Холл датчик: Sorry! This site is experiencing technical difficulties.

Содержание

Что такое датчик Холла?

Датчик Холла (датчик положения) представляет собой датчик магнитного поля. Работа устройства основана на эффекте Холла. Данный эффект основан на следующем принципе: если поместить определенный проводник с постоянным током в магнитное поле, то в таком проводнике возникает поперечная разность потенциалов (напряжение Холла). Другими словами, устройство служит для измерения напряжённости магнитного поля. Сегодня датчик Холла может быть как аналоговым, так и цифровым.

Сфера применения датчиков Холла очень широка. Устройство используется в таких схемах, где требуется бесконтактное измерение силы тока. Что касается автомобилей, датчик Холла служит для измерения угла положения распределительного или коленчатого вала, а также нашел свое применение в системе зажигания, указывая на момент образования искры. 

Содержание статьи

Как работает датчик Холла

Во время своих исследований в 1879 году физик Холл выявил такой эффект, что если в магнитном поле находится пластина, на которую подается напряжение (ток протекает через пластину), тогда электроны в указанной пластине начинают отклоняться. Такое отклонение происходит перпендикулярно по отношению к тому направлению, которое имеет магнитный поток.

Также направление этого отклонения происходит в зависимости от той полярности, которую имеет магнитное поле. Получается, электроны будут иметь разную плотность на разных сторонах пластины, создавая разные потенциалы. Обнаруженное явление получило название эффект Холла.

Другими словами, Холл поместил прямоугольную полупроводниковую пластину в магнитное поле и на узкие грани такого полупроводника подал ток. В результате на широких гранях появилось напряжение. Дальнейшее развитие технологий позволило создать на основе обнаруженного эффекта компактное устройство-датчик. Главным преимуществом датчиков подобного рода выступает то, что частота срабатывания устройства не смещает момент измерения. Выходной сигнал от такого устройства всегда устойчивый, без всплесков.

Простейший датчик состоит из:

  • постоянного магнита;
  • лопасти ротора;
  • магнитопроводов;
  • пластикового корпуса;
  • электронной микросхемы;
  • контактов;

Работа устройства построена на следующей схеме: через зазор осуществляется проход металлической лопасти ротора, что позволяет шунтировать магнитный поток. Результатом становится нулевой показатель индукции на микросхеме. Выходной сигнал по отношению к массе практически равняется показателю напряжения питания.

Датчик Холла в системе зажигания является аналоговым преобразователем, который непосредственно коммутирует питание. 

Среди недостатков стоит выделить чувствительность устройства к электромагнитным помехам, которые могут возникнуть в цепи. Также наличие электронной схемы в устройстве датчика несколько снижает его надежность.

Рекомендуем также прочитать статью об устройстве топливного электробензонасоса, а также о механическом решении. Из этой статьи вы узнаете о назначении, конструктивных особенностях и принципах работы данных устройств.

Аналоговые и цифровые решения

Датчики на основе эффекта Холла фиксируют разницу потенциалов. Аналоговое решение, рассмотренное выше, основано на преобразовании индукции поля в напряжение с учетом полярности и силы поля.

Принцип работы цифрового датчика состоит в фиксации присутствия или отсутствие поля. В случае достижения индукцией определенного показателя датчик отмечает наличие поля. Если индукция не соответствует необходимому показателю, тогда цифровой датчик показывает отсутствие поля. Чувствительность датчика определяется его способностью фиксировать поле при той или иной индукции. 

Цифровой датчик Холла может быть биполярным и униполярным. В первом случае срабатывание и отключение устройства происходит посредством смены полярности. Во втором случае включение происходит при появлении поля, отключается датчик в результате того, что индукция снижается.

Самостоятельная проверка устройства

Активное использование данного устройства в автомобилях означает, что при появлении определенных неисправностей или сбоев в работе ДВС может возникнуть острая необходимость проверить датчик Холла своими руками.

Перед началом работ по отсоединению разъема кабеля, который подключен к устройству, следует обязательно выключать зажигание!

Игнорирование данного правила может вывести датчик Холла из строя. Необходимо добавить, что проверка устройства при помощи контрольной лампы также недопустима.

  1. Одним из самых быстрых способов проверки является установка заведомо исправного подменного датчика на автомобиль. Если признаки неисправности после установки исчезают, тогда причина очевидна.
  2. Вторым способом, который подойдет для проверки датчика в системе зажигания, является проверка наличия искры в момент включения зажигания. Дополнительно потребуется осуществить подсоединение концов провода к нужным выходам на коммутаторе.
  3. Для максимально точной диагностики устройство лучше всего поверять при помощи осциллографа. Также в определенных условиях датчик проверяют при помощи мультиметра. Указанный мультиметр переводят в режим вольтметра, после чего подсоединяют к выходному контакту на датчике. Рабочий датчик Холла выдаст показания от 0.4 Вольт до 3-х. Если показания ниже минимального порога, тогда высока вероятность выхода датчика из строя.

Читайте также

Что такое датчик Холла в смартфоне?

Современные мобильные устройства оснащаются большим количеством функциональных блоков, среди которых – не только основные элементы, но и вспомогательные датчики. Если о том, что такое акселерометр, сенсор освещенности и гироскоп знают многие пользователи, то по поводу датчика Холла нередко возникают вопросы.

Что такое датчик Холла

Датчики Холла, используемые в современных смартфонах, это измерительные элементы, которые позволяют определять наличие и интенсивность магнитного поля, а также его изменения. Свое название они получили в честь американского ученого Эдвина Холла, который еще в 1879 году открыл эффект изменения напряжения тока на проводнике при его помещении в магнитное поле.

Магнитный поток, взаимодействующий с датчиком Холла

Зачем нужен датчик Холла в смартфоне

В зависимости от уровня реализации, этот сенсор обладает довольно широкими возможностями. Среди них – измерение величины электромагнитной индукции различных приборов, возможность реализации бесконтактного управления и другие функции. Магнитометр, основанный на датчике Холла, в современных смартфонах встречается достаточно часто. Особенно в флагманских устройствах.

Но в большинстве мобильных устройств не все возможности датчика Холла реализованы в полной мере. Ограниченное пространство под крышкой, желание снизить потребление заряда аккумулятора, отсутствие широкого интереса и острой потребности в реализации новых функций сводят использование сенсора к двум задачам:

  • Первая из них – это цифровой компас. Он используется навигационными программами для ускорения позиционирования и более точного определения направления движения.
  • Второй областью применения датчика Холла, наиболее востребованной владельцами смартфонов, является улучшение взаимодействия устройства с магнитными чехлами и другими аксессуарами.
  • Использование датчика Холла в телефонах «раскладушках», чтобы включать или выключать экран при закрытии или открытии крышки.

Как смартфон взаимодействует с магнитными чехлами

Самым простым примером реализации взаимодействия чехла с магнитом и смартфона является автоматическая блокировка/разблокировка экрана при закрытии/открытии чехла. Датчик Холла реагирует на приближение магнита, расположенного в флипе, регистрируя усиление поля, и блокирует дисплей. При открытии интенсивность излучения снижается и экран активизируется.

Чехлы с окошком в верхней части, которые оставляют часть дисплея открытой для возможности использования отдельных функций (звонки, проигрыватель, часы) без раскрытия флипа, тоже взаимодействуют с датчиком Холла. Регистрируя наличие/отсутствие повышенного магнитного поля, смартфон определяет, оставлять активным весь экран или только его часть.

Еще одним примером аксессуара, требующего наличия датчика Холла, являются Google CardBoard – доступные очки виртуальной реальности, использующие смартфон. Так как при использовании устройства телефон находится внутри, единственным способом управления остается удаленное взаимодействие магнита, встроенного в единственную «кнопку» аксессуара, с датчиком Холла.

 

Датчик Холла — это… Что такое Датчик Холла?

Эффе́кт Хо́лла — явление возникновения поперечной разности потенциалов (называемой также Холловским напряжением) при помещении проводника с постоянным током в магнитное поле. Открыт Э. Холлом в 1879 году в тонких пластинках золота.

Свойства

В простейшем рассмотрении эффект Холла выглядит следующим образом. Пусть через металлический брус в слабом магнитном поле B течет электрический ток под действием напряженности E. Магнитное поле будет отклонять носители заряда (для определенности электроны) от их движения вдоль или против электрического поля к одной из граней бруса. При этом критерием малости будет служить условие, что при этом электрон не начнет двигаться по спирали.

Таким образом, сила Лоренца приведет к накоплению отрицательного заряда возле одной грани бруска и положительного возле противоположной. Накопление заряда будет продолжаться до тех пор, пока возникшее электрическое поле зарядов E1 не скомпенсирует магнитную составляющую силы Лоренца: Скорость электронов v можно выразить через плотность тока: , где n — концентрация носителей заряда. Тогда .

Коэффициент пропорциональности между

E1 и jB называется коэффициентом (константой) Холла. В таком приближении знак постоянной Холла зависит от знака носителей заряда, что позволяет определять их тип для большого числа металлов. Для некоторых металлов (в сильных полях), таких как алюминий, цинк, железо, кобальт, наблюдается положительный знак RH, что объясняется в полуклассической и квантовой теориях твердого тела.

Аномальный эффект Холла

Случай появления напряжения (электрического поля) в образце перпендикулярного направлению пропускаемого через образец тока, наблюдающегося в отсутствие приложенного постоянного магнитного поля, то есть явление полностью аналогичное эффекту Холла, но наблюдающееся без внешнего постоянного магнитного поля — называется Аномальный эффект Холла.

Необходимым условием для наблюдения аномального эффекта Холла является нарушение инвариантности по отношению к обращению времени в системе. Например, аномальный эффект Холла может наблюдаться в образцах с намагниченностью.

Датчики на основе эффекта Холла получили очень большое распространение в вентильных двигателях (сервомоторах). Они закрепляются непосредственно на статоре двигателя и выступают в роли ДПР (датчика положения ротора). ДПР реализует обратную связь по положению ротора, выполняет ту же функцию, что и коллектор в ДПТ.

Квантовый эффект Холла

В сильных магнитных полях в плоском проводнике (то есть в квази-двумерном электронном газе) в системе начинают сказываться квантовые эффекты, что приводит к квантовому эффекту Холла: квантованию холловского сопротивления. В ещё более сильных магнитных полях проявляется дробный квантовый эффект Холла, который связан с кардинальной перестройкой внутренней структуры двумерной электронной жидкости.

Магнитосопротивление

Холл проводил опыты в надежде обнаружить возрастание сопротивления проводника в магнитном поле, но в слабых полях не зарегистрировал его. Также оно не следует из теории металлов Друде, расчеты по которой приводились выше. Однако при более строгих расчетах и в сильных полях магнитосопротивление проявляется достаточно хорошо.

Применение

Датчик Холла, используемый для измерения силы тока в проводнике.

Эффект Холла, в некоторых случаях, позволяет определить тип носителей заряда (электронный или дырочный) в металле или полупроводнике, что делает его незаменимым методом исследования свойств полупроводников.

На основе эффекта Холла работают датчики Холла: приборы, измеряющие напряжённость магнитного поля.

См. также

Ссылки

  • Эффект Холла — описание на Effects.ru.
  • Абрикосов А.А. Основы теории металлов. М., «Наука», главная редакция физико-математической литературы. — 1987.
  • Н. Ашкрофт, Н. Мермин. Физика твердого тела.

Wikimedia Foundation. 2010.

Датчик Холла — что это? Описание, принцип действия

Полное технически грамотное название – датчик положения на эффекте Холла.

Принцип действия этого устройства прост: помещая любой проводник с постоянным током в электромагнитное поле, в нём образуется разность потенциалов поперечного типа. Напряжение, наблюдаемое в этом проводнике, назвали в честь изобретателя – холловское.

В двигателях внутреннего сгорания датчик Холла нашёл большое применение. В распределителях зажигания на карбюраторных автомобилях он подавал сигнал момента искрообразования. Затем, на более новых моделях двигателей, его начали ставить у распределительного и коленчатого валов, где он фиксировал угол положения.

Физическое явление образования на гранях пластины напряжения открыл физик Американского Балтиморского Университета Э. Холл в 1879 году. Он поместил полупроводниковую пластину в магнитное поле и к её узким граням подвёл ток. А на широких гранях появлялось напряжение (от десятков микровольт до многих сотен милливольт).

Широкое применение устройств, с использованием эффекта Холла, началось с 1955 года. Именно в это время начали массово производиться полупроводниковые плёнки.

В семидесятых годах прошлого века начала бурно развиваться микроэлектроника. Датчик приобрёл миниатюрную форму, в котором помещался чувствительный элемент, магнит и микросхема. У него появилось три преимущества: минимизация; не изменяется момент измерения при изменении оборотов двигателя; при повороте ключа в выключателе зажигания электрический сигнал имеет определённую и стабильную величину, а не всплескообразную. Это положительный нюанс при работе в электрической сети автомобиля.

Недостатки датчика

Но у датчика Холла есть недостатки. На нём сильно сказываются электромагнитные помехи цепи питания. Также он менее надёжен магнитоэлектрического датчика и дороже его в производстве.

Работает датчик очень просто. Металлическая пластина (у бегунка или штифты распределительного и коленчатого вала) проходит через зазор датчика, шунтируется магнитный поток. На микросхеме индуктивность нулевая. Выходя из датчика, сигнал имеет большую степень и равен запитывающему напряжению.

Техническое состояние датчика Холла никогда нельзя проверять контрольной лампой. Используйте осциллограф, если он снят с автомобиля, или мультиметр – непосредственно на двигателе. При проверке отсоедините колодку с проводами, соединяющую датчик с цепью. Ключ выключателя зажигания должен быть вынут.

  • < Назад
  • Вперёд >

Что такое датчик Холла в смартфоне и зачем он нужен

В каждом современном смартфоне устанавливается свыше 5 вариантов датчиков: температурный (до 10 штук), оптический, G-сенсор, акселерометр, гироскоп, сканер отпечатка пальца, датчик Холла. И с предназначением именно последнего у пользователей нередко возникают вопросы.

Что это за датчик

Производителями указывается, что датчик Холла в телефоне необходим для измерения параметров магнитного поля – это требуется для нормальной работы навигации и ускорения «холодного» пуска GPS. И он косвенно позволяет определять свойство ферромагнетизма окружающих материалов, как полноценный металлоискатель.

В смартфонах используется упрощённая вариация датчика, который не умеет определять напряжённость (хотя в старых смартфонах были и полнофункциональные, например, в Motorola XT894). Зато он реагирует на полярность составляющих магнитного поля Земли.

Что такое в смартфонах датчик Холла, отлично знают ещё владельцы гаджетов от Samsung – именно в устройствах данного производителя его функционал раскрывается полностью. Например, в смартфонах серии Galaxy Note сенсор дисплея меняет режимы работы в зависимости от того, вытащен ли стилус S-Pen (он снабжён магнитом).

Как работает датчик Холла

Принцип работы основан на эффекте Холла (назван в честь учёного, который и открыл данное явление).

Его ключевые особенности:

  1. В проводнике, через который течёт постоянный ток, помещенный в магнитное поле, на краях возникает разница положительного и отрицательного потенциалов.
  2. Процесс перемещения электронов к одной из граней проводника происходит до тех пор, пока движение заряженных частиц не компенсируется силой Лоренца (от магнитного поля).

Датчик, устанавливаемый в смартфонах, считывает следующие значения: наличие или отсутствие разницы потенциала, а также на каких краях возникает скопление электронов.

Для чего он нужен в телефоне

Итак, разберёмся, зачем необходим датчик Холла в смартфоне:

  1. Для взаимодействия с магнитным чехлом. С помощью магнитного сенсора телефон «понимает», в каком сейчас положении защёлка. Если открыта, то дисплей тут же включается. Если закрыта – выключается. Помогает быстро прочитать уведомления или посмотреть время, для чего в остальных смартфонах требуется нажимать клавишу разблокировки.
  2. Для навигации. В зависимости от того, на каких гранях проводника возникает разница потенциала, телефон определяет полярность магнитного поля земли. Так работает цифровой компас. По точности он не уступает аналоговому.
  3. Для определения положения смартфона в пространстве. И исходя из полученных данных устройство «поворачивает» изображение на дисплее. А во флагманских моделях от Samsung эта информация используется ещё для определения оптимальных параметров ISO при включённой камере (за счёт определения положения относительно плоскости земли).

Кстати, он использовался даже в старых кнопочных «звонилках», преимущественно – в «раскладушках». Дисплей включался автоматически только при открытии такого телефона.

Принцип взаимодействия с магнитным чехлом

Взаимодействие с магнитными чехлами – самый распространённый вариант использования датчика Холла.

Работает следующим образом:

  1. Когда дисплей закрыт чехлом, он отключается или переходит в режим показа времени и текущих уведомлений (если такая функция предусмотрена встроенной ОС, в самом чехле имеется вырез или «окошко»).
  2. Когда дисплей не закрыт чехлом, то он работает в привычном режиме.

Магнит, на который и реагирует смартфон, размещается в лицевой защитной части чехла, прикрывающей дисплей. Когда чехол раскрывают, то магнит перемещается в сторону, что и считывает телефон. Если магнит извлечь, то смартфон реагировать на чехол не будет.

Отключение датчика

Отключить датчик с помощью настроек нельзя – такой функции ни в Андроиде, ни в iPhone не предусмотрено. В некоторых моделях ZTE производитель самостоятельно добавлял такую возможность. Ещё сделать это можно при наличии прав root (для Android-девайсов) через установку модуля Xposed. Но смысла в этом мало, так как датчик Холла потребляет мизерное количество тока (примерно 0,05% от ёмкости АКБ за весь цикл разрядки). Если нужно отключить взаимодействие с чехлом, то проще из него вытащить магнит.

Итак, датчик используется для измерения полярности магнитного поля. Применяется преимущественно для взаимодействия с фирменными аксессуарами (чехлы, стилусы, клавиатуры) и для работы цифрового компаса. Возможно, в ближайшем будущем производители найдут и иные варианты его использования. Например, в Китае предлагали с его помощью определять радиационный фон (при его воздействии тоже меняется полярность на проводнике).

Что такое датчик Холла в смартфоне и зачем он нужен?

Для осуществления правильной работы современных мобильных телефонов применяют различные функциональные блоки и датчики информирования. На их основе системы, высшие по иерархии, принимают решения о тех или иных действиях. Сегодня речь пойдёт об измерительном элементе, определяющем наличие магнитного поля, его интенсивность и изменение.

Выдающийся физик Эдвин Холл в США в конце XIX века открыл явление искривления пути носителей заряда в полупроводниках, пребывающих в магнитном поле. «Эффект» Холла обладает большими возможностями. С его помощью отслеживается ориентация экрана в пространстве, измеряется магнитная полярность в ракетных двигателях. Датчики отлично работают в бесконтактных выключателях и определителях уровня жидкости.

Для измерения напряжения магнитного поля используют 2 типа устройств: аналоговые и цифровые датчики. У первого вида индукция поля преобразуется в напряжение, где величина зависит от силы и полярности. У второго – при смене полярности и снижении индукции датчик отключает сенсорный экран.

Своё главное применение миниатюрный датчик нашёл в цифровых гаджетах для улучшения их позиционирования, в обеспечении быстрого старта GPS-навигатора. Отличительной особенностью данного устройства является разносторонняя направленность действия:

  • С его помощью изменяется величина магнитного потока;
  • Реализовывается бесконтактное управление при помощи жестов;
  • Автоматически корректируется яркость экрана на изменение освещенности;
  • Сменяется ориентация изображения на дисплее при соответственном повороте гаджета, манипуляции в играх и других приложениях;
  • Определяется точное направление.

Конечно, это далеко не весь перечень положительных характеристик, присущих этому датчику.

Зачем датчик Холла нужен в смартфоне?

Сенсор, как высокочувствительная часть вещателя, располагается непосредственно под крышкой смартфона или планшета, что позволяет быстро реагировать на любые изменения в пространстве. За счёт работы датчика экономится заряд аккумулятора, улучшается взаимодействие телефона с магнитным чехлом и различными аксессуарами.

В телефонах типа «раскладушки» также используют датчики Холла. С их наличием упрощается работа по включению/выключению экрана во время открывания или закрывания защитной крышки. Аналогичное действие происходит у смартфона с магнитным чехлом, где сенсор молниеносно реагирует на изменения (приближения/удаления) магнитного поля на флипе и регистрирует его. Во время интенсивного излучения дисплей блокируется, при снижении – происходит его активация. При этом сам магнит, вмонтированный в флип чехла, нисколько не вредит смартфону.

Особенно эффект Холла характерен в чехлах с окошком в верхней части, где часть экрана остаётся открытой. В этом случае имеется возможность использовать отдельные функции (звонок, пропущенные вызовы, часы, проигрыватель), не открывая флипа. Магнитоэлектрическое устройство самостоятельно определит, оставить активным весь дисплей или частично. Аналогичным образом работает гаджет при использовании чехлов без «окошек».

При приобретении нового смартфона определить наличие или отсутствие датчика Холла можно самостоятельно. Стоит отметить, что не все производители указывают его присутствие, поэтому нужно внимательно изучить краткий перечень характеристик. Устройство находят и другим методом, проанализировав чехлы к своему мобильному устройству. Например, на обложке Smart Case к смартфону или планшету на 100% имеется установленный датчик Холла. По аналогии проводится анализ других чехлов.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Читайте также

Поделитесь в соцсетях:

  • 2

    0

    А как при покупке нового смартфона (планшета) самому определить имеет ли он датчик Холла или не имеет? И еще вопрос а в старых раскладушках 2006-2010 годов также использовался датчик Холла?

  • 1

    0

    Цифровые датчики Холла определяют есть ли магнитное поле или нет. То бишь, если индукция достигает определенного порога, то датчик сообщает о наличии магнитного поля в виде логической единицы (истина). При относительно слабой индукции датчик не определит наличие магнитного поля. Это логический ноль (ложь). Такие датчики бывают «Униполярными» и «Биполярными». Первые срабатывают только при наличии поля определённой полярности и отключаются при снижении индукции поля, а вторые срабатывают только на смену полярности поля. То бишь одна полярность включает датчик, а другая отключает. Вот так примерно это происходит на простом языке. P.S. На изображении показан принцип эффекта Холла.

  • 1

    0

    Спасибо, хорошая статья! Теперь немного лучше стал понимать принцип работы сенсорного экрана. Я-то думал, что весь контроль происходит за счет изменения общей емкости конденсаторов монитора. Только вот все же непонятно, как за счет датчика Холла контролируется управление смартфоном? Ведь из-за простого перемещения в пространстве на небольшие расстояния магнитное поле не может меняться сильно?

мир электроники — Датчик Холла

Электронные компоненты 

материалы в категории

Что такое датчик Холла и как он работает

В 1879 году Эдвин Холл открыл удивительный эффект (его впоследствии так и назвали- Эффект Холла): если в магнитное поле поместить пластину с подключенным к нему постоянным током то под воздействием магнитного поля на краях этой пластины начинают скапливаться заряды.

На рисунке выше:
1. проводник с потоком электронов от источника постоянного тока
2. Пластина-датчик
3. Магниты
4.  Магнитное поле
5. Источник тока.
Как видно на рисунке- поток электронов под воздействием магнитного поля сместился к одному краю и получилось что заряженный потенциал на этом крае пластины оказался выше чем на другом.

Открытие Эффекта Холла позволило создать датчик (его назвали Датчик Холла), который позволяет измерять магнитное поле.

Область применения Датчиков Холла

Чаще всего Датчики Холла применяют в устройствах контроля вращения: на вращающийся механизм устанавливаются магниты и при помощи датчика Холла можно следить за частотой вращения (например с целью контроля скорости вращения или регулировки).

Основное достоинство датчика Холла заключается в его гальванической развязке: он может устанавливаться в не зависимости от измеряемого устройства- было-бы магнитное поле.

Примеры практического применение датчика Холла

В автомобильных системах зажигания. 


Здесь он отслеживает частоту вращения вала распределителя для управления системой зажигания (на рисунке это элемент под названием К-97).

В радиоаппаратуре датчики Холла применялись для отслеживания частоты вращения двигателей с целью точной подстройки скорости вращения: в основном в видеомагнитофонах а также на некоторых кассетных магнитофонах высокого класса например Вега- МП122. Выглядят там датчики Холла так (расположены между катушек)


Как проверить датчик Холла

Проверка датчика Холла не очень сложная процедура: достаточно просто вспомнить о его основном свойстве: он реагирует на изменяющееся магнитное поле. То есть при изменении магнитного поля на его выходах будет меняться потенциал.

Поэтому: если речь идет о проверке датчика Холла в радиоэлектронном устройстве (видеомагнитофон или магнитофон), то достаточно просто подключиться осциллографом к выводам датчика Холла и крутануть вал электродвигателя. При исправном датчике мы увидим на выходе изменяющее напряжение.

Проверка датчика Холла на автомобиле так-же не сильно сложная процедура: все требуется лишь отвертка, вольтметр с пределом измерения 15 В или контрольная лампа на 12 Вольт.


Подключите согласно приведенной схеме вольтметр или контрольную лампу. Включите зажигание (не пуская двигатель) и медленно вращайте коленчатый вал двигателя за болт крепления шкива коленчатого вала. Напряжение должно резко меняться от 0,4 до 8 В (min). Контрольная лампа должна мигать. Если этого не происходит, датчик Холла неисправен.

Датчик Холла

и его роль в контроллере двигателя

Датчик Холла — широко используемый датчик, который обеспечивает обратную связь по положению ротора с контроллером двигателя. Давайте поймем значение этого датчика в системе управления автомобильным двигателем.

Система управления двигателем BLDC представляет собой сложную схему, в которой несколько компонентов работают в тандеме, чтобы заставить двигатель двигаться желаемым образом. Эффективность, долговечность и производительность — вот атрибуты, которые больше всего волнуют инженеров при проектировании такой системы.

В то время как магниты и катушки заботятся об электрическом аспекте, микроконтроллер действует как мозг, который управляет двигателем. Но даже самый острый мозг нуждается в сенсорной информации.

Два сенсорных входа, которые здесь имеют большое значение, — это Speed ​​ и Position . Давайте разберемся с ними в контексте коммутации двигателей.


Коммутация — это процесс переключения тока в фазах двигателя для облегчения вращения двигателя.

В щеточных двигателях щетки контактируют с коммутатором и переключают ток для движения двигателей. Двигатели BLDC не имеют щеток; таким образом, они должны приводиться в движение электронным способом с помощью системы управления двигателем.

Контроллер двигателя BLDC подает прямоугольные сигналы (напряжение) на магниты ротора и создает магнитное поле, которое приводит в движение двигатель.


Важность скорости и положения ротора при коммутации двигателя:

Коммутация в двигателе BLDC — это 6-этапный процесс .3-фазный Н-мост используется для создания 6 векторов потока , каждый из которых вызывает поворот на 60 градусов (соответствует следующему положению) двигателя, таким образом совершая полный оборот на 360 градусов.

  • Чтобы привести двигатель в движение, контроллер двигателя пропускает ток через обмотку статора. Это создает магнитное поле, которое, в свою очередь, развивает крутящий момент на роторе (постоянный магнит). В результате ротор начинает двигаться.
  • Теперь, если ротор приближается к движущемуся магнитному полю, ротор будет иметь тенденцию останавливаться из-за изменения полярности.В этом случае магнитное поле начнет притягивать ротор и останавливать движение. Чтобы избежать этого, система управления двигателем переключает ток, подаваемый на статор, и создается новое магнитное поле, и ротор продолжает свое движение. Таким образом, процесс коммутации сводится к переключению тока в правом экземпляре .
  • Понятие скорости и положения входит в картину, поскольку этот «правый экземпляр» должен быть обнаружен, когда он прибывает.
  • Датчик необходим для обратной связи с системой управления двигателем, указывающей, когда ротор достиг желаемого положения.Если коммутация выполняется быстрее или медленнее, чем скорость ротора, магниты не синхронизируются с магнитным полем статора. Это заставляет ротор вибрировать и останавливаться вместо вращения.
  • После одной коммутации необходимо определить положение ротора относительно статора, чтобы можно было инициировать следующую коммутацию. Следовательно, определение местоположения также является важным параметром.

В производстве электродвигателей используется множество типов датчиков, таких как энкодеры, переключатели и потенциометры.Тем не менее, наиболее широко используемым и применяемым датчиком является датчик Холла .

В следующих разделах мы подробно поговорим о датчике Холла и его роли в системе управления двигателем.

Что такое датчик эффекта Холла?

Датчик на эффекте Холла — это, по сути, преобразователь, основанный на принципе эффекта Холла.

Эффект получения измеримого напряжения, когда проводник или полупроводник с током, текущим в одном направлении, вводится перпендикулярно магнитному полю, называется эффектом Холла.

Проще говоря, напряжение создается на электрическом проводнике, когда к нему прикладывается магнитное поле в направлении, перпендикулярном потоку тока.

Датчик Холла — это твердотельное устройство, которое применяет этот принцип для определения положения, скорости и различных других атрибутов, необходимых для эффективной работы двигателя BLDC.

Увеличенное изображение датчика Холла

Через полосу Холла постоянно проходит небольшой ток.Как уже упоминалось, переменное поле от этого магнита ротора будет создавать напряжение на полосе Холла. Затем напряжение подается на цифровую схему (показанную на диаграмме выше), которая, в свою очередь, выдает цифровой сигнал в качестве выхода датчика Холла.

Как работает датчик эффекта Холла в двигателе BLDC

Обычно двигатель BLDC имеет три датчика Холла, установленных на роторе или статоре. Эти датчики Холла расположены на расстоянии 120 градусов друг от друга, что дает угловое положение от 0 до 360 градусов.

Когда эти датчики Холла входят в контакт с магнитным полем ротора, он генерирует соответствующий цифровой импульс в единицах 1 и 0, как показано на схеме ниже.

За шесть шагов эти датчики Холла могут определять положение двигателя (угол). На диаграмме прямоугольные формы сигналов демонстрируют положительный и отрицательный импульс, генерируемый под соответствующим углом всеми тремя датчиками эффекта Холла — A, B и C.

Соответствующий график также показывает, как одна коммутация завершается за 6 шагов, когда угол достигает 360 градусов.

Следующее объяснение внесет большую ясность.

Когда магнит ротора пересекает один из датчиков, он выдает низкий или высокий сигнал в зависимости от того, прошел ли он через северный полюс или южный полюс ротора. Когда ротор пересекает все три датчика, эти датчики переключаются между низким и высоким, таким образом, выявляя положение ротора каждые 60 градусов.

На схеме ниже показан типичный контроллер двигателя BLDC. Три линии, идущие от двигателя к контроллеру, отображают сигнал, посылаемый тремя датчиками Холла.

Датчик Холла способен различать положительный и отрицательный заряд, движущийся в противоположном направлении. Магнитное поле, обнаруженное датчиком на эффекте Холла, преобразуется в подходящий аналоговый или цифровой сигнал, который может быть считан электронной системой, обычно системой управления двигателем.

Ниже представлена ​​таблица истинности, полученная на основе показаний трех датчиков Холла. Как видите, состояние транзистора H-моста зависит от сигнала, обнаруживаемого датчиком.Стрелка вниз показывает движение по часовой стрелке (CW), а стрелка вверх показывает движение против часовой стрелки (CCW).

Теперь, когда у нас есть таблица истинности и график, угол (положение) и скорость ротора можно легко вычислить.

Преимущества использования датчика Холла в контроллере двигателя BLDC

  • Датчик Холла — это очень простое устройство, состоящее из магнитов, поэтому оно очень экономично для систем управления двигателями.
  • По той же причине эти датчики легко внедрить в передовые системы управления двигателями для электромобилей и других автомобильных решений.
  • Большинство двигателей BLDC оснащены этими датчиками.
  • Датчики на эффекте Холла
  • в основном невосприимчивы к таким условиям окружающей среды, как влажность, температура, пыль и вибрация.

Завершение

Многое происходит внутри системы управления двигателем BLDC. Есть алгоритм FOC, схемы H-Bridge, эффективная коммутация и многое другое. Среди множества компонентов внутри системы управления двигателем BLDC очень маленький и скромный датчик — датчик эффекта Холла — дает о себе знать.

Будучи экономичными и простыми в использовании, эти датчики сделали новые решения для управления двигателями BLDC более эффективными и удобными в использовании в автомобильной промышленности.

Посмотрите это пространство, чтобы узнать о других таких компонентах, которые играют жизненно важную роль в контроллере двигателя BLDC.

Датчики на эффекте Холла | ИС Холла

Катушка
0,9812 $
3,67 10000 Катушка 3,6127 370 5,5 10000
9,2310
2952 Отправлено сегодня

9128 9128 DRVG50 Влияние датчика QLVG50 3,3 В / 5 В, 3-контактный боеприпас TO-92 Боеприпасы 22 ~ 150 901 9017 9017 9017 Лента и катушка
DRV5015A3EDBZRQ1 Датчик Холла 30 мА Защелка 3,3 В / 5 В Автомобильный 3-контактный SOT-23 T / R
1+
$ 0.2660
10+
0,2420 $
25+
0,2414 долл.
-45 45 30 2,5 5,5 2800-40 ~ 150 Лента и катушка 3 SOT-23 SOT Нет Нет SOT НЕТ
DRV5056A2QDBZR Датчик Холла, 1 мА, униполярный 3.3 В / 5 В 3-контактный SOT-23 T / R
1+
$ 0,8329
10+
$ 0,7756
25+
$ 0,7742
100+
$ 0,77141
901

1854 Отправлено сегодня

Texas Instruments Датчики эффекта Холла Униполярный 1 3 | 4,5 3,6 | 5,5 10000- Лента 3 SOT-23 SOT Нет Нет ДА НЕТ
DRV5056A2QDBZTHall Датчик эффекта 1 мА Однополярный 3.3V / 5V 3-контактный SOT-23 T / R
1+
$ 1,0974
10+
$ 1,0104
25+
$ 1,0083
100+
0,9812 $

431 Отправлено сегодня

Texas Instruments Датчики эффекта Холла Униполярный 1 3 | 4,5 3,6 | 5,5 10000- Лента Катушка 3 SOT-23 SOT Нет Нет ДА НЕТ
DRV5056A2QLPGM Датчик Холла, 1 мА, униполярный 3.3 В / 5 В, 3-контактный разъем TO-92, боеприпасы
1+
$ 0,8509
10+
$ 0,8377
25+
$ 0,8246
100+
$ 0,8115 250713
$ 0,8115 2503

2,827 Отправлено сегодня

Texas Instruments Датчики на эффекте Холла Униполярный 1 3 | 4,5 3,6 | 5,5 10000 -40 ~ TO-92 Нет Нет NO NO
DRV5056A3QDBZR Датчик Холла, 1 мА, однополярный 3.3 В / 5 В, 3-контактный SOT-23 T / R
1+
$ 0,8329
10+
$ 0,7756
25+
$ 0,7742
100+
$ 0,77141
901

2690 Отправлено сегодня

Texas Instruments Датчики эффекта Холла Униполярный 1 3 | 4,5 3,6 | 5,5 10000 — Tape Катушка 3 SOT-23 SOT Нет Нет ДА НЕТ
DRV5056A3QDBZTHall Датчик эффекта 1 мА Однополярный 3.3В / 5В, 3-контактный SOT-23 T / R
1+
$ 2,2831
10+
$ 1,4478
25+
$ 1,4338 $ 1,4338
100+
$ 1,2730

Texas Instruments Датчики на эффекте Холла Униполярный 1 3 | 4,5 3,6 | 5,5 10000-40 ~ 125 Лента и катушка -23 SOT Нет Нет ДА НЕТ
DRV5056A3QLPG Датчик эффекта Холла, 1 мА, униполярный 3.3 В / 5 В, 3-контактный TO-92 в большом количестве

838 Отправлено сегодня

Texas Instruments Датчики эффекта Холла Униполярный 1 370 5,5-40 ~ 125 Навалом 3 TO-92 Нет Нет NO NO
DRV5056A3QLPGM Датчик уносного эффекта 3.3 В / 5 В, 3-контактный разъем TO-92, боеприпасы
1+
$ 0,8509
10+
$ 0,8377
25+
$ 0,8246
100+
$ 0,8115 250713
$ 0,8115 2503

2933 Отправлено сегодня

Texas Instruments Датчики эффекта Холла Униполярный 1 3 | 4,5 3,6 | 5,5 10000 -40 ~ 40 TO-92 Нет Нет NO NO
DRV5056A4QDBZTH Датчик эффекта Холла, 1 мА, униполярный 3.3 В / 5 В, 3-контактный SOT-23 T / R
1+
$ 0,9449
10+
$ 0,8718
25+
$ 0,8630
$ 100+

493 Отправлено сегодня

Texas Instruments Датчики эффекта Холла Униполярный 1 3 | 4,5 3,6 | 5,5 10000- Лента 3 SOT-23 SOT Нет Нет ДА НЕТ
DRV5056A4QLPG Датчик Холла, 1 мА, униполярный 3.3 В / 5 В, 3-контактный TO-92, большая часть

956 Отправлено сегодня

Texas Instruments Датчики эффекта Холла Униполярный 1-40 ~ 125 Навалом 3 TO-92 Нет Нет NO NO
DRV5056A4QLPGM Датчик уносного эффекта 3.3 В / 5 В, 3-контактный разъем TO-92, боеприпасы
1+
$ 0,8509
10+
$ 0,8377
25+
$ 0,8246
100+
$ 0,8115 250713
$ 0,8115 2503

2,861 Отправлено сегодня

Texas Instruments Датчики эффекта Холла Униполярный 1 3 | 4,5 3,6 | 5,5 10000 -40 ~ 40 TO-92 Нет Нет NO NO
DRV5015A1QDBZTHall Датчик эффекта 30 мА Защелка 3.3 В / 5 В, 3-контактный SOT-23 T / R
1+
$ 0,3125
10+
$ 0,3088
25+
$ 0,3051
100+
$ 0,3014 250133

1,401 Отправлено сегодня

Texas Instruments Датчики эффекта Холла Защелка-20 20 30 2,5 5,5 2800 9017el Tape 3.3V / 5V 3-контактный SOT-23 T / R
1+
$ 0,3202
10+
$ 0,3152
25+
$ 0,3103
100+
$ 0,31453
$ 0,31453

1,436 Отправлено сегодня

Texas Instruments Датчики эффекта Холла Защелка-37 37 30 2,5 5,5 2800 Tape 3 SOT-23 SOT Нет Нет NO
DRV5015A3QDBZTHall Датчик эффекта 30 мА Защелка 3.3V / 5V 3-контактный SOT-23 T / R
1+
$ 0,3202
10+
$ 0,3152
25+
$ 0,3103
100+
$ 0,31453
$ 0,31453

1,439 Отправлено сегодня

Texas Instruments Датчики эффекта Холла Защелка-37 37 30 2,5 5,5 2800 9017el Tape 3 SOT-23 SOT Нет Нет NO
DRV5015A1QDBZR Датчик Холла 30 мА Защелка 3.3 В / 5 В, 3-контактный SOT-23 T / R
1+
$ 0,2192
10+
$ 0,2163
25+
$ 0,2133
100+
9,2104 $
9 0,2103

2,467 Отправлено сегодня

Texas Instruments Датчики эффекта Холла Защелка -20 20 30 2,5 5,5 2800 9017el Tape 3 SOT-23 SOT Нет Нет NO NO
DRV5015A3QDBZR Датчик Холла 30 мА Защелка 3.3 В / 5 В, 3-контактный SOT-23 T / R
1+
$ 0,4249
10+
$ 0,2849
25+
$ 0,2822 $ 0,2822
100+
9,2310 $

707 Отправлено сегодня

Texas Instruments Датчики эффекта Холла Защелка -37 37 30 2,5 5,5 2800 — Tape 3 SOT-23 SOT Нет Нет NO NO
SEN-14709 Датчик Холла Многополярный 3.3 В / 5 В, 3-контактный

156 Отправлено сегодня

SparkFun Electronics Датчики эффекта Холла Многополюсный 2,5 3 Нет
SI7211-B-00-IBR Фиксатор датчика Холла 2,5 В / 3,3 В / 5 В 3-контактный TO-92 T / R Silicon Labs Датчики эффекта Холла Защелка 2.25 5,5 5500 (тип.)-40 ~ 125 Лента и катушка 3 TO-92 Нет НетPall
1+
$ 0,8509
10+
$ 0,8377
25+
$ 0,8246
100+
0 0,8115 250133
7984

1900 Отправлено сегодня

Texas Instruments Датчики эффекта Холла Униполярный 1 3 | 4.5 3,612 10000 | 5,5 3 TO-92 Нет Нет NO NO
Ah4574-P-B Датчик Холла 60 мА Всеполярный 3,3 В / 5 В / 9 В / 12 В / 15 В / 18 В 3-контактный SIP Bulk
1+
0 руб.4614
10+
$ 0,3110
100+
$ 0,2421
500+
$ 0,2082

771 Поставляется сегодня

Диоды на эффекте Холла 60 3 28 4000-40 ~ 125 Навалом 3 SIP SIP Нет Нет Ач-НЕТ Датчик эффекта 60 мА, многополярный 3.3V / 5V / 9V / 12V / 15V / 18V / 24V Автомобильные 3-контактные SIP-боеприпасы
1+
$ 0,7379
10+
$ 0,4808
25+
$ 0,3761
10032 10032 $
250+
$ 0,3841

4000 Отправлено сегодня

Diodes Incorporated Датчики эффекта Холла Всенаправленный-23 6017 6017 Боеприпасы 3 SIP Нет Да НЕТ
ALS31313KLEATR-2000 Защелка датчика холостого хода 1 3V Автомобильный 14 T62 8 / Pin
TSS
$ 2.1087
10+
$ 1,7477
25+
$ 1,4274
50+
$ 1,3071
100+
$ 1,1865

2,213

2,65 3,5 3900-40 ~ 125 Лента и катушка 8 TSSOP SOP Нет Нет Нет A17301PUCFTN Датчик эффекта Холла 30 мА Дифференциальный 5 В / 9 В / 12 В / 15 В / 18 В / 24 В Автомобильный 3-контактный SIP-модуль T / R

3990 Отправлено сегодня

Allegro MicroSystems Дифференциальные датчики Холла 16 10 30 4 26.5 7500-40 ~ 160 Лента и катушка 3 Модуль SIP Нет Да НЕТ
Влияние датчика TSAI4966GVI / 12В / 15В / 18В, 6-контактный TSOP T / R
1+
$ 0,6018
10+
$ 0,5572
25+
$ 0,5516
100+
9 0,4403 $
.4359

3000 Отправлено сегодня

Infineon Technologies AG Датчики эффекта Холла Биполярный-100 100 10 2,7 24 7 6 TSOP Нет Нет NO
DRV5013BCELPE Датчик Холла Биполярная защелка 3,3 В / 5 В / 9 В / 12 В / 15 В 92 Bulk

872 Отправлено сегодня

Texas Instruments Датчики эффекта Холла Биполярная защелка-180 180 2.5 38 3500-40 ~ 150 Навалом 3 TO-92 Нет Нет NO

Unipolar

Основы интегральной схемы униполярного датчика Холла

Скачать PDF версию

Существует четыре основные категории ИС-устройств на эффекте Холла, которые обеспечивают цифровой выход: униполярные переключатели, биполярные переключатели, многополюсные переключатели и защелки.В этом примечании по применению описаны униполярные переключатели. Аналогичные примечания по применению биполярных переключателей, многополюсных переключателей и защелок представлены на веб-сайте Allegro.

Униполярные ИС датчиков Холла, часто называемые «униполярными переключателями», работают с положительным магнитным полем. Один магнит, создающий магнитное поле южной полярности (положительное) достаточной силы (плотность магнитного потока), заставит устройство переключиться во включенное состояние. После включения униполярная ИС будет оставаться включенной до тех пор, пока магнитное поле не будет снято и ИС не вернется в свое выключенное состояние.

Приложение для определения положения рычага переключения передач транспортного средства показано на рисунке 1. Рычаг переключения передач включает в себя магнит (красно-синий цилиндр). Линия миниатюрных черных ящиков — это массив униполярных коммутационных устройств. Когда водитель транспортного средства перемещает рычаг, магнит проходит мимо отдельных устройств Холла. Устройства рядом с магнитом подвергаются воздействию магнитного поля и включаются, но более удаленные устройства не подвергаются воздействию и остаются выключенными. Обратите внимание, что южный полюс магнита (окрашенный в красный цвет) направлен к устройствам Холла, и что устройства Холла ориентированы маркированной стороной устройства к южному полюсу магнита.

Рис. 1. Приложение, использующее микросхемы датчиков униполярного переключателя. Сверхмалые ИС Холла переключаются, когда магнит (красный и синий цилиндр) движется мимо них во время переключения передач.

Термины магнитной точки переключения

Следующие термины используются для определения точек перехода или точек переключения работы переключателя Холла:

Рис. 2. Эффект Холла относится к измеряемому напряжению, присутствующему при воздействии на приложенный ток перпендикулярного магнитного поля.

  • B — символ плотности магнитного потока, свойства магнитного поля, используемого для определения точек переключения устройства Холла. Измеряется в гауссах (G) или теслах (T). Преобразование составляет 1 G = 0,1 мТл.

    B может иметь северную или южную полярность, поэтому полезно иметь в виду алгебраическое соглашение, согласно которому B указывается как отрицательное значение для магнитных полей северной полярности и как положительное значение для магнитных полей южной полярности. Это соглашение позволяет арифметически сравнивать значения северной и южной полярности, где относительная напряженность поля указывается абсолютным значением B, а знак указывает полярность поля.Например, поле — 100 Гс (север) и поле 100 Гс (юг) имеют эквивалентную напряженность, но противоположную полярность. Точно так же поле — 100 Гс сильнее, чем поле — 50 Гс.

  • B OP — Магнитная точка срабатывания; уровень усиливающегося магнитного поля, при котором включается прибор Холла. Результирующее состояние выхода устройства зависит от электронной конструкции отдельного устройства.
  • B RP — Магнитная точка срабатывания; уровень ослабляющего магнитного поля, при котором выключается устройство Холла (или для некоторых типов устройств Холла, уровень усиливающегося отрицательного поля при положительном B OP ).Результирующее состояние выхода устройства зависит от электронной конструкции отдельного устройства.
  • B HYS — Магнитный гистерезис точки переключения. Передаточная функция устройства Холла разработана с таким смещением между точками переключения, чтобы отфильтровать небольшие колебания магнитного поля, которые могут возникнуть в результате механической вибрации или электромагнитного шума в приложении. B HYS = | B OP — B RP |.

Типичный режим работы

Когда включается униполярный переключатель, результирующий выходной сигнал может иметь высокий или низкий логический уровень, в зависимости от конструкции выходного каскада ИС устройства.На рисунке 3 показаны возможные выходные состояния униполярных переключателей. На верхней панели изображен переключатель, предназначенный для вывода низкого логического уровня (при напряжении насыщения выходного транзистора, V OUT (sat) , обычно <200 мВ) в сильном поле южной полярности. На нижней панели изображен переключатель, предназначенный для вывода высокого логического уровня (до полного напряжения питания, V CC ) при тех же условиях.

Рисунок 3. Выходные характеристики униполярного переключателя. На верхней панели отображается переключение на низкий логический уровень при наличии сильного поля южной полярности, а на нижней панели отображается переключение на высокий логический уровень, также в поле южной полярности.

Хотя устройство может включаться с плотностью магнитного потока на любом уровне, для объяснения рисунка 3 начните с крайнего левого угла, где магнитный поток (B на горизонтальной оси) менее положительный, чем B RP или B OP . Здесь устройство выключено, а выходное напряжение (V OUT , по вертикальной оси) зависит от конструкции устройства: высокое (верхняя панель) или низкое (нижняя панель).

Следуя стрелкам вправо, магнитное поле становится все более положительным.Когда поле более положительное, чем B OP , устройство включается. Это приводит к изменению выходного напряжения на противоположное состояние (высокое или низкое, в зависимости от конструкции устройства).

В то время как магнитное поле остается более положительным, чем у B RP , устройство остается включенным, а состояние выхода остается неизменным. Это верно, даже если B становится немного менее положительным, чем B OP , в пределах встроенной зоны гистерезиса переключения, B HYS .

Следуя стрелкам влево, магнитное поле становится менее положительным. Когда магнитное поле снова упадет ниже B RP , устройство выключится. Это заставляет вывод вернуться в исходное состояние.

Подтягивающий резистор

Подтягивающий резистор должен быть подключен между источником питания устройства и выходным контактом (см. Рисунок 4). Общие значения подтягивающих резисторов находятся в диапазоне от 1 до 10 кОм. Минимальное подтягивающее сопротивление зависит от максимального выходного тока ИС Холла (устройства обычно рассчитаны на потребление тока) и напряжения питания.20 мА — типичный максимальный выходной ток, и в этом случае минимальный подтягивающий ток составит V CC / 0,020 A.

В приложениях, где потребление тока является проблемой, сопротивление подтягивания может достигать 50–100 кОм. Однако необходимо соблюдать осторожность, поскольку большие значения подтягивания позволяют вызвать внешние токи утечки на землю. Это не проблема устройства, скорее утечка происходит в проводниках между подтягивающим резистором и выходным контактом устройства. Эти токи могут быть достаточно высокими, чтобы снизить выходное напряжение, независимо от состояния магнитного поля и состояния переключения устройства.В крайнем случае, это может снизить выходное напряжение настолько, чтобы препятствовать правильным функциям внешней логики.

Рисунок 4. Типовая схема применения.

Использование байпасных конденсаторов

Расположение байпасных конденсаторов показано на рисунке 4. Всего:

  • Для схем без стабилизации прерывателя — рекомендуется установить конденсатор 0,01 мкФ между выводом и выводами заземления, а также между выводами питания и заземления.
  • Для схем со стабилизацией прерывателя — конденсатор 0,1 мкФ должен быть помещен между выводами питания и заземления, а конденсатор емкостью 0,01 мкФ рекомендуется между выводами и выводами заземления.

Время включения

Время включения в некоторой степени зависит от конструкции устройства. Цифровые устройства вывода, такие как униполярный переключатель, достигают стабильности со следующими приблизительными задержками:

Тип устройства Время включения
Без прерывателя-стабилизации <1 мкс
Со стабилизацией прерыванием <25 мкс

По сути, это означает, что до истечения этого времени после подачи питания выход устройства может быть не в правильном состоянии, но по истечении этого времени выход устройства гарантированно находится в правильном состоянии.

Рассеиваемая мощность

Общая рассеиваемая мощность складывается из двух факторов:

  • Мощность, потребляемая устройством Холла, за исключением мощности, рассеиваемой на выходе. Это значение в CC раз больше тока питания. V CC — напряжение питания устройства, а ток питания обычно указывается в техническом паспорте. Например, при V CC = 12 В и токе питания = 9 мА рассеиваемая мощность = 12 × 0,009 или 108 мВт.
  • Мощность, потребляемая на выходном транзисторе.Это значение в В (насыщ.) В раз больше выходного тока (установленного подтягивающим резистором). Если V (sat) составляет 0,4 В (наихудший случай), а выходной ток составляет 20 мА (часто наихудший случай), рассеиваемая мощность составляет 0,4 × 0,02 = 8 мВт. Как видите, из-за очень низкого напряжения насыщения мощность, рассеиваемая на выходе, не вызывает большого беспокойства.

Полная рассеиваемая мощность для этого примера составляет 108 + 8 = 116 мВт. Отнесите это число к таблице снижения номинальных характеристик в техническом описании рассматриваемого блока и проверьте, нужно ли снизить максимально допустимую рабочую температуру.

Часто задаваемые вопросы

В: Как сориентировать магнит относительно устройства Холла?

A: Южный полюс магнита направлен на лицевую сторону упаковки устройства. На фирменном лице вы найдете идентификационную маркировку устройства, например частичный номер детали или код даты.

Q: Как северная полярность, или отрицательное, магнитное поле влияет на униполярный переключатель?

A: северная полярность или отрицательное поле не влияет на униполярный переключатель.

Q: Можно ли поднести магнит к обратной стороне упаковки устройства?

A: Да, однако имейте это в виду: если полюса магнита остаются ориентированными в одном направлении, то ориентация магнитного поля через устройство остается неизменной по сравнению с подходом с передней стороны (например, если южный полюс был ближе к устройству при подходе с передней стороны, то северный полюс был бы ближе к устройству при подходе с обратной стороны). Тогда северный полюс будет генерировать положительное поле относительно элемента Холла, а южный полюс будет генерировать отрицательное поле.

Q: Есть ли компромиссы при приближении к задней стороне устройства?

А: Да. Сигнал «чище» доступен при приближении с лицевой стороны упаковки, поскольку элемент Холла расположен ближе к лицевой стороне (фирменная грань упаковки), чем к тыльной стороне. Например, для корпуса «UA» микросхема с элементом Холла находится на 0,50 мм внутри фирменной поверхности корпуса и, следовательно, примерно на 1,02 мм от задней стороны. (Расстояние от фирменной грани до элемента Холла называется «глубиной активной зоны».»)

В: Может ли очень сильное магнитное поле повредить устройство на эффекте Холла?

A: Нет. Очень сильное поле не повредит устройство Allegro с эффектом Холла, и такое поле не добавит дополнительного гистерезиса точки переключения (кроме расчетного гистерезиса).

Q: Зачем мне устройство, стабилизированное чоппером?

A: ИС датчиков, стабилизированных прерывателем, обеспечивают большую чувствительность с более жестко контролируемыми точками переключения, чем конструкции без прерывания. Это также может позволить более высокие рабочие температуры.В большинстве новых конструкций устройств используется рубленый элемент Холла.

Предлагаемые устройства

Униполярные устройства Allegro перечислены в руководствах по выбору на веб-сайте компании в разделе «Переключатели и защелки».

Приложения

Замечания по применению для связанных типов устройств

Ссылка: AN296069

Произошла ошибка

Повторите попытку позже или попробуйте нашу домашнюю страницу еще раз.
Bitte versuchen Sie es später oder schauen Sie ob die Homepage funktioniert.

Ошибка: E1020

Австралия Электронная почта

Максон Мотор Австралия Пти Лтд

Unit 1, 12-14 Beaumont Road
Гора Куринг-Гай Новый Южный Уэльс 2080
Австралия

Benelux Электронная почта

maxon motor benelux B.V.

Йосинк Колквег 38
7545 PR Enschede
Нидерланды

Китай Электронная почта

Максон Мотор (Сучжоу) Ко., Лтд

江兴东 路 1128 号 1 号楼 5
215200 江苏

Германия Электронная почта

максон мотор gmbh

Truderinger Str. 210
81825 Мюнхен
Deutschland

Индия Электронная почта

maxon precision motor India Pvt.ООО

Niran Arcade, № 563/564
Новая дорога БЕЛ,
RMV 2-я ступень
Бангалор — 560 094
Индия

Италия Электронная почта

maxon motor italia S.r.l.

Società Unipersonale
Via Sirtori 35,
20017 Rho MI
Италия

Япония Электронная почта

マ ク ソ ン ジ ャ パ ン 株式会社

東京 都 新宿 区 新宿 5-1-15
〒 160-0022
日本

Корея Электронная почта

㈜ 맥슨 모터 코리아

서울시 서초구
반포 대로 14 길 27, 한국 137-876

Португалия Электронная почта

maxon motor ibérica s.а

C / Polo Norte № 9
28850 Торрехон-де-Ардос
Испания

Швейцария Электронная почта

максон мотор аг

Брюнигштрассе 220
Постфах 263
6072 Sachseln
Schweiz

Испания Электронная почта

maxon motor ibérica s.a. Испания (Барселона)

C / Polo Norte № 9
28850 Торрехон-де-Ардос
Испания

Тайвань Электронная почта

maxon motor Тайвань

8F.-8 №16, переулок 609 сек. 5
П. 5, Chongxin Rd.
Sanchong Dist.
Нью-Тайбэй 241
臺灣

Великобритания, Ирландия Электронная почта

максон мотор великобритания, лтд

Maxon House, Хогвуд-лейн,
Финчемпстед
Беркшир, RG40 4QW
Соединенное Королевство

США (Восточное побережье) Электронная почта

Прецизионные двигатели maxon, inc.

125 Девер Драйв
Тонтон, Массачусетс 02780
США

США (Западное побережье) Электронная почта

Прецизионные двигатели maxon, inc.

1065 East Hillsdale Blvd,
Люкс 210
Фостер-Сити, Калифорния 94404
США

Франция Электронная почта

максон Франция

201 — 715 rue du Chat Botté
ZAC des Malettes
01700 Beynost
Франция

5 причин выбрать индукционные датчики на эффекте Холла »Gill Sensors & Controls —

5 причин выбрать индукционные датчики на эффекте Холла

Датчики на эффекте Холла

— это хорошо зарекомендовавшие себя бесконтактные датчики для многих тяжелых и тяжелых условий эксплуатации.Используя полупроводниковые кристаллы Холла и магнит, установленный на вращающемся валу или толкателе, выходной сигнал в ответ на близость магнита изменяется, и, следовательно, его положение может быть измерено.

Индукционная сенсорная технология, такая как та, которая используется в семействе линейных и поворотных датчиков Gill, также является бесконтактным решением, так какие преимущества они предлагают по сравнению с сенсорами на эффекте Холла?

  1. Поскольку индуктивный датчик является твердотельным устройством, в нем нет движущихся частей, подшипников или вала, требующих уплотнения, которые впоследствии могут изнашиваться или выходить из строя.Это означает, что индуктивное устройство может быть установлено в самых сложных условиях, где могут встречаться вода, грязь, жир, песок, песок и вибрация, которые могут вызвать преждевременный выход из строя механических компонентов.
  2. Точно так же, поскольку датчик Холла использует магнит в качестве привода, это делает его уязвимым для помех от намагниченных металлических конструкций и электроники, что снижает его производительность. Эта восприимчивость к магнитным помехам не присуща индуктивному датчику, что опять же повышает его пригодность для сложных условий и надежную работу.
  3. Индуктивный датчик снова дает преимущества там, где встречаются более высокие температуры. Датчики на эффекте Холла могут демонстрировать большие характеристики дрейфа при изменении температуры. Индуктивные датчики не обладают этой характеристикой.
  4. В условиях очень высоких температур электронику обработки сигналов не нужно располагать в непосредственной близости от чувствительных катушек. Для магнитных датчиков требуется относительно тонкая электроника на основе кремния, которая должна располагаться в точке измерения.
  5. Последним основным преимуществом индуктивных датчиков является более простая установка. Как описано ранее, для датчиков Холла требуется магнит в качестве активатора, и этот магнит должен быть встроен в установку. Индуктивному датчику требуется только железная мишень, поэтому активатор может быть существующей частью измеряемой сборки или встроен в сборку при изготовлении. В качестве альтернативы, это может быть отдельный компонент, профилированный для обеспечения определенного вывода или для более легкой интеграции в сборку.

Если вам требуется надежный датчик положения для вашего приложения, свяжитесь с нами через нашу онлайн-форму запроса или позвоните по телефону +44 (0) 1590 613900.

Датчик Холла

Технология интеллектуальных позиционеров последнего поколения


ВВЕДЕНИЕ

За последние несколько лет физика и электроника достигли значительных успехов, причем обе они, несомненно, достигли наибольшего развития. В наши дни кажется невозможным жить без удобств и преимуществ, которые эти районы предоставляют в повседневной жизни.В производственных процессах и управлении мы также наблюдаем прогресс в разработке микропроцессоров, технологии Fieldbus, Интернета и т. Д.

В этой статье мы опишем интересное применение физики при разработке интеллектуальных позиционеров клапана на основе датчика Холла, сочетающих в себе несколько ресурсов производительности и диагностики.

ДАТЧИК ЗАЛА

Название Датчик Холла происходит от эффекта Холла, открытого в 1879 году Эдвином Холлом.

Этот эффект является результатом действия силы Лоренца на движение электронов в магнитном поле.

Когда ток течет по материалу, который не подвергается воздействию магнитного поля, эквипотенциальные линии, пересекающие этот поток, являются прямыми линиями.

Сила Лоренца, действующая на движение электрона, определяется по формуле:

.

F = q x (v x B)
где:

  • q: электронная нагрузка
  • B: магнитное поле

Внешний продукт указывает на то, что сила имеет взаимно перпендикулярное направление потоку тока и магнитному полю.

Когда в материале протекает ток под действием перпендикулярного магнитного поля, угол, под которым протекает ток, изменяется магнитным полем, известен как угол Холла. Это параметр, зависящий от типа материала, и он определяется подвижностью электрона m, которая также определяет коэффициент относительной влажности Холла. В этом случае эквипотенциальные линии по длине материала наклонены, и это показывает измеренное натяжение Холла. Другими словами, напряжение пропорционально приложенному магнитному полю.

Эффект Холла присутствует во всех материалах, но он эффективно применяется только там, где подвижность электрона относительно высока, как в арсенате галлия (GaAs).

В конструктивном смысле рассмотрим вкратце данный материал (рис. 1) шириной d , проводящий ток i по своей длине и подверженный магнитному полю B, приложенному перпендикулярно направлению его ширины. В результате возникает напряжение, известное как напряжение Холла, VHALL, величина которого определяется по формуле:

.

VHALL = (RH / d) x i x B , где RH — материальная постоянная Холла.


Рисунок 1 — Принцип работы датчика ЗАЛ

В настоящее время существует несколько приложений для этих датчиков, от применения в серводвигателях в видеокассетах, датчиках турникета контроля доступа, датчиках скорости, системе впрыска автомобильного двигателя, измерении тока, мощности и магнитного поля, управлении бесщеточными двигателями постоянного тока, датчиках приближения. , управление вращением, управление положением и т. д. Это последнее приложение будет описано при работе с интеллектуальными позиционерами клапана / приводов.Речь идет об электронике и программном интеллекте в сочетании с новейшими достижениями в области механических разработок.

ИНТЕЛЛЕКТУАЛЬНЫЙ ПОЗИЦИОНЕР

Этот тип оборудования чрезвычайно важен в любой промышленной сфере, работая как последний элемент управления, связанный с приводами и клапанами. Он должен отвечать нескольким эксплуатационным требованиям, которые легко достигаются с помощью технологии датчиков Холла, например:

  • Высокая чувствительность;
  • Устойчивость к высоким температурам;
  • Незначительные ошибки линейности;
  • Незначительные ошибки вибрации;
  • Воспроизводимость и стабильность, минимизация потребления и уменьшение изменчивости процесса;
  • Высокая надежность, обеспечивающая бесперебойность и безопасность работы;
  • Универсальность, гибкость использования независимо от производителя и типа клапана / привода, а также хода движения, что способствует соответствию новым требованиям;
  • Простота эксплуатации с минимальными настройками, что упрощает установку, эксплуатацию и обслуживание, сокращая время простоя при эксплуатации;
  • Обеспечивает расширенные функции диагностики, эксплуатационные расходы и затраты на обслуживание, экономию времени и улучшение процессов, тем самым гарантируя постоянное улучшение процессов.

Традиционная технология для исполнительного оборудования основана на механических соединениях со сложной, низкой чувствительностью и точностью монтажа и регулировки, чаще всего ответственными за изменчивость процесса, которая отражается на стабильности управления, качестве и т. Д.

Последнее поколение интеллектуальных позиционеров для клапанов простого действия с линейным управлением (возврат змеевика) или двойного действия, таких как шарики, коробки, диафрагмы и т. Д., Поворотных регулирующих клапанов, таких как сферы, бабочки или закупоренных пневматическими приводами, такими как диафрагмы, поршни и т. Д., Основано на пьезо-лезвие (?), которое было выбрано рынком для использования в полевых условиях и на датчике положения на эффекте Холла, без физического контакта, для обеспечения высокой производительности и безопасной работы.

  • Компактный и модульный проект
  • Низкое потребление воздуха
  • Простота установки
  • Датчик положения без механического контакта
  • Работает с линейными и поворотными приводами простого или двойного действия
  • Простая настройка и удаленная параметризация через Foundation Fieldbus, Profibus PA или локальную настройку с дисплеем
  • Поток через функцию программного обеспечения
  • Самодиагностика

Рисунок 2 — Интеллектуальный позиционер с технологией датчика Холла, без механического контакта

Основными частями модуля вывода являются: пилот, сервопривод, датчик Холла и схема управления выходом.

Схема управления основана на широко распространенной и хорошо зарекомендовавшей себя технологии: пьезолопастный и золотниковый клапан.

Пьезоэлектрический диск используется в качестве лопатки на пилотной ступени. Лезвие отклоняется, когда оно получает напряжение через цепь управления. Небольшой воздушный поток, который циркулирует через клюв, блокируется, изменяя давление в пилотной камере, которое называется пилотным давлением.

Управляющее давление очень низкое, без пропускной способности и должно быть усилено в секции сервопривода.Секция сервопривода имеет диафрагму на пилотной камере и меньшую диафрагму на золотниковой камере. Управляющее давление прикладывается к диафрагме управляющей камеры, которая в состоянии равновесия будет соответствовать силе, прикладываемой золотниковым клапаном к меньшей диафрагме золотниковой камеры.

Следовательно, когда положение изменяется с помощью позиционера, управляющее давление увеличивается или уменьшается, как объяснено на стадии пилотного управления, и это изменение управляющего давления заставляет клапан подниматься или опускаться, изменяя давления на выходе 1 и выходе 2 до достижения нового баланса, что приводит к новому положению клапана.

Рисунок 3 — Схема пневматического преобразователя

Рисунок 4 — 300 ФГ

Датчик Холла расположен и защищен внутри модуля преобразователя. Магнит прикрепляется к клапану или оси привода, как показано на рисунке 4 (в целях обучения), результатом чего будет приложение магнитного потока к датчику Холла и определение положения с учетом центра. магнитов, где поле равно нулю.

Рисунок 5 — Схема работы датчика Холла на позиционере клапана

Таким образом, единственная деталь механического крепления — проверить, совпадает ли стрелка, выгравированная на магните, со стрелкой, выгравированной на позиционере, когда клапан достигает половины своего хода.

Следовательно, когда клапан достигает половины своего хода, датчик Холла получает нулевое поле, а ЦП внутренне узнает, что это соответствует 50% его хода.Один крайний предел курса будет иметь, например, максимальный сигнал напряжения 100%, а другой крайний сигнал будет иметь минимальный сигнал 0%. Напряжение на крайних точках будет измеряться во время процесса самокалибровки, позиционер которого без вмешательства пользователя определяет напряжения Холла, эквивалентные физическим пределам трассы, точным и безопасным способом.

На рисунке 6 показана функциональная схема позиционера для протокола Profibus PA:

.

Рисунок 6 — Функциональная схема позиционера Smar FY303

На этой диаграмме показано, что позиционер получает через ПЛК (ведущее устройство класса 1) заданное значение, требуемое стратегией управления.В зависимости от режима работы, автоматического или каскадного, эта уставка будет записана через циклические службы в параметрах SetPoint или Rcasin блока AO соответственно. Это значение будет проанализировано алгоритмом блокировки для условий аварийной сигнализации и отказоустойчивости, чтобы охарактеризовать это значение в соответствии с характеристикой клапана или привода, путем выбора из линейного, 21-точечной таблицы, EQ25, EQ33, EQ50, EP25, EP33 и EP50. . Эти кривые допускают небольшие изменения уставки, чтобы довести конечный элемент до 100% (EP).После того, как кривая переноса определена с помощью этой уставки, определяются скорости изменения% / с на последнем элементе. Затем серво-ПИД получает этот сигнал плюс реальное положение через сигнал датчика Холла, который определяется во время процесса самокалибровки или даже во время пользовательской калибровки, часто используемой в приложениях с разделенным диапазоном. Затем рассчитывается сигнал VM%, который генерирует цифро-аналоговое значение преобразователя, которое воздействует на пьезоэлектрический датчик и создает давление в камере позиционера, когда оно достигает точки равновесия в соответствии с уставкой, выдаваемой мастером.Блок AO восстановит свое реальное положение и закроет цикл с мастером через параметр ReadBack.

Функции диагностики можно контролировать с помощью сигнала датчика Холла и мастера класса 2, например:

  • Одометр, с помощью которого можно статистически прогнозировать ход клапана во время технического обслуживания;
  • Ходы, при которых износ седел клапанов можно проверить по экстремальным условиям его протекания физическим течением;
  • Reversals, чтобы посмотреть, как часто происходило изменение уставки, и проанализировать настройку контура.Чрезмерно большое количество реверсий означает, что настройка плохая и может быть нарушена изменчивость процесса;
  • Средняя и мгновенная скорость перемещения, в дополнение к времени открытия и закрытия для выявления возможных заклиниваний и механических нагрузок или проблем с утечкой воздуха;
  • Самая высокая и самая низкая температура, которой подвергался позиционер. В случаях, когда температура является ограничивающим фактором, FY303 можно использовать с удаленным датчиком Холла или даже в труднодоступных или подверженных вибрации местах на расстоянии до 20 м.См. Рисунок 7. Характеристики датчика Холла:

Рисунок 7 — Дистанционный позиционер Холла

Smar также поставляет FY303 датчиками давления, функции диагностики которых объединяют оборудование.

FY303 по-прежнему выдает сигнал температуры окружающей среды в качестве второстепенной функции.

Рисунок 8 — Пример применения в Profibus

Тест частичного хода или PST

Испытания и маневры связаны с затратами, связанными с остановкой завода и приобретением дополнительного оборудования для проведения испытаний клапанов, приводов и позиционеров.

Обычно дополнительное оборудование состоит из ручных запорных клапанов, отклоняющих трубопроводов, соленоидных клапанов, механических устройств на конце хода и, что не менее важно, логистики, количества профессионалов, участвующих в деятельности, и возможной потери заработка.

Идеальным вариантом были бы более частые и хорошо спланированные тесты. Кроме того, параметры, указывающие на степень разрушения клапана и позволяющие проводить профилактические работы до возникновения аварийной ситуации. И что связанные с этим затраты были намного меньше.

Простым, дешевым и надежным решением является использование теста частичного хода PST. PST просто частично перемещает клапан и измеряет усилие, приложенное к этому перемещению. Преимущество: можно также измерить скорость клапана. Или даже проверьте, не заблокирован ли клапан или находится ли пневматический привод под достаточным давлением, без необходимости идти туда, где он установлен.

Профилактическая диагностика. Это то, что нужно вашей арматуре.

Рисунок 9 — Профилактическая диагностика

Однако автоматический PST при приемлемых затратах стал реальностью только с разработкой интеллектуального позиционера клапана и широкого диапазона доступных параметров, обеспечивающих отличный спектр диагностики.

Новейшее семейство интеллектуальных позиционеров SMAR, FY400, уже включает PST в качестве заводской прошивки без дополнительных затрат с командами для пользовательской конфигурации. Кроме того, FY400 был разработан на языке EDDL (язык описания электронных устройств). к стандартам FDT Group (Field Tool Device). Драйверы Device Type Manager (DTM) для настройки и визуализации на компьютерных станциях с приложением FDT доступны на сайте Smar для бесплатной загрузки.

Как следствие отличных результатов PST для FY400, Smar только что расширила эту функцию до FY303 для интеллектуальных позиционеров клапана с протоколом связи Profibus. Без дополнительных затрат. По той же причине были разработаны DTM для FY303, которые также доступны бесплатно на странице Smar в Интернете.

Далее следуют несколько примеров экранов DTM, которые иллюстрируют функции PST, включенные в FY303,

.

Рисунок 10 — Примеры экранов DTM для FY303

С помощью экранов DTM можно настроить не только частичный курс, но также периодичность, с которой PST выполняется автоматически, а именно без вмешательства оператора или специалиста по КИПиА.Интеллектуальный позиционер клапана Smar PST может выполняться с интервалами от 4 минут до одного года (8760 часов).

Кроме того, PST возможен с устройства управления активами SMAR, AssetView. Данные, полученные в результате теста, можно легко визуализировать на различных экранах презентации и мониторинга AssetView.

Метод, используемый FY303 и FY400 для выполнения PST, известен как метод динамического изменения скорости. Позиционер автоматически генерирует изменение нарастания сигнала уставки в диапазоне, определяемом пользователем (Off Set).Клапан перемещается в ответ на изменение уставки, в то время как позиционер измеряет положение клапана с помощью датчика положения без механического контакта на основе эффекта Холла. В то же время позиционер измеряет прилагаемое давление, необходимое для перемещения вала клапана. После достижения максимальной уставки выключения позиционер меняет рампу, так что клапан возвращается в исходное положение. Аналогичным образом, во время реверсирования позиционер измеряет положение клапана и соответствующее давление включения.В конце испытания FY вычисляет и предоставляет коэффициент нагрузки клапана, то есть значение давления, необходимое для перемещения вала, а также график, полученный в результате испытания.

На рисунках ниже показаны примеры результатов PST на FY303 и FY400 в соответствии с протоколом FDT / DTM. Подобные экраны доступны также в SMAR AssetView.

Рисунок 11 — Экраны результатов PST

При рассмотрении растущего интереса к автоматизированным системам безопасности — SIS, PST уже распознается и влияет на расчеты, относящиеся к вероятности отказа по запросу — PFD, используемой для определения уровня полноты безопасности — SIL.

Ациклическая настройка FY303

Эти устройства можно настроить локально с помощью магнитного инструмента, не открывая его крышку, или удаленно через SMAR ProfibusView или Siemens Simatic PDM.

FY303 был разработан для использования протокола PROFIBUS PA и может быть настроен с любым инструментом, работающим с DD / EDDL, а также с концепцией FDT (Field Device Tool) и DTM (Device Type Manager), такими как Smar AssetView, FieldCare TM и PACTwareTM.Его также можно циклически настраивать любыми системами PROFIBUS с помощью файла GSD (Generic Station Description). PROFIBUS PA также предоставляет информацию о качестве и диагностике, улучшая управление установкой и ее техническое обслуживание.

EDDL (язык описания электронных устройств) и DTM доступны на Интернет-сайте Smar: http://www.smar.com.br/

Рисунок 12 — 303 финансовый год — AssetView FTD / DTM

Циклическая настройка FY303

Через файл GSD мастер выполняет весь процесс инициализации оборудования и предоставляет подробные сведения о версии аппаратного и программного обеспечения, синхронизации шины оборудования и информацию об обмене циклическими данными.FY303 имеет функциональный блок AO, с помощью которого мастер будет выполнять циклические службы, а пользователь должен выбрать конфигурацию в соответствии с приложением. Если блок AO находится в режиме AUTO, оборудование получит значение уставки и состояние от мастера класса 1, и пользователь может использовать это значение для записи через мастер класса 2. В этом случае статус уставки всегда должен быть равен 0x80 (хорошо) и выбираться из следующих конфигураций:

  • SP
  • SP / CKECKBACK
  • SP / READBACK / POSD
  • SP / READBACK / POSD / CKECKBACK

Если блок AO находится в RCAS, оборудование получит значение уставки и статус только через мастер класса 1, и статус всегда будет равен 0xc4 («IA»).Могут использоваться следующие конфигурации:

  • SP
  • SP / CKECKBACK
  • SP / READBACK / POSD
  • SP / READBACK / POSD / CKECKBACK
  • RCASIN / RCASOUT
  • RCASIN / RCASOUT / CKECKBACK
  • SP / READBACK / RCASIN / RCASOUT / POSD / CHECKBACK

Затем просмотрите типичный пример с шагами, необходимыми для интеграции оборудования FY303 в систему громкой связи:

  • Скопируйте gsd-файл FY303 в исследовательский каталог конфигуратора PROFIBUS, обычно известного как GSD.
  • Скопируйте файл растрового изображения FY303 в каталог исследований конфигуратора PROFIBUS, обычно известный как BMP.
  • После выбора мастера выберите скорость передачи данных и помните, что при наличии соединителей могут быть доступны следующие скорости: 45,45 кбит / с (Siemens), 93,75 кбит / с (P + F) и 12 Мбит / с (P + F). , СК3). При наличии устройства связи скорость может достигать 12 Мбит / с.
  • · Добавьте FY303 с адресом, указанным на шине.
  • Выберите циклическую конфигурацию с помощью параметризации с файлом GSD в соответствии с приложением. Помните, что этот выбор должен быть совместим с режимом работы блока AO. В этих условиях проверьте значение состояния значения уставки, которое должно быть 0x80 (хорошо) в режиме AUTO и 0XC4 (IA) в режиме Rcas.
  • Состояние сторожевого таймера также может быть активировано, когда после определения потери связи между ведомым и ведущим оборудование может перейти в состояние отказоустойчивости.Поскольку FY303 будет на последнем элементе, рекомендуется настроить отказоустойчивое значение.

Для получения дополнительной информации обратитесь к руководству на FY303 по адресу: http://www.smar.com/PDFs/Manuals/FY303MP.PDF

ЗАКЛЮЧЕНИЕ


Эта статья продемонстрировала технологический прогресс и преимущества, предоставляемые позиционером на основе цифровой технологии датчика Холла, в основном за счет простоты монтажа и эксплуатации. Всегда помните, что это оборудование всегда будет интегрировано в конечные элементы, критические контрольные точки, работа которых требует безопасности и точности.Гибкость, изобретательность и создание диагностических данных облегчают условия для профилактического, прогнозирующего и упреждающего обслуживания.

Для получения дополнительной информации о позиционерах обратитесь: http://www.smar.com/PDFs/catalogues/fy300cp.pdf

Для получения дополнительных сведений о ProfibusView, инструменте настройки и параметризации Profibus-PA см .: http://www.smar.com/PDFs/Manuals/PRVIEWPAMP.pdf

Дополнительные сведения об инструменте обслуживания и диагностики AssetView см. В разделе Дополнительные сведения о ProfibusView, инструменте настройки и параметризации Profibus-PA: http: // www.smar.com/brasil2/products/asset_view.asp

ССЫЛКИ
  • Учебный материал Profibus — César Cassiolato
  • CASSIOLATO, César, Датчик Холла — Технология интеллектуальных позиционеров последнего поколения, журнал Controle & Instrumentação, Edição nº 81, Junho de 2003
  • НОБР, Сельсо; EMBOABA, Эдсон; ОЛИВЕЙРА, Леонардо; ВЕНТУРИНИ, Валерия, Введение в тест на частичный инсульт, http: // www.smar.com/PDFs/ApplicationNotes/FY300PST.pdf
  • http://www.smar.com/blog_posicionadores/?p=7
  • http://www.smar.com/brasil2/products/function.asp#positioners

Датчики Холла | Коллморген

Датчики Холла (также называемые энкодерами Холла, по словам Эдвина Холла) используют эффект Холла для измерения магнитных полей, электрических токов или положений.

Если через датчик Холла протекает ток и датчик помещен в магнитное поле, вертикальное по отношению к направлению тока, датчик выдает напряжение, пропорциональное произведению силы магнитного поля и тока.Если текущее значение известно, можно измерить силу магнитного поля. Если магнитное поле создается электрическим током в проводнике или катушке, вы можете провести беспотенциальное измерение электрического тока в катушке.

Датчик Холла также подает сигнал, если магнитное поле постоянное. Это решающее преимущество по сравнению с комбинацией магнита и катушки.

Приложения
  • Измерение магнитного поля (плотности магнитного потока)
  • Измерение беспотенциального тока (датчик тока)
  • выключатели сенсорные и бесконтактные
  • измерения толщины слоя

В автомобильной промышленности датчики Холла используются в замке ремня, в системе закрывания дверей, при оценке состояния педали, в управлении передачей и при измерении времени зажигания.Основное преимущество — нечувствительность к немагнитной грязи и воде.

Вы можете найти их в «настоящих» лазерных принтерах — в интегральных схемах — для синхронизации положения зеркала, в дисководах, в бесщеточных двигателях, например. в вентиляторах. Есть даже клавиатуры с датчиками Холла под каждой кнопкой.

Датчики Холла

с аналоговыми выходами используются для измерения слабых магнитных полей (поля земного магнита), например, с помощью компасов в навигационных системах.

Используются в качестве датчиков тока в зазоре стального сердечника катушки.Такие датчики тока предлагаются как укомплектованные компоненты, они очень быстродействующие, также могут использоваться для измерения постоянного тока. Они предлагают возможное разделение между цепями питания и управления.

В качестве позиционного переключателя или бесконтактной клавиатуры они работают в сочетании с постоянными магнитами и имеют встроенный пороговый переключатель.

Дизайн
Датчики Холла

изготавливаются из тонких полупроводниковых дисков, потому что в этих дисках мало электронов и, следовательно, скорость электронов высока для достижения высокого напряжения Холла.Типовые конструкции:

  • Прямоугольник
  • Бабочка
  • Крест

Обычно датчики Холла интегрируются в схему усиления сигнала или схему температурной компенсации.

Размеры

Чувствительность указана в милливольтах на гаусс (мВ / Г) с
1 тесла = 10000 гаусс (1 г = 10-4 Тл).

Направление вращения, соединение

Вращение по часовой стрелке (cw)

Сигнал Цвет сердечника Другое Описание
h2 (gn) Сигнал a-b, фаза U
h3 (ye) Сигнал b-c, фаза V
h4 (br) Сигнал c-a, фаза W

При подаче питания 5 В через X1 (S400: X2) обратите внимание на соединения линии Sense (контакты 2–10 и контакты 4–12).

S300 S400 S601-S620 S640 / S670 S700 AKD
Разъем для холла Х1 X2 X1 -> ключ Х1 Х1

Справку по настройке см.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *