представлявший собой переделанную одноцилиндровую горизонтальную паровую машину двойного действия, работавший на смеси воздуха и светильного газа с электрическим искровым зажиганием. Мощность двигателя составляла 12 л/с.

Двигатели Ленуара использовались как стационарные, судовые, на локомотивах и на дорожных экипажах.

Современная модель:

Принцип работы прост: смесь, с помощью одного золотникового устройства, попеременно подавалась в полости цилиндра и поджигалась от «свечи», а через другой золотник выбрасывались отработанные газы.

Золотник

В зависимости от положения золотника, окна (4) и (5) сообщаются с замкнутым пространством (6) окружающим золотник и заполненным паром, или с полостью 7, соединённой с атмосферой или конденсатором.

Это был первый коммерчески успешный двигатель внутреннего сгорания. К 1865 году более 400 единиц использовались во Франции и около 1000 в Великобритании.


Двигатель Ленуара. «Музей искусств и ремёсел». Париж.

В 1862 году Ленуар построил первый автомобиль с двигателем внутреннего сгорания, адаптировав свой ​​двигатель для работы на жидком топливе.

Даже капот есть

После появления четырёхтактного двигателя конструкции Николауса Отто, двигатель Ленуара быстро потерял свои позиции на рынке.


В 1861 году, французский инженер Альфонс Эжен Бо де Роша получил патент на четырёхтактный двигатель внутреннего сгорания. Проект был реализован только на бумаге.

Картинок я не нашёл.


В 1863 году, Николаус Август Отто и Карл Ойген Ланген сконструировали атмосферный двигатель внутреннего сгорания и основали завод по его производству «N. A. Otto & Cie».

В 1867 году на «Парижской Всемирной Выставке» их двигатель был удостоен золотой медали.

После банкротства в 1872 году, Ланген и Отто основали новую компанию, которая сегодня известна как «Deutz AG». На должность топ-менеджера был принят Готлиб Даймлер, который в свою очередь, взял на должность главного конструктора своего друга Вильгельма Майбаха.

Самым главным изобретением Николауса Отто был двигатель с четырёхтактным циклом — циклом Отто. Этот цикл по сей день лежит в основе работы большинства газовых и бензиновых двигателей.

Четырёхтактный цикл был самым большим техническим достижением Отто, но вскоре обнаружилось, что за несколько лет до его изобретения точно такой же принцип работы двигателя был описан французским инженером Бо де Роша (см. выше). Группа французских промышленников оспорила патент Отто в суде, суд счёл их доводы убедительными. Права Отто, вытекавшие из его патента, были значительно сокращены, в том числе было аннулировано его монопольное право на четырёхтактный цикл.

Не смотря на то, что конкуренты наладили выпуск четырёхтактных двигателей, отработанная многолетним опытом модель Отто всё равно была лучшей, и спрос на неё не прекращался. К 1897 году было выпущено около 42 тысяч таких двигателей разной мощности. Однако то обстоятельство, что в качестве топлива использовался светильный газ, сильно суживало область их применения.
Количество светильногазовых заводов было незначительно даже в Европе, а в России их вообще было только два — в Москве и Петербурге.


В 1865 году, французкий изобретатель Пьер Хьюго получил патент на машину представлявшую собой вертикальный одноцилиндровый двигатель двойного действия, в котором для подачи смеси использовались два резиновых насоса, приводимых в действие от коленчатого вала.

Позже Хьюго сконструировал горизонтальный двигатель схожий с двигателем Ленуара.


Science Museum, London.


В 1870 году, австро-венгерский изобретатель Сэмюэль Маркус Зигфрид сконструировал двигатель внутреннего сгорания работающий на жидком топливе и установил его на четырёхколёсную тележку.

Сегодня этот автомобиль хорошо известен как «The first Marcus Car».

В 1887 году, в сотрудничестве с компанией «Bromovsky & Schulz», Маркус построил второй автомобиль — «Second Marcus Car».

Technisches Museum Wien


В 1872 году, американский изобретатель Джордж Брайтон запатентовал двухцилиндровый двигатель внутреннего сгорания постоянного давления, работающий на керосине.
Брайтон назвал свой двигатель «Ready Motor».

Первый цилиндр выполнял функцию компрессора, нагнетавшего воздух в камеру сгорания, в которую непрерывно поступал и керосин. В камере сгорания смесь поджигалась и через золотниковый механизм поступало во второй — рабочий цилиндр. Существенным отличием от других двигателей, было то, что топливовоздушная смесь сгорала постепенно и при постоянном давлении.

Интересующиеся термодинамическими аспектами двигателя, могут почитать про «Цикл Брайтона».


В 1878 году, шотландский инженер Сэр (в 1917 году посвящён в рыцари) Дугалд Клерк разработал первый двухтактный двигатель с воспламенением сжатой смеси. Он запатентовал его в Англии в 1881 году.

Двигатель работал любопытным образом: в правый цилиндр подавался воздух и топливо, там оно смешивалось и эта смесь выталкивалась в левый цилиндр, где и происходило поджигание смеси от свечи. Происходило расширение, оба поршня опускались, из левого цилиндра (через левый патрубок) выбрасывались выхлопные газы, а в правый цилиндр всасывалась новая порция воздуха и топлива. Следуя по инерции поршни поднимались и цикл повторялся.


В 1879 году, Карл Бенц, построил вполне надежный бензиновый двухтактный двигатель и получил на него патент.

Однако настоящий гений Бенца проявился в том, что в последующих проектах он сумел совместить различные устройства (дроссель, зажигание с помощью искры с батареи, свеча зажигания, карбюратор, сцепление, КПП и радиатор) на своих изделиях, что в свою очередь стало стандартом для всего машиностроения.

В 1883 году, Бенц основал компанию «Benz & Cie» по производству газовых двигателей и в 1886 году запатентовал четырехтактный двигатель, который он использован на своих автомобилях.

Благодаря успеху компании «Benz & Cie», Бенц смог заняться проектированием безлошадных экипажей. Совместив опыт изготовления двигателей и давнишнее хобби — конструирование велосипедов, к 1886-му году он построил свой первый автомобиль и назвал его «Benz Patent Motorwagen».


Конструкция сильно напоминает трехколёсный велосипед.

Одноцилиндровый четырёхтактный двигатель внутреннего сгорания рабочим объёмом 954 см3., установленный на «Benz Patent Motorwagen«.

Двигатель был оснащён большим маховиком (использовался не только для равномерного вращения, но и для запуска), бензобаком на 4,5 л., карбюратором испарительного типа и золотниковым клапаном, через который топливо поступало в камеру сгорания. Воспламенение производилось свечой зажигания собственной конструкции Бенца, напряжение на которую подавалось от катушки Румкорфа.

Охлаждение было водяным, но не замкнутого цикла, а испарительным. Пар уходил в атмосферу, так что заправлять автомобиль приходилось не только бензином, но и водой.

Двигатель развивал мощность 0,9 л.с. при 400 об/мин и разгонял автомобиль до 16 км/ч.

Карл Бенц за «рулём» своего авто.

Чуть позже, в 1896 году, Карл Бенц изобрел оппозитный двигатель (или плоский двигатель), в котором поршни достигают верхней мертвой точки в одно и то же время, тем самым уравновешивая друг друга.


Музей «Mercedes-Benz» в Штутгарте.


В 1882 году, английский инженер Джеймс Аткинсон придумал цикл Аткинсона и двигатель Аткинсона.

Двигатель Аткинсона — это по существу двигатель, работающий по четырёхтактному циклу Отто, но с измененным кривошипно-шатунным механизмом. Отличие заключалось в том, что в двигателе Аткинсона все четыре такта происходили за один оборот коленчатого вала.

Использование цикла Аткинсона в двигателе позволяло уменьшить потребление топлива и снизить уровень шума при работе за счёт меньшего давления при выпуске. Кроме того, в этом двигателе не требовалось редуктора для привода газораспределительного механизма, так как открытие клапанов приводил в движение коленчатый вал.

Не смотря на ряд преимуществ (включая обход патентов Отто) двигатель не получил широкого распространения из-за сложности изготовления и некоторых других недостатков.
Цикл Аткинсона позволяет получить лучшие экологические показатели и экономичность, но требует высоких оборотов. На малых оборотах выдаёт сравнительно малый момент и может заглохнуть.

Сейчас двигатель Аткинсона применяется на гибридных автомобилях «Toyota Prius» и «Lexus HS 250h».


В 1884 году, британский инженер Эдвард Батлер, на лондонской выставке велосипедов «Stanley Cycle Show» продемонстрировал чертежи трёхколёсного автомобиля с бензиновым двигателем внутреннего сгорания, а в 1885 году построил его и показал на той же выставке, назвав «Velocycle». Так же, Батлер был первым кто использовал слово бензин.

Патент на «Velocycle» был выдан в 1887 году.

На «Velocycle» был установлен одноцилиндровый, четырёхтактный бензиновый ДВС оснащенный катушкой зажигания, карбюратором, дросселем и жидкостным охлаждением. Двигатель развивал мощность около 5 л.с. при объёме 600 см3, и разгонял автомобиль до 16 км/ч.

На протяжении многих лет Батлер улучшал характеристики своего транспортного средства, но был лишен возможности его тестировать из-за «Закона Красного Флага» (издан в 1865 году), согласно которому транспортные средства не должны были превышать скорость свыше 3 км/ч. Кроме того, в автомобиле должны были присутствовать три человека, один из которых должен был идти перед автомобилем с красным флагом (такие вот меры безопасности).

В журнале «Английский Механик» от 1890 года, Батлер написал — «Власти запрещают использование автомобиля на дорогах, в следствии чего я отказываюсь от дальнейшего развития.»

Из-за отсутствия общественного интереса к автомобилю, Батлер разобрал его на металлолом, и продал патентные права Гарри Дж. Лоусону (производителю велосипедов), который продолжил производство двигателя для использования на катерах.

Сам же Батлер перешёл к созданию стационарных и судовых двигателей.

В 1900 году, в журнале «Autocar», Батлер опубликовал статью следующего содержания:

«Теперь, когда внимание общественности приковано к немецким изобретателям — Бенцу и Даймлеру, я надеюсь, что вы найдёте место в вашем журнале для иллюстрации небольшого бензинового автомобиля, который я считаю, был сделан абсолютно первым в этой стране.
Я не могу утверждать, что сделал очень много, однако я проводил свои эксперименты в то время, когда прогресс тормозился из-за предрассудков людей и отсутствия интереса. Тем не менее, часть моих идей до сих пор используется во многих типах двигателей.»


В 1889 году, на Всемирной выставке в Париже, французский инженер Феликс Милле представил и запатентовал 5-цилиндровый ротационный (не роторный) двигатель, встроенный в колесо велосипеда.


Мотоцикл Феликса Милле, 1897 год.

Ротационный двигатель основан на стандартном цикле Отто, но вместо вращения коленчатого вала вращается весь двигатель выступая в роли маховика, а коленчатый вал стоит на месте.

Подобные двигатели широко использовались в авиации во времена Первой мировой войны.

Достоинства и недостатки этих двигателей будут описаны в отдельной статье, однако интересующиеся могут почитать википедию.


В 1891 году, Герберт Эйкройд Стюарт в сотрудничестве с компанией «Richard Hornsby and Sons» построил двигатель «Hornsby-Akroyd», в котором топливо (керосин) под давлением впрыскивалось в дополнительную камеру (из-за формы её называли «горячий шарик»), установленную на головке блока цилиндров и соединённую с камерой сгорания узким проходом. Топливо воспламенялось от горячих стенок дополнительной камеры и устремлялось в камеру сгорания.


1. Дополнительная камера (горячий шарик).
2. Цилиндр.
3. Поршень.
4. Картер.

Для запуска двигателя использовалась паяльная лампа, которой нагревали дополнительную камеру (после запуска она подогревалась выхлопными газами). Из-за этого двигатель «Hornsby-Akroyd», который был предшественником дизельного двигателя сконструированного Рудольфом Дизелем, часто называли «полу-дизелем». Однако спустя год Эйкройд усовершенствовал свой двигатель добавив к нему «водяную рубашку» (патент от 1892 г.), что позволило повысить температуру в камере сгорания за счёт увеличения степени сжатия, и теперь уже не было необходимости в дополнительном источнике нагрева.


В 1893 году, Рудольф Дизель получил патенты на тепловой двигатель и модифицированный «цикл Карно» под названием «Метод и аппарат для преобразования высокой температуры в работу».

В 1897 году, на «Аугсбургском машиностроительном заводе» (с 1904 года MAN), при финансовом участии компаний Фридриха Круппа и братьев Зульцер, был создан первый функционирующий дизель Рудольфа Дизеля
Мощность двигателя составляла 20 лошадиных сил при 172 оборотах в минуту, КПД 26,2 % при весе пять тонн.
Это намного превосходило существующие двигатели Отто с КПД 20 % и судовые паровые турбины с КПД 12 %, что вызвало живейший интерес промышленности в разных странах.

Двигатель Дизеля был четырёхтактным. Изобретатель установил, что КПД двигателя внутреннего сгорания повышается от увеличения степени сжатия горючей смеси. Но сильно сжимать горючую смесь нельзя, потому что тогда повышаются давление и температура и она самовоспламеняется раньше времени. Поэтому Дизель решил сжимать не горючую смесь, а чистый воздух и концу сжатия впрыскивать топливо в цилиндр под сильным давлением.
Так как температура сжатого воздуха достигала 600—650 °C, топливо самовоспламенялось, и газы, расширяясь, двигали поршень. Таким образом Дизелю удалось значительно повысить КПД двигателя, избавиться от системы зажигания, а вместо карбюратора использовать топливный насос высокого давления (ТНВД).

Позднее, в 1900 году, на «Всемирной выставке», Рудольф Дизель продемонстрировал двигатель работающий на арахисовом масле (биодизель).


В 1903 году, норвежский изобретатель Эгидий Эллинг построил первую газовую турбину, развивавшую мощность в 11 лошадиных сил. Патент на это изобретение он получил ещё в 1884 году.

К 1904-му году мощность турбины была увеличена до 44 лошадиных сил, а к 1932-му году турбина уже развивала мощность около 75 лошадиных сил.

В 1933 году Эллинг пророчески писал: «Когда я начал работать над газовой турбиной в 1882 году, я был твёрдо уверен в том, что моё изобретение будет востребовано в авиастроении.»

К сожалению, Эллинг умер в 1949 году, так и не дожив до наступления эры турбореактивной авиации.


Единственное фото, которое удалось найти.

Возможно кто-то найдёт что-либо об этом человеке в «Норвежском музее техники».


В 1903 году, Константин Эдуардович Циолковский, в журнале «Научное обозрение» опубликовал статью «Исследование мировых пространств реактивными приборами», где впервые доказал, что аппаратом, способным совершить космический полёт, является ракета. В статье был предложен и первый проект ракеты дальнего действия. Корпус её представлял собой продолговатую металлическую камеру, снабжённую жидкостным реактивным двигателем (который тоже является двигателем внутреннего сгорания). В качестве горючего и окислителя он предлагал использовать соответственно жидкие водород и кислород.


Наверное на этой ракетно-космической ноте и стоит закончить историческую часть, так как наступил 20-ый век и Двигатели Внутреннего Сгорания стали производиться повсеместно.

Философское послесловие…

К.Э. Циолковский полагал, что в обозримом будущем люди научатся жить если не вечно, то по крайней мере очень долго. В связи с этим на Земле будет мало места (ресурсов) и потребуются корабли для переселения на другие планеты. К сожалению, что-то в этом мире пошло не так, и с помощью первых ракет люди решили просто уничтожать себе подобных…

Спасибо всем кто прочитал.

Все права защищены © 2016 istarik.ru
Любое использование материалов допускается только с указанием активной ссылки на источник.

Основы двигателя внутреннего сгорания | Министерство энергетики

Двигатели внутреннего сгорания обеспечивают исключительную управляемость и долговечность, поскольку на них полагается более 250 миллионов транспортных средств в Соединенных Штатах. Наряду с бензином или дизельным топливом они также могут использовать возобновляемое или альтернативное топливо (например, природный газ, пропан, биодизель или этанол). Их также можно комбинировать с гибридными электрическими трансмиссиями для увеличения экономии топлива или с подключаемыми гибридными электрическими системами для расширения ассортимента гибридных электромобилей.

Как работает двигатель внутреннего сгорания?

Горение, также известное как сжигание, является основным химическим процессом выделения энергии из смеси топлива и воздуха. В двигателе внутреннего сгорания (ДВС) воспламенение и сгорание топлива происходит внутри самого двигателя. Затем двигатель частично преобразует энергию от сгорания для работы. Двигатель состоит из неподвижного цилиндра и движущегося поршня. Расширяющиеся газы сгорания толкают поршень, который в свою очередь вращает коленчатый вал.В конечном счете, благодаря системе передач в трансмиссии это движение приводит в движение колеса автомобиля.

В настоящее время производится два вида двигателей внутреннего сгорания: бензиновый двигатель с искровым зажиганием и дизельный двигатель с воспламенением от сжатия. Большинство из них — четырехтактные двигатели, что означает, что для завершения цикла необходимы четыре поршневых хода. Цикл включает в себя четыре различных процесса: впуск, сжатие, сгорание и рабочий ход, а также выхлоп.

Бензиновые и дизельные двигатели с искровым зажиганием отличаются тем, как они подают и поджигают топливо.В двигателе с искровым зажиганием топливо смешивается с воздухом и затем вводится в цилиндр во время процесса впуска. После того, как поршень сжимает топливовоздушную смесь, искра зажигает ее, вызывая сгорание. Расширение газов сгорания толкает поршень во время рабочего хода. В дизельном двигателе только воздух вводится в двигатель и затем сжимается. Дизельные двигатели затем распыляют топливо в горячий сжатый воздух с подходящей, измеренной скоростью, вызывая его воспламенение.

Улучшение двигателей внутреннего сгорания

За последние 30 лет научные исследования и разработки помогли производителям сократить выбросы ДВС от загрязняющих веществ, таких как оксиды азота (NOx) и твердые частицы (ТЧ), более чем на 99% в соответствии с нормами выбросов EPA. ,Исследования также привели к улучшению характеристик ДВС (лошадиных сил и времени разгона 0-60 миль в час) и эффективности, помогая производителям поддерживать или увеличивать экономию топлива.

Узнайте больше о наших передовых исследованиях и разработках двигателей внутреннего сгорания, направленных на то, чтобы сделать двигатели внутреннего сгорания более энергоэффективными с минимальными выбросами.

Как рассчитать объемную эффективность двигателя внутреннего сгорания — x-engineer.org

Для теплового двигателя процесс сгорания зависит от соотношения воздух-топливо внутри цилиндра. Чем больше воздуха мы можем получить внутри камеры сгорания, тем больше топлива мы можем сжечь, тем выше крутящий момент и мощность двигателя.

Поскольку воздух имеет массу, он обладает инерцией. Кроме того, впускной коллектор, клапаны и дроссель действуют как ограничения для потока воздуха в цилиндры.По объемной эффективности мы измеряем мощность двигателя, чтобы заполнить имеющийся геометрический объем двигателя воздухом. Это можно рассматривать как соотношение между объемом воздуха, оттянутого цилиндром (реальным), и геометрическим объемом цилиндра (теоретическим).

Большинство двигателей внутреннего сгорания, используемых в настоящее время на дорожных транспортных средствах, имеют фиксированную объемную мощность (рабочий объем), определяемую геометрией цилиндра и кривошипно-шатунного механизма. Строго говоря, общий объем двигателя V т 3 ] рассчитывается как функция от общего числа цилиндров n c [-] и объема одного цилиндра V цил 3 ] .

\ [V_t = n_c \ cdot V_ {cyl} \ tag {1} \]

Общий объем цилиндра представляет собой сумму между смещенным (развернутым) объемом В d 3 ] и свободный объем В с 3 ] .

\ [V_ {cyl} = V_d + V_c \ tag {2} \]

Объем зазора очень мал по сравнению с объемом вытеснения (например, соотношение 1:12), поэтому им можно пренебречь при расчете объемной эффективности двигатель.

Изображение: Основные параметры геометрии поршня и цилиндра двигателей внутреннего сгорания

, где:

IV — впускной клапан
EV — выпускной клапан
TDC — верхняя мертвая точка
BDC — нижняя мертвая точка
B — отверстие цилиндра
S — поршень ход
r — длина шатуна
a — радиус кривошипа (смещение)
x — расстояние между осью кривошипа и осью поршневого пальца
θ — угол поворота коленчатого вала
Vd — объем смещения (развёртка)
Vc — зазор

The объемная эффективность η v [-] определяется как отношение фактического (измеренного) объема всасываемого воздуха V к 3 ] , втянутого в цилиндр / двигатель, и теоретического объема двигатель / цилиндр V d 3 ], во время цикла впуска двигателя.

\ [\ eta_v = \ frac {V_a} {V_d} \ tag {3} \]

Объемный КПД можно рассматривать также как КПД двигателя внутреннего сгорания для заполнения цилиндров всасываемым воздухом. Чем выше объемный КПД, тем выше объем всасываемого воздуха в двигателе.

В двигателях с непрямым впрыском топлива (в основном, бензин) всасываемый воздух смешивается с топливом. Поскольку количество топлива относительно мало (соотношение 1: 14,7) по сравнению с количеством воздуха, мы можем пренебречь топливной массой для расчета объемной эффективности.

Фактический объем всасываемого воздуха можно рассчитать как функцию массы воздуха м a [кг] и плотности воздуха ρ a [кг / м 3 ] :

\ [V_a = \ frac {m_a] } {\ rho_a} \ tag {4} \]

Замена (4) в (3) дает объемную эффективность, равную:

\ [\ eta_v = \ frac {m_a} {\ rho_a \ cdot V_d} \ tag {5 } \]

Обычно на динамометрическом стенде двигателя массовый расход всасываемого воздуха измеряется [кг / с] вместо массы воздуха [кг] . Поэтому нам необходимо использовать массовый расход воздуха для расчета объемной эффективности.

\ [\ dot {m} _a = \ frac {m_a \ cdot N_e} {n_r} \ tag {6} \]

где:

N e [г / с] — частота вращения двигателя
n r [-] — число оборотов коленчатого вала за полный цикл двигателя (для 4-тактного двигателя n r = 2 )

Из уравнения (6) можно записать массу всасываемого воздуха как:

\ [m_a = \ frac {\ dot {m} _a \ cdot n_r} {N_e} \ tag {7} \]

Замена (7) в (5) дает объемную эффективность, равную:

\ [\ bbox [# FFFF9D] {\ eta_v = \ frac {\ dot {m} _a \ cdot n_r} {\ rho_a \ cdot V_d \ cdot N_e}} \ tag {8} \]

Объемная эффективность — максимум 1.00 (или 100%). При этом значении двигатель способен всасывать весь теоретический объем воздуха, доступного в двигатель. Существуют особые случаи, когда двигатель специально рассчитан на одну рабочую точку, для которой объемный КПД может быть немного выше, чем 100%.

Если давление воздуха на впуске p a [Па] и температура T a [K] измеряются во впускном коллекторе, плотность воздуха на впуске можно рассчитать как:

\ [\ rho_a = \ frac {p_a} {R_a \ cdot T_a} \ tag {9} \]

, где:

ρ a [кг / м 3 ] — плотность воздуха на впуске
p a [Па] — давление воздуха на впуске
T a [K] — температура воздуха на впуске
R a [Дж / кгK] — газовая постоянная для сухого воздуха (равна 286.{-3} \ cdot \ frac {1000} {60}} = 0,7091081 = 70,91 \ text {%} \]

Объем двигателя был преобразован с л до м 3 , а частота вращения двигателя — об / мин. От до rps .

Изображение: функция объемного КПД давления воздуха на впуске и частоты вращения двигателя

Объемная эффективность двигателя внутреннего сгорания зависит от нескольких факторов, таких как:

  • геометрия впускного коллектора
  • давление впускного воздуха
  • впускного воздуха температура
  • массовый расход всасываемого воздуха (который зависит от частоты вращения двигателя)

Обычно двигатели рассчитаны на максимальный объемный КПД при средней / высокой частоте вращения и нагрузке двигателя.

Вы также можете проверить свои результаты, используя калькулятор ниже.

Калькулятор объемной эффективности

Если у вас есть вопросы или замечания относительно этого руководства, пожалуйста, используйте форму комментариев ниже.

Не забудьте лайкать, делиться и подписываться!

КПД преобразования топлива — x-engineer.org

Двигатели внутреннего сгорания производят механическую работу (мощность) при сжигании топлива. Во время процесса сгорания топливо окисляется (сгорает). Этот термодинамический процесс выделяет тепла , которое частично преобразуется в механической энергии .

Рассмотрим двигатель внутреннего сгорания как систему с определенной границей. В исходном состоянии двигатель будет содержать около реагентов, , в основном топливо и воздух.После процесса сгорания двигатель будет находиться в конечном состоянии, содержащем продуктов сгорания (выхлопные газы).

Изображение: схема процесса сгорания

Применение первого закона термодинамики к нашей двигательной системе, между начальным и конечным состоянием, дает:

\ [Q_ {RP} — W_ {RP} = U_P — U_R \ tag { 1} \]

где:

Q [Дж] — теплопередача
Вт [Дж] — механическая работа
U [Дж] — внутренняя энергия
Т [К] — температура
p [Па] — давление
В [м 3 ] — объем

Эффективность сгорания

В реальных двигателях процесс сгорания является неполным .Это означает, что не все энергосодержание топлива, подаваемого в двигатель, выделяется в процессе сгорания. Существует несколько факторов, которые могут влиять на процесс сгорания, наиболее важными из которых являются впуск топлива и распыление топлива (размер капель).

Топливо внутри цилиндра нуждается в воздухе (кислороде) для горения. Если кислорода недостаточно, сгорает не все топливо, поэтому при сгорании выделяется только частичная энергия (например, около 96%).

Если мы проанализируем выхлопной газ двигателя внутреннего сгорания, мы увидим, что он содержит как неполных продукта сгорания, (угарный газ CO, оксиды азота NO x , несгоревшие углеводороды HC, сажа PM), так и полных продуктов сгорания. (диоксид углерода CO 2 и вода H 2 O).

Изображение: функция эффективности сгорания при соотношении топливно-воздушной эквивалентности

Если двигатель работает в условиях с обедненной рабочей средой , количество неполных продуктов сгорания невелико из-за избытка кислорода. При богатых рабочих условиях эти количества становятся более существенными, так как кислорода недостаточно для завершения сгорания топлива.

Поскольку часть химической энергии топлива не полностью выделяется внутри двигателя во время процесса сгорания, полезно определить эффективность сгорания.

Эффективность сгорания η c [-] определяется как отношение энергии, выделяемой сгоревшим топливом, к теоретическому содержанию энергии в топливной массе в течение одного полного цикла двигателя.

\ [\ eta_c = \ frac {H_R (T_A) — H_P (T_A)} {m_f \ cdot Q_ {HV}} \ tag {2} \]

, где:

H R [J] — энтальпия ( внутренняя энергия) реагента
H P [Дж] — энтальпия (внутренняя энергия) продукта
T A [K] — температура окружающей среды
м f [кг] — масса топлива, введенная за цикл
Q HV [Дж / кг] — теплотворная способность топлива

Теплотворная способность

Теплотворная способность (также известная как энергетическая ценность или теплотворная способность ) фиксированного количества топлива, является количеством тепла выпущен во время его сгорания.Теплотворная способность топлива — это величина теплоты реакции, измеренная при постоянном давлении / объеме и стандартной температуре (26 ° C) для полного сгорания единицы массы топлива.

Любое топливо имеет два типа теплотворной способности:

  • с более высокой теплотворной способностью (HHV), также известной как валовые теплотворные способности
  • с более низкой теплотворной способностью (LHV), также известной как чистая теплотворная способность (определяется по вычитая теплоту испарения воды из более высокой теплотворной способности)

В качестве примера в приведенной ниже таблице мы видим теплотворную способность для наиболее распространенных и альтернативных видов топлива, используемых в двигателях внутреннего сгорания:

Топливо Более низкая теплотворная способность [МДж / кг] Более высокая теплотворная способность [МДж / кг]
Водород 119.96 141,88
Природный газ 47,13 52,21
Обычный бензин 43,44 46,52
Обычные дизель 42,78 45,76
Этанол 26,95 29,84
Сжиженный нефтяной газ (СНГ) 46,60 50,14
Сжиженный природный газ (СПГ) 48.62 55.19
Бутан 45.27 49.20
Пропан 46.28 50.22

Тепловая конверсия КПД фактическая теплопроизводительность

Тепловая теплопроизводительность коэффициент полезного действия

Тепловая теплопроизводительность, коэффициент фактической теплопроводности, коэффициент полезного действия

Тепловая конверсия, коэффициент полезного действия

Тепловая конверсия, коэффициент полезного действия

Тепловая конверсия, коэффициент полезного действия

Тепловая конверсия, коэффициент полезного действия

Тепловая конверсия, коэффициент полезного действия

Тепловая теплопроводность Химическая энергия выделяется в процессе горения.

Эффективность термического преобразования определяется как соотношение между работой за цикл W c [Дж] и энергией, выделяемой сгоревшим топливом.

\ [\ eta_t = \ frac {W_c} {H_R (T_A) — H_P (T_A)} \ tag {3} \]

Коэффициент термического преобразования показывает, сколько сгоревшего топлива превращается в полезную механическую работу.

Эффективность преобразования топлива

Эффективность преобразования топлива определяется как соотношение между полезной механической работой, производимой двигателем, и теоретическим содержанием энергии в массе топлива.

\ [\ eta_f = \ frac {W_c} {m_f \ cdot Q_ {HV}} \ tag {4} \]

работы за цикл Вт c [Дж] можно записать как функцию мощности и скорости двигателя :

\ [W_c = \ frac {P \ cdot n_R} {N} \ tag {5} \]

, где:

P [Вт] — мощность двигателя (указано)
Н [об / с] — частота вращения двигателя
n R [-] — число оборотов коленчатого вала для каждого рабочего такта на цилиндр

Масса топлива , используемая за цикл двигателя, м f [кг] может быть записана как функция массового расхода топлива и частоты вращения двигателя:

\ [m_f = \ frac {\ dot {m} _f \ cdot n_R} {N} \ tag {6} \]

, где m f (точка) [кг / с] — массовый расход топлива.

Замена (5) и (6) на (4) дает выражение функции эффективности преобразования топлива в зависимости от мощности двигателя, массового расхода топлива и значения нагрева топлива:

\ [\ eta_f = \ frac {P} {\ dot {m} _f \ cdot Q_ {HV}} \ tag {7} \]

Удельный расход топлива двигателем SFC [кг / Дж] — это соотношение между массовым расходом топлива и указанной мощностью двигателя:

\ [SFC = \ frac {\ dot {m} _f} {P} \ tag {8} \]

Замена (8) в (7) дает выражение функции эффективности преобразования топлива для удельного расхода топлива и значения нагрева топлива:

\ [ \ eta_f = \ frac {1} {\ text {SFC} \ cdot Q_ {HV}} \ tag {9} \]

Эффективность преобразования топлива также зависит от эффективности сгорания и эффективности термического преобразования.6} = 0,307 \]

КПД преобразования топлива в двигателе составляет 30,7%.

Не забудьте лайкать, делиться и подписываться!

Оценка работы двигателя внутреннего сгорания

Рис. 1 — Давление и температура окружающего воздуха могут влиять на мощность двигателя. Обратите внимание, что в случае более высоких температур снижение характеристик начинается уже на малых высотах. Это показывает, насколько важно использовать полную информацию об условиях сайта. (Нажмите на изображение для полного просмотра.)


Нагрузка

Очевидно, что эффективность двигателя зависит от его нагрузки.Это особенно важно для установок, которые не должны работать при полной нагрузке в течение значительного периода времени. К счастью, в случае более крупных установок, силовая установка с двигателем внутреннего сгорания позволяет достигать частичной нагрузки, отключая отдельные генераторные установки, в то же время поддерживая остальные как можно ближе к полной нагрузке. Тем не менее, иногда будет необходимо эксплуатировать двигатели при частичных нагрузках из-за других соображений (например, поддержания резерва вращения), и эффективность неизбежно будет снижаться.Тем не менее, можно отметить, что кривая эффективности двигателя, как правило, намного более плоская, чем у других машин.

Рис. 2 — Одной из выдающихся особенностей технологии двигателей внутреннего сгорания является плоская кривая эффективности нагрузки. Эта диаграмма показывает такие кривые для завода с десятью двигателями, работающего двумя различными способами. Оранжевая кривая представляет управление нагрузкой путем выключения отдельных двигателей, в то время как остальные работают при почти номинальной нагрузке. Черная кривая представляет ситуацию, когда все двигатели разгружаются вместе, как в случае с установками, которые должны поддерживать запас при вращении. (нажмите на картинку для полного просмотра.)




Коэффициент мощности

Генератор переменного тока генерирует не только активную мощность, но и определенное количество реактивной мощности. Обычно это описывается значением, называемым коэффициентом мощности (или, п.ф.). П.Ф. это соотношение между активной мощностью и полной мощностью. Наибольшее значение p.f. 1,0 и соответствует чисто резистивной нагрузке. Это также значение, когда генератор и, следовательно, генераторная установка достигает максимальной эффективности.Во многих случаях коэффициент мощности, равный 1,0, используется в качестве точки для определения номинальных параметров, опубликованных в технических паспортах оборудования. С другой стороны, в некоторых других данных каталога производительность определяется для относительно низкого значения 0,8, что является типичным параметром конструкции генератора.

К сожалению, в реальной жизни коэффициент мощности никогда не соответствует этим идеализированным значениям. В большинстве приложений это где-то между 0,90 и 0,95. Это означает, что если номинальная эффективность для генераторной установки определена в p.е. = 1.0, фактическое значение всегда будет ниже. И, если номинальное значение определено в п.ф. = 0,8, то в реальных ситуациях будет выше, чем указано в листах каталога. Здесь очевидно, что если значения для двух разных машин определены для двух разных коэффициентов мощности, они не будут сопоставимы.


Оптимизация выбросов

Как и в случае любой другой технологии сжигания топлива, двигатели внутреннего сгорания выделяют определенное количество загрязняющих веществ.В контексте производительности наиболее важной группой загрязняющих веществ являются оксиды азота или NOx.

Образование NOx является неизбежным побочным продуктом процесса сгорания и поэтому не может быть полностью устранено. Однако есть способы уменьшить его. На самом деле, самые последние экологические нормы требуют от нас принятия таких мер. Есть два способа сделать это: основной и дополнительный методы. Основные методы направлены на предотвращение образования загрязняющих веществ, а второстепенные — очистку выхлопных газов.

Современные двигатели внутреннего сгорания могут использовать как первичные, так и вторичные меры по снижению выбросов NOx. Вторичные методы не влияют на производительность генераторной установки. Первичные из них делают, поскольку оптимизация процесса сгорания для снижения выбросов несет определенную потерю эффективности.

Обычно данные каталога для генераторной установки приведены для оборудования, оптимизированного для достижения его максимальной эффективности и, следовательно, относительно высокого выброса NOx. Газовые двигатели, как правило, рассчитаны на достижение целевого показателя NOx 500 мг / м³, определенного при эталонном содержании кислорода 5%, также иногда называемом уровнем «TA-Luft» из названия немецкого стандарта выбросов 2002 года.К сожалению, этот стандарт уже устарел, и во многих юрисдикциях необходим более жесткий контроль выбросов.

Большинство конструкций газовых двигателей могут быть оптимизированы для соответствия более строгим уровням выбросов первичными методами, как правило, вплоть до ½ TA-Luft или даже ниже, до 200 мг / м³ при 5% O2 (75 мг / м³N, если выражено 15% уровень кислорода). Это соответствует действующей Директиве ЕС по промышленным выбросам. Такая оптимизация выбросов обычно приводит к снижению эффективности примерно на 1.0-1,5 процентного пункта. Конечно, также можно использовать двигатель с более высокой эффективностью и очистку дымовых газов от SCR. Или определенная комбинация обеих мер. Оптимальное решение выбирается на основе технико-экономического анализа для конкретного проекта, где увеличение стоимости генерации, вызванное оптимизацией двигателя, сопоставляется с инвестиционными и эксплуатационными затратами системы SCR.

Рис. 3 — Снижение характеристик газового двигателя связано с более низкой теплотворной способностью топливного газа.Обратите внимание, что в некоторой степени падение LHV может быть компенсировано более высоким давлением подачи газа. (нажмите на картинку для полного просмотра.)




Износ

Как и любая другая техника, двигатели внутреннего сгорания также страдают от износа, и производительность двигателя ухудшается во время работы. К счастью, это ухудшение, в большинстве случаев, полностью обратимо во время капитальных ремонтов, когда двигатели возвращаются к своим номинальным параметрам.Здесь важно отметить, что в большинстве конструкций ухудшение качества влияет только на эффективность, а объем производства остается на номинальном уровне. Тем не менее, помните, что средняя эффективность моторного завода будет несколько ниже, чем номинальные значения, указанные для фактических условий на площадке. Величина этого ухудшения зависит от конструкции двигателя и его программы обслуживания.


Свойства топлива

Как правило, двигатели внутреннего сгорания могут выдерживать широкий спектр свойств и свойств топлива.Тем не менее, есть ограничения. Некоторые из них являются абсолютными, и в этом случае невозможно или безопасно эксплуатировать двигатель ниже или выше определенного значения. Другие условные, что означает, что превышение их разрешено, но это может вызвать некоторое снижение или снижение эффективности двигателя. Типичные случаи включают теплотворную способность или метановое число. Превышение минимальных значений приведет к определенному снижению производительности или эффективности.

Следовательно, крайне важно проверить, соответствует ли рассматриваемое топливо стандартным характеристикам.В противном случае обратитесь к поставщику за показателями производительности, которые действительны для конкретного типа топлива.


Допуск

Это самая сложная проблема, с которой многие инженеры могут быть незнакомы. Часто в таблицах данных или каталогах среди условий, для которых указываются данные, вы можете встретить такие утверждения, как «допуск ISO», «допуск согласно ISO 3046» или «допуск 5%». Он напрямую связан со стандартом ISO 3046 «Поршневые двигатели внутреннего сгорания — рабочие характеристики».Этот стандарт предусматривает, что «если не указано иное, более высокий расход [топлива] + 5% разрешается для удельного расхода топлива, заявленного при заявленной мощности».

Это означает, что если какое-либо значение расхода топлива указано «с допуском ISO 3046», то на самом деле двигатель может иметь расход топлива на 5% выше и при этом технически соответствовать указанному значению. Таким образом, любая эффективность, заявленная с «допуском ISO», может быть на 5% ниже (примечание: не в процентах, а в процентах).Например, генераторная установка с заявленной эффективностью 48,0% «с допуском ISO» может фактически достигать только 48,0 / 1,05 = 45,7%. На самом деле, более чем вероятно, что он достигнет только такого значения. Исторически этот допуск действительно предоставлялся для учета различий между отдельными двигателями, покидающими производственную линию. Однако при современных методах производства эти различия по большей части остались в прошлом. Теперь, к сожалению, концепция толерантности используется для обеспечения преувеличенных значений эффективности во многих публикациях.К сожалению, это также подводный камень для тех, кто не знаком с особенностями моторного бизнеса. Это также создает угрозу сравнения яблок с апельсинами, когда один лист данных содержит 5% допуска, а другой — нет. Таким образом, всякий раз, когда значение допуска явно не указано, рекомендуется попросить поставщика предоставить явное заявление о допусках, как разница 5% (то есть около 2,0-2,5 процентных пункта, в зависимости от конструкции). далеко не незначительный.

Рис.4 — Некоторые более крупные конструкции двигателей, такие как Wärtsilä 50SG или другие конструкции Wärtsilä, оснащены масляными и водяными насосами, приводимыми в движение непосредственно от вала двигателя. В некоторых других конструкциях, где насосы приводятся в действие электрическим током, это приводит к увеличению внутреннего расхода топлива установки.




Чистая мощность и оборудование с приводом от двигателя

В случае технологии двигателя, собственное потребление электроэнергии не очень велико.Однако значительные различия могут быть вызваны разными конструкциями. Это в основном из-за насосов. Каждый двигатель нуждается в некоторых насосах для работы: обычно это насосы смазочного масла, насосы охлаждающей воды и — если топливо жидкое — топливные насосы. Разница заключается в том, что в некоторых конструкциях двигателей, как правило, более крупных среднеоборотных двигателей, насосы приводятся в движение механически валом двигателя. Это означает, что об их потреблении энергии «заботятся» еще до выработки электроэнергии. Но для некоторых других двигателей, особенно для небольших высокоскоростных конструкций, в которых используются электрические насосы, это увеличит собственное потребление установки.

На собственное потребление также могут влиять условия окружающей среды. Это связано с тем, что на большинстве силовых установок отработанное тепло выбрасывается через радиаторы, приводимые в действие электрическими вентиляторами. Те вентиляторы, которые обычно являются крупнейшими потребителями электроэнергии на такой установке, управляют скоростью, чтобы обеспечить надлежащее охлаждение охлаждающей воды. Чем выше температура окружающего воздуха, тем выше необходимый поток воздуха, что также увеличивает потребление электроэнергии. Поскольку фактическое потребление зависит от конкретных условий на месте и конфигурации установки, обычно это не параметр, указанный в каталогах.Поэтому рекомендуется запрашивать оценочную стоимость у поставщиков.


Заключение

Суть в том, что «номинальные» параметры, взятые прямо из каталога, почти никогда не представляют значения, которые достижимы в реальных условиях объекта, даже когда все оборудование новое.

Хотя в некоторых случаях (умеренный климат, работа при полной нагрузке, нет необходимости в оптимизации выбросов в процессе сгорания), сравнительно легко преобразовать параметры каталога в значения, достижимые в условиях объекта без дополнительных знаний.В других приложениях это будет невозможно без обращения к поставщикам за дополнительной информацией.

Это означает, что более высокая эффективность каталога определенного типа двигателя не обязательно означает, что эффективность сайта для проекта будет выше, чем у его конкурентов, даже если параметры каталога выражены для идентичных условий.

В конце концов, производительность должна быть определена для конкретных условий эксплуатации. Поэтому рекомендуется запросить дополнительные данные на стадии технико-экономического обоснования электростанции.Это обеспечит реалистичность ожидаемой производительности оборудования для рассматриваемой площадки.

Отказ от ответственности

Все значения, приведенные в этой статье, особенно на диаграммах, предназначены только для иллюстрации определенных явлений. Они не представляют какой-либо конкретный продукт или дизайн.


Автор: Адам Раевски , Менеджер по развитию бизнеса, Отдел продаж в Европе, Wärtsilä Energy Solutions mail: [email protected]

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *