Механика для чайников – Основы механики для чайников. Введение
Краткая теория по теоретической механике
Выберите предметМеханикаТеоретическая механикаСопротивление материаловТеория машин и механизмовДетали машинВысшая математикаФизикаНачертательная геометрияИнформатикаАвиационная и ракетно-космическая техникаАвтоматизация технологических процессовАвтоматика и управлениеАрхитектура и строительствоБазы данныхВысшая математикаГеометрияГидравликаДетали машинИздательское делоИнформатикаИнформационная безопасностьИнформационные технологииМатериаловедениеМашиностроениеМеталлургияМетрологияМеханикаМорская техникаНаноинженерияНачертательная геометрияПолиграфияПриборостроение и оптотехникаПрограммированиеПроцессы и аппаратыРабота на компьютереРадиофизикаСопротивление материаловТелевидениеТеоретическая механикаТеория вероятностейТеория машин и механизмовТеплоэнергетика и теплотехникаТехнологические машины и оборудованиеТехнология продовольственных продуктов и товаровТранспортные средстваФизикаХолодильная техникаЧертежиЧерчениеЭлектроника, электротехника, радиотехникаЭнергетическое машиностроениеЯдерная энергетика и теплофизикаЯдерные физика и технологииАнализ хозяйственной деятельностиАнтикризисное управлениеБанковское делоБизнес-планированиеБухгалтерский учет и аудитВнешнеэкономическая деятельностьГостиничное делоГосударственное и муниципальное управлениеДеловой этикетДеньгиИнвестицииИнновационный менеджментКредитЛогистикаМаркетингМеждународные рынкиМенеджментМенеджмент организацииМикро-, макроэкономикаНалогиОрганизационное развитиеПроизводственный маркетинг и менеджментПромышленный маркетинг и менеджментСервисСтандартизацияСтатистикаСтратегический менеджментСтрахованиеТаможенное делоТеория управленияТовароведениеТорговое делоТуризмУправление персоналомФинансовый менеджментФинансыЦенообразование и оценка бизнесаЭконометрикаЭкономикаЭкономика предприятияЭкономика трудаЭкономическая теорияЭкономический анализАрхеологияАстрономияБезопасность жизнедеятельностиБиологияБиотехнологияВетеринарияВоспроизводство и переработка лесных ресурсовГеографияГеодезияГеологияГидрометеорологияЕстествознаниеКартография и геоинформатикаМедицинаНефтегазовое делоПочвоведениеПриродообустройство и водопользованиеСельское и рыбное хозяйствоХимияХирургияЭкологияБиблиотечно-информационная деятельностьДизайнДокументоведение и архивоведениеЖурналистикаИскусствоИсторияКонфликтологияКриминалистикаКультурологияЛитератураЛогикаМеждународные отношенияМузыкаПедагогикаПолитологияПраво и юриспруденцияПсихологияРежиссураРеклама и PRРелигияСвязи с общественностьюСоциальная работаСоциологияСтрановедениеТеатроведениеФизическая культураФилософияЭтикаЯзыки (переводы)Языкознание и филология
Выберите вид работы…Решение задачКонтрольная работаКурсовая работаПомощь на экзаменеОтветы на вопросыОтчёт по практикеЧертёжДипломная работаРефератМонографияБизнес-планТворческая работаЭссеСочиненияРецензияДокладНабор текстаМагистерская диссертацияКандидатская диссертацияСтатьяЛабораторная работаПереводПрезентацииПовышение уникальности текстаДругое
isopromat.ru
Теоретическая механика
Теоретическая механика – наука об общих законах механических взаимодействий между материальными телами, а также об общих законах движения тел по отношению друг к другу.
Механическое взаимодействие между материальными телами является простейшим и одновременно самым распространенным видом взаимодействия между физическими объектами. Механическое движение, будучи самым простым видом движения, является фундаментальным свойством материи.
Подборка видеоуроков по теоретической механике:
Основные разделы
Теоретическая механика, преподаваемая в техническом вузе, содержит три раздела: кинематику, статику и динамику.
- Кинематика – часть механики, в которой изучаются зависимости между величинами, характеризующими состояние движения систем, но не рассматриваются причины, вызывающие изменение состояния движения.
- Статика – это учение о равновесии совокупности тел некоторой системы отсчета.
- Динамика – часть механики, в которой рассматривается влияние сил на состояние движения систем материальных объектов.
Объекты и цель изучения
Целью изучения дисциплины «Теоретическая механика» является формирование необходимой базы знаний для изучения других технических дисциплин по профилю будущей профессиональной деятельности, таких как сопротивление материалов и теория механизмов и машин.
В разделах теоретической механики изучаются общие законы движения и равновесия материальных систем; исследуются простейшие логические модели, на которые могут быть разложены объекты техники и природы, дается научный метод познания законов механического движения систем.
Задачи курса
Задачами курса теоретической механики являются:
- выработка практических навыков решения задач механики путем изучения методов и алгоритмов построения математических моделей движения или состояния рассматриваемых механических систем, а также методов исследования этих математических моделей;
- воспитание естественнонаучного мировоззрения на базе изучения основных законов природы и механики.
Учебные материалы по теормеху
На нашем сайте Вы можете просмотреть и использовать для изучения курса теоретической механики следующие учебные материалы:
Другие разделы механики:
isopromat.ru
Квантовая механика на пальцах. Часть I
Современную физику принято подразделять на две большие ветви — классическую и квантовую. Первая исторически восходит к Галилею и Ньютону, вторая — к Максу Планку и Альберту Эйнштейну. Квантовая идеология первоначально обрела себе место в новой теории электромагнитного излучения, однако без большой задержки распространилась на описание свойств материи на уровне атомов и молекул. В этом качестве она стала основой новой науки, названной квантовой механикой. Попробуем разобраться в ее сути с нуля, без каких-либо предварительных знаний.
Квантовая механика давно вышла за свои первоначальные рамки. Уже к концу первой трети двадцатого века она стала незаменимым инструментом теоретического изучения электрических и магнитных свойств различных материалов. Она нужна для описания атомных ядер и частиц, из которых те состоят, — протонов и нейтронов. Квантовая механика также лежит в основе наших знаний о самых фундаментальных свойствах материи, которая заполняет Вселенную. Без нее невозможно выяснить, откуда взялись химические элементы, почему загораются, светят и умирают звезды, как рождаются космические лучи и что происходит при столкновениях элементарных частиц. В общем, это наука широкого профиля.
Но это не всё. Квантовая механика показала, что в микромире действуют законы, которые сильно противоречат нашему житейскому опыту. Их нелегко осознать, к ним непросто привыкнуть, они удивительны и парадоксальны — и все же справедливы!
НАСЛЕДИЕ НЬЮТОНА
Слово «механика» имеет много смыслов, однако с точки зрения физики это наука о движении, о перемещении в пространстве. Теннисный мяч летит над сеткой, поезд мчится по рельсам, ветры переносят воздушные потоки, Земля вращается вокруг Солнца, а оно в свою очередь каждые двести миллионов лет совершает полный оборот вокруг центра нашей Галактики. Эти движения совершаются под действием различных сил, иногда очень сложных. Однако все они описываются одними и теми же законами, которые в XVII веке открыл великий английский физик и математик Исаак Ньютон. Позднее их не раз переписывали с помощью все новых математических формул, но суть от этого не менялась. И двести с лишним лет физики были уверены, что великое творение Ньютона не знает исключений.
Возьмем простейшее из всех мыслимых тел — крошечный шарик. Если заложить в уравнения механики сведения о том, какова его масса, какие силы на него действуют, где он находится в начальный момент и какую при этом имеет скорость, можно будет вычислить положение (как говорят физики, координаты) и скорость шарика во все последующие моменты. Чтобы описать движение тела сложной формы, надо знать побольше, и на практике такие расчеты могут оказаться очень трудоемкими не только для человека, но и для суперкомпьютера, но это уже дело техники.
Ньютоновская механика имеет дело только с теми движениями, которые задаются координатами тел и их скоростями. При этом она принимает без доказательств, что все эти величины можно одновременно измерить с любой точностью — во всяком случае, в принципе. Именно это допущение позволяет считать, что тело в любой момент находится в определенном месте в пространстве и при этом имеет определенную скорость. Если от него отказаться, уравнения ньютоновской механики не только потеряют силу, но и станут бессмысленными. Это легко понять — ведь координаты и скорости фигурируют в них на равных правах и в сочетании друг с другом.
МЕРА ЗА МЕРУ
Теперь подумаем, как на практике выполнить такие измерения. Предположим, мы следим за самолетом с помощью радиолокатора. Импульсы радиоволн отражаются от корпуса машины, и прибор выдает на дисплее ее координаты и скорость. При отражении каждый импульс передает самолету часть своей энергии и тем самым чуть-чуть меняет его скорость. Однако кинетическая энергия самолета настолько превышает энергию облучения, что эти изменения никак себя не оказывают и могут считаться нулевыми. Это и дает основания утверждать, что наш прибор одновременно отслеживает и путь, и скорость самолета. То же самое происходит и при любых измерениях движения крупных (как говорят физики, макроскопических тел) посредством радиоволн, света или чего-то еще. Даже просто «на глазок» прикинуть расстояние до соседней машины на шоссе можно только потому, что она отражает свет — иначе мы бы ее просто не увидели. Это же относится и к оценке ее скорости.
Но вот можно ли таким же путем одновременно измерить координаты и скорость микрочастицы — скажем, электрона? Электроны несут электрические заряды и потому рассеивают электромагнитные волны, в том числе и свет. Следовательно, электрон в принципе можно отловить, поймав отраженный от него электромагнитный импульс. Однако его положение в пространстве нам удастся определить только с погрешностью, величина которой примерно равна длине волны излучения, которое мы использовали в нашем локаторе. Для повышения точности эту длину надо уменьшать, переходя от видимого света к ультрафиолету, потом к рентгеновским лучам, потом к гамма-излучению. Чтобы измерить скорость электрона, такую локацию надо выполнить как минимум дважды, причем через короткий промежуток времени.
Теперь мы подошли к главному — к моменту истины. Как уже говорилось, электромагнитный импульс передает часть своей энергии объекту, на котором он рассеивается. После отражения импульса кинетическая энергия электрона изменится, а потому изменится и его скорость. Электрон может ускориться, затормозиться или повернуть, но в любом случае его движение не будет прежним. Этого не произойдет лишь в том случае, если мы все время будем обстреливать электрон только такими импульсами, чья энергия практически равна нулю по сравнению с его собственной. Как только что говорилось, для достижения все большей точности в измерении координат надо раз за разом уменьшать длину волны, на которой работает наш воображаемый локатор (то есть увеличивать частоты). Можно ли это сделать, сохраняя энергию импульсов на сколь угодно малом уровне?
Если бы кому-то пришло в голову задать такой вопрос сразу после открытия электрона в 1897 году, ответ мог бы быть только положительным. Тогда считалось, что энергия электромагнитной волны может быть как угодно малой при любой длины волны. Но уже через три года было доказано, что Природа такой свободы не допускает.
НАКОНЕЦ-ТО КВАНТЫ!
Этим важнейшим открытием наука обязана немецкому физику-теоретику Максу Планку. В то время физиков очень интересовало тепловое излучение нагретых тел (скажем, утюга или раскаленной нити электрической лампочки). На этот счет было выполнено много экспериментов, однако их результаты никак не удавалось свести к одной формуле. В 1900 году Планк показал, что такую формулу можно получить, если предположить, что тепловое излучение испускается и поглощается отдельными пакетами, а вовсе не непрерывно. Энергия каждого пакета равна частоте излучения, умноженной на новую физическую константу, которую назвали постоянной Планка.
Новая теория радикально расходилась с тогдашними представлениями о природе электромагнитных волн (а тепловое излучение — это просто его разновидность). Все волновые процессы считались абсолютно непрерывными. По Планку же получалось, что это свойство относится разве что к уже родившимся волнам, которые распространяются в пространстве. Процессы испускания и поглощения волн, напротив, могут осуществляться только порционно (как говорят физики, дискретно). В общем, если электромагнитное излучение — это море, то черпать из него (или добавлять в него) воду можно только кружками определенной вместимости.
Следующий шаг через пять лет сделал Альберт Эйнштейн в своей теории фотоэффекта. Так называется процесс, в ходе которого свет выбивает электроны с поверхности различных веществ. Это явление в 1887 году открыл Генрих Герц — он же первооткрыватель электромагнитных волн. В начале двадцатого века было установлено, что энергия вылетающих электронов растет вместе с частотой падающего излучения. Чтобы объяснить этот результат, Эйнштейн допустил, что планковские энергетичсеские пакеты сохраняются и при распространении света. Световой поток оказался вовсе не непрерывным, он распадается на отдельные «зерна», которые Эйнштейн назвал световыми квантами (латинское слово «кванта» означает «количество»). Так в языке физики появился термин, который в будущем дал название новой механике.
Вернемся к мысленному эксперименту с измерением движения электрона. Как говорилось, мы можем уточнять его позицию, обстреливая электрон световыми импульсами все меньшей длины волны. Это означает, что для локации электрона придется использовать кванты все большей частоты, а следовательно, энергии. Встреча с каждым таким квантом будет все сильнее менять его скорость. А для сколько-нибудь точного измерения скорости придется использовать свет очень малых частот, состоящий из квантов почти нулевой энергии. Уменьшение частоты означает рост длины волны, так что позицию электрона мы будем измерять со все большей погрешностью.
К чему же мы пришли? Мы предположили, что электрону в любой момент можно приписать и определенное положение в пространстве, и определенную скорость. Однако наш мысленный эксперимент показал, что квантовая структура света не позволяет одновременно измерить и то, и другое. Это принципиальный запрет, он не зависит от устройства и качества измерительных приборов. Чем точнее мы определяем положение электрона, тем сильнее меняем его скорость, в то время как точное измерение скорости делает невозможным измерение позиции. Однако физика не имеет дела с воображаемыми вещами, это опытная наука. Поэтому наше первоначальное допущение о наличии у электрона пространственных координат и скорости не имеет физического смысла и должно быть отброшено. Выражаясь иначе электрон не может одновременно иметь и определенную скорость, и определенное положение в пространстве. Выходит, что для описания движения электрона ньютоновская теория не годится. Здесь нужна совсем другая механика, учитывающая квантовую природу света.
Эти рассуждения могли бы придти в голову какому-нибудь физику сразу после появления эйнштейновской теории фотоэффекта. До них мог додуматься сам Эйнштейн, который очень любил мысленные эксперименты и замечательно умел ими пользоваться (именно с их помощью он создал свою теорию относительности). Однако этого не случилось, и рождения новой механики пришлось ждать еще двадцать лет.
Вторая часть выложена здесь.
scientificrussia.ru
«Физика для чайников» СГУ ТВ. Серия фильмов 1-5 «Механика»
«Физика для чайников» СГУ ТВ. Серия фильмов 1-5 «Механика»
- Подробности
- Категория: «Физика для чайников» от СГУ ТВ
Не так уж твёрд гранит науки. Физика для начинающих. Борис Бояршинов.
Первый образовательный канал. © Телекомпания СГУ ТВ.
Физика — наука о природе
Азы стихосложения: кинематика
Гласно об ускорении
Наложение движений: принцип независимости движений
Куда кривая вывезет: криволинейное движение
forkettle.ru
Квантовая физика для чайников. Квантовая механика
Добро пожаловать на блог! Я очень рада Вам!
Наверняка Вы много раз слышали о необъяснимых тайнах квантовой физики и квантовой механики. Её законы завораживают мистикой, и даже сами физики признаются, что до конца не понимают их. С одной стороны, любопытно понять эти законы, но с другой стороны, нет времени читать многотомные и сложные книги по физике. Я очень понимаю Вас, потому что тоже люблю познание и поиск истины, но времени на все книги катастрофически не хватает. Вы не одиноки, очень многие любознательные люди набирают в поисковой строке: «квантовая физика для чайников, квантовая механика для чайников, квантовая физика для начинающих, квантовая механика для начинающих, основы квантовой физики, основы квантовой механики, квантовая физика для детей, что такое квантовая механика». Именно для Вас эта публикация.
Вам станут понятны основные понятия и парадоксы квантовой физики. Из статьи Вы узнаете:
И еще: Вам интересно узнать о чисто прикладном, практическом применении квантовой физики? Тогда читайте статью Что такое квантовый компьютер и для чего он нужен? Просто о сложном.
СОДЕРЖАНИЕ СТАТЬИ:
Что такое квантовая физика и квантовая механика?
Квантовая механика — это часть квантовой физики.
Почему же так сложно понять эти науки? Ответ прост: квантовая физика и квантовая механика (часть квантовой физики) изучают законы микромира. И законы эти абсолютно отличаются от законов нашего макромира. Поэтому нам трудно представить то, что происходит с электронами и фотонами в микромире.
Пример отличия законов макро- и микромиров: в нашем макромире, если Вы положите шар в одну из 2-х коробок, то в одной из них будет пусто, а в другой — шар. Но в микромире (если вместо шара — атом), атом может находиться одновременно в двух коробках. Это многократно подтверждено экспериментально. Не правда ли, трудно это вместить в голове? Но с фактами не поспоришь.
Ещё один пример. Вы сфотографировали быстро мчащуюся красную спортивную машину и на фото увидели размытую горизонтальную полосу, как будто-машина в момент фото находилась с нескольких точках пространства. Несмотря на то, что Вы видите на фото, Вы всё равно уверены, что машина в ту секунду, когда Вы ёё фотографировали находилась в одном конкретном месте в пространстве. В микро же мире всё не так. Электрон, который вращается вокруг ядра атома, на самом деле не вращается, а находится одновременно во всех точках сферы вокруг ядра атома. Наподобие намотанного неплотно клубка пушистой шерсти. Это понятие в физике называется «электронным облаком» .
Небольшой экскурс в историю. Впервые о квантовом мире учёные задумались, когда в 1900 году немецкий физик Макс Планк попытался выяснить, почему при нагревании металлы меняют цвет. Именно он ввёл понятие кванта. До этого учёные думали, что свет распространяется непрерывно. Первым, кто серьёзно воспринял открытие Планка, был никому тогда неизвестный Альберт Энштейн. Он понял, что свет – это не только волна. Иногда он ведёт себя, как частица. Энштейн получил Нобелевскую премию за своё открытие, что свет излучается порциями, квантами. Квант света называется фотоном (фотон, Википедия) .
Для того, чтобы легче было понять законы квантовой физики и механики (Википедия), надо в некотором смысле абстрагироваться от привычных нам законов классической физики. И представить, что Вы занырнули, как Алиса, в кроличью нору, в Страну чудес.
Кстати, статью можно читать, как сказку, вместе с детьми. Они ещё не утратили наивную чистоту восприятия окружающего мира и часто могут понять физику, особенно квантовую, лучше взрослых.
А вот и мультик для детей и взрослых. Рассказывает о фундаментальном эксперименте квантовой механики с 2-мя щелями и наблюдателем. Длится всего 5 минут. Посмотрите его перед тем, как мы углубимся в основные вопросы и понятия квантовой физики.
Квантовая физика для чайников видео. В мультике обратите внимание на «глаз» наблюдателя. Он стал серьёзной загадкой для учёных-физиков.
Что такое интерференция?
В начале мультика было показано на примере жидкости, как ведут себя волны – на экране за пластиной со щелями появляются чередующиеся тёмные и светлые вертикальные полосы. А в случае, когда в пластину «стреляют» дискретными частицами (например, камушками), то они пролетают сквозь 2 щели и попадают на экран прямо напротив щелей. И «рисуют» на экране только 2 вертикальные полосы.
Интерференция света – это «волновое» поведение света, когда на экране отображается много чередующихся ярких и тёмных вертикальных полос. Еще эти вертикальные полосы называются интерференционной картиной.
В нашем макромире мы часто наблюдаем, что свет ведёт себя, как волна. Если поставить руку напротив свечи, то на стене будет не чёткая тень от руки, а с расплывающимися контурами.
Итак, не так уж всё и сложно! Нам сейчас вполне понятно, что свет имеет волновую природу и если 2 щели освещать светом, то на экране за ними мы увидим интерференционную картину. Теперь рассмотрим 2-й эксперимент. Это знаменитый эксперимент Штерна-Герлаха (который провели в 20-х годах прошлого века).
В установку, описанную в мультике, не светом светили, а «стреляли» электронами (как отдельными частицами). Тогда, в начале прошлого века, физики всего мира считали, что электроны – это элементарные частицы материи и должны иметь не волновую природу, а такую же, как камушки. Ведь электроны – это элементарные частицы материи, правильно? То есть, если ими «бросать» в 2 щели, как камушками, то на экране за прорезями мы должны увидеть 2 вертикальные полоски.
Но… Результат был ошеломляющий. Учёные увидели интерференционную картину – много вертикальных полосок. То есть электроны, как и свет тоже могут иметь волновую природу, могут интерферировать. А с другой стороны стало понятно, что свет не только волна, но немного и частица — фотон (из исторической справки в начале статьи мы узнали, что за это открытие Энштейн получил Нобелевскую премию).
Может помните, в школе нам рассказывали на физике про «корпускулярно-волновой дуализм»? Он означает, что когда речь идет об очень маленьких частицах (атомах, электронах) микромира, то они одновременно и волны, и частицы
Это сегодня мы с Вами такие умные и понимаем, что 2 выше описанных эксперимента – стрельба электронами и освещение щелей светом – суть одно и тоже. Потому что мы стреляем по прорезям квантовыми частицами. Сейчас мы знаем, что и свет, и электроны имеют квантовую природу, являются и волнами, и частицами одновременно. А в начале 20-го века результаты этого эксперимента были сенсацией.
Внимание! Теперь перейдём к более тонкому вопросу.
Мы светим на наши щели потоком фотонов (электронов) – и видим за щелями на экране интерференционную картину (вертикальные полоски). Это ясно. Но нам интересно увидеть, как пролетает каждый из электронов в прорези.
Предположительно, один электрон летит в левую прорезь, другой – в правую. Но тогда должны на экране появиться 2 вертикальные полоски прямо напротив прорезей. Почему же получается интерференционная картина? Может электроны как-то взаимодействуют между собой уже на экране после пролёта через щели. И в результате получается такая волновая картина. Как нам за этим проследить?
Будем бросать электроны не пучком, а по одному. Бросим, подождём, бросим следующий. Теперь, когда электрон летит один, он уже не сможет взаимодействовать на экране с другими электронами. Будем регистрировать на экране каждый электрон после броска. Один-два конечно не «нарисуют» нам понятной картины. Но когда по одному отправим в прорези их много, то заметим…о ужас – они опять «нарисовали» интерференционную волновую картину!
Начинаем медленно сходить с ума. Ведь мы ожидали, что будет 2 вертикальные полоски напротив щелей! Получается, что когда мы бросали фотоны по одному, каждый из них проходил, как бы через 2 щели одновременно и интерферировал сам с собой. Фантастика! Вернёмся к пояснению этого феномена в следующем разделе.
Что такое спин и суперпозиция?
Мы теперь знаем, что такое интерференция. Это волновое поведение микро частиц – фотонов, электронов, других микро частиц (давайте для простоты с этого момента называть их фотонами).
В результате эксперимента, когда мы бросали в 2 щели по 1 фотону, мы поняли, что он пролетает как будто через две щели одновременно. Иначе как объяснить интерференционную картину на экране?
Но как представить картину, что фотон пролетает сквозь две щели одновременно? Есть 2 варианта.
- 1-й вариант: фотон, как волна (как вода) «проплывает» сквозь 2 щели одновременно
- 2-й вариант: фотон, как частица, летит одновременно по 2-м траекториям (даже не по двум, а по всем сразу)
В принципе, эти утверждения равносильны. Мы пришли к «интегралу по траекториям». Это формулировка квантовой механики от Ричарда Фейнмана.
Кстати, именно Ричарду Фейнману принадлежит известное выражение, что уверенно можно утверждать, что квантовую механику не понимает никто
Но это его выражение работало в начале века. Но мы то теперь умные и знаем, что фотон может вести себя и как частица, и как волна. Что он может каким-то непонятным для нас способом пролетать одновременно через 2 щели. Поэтому нам легко будет понять следующее важное утверждение квантовой механики:
Строго говоря, квантовая механика говорит нам, что такое поведение фотона – правило, а не исключение. Любая квантовая частица находится, как правило, в нескольких состояниях или в нескольких точках пространства одновременно.
Объекты макромира могут находится только в одном определенном месте и в одном определенном состоянии. Но квантовая частица существует по своим законам. И ей и дела нет до того, что мы их не понимаем. На этом — точка.
Нам остаётся просто признать, как аксиому, что «суперпозиция» квантового объекта означает то, что он может находится на 2-х или более траекториях одновременно, в 2-х или более точках одновременно
То же относится и к другому параметру фотона – спину (его собственному угловому моменту). Спин — это вектор. Квантовый объект можно представить как микроскопический магнитик. Мы привыкли, что вектор магнита (спин) либо направлен вверх, либо вниз. Но электрон или фотон опять говорят нам: «Ребята, нам плевать, к чему Вы привыкли, мы можем быть в обоих состояниях спина сразу (вектор вверх, вектор вниз), точно так же, как мы можем находиться на 2-х траекториях одновременно или в 2-х точках одновременно!».
Что такое «измерение» или «коллапс волновой функции»?
Нам осталось немного — понять ещё, что такое «измерение» и что такое «коллапс волновой функции».
Волновая функция — это описание состояния квантового объекта (нашего фотона или электрона).
Предположим, у нас есть электрон, он летит себе в неопределённом состоянии, спин его направлен и вверх, и вниз одновременно. Нам надо измерить его состояние.
Измерим при помощи магнитного поля: электроны, у которых спин был направлен по направлению поля, отклонятся в одну сторону, а электроны, у которых спин направлен против поля — в другую. Ещё фотоны можно направлять в поляризационный фильтр. Если спин (поляризация) фотона +1 – он проходит через фильтр, а если -1, то нет.
Стоп! Вот тут у Вас неизбежно возникнет вопрос: до измерения ведь у электрона не было какого-то конкретного направления спина, так? Он ведь был во всех состояниях одновременно?
В этом-то и заключается фишка и сенсация квантовой механики. Пока Вы не измеряете состояние квантового объекта, он может вращаться в любую сторону (иметь любое направление вектора собственного углового момента – спина). Но в момент, когда Вы измерили его состояние, он как будто принимает решение, какой вектор спина ему принять.
Вот такой крутой этот квантовый объект – сам принимает решение о своём состоянии. И мы не можем заранее предсказать, какое решение он примет, когда влетит в магнитное поле, в котором мы его измеряем. Вероятность того, что он решит иметь вектор спина «вверх» или «вниз» – 50 на 50%. Но как только он решил – он находится в определённом состоянии с конкретным направлением спина. Причиной его решения является наше «измерение»!
Это и называется «коллапсом волновой функции». Волновая функция до измерения была неопределённой, т.е. вектор спина электрона находился одновременно во всех направлениях, после измерения электрон зафиксировал определённое направление вектора своего спина.
Внимание! Отличный для понимания пример-ассоциация из нашего макромира:
Раскрутите на столе монетку, как юлу. Пока монетка крутиться, у нёё нет конкретного значения — орёл или решка. Но как только Вы решите «измерить» это значение и прихлопните монету рукой, вот тут-то и получите конкретное состояние монеты – орёл или решка. А теперь представьте, что это монета принимает решение, какое значение Вам «показать» – орёл или решка. Примерно также ведёт себя и электрон.
А теперь вспомните эксперимент, показанный в конце мультика. Когда фотоны пропускали через щели, они вели себя, как волна и показывали на экране интерференционную картину. А когда учёные захотели зафиксировать (измерить) момент пролёта фотонов через щель и поставили за экраном «наблюдателя», фотоны стали вести себя, не как волны, а как частицы. И «нарисовали» на экране 2 вертикальные полосы. Т.е. в момент измерения или наблюдения квантовые объекты сами выбирают, в каком состоянии им быть.
Фантастика! Не правда ли?
Но это ещё не всё. Наконец-то мы добрались до самого интересного.
Но… мне кажется, что получится перегруз информации, поэтому 2 эти понятия мы рассмотрим в отдельных постах:
А сейчас, хотите, чтобы информация разложилась по полочкам? Посмотрите документальный фильм, подготовленный Канадским институтом теоретической физики. В нём за 20 минут очень кратко и в хронологическом порядке Вам поведают о всех открытиях квантовой физики, начиная с открытия Планка в 1900 году. А затем расскажут, какие практические разработки выполняются сейчас на базе знаний по квантовой физике: от точнейших атомных часов до суперскоростных вычислений квантового компьютера. Очень рекомендую посмотреть этот фильм.
До встречи!
Желаю всем вдохновения для всех задуманных планов и проектов!
Алёна Краева
P.S.1 Если Вам понравилась статья Квантовая физика для чайников, поделитесь ею.
P.S.2 Пишите Ваши вопросы и мысли в комментариях. Пишите, какие ещё вопросы по квантовой физике Вам интересны?
P.S.3 Подписывайтесь на блог — форма для подписки под статьёй.
alenakraeva.com
Квантовая механика — Всё для чайников
Квантовая механика
- Подробности
- Категория: Документальные учебные фильмы. Серия «Физика».
Документальные учебные фильмы. Серия «Физика».
Гипотеза де-Бройля. Волновые свойства вещества
Недостаточность теории Бора указывала на необходимость пересмотра основ квантовой теории и представлений о природе микрочастиц (электронов, про недостаточность теории Бора указывала на необходимость пересмотра основ квантовой теории и представлений о природе микрочастиц (электронов, протонов и т. п.). Возник вопрос о том, насколько исчерпывающим является представление электрона в виде малой механической частицы, характеризуемой определенными-координатами и определенной скоростью.
В результате углубления представлений о природе света выяснилось, что в оптических явлениях обнаруживается своеобразный дуализм. Наряду с такими свойствами света, которые самым непосредственным образом свидетельствуют о его волновой природе (интерференция, дифракция), имеются и другие свойства, столь же непосредственно обнаруживающие его корпускулярную природу (фотоэффект, явление Комптона).
В 1924 г. Луи де-Бройль выдвинул смелую гипотезу, что дуализм не является особенностью одних только оптических явлений, но имеет универсальное значение. «В оптике, — писал он, в течение столетия слишком пренебрегали корпускулярным способом рассмотрения по сравнению с волновым; не делалась ли в теории вещества обратная ошибка?». Допуская, что частицы вещества наряду с корпускулярными свойствами имеют также и волновые, де-Бройль перенес на случай частиц вещества те же правила перехода от одной картины к другой, какие справедливы в случае света. Фотон обладает энергиейонов и т. п.). Возник вопрос о том, насколько исчерпывающим является представление электрона в виде малой механической частицы, характеризуемой определенными-координатами и определенной скоростью.
и импульсом
По идее де-Бройля, движение электрона или какой-либо другой частицы связано с волновым процессом, длина волны которого равна
а частота
Гипотеза де-Бройля вскоре бы
forkettle.ru
«Физика для чайников» СГУ ТВ. Серия фильмов 1-5 «Механика»
«Физика для чайников» СГУ ТВ. Серия фильмов 1-5 «Механика»
- Подробности
- Категория: «Физика для чайников» от СГУ ТВ
Не так уж твёрд гранит науки. Физика для начинающих. Борис Бояршинов.
Первый образовательный канал. © Телекомпания СГУ ТВ.
Физика — наука о природе
Азы стихосложения: кинематика
Гласно об ускорении
Наложение движений: принцип независимости движений
Куда кривая вывезет: криволинейное движение
forkettle.ru