Перевод угловой скорости в линейную калькулятор: оборот в минуту [об/мин] в радиан в секунду [рад/с] • Конвертер угловой скорости и частоты вращения • Механика • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Содержание

оборот в минуту [об/мин] в радиан в секунду [рад/с] • Конвертер угловой скорости и частоты вращения • Механика • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

1 оборот в минуту [об/мин] = 0,10471975511966 радиан в секунду [рад/с]

Потолочный вентилятор, вращающийся со скоростью 250 оборотов в минуту

Общие сведения

Угловая скорость — это векторная величина, определяющая скорость вращения тела относительно оси вращения. Этот вектор направлен перпендикулярно плоскости вращения и определяется с помощью правила буравчика. Угловую скорость измеряют как отношение между углом, на который переместилось тело, то есть угловым смещением, и временем, на это потраченным. В системе СИ угловое ускорение измеряют в радианах в секунду.

Угловая скорость в спорте

Угловая скорость часто используется в спорте. Например, спортсмены уменьшают или увеличивают угловую скорость движения клюшки для гольфа, биты или ракетки, чтобы улучшить результаты. Угловая скорость связана с линейной скоростью так, что из всех точек на отрезке, вращающемся вокруг точки на этом отрезке, то есть вокруг центра вращения, самая отдаленная точка от этого центра движется с самой высокой линейной скоростью. Так, например, если клюшка для гольфа вращается, то конец этой клюшки, больше всего удаленный от центра вращения двигается с самой высокой линейной скоростью. В то же время все точки на этом отрезке движутся с одинаковой угловой скоростью. Поэтому удлиняя клюшку, биту, или ракетку, спортсмен также увеличивает линейную скорость, а соответственно скорость удара, передающуюся мячу, так что он может пролететь на большее расстояние. Укорачивая ракетку или клюшку, даже перехватив ее ниже, чем обычно, наоборот замедляют скорость удара.

При первобытнообщинном строе главными охотниками были мужчины

Спортсменам с более длинными руками и ногами удается добиться бо́льшей угловой скорости

У высоких людей с длинными конечностями есть преимущество в отношении линейной скорости. То есть, передвигая ноги с одинаковой угловой скоростью, они двигают ступни с более высокой линейной скоростью. То же происходит и с их руками. Такое преимущество может быть одной из причин того, что в первобытных обществах мужчины занимались охотой чаще, чем женщины. Вероятно, что из-за этого также в процессе эволюции выиграли более высокие люди. Длинные конечности помогали не только в беге, но и во время охоты — длинные руки бросали копья и камни с большей линейной скоростью. С другой стороны, длинные руки и ноги могут быть неудобством. Длинные конечности имеют больший вес и для их перемещения нужна дополнительная энергия. Кроме этого, когда человек быстро бежит, длинные ноги быстрее двигаются, а значит, при столкновении с препятствием удар будет сильнее, чем у людей с короткими ногами, которые двигаются с той же линейной скоростью.

В гимнастике, фигурном катании и нырянии также используют угловую скорость. Если спортсмен знает угловую скорость, то легко вычислить количество переворотов и других акробатических трюков во время прыжка. Во время кувырков спортсмены обычно прижимают ноги и руки как можно ближе к корпусу, чтобы уменьшить инерцию и увеличить ускорение, а значит и угловую скорость. С другой стороны, во время ныряния или приземления, судьи смотрят, как ровно спортсмен приземлился. На высокой скорости трудно регулировать направление полета, поэтому спортсмены специально замедляют угловую скорость, немного вытягивая от корпуса руки и ноги.

Спортсмены, которые занимаются метанием диска или молота, тоже контролируют линейную скорость с помощью угловой. Если просто бросить молот, не вращая его по кругу на длинной стальной проволоке, увеличивающей линейную скорость, то бросок будет не таким сильным, поэтому молот сначала раскручивают. Олимпийские спортсмены поворачиваются вокруг своей оси от трех до четырех раз, чтобы увеличить угловую скорость до максимально возможной.

Угловая скорость и хранение данных на оптических носителях

Диски в накопителе на жестких магнитных дисках («винчестере») вращаются со скоростями от 4&nbsp200 оборотов в минуту на портативных устройствах с низким энергопотреблением до 15&nbsp000 оборотов в минуту на высокоэффективных серверах

Во время записи данных на оптических носителях, например на компакт дисках (CD), для измерения скорости записи и считывания данных в приводе также используются угловая и линейная скорости. Существует несколько способов записи данных, во время которых используют переменную или постоянную линейную или угловую скорость. Так, например, режим постоянной линейной скорости (по-английски — Constant Linear Velocity или CVL) — один из основных методов записи дисков, при котором данные записывают с одинаковой скоростью по всей поверхности диска. Во время записи в режиме зональной постоянной линейной скорости (по-английски — Zone Constant Linear Velocity или ZCLV) постоянная скорость поддерживается во время записи на определенной части, то есть зоне диска. В этом случае диск замедляет вращение при записи на внешних зонах. Режим

частично постоянной угловой скорости (Partial Constant Angular Velocity или PCAV) позволяет осуществлять запись с постепенным увеличением угловой скорости, пока она не достигнет определенного порога. После этого угловая скорость становится постоянной. Последний режим записи — режим постоянной угловой скорости (Constant Angular Velocity или CAV). В этом режиме во время записи по всей поверхности диска поддерживается одинаковая угловая скорость. При этом линейная скорость увеличивается по мере того, как записывающая головка перемещается все дальше и дальше к краю диска. Этот режим используется также при записи грампластинок и в компьютерных жестких дисках.

Угловая скорость в космосе

Геостационарная орбита

На расстоянии 35 786 километров (22 236 миль) от Земли находится орбита, на которой вращаются спутники. Это особенная орбита, потому что тела, вращающиеся на ней в одном направлении с Землей, проходят всю орбиту примерно за такое же время, которое требуется Земле, чтобы совершить полный круг вокруг своей оси. Это немного меньше 24 часов, то есть один сидерический день. Так как угловая скорость вращения тел на этой орбите равна угловой скорости вращения Земли, то наблюдателям с Земли кажется, что эти тела не движутся. Такая орбита называется геостационарной.

На эту орбиту обычно выводят спутники, которые отслеживают изменения погоды (метеорологические спутники), спутники, следящие за изменениями в океане и спутники связи, которые обеспечивают телевизионное и радиовещание, телефонную связь и спутниковый Интернет. Геостационарную орбиту часто используют для спутников потому, что антенны, один раз направленные на спутник, не нужно направлять вторично. С другой стороны, с их использованием связаны такие неудобства, как необходимость иметь прямое поле видимости между антенной и спутником. Кроме того, геостационарная орбита находится далеко от Земли и для передачи сигнала необходимо использовать более мощные передатчики, чем те, что используются для передачи с более низких орбит. Сигнал приходит с задержкой приблизительно в 0,25 секунды, что заметно для пользователей. Например, во время трансляции новостей корреспонденты в удаленных районах обычно связываются со студией по спутниковому каналу; при этом заметно, что когда телеведущий задает им вопрос, они отвечают с задержкой. Несмотря на это, спутники на геостационарной орбите широко используются. Например, до недавнего времени связь между континентами осуществлялась, главным образом, с помощью спутников. Сейчас ее в основном заменили межконтинентальные кабели, проложенные по океанскому дну; однако спутниковую связь до сих пор применяют в отдаленных районах. В последние двадцать лет спутники связи также обеспечивают доступ к интернету, особенно в отдаленных местах, где нет наземной инфраструктуры связи.

Спутниковые антенны

Срок службы спутника в основном определяется количеством топлива на борту, требуемым для периодической коррекции орбиты. Количество топлива в спутниках ограничено, поэтому когда оно заканчивается, спутники выводят из эксплуатации. Чаще всего их переводят на орбиту захоронения, то есть орбиту, намного выше геостационарной. Это — дорогостоящий процесс; однако если оставлять ненужные спутники на геостационарной орбите, это грозит вероятностью столкновений с другими спутниками. Место на геостационарной орбите ограничено, поэтому старые спутники, оставленные на орбите, будут занимать место, которое мог бы использовать новый спутник. В связи с этим во многих странах существуют нормы, требующие от владельцев спутников подписать договор о том, что в конце эксплуатации спутник будет выведен на орбиту захоронения.

Литература

Автор статьи: Kateryna Yuri

Unit Converter articles were edited and illustrated by Анатолий Золотков

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Расчеты для перевода единиц в конвертере «Конвертер угловой скорости и частоты вращения» выполняются с помощью функций unitconversion.org.

Калькулятор Скорости | Измерение Единиц Скорости : Км/ч, Метров/Минуту, Скорость Света, Скорость Звука

МенюВалютаВремяДавлениеДлинаКомпьютерные единицыКулинарияМассаМощностьОбъемОсвещенностьПлотностьПлощадьРазмер обувиСилаСкоростьТемператураУголУскорениеЧастотаЭлектрический токЭлектромагнетизмЭнергияЯркостьSteam ID конвертерКалькуляторИнженерный калькуляторКалькулятор массы тела ИМТ

Контакты

Выберите единицу измерения скорости которую вы хотите конвертировать:

Базовая единица измерения Скорости в метрической системе это метр в секунду.

Единицы Скорости вы можете конвертировать на этой страничке используя переводчик единиц Скорости приведены ниже:

Единицы Скорости

  • Сантиметров / Секунду —> Символ: cm/sec
  • Футов / Секунду —> Символ: ft/sec
  • Километр / Час —> Символ: km/h, kmph
  • Километр / Минуту —> Символ: km/min
  • Километр / Секунду —> Символ: km/sec
  • Узелов —> Символ: kn
  • Мах —> Символ: M
  • Метров / Минуту
  • Метров / Секундy —> Символ: m/sec
  • Миль / Час —> Символ: mph
  • Скорость Света
  • Скорость Звука
  • Ярдов / Секундy —> Символ: yd/sec

Популярные Единицы Измерения Скорости

  1. Kilometer/Hour Mile/Hour
  2. ft/sec m/sec
  3. Knot Kilometer/Hour
  4. mph km/h
  5. Kilometer/Hour Meter/Second
  6. Knot Mile/Hour
  7. kmph mph
  8. mph km/h

Единицы измерения скорости (линейной). Перевод единиц измерения скорости — таблица.


Навигация по справочнику TehTab.ru:  главная страница  / / Техническая информация / / Алфавиты, номиналы, коды / / Перевод единиц измерения.  / / Единицы измерения скорости (линейной). Перевод единиц измерения скорости — таблица.

Перевод единиц измерения скорости — таблица.

Перевести из: Перевести в:
м/с км/час футов/мин = ft/min футов/с = ft/s ярдов/мин = yards/min миль/час = mph узлы = knots
1 м/с

😉 любимая в РФ единица измерения скорости ветра это:

1 3.6 196.9 3.28 65.6 2.24 1.94
1 км/час это: 0.278 1 54.68 0.91 18.23 0.62 0.54
1 фут/мин = ft/min это: 5.08 10-3 1.83 10-2 1 1.67 10-2 0.33 1.14 10-2 9.87 10-3
1 фут/с = ft/s это: 0.305 1.097 60 1 20 0.682 0.592
1 ярд/мин = yards/min это:
1.52 10-2 5.49 10-2 3 0.05 1 3.41 10-2 2.96 10-2
1 миля/час = mph это: 0.45 1.609 88 1.47 29.33 1 0.869
1 узел = knot это: 0.51 1.85 101.3 1.69 33.76 1.15 1
  • 1 м/с = 6000 сантиметров в минуту
  • 1 м/с = 100 сантиметров в секунду
  • 1 м/с = 11811 футов в час / feet per hour
  • 1 м/с = 2362.2 дюймов в минуту / inches per minute
  • 1 м/с = 39.37 дюймов в секунду / inches per second
  • 1 м/с = 1.942615 узлов / knots
  • 1 м/с = 3600 метров в час
  • 1 м/с = 60 метров в минуту
  • 1 м/с = 0.0373 миль в минуту / miles per minute
  • 1 м/с = 0.00062 миль в секунду / miles per second
  • 1 м/с = 3937 ярдов в час / yards per hour



Нашли ошибку? Есть дополнения? Напишите нам об этом, указав ссылку на страницу.
TehTab.ru

Реклама, сотрудничество: [email protected]

Обращаем ваше внимание на то, что данный интернет-сайт носит исключительно информационный характер. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Все риски за использование информаци с сайта посетители берут на себя. Проект TehTab.ru является некоммерческим, не поддерживается никакими политическими партиями и иностранными организациями.

Угловая скорость — Angular velocity

Физическое количество

В физике , угловая скорость относится к как быстро объект вращается или вращается относительно другой точки, то есть , насколько быстро угловое положение или ориентация объекта изменяется со временем. Есть два типа угловой скорости: орбитальная угловая скорость и угловая скорость вращения. Угловая скорость вращения означает, насколько быстро твердое тело вращается относительно своего центра вращения. Орбитальная угловая скорость относится к тому, насколько быстро точечный объект вращается вокруг фиксированной точки начала координат, то есть скорость изменения во времени его углового положения относительно начала координат. Угловая скорость вращения не зависит от выбора начала координат, в отличие от орбитальной угловой скорости, которая зависит от выбора начала координат.

Обычно угловая скорость измеряется в углах в единицу времени, например радианах в секунду (угол заменяет расстояние от линейной скорости на время в целом ). СИ единица угловой скорости выражается в радианах в секунду с радиан , имеющей значение безразмерной единицы, таким образом , единицы СИ угловой скорости перечислены как 1 / с или п -1 . Угловая скорость обычно обозначается символом омега ( ω , иногда Ω ). По соглашению, положительная угловая скорость означает вращение против часовой стрелки, а отрицательная — по часовой стрелке.

Например, геостационарный спутник совершает один оборот в день над экватором, или 360 градусов за 24 часа, и имеет угловую скорость ω = (360 °) / (24 ч) = 15 ° / ч, или (2π рад) / ( 24 ч) ≈ 0,26 рад / ч. Если угол измеряется в радианах , линейная скорость равна радиусу, умноженному на угловую скорость . С радиусом орбиты 42000 км от центра Земли скорость спутника в космосе составляет

v = 42000 км × 0,26 / ч ≈ 11000 км / ч. Угловая скорость положительна, поскольку спутник движется на восток вместе с вращением Земли (против часовой стрелки от северного полюса). vзнак равнорω{\ displaystyle v = r \ omega}

В трех измерениях угловая скорость — это псевдовектор , величина которого измеряет скорость, с которой объект вращается или вращается, а ее направление указывает перпендикулярно плоскости мгновенного вращения или углового смещения. Ориентация угловой скорости условно задается правилом правой руки .

Орбитальная угловая скорость точечной частицы

Частица в двух измерениях

В простейшем случае кругового движения в радиусе , с позицией , заданной угловым смещением от оси х, орбитальная угловая скорость представляет собой скорость изменения угла по времени: . Если измеряется в радианах , длина дуги от положительной оси x вокруг круга до частицы равна , а линейная скорость равна , так что . р{\ displaystyle r}ϕ(т){\ Displaystyle \ phi (т)}ωзнак равноdϕdт{\ displaystyle \ omega = {\ tfrac {d \ phi} {dt}}}ϕ{\ displaystyle \ phi}ℓзнак равнорϕ{\ Displaystyle \ ell = г \ фи}v(т)знак равноdℓdтзнак равнорω(т){\ Displaystyle v (t) = {\ tfrac {d \ ell} {dt}} = r \ omega (t)}ωзнак равноvр{\ displaystyle \ omega = {\ tfrac {v} {r}}}

В общем случае частицы, движущейся в плоскости, орбитальная угловая скорость — это скорость, с которой вектор положения относительно выбранного начала координат «выметает» угол. На схеме показан вектор положения от начала координат до частицы с ее полярными координатами . (Все переменные являются функциями времени .) Частица имеет линейное разделение скорости как , причем радиальная составляющая параллельна радиусу, а поперечно-радиальная (или тангенциальная) составляющая перпендикулярна радиусу. Когда нет радиальной составляющей, частица движется вокруг начала координат по окружности; но когда нет поперечно-радиального компонента, он движется по прямой от начала координат. Поскольку при радиальном движении угол остается неизменным, только поперечно-радиальная составляющая линейной скорости вносит вклад в угловую скорость. р{\ displaystyle \ mathbf {r}}О{\ displaystyle O}п{\ displaystyle P} (р,ϕ){\ Displaystyle (г, \ фи)}т{\ displaystyle t}vзнак равноv‖+v⊥{\ Displaystyle \ mathbf {v} = \ mathbf {v} _ {\ |} + \ mathbf {v} _ {\ perp}}v‖{\ Displaystyle \ mathbf {v} _ {\ |}}v⊥{\ Displaystyle \ mathbf {v} _ {\ perp}}

Угловая скорость ω — это скорость изменения углового положения относительно времени, которая может быть вычислена из поперечной радиальной скорости как:

ωзнак равноdϕdтзнак равноv⊥р.{\ displaystyle \ omega = {\ frac {d \ phi} {dt}} = {\ frac {v _ {\ perp}} {r}}.}

Здесь поперечная радиальная скорость — это величина со знаком , положительная для движения против часовой стрелки, отрицательная для движения по часовой стрелке. Принятие полярных координат в качестве линейной скорости дает величину (линейную скорость) и угол относительно радиус-вектора; в этих терминах , так что v⊥{\ displaystyle v _ {\ perp}}v⊥{\ Displaystyle \ mathbf {v} _ {\ perp}}v{\ displaystyle \ mathbf {v}}v{\ displaystyle v}θ{\ displaystyle \ theta}v⊥знак равноvгрех⁡(θ){\ Displaystyle v _ {\ perp} = v \ sin (\ theta)}

ωзнак равноvгрех⁡(θ)р.{\ displaystyle \ omega = {\ frac {v \ sin (\ theta)} {r}}.}

Эти формулы могут быть получены из , и вместе с формулой проекции , где . рзнак равно(Икс(т),y(т)){\ Displaystyle \ mathbf {r} = (х (т), у (т))}vзнак равно(Икс′(т),y′(т)){\ Displaystyle \ mathbf {v} = (х ‘(т), у’ (т))}ϕзнак равноарктан⁡(y(т)/Икс(т)){\ Displaystyle \ phi = \ arctan (у (т) / х (т))}v⊥знак равнор⊥р⋅v{\ displaystyle v _ {\ perp} = {\ tfrac {\ mathbf {r} ^ {\ perp} \! \!} {r}} \ cdot \ mathbf {v}}р⊥знак равно(-y,Икс){\ displaystyle \ mathbf {r} ^ {\ perp} = (- y, x)}

В двух измерениях угловая скорость — это число со знаком плюс или минус, указывающее ориентацию, но не указывающее в направлении. Знак условно считается положительным, если радиус-вектор вращается против часовой стрелки, и отрицательным, если по часовой стрелке. Тогда угловая скорость может быть названа псевдоскалярной , числовой величиной, которая меняет знак при инверсии четности , такой как инвертирование одной оси или переключение двух осей.

Частица в трех измерениях

Вектор орбитальной угловой скорости кодирует скорость изменения углового положения во времени, а также мгновенную плоскость углового смещения. В этом случае (круговое движение против часовой стрелки) вектор направлен вверх.

В трехмерном пространстве у нас снова есть вектор положения r движущейся частицы. Здесь орбитальная угловая скорость представляет собой псевдовектор , величина которого представляет собой скорость, с которой r смещает угол, и направление которого перпендикулярно мгновенной плоскости, в которой r смещает угол (т. Е. Плоскости, охватываемой r и v ). Однако, поскольку есть два направления, перпендикулярных любой плоскости, необходимо дополнительное условие, чтобы однозначно указать направление угловой скорости; условно используется правило правой руки . {2}}}.}

Из приведенного выше уравнения можно восстановить тангенциальную скорость как:

v⊥знак равноω×р{\ displaystyle \ mathbf {v} _ {\ perp} = {\ boldsymbol {\ omega}} \ times \ mathbf {r}}

Обратите внимание, что приведенное выше выражение для действительно только в том случае, если оно находится в той же плоскости, что и движение. ω{\ displaystyle {\ boldsymbol {\ omega}}}р{\ displaystyle {\ boldsymbol {r}}}

Сложение векторов угловой скорости
Схематическое построение сложения векторов угловой скорости для вращающихся рам

Если точка вращается с орбитальной угловой скоростью вокруг своего центра вращения в системе координат, которая сама вращается с угловой скоростью вращения относительно внешней системы координат , мы можем определить составной вектор орбитальной угловой скорости точки вокруг ее центра. вращение по отношению к . Эта операция совпадает с обычным сложением векторов и дает угловой скорости алгебраическую структуру истинного вектора , а не просто псевдовектора. {2} + \ ldots}(я+W1⋅dт)(я+W2⋅dт)знак равно(я+W2⋅dт)(я+W1⋅dт){\ displaystyle (I + W_ {1} \ cdot dt) (I + W_ {2} \ cdot dt) = (I + W_ {2} \ cdot dt) (I + W_ {1} \ cdot dt)}ω1+ω2знак равноω2+ω1{\ displaystyle \ omega _ {1} + \ omega _ {2} = \ omega _ {2} + \ omega _ {1}}

Обратите внимание, что это также определяет вычитание как добавление отрицательного вектора.

Вектор угловой скорости для твердого тела или системы отсчета

Учитывая вращающуюся систему координат из трех единичных векторов координат, все три должны иметь одинаковую угловую скорость в каждый момент времени. В такой системе отсчета каждый вектор можно рассматривать как движущуюся частицу с постоянным скалярным радиусом.

Вращающаяся рамка появляется в контексте твердых тел , и для нее были разработаны специальные инструменты: угловая скорость вращения может быть описана как вектор или, что эквивалентно, как тензор .

В соответствии с общим определением, угловая скорость вращения кадра определяется как орбитальная угловая скорость любого из трех векторов (одинаковых для всех) относительно его собственного центра вращения. Добавление векторов угловой скорости для кадров также определяется обычным сложением векторов (композиция линейных перемещений) и может быть полезно для разложения вращения, как в карданном подвесе . Все компоненты вектора могут быть вычислены как производные параметров, определяющих подвижные системы отсчета (углы Эйлера или матрицы вращения). Как и в общем случае, добавление коммутативности: . ω1+ω2знак равноω2+ω1{\ displaystyle \ omega _ {1} + \ omega _ {2} = \ omega _ {2} + \ omega _ {1}}

Согласно теореме Эйлера о вращении , любая вращающаяся система отсчета обладает мгновенной осью вращения , которая является направлением вектора угловой скорости, и величина угловой скорости согласуется с двумерным случаем.

Если мы выберем опорную точку, закрепленную в твердом теле, скорость любой точки в теле будет равна р{\ displaystyle {\ boldsymbol {R}}}р˙{\ displaystyle {\ dot {\ boldsymbol {r}}}}

р˙знак равнор˙+(р-р)×ω{\ displaystyle {\ dot {\ boldsymbol {r}}} = {\ dot {\ boldsymbol {R}}} + ({\ boldsymbol {r}} — {\ boldsymbol {R}}) \ times {\ boldsymbol { \ omega}}}

Компоненты угловой скорости из базисных векторов неподвижной системы отсчета

Рассмотрим твердое тело, вращающееся вокруг фиксированной точки O. Постройте систему отсчета в теле, состоящую из ортонормированного набора векторов, прикрепленных к телу, с их общим началом в O. Тогда вектор угловой скорости системы и тела вокруг точки O равен е1,е2,е3{\ displaystyle \ mathbf {e} _ {1}, \ mathbf {e} _ {2}, \ mathbf {e} _ {3}}

ωзнак равно(е˙1⋅е2)е3+(е˙2⋅е3)е1+(е˙3⋅е1)е2,{\ displaystyle {\ boldsymbol {\ omega}} = ({\ dot {\ mathbf {e}}} _ {1} \ cdot \ mathbf {e} _ {2}) \ mathbf {e} _ {3} + ({\ dot {\ mathbf {e}}} _ {2} \ cdot \ mathbf {e} _ {3}) \ mathbf {e} _ {1} + ({\ dot {\ mathbf {e}}} _ {3} \ cdot \ mathbf {e} _ {1}) \ mathbf {e} _ {2},}

Вот

е˙язнак равноdеяdт{\ displaystyle {\ dot {\ mathbf {e}}} _ {i} = {\ frac {d \ mathbf {e} _ {i}} {dt}}}- скорость изменения вектора кадра из-за вращения.ея,язнак равно1,2,3,{\ Displaystyle \ mathbf {е} _ {я}, я = 1,2,3,}

Обратите внимание, что эта формула несовместима с выражением

ωзнак равнор×vр2.{\ displaystyle {\ boldsymbol {\ omega}} = {\ frac {\ mathbf {r} \ times \ mathbf {v}} {r ^ {2}}}.}

поскольку эта формула определяет только угловую скорость единственной точки относительно O, а формула в этом разделе применяется к раме или твердому телу. В случае жесткого теле одного имеет для учета движения всех частиц в теле. ω{\ displaystyle {\ boldsymbol {\ omega}}}

Компоненты из углов Эйлера

Диаграмма, показывающая фрейм Эйлера зеленым цветом

Компоненты псевдовектора спиновой угловой скорости были впервые вычислены Леонардом Эйлером с использованием его углов Эйлера и использования промежуточной системы отсчета:

  • Одна ось системы отсчета (ось прецессии)
  • Линия узлов подвижной системы отсчета относительно системы отсчета (ось нутации)
  • Одна ось подвижной рамы (собственная ось вращения)

Эйлер доказал, что проекции псевдовектора угловой скорости на каждую из этих трех осей являются производными от соответствующего угла (что эквивалентно разложению мгновенного вращения на три мгновенных вращения Эйлера ). Следовательно:

ωзнак равноα˙ты1+β˙ты2+γ˙ты3{\ displaystyle {\ boldsymbol {\ omega}} = {\ dot {\ alpha}} \ mathbf {u} _ {1} + {\ dot {\ beta}} \ mathbf {u} _ {2} + {\ точка {\ gamma}} \ mathbf {u} _ {3}}

Этот базис не является ортонормированным и его сложно использовать, но теперь вектор скорости можно изменить на фиксированную систему отсчета или на подвижную систему отсчета, просто изменив основы. Например, переход на мобильный фрейм:

ωзнак равно(α˙грех⁡βгрех⁡γ+β˙потому что⁡γ)я+(α˙грех⁡βпотому что⁡γ-β˙грех⁡γ)j+(α˙потому что⁡β+γ˙)k{\ displaystyle {\ boldsymbol {\ omega}} = ({\ dot {\ alpha}} \ sin \ beta \ sin \ gamma + {\ dot {\ beta}} \ cos \ gamma) \ mathbf {i} + ( {\ dot {\ alpha}} \ sin \ beta \ cos \ gamma — {\ dot {\ beta}} \ sin \ gamma) \ mathbf {j} + ({\ dot {\ alpha}} \ cos \ beta + {\ точка {\ gamma}}) \ mathbf {k}}

где — единичные векторы для системы отсчета, закрепленной в движущемся теле. Этот пример был создан с использованием соглашения ZXZ для углов Эйлера. я,j,k{\ Displaystyle \ mathbf {я}, \ mathbf {j}, \ mathbf {k}}

Тензор угловой скорости

Вектор угловой скорости, определенный выше, может быть эквивалентно выражен как тензор угловой скорости , матрица (или линейное отображение) W = W ( t ), определяемая как: ωзнак равно(ωИкс,ωy,ωz){\ displaystyle {\ boldsymbol {\ omega}} = (\ omega _ {x}, \ omega _ {y}, \ omega _ {z})}

Wзнак равно(0-ωzωyωz0-ωИкс-ωyωИкс0){\ displaystyle W = {\ begin {pmatrix} 0 & — \ omega _ {z} & \ omega _ {y} \\\ omega _ {z} & 0 & — \ omega _ {x} \\ — \ omega _ {y } & \ omega _ {x} & 0 \\\ конец {pmatrix}}}

Это бесконечно малая матрица вращения . Линейное отображение W действует как : (ω×){\ displaystyle ({\ boldsymbol {\ omega}} \ раз)}

ω×рзнак равноW⋅р.{\ displaystyle {\ boldsymbol {\ omega}} \ times \ mathbf {r} = W \ cdot \ mathbf {r}.}

Расчет по матрице ориентации

Вектор, совершающий равномерное круговое движение вокруг фиксированной оси, удовлетворяет: р{\ displaystyle \ mathbf {r}}

dрdтзнак равноω×рзнак равноW⋅р{\ displaystyle {\ frac {d \ mathbf {r}} {dt}} = {\ boldsymbol {\ omega}} \ times \ mathbf {r} = W \ cdot \ mathbf {r}}

Учитывая матрицу ориентации A ( t ) системы отсчета, столбцы которой являются движущимися ортонормированными векторами координат , мы можем получить ее тензор угловой скорости W ( t ) следующим образом. {\ mathrm {T}}}

Свойства тензоров угловой скорости

В общем, угловая скорость в n- мерном пространстве является производной по времени тензора углового смещения, который является кососимметричным тензором второго ранга .

Этот тензор W будет иметь п ( п — 1) / 2 независимых компонент, который является размерность алгебры Ли из группы Ли из вращений в качестве п — мерного внутреннего пространства продукта.

Двойственность по вектору скорости

В трех измерениях угловая скорость может быть представлена ​​псевдовектором, поскольку тензоры второго ранга

Связь между угловой и линейной скоростями

Отсюда легко установить связь между линейной и угловой скоростями. Мы уже знаем, что угловая скорость связана с числом оборотов формулой: ω = 2πn; поэтому на основании формулы скорости движения по окружности получим:

v = ωR

Линейная скорость точки, движущейся равномерно по окружности, равна угловой скорости, умноженной на радиус окружности.

Известно, что вектор скорости точки, движущейся по окружности, направлен по касательной. Следовательно, линейная скорость направлена по касательной к окружности.

Из формулы видно, что линейная скорость измеряется в см/сек , м/сек и т.д.

 

14. Что называется линейным ускорением материальной точки, в каких единицах оно измеряется?

линейное ускорение — это производная от скорости по времени.

Формула линейного ускорения:

а = dv / dt = d2s/dt2, где s – путь ,пройденный телом.

15. Закон равноускоренного движения по прямой

равноускоренным движением называют такое движение, при котором вектор ускорения остается неизменным по модулю и направлению.

Закон равноускоренного движения по прямой

Это выражение называют законом равноускоренного движения

Начальная скорость-υ0 , конечная скорость-υ, ускорения-a, время-t.

16. Что называется угловой скоростью, в каких единицах оно измеряется?

Угловая скорость — величина, характеризующая скорость вращения материальной точки вокруг центра вращения.

17. Что называется частотой вращения, в каких единицах оно измеряется?

Частота вращения — это физическая величина, равная числу полных оборотов за единицу времени

18. Что называется периодом вращения, в каких единицах он измеряется?

Период вращения (физический термин) — промежуток времени, в течение которого точка совершает полный оборот, двигаясь по окружности.

19. Связь между угловой скоростью вращения и его частотой.

Угловая скорость вращения ω это отношение угла, на которое тело повернется, к времени, за которое оно это сделает. Полному обороту вокруг оси соответствует угол 2π или 360° в зависимости от единиц измерения угла. Число оборотов равно отношению пройденного угла к 2π или 360°. Частота вращения это число полных оборотов тела вокруг оси за единицу времени, таким образом она равна ω/(2π) или ω/360° для углов, измеряемых в градусах

20. Связь между угловой скоростью и периодом.

21. Связь между линейной и угловой скоростями

Связь между линейной и угловой скоростью. Скорость точки, движущейся по окружности, часто называют линейной скоростью, чтобы подчеркнуть ее отличие от угловой скорости. При вращении твердого тела разные его точки имеют разные линейные скорости, но угловая скорость для всех точек одинакова. Междулинейной скоростью какой-либо точки вращающегося тела и угловой скоростьсуществует связь. Точка, лежащая на окружности радиуса R, за один оборот пройдет путь 2πR. А так как, время одного оборота тела есть период Т, то модуль линейнойскорости можно найти так: v=2πR/T=2πRν или v=ωR

22. Центростремительное ускорение

»

23. Что называется нормальным ускорением материальной точки, как его вычислить?

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения .Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n. Вектор нормального ускорения направлен по радиусу кривизны траектории.

24. Что называется тангенциальным ускорением материальной точки, как его вычислить?

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

25. Напишите формулу для определения полного ускорения материальной точки

26. Какое падение тела называется свободным?

Свободным падением называется движение, которое совершило бы тело только под действием силы тяжести без учета сопротивления воздуха.

Читайте также:


Рекомендуемые страницы:

Поиск по сайту

Калькулятор угловой скорости

Как найти угловую скорость Земли?

Как насчет того, чтобы использовать наш калькулятор угловой скорости? Оценим угловую скорость Земли! Во-первых, мы рассматриваем скорость вращения. Мы знаем, что Земля совершает полный оборот относительно далеких звезд примерно за 23 ч 56 мин 4 с , что составляет примерно 23,934 ч . Полное вращение составляет угол 2π рад , поэтому результирующая угловая скорость равна:

ω₁ = 2π рад / 23.934 ч = 0,2625 рад / ч = 0,00007292 рад / с ,

или 7,292 * 10⁻⁵ рад / с (в экспоненциальном представлении).

Теперь, когда мы знаем угловую скорость вращения Земли, мы можем оценить ее линейную скорость на экваторе. Для этого нам нужен радиус Земли, который составляет примерно 6,371 км . Единственное, что нам нужно сделать, это вставить значения во вторую формулу угловой скорости:

v₁ = r₁ * ω₁ = 6,371 км * 7,292 * 10⁻⁵ рад / с = 0,4646 км / с = 464.6 м / с .

Чтобы вычислить линейную скорость относительно центра Земли, все, что вам нужно сделать, это умножить полученный результат на косинус широты вашего города. Кстати, вы когда-нибудь задумывались, почему ракеты обычно запускаются с космодромов, расположенных вблизи экватора, а не с полюсов? Ну, почти 500 м / с ускорение в начале — это значительная часть его конечной скорости. Таким образом, перемещение стартовой точки как можно ближе к экватору уменьшает количество топлива, необходимого для разгона ракеты.

После этого мы можем еще раз спросить, как найти угловую скорость Земли, но на этот раз орбитальную. Все расчеты аналогичны, но мы должны изменить время с 23,943 ч на один год, что составляет примерно 365,25 дней. Изменение угла такое же, полный оборот.

ω₂ = 2π рад / 23,934 h = 0,0000001991 рад / с = 1,991 * 10⁻⁷ рад / с ,

и линейная скорость Земли относительно Солнца (для среднего радиуса 1.496 * 10⁸ км ) составляет:

v₂ = 1,496 * 10⁸ км * 1,991 * 10⁻⁷ рад / с = 29,785 км / с .

Мы движемся довольно быстро, не так ли?

Калькулятор скорости | Определение | Формула

Как рассчитать скорость — скорость в зависимости от скорости

Прежде чем мы объясним, как рассчитать скорость, мы хотели бы отметить, что есть небольшая разница между скоростью и скоростью. Первое определяется разницей между конечным и начальным положением и направлением движения, а второе требует только пройденного расстояния.Другими словами, скорость — это вектор (с величиной и направлением), а скорость — это скаляр (только с величиной).

Пришло время применить на практике формулу средней скорости. Если объект прошел 500 метров за 3 минуты , для расчета средней скорости необходимо выполнить следующие шаги:

  1. Измените минуты на секунды (чтобы окончательный результат был в метрах в секунду). 3 минуты = 3 * 60 = 180 секунд ,
  2. Разделите расстояние на время: скорость = 500/180 = 2.77 м / с .

Попробуем другой пример. Вы хотите участвовать в гонке на своей новой машине, которая может изменять свою скорость с ускорением примерно 6,95 м / с² . Конкурс только начался. Какой будет ваша скорость после 4 секунды ?

  1. Установите начальную скорость на ноль, вы не двигаетесь в начале гонки.
  2. Умножьте ускорение на время, чтобы получить изменение скорости: изменение скорости = 6,95 * 4 = 27.8 м / с .
  3. Поскольку начальная скорость была равна нулю, конечная скорость равна изменению скорости.
  4. Вы можете преобразовать единицы в км / ч , умножив результат на 3,6: 27,8 * 3,6 ≈ 100 км / ч .

Конечно, вы можете значительно упростить ваши вычисления, используя калькулятор средней скорости. Все, что вам нужно сделать, это ввести расстояние и время. Одним из преимуществ использования этого калькулятора является то, что вам не нужно вручную переводить единицы .Наш инструмент сделает все за вас!

Помните, что вы не можете гонять везде, нормальные дороги и шоссе не созданы для сверхвысоких скоростей! Воспользуйтесь калькулятором ДТП, чтобы узнать, насколько опасными могут быть автомобильные столкновения. Не садитесь за руль после употребления алкоголя и регулярно осматривайте свой автомобиль.

Калькулятор угловой скорости — расчет угловой скорости объекта

Легко вычислить угловую скорость объекта при круговом движении. Вход поддерживает метрические и британские единицы измерения, радианы и градусы.Калькулятор угловой скорости также можно использовать для вычисления линейной скорости и радиуса. Может также преобразовывать угловую скорость в линейную и наоборот.

Использование калькулятора угловой скорости

Угловая скорость объекта или частицы — это скорость, с которой они вращаются вокруг выбранной центральной точки, или, другими словами: какое угловое расстояние покрывает объект вокруг чего-то за период времени, и измеряется в углах в единицу времени. Стандартное измерение — в радианах в секунду, хотя на практике часто используются градусы в секунду, обороты в минуту (об / мин) и другие единицы, и наш калькулятор поддерживает большинство из них в качестве единиц вывода.

Этот калькулятор угловой скорости полезен для оценки угловой скорости тела, движущегося по круговой траектории. Например, его можно использовать для расчета угловой скорости колеса обозрения, карусели, CD-ROM или DVD и практически любого объекта, который вращается или движется по круговой траектории. Он даже достаточно хорошо работает для вычисления углового момента на поверхности Земли и угловой скорости на ее орбите вокруг Солнца (см. Пример № 3 ниже), хотя это не точные круги.Если частота вращения известна, она может служить вычислителем от числа оборотов к угловой скорости.

Этот онлайн-инструмент можно использовать для расчета угловой скорости на основе известного расстояния поворота и времени (пройденное угловое расстояние и время его преодоления), а также на основе линейной скорости и радиуса круговой траектории, по которой находится объект или частица. Инструмент также можно использовать для решения линейной скорости или радиуса с учетом угловой скорости и другого из двух, таким образом, функционируя как линейная скорость в угловую скорость, так и угловую скорость в линейную скорость преобразователь (калькулятор линейной скорости ).

Выходные данные при вычислении линейной скорости в метрических и британских единицах измерения: м / с, фут / с, км / с, км / ч, мили / с и миль / ч. Когда на выходе получается радиус пути, указанный в метрах, футах, километрах, милях и даже световых годах и парсеках для действительно больших расстояний.

Уравнения угловой скорости

Вектор угловой скорости всегда проходит перпендикулярно плоскости, в которой вращается объект, что делает уравнения для его поиска довольно простыми. Формула для угловой скорости ( ω , греческая строчная буква омега) в радианах, выраженная через частоту вращения тела ( f ), представляет собой первое уравнение ниже:

, тогда как второе уравнение представляет угловую скорость в радианах.Третья формула предназначена для угловой скорости, когда мы знаем линейную скорость объекта и радиус круговой траектории. Путем простого преобразования третьего уравнения получаем формулу линейной скорости:

Эти формулы действительны для твердых тел и работают для нежестких только приблизительно.

Примеры расчета угловой скорости

Пример 1: Детская карусель вращается со скоростью 10 оборотов в минуту. Какова его угловая скорость в градусах в секунду? Сначала преобразуйте количество оборотов в минуту в градусы в минуту.Поскольку один оборот равен 360 °, 10 оборотов будут 3600 ° в минуту. В минуте 60 секунд, поэтому мы просто делим 3600 на 60, чтобы получить 60 ° / с. Этот расчет также можно выполнить, используя первое и второе уравнения угловой скорости, приведенные выше: f = 60/10 = 6 секунд на один оборот, поэтому ω градусов = 360/6 = 60 ° / сек и ω рад = 2 · π / 60 ° / с = 6,283184 / 6 = 1,0471973 радиан в секунду.

Пример 2: Колесо обозрения с радиусом 20 метров вращается с линейной скоростью 0.5 м / с. Какова угловая скорость колеса обозрения в радианах в секунду? Мы просто используем формулу ω рад = r / v = 20 / 0,5 = 0,0250 радиан в секунду. Использование вышеуказанного инструмента в режиме линейного калькулятора скорости подтвердит математические расчеты.

Пример 3: Найдите расстояние от Земли до Солнца , если вы знаете, что орбитальная скорость Земли составляет 29 800 м / с и, конечно, что она делает один оборот вокруг Солнца за 1 год. Во-первых, нам нужно преобразовать количество оборотов в год в радианы в секунду, умножив 1 год на 2 · π = 6.283184, а затем нам нужно разделить на (86400 секунд * 365,2421 дня), чтобы получить 0,000000199106434243010 радиан в секунду. Тогда решение будет простым, используя формулу r = v / ω = 29800 м / с / 0,000000199106434243010 = 149668694099,701 метр или около 149,667 км (~ 93000 миль) — что является точным расчетным расстоянием между Землей и Солнцем (проверьте расчет) .

Конечно, при использовании нашего калькулятора угловой скорости вам не нужно будет выполнять эти преобразования единиц измерения, поскольку они обрабатываются для вас «на лету».

Список литературы

[1] Специальная публикация NIST 330 (2008 г.) — «Международная система единиц (СИ)», под редакцией Барри Н. Тейлора и Амблера Томпсона, стр. 52

[2] «Международная система единиц» (СИ) (2006 г., 8-е изд.). Bureau International des poids et mesures pp. 142–143. ISBN 92-822-2213-6

Преобразователь угловой скорости и частоты вращения

• Механика • Полный калькулятор • Онлайн-конвертеры единиц Конвертер углового КПД, расхода топлива и экономии топливаПреобразователь чиселПреобразователь единиц информации и хранения данныхКурсы валютЖенская одежда и размеры обувиМужская одежда и размеры обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияПреобразователь плотностиПреобразователь удельной мощностиПреобразователь удельной энергииДвижение инерции Конвертер удельной энергии сгорания (на единицу массы) Конвертер удельной энергии и теплоты сгорания (на единицу объема) Температура Конвертер интервалов измеренияКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиКонвертер плотности тепла, плотности пожарной нагрузкиКонвертер плотности теплового потокаКонвертер коэффициентов теплопередачиКонвертер объемного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер массового потока (Конвертер абсолютной концентрации) Конвертер вязкости Преобразователь напряженияПреобразователь проницаемости, проницаемости и паропроницаемостиКонвертер скорости передачи водяных паровКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL) Преобразователь уровня звукового давления с выбираемым эталонным давлениемКонвертер яркостиПреобразователь световой интенсивностиКонвертер яркостиКонвертер разрешения цифрового изображенияПреобразователь частоты и длины волныОптическая мощность (диоптрийная мощность) Диоптрия) в увеличение (X) Преобразовать rКонвертер электрического зарядаЛинейный преобразователь плотности зарядаПреобразователь плотности поверхностного зарядаОбъемный преобразователь плотности зарядаПреобразователь электрического токаЛинейный преобразователь плотности токаПоверхностный преобразователь плотности токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь электрического сопротивленияПреобразователь удельной электрической проводимости в дБПреобразователь удельной электрической проводимости в дБПреобразователь удельной электрической проводимости Единицы измеренияПреобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляКонвертер магнитного потокаКонвертер плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности суммарной дозы ионизирующего излученияРадиоактивность.Преобразователь радиоактивного распада Преобразователь радиационного воздействияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифровой визуализации Конвертер единиц измерения объема пиломатериалов Калькулятор молярной массы Периодическая таблица

Потолочный вентилятор, вращающийся со скоростью 250 оборотов в минуту

Обзор

Угловая скорость — это вектор, который указывает скорость вращения объекта вокруг ось. Направление этого вектора нормально к плоскости вращения и определяется правилом правой руки.Он измеряется как отношение между изменением угла, на который перемещался этот объект, называемым угловым смещением, и временем. В системе СИ единица измерения угловой скорости — радианы в секунду.

Угловая скорость в спорте

Угловая скорость — полезное понятие в спорте. Например, знание и способность контролировать угловую, а также линейную скорость клюшки для гольфа, летучей мыши или ракетки во время замаха может помочь спортсмену улучшить свои результаты. Связь между угловой и линейной скоростью такова, что для удлиненного объекта, такого как клюшка для гольфа, точка, наиболее удаленная от оси вращения, имеет самую быструю линейную скорость, даже если угловая скорость одинакова в любой точке клюшки.Таким образом, используя более длинную клюшку, биту или ракетку, спортсмен может толкать мяч с большей линейной скоростью, позволяя ему пройти большее расстояние, прежде чем он упадет. И наоборот, использование более короткой ракетки или удерживание ее за рукоятку таким образом, чтобы она укорачивалась, позволяет атлету снизить линейную скорость.

Мужчины были основными охотниками в примитивной охоте

Спортсмены с более длинными конечностями могут генерировать большую линейную скорость

Более высокие люди с более длинными конечностями имеют преимущество, когда дело касается линейной скорости.Это преимущество может быть одной из причин, почему люди были основными охотниками в примитивной охоте, а также почему люди эволюционировали, чтобы стать выше, потому что охота включает в себя бросание камней и копий в добычу, а люди с более длинными конечностями могут генерировать большую линейную скорость. Однако это также может быть недостатком. Для того, чтобы бросать предметы людям с более длинными руками, не только требуется дополнительная энергия, но и более болезненно, когда люди с более длинными ногами сталкиваются с препятствием ногой по сравнению с более низкими людьми, которые двигают ногами с той же угловой скоростью.Это потому, что линейная скорость стопы на более длинной ноге будет выше.

Угловая скорость важна в гимнастике, фигурном катании и нырянии. Зная среднюю угловую скорость, спортсмены могут рассчитать, сколько акробатических трюков они могут выполнить перед приземлением или входом в воду. Чтобы выполнить больше вращений, таких как сальто, спортсмены подносят ноги и руки как можно ближе к телу, чтобы минимизировать инерцию и максимизировать импульс, что приводит к увеличению угловой скорости.Чтобы приземлиться или войти в воду под правильным углом, спортсменам, возможно, придется снизить угловую скорость, слегка вытянув конечности, чтобы лучше контролировать свои движения.

Молотки и метатели диска также должны генерировать высокие угловые скорости, чтобы иметь возможность увеличивать линейную скорость. Просто бросить молот, не вращая его на длинном шнуре, генерирует гораздо меньшую скорость, чем при первом вращении. Многие олимпийские атлеты три-четыре раза крутили молоток перед тем, как отпустить его, чтобы достичь максимально возможной линейной скорости.

Угловая скорость в оптическом хранилище

Диски в жестких дисках вращаются со скоростью от 4200 об / мин в энергоэффективных портативных устройствах до 15000 об / мин для высокопроизводительных серверов

Угловая скорость используется при хранении данных на оптических носителях например компакт-диски. Как угловая, так и линейная скорости используются для измерения скорости записи дисков и скорости дисководов. В разных режимах записи важна разная скорость, и названия этих режимов часто относятся к скорости.Например, метод с постоянной линейной скоростью (CVL) был исходным режимом записи. В этом режиме данные записываются с одинаковой скоростью на весь диск. Зона постоянной линейной скорости (ZCLV) поддерживает постоянную линейную скорость в заданной зоне диска, а не по всему диску. Диск обычно вращается медленнее при записи на внешние области. Частичная постоянная угловая скорость (PCAV) — это метод записи, в котором угловая скорость постепенно увеличивается до тех пор, пока не будет достигнут определенный порог.Затем он остается неизменным для остальной части записи. Наконец, Постоянная угловая скорость (CAV) — это режим записи, который поддерживает постоянную угловую скорость во время записи. Это означает, что линейная скорость увеличивается по мере перемещения пишущей головки к внешним областям диска. Этот метод также используется в жестких дисках и граммофонных пластинках.

Угловая скорость в космосе

Геостационарная орбита

Существует орбита, удаленная от Земли на 35 786 километров (22 236 миль); объект, движущийся по этой орбите в том же направлении, что и вращение Земли, завершает его примерно за то же время, за которое Земля вращается вокруг своей оси — один звездный день, что немного меньше 24 часов.Таким образом, угловая скорость объектов на этой орбите равна угловой скорости Земли. Из-за этого эти объекты выглядят неподвижными для наблюдателя на Земле. Эта орбита называется геостационарной орбитой .

Он используется для спутников, которые отслеживают изменения погоды и климата Земли (метеорологические спутники), изменения в океанах (геостационарные цветные изображения океана или GOCI), а также спутники связи, используемые для радиовещания и связи. Спутники связи могут оставаться на более низких или высоких орбитах.Часто используются геостационарные орбиты, потому что антенны, направленные на спутник, находящийся на этой орбите, не нужно перенаправлять. Однако, если прямая видимость передатчика заблокирована, сигнал не будет передаваться должным образом, если вообще будет. Геостационарная орбита находится далеко, и в результате возникает задержка примерно на 0,25 секунды. Для решения проблемы расстояния также необходимы более мощные передатчики. Исторически спутники связи использовались для междугородной телефонной связи. Они были в значительной степени заменены морскими межконтинентальными кабелями, проложенными по дну океана, но все еще используются в этом качестве для удаленных районов.За последние 20 лет спутники связи также использовались для обеспечения подключения к Интернету в удаленных местах.

Спутниковые антенны

Спутники имеют определенное количество топлива, и, как только они израсходуют его все, их больше нельзя будет использовать. Их обычно переводят на другую орбиту, называемую орбитой захоронения или кладбища, которая намного выше геостационарной. Из-за этого в большинстве стран действуют правила, требующие от владельцев частных спутников подписать соглашение о переводе спутника на орбиту утилизации, как только он приблизится к концу своего жизненного цикла.

Список литературы

Эту статью написала Екатерина Юрий.

Конвертер величин статьи отредактировал и проиллюстрировал Анатолий Золотков.

У вас возникли трудности с переводом единиц измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.

Расчеты для преобразователя угловой скорости и частоты вращения преобразователя производятся с использованием математических формул преобразования единиц.орг.

Конвертер угловой скорости и частоты вращения • Механика • Полный калькулятор • Онлайн-конвертеры единиц

Конвертер длины и расстояния Конвертер массы Сухой объем и общие измерения для приготовления пищи Конвертер площади Конвертер объема и общих измерений при варке Конвертер температуры Конвертер давления, напряжения, модуля Юнга Конвертер энергии и работыПреобразователь мощности и преобразователь силыПреобразователь линейной скорости Конвертер скоростиКонвертер углового КПД, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц информации и хранения данныхКурсы валютЖенская одежда и размеры обувиМужская одежда и размеры обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияПреобразователь удельной энергииПреобразователь удельной силы Конвертер теплоты сгорания (на массу) Конвертер удельной энергии в теплоту сгорания (на единицу объема). Конвертер интервалов температурКонвертер температурного расширенияКонвертер термического сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиКонвертер плотности тепла, плотности пожарной нагрузкиКонвертер плотности теплового потокаКонвертер коэффициентов теплопередачиКонвертер объемного расходаКонвертер массового расходаКонвертер массового расходаКонвертер массового потока (Конвертер молярной концентрации) Конвертер вязкости Конвертер натяженияПроницаемость, проницаемость, проницаемость водяного параКонвертер скорости передачи водяных паровКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с выбираемым эталонным давлениемКонвертер яркостиПреобразователь световой интенсивностиКонвертер яркостиКонвертер разрешения цифрового изображенияПреобразователь частоты и длины волныОптическая мощность (диоптрийная мощность) Диоптрия) в Увеличение (X) C КонвертерПреобразователь электрического зарядаЛинейный преобразователь плотности зарядаПреобразователь уровня поверхностной плотностиПреобразователь плотности электрического токаПреобразователь плотности электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь электрического сопротивленияПреобразователь электрической проводимости в ВтПреобразователь удельной электрической проводимости в дБ Единицы измеренияПреобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляКонвертер магнитного потокаКонвертер плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности суммарной дозы ионизирующего излученияРадиоактивность.Преобразователь радиоактивного распада Преобразователь радиационного воздействияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифровой визуализации Конвертер единиц измерения объема пиломатериалов Калькулятор молярной массы Периодическая таблица

Потолочный вентилятор, вращающийся со скоростью 250 оборотов в минуту

Обзор

Угловая скорость — это вектор, который указывает скорость вращения объекта вокруг ось. Направление этого вектора нормально к плоскости вращения и определяется правилом правой руки.Он измеряется как отношение между изменением угла, на который перемещался этот объект, называемым угловым смещением, и временем. В системе СИ единица измерения угловой скорости — радианы в секунду.

Угловая скорость в спорте

Угловая скорость — полезное понятие в спорте. Например, знание и способность контролировать угловую, а также линейную скорость клюшки для гольфа, летучей мыши или ракетки во время замаха может помочь спортсмену улучшить свои результаты. Связь между угловой и линейной скоростью такова, что для удлиненного объекта, такого как клюшка для гольфа, точка, наиболее удаленная от оси вращения, имеет самую быструю линейную скорость, даже если угловая скорость одинакова в любой точке клюшки.Таким образом, используя более длинную клюшку, биту или ракетку, спортсмен может толкать мяч с большей линейной скоростью, позволяя ему пройти большее расстояние, прежде чем он упадет. И наоборот, использование более короткой ракетки или удерживание ее за рукоятку таким образом, чтобы она укорачивалась, позволяет атлету снизить линейную скорость.

Мужчины были основными охотниками в примитивной охоте

Спортсмены с более длинными конечностями могут генерировать большую линейную скорость

Более высокие люди с более длинными конечностями имеют преимущество, когда дело касается линейной скорости.Это преимущество может быть одной из причин, почему люди были основными охотниками в примитивной охоте, а также почему люди эволюционировали, чтобы стать выше, потому что охота включает в себя бросание камней и копий в добычу, а люди с более длинными конечностями могут генерировать большую линейную скорость. Однако это также может быть недостатком. Для того, чтобы бросать предметы людям с более длинными руками, не только требуется дополнительная энергия, но и более болезненно, когда люди с более длинными ногами сталкиваются с препятствием ногой по сравнению с более низкими людьми, которые двигают ногами с той же угловой скоростью.Это потому, что линейная скорость стопы на более длинной ноге будет выше.

Угловая скорость важна в гимнастике, фигурном катании и нырянии. Зная среднюю угловую скорость, спортсмены могут рассчитать, сколько акробатических трюков они могут выполнить перед приземлением или входом в воду. Чтобы выполнить больше вращений, таких как сальто, спортсмены подносят ноги и руки как можно ближе к телу, чтобы минимизировать инерцию и максимизировать импульс, что приводит к увеличению угловой скорости.Чтобы приземлиться или войти в воду под правильным углом, спортсменам, возможно, придется снизить угловую скорость, слегка вытянув конечности, чтобы лучше контролировать свои движения.

Молотки и метатели диска также должны генерировать высокие угловые скорости, чтобы иметь возможность увеличивать линейную скорость. Просто бросить молот, не вращая его на длинном шнуре, генерирует гораздо меньшую скорость, чем при первом вращении. Многие олимпийские атлеты три-четыре раза крутили молоток перед тем, как отпустить его, чтобы достичь максимально возможной линейной скорости.

Угловая скорость в оптическом хранилище

Диски в жестких дисках вращаются со скоростью от 4200 об / мин в энергоэффективных портативных устройствах до 15000 об / мин для высокопроизводительных серверов

Угловая скорость используется при хранении данных на оптических носителях например компакт-диски. Как угловая, так и линейная скорости используются для измерения скорости записи дисков и скорости дисководов. В разных режимах записи важна разная скорость, и названия этих режимов часто относятся к скорости.Например, метод с постоянной линейной скоростью (CVL) был исходным режимом записи. В этом режиме данные записываются с одинаковой скоростью на весь диск. Зона постоянной линейной скорости (ZCLV) поддерживает постоянную линейную скорость в заданной зоне диска, а не по всему диску. Диск обычно вращается медленнее при записи на внешние области. Частичная постоянная угловая скорость (PCAV) — это метод записи, в котором угловая скорость постепенно увеличивается до тех пор, пока не будет достигнут определенный порог.Затем он остается неизменным для остальной части записи. Наконец, Постоянная угловая скорость (CAV) — это режим записи, который поддерживает постоянную угловую скорость во время записи. Это означает, что линейная скорость увеличивается по мере перемещения пишущей головки к внешним областям диска. Этот метод также используется в жестких дисках и граммофонных пластинках.

Угловая скорость в космосе

Геостационарная орбита

Существует орбита, удаленная от Земли на 35 786 километров (22 236 миль); объект, движущийся по этой орбите в том же направлении, что и вращение Земли, завершает его примерно за то же время, за которое Земля вращается вокруг своей оси — один звездный день, что немного меньше 24 часов.Таким образом, угловая скорость объектов на этой орбите равна угловой скорости Земли. Из-за этого эти объекты выглядят неподвижными для наблюдателя на Земле. Эта орбита называется геостационарной орбитой .

Он используется для спутников, которые отслеживают изменения погоды и климата Земли (метеорологические спутники), изменения в океанах (геостационарные цветные изображения океана или GOCI), а также спутники связи, используемые для радиовещания и связи. Спутники связи могут оставаться на более низких или высоких орбитах.Часто используются геостационарные орбиты, потому что антенны, направленные на спутник, находящийся на этой орбите, не нужно перенаправлять. Однако, если прямая видимость передатчика заблокирована, сигнал не будет передаваться должным образом, если вообще будет. Геостационарная орбита находится далеко, и в результате возникает задержка примерно на 0,25 секунды. Для решения проблемы расстояния также необходимы более мощные передатчики. Исторически спутники связи использовались для междугородной телефонной связи. Они были в значительной степени заменены морскими межконтинентальными кабелями, проложенными по дну океана, но все еще используются в этом качестве для удаленных районов.За последние 20 лет спутники связи также использовались для обеспечения подключения к Интернету в удаленных местах.

Спутниковые антенны

Спутники имеют определенное количество топлива, и, как только они израсходуют его все, их больше нельзя будет использовать. Их обычно переводят на другую орбиту, называемую орбитой захоронения или кладбища, которая намного выше геостационарной. Из-за этого в большинстве стран действуют правила, требующие от владельцев частных спутников подписать соглашение о переводе спутника на орбиту утилизации, как только он приблизится к концу своего жизненного цикла.

Список литературы

Эту статью написала Екатерина Юрий.

Конвертер величин статьи отредактировал и проиллюстрировал Анатолий Золотков.

У вас возникли трудности с переводом единиц измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.

Расчеты для преобразователя угловой скорости и частоты вращения преобразователя производятся с использованием математических формул преобразования единиц.орг.

Конвертер угловой скорости и частоты вращения • Механика • Полный калькулятор • Онлайн-конвертеры единиц

Конвертер длины и расстояния Конвертер массы Сухой объем и общие измерения для приготовления пищи Конвертер площади Конвертер объема и общих измерений при варке Конвертер температуры Конвертер давления, напряжения, модуля Юнга Конвертер энергии и работыПреобразователь мощности и преобразователь силыПреобразователь линейной скорости Конвертер скоростиКонвертер углового КПД, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц информации и хранения данныхКурсы валютЖенская одежда и размеры обувиМужская одежда и размеры обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияПреобразователь удельной энергииПреобразователь удельной силы Конвертер теплоты сгорания (на массу) Конвертер удельной энергии в теплоту сгорания (на единицу объема). Конвертер интервалов температурКонвертер температурного расширенияКонвертер термического сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиКонвертер плотности тепла, плотности пожарной нагрузкиКонвертер плотности теплового потокаКонвертер коэффициентов теплопередачиКонвертер объемного расходаКонвертер массового расходаКонвертер массового расходаКонвертер массового потока (Конвертер молярной концентрации) Конвертер вязкости Конвертер натяженияПроницаемость, проницаемость, проницаемость водяного параКонвертер скорости передачи водяных паровКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с выбираемым эталонным давлениемКонвертер яркостиПреобразователь световой интенсивностиКонвертер яркостиКонвертер разрешения цифрового изображенияПреобразователь частоты и длины волныОптическая мощность (диоптрийная мощность) Диоптрия) в Увеличение (X) C КонвертерПреобразователь электрического зарядаЛинейный преобразователь плотности зарядаПреобразователь уровня поверхностной плотностиПреобразователь плотности электрического токаПреобразователь плотности электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь электрического сопротивленияПреобразователь электрической проводимости в ВтПреобразователь удельной электрической проводимости в дБ Единицы измеренияПреобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляКонвертер магнитного потокаКонвертер плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности суммарной дозы ионизирующего излученияРадиоактивность.Преобразователь радиоактивного распада Преобразователь радиационного воздействияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифровой визуализации Конвертер единиц измерения объема пиломатериалов Калькулятор молярной массы Периодическая таблица

Потолочный вентилятор, вращающийся со скоростью 250 оборотов в минуту

Обзор

Угловая скорость — это вектор, который указывает скорость вращения объекта вокруг ось. Направление этого вектора нормально к плоскости вращения и определяется правилом правой руки.Он измеряется как отношение между изменением угла, на который перемещался этот объект, называемым угловым смещением, и временем. В системе СИ единица измерения угловой скорости — радианы в секунду.

Угловая скорость в спорте

Угловая скорость — полезное понятие в спорте. Например, знание и способность контролировать угловую, а также линейную скорость клюшки для гольфа, летучей мыши или ракетки во время замаха может помочь спортсмену улучшить свои результаты. Связь между угловой и линейной скоростью такова, что для удлиненного объекта, такого как клюшка для гольфа, точка, наиболее удаленная от оси вращения, имеет самую быструю линейную скорость, даже если угловая скорость одинакова в любой точке клюшки.Таким образом, используя более длинную клюшку, биту или ракетку, спортсмен может толкать мяч с большей линейной скоростью, позволяя ему пройти большее расстояние, прежде чем он упадет. И наоборот, использование более короткой ракетки или удерживание ее за рукоятку таким образом, чтобы она укорачивалась, позволяет атлету снизить линейную скорость.

Мужчины были основными охотниками в примитивной охоте

Спортсмены с более длинными конечностями могут генерировать большую линейную скорость

Более высокие люди с более длинными конечностями имеют преимущество, когда дело касается линейной скорости.Это преимущество может быть одной из причин, почему люди были основными охотниками в примитивной охоте, а также почему люди эволюционировали, чтобы стать выше, потому что охота включает в себя бросание камней и копий в добычу, а люди с более длинными конечностями могут генерировать большую линейную скорость. Однако это также может быть недостатком. Для того, чтобы бросать предметы людям с более длинными руками, не только требуется дополнительная энергия, но и более болезненно, когда люди с более длинными ногами сталкиваются с препятствием ногой по сравнению с более низкими людьми, которые двигают ногами с той же угловой скоростью.Это потому, что линейная скорость стопы на более длинной ноге будет выше.

Угловая скорость важна в гимнастике, фигурном катании и нырянии. Зная среднюю угловую скорость, спортсмены могут рассчитать, сколько акробатических трюков они могут выполнить перед приземлением или входом в воду. Чтобы выполнить больше вращений, таких как сальто, спортсмены подносят ноги и руки как можно ближе к телу, чтобы минимизировать инерцию и максимизировать импульс, что приводит к увеличению угловой скорости.Чтобы приземлиться или войти в воду под правильным углом, спортсменам, возможно, придется снизить угловую скорость, слегка вытянув конечности, чтобы лучше контролировать свои движения.

Молотки и метатели диска также должны генерировать высокие угловые скорости, чтобы иметь возможность увеличивать линейную скорость. Просто бросить молот, не вращая его на длинном шнуре, генерирует гораздо меньшую скорость, чем при первом вращении. Многие олимпийские атлеты три-четыре раза крутили молоток перед тем, как отпустить его, чтобы достичь максимально возможной линейной скорости.

Угловая скорость в оптическом хранилище

Диски в жестких дисках вращаются со скоростью от 4200 об / мин в энергоэффективных портативных устройствах до 15000 об / мин для высокопроизводительных серверов

Угловая скорость используется при хранении данных на оптических носителях например компакт-диски. Как угловая, так и линейная скорости используются для измерения скорости записи дисков и скорости дисководов. В разных режимах записи важна разная скорость, и названия этих режимов часто относятся к скорости.Например, метод с постоянной линейной скоростью (CVL) был исходным режимом записи. В этом режиме данные записываются с одинаковой скоростью на весь диск. Зона постоянной линейной скорости (ZCLV) поддерживает постоянную линейную скорость в заданной зоне диска, а не по всему диску. Диск обычно вращается медленнее при записи на внешние области. Частичная постоянная угловая скорость (PCAV) — это метод записи, в котором угловая скорость постепенно увеличивается до тех пор, пока не будет достигнут определенный порог.Затем он остается неизменным для остальной части записи. Наконец, Постоянная угловая скорость (CAV) — это режим записи, который поддерживает постоянную угловую скорость во время записи. Это означает, что линейная скорость увеличивается по мере перемещения пишущей головки к внешним областям диска. Этот метод также используется в жестких дисках и граммофонных пластинках.

Угловая скорость в космосе

Геостационарная орбита

Существует орбита, удаленная от Земли на 35 786 километров (22 236 миль); объект, движущийся по этой орбите в том же направлении, что и вращение Земли, завершает его примерно за то же время, за которое Земля вращается вокруг своей оси — один звездный день, что немного меньше 24 часов.Таким образом, угловая скорость объектов на этой орбите равна угловой скорости Земли. Из-за этого эти объекты выглядят неподвижными для наблюдателя на Земле. Эта орбита называется геостационарной орбитой .

Он используется для спутников, которые отслеживают изменения погоды и климата Земли (метеорологические спутники), изменения в океанах (геостационарные цветные изображения океана или GOCI), а также спутники связи, используемые для радиовещания и связи. Спутники связи могут оставаться на более низких или высоких орбитах.Часто используются геостационарные орбиты, потому что антенны, направленные на спутник, находящийся на этой орбите, не нужно перенаправлять. Однако, если прямая видимость передатчика заблокирована, сигнал не будет передаваться должным образом, если вообще будет. Геостационарная орбита находится далеко, и в результате возникает задержка примерно на 0,25 секунды. Для решения проблемы расстояния также необходимы более мощные передатчики. Исторически спутники связи использовались для междугородной телефонной связи. Они были в значительной степени заменены морскими межконтинентальными кабелями, проложенными по дну океана, но все еще используются в этом качестве для удаленных районов.За последние 20 лет спутники связи также использовались для обеспечения подключения к Интернету в удаленных местах.

Спутниковые антенны

Спутники имеют определенное количество топлива, и, как только они израсходуют его все, их больше нельзя будет использовать. Их обычно переводят на другую орбиту, называемую орбитой захоронения или кладбища, которая намного выше геостационарной. Из-за этого в большинстве стран действуют правила, требующие от владельцев частных спутников подписать соглашение о переводе спутника на орбиту утилизации, как только он приблизится к концу своего жизненного цикла.

Список литературы

Эту статью написала Екатерина Юрий.

Конвертер величин статьи отредактировал и проиллюстрировал Анатолий Золотков.

У вас возникли трудности с переводом единиц измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *