Где лучше бензин: Бензин 98 и 100 – стоит ли игра свеч? Определяем все стороны
Отличный бензин и дизельное топливо! АЗС Кобарт
Какой бензин лучше: Аи-95 или Аи-92?
И начинающие водители, и автолюбители со стажем знают – бензин бывает разный. Даже если брать для сравнения топливо одного класса, например 95 бензин Евро 5, то на различных заправочных станциях вам зальют совершенно разное топливо.
Как отличить хороший бензин от некачественного и где лучше заправляться?
Сеть АЗС Кобарт закупает топливо только у проверенных поставщиков, таких как Лукойл, ТНК и Уфимский НПЗ Башнефть. Более того, на собственной нефтебазе бензин и дизельное топливо проверяется в лаборатории, и лишь потом отправляется на заправки. Таким образом, можно исключить возможность заправиться некачественным продуктом.
Но как быть, если вы далеко от проверенной заправочной станции? Постараемся выделить несколько правил, благодаря которым ваш «железный конь» будет резвым, а очередная «кормёжка» на неизвестной АЗС не подпортит здоровье двигателю и всей топливной системе.
Начнем с любимого вопроса, который поднимают на форумах начинающие водители – какой бензин лучше: 95 или 92? Для того чтобы ответить на него, безусловно нужно уточнить происхождение этого продукта. Если брать идеальный вариант и «настоящий» Аи-95 – тогда все просто, октановое число у него выше, соответственно ехать машина будет резвее. К сожалению, далеко не на каждой АЗС вам предложат «пятый» отменного качества. Основная причина – нефтеперерабатывающие заводы России не все обеспечены современным оборудованием, способным выдать 95 нужного уровня.
Для доведения до «нужной кондиции» используют различные присадки, что может повлиять не только на резвость, но и скажется в будущем на работе топливной системы автомобиля. Присадки высокого качества стоят дорого и производители, стараясь сэкономить, выдают на рынок вот такой, «хороший бензин». Как известно, в плохое народ верит больше, чем в хорошее, и как следствие – доверия к марке Аи-95 было давно потеряно у многих автолюбителей.
Так что же заправлять? Аи-92? Если в паспорте автомобиля написано – заправляете минимум 95 – лучше так и делать. Разрабатывая двигатель, автопроизводители предусматривают эксплуатацию машины в нормальных условиях, а если лить топливо с меньшим октановым числом – это может привести к серьезным последствиям на чувствительных к таким переменам движках. Многим уже знакома ситуация, когда загорается «чек» — ошибка двигателя, после такой необдуманной заправки. Экономия денежных средств – еще одна причина отдать предпочтение 92 бензину. Насколько это выгодно? Дерганье при переключении коробки передач, «троение» двигателя, загрязнение свечей – такие симптомы могут быть последствием вашей «экономии», вплоть до промывки всей топливной системы.
Если автомобиль всеядный – вам повезло, тогда отдавать предпочтение 92 или 95 бензину – решать вам, главное выбрать правильную АЗС! Отправляясь в дальнюю дорогу, заправляйте полный бак на «Кобарте» и будьте уверены – вы сделали правильный выбор!
На каких заправках лучше заправляться дизелем
На каких заправках лучше заправляться дизелем или рейтинг лучших заправок в России!
Каждый уважающий себя водитель знает, где приобрести лучшее топливо для своей «ласточки».
Что ценят водители при выборе заправки:
- Качество предлагаемого топлива;
- Сервис;
- Цена;
- Скидки (бонусные карты).
Проведя опрос автопользователей, мы выявили самые популярные АЗС России.
Самыми распространенными ответами людей были следующие АЗС, о преимуществах которых мы и расскажем.
1. «Лукойл» — компания, благодаря которой легко экономить на топливе при помощи создания накопительной бонусной карты. Также карта «Ликард» даёт покупателям скидку до 6% на любое топливо.
На заправках Лукойл царит дружная и приветливая атмосфера. Особенно это импонирует дальнобойщикам, где им предлагают перекусить, выпить чашечку кофе и подкачать шины.
Качество предлагаемой продукции, ничем не уступает профессиональному обслуживанию. Моторное топливо компании Лукойл признано лучшим в стране. Оно отвечает стандартам Евро 2, 3 и 4 и подходит для применения в любых автомобилях, как отечественных, так и для иномарок.
К недостаткам сети автозаправок Лукойл можно отнести длинные очереди, и недостаточное количество заправочных пистолетов.
2. «Газпромнефть» производит качественное топливо, соответствующее требованиям ГОСТ, ТУ, СТО. Компания организует множество акций, участвуя в которых можно выиграть крупные призы.
Газпром предлагает безналичную оплату посредством карт на топливо. По качеству топлива Газпром ориентируется на европейские и российские стандарты. Лучшее дизельное топливо вы найдете здесь, так как в основе его производства лежит газовый конденсат, в составе которого содержатся загущающие вещества, что позволяет его использовать при очень низких температурах.
3. «ТНК» — контролирует качество своего топлива, поэтому производит анализ непосредственно на АЗС в мобильных лабораториях. Также на заправочных станциях есть возможность подкачать колесо или проверить давление, можно воспользоваться услугой доливания воды. Обслуживание производится заправщиками, что очень удобно и экономит время.
Но, к сожалению, некоторые покупатели жалуются на недоливание бензина.
4. «Шелл»: принадлежит крупная розничная сеть, поэтому приезжая заправиться, можно еще прикупить необходимые фильтры или топливное масло.
5. «Роснефть»: реализует ГСМ в 46-ти регионах России, занимает первое место по добычи нефти.
6. АОА «Татнефть»: Основной девиз работы прост и лаконичен: «От скважины — до бензобака». Эта компания проводит двухуровневую систему проверки качества топлива, предоставляет клиентам топливные, дисконтные, бонусные карты.
При выборе топлива не ограничивайтесь ценовыми критериями, следите за качеством. Ведь от отличного бензина или дизтоплива зависит отличная работа двигателя. А иногда экономя на ГСМ, мы тратим на ремонт, что бьет существеннее по карману.
По какому принципу стоит выбирать заправку?
Одним из риторических вопросов, которым часто задаются отечественные автовладельцы, является выбор топливной заправки.
Народный рейтинг
Активность современных автолюбителей всегда приводит к ожидаемым результатам. Проверить качество ну или хотя полноту заправки можно прямо на месте. Для этого точки реализации снабжаются специальными уровнемерами. Если же не удается проверить содержание в топливе самого бензина специальными приборами, можно воспользоваться народными средствами, например, капнуть бензина на руку:
- Ощущение сухости на коже после капли бензина считается нормальным;
- Резкий запах жидкости свидетельствует о низком качестве;
- Повышенная жирность бензина подскажет о том, что в составе топлива может присутствовать солярка;
- Если бензин сильно пенится, это также должно насторожить клиента заправочной станции.
Тем, кто предпочитает детально разбираться в качестве топлива, можно воспользоваться специальными измерительными приборами. Делать это лучше в присутствии сотрудников компании, лучше всего проводить съемку. Это позволит зафиксировать факт отгрузки недоброкачественной жидкости и предоставить материалы в соответствующие органы или на всеобщее обозрение.
Потребительский рейтинг
Параметры бензина как ходового топлива остаются предметом изучения общественности и журналистов. При наличии выхода в интернет можно всегда ознакомиться с результатами специальных проверок, наблюдениями потребителей. Даже при наличии подозрений на обман в месте приобретения бензина можно всегда получить подтверждение в сторонних источниках.
Как и любой потребитель, отечественный автовладелец всегда имеет право обратиться к специальному стенду с материалами на отгружаемую продукцию. В уголке можно ознакомиться с паспортами качества на весь ассортимент заправочного пункта вне зависимости от его принадлежности к крупной сети. Документация на бензин действует 10 суток, после этого должна быть обновлена.
Структура торговой ниши
Торговля нефтепродуктами остается одним из самых конкурентоспособных на отечественном рынке. Не выдерживая нагрузки, частные предприятия закрываются достаточно быстро, поэтому не всегда удается их проверить. Брендовые компании редко страдают замашками монополистов, поскольку радеют за клиента. К тому же вероятность того, что заправка с известным брендом будет обманывать потребителя, крайне низка.
Как показывает практика, чаще всего при выборе заправки водители ориентируются на свой опыт. За годы езды на автомобиле, владельцы транспортных средств хотя бы один раз заливали бензин вне зоны своих предпочтений. К тому же часто на излюбленных автозаправках используются средства мотивации, за счет которых можно получать скидки на так необходимое топливо.
Читать также:
КАКОЙ БЕНЗИН ЛУЧШЕ ЗАПРАВЛЯТЬ
КАК ВЫБРАТЬ АНТИФРИЗ?
Как работает бензиновый двигатель
Бензиновый двигатель также называют бензиновым двигателем во многих частях мира. Слово «бензин» — это то, что британцы используют для описания бензинового двигателя. Они означают то же самое, что некоторые люди могут не осознавать, если они из Америки.
Бензиновый двигатель — это наиболее распространенный тип двигателя в транспортных средствах, которыми люди управляют каждый день. Он использует процесс внутреннего сгорания, который включает смешивание бензина и воздуха внутри камер цилиндров, а затем их зажигание для выработки тепловой энергии.
Это тип энергии, который позволяет автомобилю ускоряться в соответствии с требованиями, которые вы предъявляете к нему как к водителю. Здесь мы рассмотрим, как работает движок, а также немного его истории.
Связанные: 5 частей двигателя и их функции
Четырехтактный цикл бензинового двигателя
Помимо термина «бензиновый двигатель», этот тип двигателя можно описать термином « четырехтактный двигатель ». Это название существует потому, что у бензинового двигателя есть четыре различных этапа, которые он проходит для возникновения процесса внутреннего сгорания.
Эти шаги называются штрихами. Ниже показано, что влекут за собой четыре такта двигателя.
Ход # 1
Первый ход двигателя — это всасывание наружного воздуха. Двигатель нуждается в этом воздухе в составе топливовоздушной смеси.
Впускной клапан сначала откроется, чтобы воздух попал внутрь. Поршень в верхней части цилиндра движется вниз. Это создает силу, которая всасывает воздух в цилиндр.
Ход # 2
Второй ход — сжатие смеси.Когда воздух входит в цилиндр и смешивается с топливом, сила движущихся поршней заставляет смесь сжиматься.
Между тем выпускной и впускной клапаны остаются закрытыми. Важно, чтобы они оставались такими, иначе драгоценные газы и жидкости могут улетучиться и испортить весь процесс сгорания.
Ход # 3
Третий ход — это сам процесс сгорания, также называемый рабочим ходом. Именно здесь смесь воздуха и топлива будет фактически воспламеняться от искры, генерируемой свечой зажигания.
При успешном зажигании взрыв толкает поршень вниз в том месте, где он вращает коленчатый вал.
См. Также: Что такое двигатель Hemi?
Ход # 4
Четвертый ход относится к выхлопу. Когда топливо горит в камере сгорания, оно генерирует распыленные частицы, которые более известны как выхлопные газы.
Поршень выталкивает эти выбросы из камеры сгорания через отверстие выпускного клапана.
Вот хорошая анимация, показывающая, как выглядит четырехтактный процесс:
История бензинового двигателя
Николаус Отто изобрел бензиновый двигатель и этот четырехтактный процесс.Он был немецким инженером, который запатентовал это изобретение и назвал его циклом Отто.
Некоторым людям легче запомнить его как четырехтактный или бензиновый цикл, потому что они более тесно связаны с процессом сгорания в бензиновом двигателе. В конце концов, дизельный двигатель использует термин «дизельный цикл» для описания процесса сгорания.
Но цикл Отто уникален своей терминологией поглаживания. Первый ход официально назывался «ход всасывания», второй ход назывался «ходом сжатия», третий — «рабочий ход», а четвертый — «ход выпуска».”
Связано: сравнение дизельного двигателя и бензинового двигателя
В первые дни бензиновых двигателей был компонент, называемый« карбюратор », который отвечал за смешивание воздуха с бензином. Однако эта старая карбюраторная технология в конечном итоге была заменена системой впрыска топлива, которая электронно связана с блоком управления двигателем автомобиля.
Это позволяет лучше рассчитывать и точнее расход топлива в камеру сгорания.В результате может быть достигнута топливная экономичность, что позволит увеличить расход топлива и сэкономить деньги на топливе.
В то же время генерируются меньше выбросов углерода. Поскольку мы живем в эпоху экологичности, система впрыска топлива делает многое для этого.
Энергоснабжение, мир, совокупные ресурсы, с помощью которых страны мира пытаются удовлетворить свои потребности в энергии. Энергия — основа индустриальной цивилизации; без энергии современная жизнь перестала бы существовать.В 1970-е годы мир начал болезненную адаптацию к уязвимости энергоснабжения. В долгосрочной перспективе сохранение энергоресурсов может дать время, необходимое для разработки новых источников энергии, таких как водородные топливные элементы, или для дальнейшего развития альтернативных источников энергии, таких как солнечная энергия и энергия ветра. Однако пока такое развитие событий происходит, мир по-прежнему будет уязвим для перебоев в поставках нефти, которая после Второй мировой войны (1939-1945 гг.) Стала наиболее популярным источником энергии.
Древесина была первым и на протяжении большей части истории человечества основным источником энергии. Он был легко доступен, потому что во многих частях мира росли обширные леса, а количество дров, необходимых для отопления и приготовления пищи, было относительно скромным. Некоторые другие источники энергии, найденные только в определенных местах, также использовались в древние времена: асфальт, уголь и торф из поверхностных отложений и нефть из просачиваемых подземных отложений. Ситуация изменилась, когда в средние века начали использовать древесину для производства древесного угля. Древесный уголь нагревали с металлической рудой, чтобы разрушить химические соединения и освободить металл. Поскольку леса вырубались, а запасы древесины истощались с началом промышленной революции в середине 18 века, древесный уголь был заменен коксом (полученным из угля) при восстановлении руды. Уголь, который также начал использоваться для привода паровых двигателей, стал доминирующим источником энергии в ходе промышленной революции.
Хотя на протяжении веков нефть (также известная как сырая нефть) использовалась в небольших количествах для таких разнообразных целей, как медицина и герметизация судов, современная нефтяная эра началась, когда в 1859 году в Пенсильвании была введена в эксплуатацию коммерческая скважина. Нефтяная промышленность в Соединенных Штатах быстро расширилась, так как появились нефтеперерабатывающие заводы, производящие нефтепродукты из сырой нефти.Вскоре нефтяные компании начали экспортировать свой основной продукт — керосин, используемый для освещения, во все регионы мира. Развитие двигателя внутреннего сгорания и автомобиля в конце 19 века создало новый огромный рынок для другого важного продукта — бензина. Третий крупный продукт, тяжелая нефть, стал заменять уголь на некоторых энергетических рынках после Второй мировой войны. Крупные нефтяные компании, базирующиеся в основном в Соединенных Штатах, первоначально обнаружили крупные запасы нефти в Соединенных Штатах.В результате нефтяные компании из других стран, особенно из Великобритании, Нидерландов и Франции, начали искать нефть во многих частях мира, особенно на Ближнем Востоке. Англичане ввели в эксплуатацию первое месторождение там (в Иране) незадолго до Первой мировой войны (1914-1918). Во время Первой мировой войны нефтяная промышленность США производила две трети мировых запасов нефти из внутренних источников и импортировала еще одну шестую из Мексики. Однако в конце войны и до открытия продуктивных месторождений Восточного Техаса в 1930 году Соединенные Штаты, чьи запасы были истощены войной, на несколько лет стали нетто-импортером нефти. В течение следующих трех десятилетий при периодической федеральной поддержке нефтяные компании США добились огромных успехов в расширении своей деятельности в остальном мире. К 1955 году пять крупных нефтяных компаний США производили две трети нефти для мирового нефтяного рынка (не включая Северную Америку и советский блок). Две британские компании производили почти одну треть мировых запасов нефти, а французы — лишь одну пятидесятую. Следующие 15 лет были периодом безмятежности для энергоснабжения.Семь крупных нефтяных компаний США и Великобритании поставляли в мир все большее количество дешевой нефти. Мировая цена составляла около доллара за баррель, и в это время Соединенные Штаты были в значительной степени самодостаточными, а их импорт ограничивался квотой. Две серии событий совпали, превратив эти надежные поставки дешевой нефти в ненадежные поставки дорогой нефти. В 1960 году, разгневанные односторонним снижением цен на нефть семью крупными нефтяными компаниями, правительства основных стран-экспортеров нефти сформировали Организацию стран-экспортеров нефти (ОПЕК).Целью ОПЕК было предотвратить дальнейшее снижение цен, которые страны-члены Венесуэла и четыре страны Персидского залива получали за нефть. Им это удалось, но в течение десяти лет они не могли поднять цены. Между тем, рост потребления нефти во всем мире, особенно в Европе и Японии, где нефть вытеснил уголь в качестве основного источника энергии, вызвал огромный рост спроса на нефтепродукты. 1973 год положил конец эре безопасной и дешевой нефти.В октябре в результате арабо-израильской войны арабские нефтедобывающие страны сократили добычу нефти и наложили эмбарго на поставки нефти в США и Нидерланды. Хотя арабские сокращения привели к потере менее 7 процентов мировых поставок, они вызвали панику со стороны нефтяных компаний, потребителей, торговцев нефтью и некоторых правительств. Бурные торги на сырую нефть начались, когда несколько стран-производителей начали продавать часть своей нефти с аукциона. Эти торги побудили страны ОПЕК, которых сейчас насчитывается 13, поднять цены на всю свою сырую нефть до уровня в восемь раз выше, чем несколько лет назад.Мировая нефтяная сцена постепенно успокоилась, поскольку мировой экономический спад, частично вызванный повышением цен на нефть, снизил спрос на нефть. Тем временем правительства большинства стран ОПЕК взяли в свои руки нефтяные месторождения в своих странах. В 1978 году начался второй нефтяной кризис, когда в результате революции, которая в конечном итоге свергла иранского шаха с трона, добыча и экспорт иранской нефти резко упали. Поскольку Иран был крупным экспортером, потребители снова запаниковали.Воспроизведение событий 1973 года вместе с дикими торгами снова привело к росту цен на нефть в 1979 году. Начало войны между Ираном и Ираком в 1980 году дало дальнейший толчок ценам на нефть. К концу 1980 года цена на сырую нефть в 19 раз превышала цену всего десятью годами ранее. Очень высокие цены на нефть снова способствовали мировой рецессии и дали большой толчок энергосбережению. Когда спрос на нефть снизился, а предложение увеличилось, мировой рынок нефти резко упал. Значительное увеличение поставок нефти из стран, не входящих в ОПЕК, например в Северное море, Мексику, Бразилию, Египет, Китай и Индию, привело к еще большему снижению цен на нефть.К 1989 году добыча в Советском Союзе достигла 11,42 миллиона баррелей в день, что составляет 19,2 процента мировой добычи в этом году. Несмотря на низкие мировые цены на нефть, которые преобладали с 1986 года, беспокойство по поводу сбоев по-прежнему оставалось основным направлением энергетической политики в промышленно развитых странах. Кратковременное повышение цен после вторжения Ирака в Кувейт в 1990 году усилило эту озабоченность. Благодаря своим огромным запасам Ближний Восток останется основным источником нефти в обозримом будущем.Однако новые открытия в регионе Каспийского моря позволяют предположить, что такие страны, как Казахстан, могут стать основными источниками нефти в 21 веке. В 1990-е годы добыча нефти странами, не входящими в ОПЕК, оставалась высокой, а добыча странами ОПЕК восстановилась. В результате в конце 20-го века мировой профицит нефти и цены (с поправкой на инфляцию) были ниже, чем в 1972 году. Эксперты не уверены в будущих поставках и ценах на нефть. Низкие цены стимулировали рост потребления нефти, и эксперты задаются вопросом, как долго мировые запасы нефти смогут поддерживать растущий спрос.Многие ведущие мировые геологи-нефтяники считают, что мировые поставки нефти достигнут пика примерно в 80 миллионов баррелей в день в период с 2010 по 2020 год (в 1998 году мировое потребление составляло примерно 70 миллионов баррелей в день). С другой стороны, многие экономисты полагают, что даже скромно. более высокие цены на нефть могут привести к увеличению предложения, поскольку у нефтяных компаний появится экономический стимул к разработке менее доступных нефтяных месторождений. Природный газ может все шире использоваться вместо нефти в таких сферах, как производство электроэнергии и транспорт. Одна из причин заключается в том, что мировые запасы природного газа с 1976 года увеличились вдвое, отчасти из-за открытия крупных залежей природного газа в России и на Ближнем Востоке. Строятся новые объекты и трубопроводы, которые помогут перерабатывать и транспортировать этот природный газ от добывающих скважин к потребителям.
Нефть (сырая нефть) и природный газ находятся в промышленных количествах в осадочных бассейнах более чем 50 стран во всех частях мира.Самые большие месторождения находятся на Ближнем Востоке, где сосредоточено более половины известных запасов нефти и почти треть известных запасов природного газа. Соединенные Штаты содержат только около 2 процентов известных запасов нефти и 3 процента известных запасов природного газа. Геологи и другие ученые разработали методы, указывающие на возможность обнаружения нефти или газа глубоко под землей. Эти методы включают аэрофотосъемку особых элементов поверхности, рассылку ударных волн через землю и их отражение в инструменты, а также измерение силы тяжести и магнитного поля Земли с помощью чувствительных измерителей.Тем не менее, единственный способ найти нефть или газ — это просверлить отверстие в резервуаре. В некоторых случаях нефтяные компании тратят многие миллионы долларов на бурение в перспективных районах только для того, чтобы найти сухие скважины. Долгое время большинство скважин пробурили на суше, но после Второй мировой войны бурение началось на мелководье с платформ, поддерживаемых опорами, которые опирались на морское дно. Позже были разработаны плавучие платформы, которые могли бурить на глубине 1000 м (3300 футов) и более. Крупные месторождения нефти и газа были обнаружены на шельфе: в США, в основном у побережья Мексиканского залива; в Европе, прежде всего в Северном море; в России — в Баренцевом и Карском морях; и у берегов Ньюфаундленда и Бразилии.Большинство крупных находок в будущем может быть на шельфе. Поскольку сырая нефть или природный газ добываются на нефтяном или газовом месторождении, давление в пласте, которое выталкивает материал на поверхность, постепенно снижается. В конце концов, давление упадет настолько, что оставшаяся нефть или газ не переместятся через пористую породу в скважину. Когда эта точка будет достигнута, большая часть газа на газовом месторождении будет добыта, но будет извлечено менее одной трети нефти. Часть оставшейся нефти может быть извлечена путем использования воды или углекислого газа для проталкивания нефти в скважину, но даже в этом случае от четверти до половины нефти обычно остается в пласте.Пытаясь извлечь эту оставшуюся нефть, нефтяные компании начали использовать химические вещества, чтобы подтолкнуть нефть к скважине, или использовать огонь или пар в пласте, чтобы облегчить течение нефти. Новые методы, которые позволяют операторам бурить как горизонтально, так и вертикально, в очень глубокие структуры, резко снизили стоимость поиска запасов природного газа и нефти. Сырая нефть транспортируется на нефтеперерабатывающие заводы по трубопроводам, баржам или гигантским океанским танкерам. Нефтеперерабатывающие заводы содержат ряд технологических установок, которые разделяют различные составляющие сырой нефти, нагревая их до разных температур, химически модифицируя их, а затем смешивая их для получения конечных продуктов.Этими конечными продуктами являются, в основном, бензин, керосин, дизельное топливо, топливо для реактивных двигателей, мазут для дома, мазут, смазочные материалы и сырье или исходные материалы для нефтехимии. Природный газ транспортируется, обычно по трубопроводам, потребителям, которые сжигают его в качестве топлива или, в некоторых случаях, производят нефтехимические продукты из химических веществ, извлеченных или очищенных от него. Природный газ можно сжижать при очень низких температурах и перевозить на специальных судах. Этот метод намного дороже, чем транспортировка нефти танкером.Нефть и природный газ конкурируют на нескольких рынках, особенно в производстве тепла для домов, офисов, фабрик и производственных процессов. На первых порах нефтяная промышленность вызывала значительное загрязнение окружающей среды. Однако с годами, под двойным влиянием усовершенствованных технологий и более строгих правил, он стал намного чище. Стоки с нефтеперерабатывающих заводов значительно сократились, и, хотя выбросы из скважин все еще происходят, новые технологии, как правило, делают их относительно редкими.С другой стороны, следить за океаном намного сложнее. Морские суда по-прежнему являются основным источником разливов нефти. В 1990 году Конгресс Соединенных Штатов принял закон, требующий, чтобы танкеры к концу десятилетия имели двойной корпус. Еще одним источником загрязнения, связанным с нефтяной промышленностью, является сера в сырой нефти. Постановления национальных и местных органов власти ограничивают количество диоксида серы, которое может сбрасываться предприятиями и коммунальными предприятиями, сжигающими мазут.Однако, поскольку удаление серы является дорогостоящим процессом, правила по-прежнему позволяют выбрасывать некоторое количество диоксида серы в воздух. Многие ученые считают, что еще одна потенциальная экологическая проблема, связанная с переработкой и сжиганием большого количества нефти и других ископаемых видов топлива (таких как уголь и природный газ), возникает, когда двуокись углерода (побочный продукт сжигания ископаемого топлива), метан (который существует в природном газе, а также является побочным продуктом переработки нефти), и другие побочные газы накапливаются в атмосфере.Эти газы известны как парниковые газы, потому что они улавливают часть энергии Солнца, которая проникает в атмосферу Земли. Эта энергия, захваченная в виде тепла, поддерживает температуру Земли, благоприятную для жизни. Определенное количество парниковых газов естественным образом присутствует в атмосфере. Однако огромное количество нефти, угля и других ископаемых видов топлива, сожженных во время быстрой индустриализации мира за последние 200 лет, является источником более высоких уровней двуокиси углерода в атмосфере.За этот период эти уровни увеличились примерно на 28 процентов. Это увеличение содержания углекислого газа в атмосфере в сочетании с продолжающейся потерей мировых лесов (которые поглощают углекислый газ) привело многих ученых к предсказанию повышения глобальной температуры. Это повышение глобальной температуры может нарушить погодные условия, нарушить океанские течения, привести к более сильным штормам и создать другие экологические проблемы. В 1992 году представители более 150 стран собрались в Рио-де-Жанейро, Бразилия, и пришли к согласию о необходимости сокращения мировых выбросов парниковых газов.В 1997 году всемирные делегации снова собрались, на этот раз в Киото, Япония. Во время встречи в Киото представители 160 стран подписали соглашение, известное как Протокол Киото, в соответствии с которым 38 промышленно развитых стран должны ограничить выбросы парниковых газов до уровней, которые в среднем на 5 процентов ниже уровней выбросов 1990 года. выбросы ископаемого топлива для достижения этих уровней, промышленно развитые страны должны будут изменить структуру своей энергетики в сторону источников энергии, которые не производят столько углекислого газа, таких как природный газ, или на альтернативные источники энергии, такие как гидроэлектроэнергия, солнечная энергия, энергия ветра или ядерная энергия. В то время как правительства некоторых промышленно развитых стран ратифицировали Протокол Киото, другие — нет, в том числе и США. Горючие сланцы, залежи тяжелой нефти и битуминозные пески являются наиболее распространенными формами нефти в мире. Запасы этих источников во много раз превышают общие известные мировые запасы сырой нефти. Однако из-за высокой стоимости преобразования сланцевого масла и битуминозных песков в пригодные для использования нефтепродукты лишь небольшой процент доступного материала перерабатывается в промышленных масштабах.Промышленность по производству нефтепродуктов из битуминозных песков была создана в Канаде, и Венесуэла изучает перспективы разработки огромных запасов битуминозных песков в бассейне реки Ориноко. Тем не менее, количество нефтепродуктов, производимых из этих двух видов сырья, невелико по сравнению с общим объемом добычи традиционной сырой нефти. До тех пор, пока мировые цены на нефть не вырастут, количество нефти, производимой из горючего сланца и битуминозных песков, вероятно, останется небольшим по сравнению с добычей обычной сырой нефти. Уголь — это общий термин, обозначающий широкий спектр твердых материалов с высоким содержанием углерода. Большая часть угля сжигается электроэнергетическими компаниями для производства пара для работы своих генераторов. Некоторое количество угля используется на заводах для обогрева зданий и производственных процессов. Особый высококачественный уголь превращается в металлургический кокс для производства стали. Мировые запасы угля огромны. Количество угля (измеряемое по содержанию энергии), которое технически и экономически извлекается в нынешних условиях, в пять раз превышает запасы сырой нефти.Всего четыре региона содержат три четверти мировых извлекаемых запасов угля: Соединенные Штаты — 24 процента; страны бывшего Советского Союза — 24%; Китай — 11 процентов; и Западная Европа — 10 процентов. В промышленно развитых странах большее удобство и более низкая стоимость нефти и газа в начале 20 века фактически вытеснили уголь с рынка для отопления домов и офисов, а также для движения локомотивов. Нефть и газ также сильно повлияли на промышленный рынок угля.Только расширяющийся рынок коммунальных услуг позволил добыче угля в Соединенных Штатах, например, оставаться относительно постоянным в период с 1948 по 1973 год. Даже на рынке коммунальных услуг, поскольку нефть и газ захватили большую долю, доля угля в общей энергетической картине резко снизилась в США. Соединенные Штаты, например, с половины до менее чем одной пятой. Однако резкий скачок цен на нефть после 1973 года дал углю значительное преимущество в стоимости для коммунальных предприятий и крупных промышленных потребителей, и уголь начал возвращать себе некоторые из потерянных рынков.В отличие от промышленно развитых стран, развивающиеся страны с большими запасами угля (такие как Китай и Индия) продолжают использовать уголь для промышленных целей и отопления. Средняя цена на уголь практически не изменилась с начала 1980-х годов и, согласно прогнозам, снизится в начале XXI века. Однако в промышленно развитых странах необходимость соблюдения более строгих экологических норм сделала сжигание угля более дорогостоящим. Несмотря на относительную дешевизну и огромные запасы угля, рост его использования с 1973 года был намного меньше, чем ожидалось, потому что уголь связан с гораздо большим количеством экологических проблем, чем нефть.Подземная добыча полезных ископаемых может привести к заболеванию черных легких у шахтеров, опусканию земли из-под шахт и утечке кислоты в грунтовые воды. Открытые горные работы требуют тщательной рекультивации, иначе невосстановленные земли останутся покрытыми шрамами и непродуктивными. Кроме того, сжигание угля вызывает выбросы частиц диоксида серы, оксида азота и других примесей. Кислотные дожди и другие формы осадков с относительно высокой кислотностью, которые наносят ущерб озерам и некоторым лесам во многих регионах, как полагают, частично вызваны такими выбросами ( см. Загрязнение воздуха).Закон США о чистом воздухе 1970 года (пересмотренный в 1970 и 1990 годах) обеспечивает федеральную правовую основу для контроля за загрязнением воздуха. Это законодательство значительно сократило выбросы оксидов серы, известных как кислые газы. Например, Закон о чистом воздухе требует, чтобы такие объекты, как угольные электростанции, сжигали уголь с низким содержанием серы. В 1990-х годах озабоченность по поводу возможного потепления на планете в результате парникового эффекта заставила многие правительства задуматься над политикой сокращения выбросов углекислого газа, образующихся при сжигании угля, нефти и природного газа.Во время быстрой индустриализации мира в XIX и XX веках уровни углекислого газа в атмосфере увеличились примерно на 28 процентов по сравнению с доиндустриальными уровнями. Решение этих проблем стоит дорого, и вопрос о том, кто должен платить, остается спорным. В результате потребление угля может продолжать расти медленнее, чем можно было бы ожидать. Однако огромные запасы угля, усовершенствованные технологии для снижения загрязнения и дальнейшее развитие газификации угля ( см. Газы, топливо) по-прежнему указывают на то, что рынок угля будет расти в ближайшие годы. Синтетическое топливо не встречается в природе, но производится из природных материалов. Бензохол, например, представляет собой смесь бензина и спирта, изготовленную из сахаров, производимых живыми растениями. Хотя производство различных видов топлива из угля возможно, крупномасштабное производство топлива из угля, вероятно, будет ограничено высокими затратами и проблемами загрязнения, некоторые из которых еще не известны. Производство спиртового топлива в больших количествах, скорее всего, будет ограничено регионами, такими как части Бразилии, где сочетание дешевой рабочей силы и земли, а также продолжительный вегетационный период делают его экономичным.Таким образом, синтетическое топливо вряд ли в ближайшее время внесет важный вклад в мировое энергоснабжение. Ядерная энергия вырабатывается путем расщепления или деления атомов урана или более тяжелых элементов. В процессе деления выделяется тепло, которое используется для производства пара, который приводит в действие турбину для выработки электроэнергии. Эксплуатация ядерного реактора и связанного с ним оборудования для выработки электроэнергии — это лишь часть взаимосвязанного комплекса работ. Для обеспечения надежного электроснабжения от ядерного деления требуется добыча, переработка и транспортировка урана; обогащение урана (увеличение процентного содержания изотопа урана U-235) и упаковка его в соответствующую форму; строительство и обслуживание реактора и связанного с ним генерирующего оборудования; и обработка и захоронение отработавшего топлива.Эти действия требуют чрезвычайно сложных и интерактивных производственных процессов и множества специализированных навыков. Великобритания стала одной из первых в развитии ядерной энергетики. К середине 1950-х годов в этой стране производили электричество несколько ядерных реакторов. Первый ядерный реактор, подключенный к электрической распределительной сети в Соединенных Штатах, начал работу в 1957 году в Шиппорте, штат Пенсильвания. Шесть лет спустя был размещен первый заказ на строительство коммерческой атомной электростанции без прямой субсидии федерального правительства.Этот приказ ознаменовал начало попытки быстро преобразовать мировые системы производства электроэнергии от зависимости от ископаемого топлива к использованию ядерной энергии. К 1970 году в 15 странах мира действовало 90 атомных электростанций. В 1980 году 253 атомные электростанции работали в 22 странах мира. Однако попытка перейти от ископаемого топлива к ядерной энергии не удалась из-за быстрого роста затрат, задержек с соблюдением нормативных требований, снижения спроса на электроэнергию и повышенного внимания к безопасности. Вопросы о безопасности и экономии ядерной энергии вызвали, пожалуй, самую эмоциональную битву за энергию.Когда в конце 1970-х годов разгорелась битва, сторонники ядерной энергетики утверждали, что не существует реальной альтернативы усилению зависимости от ядерной энергетики. Они признали, что некоторые проблемы остаются, но заявили, что решения будут найдены. Ядерные противники, с другой стороны, подчеркнули ряд оставшихся без ответа вопросов об окружающей среде: каковы эффекты низкого уровня радиации в течение длительных периодов? Какова вероятность крупной аварии на атомной электростанции? Каковы будут последствия такой аварии? Каким образом отходы ядерной энергетики, которые будут оставаться опасными на протяжении веков, могут быть навсегда изолированы от окружающей среды? Эти вопросы безопасности способствовали изменению спецификаций и задержкам строительства атомных электростанций, что еще больше увеличивало расходы. Они также способствовали возникновению второго противоречия: является ли электроэнергия атомных электростанций менее затратной, такой же дорогой или более дорогой, чем электроэнергия на угольных электростанциях? Несмотря на стремительный рост цен на нефть и газ в конце 1970-х — начале 1980-х годов, эти политические и экономические проблемы вызвали в Соединенных Штатах действенный мораторий на новые заказы на атомные электростанции. Этот мораторий вступил в силу еще до аварии 1979 г. (расплавление ядерных топливных стержней) на АЭС Три-Майл-Айленд недалеко от Гаррисберга, штат Пенсильвания, и частичного аварии 1986 г. на Чернобыльской АЭС к северу от Киева в Украине ( см. Чернобыль) Несчастный случай).Последняя авария привела к гибели людей и случаев лучевой болезни, а также выпустила облако радиоактивности, которое широко распространилось по северному полушарию. В 1998 году в мире работало 437 атомных станций. Еще 35 реакторов находились в стадии строительства. Восемнадцать стран вырабатывают не менее 20 процентов своей электроэнергии за счет ядерной энергетики. Крупнейшие отрасли атомной энергетики расположены в США (107 реакторов), Франции (59), Японии (54), Великобритании (35), России (29) и Германии (20).В США больше 20 лет не заказывали новые реакторы. Противодействие общественности, высокие затраты на строительство, строгие строительные и эксплуатационные правила, а также высокие затраты на утилизацию отходов делают строительство и эксплуатацию атомных электростанций намного дороже, чем электростанции, сжигающие ископаемое топливо. В некоторых промышленно развитых странах в электроэнергетике проводится реструктуризация с целью разделения монополий (предоставление товара или услуги одним продавцом или производителем) на уровне генерации.Поскольку эта тенденция заставляет владельцев атомных станций сократить операционные расходы и стать более конкурентоспособными, атомная энергетика в Соединенных Штатах и других западных странах может продолжать сокращаться, если существующие атомные электростанции не смогут адаптироваться к меняющимся рыночным условиям. Азия широко рассматривается как единственная область роста ядерной энергетики в ближайшем будущем. В Японии, Южной Корее, Тайване и Китае в конце 20 века строились заводы.И наоборот, ряд европейских стран пересмотрели свои обязательства в отношении ядерной энергетики. Политические партии Швеции обязались отказаться от использования атомной энергии к 2010 году, после того как в 1980 году шведские граждане проголосовали против дальнейшего развития этого источника энергии. Однако промышленность оспаривает эту политику в суде. Кроме того, критики утверждают, что Швеция не может выполнить свои обязательства по сокращению выбросов парниковых газов, не полагаясь на ядерную энергию. Франция вырабатывает 80 процентов электроэнергии за счет ядерной энергетики.Однако он отменил несколько запланированных реакторов и может заменить стареющие атомные станции на станции, работающие на ископаемом топливе, по экологическим причинам. В результате государственная электроэнергетическая компания Electricité de France планирует диверсифицировать источники производства электроэнергии в стране. В 1998 году правительство Германии объявило о плане отказа от ядерной энергетики. Однако, как и в Швеции, владельцы атомных станций могут подать в суд на правительство с требованием компенсации за остановку станций до истечения срока их эксплуатации. В Японии несколько аварий на ядерных установках в середине 1990-х годов подорвали общественную поддержку ядерной энергетики. Растущие запасы плутония в Японии и поставки отработанного ядерного топлива в Европу вызывают международную критику. Китай, где в настоящее время эксплуатируются только три атомные электростанции, планирует расширить свои ядерные возможности. Однако неясно, сможет ли Китай получить достаточное финансирование или он сможет создать необходимую квалифицированную рабочую силу для расширения. Ряд восточноевропейских стран, включая Россию, Украину, Болгарию, Чешскую Республику, Венгрию, Литву и Словаки, вырабатывают электроэнергию с помощью ядерных реакторов советской конструкции, которые имеют различные недостатки безопасности. Некоторые из этих реакторов имеют ту же конструкцию, что и чернобыльский реактор, взорвавшийся в 1986 году. Соединенные Штаты и другие западные страны работают над решением этих проектных проблем и улучшением эксплуатации, технического обслуживания и обучения на этих станциях. Солнечная энергия не относится к какой-то одной энергетической технологии, а, скорее, охватывает разнообразный набор технологий возобновляемой энергии, которые питаются от солнечного тепла.Некоторые технологии солнечной энергии, такие как отопление с помощью солнечных батарей, напрямую используют солнечный свет. Другие виды солнечной энергии, такие как гидроэлектроэнергия и топливо из биомассы (древесина, растительные остатки и навоз), зависят от способности Солнца испарять воду и выращивать растительный материал соответственно. Общей чертой технологий солнечной энергии является то, что, в отличие от нефти, газа, угля и нынешних форм ядерной энергетики, солнечная энергия неисчерпаема. Солнечную энергию можно разделить на три основные группы: отопление и охлаждение, производство электроэнергии и топливо из биомассы. Солнце веками использовалось для обогрева. Жилища на утесе Меса-Верде в Колорадо были построены с выступами скал, которые обеспечивают тень от высокого (и жаркого) летнего Солнца, но позволяют проникать лучам нижнего зимнего Солнца. Сегодня конструкция с небольшим количеством движущихся частей или без них, использующая преимущества Солнца, называется пассивным солнечным нагревом. Начиная с конца 1970-х годов архитекторы все больше знакомились с пассивными солнечными технологиями. В будущем все больше и больше новых зданий будут спроектированы так, чтобы улавливать зимние лучи солнца и не пропускать летние лучи. Активное солнечное отопление и солнечное водяное отопление — это вариации на одну тему, различающиеся принципиально стоимостью и масштабом. Типичный активный солнечный нагревательный элемент состоит из труб, установленных в панелях, установленных на крыше. Вода (или иногда другая жидкость), протекающая по трубкам, нагревается Солнцем и затем используется в качестве источника горячей воды и тепла для здания. Несмотря на то, что с 1970-х годов количество активных установок для солнечного отопления быстро росло, промышленность столкнулась с простыми проблемами установки и обслуживания, включая такие обычные явления, как утечка воды и засорение трубопровода воздухом.Солнечное охлаждение требует установки более высоких технологий, в которой жидкость охлаждается путем нагрева до промежуточной температуры, чтобы ее можно было использовать для управления холодильным циклом. На сегодняшний день выполнено относительно немного коммерческих установок.
Электроэнергия может вырабатываться с помощью различных технологий, которые в конечном итоге зависят от воздействия солнечного излучения.Ветряные мельницы и водопады (сами по себе очень старые источники механической энергии) могут использоваться для вращения турбин для выработки электроэнергии. Энергии ветра и падающей воды считаются формами солнечной энергии, потому что солнечная энергия нагрева создает ветер и пополняет воду в реках и ручьях. Большинство существующих ветряных мельниц относительно невелики и содержат десять или более ветряных мельниц в конфигурации сети, которая использует ветровые сдвиги. Напротив, большая часть электроэнергии от гидроэлектростанций поступает из гигантских плотин.Многие участки, подходящие для больших плотин, уже освоены, особенно в промышленно развитых странах. Однако в 1970-х годах небольшие плотины, использовавшиеся годами ранее для получения механической энергии, были модернизированы для выработки электроэнергии. Крупномасштабные гидроэлектрические проекты все еще реализуются во многих развивающихся странах. Самая простая форма производства электроэнергии на солнечной энергии — это использование массива коллекторов, которые нагревают воду для производства пара для вращения турбины. Некоторые из этих объектов уже существуют. Другие источники солнечной электроэнергии включают высокотехнологичные варианты, которые в больших масштабах коммерчески не проверены. Фотоэлектрические элементы ( см. Фотоэлектрический эффект; солнечная энергия), которые преобразуют солнечный свет непосредственно в электричество, в настоящее время используются в удаленных местах для питания орбитальных космических спутников, ворот на необслуживаемых железнодорожных переездах и ирригационных насосов. Прежде чем станет возможным широкое использование фотоэлектрических элементов, необходим прогресс в снижении затрат.Коммерческое развитие и других методов кажется далеким будущим. Тепловая конверсия океана (OTC) вырабатывает электричество на морских платформах; турбина вращается за счет энергии, генерируемой, когда холодная морская вода перемещается с большой глубины на теплую поверхность. Также весьма спекулятивным остается идея использования космических спутников для передачи электроэнергии через микроволны на Землю. Топливо из биомассы включает несколько различных форм, включая спиртовое топливо (упомянутое ранее), навоз и древесину.Древесина и навоз по-прежнему являются основными видами топлива в некоторых развивающихся странах, а высокие цены на нефть вызвали возрождение интереса к древесине в промышленно развитых странах. Исследователи уделяют все большее внимание развитию так называемых энергетических культур (многолетние травы и деревья, выращиваемые на сельскохозяйственных землях). Однако есть некоторая озабоченность тем, что сильная зависимость от сельского хозяйства в качестве источника энергии может привести к росту цен как на продукты питания, так и на землю. Общее количество используемой в настоящее время солнечной энергии невозможно точно оценить, поскольку некоторые источники не зарегистрированы.Однако в начале 1980-х годов два основных источника солнечной энергии, гидроэлектрическая энергия и биомасса, внесли более чем в два раза больше ядерной энергии в мировое энергоснабжение. Тем не менее, эти два источника ограничены наличием участков плотин и наличием земли для выращивания деревьев и других растительных материалов, поэтому будущее развитие солнечной энергии будет зависеть от широкого спектра технологических достижений. Потенциал солнечной энергии, за исключением гидроэлектроэнергии, останется недоиспользованным и после 2000 года, поскольку солнечная энергия по-прежнему намного дороже, чем энергия, полученная из ископаемых видов топлива. Долгосрочные перспективы солнечной энергии во многом зависят от того, вырастут ли цены на ископаемое топливо и станут ли экологические нормы более строгими. Например, более строгий экологический контроль при сжигании ископаемого топлива может привести к увеличению цен на уголь и нефть, в результате чего солнечная энергия станет менее дорогим источником энергии по сравнению с этим.
Геотермальная энергия — один из аспектов науки, известной как геотермия, — основана на том факте, что земля тем горячее, чем глубже бурятся скважины под поверхностью.Вода и пар, циркулирующие в глубоких горячих породах, если их поднять на поверхность, можно использовать для приведения в действие турбины для производства электроэнергии или их можно передавать по трубам через здания в качестве тепла. Некоторые геотермальные энергетические системы используют природные источники геотермальной воды и пара, тогда как другие системы перекачивают воду в глубокие горячие породы. Хотя теоретически он безграничен, в большинстве обитаемых районов мира этот подземный источник энергии расположен настолько глубоко, что бурение скважин для его вскрытия обходится очень дорого.
Помимо развития альтернативных источников энергии, поставки энергии могут быть расширены за счет сохранения (планового управления) имеющихся в настоящее время ресурсов.Можно описать три типа возможных практик энергосбережения. Первый тип — это сокращение, то есть отказ, например, от закрытия заводов для уменьшения количества потребляемой энергии или сокращения поездок для уменьшения количества сжигаемого бензина. Второй тип — это капитальный ремонт, то есть изменение образа жизни людей и способов производства товаров и услуг, например, замедление дальнейшей субурбанизации общества, использование менее энергоемких материалов в производственных процессах и уменьшение количества энергии, потребляемой некоторыми продуктами. (например, автомобили).Третий тип включает более эффективное использование энергии, то есть приспособление к более высоким затратам на энергию, например, инвестирование в автомобили, которые едут дальше на единицу топлива, улавливание отработанного тепла на заводах и его повторное использование, а также изоляция домов. Этот третий вариант требует менее радикальных изменений в образе жизни, поэтому правительства и общества чаще всего выбирают его, а не два других варианта. К 1980 году многие люди пришли к пониманию того, что повышение энергоэффективности может помочь мировому энергетическому балансу в краткосрочной и среднесрочной перспективе и что продуктивное энергосбережение следует рассматривать как не меньшую альтернативу энергии, чем сами источники энергии.Существенная экономия энергии начала происходить в Соединенных Штатах в 1970-х годах, когда, например, федеральное правительство ввело общенациональный стандарт эффективности автомобилей и предложило налоговые вычеты за утепление домов и установку солнечных батарей. Существенная дополнительная экономия энергии за счет мер по энергосбережению представляется возможной без существенного влияния на образ жизни людей. Однако на пути стоит ряд препятствий. Одним из основных препятствий на пути к продуктивному сохранению является его крайне фрагментированный и неприглядный характер; это требует от сотен миллионов людей повседневных дел, таких как выключение света и поддержание надлежащего накачивания шин.Еще одним препятствием стала цена на энергию. С поправкой на инфляцию стоимость бензина в США в 1998 году была ниже, чем в 1972 году. Низкие цены на энергию затрудняют убеждение людей вкладывать средства в энергоэффективность. С 1973 до середины 1980-х годов, когда в Соединенных Штатах выросли цены на нефть, потребление энергии на человека упало примерно на 14 процентов, в значительной степени из-за мер по сохранению. Однако, поскольку в 1990-е годы нефть подешевела, министерство энергетики США прогнозирует, что к 2000 году потребление энергии в Соединенных Штатах вырастет до 2 процентов от уровня 1973 года. Со временем повышение энергоэффективности окупается с лихвой. Однако они требуют больших капитальных вложений, что не очень привлекательно при низких ценах на энергию. Основные области таких улучшений описаны ниже. В то время как транспорт использует 25 процентов всей энергии, потребляемой в Соединенных Штатах, на его долю приходится 66 процентов нефти, используемой в Соединенных Штатах. Автомобили, построенные в других странах, долгое время имели тенденцию быть более эффективными, чем американские, отчасти из-за давления высоких налогов на бензин.В 1975 году Конгресс США принял закон, обязывающий к 1985 году удвоить топливную эффективность новых автомобилей. Этот закон в сочетании с нехваткой бензина в 1974 и 1979 годах и значительно более высокими ценами на бензин (особенно с 1979 года) привел к средней эффективности всех американских автомобилей улучшиться примерно на 40 процентов в период с 1975 по 1990 год. Однако большая часть этого улучшения была компенсирована резким увеличением количества автомобилей на дорогах и ростом продаж внедорожников и легких грузовиков (которые не покрываются федеральные стандарты эффективности). К 1996 году количество автомобилей, используемых во всем мире, выросло до 652 миллионов единиц. Ожидается, что к 2018 году это число увеличится почти до 1 миллиарда. Эксперты прогнозируют, что, если не будут разработаны более эффективные технологии, этот рост увеличит спрос на бензин более чем на 20 миллионов баррелей в день. Сегодня производители автомобилей обладают техническими возможностями для создания автомобилей с гораздо более высокой топливной экономичностью, чем предписано Конгрессом. Однако массовое производство автомобилей с такой эффективностью потребует огромных капитальных вложений.Новые технологии двигателей, использующие электрические батареи или высокоэффективные топливные элементы, а также двигатели, работающие на природном газе, могут сыграть гораздо более важную роль в начале 21 века. Повышение цен на бензин и парковку стимулировало использование двух других видов транспорта: совместного использования пассажиров (фургон или автомобильный пул) и общественного транспорта. Эти методы могут быть очень эффективными, но разрастающийся характер многих городов США может затруднить их использование. Управляющие бизнесом, ориентированные на прибыль, все чаще обращают внимание на модификацию продукции и производственных процессов с целью экономии энергии.Фактически, промышленный сектор продемонстрировал более значительные улучшения в эффективности, чем жилищный или транспортный сектор. Усовершенствования в производстве можно разделить на три широкие, в некоторой степени перекрывающиеся, категории: улучшение домашнего хозяйства, текущее обслуживание печей и использование только необходимого освещения; регенерация отходов рекуперация тепла и переработка побочных продуктов отходов; и технологические инновации, модернизирующие продукты и процессы для воплощения более эффективных технологий. В 1950-х и 1960-х годах эффективному использованию энергии часто пренебрегали при строительстве зданий и домов, но высокие цены на энергию 1970-х годов изменили это. Некоторые офисные здания, построенные с 1980 года, используют только пятую часть энергии, потребляемой зданиями, построенными всего десятью годами ранее. Методы экономии энергии включают проектирование и размещение зданий для использования пассивного солнечного тепла, использование компьютеров для мониторинга и регулирования использования электроэнергии, а также инвестирование в более эффективное освещение и в улучшенные системы отопления и охлаждения.Подход на основе жизненного цикла, который учитывает общие затраты за весь срок службы здания, а не только начальную стоимость строительства или цену продажи, способствует повышению эффективности. Кроме того, успешной была реконструкция старых зданий, в которой новые компоненты и оборудование используются в существующих конструкциях. Химия, история, история изучения состава, структуры и свойств материальных веществ, взаимодействий между веществами и воздействия на вещества добавления или удаления энергии в любой из ее различных форм. С самых ранних письменных времен люди наблюдали химические изменения и предполагали их причины. Проследив историю этих наблюдений и предположений, можно проследить постепенную эволюцию идей и концепций, которые привели к современной химии.
Первые известные химические процессы были выполнены ремесленниками Месопотамии, Египта и Китая.Сначала кузнецы этих земель работали с самородными металлами, такими как золото или медь, которые иногда встречаются в природе в чистом виде, но они быстро научились плавить металлические руды (в основном оксиды и сульфиды металлов), нагревая их деревом или древесным углем. для получения металлов. Постепенное использование меди, бронзы и железа породило названия, которые археологи применяли к соответствующим эпохам. Примитивная химическая технология также возникла в этих культурах, когда красильщики открыли методы нанесения красок на различные типы тканей, и когда гончары научились готовить глазури, а позже и стекло. Большинство этих мастеров работали в храмах и дворцах, производя предметы роскоши для священников и знати. В храмах у жрецов особенно было время поразмышлять о происхождении изменений, которые они увидели в окружающем их мире. Их теории часто включали магию, но они также развивали астрономические, математические и космологические идеи, которые они использовали в попытках объяснить некоторые изменения, которые теперь считаются химическими.
Первой культурой, которая рассмотрела эти идеи с научной точки зрения, были греки.Со времен Фалеса, около 600 г. до н. Э., Греческие философы делали логические рассуждения о физическом мире, а не полагались на миф для объяснения явлений. Сам Фалес предполагал, что вся материя произошла из воды, которая могла затвердеть до земли или испариться в воздух. Его последователи расширили эту теорию до идеи, что мир состоит из четырех элементов: земли, воды, воздуха и огня. Демокрит думал, что эти элементы состоят из атомов, мельчайших частиц, движущихся в вакууме. Другие, особенно Аристотель, полагали, что элементы образуют континуум массы, и поэтому вакуум существовать не может.Идея атома быстро утратила популярность среди греков, но никогда не была забыта полностью. Когда он был возрожден в эпоху Возрождения, он лег в основу современной атомной теории ( см. Атом). Аристотель стал самым влиятельным из греческих философов, и его идеи доминировали в науке почти два тысячелетия после его смерти в 323 г. до н. Э. Он считал, что в природе есть четыре качества: тепло, холод, влажность и сухость. Каждый из четырех элементов состоит из пар этих качеств; например, огонь был горячим и сухим, вода была холодной и влажной, воздух был горячим и влажным, а земля была холодной и сухой.Эти элементы вместе со своими качествами в различных пропорциях образуют составляющие планеты Земля. Поскольку количество каждого качества в элементе могло быть изменено, элементы могли быть заменены друг на друга; таким образом, считалось возможным также преобразовать материальные вещества, которые были образованы из элементов свинца, например, в золото.
Теория Аристотеля была принята практическими ремесленниками, особенно в Александрии, Египет, которая после 300 г. до н. Э. Стала интеллектуальным центром древнего мира.Они думали, что металлы на земле стремятся становиться все более и более совершенными и постепенно превращаются в золото. Им казалось, что они должны иметь возможность быстрее выполнять тот же процесс в своих мастерских и так искусственно превращать обычные металлы в золото. Начиная примерно с 100 г. н.э. эта идея доминировала в умах философов, а также мастеров-металлистов, и было написано большое количество трактатов об искусстве трансмутации, которое стало известно как алхимия. Хотя никому и никогда не удавалось создать золото, в поисках совершенства металлов был открыт ряд химических процессов. Почти в то же время и, вероятно, независимо, подобная алхимия возникла в Китае. Здесь также целью было получить золото, хотя и не из-за его денежной стоимости. Китайцы верили, что золото — это лекарство, которое может даровать долгую жизнь или даже бессмертие любому, кто его употребляет. Как и египтяне, китайцы получили практические химические знания из неверных теорий.
После упадка Римской империи греческие письма стали менее открыто изучаться в Западной Европе, и даже в Восточном Средиземноморье им в значительной степени пренебрегали.Однако в VI веке секта христиан, известная как несториане, чьим языком был сирийский, распространила свое влияние по всей Малой Азии. Они основали университет в Эдессе в Месопотамии и перевели большое количество греческих философских и медицинских сочинений на сирийский язык для использования среди ученых. В VII и VIII веках арабские завоеватели распространили исламскую культуру на большей части Малой Азии, Северной Африки и Испании. Багдадские халифы стали активными покровителями науки и образования. Сирийский перевод греческих текстов был снова переведен, на этот раз на арабский, и вместе с остальным греческим изучением идей и практики алхимии снова процветали. Арабские алхимики также контактировали с Китаем на Востоке, таким образом получив представление о золоте как лекарстве, а также греческое представление о золоте как о совершенном металле. Считалось, что особый агент, философский камень, стимулирует трансмутацию, и это стало предметом поиска алхимиков.Теперь у алхимиков появился дополнительный стимул к изучению химических процессов, поскольку они могли привести не только к богатству, но и к здоровью. Неуклонно продвигалось изучение химикатов и химических аппаратов. Были обнаружены такие важные реагенты, как едкие щелочи ( см. щелочные металлы) и соли аммония ( см. Аммиак), и аппарат для перегонки постоянно совершенствовался. Раннее осознание потребности в более количественных методах также появилось в некоторых арабских рецептах, где были даны конкретные инструкции относительно количества используемых реагентов.
Великое интеллектуальное пробуждение началось в Западной Европе в 11 веке. Частично это стимулировалось культурным обменом между арабами и западными учеными на Сицилии и в Испании. Были созданы школы переводчиков, и их переводы передавали арабские философские и научные идеи европейским ученым. Таким образом, знание греческой науки, переданное через промежуточные языки сирийский и арабский, распространилось на научном языке латыни и таким образом в конечном итоге распространилось по всей Европе.Многие из рукописей, которые охотнее всего читали, касались алхимии. Эти рукописи были двух типов: некоторые были почти чисто практическими, а некоторые пытались применить теории природы материи к алхимическим проблемам. Среди обсуждаемых практических вопросов была дистилляция. Производство стекла было значительно улучшено, особенно в Венеции, и теперь стало возможным построить даже лучший дистилляционный аппарат, чем арабы, и конденсировать более летучие продукты дистилляции. Среди важных продуктов, полученных таким образом, были спирт и минеральные кислоты: азотная, царская водка (смесь азотной и соляной), серная и соляная. С помощью этих мощных реагентов можно провести множество новых реакций. Слухи об открытии Китаем нитратов и производстве пороха также дошли до Запада через арабов. Китайцы сначала использовали порох для фейерверков, но на Западе он быстро стал важной частью войны. К концу 13 века в Европе существовала эффективная химическая технология. Второй тип алхимических рукописей, переданных арабами, касался теории. Многие из этих писаний раскрывают мистический характер, который мало способствовал развитию химии, но другие пытались объяснить трансмутацию в физических терминах. Арабы основывали свои теории материи на идеях Аристотеля, но их мышление было более конкретным, чем его. Особенно это касалось их представлений о составе металлов. Они считали, что металлы состоят из серы и ртути, но не из знакомых им веществ, с которыми они были прекрасно знакомы, а из принципа ртути, придающего металлам свойство текучести, и принципа серы, делающего вещества горючими и вызывающего ржаветь. Химические реакции были объяснены с точки зрения изменения количества этих принципов в материальных веществах. В течение 13 и 14 веков влияние Аристотеля на все отрасли научной мысли начало ослабевать. Фактическое наблюдение за поведением материи поставило под сомнение относительно простые объяснения, данные Аристотелем; такие сомнения быстро распространились после изобретения около 1450 года печати с подвижным шрифтом. После 1500 печатных работ по алхимии появилось все больше, равно как и работ, посвященных технике.Результат этого возрастающего знания стал очевиден в 16 веке.
Среди влиятельных книг, появившихся в это время, были практические работы по горному делу и металлургии. В этих трактатах много места уделялось анализу руд на содержание в них ценных металлов, работе, требующей использования лабораторных весов или весов, а также разработке количественных методов ( см. Химический анализ).Работники других областей, особенно медицины, начали осознавать необходимость большей точности. Врачам, некоторые из которых были алхимиками, необходимо было знать точный вес или объем вводимых ими доз. Таким образом, они использовали химические методы приготовления лекарств. Эти методы были объединены и активно продвигались эксцентричным швейцарским врачом Теофрастом фон Гогенхаймом, которого обычно звали Парацельс. Он вырос в горнодобывающем районе и познакомился со свойствами металлов и их соединений, которые, по его мнению, превосходили лечебные травы, используемые ортодоксальными врачами.Он провел большую часть своей жизни в ожесточенных спорах с медицинским учреждением того времени, и в процессе он основал науку ятрохимию (использование химических лекарств), предшественницу фармакологии. Он и его последователи открыли много новых соединений и химических реакций. Он модифицировал старую теорию состава металлов сера-ртуть, добавив третий компонент, соль, землистую часть всех веществ. Он заявил, что при горении дерева горит сера, испаряется ртуть, а превращается в пепел соль.Как и в случае теории серы и ртути, это были принципы, а не материальные вещества. Его акцент на горючей сере был важен для более позднего развития химии. Ятрохимики, последовавшие за Парацельсом, изменили некоторые из его смелых идей и собрали его и свои собственные рецепты приготовления химических лекарств. Наконец, в конце XVI века Андреас Либавиус опубликовал свою книгу «Алхимия , », которая систематизировала знания ятрохимиков и часто называлась первым учебником химии. В первой половине 17 века некоторые люди начали изучать химические реакции экспериментально не потому, что они были полезны в других дисциплинах, а скорее ради них самих. Ян Баптиста ван Гельмонт, врач, оставивший медицинскую практику, чтобы посвятить себя изучению химии, использовал весы в важном эксперименте, чтобы показать, что определенное количество песка может быть сплавлено с избытком щелочи с образованием жидкого стекла, и что при этом продукт обработали кислотой, регенерировали исходное количество песка (кремнезема). Так были заложены основы закона сохранения массы. Ван Гельмонт также показал, что в ряде реакций выделялась воздушная жидкость. Он назвал это вещество газом. Было показано, что существует новый класс веществ с собственными физическими свойствами.
Дата: 20.04.2015; посмотреть: 2611 |
Не портится ли бензин? | Живая наука
Вы давно не перемещали машину? У вас есть остатки топлива в гараже для газонокосилки? Если да, вы можете спросить, а бензин ли портится?
К сожалению, «не существует жесткого правила», — сказал Джеймс Спейт, консультант по вопросам энергетики и автор «Справочника по переработке нефти» (Taylor & Francis, 2016) и других публикаций.«Это просто … очень сложно обобщить».
Хотя бензин может храниться от месяцев до лет, факторы окружающей среды, такие как высокая температура, кислород и влажность, влияют на состояние топлива, сказал Спейт. [Hyperloop, Jetpacks и многое другое: 9 футуристических идей транзита]
Но если сырая нефть хранится под землей сотни миллионов лет, почему даже бензин может испортиться? Проще говоря, к тому моменту, когда бензин попадает к потребителю, это вещество сильно отличается от исходной сырой нефти.
Бензин в основном представляет собой смесь атомов углерода и водорода, связанных вместе, образующих множество богатых энергией соединений, называемых углеводородами. В процессе переработки нефти инженеры удаляют примеси, такие как сера, которые могут образовывать диоксид серы и вызывать кислотные дожди. Затем, по данным Агентства по охране окружающей среды США, добавляются вещества для улучшения характеристик бензина и достижения желаемого октанового числа. Октановые числа показывают, с какой степенью сжатия может выдержать бензин.Чем выше число, тем меньше вероятность возгорания от давления.
В конечном, тщательно откалиброванном продукте бензин состоит из сотен различных соединений — слишком много, чтобы даже идентифицировать и охарактеризовать, сказал Спейт.
Однако эта забота о балансировке бензина тратится впустую, если бензин хранится слишком долго, сказал Ричард Стэнли, бывший инженер-химик из Fluor Corporation, инженерной фирмы со штаб-квартирой в Ирвинге, Техас, и Ascent Engineering из Хьюстона. .
«Если вы оставите бензин сам по себе, со временем … он просто не будет работать так, как вы думаете, — сказал Стэнли.
Это потому, что со временем» [t] он более легкие углеводороды Начните испаряться из бензина «, — сказал Стэнли Live Science. И ваш автомобильный двигатель может быть не предназначен для обработки образующегося бензина, если оставить его слишком долго.
Кроме того, тщательные смеси, которые используются для производства бензина, не выглядят одинаково в течение года, по мнению экспертов.Зимой компании производят бензин, содержащий более легкие углеводороды, что делает жидкость более летучей и, следовательно, более легкой для воспламенения.
В холодные месяцы эта смесь облегчает запуск автомобиля, сказал Спейт. Но, по словам Стэнли, летом смесь теряет достаточно легких углеводородов, в результате чего вы получаете другой газовый рейтинг. Летний бензин содержит более тяжелые углеводороды, чтобы предотвратить чрезмерное испарение от жары. По словам Стэнли, это затрудняет воспламенение летнего бензина зимой.
Помимо испарения, «[бензин] похож на вино — как только вы вынимаете его из бутылки, он начинает портиться. Он начинает окисляться», — сказал Стэнли.
Поскольку некоторые углеводороды в бензине испаряются, другие углеводороды вступают в реакцию с кислородом воздуха, сказал Спейт. Затем бензин начинает образовывать твердые частицы, называемые смолой. [10 самых загрязненных мест на Земле]
«Когда [плохой бензин] попадает в трубопровод, эта жвачка может отделиться … и, возможно, [она] не заблокирует полностью газопровод, но, возможно, [ он] начнет его блокировать, — сказал Спейт.
«Можно почти сказать, что сморщивание газовых магистралей похоже на атеросклероз», — добавил он.