Контроллер напряжения 12 вольт: Регулятор напряжения 12 вольт купить дешево

Содержание

Простой Регулятор напряжения 12 вольт своими руками

5 частых вопросов, которые задают начинающие радиомеханики; 5 лучших транзисторов для регуляторов, тест на определение состава схемы

Регулятор электрического напряжения нужен для того, чтобы величина напряжения могла стабилизироваться. Он обеспечивает надежность работы и долговечность работы прибора.

Регулятор состоит из нескольких механизмов.

ТЕСТ:

Ответы на эти вопросы позволят узнать состав схемы регулятора напряжения 12 вольт и её сборку.
  1. Какое сопротивление должно быть у переменного резистора?

a) 10 кОм

b) 500 кОм

  1. Как нужно подключать провода?

a) 1 и 2 клемма – питание, 3 и 4 – нагрузка

b) 1 и 3 клемма – нагрузка, 2 и 4 — питание

  1. Нужно ли устанавливать радиатор?

a) Да

b) Нет

  1. Транзистор должен быть

a) КТ 815

b) Любой

Ответы:

Вариант 1.

Сопротивление резистора 10 кОм – это стандарт для установки регулятора, провода в схеме подключаются по принципу: 1 и 2 клемма для питания, 3 и 4 для нагрузки – ток распределится правильно по нужным полюсам, радиатор устанавливать нужно – чтобы защитить от перегрева, транзистор использован КТ 815 – такой всегда подойдет. В таком варианте построенная схема сработает, регулятор станет работать.

Вариант 2.  Сопротивление 500 кОм – слишком высокое, будет нарушена плавность звука в работе, а может не сработать вообще, 1 и 3 клемма это нагрузка, 2 и 4 питание, радиатор нужен , в схеме, где стоял минус будет плюс, транзистор любой – действительно можно использовать какой угодно.Регулятор не заработает из-за того, что схема собрана, будет неправильно.

Вариант 3. Сопротивление 10кОм, провода – 1 и 2 для нагрузки, 3 и 4 для питания, резистор имеет сопротивление 2кОм, транзистор КТ 815. Прибор не сможет заработать, так как он сильно перегреется без радиатора.

Как соединить 5 частей регулятора на 12 вольт.

Переменный резистор 10кОм.

Это переменный резистор 10ком. Изменяет силу тока или напряжений в электрической цепи, увеличивает сопротивление. Именно им регулируется напряжение.

Радиатор. Нужен для того, чтобы охладить приборы в случае их перегрева.

Резистор на 1 ком. Снижает нагрузку с основного резистора.

Транзистор.  Прибор, увеличивает силу колебаний. В регуляторе он нужен, чтобы получить электрические колебания высокой частоты

2 проводка. Необходимы для того, чтобы по ним шел электрический ток.

Берем транзистор и резистор. У обоих есть 3 ответвления.

Проводятся две операции:

  1. Левый конец транзистора (делаем это алюминиевой частью вниз) присоединяем к концу, который находится в середине резистора.
  2. А ответвление середины транзистора соединяем с  правым у резистора. Их необходимо припаять друг к другу.

Первый провод  необходимо спаять с тем, что получилось во 2 операции.

Второй нужно спаять с оставшимся концом транзистора.

Прикручиваем к радиатору соединенный механизм.

Резистор на 1кОм припаиваем к крайним ножкам переменного резистора и транзистора.

Схема готова.

Регулятор скорости двигателя постоянного тока с помощью 2 конденсаторов на 14 вольт.

Практичность таких двигателей доказана, они используются в механических игрушках, вентиляторах и др. У них малый ток потребления, поэтому требуется стабилизация напряжения. Часто возникает необходимость подстройки частоты вращения или изменения скорости двигателя для корректировки выполнения цели, представленной какому – либо типу электродвигателя любой модели.

Эту задачу выполнит регулятор напряжения, который совместим с любым типом блока питания.

Чтобы это осуществить, надо изменить выходное напряжение, не требующее большого тока нагрузки.

Необходимые детали:

  1. 2 Конденсатора
  2. 2 переменных резистора

Соединяем части:

  1. Подключаем конденсаторы к самому регулятору.
  2. Первый резистор подключается с минусом регулятора, второй на массу.

Теперь менять скорость двигателя у прибора по желанию пользователя.

Регулятор напряжения на 14 вольт готов.

Простой регулятор напряжения 12 вольт

Регулятор оборотов 12 вольт для двигателя с тормозом.

Состав:

  • Реле – 12 вольт
  • Теристор КУ201
  • Трансформатор для запитки двигателя и реле
  • Транзистор КТ 815
  • Вентиль от дворников 2101
  • Конденсатор

Используется для регулировки подачи проволоки, поэтому в ней присутсвует тормоз двигателя, реализованный с помощью реле.

К реле подключаем 2 провода от блока питания. На реле подается плюс.

Всё остально подключается по принципу обычного регулятора.

Схема полностью обеспечила

12 вольт для двигателя.

Регулятор мощности на симисторе BTA 12-600

Симистор – полупроводниковый аппарат, причисляется к разновидности тиристора и используется в целях коммутации тока. Он  работает на переменном напряжении в отличие от динистора и обычного тиристора. От его параметра зависит вся мощность прибора.

Ответ на вопрос. Если схема собиралась бы на тиристоре, необходим был бы диод или диодный мост.

Для удобства схему можно собрать на печатной плате.

Плюс конденсатора нужно припаять к управляющему электроду симистора, он находится справа. Минус спаять с крайним третьим выводом, который находится слева.

К управляющему электроду симистора припаять резистор с номинальным сопротивлением 12 кОм. К этому резистору нужно присоединить подстрочный резистор. Оставшийся вывод нужно припаять к центральной ножке симистора.

К минусу конденсатора, который припаян к третьему выводу симистора необходимо прикрепить минус от выпрямительного моста.

Плюс выпрямительного моста к центральному выводу симистора и к той части, к которой симистор крепится на радиатор.

1 контакт от шнура с вилкой припаиваем к необходимому прибору. А 2 контакт к входу переменного напряжения на выпрямительном мосту.

Осталось припаять оставшийся контакт прибора с последним контактом выпрямительного моста.

Идет тестирование схемы.

Включаем схему в сеть. С помощью подстрочного резистора регулируется мощность прибора.

Мощность можно развить до 12 вольт для авто.

Динистор и 4 типа проводимости.

Это устройство, называется тригерным диодом. Обладает небольшой мощностью. В его внутренности нет электродов.

Динистор открывается при наборе напряжения. Скорость набора напряжения определяется конденсатором и резисторами. Вся регулировка производится через него. Работает на постоянном и переменном токе. Его можно не покупать, он находится в энергосберегающих лампах и его легко оттуда достать.

В схемах используется не часто, но чтобы не затрачивать деньги на диоды, применяют динистор.

Он содержит 4 типа: P N P N. Это сама электрическая проводимость. Между 2 прилегающими друг к другу областями образуется электронно-дырочный переход. В динистре таких переходов 3.

Схема:

Подключаем конденсатор. Он начинает заряжаться с помощью 1 резистора, напряжение почти равно тому, что в сети. Когда напряжение в конденсаторе достигнет уровня динистора, он включится. Прибор начинает работать. Не забываем про радиатор, иначе всё перегреется.

3 важных термина.

Регулятор напряжения – прибор, позволяющий на выходе подстраивать напряжение под устройство, для которого он необходим.

Схема для регулятора – рисунок, изображающий соединение частей устройства в одно целое.

Автомобильный генератор – устройство, в котором используется стабилизатор, обеспечивает превращение энергии коленчатого вала в электрическую.

7 основных схем для сборки регулятора.

СНИП

Использование 2 транзисторов. Как собрать стабилизатор тока.

Резистор 1кОм равен стабилизатору тока для нагрузки 10Ом. Главное условие – напряжение питания было стабилизированным. Ток зависит от напряжения по закону Ома. Сопротивление нагрузки намного меньше, чем сопротивление тока ограничивающего резистора.

Резистор 5 ватт, 510 Ом

Переменный резистор ППБ-3В , 47 Ом. Потребление – 53миллиампера.

Транзистор кт 815, установленный на радиаторе ток базы данного транзистора, задан резистором номиналом 4 и 7 кОм.

СНИП

СНИП

Еще важно знать

  1. На схеме стоит знак минуса, чтобы он был и в работе, то транзистор должен быть NPN структуры. Нельзя использовать PNP так как минус будет плюсом.
  2. Напряжение нужно постоянно регулировать
  3. Какая величина тока в нагрузке, это нужно знать, чтобы регулировать напряжение и прибор не переставал работать
  4. Если разность потенциалов будет больше 12 вольт на выходе, то значительно уменьшится уровень энергии.

Топ 5 транзисторов

Разные виды транзисторов применяются для разных целей, и существует необходимость его выбирать.

  • КТ 315. Поддерживает NPN структуру. Выпущен в 1967 году, но до сих пор используется. Работает в динамическом режиме, и в ключевом. Идеален для приборов малой мощности. Больше подходит для радиодеталей.
  • 2N3055. Лучше всего подходит для звуковых механизмов, усилителей. Работает в динамическом режиме. Спокойно используется для регулятора 12 вольт. Удобно крепится на радиатор. Работает на частотах до 3 МГц. Хоть транзистор и выдерживает только до 7 ампер, он вытягивает мощные нагрузки.
  • КП501. Производитель рассчитывал его на применение в телефонных аппаратах, механизмах связи и радиоэлектронике. Через него происходит управление приборами с минимальными затратами. Преобразует уровни сигнала.
  • Irf3205. Пригоден  для автомобилей, повышает высокочастотные инверторы. Поддерживает значительный уровень тока.
  • KT 815. Биполярен. Имеет структуру NPN. Работает с усилителями низкой частоты. Состоит из пластмассового корпуса. Подходит для импульсных устройств. Используется часто  в генераторных схемах. Транзистор сделан давно, по сей день работает. Даже есть шанс, что он находится в обычном доме, где лежат старые приборы, нужно только их разобрать и посмотреть, есть ли там.

3 ошибки и как их избежать.

  1. Ножки транзистора и резистора спаяны друг с другом полностью. Чтобы этого избежать, нужно внимательно читать инструкцию.
  2. Хоть и поставлен радиатор, перегрелся прибор.Это связано с тем, что во время того, как детали спаиваются, происходит перегрев. Для этого нужно, ножки транзистора держать пинцетом для отвода тепла.
  3. Реле не стало работать после починки. Выгоняет проволоку после того как отпустил кнопку. Проволока по инерции тянется. Значит, не работает электротормоз. Берем реле с хорошими контактами и подключаем к кнопке. Подключить провода для питания. Когда на реле не подается напряжение, контакты становятся замкнутыми, поэтому обмотка замыкается сама на себя. Когда на реле подается напряжение(плюс), меняются контакты в схеме и напряжение подается на мотор.

Ответы на 5 часто задаваемых вопросов

  • Почему входное напряжение выше, чем выходное?

По такому принципу работают все стабилизаторы, при таком типе работы напряжение приходит в норму и не скачет от условленных ей значений.

  • Может ли убить током при неполадке или ошибке?

Нет, не убьет током, напряжение в 12 вольт слишком мало, чтобы это произошло.

  • Нужен ли постоянный резистор? И если нужен, то, для каких целей?

Не обязательно, но используется. Он нужен для того, чтобы ограничить ток базы транзистора при крайнем левом положении переменного резистора. И также при его отсутствии может сгореть переменный.

  • Можно ли использовать схему КРЕН вместо резистора?

Если вместо переменного резистора включить регулируемую схему КРЕН, которую часто используют, то тоже получится регулятор напряжения. Но есть оплошность: низкий КПД. Из-за этого высокое собственное энергопотребление и тепловыделение.

  • Резистор горит, но ничего не крутится. Что делать?

Резистор обязательно 10кОм. Желательно использовать транзисторы КТ 315 (старой модели) – они желтого или оранжевого  цвета с буквенным обозначением.

Регулятор напряжения 12 вольт – схемы и способы изготовления своими руками

Стабильность напряжения – это весьма важная характеристика электропитания для большинства электронных устройств. В них содержатся электрические цепи с нелинейными элементами. Для оптимальной настройки этих цепей существует определенная величина разности потенциалов. И если она будет изменяться, электрическая цепь утратит правильные эксплуатационные характеристики. Поскольку напряжение 12 вольт является стандартом не только для автомобилей, но и для многих других устройств, далее пойдет речь именно о таких регуляторах.

Особенности регулировки

Речь о том или ином регуляторе 12 вольт имеет смысл вести только при указании дополнительных данных:

  • постоянное или переменное напряжение надо регулировать;
  • какова максимальная величина тока в нагрузке;
  • величина разности потенциалов перед регулятором;
  • параметры напряжения на нагрузке в диапазоне регулирования.

Каждый из перечисленных параметров связан с определенными техническими решениями, которые отражаются в схеме. Общая схема регулятора – это нагрузка, которая соединена с некоторым устройством. Оно условно обозначено прямоугольником на схеме, показанной далее. Внутри этого прямоугольника может быть та или иная схема, которая соответствует дополнительным данным, упомянутым выше. Простейшим регулятором является переменный резистор. Он позволяет без искажений регулировать переменное напряжение. Также такой резистор применим и при постоянном токе.

Схема с переменным резистором.

Элементарная схема регулятораСхема с переменным резистором

Если разность потенциалов на входе значительно больше 12 вольт на выходе, в регуляторе будет теряться энергия. На переменном резисторе будет выделяться тепло. Чтобы избежать потерь тепла, на переменном токе надо применить переменную индуктивность, которой может стать ЛАТР. Его пропускная способность ограничивается, как и в переменном резисторе, конструкцией подвижного контакта. Но если допустимо переключение путем переставления между витками перемычки с надежными контактами, можно получать значительную силу тока.

Индуктивный регулятор

Другим способом регулирования своими руками переменного напряжения 12 вольт может быть изменение индуктивности регулятора. Для этого вручную изменяется либо зазор, либо число витков, специально предназначенных для этого. По такому принципу устроен регулируемый сварочный трансформатор, используемый для электропитания вольтовой дуги. Если регулятор напряжения 12 вольт не обладает свойствами стабилизатора и управляется своими руками, разность потенциалов на нагрузке необходимо контролировать вольтметром.

Переменный резистор и переменная индуктивность могут быть использованы и как регулятор тока. В этом случае необходимо контролировать ток в нагрузке амперметром. Если параметры напряжения на нагрузке не оговорены, за исключением его величины в 12 В, регулировать можно диммером. Это может быть мощный регулятор, поскольку он обычно выполнен на основе тиристора. А современные тиристоры выпускаются для очень широкого диапазона разности потенциалов и тока.

Регулирование со стабилизацией

Для получения заданных параметров напряжения или тока нагрузки применяются стабилизаторы. В них выходное напряжение или ток сравниваются с эталонным значением, и при минимальном заданном изменении выполняется автоматическая компенсация регулятора управлением соответствующего полупроводникового прибора. Существует огромное количество разнообразных схем различных стабилизаторов. Наиболее простыми в использовании являются интегральные микросхемы.

Внешний вид и схема подключения микросхемы – стабилизатора 12 В

Такие готовые стабилизаторы очень удобны для питания светодиодов как в автомобилях, так и в системах освещения. При питании от сети 220 вольт необходим понижающий трансформатор с выпрямителем, подключаемый к входу. Поскольку во многих случаях параметры нагрузки весьма специфичны, делаются специальные стабилизаторы напряжения и тока. Они могут работать как в непрерывном, так и в импульсном режиме. Но это уже совсем другая история…

Мощный регулятор напряжения на 12 вольт

Собранный однажды простейший регулятор напряжения на одном транзисторе был предназначен для определённого блока питания и конкретного потребителя, никуда больше его подключать было конечно не нужно, но как всегда наступает момент, когда правильно поступать мы перестаём. Следствием этого являются хлопоты и раздумья как жить-быть дальше и принятие решения восстанавливать сотворённое ранее или продолжать творить.

Схема номер 1

Имелся стабилизированный импульсный блок питания, дающий на выходе напряжение 17 вольт и ток 500 миллиампер. Требовалось периодическое изменение напряжения в пределе 11 – 13 вольт. И общеизвестная схема регулятора напряжения на одном транзисторе с этим прекрасно справлялась. От себя добавил к ней только светодиод индикации да ограничительный резистор. К слову, светодиод здесь это не только «светлячок» сигнализирующий о наличии выходного напряжения. При правильно подобранном номинале ограничительного резистора, даже небольшое изменение выходного напряжения отражается на яркости свечения светодиода, что даёт дополнительную информацию о его повышении или понижении. Напряжение на выходе можно было изменять от 1,3 до 16 вольт.

КТ829 – мощный низкочастотный кремниевый составной транзистор, был установлен на мощный металлический радиатор и казалось, что при необходимости он вполне может выдержать и большую нагрузку, но случилось короткое замыкание в схеме потребителя и он сгорел. Транзистор отличается высоким коэффициентом усиления и применяется в усилителях низкой частоты – видно действительно его место там а не в регуляторах напряжения.

Слева снятые электронные компоненты, справа приготовленные им на замену. Разница по количеству в два наименования, а по качеству схем, бывшей и той, что решено было собрать, она несопоставима. Напрашивается вопрос – «Стоит ли собирать схему с ограниченными возможностями, когда существует более продвинутый вариант «за те же деньги», в прямом и переносном смысле этого изречения?»

Схема номер 2

В новой схеме также присутствует трёхвыводной эл. компонент (но это уже не транзистор) постоянный и переменный резисторы, светодиод со своим ограничителем. Добавлено только два электролитических конденсатора. Обычно на типовых схемах указаны минимальные значения C1 и C2 (С1=0,1 мкФ и С2=1 мкФ) которые необходимы для устойчивой работы стабилизатора. На практике значения емкостей составляют от десятков до сотен микрофарад. Ёмкости должны располагаться как можно ближе к микросхеме. При больших емкостях обязательно условие C1>>C2. Если ёмкость конденсатора на выходе будет превышать ёмкость конденсатора на входе, то возникает ситуация при которой выходное напряжение превышает входное, что приводит к порче микросхемы стабилизатора. Для её исключения устанавливают защитный диод VD1.

У этой схемы уже совсем другие возможности. Входное напряжение от 5 до 40 вольт, выходное 1,2 – 37 вольт. Да, имеется падение напряжения вход – выход равное примерно 3,5 вольтам, однако роз без шипов не бывает. Зато микросхема КР142ЕН12А именуемая линейным регулируемым стабилизатором напряжения имеет неплохую защиту по превышению тока нагрузки и кратковременную защиту от короткого замыкания на выходе. Её рабочая температура до + 70 градусов по Цельсию, работает с внешним делителем напряжения. Выходной ток нагрузки до 1 А при длительной работе и 1,5 А при непродолжительной. Максимально допустимая мощность при работе без теплоотвода 1 Вт, если микросхему установить на радиатор достаточного размера (100 см.кв.) то Р макс. = 10 Вт.

Что получилось

Сам процесс обновлённого монтажа занял времени ни сколько не больше чем предыдущий. При этом получен не простой регулятор напряжения, который подключается к блоку питания стабилизированного напряжения, собранная схема при подключении даже к сетевому понижающему трансформатору с выпрямителем на выходе сама даёт необходимое стабилизированное напряжение. Естественно, что выходное напряжение трансформатора должно соответствовать допустимым параметрам входного напряжения микросхемы КР142ЕН12А. Вместо неё можно использовать и импортный аналог интегральный стабилизатор LM317Т. Автор Babay iz Barnaula.

Обсудить статью ДВА ПРОСТЫХ РЕГУЛЯТОРА НАПРЯЖЕНИЯ

Представляем мощный стабилизированный блок питания на 12 В. Он построен на микросхеме стабилизатора LM7812 и транзисторах TIP2955, что обеспечивает ток до 30 А. Каждый транзистор может давать ток до 5 А, соответственно 6 транзисторов обеспечат ток до 30 А. Можно изменением количества транзисторов и получить желаемое значение тока. Микросхема выдает ток около 800 мА.

На его выходе установлен предохранитель в 1 А для защиты от больших переходных токов. Нужно обеспечить хороший теплоотвод от транзисторов и микросхемы. Когда ток через нагрузку большой, мощность рассеиваемая каждым транзистором также увеличивается, так что избыточное тепло может привести к пробою транзистора.

В этом случае для охлаждения потребуется очень большой радиатор или вентилятор. Резисторы 100 Ом используются для стабильности и предотвращения насыщения, т.к. коэффициенты усиления имеют некоторый разброс у одного и того же типа транзисторов. Диоды моста рассчитаны не менее, чем на 100 А.

Примечания

Наиболее затратным элементом всей конструкции, пожалуй, является входной трансформатор, Вместо него возможно использование двух последовательно соединенных батарей автомобиля. Напряжение на входе стабилизатора должно быть на несколько вольт выше требуемого на выходе (12В), чтобы он мог поддерживать стабильный выход. Если используется трансформатор, то диоды должны выдерживать достаточно большой пиковый прямой ток, обычно, 100А или более.

Через LM 7812 будет проходить не более 1 А, остальная часть обеспечивается транзисторами.Так как схема рассчитана на нагрузку до 30А, то шесть транзисторов соединены параллельно. Рассеиваемая каждым из них мощность – это 1/6 часть общей нагрузки, но все же необходимо обеспечить достаточный теплоотвод. Максимальный ток нагрузки приведет к максимальному рассеиванию, при этом потребуется крупногабаритный радиатор.

Для эффективного отвода тепла от радиатора, может быть хорошей идеей применение вентилятора или радиатора с водяным охлаждением. Если блок питания нагружен на максимальную нагрузку, а силовые транзисторы вышли из строя, то весь ток пройдет через микросхему, что приведет к катастрофическому результату. Для предотвращения пробоя микросхемы на ее выходе стоит предохранитель в 1 А. Нагрузка 400 МОм только для тестирования и не входит в окончательную схему.

Вычисления

Данная схема отличная демонстрация законов Кирхгофа. Входящая в узел сумма токов, должна быть равна сумме токов выходящих из этого узла, а сумма падений напряжений на всех ветвях, любого замкнутого контура цепи должна быть равна нулю. В нашей схеме, входное напряжение 24 вольт, из них 4В падения на R7 и 20 В на входе LM 7812, т.е 24 -4 -20 = 0. На выходе суммарный ток нагрузки 30А, регулятор поставляет 0.866А и 4.855А каждый из 6 транзисторов: 30 = 6 * 4.855 + 0.866.

Ток базы составляет около 138 мА на транзистор, чтобы получить ток коллектора около 4.86А коэффициент усиления по постоянному току для каждого транзистора должен быть не менее 35.

TIP2955 удовлетворяет этим требованиям. Падение напряжения на R7 = 100 Ом при максимальной нагрузке будет 4В. Рассеиваемая на нем мощность, вычисляется по формуле P= (4 * 4) / 100, т.е 0.16 Вт. Желательно, чтобы этот резистор был мощностью 0.5 Вт.

Входной ток микросхемы поступает через резистор в цепи эмиттера и переход Б-Э транзисторов. Еще раз применим законы Кирхгофа. Входной ток регулятора состоит из тока 871 мА, протекающего по цепи базы, и 40.3мА через R = 100 Ом.
871,18 = 40,3 + 830. 88. Входной ток стабилизатора всегда должен быть больше выходного. Мы видим, что он потребляет только около 5 мА и практически не должен греться.

Тестирование и ошибки

Во время первого испытании, не надо подключать нагрузку. Вначале измеряем вольтметром напряжение на выходе, оно должно быть 12 вольт, или не сильно отличающаяся величина. Затем подключаем сопротивление около100 Ом, 3 Вт в качестве нагрузки.Показания вольтметра не должны измениться. Если вы не видите 12 В, то, предварительно выключив питание, следует проверить корректность монтажа и качество пайки.

Один из читателей, получил на выходе 35 В, вместо стабилизированных 12 В. Это было вызвано коротким замыканием силового транзистора. Если есть КЗ любого из транзисторов, придется отпаять все 6 для проверки мультиметром переходов коллектор-эмиттер.

Регулируемый стабилизатор напряжения от 0 до 12 вольт и током нагрузки до 1-го ампера представлен на рисунке 1.

Переменное напряжение 12 вольт выпрямляется диодным мостиком VD1…VD4, сглаживается фильтром С1 С2, подается на параметрический стабилизатор на стабилитроне VD1. Напряжение 12 вольт, выделенное на стабилитроне, приложено к резистору R2. С движка переменного резистора R2 напряжение подается на аналоговый ключ VT1 VT2, включенного по схеме составного транзистора. Степень открытия ключа зависит от положения движка переменного резистора R2, т.е. в нижнем по схеме положении регулятора, напряжение на базе равно нулю и транзисторы VT1 VT2 закрыты, напряжение в нагрузку не поступает. В верхнем по схеме положении регулятора R2, напряжение не базе максимально. Транзисторы открыты полностью, а напряжение с выпрямителя приложено к нагрузке, за исключением падения на переходе коллектор – эмиттер транзистора VT1.

В схеме регулируемого стабилизатора на рисунке 1 заложена схема защиты по току на транзисторе VT3. Если ток на резисторе R4 превысит значение 1,2 ампера, за счет падения напряжения на нем открывается транзистор VT3, шунтируя тем самым переходом коллектор – эмиттер резистор R2, напряжение на R2 уменьшается, вызывая закрытие транзисторов VT1 VT2.

Порог срабатывания защиты по току подбирается сопротивлением R4, и при его сопротивлении 0,5 ома примерно равен 1,1…1,25 ампера.

Регулируемый стабилизатор от 0 до 12 вольт 3 ампера

Исключив из схемы на рисунке 1 узел защиты по току и заменив транзисторы VT1 VT2 на более мощные, можно построить регулируемый стабилизатор от 0 до 12 вольт с током в нагрузке до 3-х ампер. Схема такого стабилизатора представлена на рисунке 2.

При повторении схемы регулируемого стабилизатора на рисунке 2, необходимо обратить внимание на тепловые параметры выпрямительного мостика VD1…VD4 и транзистора VT2. Транзистор VT2 необходимо установить на радиатор с площадью охлаждения не мене 250 кв.см, а диоды должны быть рассчитаны на ток не менее 10 ампер (Д245…Д247).

В схеме регулируемого стабилизатора не показан питающий транформатор, который должен обеспечить требуемый ток на вторичной обмотке.

12 вольт регулятор напряжения для оптимального использования Certified Products

Купить большую емкость. 12 вольт регулятор напряжения, которые гарантированно поддержат вашу технику в отличном состоянии от Alibaba.com. Эти. 12 вольт регулятор напряжения предлагаются лучшими и наиболее энергоэффективными брендами и обеспечивают пользователям повышенный уровень обслуживания. Эти. 12 вольт регулятор напряжения разработаны для обеспечения безопасности и стабильности и доступны в нескольких вариантах.

12 вольт регулятор напряжения, предлагаемые на Alibaba.com, обладают множеством необходимых и интересных функций, таких как отказоустойчивая защита цепей и точки отключения. Эти. 12 вольт регулятор напряжения имеют широкий диапазон и подходят для большинства домашних и коммерческих целей. Эти. 12 вольт регулятор напряжения имеют тщательно продуманную внешность, чтобы исключить риск поражения электрическим током или несчастных случаев. Некоторые из этих предметов даже имеют светодиодные дисплеи для большей плавности и прозрачности.

12 вольт регулятор напряжения подходят для всех видов крупногабаритной бытовой техники и не допускают неисправностей. Они требуют очень ограниченного обслуживания, и на их содержание нужно не так много средств. 12 вольт регулятор напряжения убедитесь, что ваши дорогие приборы и оборудование не будут повреждены из-за колебаний и неизбежны для любого домашнего или коммерческого предприятия. который задействует несколько электронных элементов .. 12 вольт регулятор напряжения на сайте предлагают оптимальную производительность по экономичным ценам.

Выберите. 12 вольт регулятор напряжения, которые лучше всего соответствуют вашим потребностям, будь то для дома, офиса или производства. 12 вольт регулятор напряжения поставщики обязательно захотят воспользоваться этой привлекательной возможностью купить качественные товары по сниженным ценам. Получите эти потрясающие предложения сегодня.

Реле регулятор напряжения 12 вольт

Реле предназначены для автоматического включения/выключения различных устройств (автохолодильники, обогреватели сидений, разъемы прикуривателя, магнитолы, антирадары и другие). Включение устройств происходит при достижении напряжения бортовой сети значения «напряжения включения» и удержания его не ниже этого уровня в течение 5с. Выключение — при достижении напряжения бортовой сети значения «напряжения выключения» и удержания этого значения не выше этого уровня в течение 3с.

Реле 362.3787 позволяет автоматически подключать устройства только при запущенном двигателе, не подвергая их негативному воздействию бросков напряжения при пуске двигателя, и автоматически выключать их при остановке двигателя, что обеспечивает защиту аккумулятора от чрезмерного разряда.

Реле 362.3787 изготавливается с четырьмя различными значениями порогов включения и выключения.

Реле 362.3787-04 и 362.3787-05 имеют возможность ручной регулировки напряжений включения/выключения. Регулировка осуществляется с помощью встроенных подстроечных многооборотных резисторов через отверстия в корпусе. Визуальная диагностика неправильной настройки реле обеспечивается за счет применения в конструкции изделия встроенного светодиода и прозрачного корпуса.

Создано реле регулятор напряжения генератора для корректировки выдаваемого в бортовую сеть и на клеммы аккумулятора «вольтажа» в заданном диапазоне 13,8 – 14,5 В (реже до 14,8 В). Кроме того, регулятор корректирует напряжение на обмотке самовозбуждения генератора.

Назначение реле регулятора напряжения

Независимо от стажа и стиля вождения владелец авто не может обеспечить одинаковые обороты двигателя в разные моменты времени. То есть, коленвал ДВС, передающий крутящий момент генератору, вращается с разной скоростью. Соответственно, генератор вырабатывает разное напряжение, что крайне опасно для АКБ и прочих потребителей бортовой сети.

Поэтому замена реле регулятора генератора должна производится при недозаряде и перезаряде аккумулятора, горящей лампочке, мигании фар и прочих перебоях электроснабжения бортовой сети.

Взаимосвязь источников тока авто

В транспортном средстве находится минимум два источника электроэнергии:

  • аккумулятор – необходим в момент запуска ДВС и первичного возбуждения обмотки генератора, энергию не создает, а только расходует и накапливает в момент подзарядки
  • генератор – питает бортовую сеть на любых оборотах и подпитывает АКБ только на высоких оборотах

В бортовую сеть необходимо подключение обоих указанных источников для корректной работы двигателя и прочих потребителей электричества. При поломке генератора АКБ «протянет» максимум 2 часа, а без аккумулятора не заведется двигатель, приводящий в движение ротор генератора.

Существуют исключения – например, а счет остаточной намагниченности обмотки возбуждения штатный генератор ГАЗ-21 запускается самостоятельно при условии постоянной эксплуатации машины. Можно завести авто « с толкача», если в нем установлен генератор постоянного тока, с прибором переменного тока такой трюк невозможен.

Задачи регулятора напряжения

Из школьного курса физики каждый автолюбитель должен помнить принцип работы генератора:

  • при взаимном перемещении рамки и окружающего ее магнитного поля в ней возникает электродвижущая сила
  • электромагнитом генераторов постоянного тока служат статоры, ЭДС, соответственно возникает в якоре, ток снимается с коллекторных колец
  • в генераторе переменного тока намагничивается якорь, электроэнергия возникает в обмотках статора

Упрощенно можно представить, что на величину выходящего с генератора напряжения влияет значение магнитной силы и скорость вращения поля. Основная проблема генераторов постоянного тока – пригорание и залипание щеток при съеме с якоря токов большой величины – решена переходом на генераторы переменного тока. Ток возбуждения, подающийся на ротор для возбуждения магнитной индукции, на порядок ниже, снимать электроэнергию с неподвижного статора гораздо легче.

Однако вместо постоянно расположенных в пространстве клемм «–» и «+» производители авто получили постоянное изменение плюса и минуса. Подзарядка аккумулятора переменным током не возможна в принципе, поэтому диодным мостиком его предварительно выпрямляют.

Из этих нюансов плавно вытекают задачи, решаемые реле генератора:

  • подстройка тока в обмотке возбуждения
  • выдерживание диапазона 13,5 – 14,5 В в бортовой сети и на клеммах аккумулятора
  • отсечение питания обмотки возбуждения от АКБ при заглушенном двигателе

Поэтому называют регулятор напряжения еще и реле зарядки, а на панель выведена сигнальная лампа процесса подзарядки АКБ. В конструкцию генераторов переменного тока функция отсечения обратного тока заложена по умолчанию.

Разновидности реле регуляторов

Прежде, чем произвести самостоятельный ремонт устройства регулирования напряжения, необходимо учесть, что существует несколько типов регуляторов:

  • внешние – повышают ремонтопригодность генератора
  • встраиваемые – в пластину выпрямителя или щеточный узел
  • регулирующие по минусу – появляется дополнительный провод
  • регулирующие по плюсу – экономичная схема подключения
  • для генераторов переменного тока – нет функции ограничения напряжения на обмотку возбуждения, так как она заложена в самом генераторе
  • для генераторов постоянного тока – дополнительная опция отсечения АКБ при неработающем ДВС
  • двухуровневые – морально устарели, применяются редко, регулировка пружинами и небольшим рычагом
  • трехуровневые – дополнены специальной платой сравнивающего устройства и сигнализатором согласования
  • многоуровневые – в схеме имеются 3 – 5 добавочных резисторов и система слежения
  • транзисторные – в современных авто не используются
  • релейные – улучшенная обратная связь
  • релейно-транзисторные – универсальная схема
  • микропроцессорные – небольшие габариты, плавные регулировки нижнего/верхнего порога срабатывания
  • интегральные – встраиваются в щеткодержатели, поэтому заменяются после истирания щеток

Внимание: Без доработки схемы «плюсовой» и «минусовой» регулятор напряжения являются не взаимозаменяемыми приборами.

Реле генераторов постоянного тока

Таким образом, схема подключения регулятора напряжения при эксплуатации генератора постоянного тока сложнее. Поскольку в стояночном режиме авто, когда ДВС заглушен, необходимо отключить генератор от АКБ.

При диагностике проверка реле происходит на выполнение трех его функций:

  • отсечка аккумулятора во время стоянки машины
  • ограничение максимального тока на выходе генератора
  • регулировка напряжения для обмотки возбуждения

При любой неисправности требуется ремонт.

Реле генераторов переменного тока

В отличие от предыдущего случая диагностика своими руками регулятора генератора переменного тока немного проще. В конструкцию «автомобильной электростанции» уже заложена функция отсечки питания во время стоянки от АКБ. Остается проверить лишь напряжение на обмотке возбуждения и на выходе с генератора.

Если в машине стоит генератор тока переменного, его невозможно завести разгоном с горки. Так как остаточного намагничивания на возбуждающей обмотке здесь нет по умолчанию.

Встроенные и внешние регуляторы

Для автолюбителя важно знать, что измеряют и начинают регулировать напряжение реле в конкретном месте их установки. Поэтому встроенные модификации воздействуют непосредственно на генератор, а выносные «не знают» о его наличии в машине.

Например, если выносное реле подключено к катушке зажигания, его работа будет направлена на регулировку напряжения лишь на этом участке бортовой сети. Поэтому, прежде чем узнать, как проверить реле выносного типа, следует убедиться, что оно подключено правильно.

Управление по «+» и «–»

В принципе схемы управления по «минусу» и «плюсу» отличаются лишь схемой подключения:

  • при монтаже реле в разрыв «+» одна щетка подключается к «массе», другая к клемме регулятора
  • если же подключить реле в разрыв «–», то одну щетку нужно подключить к «плюсу», другую к регулятору

Однако в последнем случае появится еще один провод, поскольку реле напряжения является устройством активного типа. Для него необходимо индивидуальное питание, поэтому «+» нужно подвести отдельно.

Двухуровневые

На начальном этапе в машинах устанавливались механические двухуровневые регуляторы напряжения с простым принципом действия:

  • через реле проходит электрический ток
  • возникающее магнитное поле притягивает рычаг
  • сравнивающим устройством служит пружина с заданным усилием
  • при увеличении напряжения контакты размыкаются
  • на возбуждающую обмотку поступает меньший ток

Использовались механические двухуровневые реле в автомобилях ВАЗ 21099. Основным минусом являлась работа с повышенным износом механических элементов. Поэтому на смену этим приборам пришли электронные (бесконтактные) реле напряжения:

  • делитель напряжения собран из резисторов
  • стабилитрон является задающим устройством

Сложная схема соединения и недостаточно эффективный контроль напряжения привели к снижению спроса на эти приборы.

Трехуровневые

Однако двухуровневые регуляторы, в свою очередь, так же уступили позиции более совершенным трехуровневым и многоуровневым приборам:

  • напряжение выходит с генератора на специальную схему через делитель
  • информация обрабатывается, действительное напряжение сравнивается с минимальным и максимальным пороговым значением
  • сигнал рассогласования регулирует силу тока, поступающего на возбуждающую обмотку

Более совершенными считаются реле с частотной модуляцией – в них нет привычных сопротивлений, зато увеличена частота срабатывания ключа электронного. Управление осуществляется логическими схемами.

Принцип работы реле регулятора

Благодаря встроенным резисторам и специальным схемам реле получает возможность сравнивать величину вырабатываемого генератором напряжения. После чего, слишком высокое значение приводит к отключению реле, чтобы не перезарядить аккумулятор и не испортить электроприборы, подключенные в бортовую сеть.

Любые неисправности приводят именно к этим последствиям, приходит в неисправность батарея АКБ или резко увеличивается эксплуатационный бюджет.

Переключатель лето/зима

Вне зависимости от сезона и температуры воздуха работа генератора всегда стабильна. Как только его шкив начинает вращаться, электроток вырабатывается по умолчанию. Однако зимой внутренности аккумулятора замерзают, он восполняет заряд значительно хуже, чем летом.

Переключатели лето/зима находятся либо на корпусе регулятора напряжения, либо этим обозначением подписаны соответствующие разъемы, которые нужно найти и подсоединить к ним проводку в зависимости от сезона.

Ничего необычного в этом переключателе нет, это лишь грубые настройки реле регулятора, позволяющие повысить до 15 В напряжение на клеммах аккумулятора.

Подключение в бортовую сеть генератора

Если при замене генератора вы подключаете новый прибор самостоятельно, необходимо учесть нюансы:

  • вначале следует проверить целостность и надежность контакта провода от кузова машины к корпусу генератора
  • затем можно подсоединять клемму Б реле регулятора с «+» генератора
  • вместо «скруток», начинающих греться через 1 – 2 года эксплуатации, лучше использовать пайку проводов
  • заводской провод нужно заменить кабелем сечения 6 мм2 минимум, если вместо штатного генератора монтируется электроприбор, рассчитанный на ток больше 60 А
  • амперметр в цепи генератор/аккумулятор показывает, мощность какого источника электроснабжения в данный момент выше в бортовой сети

Амперметры – нужные приборы, с помощью которых можно определить заряд АКБ и работоспособность генератора. Без особых причин не рекомендуется убирать их из схемы.

Схемы подключения регулятора выносного

Монтируется выносное реле регулятора напряжения генератора только после выяснения, в разрыв какого провода оно должно быть подключено. Например:

  • на старых РАФ, Газелях и «Бычках» используются реле 13.3702 в полимерном или стальном корпусе с двумя контактами и двумя щетками, монтируются в «–» разрыв цепи, клеммы всегда промаркированы, «+» обычно берется с катушки зажигания (Б-ВК клемма), контакт Ш регулятора соединяется со свободной клеммой щеточного узла
  • в «жигулях» применяются реле регуляторы 121.3702 белого и черного цвета, существуют двойные модификации, в которых при выходе из строя одного прибора работа второго устройства продолжается простым переключением на него, монтируется в разрыв «+» клеммой 15 к выводу катушки зажигания Б-ВК, к щеточному узлу крепится проводом клемма 67

Встраиваемые реле-регуляторы автолюбители называют «шоколадками», маркированными Я112. Они монтируются в специальные щеткодержатели, прижимаются винтами и защищаются дополнительно крышкой.

На автомобилях ВАЗ реле обычно встроены в щеточный узел, полная маркировка Я212А11, подключаются к замку зажигания.
Если владелец меняет штатный генератор на старом отечественном ВАЗ на устройство переменного тока от иномарки или современной Лады, подключение производится по другой схеме:

  • вопрос крепления корпуса автолюбитель решает самостоятельно
  • аналогом клеммы «плюс» здесь служит контакт В или В+, его включают в бортовую сеть через амперметр
  • выносные реле регуляторы здесь обычно не используются, а встраиваемые уже интегрированы в щеточный узел, из них выходит единственный провод с маркировкой D либо D+, который подсоединяется к замку зажигания (к клемме катушки Б-ВК)

Для дизельных ДВС в генераторах может присутствовать клемма W, которая присоединяется к тахометру, ее игнорируют при установке на авто с бензиновым мотором.

Проверка подключения

После установки трехуровневого или иного реле-регулятора необходима проверка работоспособности:

  • двигатель заводится
  • напряжение в бортовой сети контролируется на разных оборотах

После установки генератора переменного тока и подключения его по вышеприведенной схеме владельца может ожидать «сюрприз»:

  • при включении ДВС запускается генератор, измеряется напряжение на средних, больших и малых оборотах
  • после выключения зажигания ключом …. двигатель продолжает работать

В этом случае заглушить ДВС можно либо сняв провод возбуждения, либо отпустив сцепление с одновременным нажатием тормоза. Все дело в наличии остаточной намагниченности и постоянном самовозбуждении обмотки генератора. Проблема решается установкой в разрыв возбуждающего провода лампочки:

  • она горит при незапущенном генераторе
  • гаснет после его запуска
  • проходящий через лампу ток недостаточен, чтобы возбудить обмотку генератора

Эта лампа автоматически становится индикатором наличия зарядки АКБ.

Диагностика реле регулятора

Определить поломки регулятора напряжения можно по признакам косвенным. Прежде всего, это некорректная зарядка АКБ:

  • перезаряд – выкипает электролит, раствор кислоты попадает на детали кузова
  • недозаряд – ДВС не запускается, лампы горят в пол накала

Однако предпочтительнее диагностика приборами – вольтметром или тестером. Любое отклонение от максимального значения напряжения 14,5 В (в некоторых авто бортовая сеть рассчитана на 14,8 В) на больших оборотах или минимального значения 12,8 В на малых оборотах становится причиной замены/ремонта реле регулятора.

Встроенного

Чаще всего регулятор напряжения интегрирован в щетки генератора, поэтому необходимо уровневое обследование этого узла:

  • после снятия защитной крышки и ослабления винтов щеточный узел извлекается наружу
  • при износе щеток (осталось меньше 5 мм их длины) замена должна производится в обязательном порядке
  • диагностика генератора мультиметром производится в комплекте с аккумулятором или зарядным устройством
  • «минусовой» провод от источника тока замыкается на соответствующую пластину регулятора
  • «плюсовой» провод от ЗУ или АКБ подключается к аналогичному разъему реле
  • тестер устанавливается в режим вольтметра 0 – 20 В, щупы накладываются на щетки
  • в диапазоне 12,8 – 14,5 В между щетками должно быть напряжение
  • при увеличении напряжения больше 14,5 В стрелка вольтметра должна быть на нуле

В данном случае вместо вольтметра можно использовать лампу, которая должна гореть в указанном интервале напряжения, гаснуть при увеличении этой характеристики больше этого значения.

Провод, управляющий тахометром (маркировка W только на реле для дизелей) прозванивается мультиметром в режиме тестера. На нем должно быть сопротивление около 10 Ом. При снижении этого значения провод «пробит», его следует заменить новым.

Выносного

Никаких отличий в диагностике для выносного реле не существует, зато его не нужно демонтировать из корпуса генератора. Проверить реле регулятор напряжения генератора можно при работающем двигателе, изменяя обороты с низких на средние, затем высокие. Одновременно с увеличением оборотов нужно включить дальний свет (как минимум), кондиционер, монитор и прочие потребители (как максимум).

Таким образом, при необходимости владелец транспортного средства может заменить штатное реле регулятор напряжения на более современную модификацию встраиваемого или выносного типа. Диагностика работоспособности доступна собственными силами при наличии обычной автомобильной лампы.

Чтобы стабилизировать величину электрического напряжения, необходим регулятор, который сделает работу приборов надежной и долговечной. В быту регулятор напряжения может потребоваться для различных ситуаций. Совсем необязательно покупать магазинный вариант. Имея небольшие познания в радиоэлектронике, можно спаять его и самостоятельно.

Обычно схема простого регулятора включает всего 5 элементов:

  1. Регулируемый резистор на 10 кОм. Он и отвечает за регулировку напряжения, может менять силу тока в цепи или увеличивать сопротивление.
  2. Радиатор. Защищает приборы от перегрева и охлаждает их в случае необходимости.
  3. Резистор на 1 кОм. Он призван снизить нагрузку на основной резистор.
  4. Транзистор. Он служит для увеличения колебаний и повышения их частоты.
  5. Два провода, по которым пойдет ток.

Принцип сборки

Сборка производится следующим образом:

  • Левый конец транзистора соединяют с концом в середине резистора;
  • Середина транзистора спаивается с правым концом резистора;
  • Один проводок спаивается с тем, что вышло в результате второй операции;
  • Другой проводок припаивают к оставшемуся концу транзистора;
  • Весь собранный механизм прикручивают к радиатору;
  • Теперь осталось припаять резистор на 1 кОм к крайним выходам регулируемого резистора и транзистора.

Простейший регулятор напряжения готов.

По тому же принципу можно сделать регулятор оборотов на 12 вольт. Для этого понадобятся:

  • Реле на 12 вольт;
  • Тиристор КУ201;
  • Трансформатор для питания двигателя и реле;
  • Транзистор КТ 815;
  • Вентиль от дворников «Жигулей» первой модели;
  • Конденсатор.

Этот регулятор используют для подачи проволоки, поэтому в схему включен тормоз двигателя с реле.

Сборка этого прибора также не отличается сложностью. Два проводка с блока питания подсоединяются к реле, на которое подается плюс батареи. Остальное включается, как и на обычном регуляторе напряжения. Данная схема позволяет создать 12 вольт для двигателя.

Регулятор напряжения своими руками: простые самодельные схемы для повторения

Содержание статьи

Описание устройства

Регулятором напряжения называется электронный прибор, служащий для повышения или понижения уровня выходного сигнала, в зависимости от величины разности потенциалов на его входе. То есть это устройство, с помощью которого можно управлять значением мощности, подводимой к нагрузке. При этом регулировать подаваемый уровень энергии можно как на реактивной, так и активной нагрузке.


Самым простым устройством, с помощью которого можно изменять уровень сигнала, считается реостат. Он представляет собой резистор, имеющий два вывода, один из которых подвижный. При перемещении ползункового вывода реостата изменяется сопротивление. Для этого он подключается параллельно нагрузке. Фактически это делитель напряжения, позволяющий регулировать величину разности потенциалов на нагрузке в пределах от нуля до значения, выдаваемого источником энергии.

Использование реостата ограничено мощностью, которую можно через него пропустить. Так как при больших значениях тока или напряжения он начинает сильно нагреваться и в итоге перегорает, поэтому на практике применение реостата ограничено. Его используют в параметрических стабилизаторах, элементах электрического фильтра, усилителях звука и регуляторах освещённости небольшой мощности.

История происхождения

Паяльник — это инструмент, предназначенный для передачи тепла материалу при соприкосновении с ним. Прямое его назначение — создание неразъемного соединения посредством расплавления припоя.

До начала XX века существовали два типа паяльных приспособлений: газовый и медный. В 1921 году изобретатель из Германии Эрнст Сакс изобрёл и зарегистрировал патент на паяльник, нагрев которого происходил под действием электрического тока. В 1941 году Карл Уэллер запатентовал инструмент трансформаторного вида, напоминающего формой пистолет. Пропуская через свой наконечник ток, он быстро нагревался.


Через двадцать лет этот же изобретатель предложил использовать термоэлемент в паяльнике для контроля температуры нагрева. В конструкцию входили спрессованные друг с другом две металлические пластинки с разным тепловым расширением. С середины 60-х годов из-за развития полупроводниковых технологий паяльный инструмент стал выпускаться импульсного и индукционного типа работы.

Разновидности приборов

По виду выходного сигнала регуляторы разделяют на стабилизированные и нестабилизированные. Также они могут быть аналоговыми и цифровыми (интегральными). Первые строятся на основе тиристоров или операционных усилителей. Их управление осуществляется путём изменения параметров RC цепочки обратной связи. Совместно с ними для повышения мощности применяются биполярные или полевые транзисторы. Работа же интегральных устройств связана с использованием широтно-импульсной модуляции (ШИМ), поэтому в цифровой схемотехнике используются микроконтроллеры и силовые транзисторы, работающие в ключевом режиме.

При изготовлении самодельного регулятора напряжения могут быть использованы следующие элементы:


  • резисторы;
  • тиристоры или транзисторы;
  • цифровые или аналоговые интегральные микросхемы.

Первые два типа имеют несложные схемы и довольно просты к самостоятельной сборке. Их можно изготавливать без использования печатной платы с помощью навесного монтажа, в то время как импульсные регуляторы на основе микроконтроллеров требуют более обширных знаний в радиоэлектронике и программировании.

Регулятор напряжения генератора


Генератор преобразует электричество. Без генератора не работала бы вся бортовая система машины. К обмотке магнита подключён специальный датчик. Простые пружины являются задающим устройством. Для устройства сравнения используется маленький рычаг. Группа контактов играет роль исполнительного устройства. Постоянное сопротивление представляет собой орган регулировки, который часто используется в машинах.

Во время работы генератора на его выходе возникает ток. Возникший ток переходит в обмотку магнитного реле. В результате появляется магнитное поле и под его воздействием плечо рычага раздвигается. На него начинает действовать пружина, и играет роль сравнивающего устройства. Когда ток превышает положенные значения, на магнитном реле контакты раздвигаются. В это время отключается постоянное сопротивление в цепи. Меньший ток поступает на обмотку.

Пожалуй, всем полезно знать, что такое класс точности электросчетчика.

Инструмент необходимый для изготовления регулятора напряжения

Инструментов для сборки регулятора обычно нужно не так уж и много. Лучше всего выбрать следующие:

  • Паяльник
  • Припой
  • Пинцет
  • Утконосы
  • Мультиметр, для наладки схемы.

Перед тем, как начать сборку необходимо не только приобрести все необходимые элементы, но и проверить их.

Порядок сборки регулятора напряжения

Обычно, для сборки небольших электронных устройств используют монтажную плату, на которую припаиваются все навесные элементы схемы. После этого остается только сделать перемычки между этими элементами согласно принципиальной схеме.

Как сделать регулятор для трансформатора своими руками?

Регулятор напряжения для трансформатора коммутирует переменный ток при помощи тиристора. Тиристор является полупроводниковым прибором и используется для преобразования энергии большой мощности. Его управление весьма специфическое, так как он открывается импульсом тока, но закроется, когда ток будет ниже точки удержания.

Функции и основные характеристики

Ток нагрузки одноканального (фото. 1) и двухканального (фото. 2) регуляторов не превышает 1,5 А. Поэтому для повышения нагрузочной способности производят замену транзистора КТ815А на КТ972А. Нумерация выводов для этих транзисторов совпадает (э-к-б). Но модель КТ972А работоспособна с токами до 4А.

Как избежать 3 частых ошибок при работе с симистором.

  1. Буква, после кодового обозначения симистора говорит о его предельном рабочем напряжении: А – 100В, Б – 200В, В – 300В, Г – 400В. Поэтому не стоит брать прибор с буквой А и Б для регулировки 0-220 вольт — такой симистор выйдет из строя.
  2. Симистор как и любой другой полупроводниковый прибор сильно нагревается при работе, следует рассмотреть вариант установки радиатора или активной системы охлаждения.
  3. При использовании симистора в цепях нагрузок с большим потреблением тока, необходимо четко подбирать прибор под заявленную цель. Например, люстра, в которой установлено 5 лампочек по 100 ватт каждая будет потреблять суммарно ток величиной 2 ампера. Выбирая по каталогу необходимо смотреть на максимальный рабочий ток прибора. Так симистор МАС97А6 рассчитан всего на 0,4 ампера и не выдержит такой нагрузки, а МАС228А8 способен пропустить до 8 А и подойдет для этой нагрузки.




Плата схемы управления регулятора мощности.

Если у Вас нет опыта, то монтаж лучше сделать на плотном картоне. Заодно поймете, как элементы собираются в схему, да и для такой схемки тратить текстолит и хлорное железо расточительно. Тем более, практически все радиолюбители начинали именно с картона или фанеры. Я сам свой первый транзисторный приемник собрал на картоне.

Здесь все очень просто. В картоне прокалываете отверстия, и в них вставляете радиодетали. С обратной стороны картона загните выводы, и спаяйте их между собой, собирая схему. Кусок картона возьмите с запасом. Лишнее потом отрежете.

Вот такая плата схемы управления у меня получилась.

P.S. Я немного разучился собирать схемы на картоне, получилось не совсем красиво, но это лучше, чем навесной монтаж.






РН на 2 транзисторах

Данный вид применяется в схемах особо мощных регуляторов. В этом случае ток на нагрузку также передается через симистор, но управление ключевым выводом происходит через каскад транзисторов. Это реализуется так: переменным резистором регулируется ток, который поступает на базу первого маломощного транзистора, а тот через коллектор-эмиторный переход управляет базой второго мощного транзистора и уже он открывает и закрывает симистор. Это реализует принцип очень плавного управления огромными токами на нагрузке.


СНиП 3.05.06-85

Ответы на 4 самых частых вопроса по регуляторам:

  1. Какое допустимое отклонение выходного напряжения? Для заводских приборов крупных фирм, отклонение не будет превышать +-5%
  2. От чего зависит мощность регулятора? Выходная мощность напрямую зависит от источника питания и от симистора, который коммутирует цепь.
  3. Для чего нужны регуляторы 0-5 вольт? Эти приборы чаще всего используют для питания микросхем и различных монтажных плат.
  4. Зачем нужен бытовой регулятор 0-220 вольт? Они применяются для плавного включения и выключения бытовых электроприборов.










Конструкция и детали.

В схеме используются два кремниевых транзистора: КТ315 и КТ361. Так как корпуса у них одинаковые, то различаются они по месту расположения буквенной маркировки. На рисунке эти места обозначены стрелками.

У транзистора КТ315 буква всегда расположена в левом верхнем углу

корпуса, а у КТ361 буква всегда наносится в
середине корпуса
. Все остальные обозначения это: год выпуска, месяц, партия.

На следующем рисунке изображены диод и стабилитрон. Здесь нужно обратить внимание на цоколевку их выводов. Как правило, цоколевка наносится на корпусе элемента в виде полоски, точки или нескольких точек со стороны обозначаемого вывода.

Также встречаются диоды, у которых на корпусе нанесено условное обозначение диода, применяемое на принципиальных схемах. Как именно нанесено обозначение относительно выводов, значит, такое расположение анода и катода соответствует действительности.

У импортных диодов и стабилитронов наносится полоска со стороны вывода катода, а у мощных, цоколевка наносится в виде условного обозначения диода.

У Советских и Российских диодов цоколевка немного отличается от импортной. Здесь используется и полоска, и точки, и условное обозначение диода. К тому же еще обозначаются и вывод анода, и вывод катода. Так что, в любом случае, желательно использовать справочник или измерительный прибор для более точного определения выводов.

В схеме регулятора мощности, в качестве регулируемого элемента, используется тиристор. Сам по себе тиристор напоминает диод, только у него есть еще один вывод – управляющий электрод.

В закрытом состоянии тиристор не пропускает ток, и если на его управляющий электрод подать отпирающее напряжение, то тиристор откроется, и через анод и катод потечет ток. Чем больше будет ток отпирающего напряжения, тем больший ток будет пропускать тиристор через себя.

Если возникнут проблемы с приобретением резистора R5, то его можно будет сделать из двух резисторов, соединенных последовательно. Все остальные детали простые, поэтому на них останавливаться не будем.

В качестве корпуса регулятора мощности, как вы уже догадались, возьмем накладную розетку. Когда будете покупать, то обратите внимание, чтобы сама розетка была сделана из пластмассы

, а не из керамики.

Это нужно для того, если вдруг тиристор не будет влезать в корпус, то от пластмассы всегда можно срезать лишний кусок.

Собирать регулятор будем из двух частей. Низковольтную часть лучше собрать на фольгированном стеклотекстолите, плотном картоне или любом другом диэлектрическом материале — так будет аккуратней. А вот высоковольтную часть сделаем навесным монтажом, как показано на рисунке ниже.

Здесь отверстия обозначены черными точками, а все соединения между точками и деталями — дорожки

, показаны синими линиями. Плата схемы управления и силовая часть соединяются между собой тремя красными проводниками.








Особенности изготовления

Изготовить регулирующее приспособление можно несколькими способами. Самый лёгкий -приобрести набор, содержащий уже готовую печатную плату и радиоэлементы, необходимые для сборки своими руками. Кроме них, набор содержит электрическую и принципиальную схему с описанием последовательности действий. Такие наборы называются KIT и предназначены для самых неопытных радиолюбителей.

Другой путь подразумевает самостоятельное приобретение радиокомпонентов и изготовление в случае необходимости печатной платы. Используя второй способ, можно будет сэкономить, но он занимает больше времени.

Существует множество схем разного уровня сложности для самостоятельного изготовления. Но чтобы сделать регулятор напряжения, кроме схемы, понадобится подготовить следующие инструменты, приборы и материалы:

  • паяльник;
  • мультиметр;
  • припой;
  • пинцет;
  • кусачки;
  • флюс;
  • технический спирт;
  • соединительные медные провода.

Если планируется собирать устройство, состоящее из 6 и более элементов, то целесообразно будет смастерить печатную плату. Для этого необходимо иметь фольгированный текстолит, хлорное железо и лазерный принтер.

Техника изготовления печатной платы в домашних условиях называется лазерно-утюжной (ЛУТ). Её суть заключается в распечатывании печатной платы на глянцевом листе бумаги, и переносом изображения на текстолит с помощью проглаживания утюгом. Затем плату погружают в раствор хлорного железа. В нём открытые участки меди растворяются, а закрытые с переведённым изображением формируют необходимые соединения.

При самостоятельном изготовлении прибора важно соблюдать осторожность и помнить про электробезопасность, особенно при работе с сетью переменного тока 220 В. Обычно правильно собранный регулятор из исправных радиодеталей не нуждается в настройке и сразу начинает работать.

Как соединить 5 частей регулятора на 12 вольт.

Переменный резистор 10кОм.

Это переменный резистор 10ком. Изменяет силу тока или напряжений в электрической цепи, увеличивает сопротивление. Именно им регулируется напряжение.

Радиатор. Нужен для того, чтобы охладить приборы в случае их перегрева.

Резистор на 1 ком. Снижает нагрузку с основного резистора.

Читайте также:  Различия схем подключения электрогенератора к домашней сети: особенности каждой схемы, область применения, выбор оборудования + основные ошибки и советы профессиональных электриков

Транзистор. Прибор, увеличивает силу колебаний. В регуляторе он нужен, чтобы получить электрические колебания высокой частоты

2 проводка. Необходимы для того, чтобы по ним шел электрический ток.

Берем транзистор и резистор. У обоих есть 3 ответвления.

Проводятся две операции:

  1. Левый конец транзистора (делаем это алюминиевой частью вниз) присоединяем к концу, который находится в середине резистора.
  2. А ответвление середины транзистора соединяем с правым у резистора. Их необходимо припаять друг к другу.

Первый провод необходимо спаять с тем, что получилось во 2 операции.

Второй нужно спаять с оставшимся концом транзистора.

Прикручиваем к радиатору соединенный механизм.

Резистор на 1кОм припаиваем к крайним ножкам переменного резистора и транзистора.

Схема готова.

Как сделать диагностику без снятия?

Не рекомендуется проводить такую проверку, так как нет возможности оценить состояние щеточного узла. Но случаи бывают разные, поэтому даже такая диагностика может дать свои плоды. Для работы вам потребуется мультиметр или, если такового нет, лампа накаливания. Для вас главное – это провести замер напряжения в бортовой сети автомобиля, определить, нет ли скачков. Но их можно заметить и при езде. Например, мигание света при изменении оборотов коленчатого вала двигателя.

Но точнее окажутся измерения, проведенные с использованием мультиметра или вольтметра с растянутой шкалой. Заведите двигатель и включите ближний свет. Подключите мультиметр к клеммам аккумуляторной батареи. Напряжение не должно превышать 14,8 Вольт. Но и нельзя, чтобы оно опускалось ниже 12. Если оно находится не в дозволенном интервале, то имеется поломка регулятора напряжения. Не исключено, что нарушены контакты в местах соединения прибора с генератором, либо окислены контакты проводов.

Как сделать регулятор для паяльника?

Сделать регулятор тока своими руками для паяльника можно, используя тиристор триодного типа. Дополнительно потребуются биполярные транзисторы и низкочастотный фильтр. Конденсаторы в устройстве применяются в количестве не более двух единиц. Снижение тока анода в данном случае должно происходить быстро. Чтобы решить проблему с отрицательной полярностью, устанавливаются импульсные преобразователи.

Для синусоидального напряжения они подходят идеально. Непосредственно контролировать ток можно за счет регулятора поворотного типа. Однако кнопочные аналоги также встречаются в наше время. Чтобы обезопасить устройство, корпус используется термостойкий. Резонансные преобразователи в моделях также можно встретить. Отличаются они, по сравнению с обычными аналогами, своей дешевизной. На рынке их часто можно встретить с маркировкой РР200. Проводимость тока в данном случае будет невысокой, однако управляющий электрод со своими обязанностями справляться должен.

Приборы для зарядного устройства

Чтобы сделать регулятор тока для зарядного устройства, тиристоры необходимы только триодного типа. Запирающий механизм в данном случае будет контролировать управляющий электрод в цепи. Полевые транзисторы в устройствах используются довольно часто. Максимальной нагрузкой для них является 9 А. Низкочастотные фильтры для таких регуляторов не подходят однозначно. Связано это с тем, что амплитуда электромагнитных помех довольно высокая. Решить эту проблему можно просто, используя резонансные фильтры. В данном случае проводимости сигнала они препятствовать не будут. Тепловые потери в регуляторах также должны быть незначительными.

Применение симисторных регуляторов

Симисторные регуляторы, как правило, применятся в устройствах, мощность которых не превышает 15 В. В данном случае они предельное напряжение способны выдерживать на уровне 14 А. Если говорить про приборы освещения, то они использоваться могут не все. Для высоковольтных трансформаторов они также не подходят. Однако различная радиотехника с ними способна работать стабильно и без каких-либо проблем.

Регуляторы для активной нагрузки

Схема регулятора тока для активной нагрузки тиристоры предполагает использовать триодного типа. Сигнал они способны пропускать в обоих направлениях. Снижение тока анода в цепи происходит за счет понижения предельной частоты устройства. В среднем данный параметр колеблется в районе 5 Гц. Напряжение максимум на выходе должно составлять 5 В. С этой целью резисторы применяются только полевого типа. Дополнительно используются обычные конденсаторы, которые в среднем способны выдерживать сопротивление 9 Ом.

Импульсные стабилитроны в таких регуляторах не редкость. Связано это с тем, что амплитуда электромагнитных колебаний довольно большая и бороться с ней нужно. В противном случае температура транзисторов быстро возрастает, и они приходят в негодность. Чтобы решить проблему с понижающимся импульсом, преобразователи используются самые разнообразные. В данном случае специалистами также могут применяться коммутаторы. Устанавливаются они в регуляторах за полевыми транзисторами. При этом с конденсаторами они соприкасаться не должны.

Как сделать фазовую модель регулятора?

Сделать фазовый регулятор тока своими руками можно при помощи тиристора с маркировкой КУ202. В этом случае подача запирающего напряжения будет проходить беспрепятственно. Дополнительно следует позаботиться о наличии конденсаторов с предельным сопротивлением свыше 8 Ом. Плата для этого дела может быть взята РР12. Управляющий электрод в этом случае обеспечит хорошую проводимость. Импульсные преобразователи в регуляторах данного типа встречаются довольно редко. Связано это с тем, что средний уровень частоты в системе превышает 4 Гц.

В результате на тиристор оказывается сильное напряжение, которое провоцирует возрастание отрицательного сопротивления. Чтобы решить эту задачу, некоторые предлагают использовать двухтактные преобразователи. Принцип их работы построен на инвертировании напряжения. Изготовить самостоятельно регулятор тока данного типа в домашних условиях довольно сложно. Как правило, все упирается в поиски необходимого преобразователя.

Устройство импульсного регулятора

Чтобы сделать импульсный регулятор тока, тиристор потребуется триодного типа. Подача управляющего напряжения осуществляется им с большой скоростью. Проблемы с обратной проводимостью в устройстве решаются за счет транзисторов биполярного типа. Конденсаторы в системе устанавливаются только в парном порядке. Снижение тока анода в цепи происходит за счет смены положения тиристора.

Запирающий механизм в регуляторах данного типа устанавливается за резисторами. Для стабилизации предельной частоты фильтры могут применяться самые разнообразные. Впоследствии отрицательное сопротивление в регуляторе не должно превышать 9 Ом. В данном случае это позволит выдерживать большую токовую нагрузку.

Модели с плавным пуском

Для того чтобы сконструировать тиристорный регулятор тока с плавным пуском, нужно позаботиться о модуляторе. Наиболее популярными на сегодняшний день принято считать поворотные аналоги. Однако они между собой довольно сильно отличаются. В данном случае многое зависит от платы, которая применяется в устройстве.

Если говорить про модификации серии КУ, то они работают на самых простых регуляторах. Особой надежностью они не выделяются и определенные сбои все же дают. Иначе обстоят дела с регуляторами для трансформаторов. Там, как правило, применяются цифровые модификации. В результате уровень искажений сигнала значительно сокращается.

Сборка регулятора напряжения на симисторах

В основе работы симисторного РН — фазовое смещение открывания ключа. Детали схемы можно разделить на две группы:

  • силовые (ключ) — симистор;
  • создающие управляющие импульсы, база на симметричном динисторе.

С помощью резисторов R1 и 2 сконструирован делитель напряжения. Сопротивление на первом переменное, что дает возможность регулировать значение на отрезке R2–C1. Между указанными деталями поставлен динистор DB3. Конструкция работает с мощностью около 100–150 Вт.

Алгоритм работы:

  1. В момент достижения напряжения на конденсаторе C1 точки открытия динистора, на симистор (он же является силовым ключом) VS1 поступает импульс для управления — он активируется.
  2. Через симистор начинает протекать ток на подключенный прибор.
  3. Положением регулятора выставляют часть фазы волны, где срабатывает силовой ключ.

Второй вариант

Данный способ сборки на симисторе своими руками почти аналогичен предыдущему. Схема базируется на дешевом симисторе BT136. Сборка предназначена для работы в пределах 100 Вт.

Потребуется следующее:

Как работает: через цепь DN1 (динист.) — C1 (конд.) — D1 (диод) ток течет на DN2 (симист.). Последний открывается и момент этого зависит от емкости C1, заряжаемого через R1 и 2 (резисторы). Получается требуемый алгоритм: модуляцией сопротивления R1 настраивается скорость заряда конденсатора.

Конструкция чрезвычайно простая, но отлично справляется с настройкой вольтажа нагревательных приборов с вольфрамовой нитью. Но есть минус: отсутствует обратная связь, поэтому применять самоделку для регулировки оборотов коллекторного электродвигателя нельзя.

Третий вариант РН на симисторе с иллюстрацией этапов, фото деталей

Нижеуказанная схема может обслужить нагрузку до 1 кВт. Потребуется конденсатор 0.1 мкФ×400 В и следующее:

Графически схема выглядит так:

Детали можно спаять между собой, но рассмотрим вариант с платой — ее вытравливают и лудят стандартными методами, макет ниже:

Припаиваем симистор, переменный резистор. Конденсатор в нашем случае на плате со стороны лужения, так как у пользователя он был со слишком короткими ножками.

Далее, динистор: у него нет полярности, вставляем как угодно. Затем установка всего остального: диода, резистора, светодиода, перемычки, винтового клеммника.

Конструкция помещается в любую коробочку, пример:

Самоделка в дополнительных настройках не нуждается. Можно применять не только для сети 220 В на стандартные приборы, но и для любого источника с переменным током от 20 до 500 В. Данный диапазон определен предельными характеристиками радиоэлементов.

На транзисторах

Сборки на транзисторах больше подходят для индуктивной нагрузки, ими можно регулировать обороты электродвигателей.

Простая схема

Данная сборка очень практичная — этот регулятор напряжения представляет собой простой блок питания, универсальный адаптер к радиоустройствам на разные напряжения (вольтаж). Собрать сможет даже пользователь с начальными познаниями и небольшим опытом.

Элементы:

  • транзистор КТ815Г, можно и 817 Г;
  • переменник на 10 кОм;
  • резистор стандартный 0.125 Вт на 1 кОм

Спаять элементы можно без площадки, но покажем, как это сделано с ней. Создаем плату:

Пайка компонентов:

  1. Транзистор, важно не перепутать его выводы (эмиттер и базу).
  2. Резистор на 1 кОм.
  3. Впаиваем с проводами переменник на 10 кОм. Можно применить и другой, припаять сразу, без них, если позволяет типоразмер.
  4. Четыре вывода — к питанию, к выходам.

Подсоединяем к питанию, выход оснащаем светодиодом, подключаем нагрузку (лампу), моторчик, тот же светодиод (в нашем примере он). Двигаем регулятор — наблюдаем изменение напряжения.

Особенность: диапазон обслуживаемой мощность и ток нагрузки ограничены предельными характеристиками транзистора — примерно половина 1 Ампера. Для увеличения диапазона такого регулируемого стабилизатора надо брать транзисторы КТ805, 819.

Другие варианты маломощных транзисторных схем

С 2 деталями: транзистором и переменником. Алгоритм элементарный: последний указанный элемент индуцирует (отпирает) первый. Чем ниже номинал настроечного резистора, тем более плавная регулировка. Это вариант для маломощной нагрузки, например, для вентиляторов, слабых электромоторчиков, светодиодов. Транзистор нагревается сильно, поэтому радиатор желательный.

Мощная сборка

Опишем особо мощный регулятор для нагрузки в несколько кВт. Тут ток на нагрузку идет также через симистор, но управляется все через каскад транзисторов. Переменником настраивается ток, поступающий в базу первого транз. (маломощного), а тот посредством коллекторно-эмиторного перехода осуществляет управление базой уже мощного транз., который реализует открывание/закрывание симистора. Так создается возможность очень плавной настройки огромных токов на нагрузке.

Источники

  • https://rusenergetics.ru/praktika/regulyator-napryazheniya
  • https://instanko.ru/osnastka/regulyator-moshchnosti.html
  • https://instrument.guru/elektrichestvo/prostoj-regulyator-napryazheniya-na-12-volt-svoimi-rukami.html
  • https://svoimirykami.info/regulyator-napryazheniya-svoimi-rukami/
  • https://BurForum.ru/svarka/shema-prostogo-regulyatora-napryazheniya-12v.html
  • https://instanko.ru/elektrichestvo/regulyator-napryazheniya-i-toka.html
  • https://FB.ru/article/196987/regulyator-toka-svoimi-rukami-shema-i-instruktsiya-regulyator-postoyannogo-toka
  • https://ProFazu.ru/elektrooborudovanie/samodelki-oborud/regulyator-napryazheniya-220-v-svoimi-rukami.html

[свернуть]

ШИМ регулятор напряжения 12 вольт. Две схемы

ШИМ регулятор напряжения 12 вольт. В данной статье приводится описание двух принципиальных схем регулятора основанных на широтно — импульсной модуляции (ШИМ) постоянного тока, которые реализованы на базе операционного усилителя К140УД6.

ШИМ регулятор напряжения 12 вольт — описание

Особенностью данных схем является возможность применить фактически любые имеющиеся в наличии операционные усилители, с напряжение питания на уровне 12 вольт, например, операционный усилитель LM324 или операционный усилитель LM358.

Изменяя величину напряжения на неинвертирующем входе операционного усилителя (вывод 3) можно изменять величину выходного напряжения. Таким образом, эти схемы можно использовать как регулятор тока и напряжения, в диммерах, а также в качестве регулятора оборотов двигателя постоянного тока.

Схемы достаточно просты, состоят из простых и доступных радиокомпонентов и при верном монтаже сразу начинают работать. В качестве управляющего ключа применен мощный полевой n- канальный транзистор. Мощность полевого транзистора, а так же площадь радиатора, необходимо подобрать согласно току потребления нагрузки.

Для предупреждения пробоя затвора полевого транзистора, в случае использовании ШИМ регулятора с напряжением питания 24 вольта, необходимо между затвором VT2 и коллектором транзистора VT1 подключить сопротивление величиной в 1 кОм, а параллельно сопротивлению R7 подключить стабилитрон на 15 вольт.

В случае если необходимо изменять напряжение на нагрузке, один из контактов которой подсоединен к «массе» (такое встречается в автомобиле), то применяется схема, в которой к плюсу источника питания подсоединяется сток n -канального полевого транзистора, а нагрузка подключается к его истоку.

Желательно для создания условий, при котором открытие полевого транзистора будет происходить в полной мере, цепь управления затвором должна содержать узел с повышенным напряжением порядка 27…30 вольт. В этом случае напряжение между истоком и затвором будет более 15 В.

Если ток потребления нагрузкой менее 10 ампер, то возможно применить в ШИМ регуляторе мощные полевые p- канальные транзисторы.

Электрический паяльник с регулировкой температуры

Мощность: 60/80 Вт, температура: 200’C-450’C, высококачествен…

Во второй схеме ШИМ регулятор напряжения 12 вольт меняется и вид транзистора VT1, а также меняется направление вращения переменного резистора R1. Так у первого варианта схемы, уменьшение напряжения управления (ручка потенциометра перемещается к «-» источника питания) вызывает увеличение напряжения на выходе. У второго варианта все наоборот.

kravitnik.narod.ru

Купить регулятор на 12 вольт | REUK.co.uk

Дополнительная информация

Это наша схема стабилизатора напряжения 12,0 В , построенная на базе регулятора с малым падением напряжения LM2940 . Он разработан для использования в ситуациях, когда напряжение питания выше 12 Вольт может повредить устройство, но источник напряжения (обычно свинцово-кислотный аккумулятор) подает напряжение выше 12 В. Этот новый дизайн имеет размеры всего 45 x 45 x 20 мм .

Регулятор будет выдавать до 0,8 А при 12,0 В постоянного тока при максимальном входном напряжении 16 В без необходимости в дополнительном радиаторе.

Эта схема регулятора идеально подходит для светодиодных светильников , использующих 12 В светодиодных прожекторов . Эти лампы имеют рабочее напряжение , , 10,5–13,5 вольт, поэтому, если они напрямую подключены к свинцово-кислотной батарее с номиналом 12 В, лампы могут быть легко повреждены напряжением 13,5 В + полностью заряженной или недостаточно заряженной батареи.

Если необходимо использовать переключатель — например, для освещения — он должен быть подключен к цепи перед регулятором , чтобы регулятор не потреблял энергию от батареи, кроме случаев, когда это необходимо. Точно так же, если используется предохранитель , он должен быть вставлен в положительную линию, соединяющую батарею с регулятором, и расположен рядом с батареей. (или прокрутите вниз, чтобы узнать о наших альтернативных регуляторах 12 В с предохранителями и / или переключателями на плате.)

Ограничения по току

Ограничение по току 0,8 А на этой цепи регулятора соответствует питанию до восьми светодиодных ламп мощностью 1 Вт . Встроенный радиатор обеспечивает охлаждение регулятора под нагрузкой с помощью до 4–5 наших прожекторных ламп мощностью 1,5 Вт при питании от источника 12,5–16 В (типичная свинцово-кислотная батарея).
* Другие лампы могут потреблять больше мощности и, следовательно, больше тока, чем указано на этикетке. Если у вас есть лампы от другого поставщика, мы рекомендуем вам проверить их энергопотребление.

Регулятор LM2940, используемый на этой плате, имеет абсолютный предел 1 А . Если вы собираетесь использовать этот регулятор до этого предела ИЛИ для регулирования от напряжения 16+ Вольт, вы должны использовать радиатор или вентилятор большего размера. Свяжитесь с нами напрямую (электронная почта [email protected]) перед покупкой и сообщите подробные сведения о ваших требованиях, чтобы мы могли подтвердить пригодность.

Использование регулятора 12 В

Подключить регулятор 12 В в цепь очень просто, как показано на изображениях ниже:

* Если входное напряжение упадет ниже 12.5 Вольт, регулятор с низким падением напряжения будет « сбросить » максимум на 0,5 В — например, вход 12,3 В будет генерировать выходной сигнал от 11,8 В до 12,0 В в зависимости от тока, используемого нагрузкой — 12,0 В, если ток небольшой, и 11,8 В, если используется полный максимальный ток 0,8 А .

Регулятор 12 В с установленным предохранителем

На изображении выше показан регулятор 12 В с предохранителем 1 А , надежно закрепленным на печатной плате.Это делает подключение системы намного проще и аккуратнее, чем использование стандартного встроенного держателя предохранителя и предохранителя. Щелкните здесь, чтобы получить дополнительную информацию и / или приобрести 12-вольтный регулятор с предохранителем сейчас с двумя запасными предохранителями на 1А за £ 6,79 .

Регулятор 12 В с предохранителями и переключателями

Аналогичным образом мы также можем включить ввинчивающиеся клеммы для переключателя , чтобы на одной плате можно было аккуратно установить правильные соединения «БАТАРЕЯ — ПРЕДОХРАНИТЕЛЬ — ПЕРЕКЛЮЧАТЕЛЬ — НАГРУЗКА».Эта плата оценена в £ 7,29 , включая два запасных предохранителя номиналом 1 А. Нажмите здесь, чтобы узнать больше и / или приобрести этот 12-вольтный регулятор с предохранителями и переключателями .

Мини-регулятор на 12 В с предохранителями и переключателями

Мы также теперь продаем миниатюрную версию этого регулятора , размер которой составляет всего 45 мм x 45 мм x 20 мм . Его цена £ 6,99 . Щелкните здесь, чтобы узнать больше и / или приобрести этот регулятор MINI 12 В с предохранителями и переключателями в магазине REUK.

Регулятор 12 В со встроенным выключателем по низкому напряжению

Еще один популярный стабилизатор 12 В — это регулятор на 12 Вольт с выключателем низкого напряжения . Он сочетает в себе стабилизатор 12 В с предохранителями и клеммами переключателя с батареей, защищающей от низкого напряжения, разъединителем , который отключает выход при низком напряжении батареи.

Миниатюрный 12-вольтный регулятор с эпоксидным уплотнением

На изображении ниже представлен наш последний 12-вольтный стабилизатор с малым падением напряжения .Он разработан для использования там, где пространство ограничено. Три типа стандартных регуляторов, описанных выше, имеют размеры около 85 x 60 x 30 мм, что для некоторых приложений немного велико.

Этот новый регулятор имеет размер 30 x 25 x 15 мм и полностью покрыт сверхтвердой и прочной эпоксидной смолой . Это электрически изолирует регулятор и связанные с ним компоненты, поэтому кожух не требуется. Регулятор, безусловно, очень устойчив к погодным условиям и брызгам, а также должен быть водонепроницаемым (не то чтобы это то, что вы использовали бы под водой).

Этот регулятор действительно подходит только для нагрузок около 0,5-0-6 А или ниже и входных напряжений <16 В , поскольку не используется радиатор, а эпоксидная смола не рассеивает тепло так же хорошо, как металл. Предварительно подключены четыре провода: вход V + и 0 В и выход 12,0 В и 0 В. Если вы хотите заказать этот тип регулятора, напишите по электронной почте [email protected] .

6 лучших контроллеров заряда от солнечных батарей

Каждая солнечная система требует регулирования для предотвращения повреждения батареи, поэтому мы собрали список самых лучших контроллеров заряда от солнечных батарей для различных применений.От экологически сознательных домовладельцев до строителей подземных бункеров-самоучок, любой, кто использует солнечную панель большего размера, чем небольшие водосточные системы, нуждается в каком-то регулировании батареи, и именно здесь нужны контроллеры солнечного заряда.

Большинство контроллеров солнечного заряда требуют довольно значительного аванса. инвестиции, иногда превышающие $ 600 . Цена контроллера в сочетании с ценой на панели и батареи означает, что пользователи солнечной системы могут быть напуганы широким спектром моделей, доступных на рынке.Но есть и хорошие новости: относительно легко определить , какое напряжение вам понадобится для правильного обслуживания солнечной системы, будь то дом на колесах, трейлер, сарай, мастерская или дом.

С небольшими математическими выкладками, исследование, поиск и покупка лучшего солнечного контроллера заряда для вашей системы на самом деле могут быть довольно простыми. Конечно, следует помнить о нескольких важных моментах, например о характеристиках безопасности , репутации качества и цене.

Топ 6 контроллеров заряда от солнечных батарей

На этой странице

Как выбрать контроллер заряда от солнечных батарей

Чтобы выбрать контроллер заряда от солнечных батарей, вам необходимо знать, с какой системой вы будете его использовать; будь то системы переменного тока на 12, 24, 48 или 110/220 вольт.Вам также необходимо знать, сколько всего батарей в вашей системе, а также их емкость в ампер-часах. Наконец, определите, не нужны ли вам какие-либо блокирующие диоды внутри вашего контроллера, в зависимости от типа батарей.

Покупка высококачественного солнечного контроллера заряда — это инвестиция, особенно для топовых моделей MPPT. Вот почему жизненно важно рассмотреть ваш конкретный вариант использования , прежде чем выбирать контроллер заряда.

Есть несколько различных факторов, на которые следует обратить внимание, помимо фактической математики определения ампер / ватт / вольт вашей солнечной батареи и батарей.Каждому пользователю также необходимо принять во внимание, какой тип устройства он хочет заряжать, будь то большая семья с автономной системой или дом на колесах с батареями глубокого цикла.

Какой погоде будут подвергаться ваши панели?

По иронии судьбы, комплекты солнечных батарей лучше всего работают в холодную и пасмурную погоду и на ярком солнце. Это потому, что температура влияет на эффективность солнечной панели; панель 100 Вт при комнатной температуре станет панелью 83 Вт при 110 градусах.

При этом, если ваши солнечные панели регулярно подвергаются дождливой или холодной погоде, то номинальное входное напряжение контроллера ШИМ будет , когда температура упадет на . А при очень высоких температурах входное напряжение может упасть ниже точки, необходимой для полной зарядки аккумулятора.

В этих случаях контроллер MPPT является лучшим вариантом, поскольку он регулирует температуру и компенсирует изменение напряжения. Фактически, вы можете получить прирост мощности 10-15% летом и 20-45% зимой с контроллером заряда MPPT, хотя это может варьироваться в зависимости от множества различных факторов.

Некоторые солнечные контроллеры предлагают датчики температуры батареи, которые увеличивают емкость батареи. Это отличный вариант для тех, кто хочет разместить свои панели в различных условиях с сильными погодными условиями.

Какое напряжение у ваших солнечных панелей и аккумулятора?

В зависимости от напряжения вашей солнечной панели вам может даже не понадобиться контроллер заряда. Когда дело доходит до небольших панелей, которые вырабатывают 2 Вт или меньше на каждые 50 ампер-часов батареи, контроллеры солнечного заряда не нужны.Тем не менее, вы должны оборудовать каждую солнечную панель и батарею, которые производят больше, чем этот общий стандарт, контроллером заряда. Это будет регулировать производительность и эффективность вашей системы.

Большинство напряжений аккумуляторных батарей попадают в диапазон 12-48 В постоянного тока, , который контроллер заряда должен будет согласовать на выходе. Однако наиболее важной частью является способность контроллера обрабатывать ток от вашей солнечной панели. Чтобы вычислить , сколько усилителей вам нужно для , вам нужно немного посчитать.

Вот два разных уравнения, которые вы можете использовать для расчета потребности в амперах:

  • Мощность солнечной панели / напряжение батареи = потребность в амперах
  • Ток короткого замыкания солнечной батареи X 1,56 = потребность в амперах

На С другой стороны, если вы работаете с высоковольтной системой с сетевыми солнечными панелями, лучше всего использовать контроллер MPPT. Они могут потреблять до напряжения постоянного тока 150 вольт на входе и могут преобразовывать усилители в максимальную мощность, так что вы потеряете минимальную мощность во время процесса.

Устройство какого размера вы планируете использовать?

Для тех, кто хочет запитать небольшие нагрузки, такие как фонари и мелкие бытовые приборы, хорошим вариантом будет выход LOAD или LVD . Терминал нагрузки имеет размыкатель низкого напряжения и отключает подключенное устройство, чтобы батарея не разрядилась.

Эта опция используется для некритических нагрузок и иногда может использоваться как контроллер освещения, который автоматически включает устройство в сумерках. Однако эта система используется только для очень маленьких инверторов и не может использоваться с чем-либо выше, чем 60 ампер , так как это может привести к неисправности.

Если вы хотите запитать удаленную систему, например, в доме на колесах или в солнечном фонаре, то выход LOAD / LVD — отличный вариант. ШИМ-контроллер также идеально подходит для этих типов устройств, поскольку это недорогой вариант и может обрабатывать только небольшие нагрузки.

С другой стороны, для больших устройств, таких как сетевые солнечные панели, требуется контроллер MPPT . Эти технологически продвинутые и дорогие контроллеры гораздо больше подходят для больших нагрузок.

Где будут размещаться солнечные панели по отношению к батарее?

Если солнечные панели расположены на значительном расстоянии от батарей, вы столкнетесь со значительной потерей мощности и падением напряжения , если вы не используете большой провод.Это может быть довольно обременительно для тех, у кого нет места или бюджета для использования больших проводов на больших расстояниях, особенно для тех, у кого есть сетевые системы.

Однако контроллер заряда солнечной батареи MPPT может позволить вам использовать провод гораздо меньшего размера, поскольку он преобразует напряжение. В этом случае MPPT — лучший выбор по сравнению с контроллером заряда PMW.

Критерии выбора: как мы оценили лучшие контроллеры заряда от солнечных батарей

Тип

Тип солнечного контроллера заряда зависит от того, является ли он моделью MPPT или PMW.Контроллеры MPPT широко признаны лучшими из лучших, поэтому они по сути возглавляют наш список. Тем не менее, мы также включили в наш рейтинг несколько контроллеров PWM, поскольку высококачественные варианты иногда больше подходят для тех, кто хочет разработать простые системы для питания солнечных фонарей в саду или мобильных устройств.

Напряжение аккумулятора

Большинство зарядных устройств аккумулятора находятся в диапазоне 12-48 В постоянного тока . Однако некоторым может потребоваться мощность 60 В или 72 В. Базовый стандарт — 12 В постоянного тока, но для тех, кто использует очень большие системы, такие как соединения или целые дома, требуется более высокое напряжение.Важно, чтобы емкость аккумулятора соответствовала вашим индивидуальным потребностям, но мы также рассматриваем возможность масштабирования вашей системы, если вы того пожелаете.

Максимальное входное напряжение

Хотя может показаться, что 12-вольтовая панель совместима с 12-вольтовой батареей, это просто неправда. Большинство панелей на самом деле не работают при номинальном напряжении, потому что мощность, генерируемая солнцем, может варьироваться в зависимости от различных факторов, таких как яркость солнца в тот день.

Не только это, но некоторые домовладельцы или владельцы бизнеса могут захотеть соединить несколько панелей вместе, чтобы создать систему привязки к сетке.Для этого потребуется еще более высокое максимальное входное напряжение для контроллера, чтобы компенсировать дополнительную мощность.

Лучшие контроллеры заряда солнечных батарей — это те, у которых максимальное входное напряжение выше на , поэтому пользователи могут масштабировать свои системы в зависимости от их использования и интересов. Более высокий максимальный ввод также будет учитывать различные погодные условия.

Максимальный выходной ток

Количество ампер, которое ваш контроллер будет подавать на ваши устройства от аккумуляторной батареи, важно, потому что оно определяет, какой тип и размер устройств вы действительно можете заряжать с помощью своих солнечных панелей.Те, которые совместимы только с 20-30A , имеют меньшую емкость, чем те, которые рассчитаны на 80A или выше. Хотя больше не обязательно лучше, это ключевой фактор, который следует учитывать при выборе модели, которую вы хотите приобрести.

Большинство контроллеров заряда солнечных батарей имеют ряд дополнительных функций. Эти функции обеспечивают максимальную настройку, что означает, что пользователи могут разработать идеальную систему для обслуживания своей солнечной батареи и батарей. Вероятно, наиболее важными дополнительными функциями являются те, которые связаны с безопасностью , , поскольку они предотвращают возникновение опасных аварий — очень реальная проблема при работе с высоковольтными электрическими системами.

Вот лучшие функции контроллера заряда солнечной энергии, на которые следует обратить внимание:

  • Светодиодные экраны
  • Регистрация данных
  • Системы дистанционного управления
  • Функции безопасности, предотвращающие перезарядку, перегрузку, короткое замыкание и обратное полярность и электрические дуги.

Часто задаваемые вопросы (FAQ)

Как работает контроллер солнечного заряда?

Проще говоря, контроллер заряда солнечной батареи регулирует мощность, передаваемую от солнечной панели к батарее.Важно использовать контроллер заряда, поскольку он повышает эффективность солнечной системы до 50% , может предотвратить перезарядку аккумуляторов и при правильном использовании продлит срок их службы. Если нет никаких правил, батареи могут быть легко повреждены, что потребует времени и денег на ремонт.

Существует два основных типа контроллеров заряда солнечных батарей: слежение за максимальной точкой мощности (MPPT) и широтно-импульсная модуляция (PWM). Каждый тип служит своей цели, но в конечном итоге чаще используются контроллеры MPPT.

Что такое контроллер заряда MPPT?

Основное различие между ними состоит в том, что контроллер MPPT обеспечивает до на 30% больше мощности , чем контроллер PWM, и может использоваться для более высоких напряжений. Хотя контроллеры MPPT на энергоэффективнее (до 98%), они значительно дороже по сравнению с контроллерами ШИМ.

Контроллеры MPPT способны справляться с неблагоприятными погодными условиями , поскольку они сохраняют выходную мощность батареи и компенсируют низкое энергопотребление.Он также преобразует напряжение для входных и выходных источников, что приводит к очень небольшим потерям мощности. В зависимости от модели, контроллер должен поддерживать солнечную батарею напряжением до 90–140 В постоянного тока.

Что такое контроллер заряда PMW?

ШИМ-контроллер — это переключатель , который подключает солнечную батарею к батарее. Это часто приводит к низкой выходной мощности при очень высокой или низкой наружной температуре. Это также приводит к уменьшению выходного напряжения солнечной батареи до напряжения батареи.

По мере увеличения массива солнечных панелей вам потребуется более крупная проводка, чтобы компенсировать размер области. Это будет очень дорого, хотя сам контроллер является самым дешевым вариантом на рынке.

В конечном счете, PMW более устаревший с точки зрения технологий, и не имеет таких преимуществ, как контроллер заряда MPPT, когда дело доходит до регулирования батареи.

Всегда ли контроллер заряда MPPT лучше?

Короткий ответ: не обязательно.

Только те, кому нужны небольшие устройства и бытовая техника, должны выбирать контроллеры заряда с ШИМ. Они более экономичны и могут выдерживать низкое напряжение.

Тем не менее, тем, кто хочет установить солнечные панели на своих крышах или запитать большие системы, следует использовать контроллеры заряда MPPT. Они могут помочь сохранить низкую силу тока и малый размер провода. Они делают это при подключении ряда панелей с более высоким напряжением.

Рейтинги и обзоры

Основываясь на установленных нами критериях типа контроллера, напряжения аккумуляторной батареи (В), максимального входного напряжения (В), максимального выходного тока (А) и дополнительных функций, мы выбрали лучших 6 солнечных зарядов контроллеры на ваш выбор.

В нашем рейтинге учитываются различные области применения и цели. Это не ограничивается только контроллерами MPPT. Таким образом, стандарты безопасности и качества являются важным фактором в нашем рейтинге.

Наш выбор № 1: Контроллер заряда EPEVER MPPT
  • Тип: MPPT
  • Напряжение батареи: 12-24 В
  • Максимальное входное напряжение: 100 В
  • Максимальный выходной ток: 30A
  • Дополнительные функции: Четырехступенчатая зарядка аккумулятора, температурная компенсация, ЖК-экран, программное обеспечение для ПК, поддержка удаленного измерителя и нескольких методов управления нагрузкой.
  • Преимущества: Дешевый контроллер MPPT по сравнению с другими моделями высшего уровня с отличной защитой.
  • Недостатки: Не обеспечивает такое высокое максимальное входное напряжение или максимальный выходной ток, как другие модели MPPT.

Когда дело доходит до контроллеров MPPT, они доминируют в регулировании аккумуляторов. Существуют модели MPPT с большим количеством наворотов.

Однако контроллер заряда для солнечных батарей Epever возглавляет список по рентабельности .Его цена почти вдвое меньше, чем у других высококачественных моделей. Но этот контроллер заряда дает много денег.

В целом, заявленный контроллер заряда солнечных батарей Epever имеет высокий рейтинг эффективности отслеживания не ниже 99,5% . У бренда есть и другие модели с токовыми выходами от 20А до 40А. Однако версия 30A — это хорошая золотая середина для рядовых покупателей, которые не стремятся создавать огромные солнечные батареи.

Это также отличный выбор для тех, кто хочет создать автономные системы солнечных панелей для питания дома или бункера.Благодаря бесплатному проектированию системы и технической поддержке компании Epever упрощает сбор энергоэффективной и экологически чистой солнечной энергии.

Что говорят рецензенты?

Покупатели в восторге от звездной цены высококачественного солнечного контроллера заряда MPPT. Они использовали это устройство для регулирования солнечных панелей, установленных на туристических трейлерах, домах, прудах и т. Д. Они утверждают, что его легко установить и использовать благодаря удаленному дисплею.

У некоторых пользователей вышли из строя контроллеры.Но они сообщают, что обслуживание клиентов производителя было быстрым и дружелюбным. Рецензенты также ценят множество функций. К ним относятся выходная нагрузка для управления освещением и использованием батареи.

Особенности и соображения

Контроллер заряда солнечной батареи Epever MPPT имеет автоматическое распознавание напряжения системы от 12 до 24 В и функцию автосохранения для запоминания настроек. Устройство также оснащено многофункциональным ЖК-дисплеем для отображения информации, а также может быть подключено к программному обеспечению ПК или трекеру MT50 для постоянного наблюдения.

Контроллер заряда работает с гелевыми, герметичными и заливными литиевыми батареями , и имеет несколько режимов управления нагрузкой, включая ручной режим, освещение и таймер освещения. Более того, контроллер поставляется с множеством защитных устройств, в том числе от перенапряжения аккумулятора, перегрузки нагрузки, короткого замыкания или обратной полярности фотоэлектрических модулей и т. Д.

Посмотреть цену на Amazon

Вернуться к обзорам

Следующее лучшее: Outback Flexmax 80 FM80 MPPT 80 AMP Контроллер заряда от солнечных батарей
  • Тип: MPPT
  • Напряжение аккумулятора: 12-60 В
  • Макс. напряжение: 150 В
  • Максимальный выходной ток: 80A
  • Дополнительные функции: Программируемый дисплей с подсветкой, регистрируемые данные о производительности системы, контроль температуры и возможность интеграции в сеть.
  • Отличительные особенности: Может обрабатывать большие количества постоянного напряжения и преобразовывать их с 12 В постоянного тока в 60 В постоянного тока для батарейных блоков.
  • Недостатки: Очень высокая цена на системные и настраиваемые дополнения.

Outback Flexmax FM80 — один из лучших контроллеров солнечной энергии на рынке, поскольку он поддерживает широкий спектр конструкций систем и типов батарей. Благодаря огромному максимальному входному напряжению контроллер Outback идеально подходит для автономных систем, которые люди устанавливают на крышах или в сельской местности.

Одним из ключевых преимуществ этого устройства является его способность упрощать управление и программирование. Производитель также допускает более сложные конфигурации при подключении к системному дисплею и контроллеру MATE или фирменному инвертору и диспетчеру связи HUB.

Помимо простоты использования, производитель разработал контроллер заряда на солнечных батареях Outback с неброским черным корпусом и зеленым экраном. Этот блок является отличным дополнением к любой конструкции системы солнечных батарей для продвинутых и начинающих поклонников солнечной энергии.

Что говорят рецензенты?

Пользователи продукта в целом очень довольны брендом Outback. Эта модель не исключение.

С прочной конструкцией и высококачественным дизайном у обозревателей мало претензий. Те, кто действительно сталкивается с проблемами, утверждают, что обслуживание клиентов производителя быстрое и эффективное. Сообщают, что быстро решают проблемы.

Один покупатель был недоволен тем, что к нему не пришел кабель для передачи данных . Это необходимо для подключения контроллера Outback к диспетчеру связи HUB.

Поскольку в комплект поставки не входит кабель, покупатели должны приобретать его отдельно. То есть, если они хотят централизовать регистрацию данных и управление системой.

Особенности и соображения

Outback Flexmax рекламирует увеличение выходной мощности фотоэлектрической матрицы до 30%, что на больше, чем у большинства других моделей на рынке. Входное фотоэлектрическое напряжение может выдерживать разомкнутую цепь до 150 В постоянного тока для зарядки аккумуляторов от 12 до 60 В постоянного тока. Благодаря такой большой емкости по напряжению, контроллер Outback отлично подходит для систем солнечных панелей, связанных с сетью.

Конкретная модель FM80 также оснащена встроенным 80-символьным дисплеем, на котором отображаются журналы данных за последние 128 дней. Эту регистрацию данных можно легко централизовать с помощью других расширенных инструментов Outback, таких как инвертор, контроллер MATE3 и диспетчер связи HUB.

Благодаря автоматическому контролю температуры устройство может использовать интеллектуальные системы управления температурой для охлаждения системы до температуры окружающей среды. Вы также можете дополнить его дополнительным дистанционным датчиком температуры , который вы покупаете отдельно.

Посмотреть цену на Amazon

Вернуться к обзорам

Наш следующий фаворит: Контроллер заряда MidNite Solar Classic 150
  • Тип: MPPT
  • Напряжение батареи: 12-72 В
  • Максимальное входное напряжение: 150 В
  • Максимальный выходной ток: 96A
  • Дополнительные функции: Встроенный DC-GFP и режимы дугового замыкания, солнечной энергии, энергии ветра и гидроэнергетики MPPT, а также расширение предельного значения летучих органических соединений.
  • Отличительные особенности: Очень безопасен в использовании, так как оснащен системой автоматического обнаружения дугового замыкания, которая отключает цепь при обнаружении опасной электрической дуги.
  • Недостатки: Во встроенном программном обеспечении есть несколько ошибок кодирования, которые затрудняют навигацию.

Контроллер заряда Midnite Solar Classic MPPT — одно из самых безопасных устройств на рынке. Его автоматическое обнаружение дугового замыкания помогает защитить от опасных электрических токов. Более того, все контроллеры произведены в Америке , что гарантирует высокое качество от имени производителя.

Помимо высокого максимального входного напряжения и тока на выходе, Midnite Solar Classic идеально подходит для больших солнечных систем, питающих такие объекты, как склады и бункеры.Контроллер заряда MPPT также поставляется с расширенной гарантией , которая позволяет покупателям отправлять свои устройства обратно производителю для общей настройки за определенную плату.

После этого они продлят гарантию еще на на 2 года. Этот дополнительный уровень защиты покупателей делает дорогостоящие предварительные вложения не такими пугающими для начинающих пользователей солнечной энергии.

Что говорят рецензенты?

Большинство обозревателей очень довольны широким диапазоном мощности Midnite Solar Classic.Имея напряжение 48-72 В, — это — один из самых мощных на рынке.

Покупатели также заявляют, что чувствуют себя в большей безопасности благодаря дополнительным функциям безопасности и защиты. С точки зрения стоимости, это того стоит. Те, у кого мало места на крыше, могут высосать из своих панелей все до последнего ватта.

Также стоит отметить возможности отслеживания . Он регистрирует данные за 4 месяца, которые легко просматривать и анализировать.

Однако некоторые пользователи жаловались, что прошивка плохо закодирована и ее трудно использовать.Это заставляет их усомниться в легитимности компании.

Особенности и соображения

Одной из лучших функций, включенных в контроллер Midnite Solar Classic, является возможность удаленного доступа к энергосистеме через локальное приложение Midnite Solar. Приложение позволяет вам легко контролировать вашу систему издалека через Интернет, и вы можете получить доступ к системе для устранения проблем, если они возникнут.

Эта функция идеально подходит для тех, кто устанавливает солнечные системы в удаленных местах , далеко от их места проживания, например, в подземных бункерах, охотничьих домиках, дачных домах или сельскохозяйственных объектах.

Контроллер заряда также может работать с различными источниками постоянного тока , такими как одобренные фотоэлектрические, гидро- и ветровые турбины. Вы также можете приобрести несколько классических контроллеров и подключить их в параллельную серию для использования с большими системами. Это значительно увеличивает мощность системы, эффективно создавая гигантский уникальный концентратор для регулирования ваших солнечных панелей.

См. Цену на Amazon

Вернуться к обзорам

4. Контроллер заряда от солнечных батарей Victron SmartSolar MPPT 100/50
  • Тип: MPPT
  • Напряжение батареи: 12-48 В
  • Максимальное входное напряжение: 150V
  • Максимальный выходной ток: 100A
  • Дополнительные функции: Bluetooth-соединение, портал удаленного управления, совместимость с монитором батареи.
  • Особенности: Передовые технологии и интеллектуальная система управления делают его идеальным для жилых автофургонов.
  • Недостатки: Требуется дополнительная покупка для полного мониторинга батареи.

Благодаря интеллектуальной и молниеносной системе контроллер заряда Victron SmartSolar MPPT является отличным выбором для тех, кто не знаком или новичок в установке солнечных систем. Цифровые функции, включенные в этот контроллер MPPT, такие как беспроводная система управления Bluetooth , ставят это устройство на первое место в списке.

Компания Victron energy известна как как производитель высококачественного оборудования для преобразования энергии, и эта модель не является исключением. Компания Victron, штаб-квартира которой находится в Нидерландах, с 1975 года производит инверторы и зарядные устройства для аккумуляторов, в основном для рынка автомобилей и лодок.

Что говорят рецензенты?

Покупатели в восторге от репутации компании Victron в области компонентов аккумуляторных батарей, особенно когда речь идет о солнечных батареях, устанавливаемых на такие транспортные средства, как дома на колесах и лодки. Конечно, наиболее примечательной функцией является опция Bluetooth, которая подключается к смартфонам пользователей.Это, по-видимому, особенно полезно в дороге.

Однако некоторые покупатели заявляют, что техническая поддержка не всегда доступна. Это касается, учитывая, что их основным преимуществом является передовых технологий . Один покупатель также утверждает, что этот контроллер повредил его батареи после того, как он залил их электроэнергией и перезарядил.

Возможности и рекомендации

Victron SmartController предлагает встроенное соединение Bluetooth с любым устройством с поддержкой Bluetooth, например смартфоном.Через подключение к Интернету пользователи могут бесплатно использовать портал удаленного управления Victron и контроллер MPPT в любом месте. Это отлично подходит для установки , обновления и мониторинга удаленных систем , подобных тем, которые установлены в доме на колесах.

Вы также можете обновить контроллер, приобретя дополнительно монитор батареи Victron серии BMV-700. Эта надстройка будет контролировать аккумуляторную батарею. Он предоставляет информацию о состоянии в реальном времени, такую ​​как напряжение, ток, солнечные ватты и многое другое.

Узнать цену на Amazon

Вернуться к отзывам

5.Renogy Wanderer
  • Тип: PWM
  • Напряжение батареи: 12 В
  • Макс.входное напряжение: 25 В
  • Максимальный выходной ток: 30A
  • Дополнительная зарядка: Светодиодные индикаторы и защита от перезарядки, перегрузки, короткого замыкания и обратной полярности.
  • Основные моменты: Предлагает различные способы определения момента включения нагрузки.
  • Недостатки: Устройство оснащено только светодиодным индикатором и не имеет ЖК-дисплея для отображения важных диагностических данных.

Благодаря чистому и гладкому черному дизайну Renogy Wander является привлекательным выбором для домашней солнечной системы. Как часть большого семейства моделей контроллеров заряда Renogy, Wanderer является одним из лучших благодаря низкой цене и защитным функциям.

Устройство относится к типу PWM, а не MPPT, что значительно ограничивает возможности устройства.Хотя технология не так развита, эта модель по-прежнему является отличным вариантом для тех, кто хочет использовать небольшие системы.

Что говорят рецензенты?

Хотя некоторые считают устройство «голыми костями» , по мнению обозревателей, это эффективный и надежный . Это идеальный вариант для освещения в садах или по бокам сараев, но он не подойдет для больших домашних решеток.

У некоторых пользователей возникли проблемы с неработающими контроллерами через несколько месяцев.Один сообщил о трудностях с использованием разъемов в нижней части устройства. В целом, люди считают Wanderer базовым контроллером солнечного заряда, который может удовлетворить несложные и небольшие потребности.

Особенности и соображения

Четырехфазная ШИМ-зарядка , включая объемную, повышающую, плавающую и выравнивающую, помогает предотвратить перезарядку или чрезмерную разрядку подключенной батареи. Он также имеет отрицательное заземление, что довольно стандартно.

Wander может компенсировать изменения температуры.Он автоматически исправит параметры для достижения оптимальной производительности.

Совместимость с выносным датчиком температуры. Это позволит собрать данные о температурной компенсации. Это устройство необходимо покупать отдельно. 3 зеленых светодиода , расположенные на передней панели устройства, отображают основные данные.

Благодаря возможности подключения к герметичным, гелевым и залитым батареям, ШИМ-контроллер довольно универсален. Он также имеет защитные приспособления. Это помогает защитить от перезарядки, перегрузки, короткого замыкания и обратной полярности.

См. Цену на Amazon

Вернуться к обзорам

6. Контроллер заряда MOHOO 20A
  • Тип: PWM
  • Напряжение батареи: 12-24 В
  • Максимальное входное напряжение: 24 В
  • Макс. токовый выход: 20A
  • Дополнительные функции: Автоматическое отключение, защитная защита, покрытие от влаги, ЖК-экран, USB-порты.
  • Особенности: Может использоваться с системами 12 В и 24 В, включая прямую зарядку телефонов.
  • Низкие точки: Невозможно подключить его к нагрузке более 20А с помощью клемм.

Как самый дешевый вариант в нашем списке, контроллер заряда MOHOO PWM — отличный вариант без суеты для тех, у кого небольшие солнечные системы. Он идеально подходит для зарядки таких устройств, как освещение и небольшие цифровые устройства, например мобильные телефоны. Однако его ограниченная мощность означает, что вы не можете использовать его для чего-либо выше 20А.

MOHOO — одна из лучших моделей контроллера заряда с ШИМ.Тем не менее, он по-прежнему не обладает такой емкостью, как контроллер MPPT.

Тем не менее, эта модель может обеспечивать объемную зарядку до 80% емкости. Он также обеспечивает подзарядку последних 20% емкости и выравнивающий заряд.

Что говорят рецензенты?

По большей части обозреватели довольны компактной моделью MOHOO. Некоторые жалуются, что это не очень эффективно. Но это недостаток, который есть у всех контроллеров заряда с ШИМ.

Другим очень нравятся дополнительных USB-портов для зарядки мобильных телефонов.Но они предупреждают, что ночью он разряжает телефон, если вы его не подключили.

Многие пользователи купили их за рабочих прицепов. Они утверждают, что их легко установить и использовать. Невероятно низкая цена также является важным аргументом в пользу продажи.

Особенности и соображения

Большой ЖК-экран может отображать важную информацию о технических характеристиках устройства, а также поддерживает управление освещением. Интеллектуальная система выполнит автоматическое отключение , когда батарея упадет ниже 8 В, в результате чего дисплей станет пустым.

Контроллер совместим только со свинцово-кислотными батареями и не будет работать с батареями из лития, никель-металлгидрида или других элементов. Но влажное покрытие защитит устройство от повреждений , вызванных влажностью или гнездованием насекомых, что является плюсом для тех, кто устанавливает их в гаражах или сараях.

Контроллер заряда MOHOO также оснащен двумя выходами постоянного тока и 2 портами USB для легкой зарядки. Порты USB могут обеспечивать выход 5V 1A , который подходит для небольших цифровых устройств.

См. Цену на Amazon

Вернуться к обзорам
Вернуться к началу руководства

Цепь регулятора напряжения солнечной панели

В публикации подробно рассказывается, как построить простую схему контроллера регулятора солнечной панели в домашних условиях для зарядки небольших батарей, таких как аккумулятор 12 В 7 Ач с помощью небольшой солнечной панели

Использование солнечной панели

Все мы довольно хорошо знаем о солнечных панелях и их функциях. Основные функции этих удивительных устройств — преобразование солнечной энергии или солнечного света в электричество.

В основном солнечная панель состоит из отдельных секций отдельных фотоэлектрических элементов. Каждая из этих ячеек способна генерировать небольшую электрическую мощность, обычно от 1,5 до 3 вольт.

Многие из этих ячеек на панели подключены последовательно, так что общее эффективное напряжение, генерируемое всем блоком, достигает пригодных для использования выходов 12 или 24 вольт.

Ток, генерируемый устройством, прямо пропорционален уровню солнечного света, падающего на поверхность панели.Электроэнергия, вырабатываемая солнечной панелью, обычно используется для зарядки свинцово-кислотной батареи.

Свинцово-кислотная аккумуляторная батарея, когда она полностью заряжена, используется с инвертором для получения необходимого напряжения сети переменного тока для электропитания дома. В идеале солнечные лучи должны падать на поверхность панели, чтобы она функционировала оптимально.

Однако, поскольку солнце никогда не бывает неподвижным, панели необходимо постоянно отслеживать путь солнца или следовать за ним, чтобы генерировать электроэнергию с высокой эффективностью.

Если вы заинтересованы в создании автоматической системы солнечных панелей с двумя трекерами, вы можете обратиться к одной из моих предыдущих статей. Без солнечного трекера солнечная панель сможет выполнять преобразования только с эффективностью около 30%.

Возвращаясь к нашим фактическим дискуссиям о солнечных панелях, это устройство можно считать сердцем системы в том, что касается преобразования солнечной энергии в электричество, однако произведенное электричество требует множества измерений, прежде чем его можно будет эффективно использовать. в предыдущей системе привязки сетки.

Зачем нам солнечный регулятор

Напряжение, получаемое от солнечной панели, никогда не бывает стабильным и резко меняется в зависимости от положения солнца и интенсивности солнечных лучей и, конечно же, от степени падения на солнечную панель.

Это напряжение, если оно подается на батарею для зарядки, может вызвать повреждение и ненужный нагрев батареи и связанной с ней электроники; поэтому может быть опасным для всей системы.

Для регулирования напряжения от солнечной панели обычно используется схема регулятора напряжения между выходом солнечной панели и входом батареи.

Эта схема гарантирует, что напряжение от солнечной панели никогда не превышает безопасное значение, необходимое для зарядки аккумулятора.

Обычно для получения оптимальных результатов от солнечной панели минимальное выходное напряжение от панели должно быть выше, чем требуемое напряжение зарядки аккумулятора, что означает, что даже в неблагоприятных условиях, когда солнечные лучи не являются резкими или оптимальными, солнечная панель все равно должна быть может генерировать напряжение, превышающее, скажем, 12 вольт, что может быть напряжением заряжаемой батареи.

Солнечные регуляторы напряжения, доступные на рынке, могут быть слишком дорогими и не такими надежными; однако изготовление одного такого регулятора дома с использованием обычных электронных компонентов может быть не только забавным, но и очень экономичным.


Вы также можете прочитать об этой цепи регулятора напряжения на 100 Ач


Принципиальная схема

ПРИМЕЧАНИЕ : ПОЖАЛУЙСТА, УДАЛИТЕ R4, ТАК КАК ЭТО НЕ ВАЖНО. ВЫ МОЖЕТЕ ЗАМЕНИТЬ ЕГО ПРОВОДНОЙ.

Конструкция печатной платы на стороне дорожек (R4, диод и S1 не включены…R4 на самом деле не важен и может быть заменен перемычкой.

Как это работает

Ссылаясь на предлагаемую схему регулятора напряжения солнечной панели, мы видим конструкцию, в которой используются очень обычные компоненты, но при этом удовлетворяются потребности в соответствии с требованиями наших спецификаций.

Одна микросхема LM 338 становится сердцем всей конфигурации и отвечает за выполнение требуемых регуляторов напряжения в одиночку.

Показанная схема регулятора солнечной панели соответствует стандартному режиму конфигурации IC 338.

Вход подается на указанные точки входа ИС, а выход для батареи — на выход ИС. Поток или предустановка используются для точной установки уровня напряжения, который можно рассматривать как безопасное значение для батареи.

Зарядка с контролируемым током

Эта схема контроллера солнечного регулятора также предлагает функцию управления током, которая гарантирует, что аккумулятор всегда получает фиксированный заданный ток зарядки и никогда не перегружается.Модуль можно подключить, как показано на схеме.

Соответствующие указанные позиции могут быть легко подключены даже неспециалистом. Остальные функции выполняются схемой регулятора. Переключатель S1 должен быть переключен в режим инвертора, когда батарея полностью заряжена (как показано на индикаторе).

Расчет зарядного тока для батареи

Зарядный ток может быть выбран соответствующим образом путем выбора номинала резисторов R3. Это можно сделать, решив формулу: 0.6 / R3 = 1/10 батареи AH. Предварительно установленный VR1 настроен на получение необходимого зарядного напряжения от регулятора.

Солнечный регулятор с использованием IC LM324

Для всех систем солнечных панелей эта единственная схема гарантированно эффективного регулятора на основе IC LM324 предлагает энергосберегающий ответ на зарядку аккумуляторных батарей свинцово-кислотного типа, которые обычно используются в автомобилях.

Не считая цены на солнечные элементы, которые, как предполагается, будут перед вами для использования в различных других планах, солнечный регулятор сам по себе стоит ниже 10 долларов.

В отличие от ряда других шунтирующих регуляторов, которые перенаправляют ток через резистор после полной зарядки батареи, эта схема отключает источник заряда от батареи, устраняя необходимость в громоздких шунтирующих резисторах.

Как работает схема

Как только напряжение аккумулятора падает ниже 13,5 В (обычно напряжение холостого хода аккумулятора 12 В), включаются транзисторы Q1, Q2 и Q3, и зарядный ток проходит через солнечные панели. как предполагалось.

Активный зеленый светодиод показывает, что аккумулятор заряжается. Когда напряжение на клеммах батареи приближается к напряжению холостого хода солнечной панели, операционный усилитель A1a отключает транзисторы Q1-Q3.

Эта ситуация фиксируется до тех пор, пока напряжение батареи не упадет до 13,2 В, после чего запуск процесса зарядки батареи снова восстанавливается.

В отсутствие солнечной панели, когда напряжение батареи продолжает падать с 13,2 В до примерно 11,4 В, что означает, что батарея полностью разряжена, A1b, выход переключается на 0 В, заставляя подключенный КРАСНЫЙ светодиод мигать с частотой, фиксированной нестабильный мультивибратор A1c.

В этой ситуации мигает с частотой 2 герца. Операционный усилитель A1d дает опорное напряжение 6 В для сохранения порогов переключения на уровнях 11,4 В и 13,2 В.

Предлагаемая схема регулятора LM324 рассчитана на токи до 3 ампер.

Для работы с более значительными токами может быть необходимо увеличить базовые токи Q2, Q3, чтобы гарантировать, что все эти транзисторы могут поддерживать насыщение во время сеансов зарядки.

Солнечный регулятор электроэнергии с использованием микросхемы IC 741

Большинство типичных солнечных панелей обеспечивают без нагрузки около 19 В.Это позволяет получить падение напряжения на выпрямительном диоде на 0,6 В при зарядке свинцово-кислотного аккумулятора на 12 В. Диод предотвращает прохождение тока батареи через солнечную панель в ночное время.

Эта установка может быть отличной, пока аккумулятор не перезаряжается, так как аккумулятор 12 В может легко перезарядиться до уровня выше 1 В 5, если источник зарядки не контролируется.

Падение напряжения, вызванное последовательным проходом BJT, обычно составляет примерно 1,2 В, что кажется слишком высоким для эффективной работы почти всех солнечных панелей.

В этой простой схеме солнечного регулятора эффективно устранены оба вышеперечисленных недостатка. Здесь энергия от солнечной панели поступает в аккумулятор через реле и выпрямительный диод.

Как работает схема

Когда напряжение аккумулятора увеличивается до 13,8 В, контакты реле щелкают, так что транзистор 2N3055 начинает подзаряжать аккумулятор до оптимального значения 14,2 В.

Этот уровень напряжения полной зарядки можно установить немного ниже, несмотря на то, что большинство свинцово-кислотных аккумуляторов начинают выделять газ при 13.6В. Это выделение газов значительно увеличивается при перенапряжении.

Контакты реле срабатывают при падении напряжения аккумуляторной батареи ниже 13,8 В. Аккумуляторная батарея не используется для работы схемы.

Фет работает как источник постоянного тока.

Шунтирующий регулятор напряжения

Схему регулятора солнечной панели шунтового типа, показанную выше, можно понять по следующим пунктам:

Операционный усилитель TL071 сконфигурирован как компаратор.

Полевой транзистор BF256 вместе с предустановкой P1 на 500 кОм формирует опорный генератор постоянного тока и постоянного напряжения для инвертирующего входа операционного усилителя.

Вывод 3, который является неинвертирующим входом для операционного усилителя, удерживается с источником переменного напряжения в зависимости от уровня напряжения на клеммах батареи, поэтому этот контакт 3 работает как вход измерения избыточного заряда отсека или операционного усилителя.

Предустановка P1 на выводе 2 ИС настраивается таким образом, что потенциал на входе вывода 3 ИС становится выше, чем на выводе 2, как только батарея достигает полного уровня заряда.

Пока уровень заряда батареи ниже значения полного заряда, потенциал на контакте 3 ниже, чем на контакте 2, который удерживает выход операционного усилителя на нулевой логике, а полевой транзистор T2 BUZ100 остается выключенным.

Однако, как только батарея достигает полного уровня заряда, потенциал на выводе 3 теперь превышает значение на выводе 2, что приводит к изменению состояния на выходе операционного усилителя на высокий выход.

Это немедленно включает полевой транзистор T1, который шунтирует напряжение солнечной панели на землю, тем самым предотвращая дальнейшую зарядку аккумулятора.

Пока напряжение солнечной панели шунтируется полевым транзистором T1 через диод D4, эти два устройства могут существенно нагреваться, поскольку вся мощность солнечной панели заземляется этими двумя устройствами.

Диод D3 гарантирует, что после зарядки аккумулятор никогда не разрядится через солнечную панель, особенно в ночное время.

Светодиод D1 показывает, когда аккумулятор полностью заряжен, и отключается, когда он включается.

Список деталей

Как выбрать контроллер заряда солнечной энергии для вашей фотоэлектрической системы

Дуглас Граббс, инженер по приложениям, Morningstar Corporation

В своих основных формах солнечные фотоэлектрические системы — это очень простая задача.Подключите солнечную панель к нагрузке постоянного тока, и она будет работать, пока не сядет солнце. Подключите солнечные панели к инвертору, подключенному к сети, и, пока светит солнце, энергия будет подаваться в сеть. Все довольно просто — пока солнце не перестанет светить.

Сложнее становится накопление энергии, которое используется, когда солнце не светит или когда сеть не работает. Для хранения электроэнергии для дальнейшей полезной работы требуются батареи, подключенные к солнечной фотоэлектрической системе. После добавления аккумулятора контроллер заряда становится одним из наиболее важных компонентов системы.

Любой, кто отключается от сети или желает использовать гибридную систему, которая может продавать вырабатываемую солнечными батареями электроэнергию в течение дня и сохранять эту энергию для использования ночью, во время отключения электроэнергии или в часы пик, будет нуждаться в контроллере заряда солнечной батареи.

Контроллер заряда ProStar PWM от Morningstar

Что делает контроллер заряда солнечной батареи

Думайте о солнечном контроллере заряда как о регуляторе. Он подает питание от фотоэлектрической батареи на нагрузку системы и аккумуляторную батарею.Когда аккумуляторная батарея почти заполнена, контроллер будет снижать зарядный ток, чтобы поддерживать напряжение, необходимое для полной зарядки аккумулятора, и поддерживать его на высоком уровне. Имея возможность регулировать напряжение, солнечный контроллер защищает аккумулятор. Ключевое слово — «защищает». Батареи могут быть самой дорогой частью системы, и контроллер солнечного заряда защищает их как от перезаряда, так и от недозаряда.

Вторая роль может быть более сложной для понимания, но работа аккумуляторов в «частичном состоянии заряда» может значительно сократить их срок службы.Длительные периоды частичного заряда приводят к сульфатированию пластин свинцово-кислотных аккумуляторов и значительному сокращению срока службы, а химический состав литиевых аккумуляторов в равной степени уязвим для хронической недозарядки. Фактически, разряд батарей может быстро их убить. Поэтому контроль нагрузки для подключенных электрических нагрузок постоянного тока очень важен. Переключатель низкого напряжения (LVD), включенный в контроллер заряда, защищает батареи от чрезмерной разрядки.

Перезарядка всех типов аккумуляторов может нанести непоправимый ущерб.Избыточная зарядка свинцово-кислотных аккумуляторов может вызвать чрезмерное выделение газа, которое может фактически «вскипятить» воду, повредив пластины аккумулятора, обнажив их. В худшем случае перегрев и высокое давление могут привести к взрыву при выпуске.

Обычно меньшие контроллеры заряда включают в себя схему управления нагрузкой. На более крупных контроллерах, таких как Morningstar TriStar, отдельные переключатели и реле управления нагрузкой также могут использоваться для управления нагрузкой постоянного тока до 45 или 60 ампер. Наряду с контроллером заряда драйвер реле также обычно используется для включения и выключения реле для управления нагрузкой.Драйвер реле включает четыре отдельных канала для определения приоритета более критических нагрузок, чтобы они работали дольше, чем менее критические нагрузки. Это также полезно для автоматического управления запуском генератора и уведомления о тревоге.

Более совершенные контроллеры заряда солнечной батареи также могут контролировать температуру и регулировать зарядку аккумулятора для соответствующей оптимизации заряда. Это называется температурной компенсацией, при которой происходит зарядка более высокого напряжения при низких температурах и более низкого напряжения при высоких температурах.

Многие контроллеры заряда солнечных батарей включают локальный и удаленный мониторинг данных.Morningstar предлагает варианты последовательной связи, поэтому контроллеры можно контролировать локально или удаленно с помощью совместимого коммуникационного оборудования. Кроме того, возможна связь через Ethernet для локального мониторинга в локальной сети или удаленно через Интернет.

По этим и другим причинам солнечный контроллер можно рассматривать как сердце и мозг системы. Он обеспечивает длительную работоспособность батареи при любых условиях эксплуатации, а также обеспечивает функции контроля критической нагрузки и мониторинга системы.

Два основных типа контроллера заряда

Хотя контроллеры заряда имеют широкий диапазон цен, номинальных мощностей и функций, все они попадают в одну из двух основных категорий: широтно-импульсная модуляция (PWM) и отслеживание точки максимальной мощности (MPPT).

Типы

PWM относительно просты, в них используется переключатель между фотоэлектрической решеткой и батареей. Переключатель может быстро открываться и закрываться, таким образом, имея возможность пульсировать или «дросселировать» электричество, поступающее от солнечной панели, чтобы снизить зарядный ток по мере заполнения батарей.Поскольку контроллеры ШИМ работают только с переключателем, напряжение массива во время работы равно напряжению батареи. Это означает, что вам необходимо использовать солнечные панели номинального напряжения с ШИМ-контроллером (панели с 36 ячейками для номинала 12 В и панели с 72 ячейками для номинала 24 В).

Даже при номинальном напряжении, ШИМ-контроллер будет работать ниже максимального напряжения питания (Vmp). Когда на улице холодно или когда напряжение батареи падает, ШИМ-контроллер будет работать значительно ниже Vmp и максимальной мощности (Pmp) солнечной батареи.Чтобы в полной мере использовать максимальную выходную мощность фотоэлектрического массива, вам понадобится контроллер MPPT.

Контроллеры

MPPT сравнительно сложнее. Они могут регулировать (или отслеживать) входное напряжение и ток фотоэлектрической матрицы, чтобы найти оптимальное рабочее напряжение, которое будет генерировать наибольшую мощность в данный момент. Ниже приведены графики зависимости тока от напряжения (IV) и тока от мощности (IP) для фотоэлектрической батареи с номинальным напряжением. Постоянно отслеживая и работая на Vmp, контроллер MPPT сможет генерировать больше энергии, чем контроллер PWM во время массовой зарядки.

Контроллеры

MPPT также могут использоваться с фотоэлектрическими массивами с более высоким напряжением, превышающим номинальное напряжение. Это позволяет использовать различные солнечные фотоэлектрические панели, которые могут стоить меньше или быть более оптимальными по размеру. Например, 60-ячеечные модули стоят меньше, чем 36-ячеечные, и имеют более удобный размер для установки, чем более крупные 72-ячеечные модули. Массивы с более высоким напряжением также позволяют использовать меньшее количество параллельных цепочек, что приводит к меньшему количеству предохранителей блока сумматора, меньшему току массива и меньшему падению напряжения, поэтому можно использовать меньшие провода, а это означает, что контроллеры MPPT могут сэкономить деньги за счет сокращения дорогостоящей медной проводки, особенно для более длинных проводов массива. работает.

Обратите внимание: хотя технология MPPT дороже, она не обязательно лучше. Для системы правильного размера контроллеры MPPT и PWM отлично справятся с поддержанием заряда батарей. Выбор PWM или MPPT действительно зависит от приложения и местоположения.

Контроллер заряда TriStar MPPT от Morningstar

Если нет длинных проводов и используются солнечные модули с номинальным напряжением, ШИМ-контроллер часто является лучшим выбором. То же самое верно и для мест, где также может быть много постоянного и надежного солнечного света — в пустынях или тропиках.В этих местах контроллеры PWM являются правильным инструментом для работы, поскольку некоторая потеря солнечной энергии не является критичной. Любое преимущество использования контроллера MPPT может быть минимальным, поскольку напряжение массива ниже в теплых условиях. Еще одно соображение — размер системы. Контроллеры PWM часто используются в небольших, чувствительных к стоимости системах, где дополнительные затраты на MPPT не окупаются.

В местах с переменным солнечным светом, колебаниями температуры и затенения, в северных или южных широтах со снегопадом зимой MPPT намного более желателен, поскольку он может максимизировать производительность в сложных условиях.Все сводится к правильному инструменту для работы.

На что обратить внимание в контроллере заряда

Важно правильно выбрать контроллер заряда с точки зрения размера и характеристик. Для удаленных систем очень важны надежность и производительность. Более дешевые солнечные контроллеры часто не самые надежные и могут не соответствовать жизненно важным требованиям к зарядке. Низкая производительность или надежность могут в конечном итоге привести к тому, что стоимость контроллера солнечной батареи во много раз превысит стоимость замены батарейного блока, посещения объекта и потери рабочего времени.

Контроллеры заряда солнечных батарей должны быть спроектированы так, чтобы выдерживать удары, поскольку они справляются с большим количеством тепла и должны управлять им должным образом. Преимущество небольших контроллеров заряда в том, что они безвентиляторные — они избавляются от тепла за счет простого пассивного охлаждения. Исключая вентилятор, они получают три преимущества:

  1. Более высокая надежность — вентиляторы имеют движущиеся части, обычно это единственный компонент с движущимися частями на контроллере заряда. Устраните вентилятор, и вы устраните одну из наиболее частых точек отказа.
  2. Более длительный срок службы — вентиляторы втягивают грязь, пыль и даже насекомых, которые могут забить внутренние части контроллера заряда и сократить срок его службы.
  3. Повышенная эффективность — Вентиляторы требуют электричества для работы, и это электричество поступает от солнечной энергии, протекающей от панелей. Вентиляторы — это «паразитная нагрузка» в системе, отводящая и потребляющая мощность, которую можно было бы использовать в другом месте.

В некоторых более крупных контроллерах (включая все контроллеры Morningstar) также используется пассивное охлаждение без вентиляторов, включая усовершенствованную термомеханическую конструкцию и программное обеспечение.Они предпочтительны в удаленных критически важных установках, где обслуживание нечасто, а замена затруднительна.

Контроллеры заряда меньшего размера часто имеют только предустановленные настройки заряда. Если эти предустановки не обеспечивают достаточного удовлетворения требований к зарядке аккумулятора, можно выбрать контроллер с дополнительными параметрами настроек. Пользовательские настройки могут быть простыми корректировками заданных значений напряжения, конкретных приложений или условий. Например, система, которая не имеет большого количества циклов, может быть настроена с уменьшенным суточным временем поглощения, которое представляет собой количество времени до того, как батарея перейдет в плавучее состояние.

Контроллеры

Select Morningstar также имеют индивидуальные параметры настройки для ежедневного управления включением / выключением освещения. Этот тип управления автоматически регулирует включение / выключение освещения независимо от времени года, поэтому свет будет включаться, когда темнеет вечером, и / или утром, прежде чем станет светло.

Каким бы ни было ваше приложение, местоположение или бюджет, наиболее важным шагом в управлении инвестициями в солнечную батарею + является время и забота о выборе подходящего контроллера заряда.За последнюю четверть века компания Morningstar продала более 4 миллионов контроллеров заряда в 100 странах, и пока ни один клиент не сказал нам, что хотел бы сэкономить на этом критически важном компоненте системы.


Дуглас Граббс (Douglas Grubbs) — инженер по приложениям в Morningstar Corporation, который предоставляет приложения для продуктов и техническую поддержку продаж, а также обеспечивает соответствие техническим и электрическим нормам. Он имеет более чем 11-летний опыт работы в фотоэлектрической индустрии. До прихода в Morningstar Дуглас разрабатывал сетевые солнечные фотоэлектрические системы для интеграторов на северо-востоке, а также отвечал за исследования и разработки солнечных фотоэлектрических систем в муниципальном колледже округа Бакс, преподавая курсы начального уровня.Его прошлый опыт включает почти десять лет работы в Федеральной комиссии по связи (FCC) в качестве инженера-электронщика. Дуглас получил степень бакалавра естественных наук в Университете Мэриленда и ранее был сертифицированным специалистом по установке солнечных фотоэлектрических систем, сертифицированным NABCEP.


Заявление об отказе от ответственности: Мы не можем предоставить консультации по конкретным потребностям вашего проекта. Свяжитесь с производителями контроллеров заряда для получения дополнительной информации или помогите друг другу в разделе комментариев ниже.

Панели солнечных батарей / контроллеры заряда солнечных батарей

Фильтровать по Все панели солнечных батарей / контроллеры заряда от солнечных батарей12-вольтная батарея12-вольтное зарядное устройство12-вольтные инверторы постоянного тока переменного тока12-вольтная цифровая зарядка от солнечной энергии12-вольтный источник питания12-вольтный цифровой контроллер заряда от солнечных батарей12-вольтный цифровой контроллер заряда солнечной энергии12-вольтный цифровой контроллер заряда 12-вольтный блок питания постоянного тока 12-вольтный контроллер заряда12-вольтный цифровой солнечный 24-вольтная батарея, 24-вольтная цифровая солнечная зарядка, 24-вольтная цифровая солнечная зарядка, 24-вольтная цифровая солнечная зарядка, блок питания 24 вольт, 24-вольтный контроллер заряда, 24-вольтная цифровая солнечная батарея, зарядная батарея, 25 ампер, 12/24 вольт, цифровая солнечная батарея, 25 ампер, зарядка, 30 ампер, контроллер заряда, 40 ампер, 48 вольт, батарея 50- Amp Solar Charge60A MPPT Solar Regulator60A MPPT Solar Regulator Charge Controller60AmpAuto Transfer SwitchAutomatic Transfer Switchbattery CablesBattery CablesB Battery ChargeBattery stop and charge voltage HVD set upCharge and low Voltage LCD set upDC ChargerDC power supplyDC to AC InverterDC to AC Power InverterDCAC Inverter Hea terDCAC Мощность InverterDeep Цикл BatteryDeep цикла морской batteryDigital Мощность ChargeDigital SolarDisplay способность батареи температуры SOCGas GeneratorGrid Наконечник InverterHome Inverterhome panelHome UPSIntellectualized compensationInverterInverter BackupInverter ChargerInvertersInverters BatteriesLoads и возвращение setupsLow напряжения protectionMicrowave Мощность InverterModified Синус WaveModified SinewaveOvercharge protectionOverload protectionPower ChargePower заряда ControllerPower ConverterPower InverterPure синусоидальной волны inverterRecord и рассчитать заряженный AH и отобразите его на ЖК-экране Защита от обратного разряда Защита от обратной полярностиЗарядное устройство Royal PowerRVЗащита от короткого замыканияСинусоидальный переключатель передачи солнечных панелейКонтроллер заряда солнечной энергииЗащита от грозыТрансферный переключательПереключатель питания ТВ Инвертор напряжения Напряжение Инвертор мощности водяных насосов и инвертор мощности воздушных компрессоров

Сортировать по РекомендуемыеЛучшие продажиАлфавитный, A-ZАлфавитный, Z-APЦена, от низкой к высокой Цена, от высокой к низкой Дата, от новых к старымДата, от старых к новым

Руководство покупателя — нужен ли мне контроллер заряда солнечной энергии с ШИМ или MPPT?

Зачем нужен контроллер солнечного заряда?

Контроллер заряда солнечной батареи (часто называемый регулятором) похож на обычное зарядное устройство, т.е.е. он регулирует ток, протекающий от солнечной панели в батарею, чтобы избежать перезарядки батарей. (Если вам не нужно понимать причины, прокрутите до конца простую блок-схему). Как и в случае с обычным качественным зарядным устройством для аккумуляторов, предусмотрены различные типы аккумуляторов, можно выбрать напряжение поглощения, напряжение холостого хода, а иногда также можно выбрать периоды времени и / или конечный ток. Они особенно подходят для литий-железо-фосфатных батарей, так как после полной зарядки контроллер остается на установленном плавающем или удерживающем напряжении около 13.6 В (3,4 В на элемент) до конца дня.

Наиболее распространенный профиль заряда — это та же основная последовательность, что и на качественном сетевом зарядном устройстве, то есть объемный режим> режим абсорбции> плавающий режим. Вход в режим оптовой заправки происходит по адресу:

  • восход утром
  • , если напряжение батареи падает ниже определенного напряжения в течение более установленного периода времени, например 5 секунд (повторный вход)

Этот повторный вход в объемный режим хорошо работает со свинцово-кислотными аккумуляторами, поскольку падение и падение напряжения хуже, чем для литиевых аккумуляторов, которые поддерживают более высокое и стабильное напряжение на протяжении большей части цикла разряда.

Литиевые батареи

Литиевые батареи

(LiFePO4) не получают выгоды от повторного перехода в режим большой емкости в течение дня, так как внутреннее сопротивление литиевых батарей увеличивается при высоком (и низком) состоянии заряда, как показано оранжевыми вертикальными линиями на диаграмме ниже и необходимо только время от времени балансировать ячейки, что может быть сделано только вокруг напряжения поглощения. Связанная с этим причина состоит в том, чтобы избежать быстрого и большого изменения напряжения, которое будет происходить в этих регионах при включении и выключении больших нагрузок.

Литиевые батареи

не имеют определенного «напряжения холостого хода», и поэтому «напряжение холостого хода» контроллера должно быть установлено равным или чуть ниже «напряжения колена заряда» (как указано в таблице ниже) заряда LiFePO4. профиль, т.е. 3,4 В на элемент или 13,6 В для аккумулятора 12 В. Контроллер должен удерживать это напряжение в течение оставшейся части дня после полной зарядки аккумулятора.

Разница между контроллерами заряда солнечных батарей PWM и MPPT

Суть различия:

  • С ШИМ-контроллером ток выводится из панели чуть выше напряжения батареи, тогда как
  • С ]]> Контроллер заряда солнечной батареи MPPT ток выводится из панели на панели «максимальное напряжение питания» (подумайте о контроллере MPPT как о «интеллектуальном преобразователе постоянного тока в постоянный»)

Часто можно встретить такие лозунги, как «вы получите 20% или более энергии, получаемой от контроллера MPPT».Эта дополнительная плата на самом деле значительно различается, и ниже приводится сравнение, предполагая, что панель находится на полном солнце, а контроллер находится в режиме объемной зарядки. Игнорирование падений напряжения и использование простой панели и простой математики в качестве примера:

Максимальный ток питания панели (Имп.) = 5,0 А

Максимальное напряжение питания панели (Vmp) = 18 В

Напряжение аккумулятора = 13 В (напряжение аккумулятора может варьироваться от 10,8 В до 14,4 В в режиме абсорбционной зарядки).При 13 В усилитель панели будет немного выше, чем максимальный усилитель мощности, скажем, 5,2 А

.

С ШИМ-контроллером потребляемая мощность панели составляет 5,2 А * 13 В = 67,6 Вт. Это количество энергии будет потребляться независимо от температуры панели, при условии, что напряжение панели остается выше напряжения батареи.

С контроллером MPPT мощность панели составляет 5,0 А * 18 В = 90 Вт, т.е. на 25% больше. Однако это слишком оптимистично, поскольку напряжение падает с ростом температуры; Таким образом, если предположить, что температура панели повышается, скажем, на 30 ° C выше температуры стандартных условий испытаний (STC), составляющей 25 ° C, и напряжение падает на 4% на каждые 10 ° C, т.е.е. всего 12%, тогда мощность, потребляемая MPPT, будет 5 А * 15,84 В = 79,2 Вт, то есть на 17,2% больше мощности, чем у ШИМ-контроллера.

Таким образом, наблюдается увеличение сбора энергии с помощью контроллеров MPPT, но процентное увеличение сбора значительно варьируется в течение дня.

Различия в работе ШИМ и MPPT:

ШИМ:

Контроллер ШИМ (широтно-импульсной модуляции) можно рассматривать как (электронный) переключатель между солнечными панелями и батареей:

  • Переключатель находится в положении ВКЛ, когда режим зарядки находится в режиме объемной зарядки
  • Переключатель «щелкает» ВКЛ и ВЫКЛ по мере необходимости (широтно-импульсная модуляция) для удержания напряжения батареи на уровне напряжения поглощения
  • Выключатель находится в положении ВЫКЛ в конце поглощения, в то время как напряжение батареи падает до напряжения плавающего режима
  • Переключатель снова включается и выключается по мере необходимости (широтно-импульсная модуляция), чтобы удерживать напряжение батареи на уровне плавающего напряжения

Обратите внимание, что когда переключатель находится в положении ВЫКЛ, напряжение панели будет равным напряжению холостого хода (Voc), а когда переключатель включен, напряжение панели будет равно напряжению батареи + напряжение между панелью и контроллером будет падать.

Лучшее соответствие панели для ШИМ-контроллера:

Лучшая панель для ШИМ-контроллера — это панель с напряжением, которое чуть выше, чем требуется для зарядки аккумулятора, и с учетом температуры, как правило, панель с Vmp (максимальное напряжение питания) около 18 В для зарядки Аккумулятор 12 В. Их часто называют панелями на 12 В, хотя их напряжение составляет около 18 В.

MPPT:

Контроллер MPPT можно рассматривать как «интеллектуальный преобразователь постоянного тока в постоянный», т.е.е. он понижает напряжение панели (следовательно, можно использовать «домашние панели») до напряжения, необходимого для зарядки аккумулятора. Ток увеличивается в той же пропорции, что и падение напряжения (без учета потерь на нагрев в электронике), как в обычном понижающем преобразователе постоянного тока в постоянный.

«Умный» элемент преобразователя постоянного тока в постоянный — это мониторинг точки максимальной мощности панели, которая будет меняться в течение дня в зависимости от интенсивности и угла наклона солнца, температуры панели, затенения и состояния панели (ей).Затем «умники» регулируют входное напряжение преобразователя постоянного тока в постоянный — на «инженерном языке» он обеспечивает согласованную нагрузку на панель.

Лучшая панель для контроллера MPPT:

Для согласования панели с контроллером MPPT рекомендуется проверить следующее:

  1. Напряжение холостого хода панели (Voc) должно быть ниже допустимого напряжения.
  2. VOC должен быть выше «пускового напряжения», чтобы контроллер «включился».
  3. Максимальный ток короткого замыкания панели (Isc) должен находиться в пределах указанного диапазона
  4. Максимальная мощность массива — некоторые контроллеры допускают «завышение размера», например.g Redarc Manager 30 может иметь подключенную мощность до 520 Вт

Выбор подходящего солнечного контроллера / регулятора

ШИМ — хороший недорогой вариант:

• для небольших систем

• где эффективность системы не критична, например, капельная зарядка.

• для солнечных панелей с максимальным напряжением питания (Vmp) до 18 В для зарядки аккумулятора 12 В (36 В для аккумулятора 24 В и т. Д.).

Контроллер MPPT лучший:

• Для более крупных систем, где целесообразно использование дополнительных 20% * или более энергии

• Когда напряжение солнечной батареи существенно выше, чем напряжение батареи e.грамм. с помощью домашних панелей, для зарядки аккумуляторов 12В

* Контроллер MPPT даст более высокую отдачу по сравнению с контроллером PWM при увеличении напряжения панели. Т.е. панель eArche мощностью 160 Вт, использующая 36 обычных монокристаллических ячеек с максимальной мощностью 8,4 А, будет обеспечивать около 8,6 А при 12 В; в то время как панель 180 Вт, имеющая еще 4 ячейки, будет обеспечивать такую ​​же силу тока, но 4 дополнительных ячейки увеличивают напряжение панели на 2 В. Контроллер PWM не будет собирать дополнительную энергию, но контроллер MPPT будет собирать дополнительные 11.1% (4/36) от панели 180 Вт.

По тому же принципу для всех панелей, использующих элементы SunPower с более чем 32 ячейками, требуется контроллер заряда MPPT, в противном случае контроллер PWM будет собирать ту же энергию от панелей с 36, 40, 44 ячейками, что и с панели с 32 ячейками.

Характеристики и опции солнечного контроллера заряда

Контроллеры

Victron SmartSolar имеют встроенный Bluetooth для удаленного мониторинга MPPT путем сопряжения его со смартфоном или другим устройством через приложение Victron.

Контроллеры Boost MPPT

Контроллеры заряда

Genasun «Boost» MPPT позволяют заряжать аккумуляторы, которые имеют более высокое напряжение, чем панель.

Комбинированное зарядное устройство MPPT и DC-DC

Функция MPPT является естественным дополнением к функции зарядного устройства DC-DC, и есть несколько качественных брендов, которые предоставляют ее в стадии разработки.
Один блок можно использовать отдельно, поскольку он автоматически переключается между зарядкой генератора и зарядкой от солнечной энергии.Для более крупных систем мы предпочитаем использовать отдельный контроллер MPPT для фиксированных панелей на крыше и использовать комбинированный контроллер MPPT / DC-DC с переносными панелями. В этом случае разъем Андерсона размещается на внешней стороне автофургона, который затем подключается к солнечному входу блока MPPT / DC-DC.

Обратите внимание, что емкость аккумулятора должна быть достаточной, чтобы суммарный зарядный ток от одновременной зарядки от генератора переменного тока и солнечных панелей на крыше не превышал рекомендованный производителем максимальный зарядный ток.

Более дешевые варианты

Дешевые контроллеры могут быть помечены как MPPT, но тестирование показало, что некоторые из них на самом деле являются контроллерами PWM.
Дешевые контроллеры могут не иметь защиты аккумулятора от перенапряжения, что может привести к перезарядке аккумулятора и потенциальному повреждению аккумулятора, поэтому покупатель должен быть осторожен.

Несколько солнечных зарядных устройств

При правильном подключении можно добавить несколько солнечных зарядных устройств (любая комбинация типа и мощности) для зарядки аккумулятора.Правильная проводка означает, что каждое солнечное зарядное устройство в идеале подключается отдельно и непосредственно к клеммам аккумулятора. Этот идеальный случай означает, что каждый контроллер «видит» напряжение батареи и на него не влияет ток, исходящий от других контроллеров заряда. Контроллеры, очевидно, не будут иметь идентичных зарядных характеристик и могут иметь разные настройки, и они будут заряжаться в соответствии со своими запрограммированными характеристиками. Эта ситуация ничем не отличается от зарядки аккумулятора от сети / генератора одновременно с зарядкой от солнечной батареи.В современных контроллерах ток не будет течь обратно от батареи к контроллеру (за исключением очень небольшого тока покоя).

Простая блок-схема

Мне нужен контроллер солнечного заряда

Vmp солнечной панели больше:
— 19 В для батареи 12 В
— 34 В для батареи 24 В
— 49 В для батареи 36 В
— 64 В для батареи 48 В

Vmp солнечной панели находится в пределах:
— 17-19 В для батареи 12 В
— 30-34 В для батареи 24 В
— 43-49 В для батареи 36 В
— 56-64 В для батареи 48 В

Vmp солнечной панели меньше:
— 13 В для батареи 12 В
— 26 В для батареи 24 В
— 41 В для батареи 36 В
— 43 В для батареи 48 В

Можно ли использовать регулятор напряжения на 12 В для зарядки аккумуляторной системы на 12 В с использованием солнечных панелей

Можно ли использовать регулятор напряжения на 12 В для зарядки системы аккумуляторных батарей на 12 В с использованием солнечных панелей — Электротехника
Сеть обмена стеков

Сеть Stack Exchange состоит из 178 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

Посетить Stack Exchange
  1. 0
  2. +0
  3. Авторизоваться Подписаться

Electrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.

Зарегистрируйтесь, чтобы присоединиться к этому сообществу

Кто угодно может задать вопрос

Кто угодно может ответить

Лучшие ответы голосуются и поднимаются наверх

Спросил

Просмотрено 258 раз

\ $ \ begingroup \ $

У меня есть комплект батарей 3 х 18650 с bms.Я хотел бы, чтобы это было заряжено с помощью 12-вольтовой солнечной панели, которая выдает от 15 до 20 вольт. BMS имеет максимальное номинальное напряжение 12,8 В.

Мне было интересно, можно ли использовать регулятор напряжения, например 7812, для регулирования выхода солнечной панели до 12 вольт, чтобы он мог заряжать батареи?

Я не хочу использовать контроллер солнечного заряда, если этого можно избежать.

Создан 20 ноя.

Уроборос

21311 серебряный знак66 бронзовых знаков

\ $ \ endgroup \ $ 2 \ $ \ begingroup \ $

№Литиевые батареи необходимо очень аккуратно заряжать с помощью зарядного устройства для литиевых батарей. 7812 — это просто регулятор напряжения, а не зарядное устройство. BMS также не является зарядным устройством.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *