Принцип работы дизельного двс – Принцип работы и устройство дизельного двигателя

Содержание

Дизельный двигатель

В последнее десятилетие дизельные технологии развиваются впечатляющими темпами. Модификации легковых авто с дизельными моторами составляют половину новых автомобилей, продаваемых в Европе. Густой черный дым из выхлопной трубы, громкое тарахтение и неприятный запах остались далеко в прошлом. Дизельные моторы сегодня – это не только экономичность, но также высокая мощность и достойные динамические характеристики.

Современный дизель стал тихим и экологически чистым. Как же удалось этому типу ДВС соответствовать постоянно ужесточающимся нормам токсичности и при этом не только не проигрывать в тяговитости и экономичности, но и улучшать эти показатели? Рассмотрим все по порядку…

Содержание статьи

Принцип работы

На первый взгляд дизельный двигатель почти не отличается от обычного бензинового – те же цилиндры, поршни, шатуны. Главные и принципиальные отличия заключаются в способе образования и воспламенения. В карбюраторных и обычных инжекторных двигателях приготовление смеси происходит не в цилиндре, а во впускном тракте.

В бензиновых двигателях с непосредственным впрыском смесь образуется так же как и в дизелях- непосредственно в цилиндре. В бензиновом моторе топливо-воздушная смесь в цилиндре воспламеняется в нужный момент от искрового разряда. В дизеле же топливо воспламеняется не от искры, а вследствие высокой температуры воздуха в цилиндре.

Рабочий процесс в дизеле происходит следущим образом: вначале в цилиндр попадает чистый воздух, который за счет большой степени сжатия (16-24:1) разогревается до 700-900°С. Дизтопливо впрыскивается под высоким давлением в камеру сгорания при подходе поршня к верхней мертвой точке. А так как воздух уже сильно разогрет, после смешивания с ним происходит воспламенение топлива. Самовоспламенение сопровождается резким нарастанием давления в цилиндре – отсюда повышенная шумность и жесткость работы дизеля.

Такая организация рабочего процесса позволяет использовать более дешевое топливо и работать на очень бедных смесях, что определяет более высокую экономичность. Дизель имеет больший КПД (у дизеля – 35–45%, у бензинового – 25–35%) и крутящий момент. К недостаткам дизельных двигателей обычно относят повышенную шумность и вибрацию, меньшую литровую мощность и трудности холодного пуска. Но описанные недостатки относятся в основном к старым конструкциям, а в современных эти проблемы уже не являются столь очевидными.

Конструкция

Особенности

Как уже отмечалось, конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако аналогичные детали у дизеля существенно усилены, чтобы воспринимать более высокие нагрузки – ведь степень сжатия у него намного выше (16-24 единиц против 9-11 у бензинового). Характерная деталь в конструкции дизелей — это поршень.

Форма днища поршней у дизелей определяется типом камеры сгорания, поэтому по форме легко определить, какому двигателю принадлежит данный поршень. Во многих случаях днище поршня содержит в себе камеру сгорания. Днища поршней находятся выше верхней плоскости блока цилиндров, когда поршень находится в верхней точке своего хода.

Так как воспламенение рабочей смеси осуществляется от сжатия, в дизелях отсутствует система зажигания, хотя свечи могут применяться и на дизеле. Но это не свечи зажигания, а свечи накаливания, которые предназначены для подогрева воздуха в камере сгорания при холодном пуске двигателя.

Поршни и свечи дизеля

Технические и экологические показатели автомобильного дизельного двигателя в первую очередь зависят от типа камеры сгорания и системы впрыскивания топлива.

Типы камер сгорания

Форма камеры сгорания значительно влияет на качество процесса смесеобразования, а значит и на мощность и шумность работы двигателя. Камеры сгорания дизельных двигателей разделяются на два основных типа: неразделенные и разделенные.

Несколько лет назад на рынке легкового машиностроения доминировали дизели с разделенными камерами сгорания. Впрыск топлива в этом случае осуществляется не в надпоршневое пространство, а в специальную камеру сгорания, выполненную в головке блока цилиндров. При этом различают два процесса смесеобразования: предкамерный (его еще называют форкамерным) и вихрекамерный.

Камеры сгорания дизельного двигателя

При форкамерном процессе топливо впрыскивается в специальную предварительную камеру, связанную с цилиндром несколькими небольшими каналами или отверстиями, ударяется об ее стенки и перемешивается с воздухом. Воспламенившись, смесь поступает в основную камеру сгорания, где и сгорает полностью. Сечение каналов подбирается так, чтобы при ходе поршня вверх (сжатие) и вниз (расширение) между цилиндром и форкамерой возникал большой перепад давления, вызывающий течение газов через отверстия с большой скоростью.

Во время вихрекамерного процесса сгорание также начинается в специальной отдельной камере, только выполненной в виде полого шара. В период такта сжатия воздух по соединительному каналу поступает в предкамеру и интенсивно закручивается (образует вихрь) в ней. Впрыснутое в определенный момент топливо хорошо перемешивается с воздухом.

Таким образом, при разделенной камере сгорания происходит как бы двухступенчатое сгорание топлива. Это снижает нагрузку на поршневую группу, а также делает звук работы двигателя более мягким. Недостатком дизельных двигателей с разделенной камерой сгорания являются: увеличение расхода топлива вследствие потерь из-за увеличенной поверхности камеры сгорания, больших потерь на перетекание воздушного заряда в дополнительную камеру и горящей смеси обратно в цилиндр. Кроме того, ухудшаются пусковые качества.

Дизельные двигатели с неразделенной камерой называют также дизелями с непосредственным впрыском. Топливо впрыскивается непосредственно в
цилиндр, камера сгорания выполнена в днище поршня. До недавнего времени непосредственный впрыск использовался на низкооборотистых дизелях большого объема (проще говоря, на грузовиках). Хотя такие двигатели экономичнее моторов с разделенными камерами сгорания, их применение на небольших дизелях сдерживалось трудностями организации процесса сгорания, а также повышенными шумом и вибрацией, особенно в режиме разгона.

Сейчас благодаря повсеместному внедрению электронного управления процессом дозирования топлива удалось оптимизировать процесс сгорания топливной смеси в дизеле с неразделенной камерой сгорания и существенно снизить шумность. Новые дизельные двигатели разрабатываются только с непосредственным впрыском.

Системы питания

Важнейшим звеном дизельного двигателя является система топливоподачи, обеспечивающая поступление необходимого количества топлива в нужный момент времени и с заданным давлением в камеру сгорания.

Система питания дизельного двигателя

Топливный насос высокого давления (ТНВД), принимая горючее из бака от подкачивающего насоса (низкого давления), в требуемой последовательности поочередно нагнетает нужные порции солярки в индивидуальную магистраль гидромеханической форсунки каждого цилиндра. Такие форсунки открываются исключительно под воздействием высокого давления в топливной магистрали и закрываются при его снижении.

Существует два типа ТНВД: рядные многоплунжерные и распределительного типа. Рядный ТНВД состоит из отдельных секций по числу цилиндров дизеля, каждая из которых имеет гильзу и входящий в нее плунжер, который приводится в движение кулачковым валом, получающим вращение от двигателя. Секции таких механизмов расположены, как правило, в ряд, отсюда и название – рядные ТНВД. Рядные насосы в настоящее время практически не применяются ввиду того, что они не могут обеспечить выполнение современных требований по экологии и шумности. Кроме того, давление впрыска таких насосов зависит от оборотов коленвала.

Распределительные ТНВД создают значительно более высокое давление впрыска топлива, нежели насосы рядные, и обеспечивают выполнение действующих нормативов, регламентирующих токсичность выхлопа. Этот механизм поддерживает нужное давление в системе в зависимости от режима работы двигателя. В распределительных ТНВД система нагнетания имеет один плунжер-распределитель, совершающий поступательное движение для нагнетания топлива и вращательное для распределения топлива по форсункам.

Эти насосы компактны, отличаются высокой равномерностью подачи топлива по цилиндрам и отличной работой на высоких оборотах. В то же время они предъявляют очень высокие требования к чистоте и качеству дизтоплива: ведь все их детали смазываются топливом, а зазоры в прецизионных элементах очень малы.

Ужесточение в начале 90-х законодательных экологических требований, предъявляемых к дизелям, заставило моторостроителей интенсивно совершенствовать топливоподачу. Сразу же стало ясно, что с устаревшей механической системой питания эту задачу не решить. Традиционные механические системы впрыска топлива имеют существенный недостаток: давление впрыска зависит от частоты вращения двигателя и нагрузочного режима.

Это значит, что при низкой нагрузке давление впрыска падает, в результате топливо при впрыске плохо распыляется, попадая в камеру сгорания слишком крупными каплями, которые оседают на ее внутренних поверхностях. Из-за этого уменьшается КПД сгорания топлива и повышается уровень токсичности отработанных газов.

Кардинально изменить ситуацию могла только оптимизация процесса горения топливо – воздушной смеси. Для чего надо заставить весь её объём воспламениться в максимально короткое время. А здесь необходима высокая точность дозы и точность момента впрыскивания. Сделать это можно, только подняв давление впрыска топлива и применив электронное управление процессом топливоподачи. Дело в том, что чем выше давление впрыска, тем лучше качество его распыления, а соответственно – и смешивания с воздухом.

В конечном итоге это способствует более полному сгоранию топливо-воздушной смеси, а значит и уменьшению вредных веществ в выхлопе. Хорошо, спросите вы, а почему бы не сделать такое же повышенное давление в обычном ТНВД и всей этой системе? Увы, не получится. Потому что есть такое понятие, как “волновое гидравлическое давление”. При любом изменении расхода топлива в трубопроводах от ТНВД к форсункам возникают волны давления, “бегающие” по топливопроводу. И чем сильнее давление, тем сильнее эти волны. И если далее повышать давление, то в какой-то момент может произойти обыкновенное разрушение трубопроводов. Ну, а о точности дозирования механической системы впрыска даже и говорить не приходится.

Насос-форсунка дизельного двигателя

В результате были разработаны два новых типа систем питания – в первом форсунку и плунжерный насос объединили в один узел (насос-форсунка), а в другом ТНВД начал работать на общую топливную магистраль (Common Rail), из которой топливо поступает на электромагнитные (или пьезоэлектрические) форсунки и впрыскивается по команде электронного блока управления. Но с принятием Евро 3 и 4 и этого оказалось мало, и в выхлопные системы дизелей внедрили сажевые фильтры и катализаторы.

Насос-форсунка устанавливается в головку блока двигателя для каждого цилиндра. Она приводится в действие от кулачка распределительного вала с помощью толкателя. Магистрали подачи и слива топлива выполнены в виде каналов в головке блока. За счет этого насос-форсунка может развить давление до 2200 бар. Дозированием топлива, сжатого до такой степени и управлением угла опережения впрыска занимается электронный блок управления, выдавая сигналы на запорные электромагнитные или пьезоэлектрические клапаны насос-форсунок.

Насос-форсунки могут работать в многоимпульсном режиме (2-4 впрыска за цикл). Это позволяет произвести предварительный впрыск перед основным, подавая в цилиндр сначала небольшую порцию топлива, что смягчает работу мотора и снижает токсичность выхлопа. Недостаток насос-форсунок – зависимость давления впрыска от оборотов двигателя и высокая стоимость данной технологии.

Система питания Common Rail

Система питания Common Rail используется в дизелях серийных моделей с 1997 года. Common Rail – это метод впрыска топлива в камеру сгорания под высоким давлением, не зависящим от частоты вращения двигателя или нагрузки. Главное отличие системы Common Rail от классической дизельной системы заключается в том, что ТНВД предназначен только для создания высокого давления в топливной магистрали. Он не выполняет функций дозировки цикловой подачи топлива и регулировки момента впрыска.

Система Common Rail состоит из резервуара – аккумулятора высокого давления (иногда его называют рампой), топливного насоса, электронного блока управления (ЭБУ) и комплекта форсунок, соединенных с рампой. В рампе блок управления поддерживает, меняя производительность насоса, постоянное давление на уровне 1600-2000 бар при различных режимах работы двигателя и при любой последовательности впрыска по цилиндрам.

Открытием-закрытием форсунок управляет ЭБУ, который рассчитывает оптимальный момент и длительность впрыска, на основании данных целого ряда датчиков – положения педали акселератора, давления в топливной рампе, температурного режима двигателя, его нагрузки и т. п. Форсунки могуть быть электромагнитными, либо более современными- пьезоэлектрическими. Главные преимущества пьезоэлектрических форсунок – высокая скорость срабатывания и точность дозирования. Форсунки в дизелях c Common rail могут работать в многоимпульсном режиме: в ходе одного цикла топливо впрыскивается несколько раз – от двух до семи. Сначала поступает крохотная, всего около милиграмма, доза, которая при сгорании повышает температуру в камере, а следом идет главный «заряд».

Для дизеля — двигателя с воспламенением топлива от сжатия — это очень важно, так как при этом давление в камере сгорания нарастает более плавно, без «рывка». Вследствие этого мотор работает мягче и менее шумно, снижается количество вредных компонентов в выхлопе. Многократная подача топлива за один такт попутно обеспечивает снижение температуры в камере сгорания, что приводит к уменьшению образования окиси азота- одной из наиболее токсичных составляющих выхлопных газов дизеля.

Характеристики двигателя с Common Rail во многом зависят от давления впрыска. В системах третьего поколения оно составляет 2000 бар. В ближайшее время в серию будет запущено четвертое поколение Common Rail с давлением впрыска 2500 бар.

Турбодизель

Эффективным средством повышения мощности и гибкости работы является турбонаддув двигателя. Он позволяет подать в цилиндры дополнительное количество воздуха и соответственно увеличить подачу топлива на рабочем цикле, в результате чего увеличивается мощность двигателя.

Давление выхлопных газов дизеля в 1,5-2 раза выше, чем у бензинового мотора, что позволяет турбокомпрессору обеспечить эффективный наддув с самых низких оборотов, избежав свойственного бензиновым турбомоторам провала – “турбоямы”. Отсутствие дроссельной заслонки в дизеле позволяет обеспечить эффективное наполнение цилиндров на всех оборотах без применения сложной схемы управления турбокомпрессором.

На многих автомобилях устанавливается промежуточный охладитель наддуваемого воздуха – интеркулер, позволяющий поднять массовое наполнение цилиндров и на 15-20 % увеличить мощность. Наддув позволяет добиться одинаковой мощности с атмосферным мотором при меньшем рабочем объеме, а значит, снизить массу двигателя. Турбонаддув, помимо всего прочего, служит для автомобиля средством повышения “высотности” двигателя – в высокогорных районах, где атмосферному дизелю не хватает воздуха, наддув оптимизирует сгорание и позволяет уменьшить жесткость работы и потерю мощности.

В то же время турбодизель имеет и некоторые недостатки, связанные в основном с надежностью работы турбокомпрессора. Так, ресурс турбокомпрессора существенно меньше ресурса двигателя. Турбокомпрессор предъявляет жесткие требования к качеству моторного масла. Неисправный агрегат может полностью вывести из строя сам двигатель. Кроме того, собственный ресурс турбодизеля несколько ниже такого же атмосферного дизеля из-за большой степени форсирования. Такие двигатели имеют повышенную температуру газов в камере сгорания, и чтобы добиться надежной работы поршня, его приходится охлаждать маслом, подаваемым снизу через специальные форсунки.

Прогресс дизельных двигателей сегодня преследует две основные цели: увеличение мощности и уменьшение токсичности. Поэтому все современные легковые дизели имеют турбонаддув (самый эффективный способ увеличения мощности) и Соmmоn Rail.

avtonov.info

Дизельный двигатель - это... Что такое Дизельный двигатель?

Ди́зельный дви́гатель — поршневой двигатель внутреннего сгорания, работающий по принципу самовоспламенения распылённого топлива от воздействия разогретого при сжатии воздуха.[1]

Спектр топлива для дизелей весьма широк, сюда включаются все фракции нефтеперегонки от керосина до мазута и ряд продуктов природного происхождения — рапсовое масло, фритюрный жир, пальмовое масло и многие другие. Дизель может с определённым успехом работать и на сырой нефти.

Компрессионные карбюраторные двигатели не относят к дизельным двигателям, так как в «дизелях» происходит сжатие чистого воздуха, а не топливо-воздушной смеси. Топливо впрыскивается в конце такта сжатия.[2][3].

История

В 1824 году Сади Карно формулирует идею цикла Карно, утверждая, что в максимально экономичной тепловой машине нагревать рабочее тело до температуры горения топлива необходимо «изменением объема», то есть быстрым сжатием. В 1890 году Рудольф Дизель предложил свой способ практической реализации этого принципа. Он получил патент на свой двигатель 23 февраля 1892 года (в США в 1895 году[2]), в 1893 году выпустил брошюру. Ещё несколько вариантов конструкции были им запатентованы позднее.[3] После нескольких неудач первый практически применимый образец, названый Дизель-мотором, был построен Дизелем к началу 1897 года, и 28 января того же года он был успешно испытан. Дизель активно занялся продажей лицензий на новый двигатель. Несмотря на высокий КПД и удобство эксплуатации по сравнению с паровой машиной практическое применение такого двигателя было ограниченным: он уступал паровым машинам того времени по размерам и весу.

Первые двигатели Дизеля работали на растительных маслах или лёгких нефтепродуктах. Интересно, что первоначально в качестве идеального топлива он предлагал каменноугольную пыль. Эксперименты же показали невозможность использования угольной пыли в качестве топлива — прежде всего из-за высоких абразивных свойств как самой пыли, так и золы, получающейся при сгорании; также возникали большие проблемы с подачей пыли в цилиндры.

Инженер Экройд Стюарт (англ.)русск. ранее высказывал похожие идеи и в 1886 году построил действующий двигатель (см. полудизель). Он предложил двигатель, в котором воздух втягивался в цилиндр, сжимался, а затем нагнетался (в конце такта сжатия) в ёмкость, в которую впрыскивалось топливо. Для запуска двигателя ёмкость нагревалась лампой снаружи, и после запуска самостоятельная работа поддерживалась без подвода тепла снаружи. Экройд Стюарт не рассматривал преимущества работы от высокой степени сжатия, он просто экспериментировал с возможностями исключения из двигателя свечей зажигания, то есть он не обратил внимания на самое большое преимущество — топливную эффективность.

Независимо от Дизеля в 1898 году на Путиловском заводе в Петербурге инженером Густавом Тринклером был построен первый в мире «бескомпрессорный нефтяной двигатель высокого давления», то есть дизельный двигатель в его современном виде с форкамерой, который назвали «Тринклер-мотором». При сопоставлении Дизель-мотора и Тринклер-мотора русская конструкция, появившаяся на полтора года позднее немецкой и испытанная на год позднее, оказалась гораздо более удачной в плане практического использования. Именно Тринклер-мотор был первым двигателем с воспламенением от сжатия, работавшим на сырой нефти. Использование гидравлической системы для нагнетания и впрыска топлива позволило отказаться от отдельного воздушного компрессора и сделало возможным увеличение скорости вращения. Российская конструкция оказалась проще, надёжнее и перспективнее немецкой.[4] Однако под давлением Нобелей и других обладателей лицензий Дизеля работы над двигателем в 1902 году были прекращены.

В 1898 г. Эммануэль Нобель приобрёл лицензию на двигатель внутреннего сгорания Рудольфа Дизеля. С 1899 г. Механический завод «Людвиг Нобель» в Петербурге развернул массовое производство дизелей. В Петербурге Тринклер приспособил двигатель для работы на сырой нефти вместо керосина. В 1900 г на Всемирной выставке в Париже двигатель Дизеля получил Гран-при, чему способствовало известие, что завод Нобеля в Петербурге наладил выпуск двигателей, работавших на сырой нефти. Этот двигатель получил в Европе название «русский дизель».[5] Выдающийся русский инженер Аршаулов впервые построил и внедрил топливный насос высокого давления оригинальной конструкции — с приводом от сжимаемого в цилиндре воздуха, работавший с бескомпрессорной форсункой (В. Т. Цветков, «Двигатели внутреннего сгорания», МАШГИЗ, 1954 г.).

В настоящее время для обозначения ДВС с воспламенением от сжатия используется термин «двигатель Дизеля», «дизельный двигатель» или просто «дизель», так как теория Рудольфа Дизеля стала основой для создания современных двигателей этого типа. В дальнейшем около 20—30 лет такие двигатели широко применялись в стационарных механизмах и силовых установках морских судов, однако существовавшие тогда системы впрыска топлива с воздушными компрессорами не позволяли применять дизели в высокооборотных агрегатах. Небольшая скорость вращения, значительный вес воздушного компрессора, необходимого для работы системы впрыска топлива сделали невозможным применение первых дизелей на автотранспорте.

В 20-е годы XX века немецкий инженер Роберт Бош усовершенствовал встроенный топливный насос высокого давления, устройство, которое широко применяется и в наше время. Он же создал удачную модификацию бескомпрессорной форсунки. Востребованный в таком виде высокооборотный дизель стал пользоваться всё большей популярностью как силовой агрегат для вспомогательного и общественного транспорта, однако доводы в пользу карбюраторных двигателей (традиционный принцип работы, лёгкость и небольшая цена производства) позволяли им пользоваться большим спросом для установки на пассажирских и небольших грузовых автомобилях: с 50-х — 60-х годов XX века дизель устанавливается в больших количествах на грузовые автомобили и автофургоны, а в 70-е годы после резкого роста цен на топливо на него обращают серьёзное внимание мировые производители недорогих маленьких пассажирских автомобилей.

В дальнейшие годы происходит рост популярности дизельных двигателей для легковых и грузовых автомобилей, не только из-за экономичности и долговечности дизеля, но также из-за меньшей токсичности выбросов в атмосферу. Все ведущие европейские производители автомобилей в настоящее время имеют модели с дизельным двигателем.

Дизельные двигатели применяются также на железной дороге. Локомотивы, использующие дизельный двигатель — тепловозы — являются основным видом локомотивов на неэлектрифицированных участках, дополняя электровозы за счёт автономности. Тепловозы перевозят до 40 % грузов и пассажиров в России, они выполняют 98 % маневровой работы[источник не указан 995 дней]. Существуют также одиночные автомотрисы, дрезины и мотовозы, которые повсеместно используются на электрифицированных и неэлектрифицированных участках для обслуживания и ремонта пути и объектов инфраструктуры. Иногда автомотрисы и небольшие дизель-поезда называют рельсовыми автобусами.

Принцип работы

Четырёхтактный цикл

Работа четырёхтактного дизельного двигателя.
  • 1-й такт. Впуск. Соответствует 0° — 180° поворота коленвала. Через открытый ~от 345—355° впускной клапан воздух поступает в цилиндр, на 190—210° клапан закрывается. По крайней мере до 10-15° поворота коленвала одновременно открыт выхлопной клапан, время совместного открытия клапанов называется перекрытием клапанов.
  • 2-й такт. Сжатие. Соответствует 180° — 360° поворота коленвала. Поршень, двигаясь к ВМТ (верхней мёртвой точке), сжимает воздух в 16(в тихоходных)-25(в быстроходных) раз.
  • 3-й такт. Рабочий ход, расширение. Соответствует 360° — 540° поворота коленвала. При распылении топлива в горячий воздух происходит инициация сгорания топлива, то есть частичное его испарение, образование свободных радикалов в поверхностных слоях капель и в парáх, наконец, оно вспыхивает и сгорает по мере поступления из форсунки, продукты горения, расширяясь, двигают поршень вниз. Впрыск и, соответственно, воспламенение топлива происходит чуть раньше момента достижения поршнем мёртвой точки вследствие некоторой инертности процесса горения. Отличие от опережения зажигания в бензиновых двигателях в том, что задержка необходима только из-за наличия времени инициации, которое в каждом конкретном дизеле — величина постоянная и изменению в процессе работы не подлежит. Сгорание топлива в дизеле происходит, таким образом, длительно, столько времени, сколько длится подача порции топлива из форсунки. Вследствие этого рабочий процесс протекает при относительно постоянном давлении газов, из-за чего двигатель развивает большой крутящий момент. Из этого следуют два важнейшие вывода.
    • 1. Процесс горения в дизеле длится ровно столько времени, сколько требуется для впрыска данной порции топлива, но не дольше времени рабочего хода.
    • 2. Соотношение топливо/воздух в цилиндре дизеля может существенно отличаться от стехиометрического, причем очень важно обеспечить избыток воздуха, так как пламя факела занимает небольшую часть объема камеры сгорания и атмосфера в камере должна до последнего обеспечить нужное содержание кислорода. Если этого не происходит, возникает массивный выброс несгоревших углеводородов с сажей — «тепловоз „даёт“ медведя».).
  • 4-й такт. Выпуск. Соответствует 540° — 720° поворота коленвала. Поршень идёт вверх, через открытый на 520—530° выхлопной клапан поршень выталкивает отработавшие газы из цилиндра.

Далее цикл повторяется.

В зависимости от конструкции камеры сгорания, существует несколько типов дизельных двигателей:

  • Дизель с неразделённой камерой: камера сгорания выполнена в поршне, а топливо впрыскивается в надпоршневое пространство. Главное достоинство — минимальный расход топлива. Недостаток — повышенный шум («жесткая работа»), особенно на холостом ходу. В настоящее время ведутся интенсивные работы по устранению указанного недостатка. Например, в системе Common Rail для снижения жёсткости работы используется (зачастую многостадийный) предвпрыск.
  • Дизель с разделённой камерой: топливо подаётся в дополнительную камеру. В большинстве дизелей такая камера (она называется вихревой либо предкамерой) связана с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в оную камеру, интенсивно завихрялся. Это способствует хорошему перемешиванию впрыскиваемого топлива с воздухом и более полному сгоранию топлива. Такая схема долго считалась оптимальной для легких дизелей и широко использовалась на легковых автомобилях. Однако, вследствие худшей экономичности, последние два десятилетия идёт активное вытеснение таких дизелей двигателями с нераздельной камерой и с системами подачи топлива Common Rail.

Двухтактный цикл

Принцип работы двухтактного дизельного двигателя Продувка двухтактного дизельного двигателя: внизу — продувочные окна, выпускной клапан верху открыт

Кроме вышеописанного четырёхтактного цикла, в дизеле возможно использование двухтактного цикла.

При рабочем ходе поршень идёт вниз, открывая выпускные окна в стенке цилиндра, через них выходят выхлопные газы, одновременно или несколько позднее открываются и впускные окна, цилиндр продувается свежим воздухом из воздуходувки — осуществляется продувка, совмещающая такты впуска и выпуска. Когда поршень поднимается, все окна закрываются. С момента закрытия впускных окон начинается сжатие. Чуть не достигая ВМТ, из форсунки распыляется и загорается топливо. Происходит расширение — поршень идёт вниз и снова открывает все окна и т. д.

Продувка является врожденным слабым звеном двухтактного цикла. Время продувки, в сравнением с другими тактами, невелико и увеличить его невозможно, иначе будет падать эффективность рабочего хода за счет его укорочения. В четырёхтактном цикле на те же процессы отводится половина цикла. Полностью разделить выхлоп и свежий воздушный заряд тоже невозможно, поэтому часть воздуха теряется, выходя прямо в выхлопную трубу. Если же смену тактов обеспечивает один и тот же поршень, возникает проблема, связанная с симметрией открывания и закрывания окон. Для лучшего газообмена выгоднее иметь опережение открытия и закрытия выхлопных окон. Тогда выхлоп, начинаясь ранее, обеспечит снижение давления остаточных газов в цилиндре к началу продувки. При закрытых ранее выхлопных окнах и открытых — еще — впускных осуществляется дозарядка цилиндра воздухом, и, если воздуходувка обеспечивает избыточное давление, становится возможным осуществление наддува.

Окна могут использоваться и для выпуска отработавших газов, и для впуска свежего воздуха; такая продувка называется щелевой или оконной. Если отработавшие газы выпускаются через клапан в головке цилиндра, а окна используются только для впуска свежего воздуха, продувка называется клапанно-щелевой. Существуют двигатели, где в каждом цилиндре находятся два встречно двигающихся поршня; каждый поршень управляет своими окнами — один впускными, другой выпускными (система Фербенкс-Морзе — Юнкерса — Корейво: дизели этой системы семейства Д100 использовались на тепловозах ТЭ3, ТЭ10, танковых двигателях 4ТПД, 5ТД(Ф) (Т-64), 6ТД (Т-80УД), 6ТД-2 (Т-84), в авиации — на бомбардировщиках Junkers (Jumo 204, Jumo 205).

В двухтактном двигателе рабочие ходы происходят вдвое чаще, чем в четырёхтактном, но из-за наличия продувки двухтактный дизель мощнее такого же по объёму четырёхтактного максимум в 1,6—1,7 раз.

В настоящее время тихоходные двухтактные дизели весьма широко применяются на больших морских судах с непосредственным (безредукторным) приводом гребного винта. Ввиду удвоения количества рабочих ходов на одних и тех же оборотах двухтактный цикл оказывается выгодным при невозможности повысить частоту вращения, кроме того, двухтактный дизель технически проще реверсировать; такие тихоходные дизели имеют мощность до 100 000 л.с.

В связи с тем, что организовать продувку вихревой камеры (или предкамеры) при двухтактном цикле сложно, двухтактные дизели строят только с неразделёнными камерами сгорания.

Варианты конструкции

Крейцкопфный (слева) и тронковый (справа) двигатели. Номером 10 обозначен крейцкопф.

Для средних и тяжелых двухтактных дизельных двигателей характерно применение составных поршней, в которых используется стальная головка и дюралевая юбка. Основной целью данного усложнения конструкции является снижение общей массы поршня при сохранении максимально возможной жаростойкости донышка. Очень часто используются конструкции с масляным жидкостным охлаждением.

В отдельную группу выделяются четырехтактные двигатели, содержащие в конструкции крейцкопф. В крейцкопфных двигателях шатун присоединяется к крейцкопфу — ползуну, соединенному с поршнем штоком (скалкой). Крейцкопф работает по своей направляющей — крейцу, без воздействия повышенных температур, полностью ликвидируя воздействие боковых сил на поршень. Данная конструкция характерна для крупных длинноходных судовых двигателей, часто — двойного действия, ход поршня в них может достигать 3 метров; тронковые поршни таких размеров были бы перетяжеленными, тронки с такой площадью трения существенно снизили бы механический КПД дизеля.

Реверсивные двигатели

Большинство ДВС рассчитаны на вращение только в одну сторону; если требуется получить на выходе вращение в разные стороны, то используют передачу заднего хода в коробке перемены передач или отдельный реверс-редуктор. Электрическая передача также позволяет менять направление вращения на выходе.

Однако на судах с жёстким соединением двигателя с гребным винтом фиксированного шага приходится применять реверсивные двигатели, чтобы иметь возможность двигаться задним ходом. Для этого нужно изменять фазы открытия клапанов и впрыска топлива. Обычно распределительные валы снабжаются двойным количеством кулачков; при остановленном двигателе специальное устройство приподнимает толкатели клапанов, что даёт возможность передвинуть распредвалы в новое положение. Встречаются также конструкции с реверсивным приводом распределительного вала — здесь при изменении направления вращения коленчатого вала сохраняется направление вращения распределительного вала. Двухтактные двигатели с контурной продувкой, когда газораспределение осуществляется поршнем, не нуждаются в специальных реверсивных устройствах (однако в них всё же требуется корректировка момента впрыска топлива).

Реверсивные двигатели также применялись на ранних тепловозах с жёстким соединением вала двигателя с колёсами.

Преимущества и недостатки

Проверить информацию.

Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.
На странице обсуждения должны быть пояснения.

Возможно, эта статья содержит оригинальное исследование.

Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление.
Дополнительные сведения могут быть на странице обсуждения.

Современные дизельные двигатели обычно имеют коэффициент полезного действия до 40-45 %, некоторые малооборотные крупные дизели — свыше 50 % (например, MAN S80ME-C7 тратит только 155 гр на кВт*ч, достигая эффективности 54,4 %).[6] Дизельный двигатель из-за особенностей рабочего процесса не предъявляет жестких требований к испаряемости топлива, что позволяет использовать в нём низкосортные тяжелые масла.

Дизельный двигатель не может развивать высокие обороты — топливо не успевает догореть в цилиндрах, для возгорания требуется время инициации. Высокая механическая напряженость дизеля вынуждает использовать более массивные и более дорогие детали, что утяжеляет двигатель. Это снижает удельную мощность двигателя, что послужило причиной малого распространения дизелей в авиации (только некоторые бомбардировщики Junkers, а также советский тяжёлый бомбардировщик Пе-8 и Ер-2, оснащавшиеся авиационными дизелями АЧ-30 и АЧ-40 конструкции А. Д. Чаромского и Т. М. Мелькумова). На максимальных эксплуатационных режимах топливо в дизеле не догорает, приводя к выбросу облаков сажи.

Сгорание впрыскиваемого в цилиндр дизеля топлива происходит по мере впрыска. Потому дизель выдаёт высокий вращающий момент при низких оборотах, что делает автомобиль с дизельным двигателем более «отзывчивым» в движении, чем такой же автомобиль с бензиновым двигателем. По этой причине и ввиду более высокой экономичности в настоящее время большинство грузовых автомобилей оборудуются дизельными двигателями[источник не указан 196 дней]. Например, в России в 2007 году почти все грузовики и автобусы были оснащены дизельными двигателями (окончательный переход этого сегмента автотранспорта с бензиновых двигателей на дизели планировалось завершить к 2009 году)[7]. Это является преимуществом также и в двигателях морских судов, так как высокий крутящий момент при низких оборотах делает более лёгким эффективное использование мощности двигателя, а более высокий теоретический КПД (см. Цикл Карно) даёт более высокую топливную эффективность.

По сравнению с бензиновыми двигателями, в выхлопных газах дизельного двигателя, как правило, меньше окиси углерода (СО), но теперь, в связи с применением каталитических конвертеров на бензиновых двигателях, это преимущество не так заметно. Основные токсичные газы, которые присутствуют в выхлопе в заметных количествах — это углеводороды (НС или СН) , оксиды (окислы) азота (NOх) и сажа (или её производные) в форме чёрного дыма. Больше всего загрязняют атмосферу в России дизели грузовиков и автобусов, которые часто являются старыми и неотрегулированными.

Другим важным аспектом, касающимся безопасности, является то, что дизельное топливо нелетучее (то есть легко не испаряется) и, таким образом, вероятность возгорания у дизельных двигателей намного меньше, тем более, что в них не используется система зажигания. Вместе с высокой топливной экономичностью это стало причиной широкого применения дизелей на танках, поскольку в повседневной небоевой эксплуатации уменьшался риск возникновения пожара в моторном отделении из-за утечек топлива. Меньшая пожароопасность дизельного двигателя в боевых условиях является мифом, поскольку при пробитии брони снаряд или его осколки имеют температуру, сильно превышающую температуру вспышки паров дизельного топлива и так же способны достаточно легко поджечь вытекшее горючее. Детонация смеси паров дизельного топлива с воздухом в пробитом топливном баке по своим последствиям сравнима со взрывом боекомплекта[источник не указан 400 дней], в частности, у танков Т-34 она приводила к разрыву сварных швов и выбиванию верхней лобовой детали бронекорпуса[источник не указан 400 дней]. С другой стороны, дизельный двигатель в танкостроении уступает карбюраторному в плане удельной мощности, а потому в ряде случаев (высокая мощность при малом объёме моторного отделения) более выигрышным может быть использование именно карбюраторного силового агрегата (хотя это характерно для слишком уж лёгких боевых единиц).

Конечно, существуют и недостатки, среди которых — характерный стук дизельного двигателя при его работе. Однако, они замечаются в основном владельцами автомобилей с дизельными двигателями, а для стороннего человека практически незаметны.

Явными недостатками дизельных двигателей являются необходимость использования стартёра большой мощности, помутнение и застывание (запарафинивание) летнего дизельного топлива при низких температурах, сложность и более высокая цена в ремонте топливной аппаратуры, так как насосы высокого давления являются прецизиоными устройствами. Также дизель-моторы крайне чувствительны к загрязнению топлива механическими частицами и водой. Ремонт дизель-моторов, как правило, значительно дороже ремонта бензиновых моторов аналогичного класса. Литровая мощность дизельных моторов также, как правило, уступает аналогичным показателям бензиновых моторов, хотя дизель-моторы обладают более ровным и высоким крутящим моментом в своём рабочем объёме. Экологические показатели дизельных двигателей значительно уступали до последнего времени двигателям бензиновым. На классических дизелях с механически управляемым впрыском возможна установка только окислительных нейтрализаторов отработавших газов, работающих при температуре отработавших газов свыше 300 °C, которые окисляют только CO и CH до безвредных для человека углекислого газа (CO2) и воды. Также раньше данные нейтрализаторы выходили из строя вследствие отравления их соединениями серы (количество соединений серы в отработавших газах напрямую зависит от количества серы в дизельном топливе) и отложением на поверхности катализатора частиц сажи. Ситуация начала меняться лишь в последние годы в связи с внедрением дизелей так называемой системы Common rail. В данном типе дизелей впрыск топлива осуществляется электронно-управляемыми форсунками. Подачу управляющего электрического импульса осуществляет электронный блок управления, получающий сигналы от набора датчиков. Датчики же отслеживают различные параметры двигателя, влияющие на длительность и момент подачи топливного импульса. Так что, по сложности современный — и экологически такой же чистый, как и бензиновый — дизель-мотор ничем не уступает своему бензиновому собрату, а по ряду параметров (сложности) и значительно его превосходит. Так, например, если давление топлива в форсунках обычного дизеля с механическим впрыском составляет от 100 до 400 бар (приблизительно эквивалентно «атмосфер»), то в новейших системах «Common-rail» оно находится в диапазоне от 1000 до 2500 бар, что влечёт за собой немалые проблемы. Также каталитическая система современных транспортных дизелей значительно сложнее бензиновых моторов, так как катализатор должен «уметь» работать в условиях нестабильного состава выхлопных газов, а в части случаев требуется введение так называемого «сажевого фильтра» (DPF - фильтр твёрдых частиц). «Сажевый фильтр» представляет собой подобную обычному каталитическому нейтрализатору структуру, устанавливаемую между выхлопным коллектором дизеля и катализатором в потоке выхлопных газов. В сажевом фильтре развивается высокая температура, при которой частички сажи способны окислиться остаточным кислородом, содержащимся в выхлопных газах. Однако часть сажи не всегда окисляется, и остается в «сажевом фильтре», поэтому программа блока управления периодически переводит двигатель в режим «очистки сажевого фильтра» путём так называемой «постинжекции», то есть впрыска дополнительного количества топлива в цилиндры в конце фазы сгорания с целью поднять температуру газов, и, соответственно, очистить фильтр путём сжигания накопившейся сажи. Стандартом де-факто в конструкциях транспортных дизель-моторов стало наличие турбонагнетателя, а в последние годы — и «интеркулера» — устройства, охлаждающего воздух после сжатия турбонагнетателем — чтобы после охлаждения получить большую массу воздуха (кислорода) в камере сгорания при прежней пропускной способности коллекторов, а Нагнетатель позволил поднять удельные мощностные характеристики массовых дизель-моторов, так как позволяет пропустить за рабочий цикл большее количество воздуха через цилиндры.

В своей основе конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако, аналогичные детали у дизеля тяжелее и более устойчивы к высоким давлениям сжатия, имеющим место у дизеля, в частности, хон на поверхности зеркала цилиндра более грубый, но твёрдость стенок блока цилиндров выше. Головки поршней, однако, специально разработаны под особенности сгорания в дизельных двигателях и почти всегда рассчитаны на повышенную степень сжатия. Кроме того, головки поршней в дизельном двигателе находятся выше (для автомобильного дизеля) верхней плоскости блока цилиндров. В некоторых случаях — в устаревших дизелях — головки поршней содержат в себе камеру сгорания («прямой впрыск»).

Сферы применения

Дизельные двигатели применяются для привода стационарных силовых установок, на рельсовых (тепловозы, дизелевозы, дизель-поезда, автодрезины) и безрельсовых (автомобили, автобусы, грузовики) транспортных средствах, самоходных машинах и механизмах (тракторы, асфальтовые катки, скреперы и т. д.), а также в судостроении в качестве главных и вспомогательных двигателей.

Мифы о дизельных двигателях

Цех судовых дизелей завода «Даймлер-Бенц» в Штутгарте Дизельный двигатель с турбонаддувом
  • Дизельный двигатель слишком медленный.

Современные дизельные двигатели с системой турбонаддува гораздо эффективнее своих предшественников, а иногда и превосходят своих бензиновых атмосферных (без турбонаддува) собратьев с таким же объёмом. Об этом говорит дизельный прототип Audi R10, выигравший 24-х часовую гонку в Ле-Мане, и новые двигатели BMW, которые не уступают по мощности атмосферным (без турбонаддува) бензиновым и при этом обладают огромным крутящим моментом.

  • Дизельный двигатель слишком громко работает.

Громкая работа двигателя свидетельствует о неправильной эксплуатации и возможных неисправностях. На самом деле некоторые старые дизели с непосредственным впрыском действительно отличаются весьма жёсткой работой. С появлением аккумуляторных топливных систем высокого давления («Common-rail») у дизельных двигателей удалось значительно снизить шум, прежде всего за счёт разделения одного импульса впрыска на несколько (типично — от 2-х до 5-ти импульсов).

  • Дизельный двигатель гораздо экономичнее.

Основная экономичность обусловлена более высоким КПД дизельного двигателя. В среднем современный дизель расходует топлива до 30 % меньше[8]. Срок службы дизельного двигателя больше бензинового и может достигать 400—600 тысяч километров. Запчасти для дизельных двигателей несколько дороже, стоимость ремонта так же выше, особенно топливной аппаратуры. По вышеперечисленным причинам, затраты на эксплуатацию дизельного двигателя несколько меньше, чем у бензинового. Экономия по сравнению с бензиновыми моторами возрастает пропорционально мощности, чем определяется популярность использования дизельных двигателей в коммерческом транспорте и большегрузной технике.

  • Дизельный двигатель нельзя переоборудовать под использование в качестве топлива более дешёвого газа.

С первых моментов построения дизелей строилось и строится огромное количество их, рассчитанных для работы на газе разного состава. Способов перевода дизелей на газ, в основном, два. Первый способ заключается в том, что в цилиндры подаётся обеднённая газо-воздушная смесь, сжимается и поджигается небольшой запальной струёй дизельного топлива. Двигатель, работающий таким способом, называется газодизельным. Второй способ заключается в конвертации дизеля со снижением степени сжатия, установкой системы зажигания и, фактически, с построением вместо дизеля газового двигателя на его основе.

Рекордсмены

Самый большой/мощный дизельный двигатель

Судовой, 14 цилиндровый — Wärtsilä-Sulzer RTA96-C, созданный финской компанией Wärtsilä в 2002 году, для установки на крупные морские контейнеровозы и танкеры, является самым большим дизелем в мире[9].

Конфигурация — 14 цилиндров в ряд

Рабочий объём — 25 480 литров

Диаметр цилиндра — 960 мм

Ход поршня — 2500 мм

Среднее эффективное давление — 1,96 МПа (19,2 кгс/см²)

Мощность — 108 920 л.с. при 102 об/мин. (отдача с литра 4,3 л.с.)

Крутящий момент — 7 571 221 Н·м

Расход топлива — 13 724 литров в час

Сухая масса — 2300 тонн

Габариты — длина 27 метров, высота 13 метров

Самый большой дизельный двигатель для грузового автомобиля[источник не указан 1275 дней]

MTU 20V400 предназначен, для установки на карьерный самосвал БелАЗ-7561.

Мощность — 3807 л.с. при 1800 об/мин. (Удельный расход топлива при номинальной мощности 198 г/кВт*ч)

Крутящий момент — 15728 Н·м

Самый большой/мощный серийный дизельный двигатель для серийного легкового автомобиля[источник не указан 1275 дней]

Audi 6.0 V12 TDI с 2008 года устанавливается на автомобиль Audi Q7.

Конфигурация — 12 цилиндров V-образно, угол развала 60 градусов.

Рабочий объём — 5934 см³

Диаметр цилиндра — 83 мм

Ход поршня — 91,4 мм

Степень сжатия — 16

Мощность — 500 л.с. при 3750 об/мин. (отдача с литра — 84,3 л.с.)

Крутящий момент — 1000 Нм в диапазоне 1750-3250 об/мин.

См. также

Примечания

Ссылки

dic.academic.ru

Как работает дизельный двигатель? Принцип работы дизельного двигателя :: SYL.ru

За последние десять лет дизельные технологии стремительно развивались. Большая часть современных автомобилей, которые производятся в Европе, выпускаются именно с дизельными двигателями. Конечно, принцип работы данного устройства не изменился. Однако работает современный дизельный мотор намного тише. Он стал экологически чище. В далеком прошлом остались сильное тарахтение, густой черный дым и неприятный запах при работе прибора. Итак, каков принцип работы дизельного двигателя?

Как работает дизельный двигатель?

Заключается принцип действия дизельного двигателя в следующим: в цилиндр

всасывается чистый воздух при движении поршня вниз. А при перемещении клапана вверх он нагревается. Стоит отметить, что температура при работе дизельного двигателя может быть от 700 до 900°. Это достигается при сильном сжатии. Когда поршень перемещается в мертвую верхнюю точку, происходит впрыскивание дизельного топлива в камеру сгорания под достаточно высоким давлением. При соприкосновении с горячим воздухом происходит воспламенение горючего. В результате этого давление в цилиндре возрастает, так как самовоспламенившееся топливо расширяется. Именно это и вызывает сильный шум при работе агрегата.

Преимущества и недостатки

Такой принцип работы дизельного двигателя позволяет использовать бедную смесь. Топливо для таких устройств относительно недорогое. Это делает дизельные моторы неприхотливыми и экономичными. Стоит отметить, что в отличие от бензиновых такие агрегаты обладают большим крутящим моментом, а КПД выше на 10%. К минусам

дизельного двигателя стоит отнести повышенный уровень шума, вибрацию, малую мощность на одну единицу объема, сложность холодного пуска. Более современные модели практически лишены таких недостатков.

Устройство и особенности некоторых узлов

Учитывая принцип работы дизельного двигателя, детали к таким агрегатам значительно усиливаются, так как они должны выдерживать высокие нагрузки. Среди основных частей агрегата стоит выделить поршень. Форма его днища зависит от типа камеры сгорания, которая может быть встроена в дно клапана. В поршне для дизельного двигателя днище обычно выступает за верхнюю часть блока цилиндра. Привычной системы зажигания в агрегатах такого типа нет. Хотя в них тоже применяются свечи.

Турбина

Мощность, которую способен развить мотор, зависит от количества топлива и воздуха, которые в него поступают. Чтобы повысить возможности агрегата, необходимо увеличить содержание перечисленных компонентов. Для поступления в камеру сгорания большего количества топлива, следует поднять уровень воздуха, который

попадает в цилиндр. Для этого применяется дополнительное оборудование. Принцип работы турбины дизельного двигателя достаточно прост. Деталь позволяет нагнетать больше воздуха. Благодаря этому увеличиваются объемы сжигаемого топлива, что значительно повышает количество выделяемой энергии.

Камеры сгорания

В дизельных двигателях могут использоваться камеры сгорания нескольких типов: разделенные и неразделенные. Первый тип применялся в легковом машиностроении, но с недавних пор его заменили на более простой. Ведь при использовании разделенных отсеков топливо впрыскивалось в ту камеру сгорания, которая располагалась в головке цилиндра, а не в полость поршня. Выполнялись подобные детали также по-разному и зависело это от процессов образования смеси: вихрекамерные либо предкамерные.

В последнем случае топливо впрыскивается в предварительный отсек, который

сообщается маленькими клапанами или же отверстиями с цилиндром. При этом горючее смешивается с воздухом, ударяясь о стенки. Самовоспламенившись топливо попадает в основную камеру, где уже полностью сгорает. Что касается вихрекамернного процесса сгорания, то он, как и в первом случае, начинается в отдельном отсеке, который представляет собой полую сферу. Через соединительные каналы воздух попадает во время такта сжатия в камеру. Закручивается в ней и образует вихрь. В результате этого горючая смесь, впрыснутая в отсек, хорошо перемешивается с воздухом. Такое строение камер сгорания имеет несколько недостатков. Во-первых, затрачивается больше топлива, так как происходят большие потери из-за объема отсеков. Во-вторых, значительные потери при перетекании в дополнительную камеру из цилиндра воздуха, а также на обратный процесс: перемещение горючего в цилиндр. Стоит отметить, что подобный принцип работы дизельного двигателя применяется редко, так как происходит ухудшение пусковых характеристик агрегата.

Неразделенные камеры сгорания

В двигателе с непосредственным впрыском отсек сгорания имеет определенную форму и является полостью. Встраивается такая камера сгорания непосредственно в днище

поршня. При этом топливо впрыскивается сразу в цилиндр. Несмотря на простоту конструкции, имеются у такой системы и недостатки. Дизельные моторы такого плана практически невозможно использовать, если автомобиль обладает малым литражом. При наборе скорости в таком транспортном средстве наблюдается повышение уровня шума, а также увеличивается вибрация.

Новые разработки

Сегодня чаще используются электронные системы, которые контролируют количество поступившего в камеру сгорания топлива. Это позволило уменьшить уровень шума, а также вибрацию агрегата во время работы. Сегодня же разрабатываются совершенно новые дизельные двигатели, в конструкциях которых применяется непосредственный впрыск горючей смеси.

www.syl.ru

Как работает дизельный двигатель?

История дизельного двигателя

История дизеля начинается почти с изобретения бензинового двигателя. Николаус Август Отто изобрел и запатентовал бензиновый двигатель в 1876 году, который использовал принцип четырёхтактного сгорания, также известный на западе как "цикл Отто", и это основная предпосылка для большинства автомобильных двигателей сегодня. В своей ранней стадии, однако, бензиновый двигатель был крайне неэффективным в своей работе, поэтому в те времена ещё долгое время широко использовался паровой двигатель для транспортировки всего, что было нужно транспортировать. Главным недостатком в работе обоих двигателей было то, что они эффективно использовали только около 10 процентов топлива из всего поступающего топлива в эти типы двигателей. Остальная часть просто превращалась в бесполезное тепло, а бензин выходил с выхлопом не сгоревшим.

Дизельный двигатель Porsche Cayenne S 2013 модельного года

Уже через 2 года - в 1878 году - Рудольф Дизель во время посещения политехнической средней школы в Германии (эквивалент инженерного университета в России) узнал о низкой эффективности работы бензиновых и паровых двигателей. Эта тревожная информация вдохновила его на создание двигателя, который мог бы работать с более высокой эффективностью, и он посвятил бóльшую часть своего времени на развитие такой технологии, которая бы позволила расходовать природные ресурсы нашей планеты гораздо эффективнее. И вот, наконец, только к 1892 году Дизель получил патент за то, что мы сегодня называем дизельным двигателем.

Рудольф Дизель и изобретённый им дизельный двигатель

Но если дизельные двигатели работают настолько эффективно, почему бы нам не использовать их чаще? Почему бы нам, в конце концов, не использовать только их? Вы можете увидеть слова "дизель", "солярка" и подумать о здоровенных грузовых автомобилях, извергающих из длинной выхлопной трубы чёрный, закопчённый дым при работе двигателями и создавая при этом довольно громкий гремящий шум. Этот негативный образ дизельных грузовиков сделал дизель менее привлекательным для обычных водителей в нашей стране, хотя дизель отлично подходит для перевозки крупных партий на большие расстояния, он практически никогда не был лучшим выбором для легковых автомобилей. Тем не менее, на сегодняшний день ситуация начинает меняться, и дизелем комплектуются даже заряженные версии легковых авто и изредка даже спортивные машины, так как современные технологии значительно улучшили дизельный двигатель, сделав его намного чище (экологичнее) и менее шумным.

А это дизельный двигатель большого теплохода мощностью около 10 000 лошадиных сил

Объясняя, как работает дизельный двигатель, мы будем опираться на то, что Вы уже знаете, как работает бензиновый четырёхтактный двигатель. Поэтому, если Вы ещё не сделали этого, Вам, вероятно, будет лучше прочитать сначала соответствующую статью, чтобы получить ряд знаний и азов по основам двигателя внутреннего сгорания.

Дизель против бензина

(Основная статья-сравнение бензинового и дизельного двигателей)

В теории дизельный и бензиновый двигатели очень похожи. Они оба являются двигателями внутреннего сгорания, предназначенными для преобразования химической энергии топлива в доступную для дальнейшего движения автомобиля механическую энергию. Эта механическая энергия получается за счёт движения поршней вверх и вниз внутри цилиндров. Поршни соединены с коленчатым валом через шатуны, а сам коленвал имеет форму зигзага - получается, что линейное движение поршней создаёт вращательное движение коленвала, необходимое, чтобы повернуть колёса автомобиля и привести его (авто) в движение.

При этом, и дизельный, и бензиновый двигатели превращают топливо в механическую энергию через серию небольших взрывов, которые выталкивают поршни, заставляя их двигаться. Основное различие между дизелем и бензиновым "движком" заключается в том, что провоцирует эти взрывы. В бензиновом двигателе топливо смешивается с воздухом, сжимается поршнями и возгорается от искры, которая появляется от свечей зажигания. В дизельном двигателе, однако, сначала поршнем сжимается воздух, и только затем топливо впрыскивается. Так как воздух нагревается, когда он сжимается, топливо воспламеняется.

Как работает дизельный двигатель?

Анимация ниже показывает, как работает дизельный двигатель, в действии - также 4 цикла работы. Вы можете сравнить его с анимацией работы бензинового двигателя и увидеть различия.

Дизельный двигатель использует четырёхтактный цикл сгорания:

  1. Такт впуска - когда открывается впускной клапан, впуская воздух. В это время поршень движется вниз, засасывая воздух.
  2. Такт сжатия - поршень движется вверх и сжимает воздух, которому некуда деваться, так как впускной клапан закрылся.
  3. Такт воспламенения - когда поршень достигает вершины (верхней мёртвой точки, ВМТ), топливо впрыскивается в нужное время и воспламеняется, сильно толкая поршень вниз.
  4. Такт выпуска отработавших газов - поршень снова движется вверх, выталкивая выхлопные газы, созданные при сгорании топливо-воздушной смеси, из выпускного клапана.

Вот все 4 цикла работы дизельного двигателя, но ещё проще:

Следует помнить, что дизельный двигатель, в отличие от бензинового, не имеет свеч зажигания, а также впускает в цилиндры сначала воздух, а затем солярку (в цилиндры бензинового двигателя топливо-воздушная смесь поступает уже готовой). Именно тепло сжатого воздуха зажигает топливо в дизельном двигателе.

Интересный момент: при своей работе топливо-воздушная смесь в дизельном двигателе сжимается гораздо сильнее, чем в бензиновом - если бензиновый двигатель сжимает топливо и воздух в соотношении от 8:1 до 12:1, то дизельный двигатель сжимает воздух в соотношении от 14:1 до более, чем 25:1.

Инжектор (форсунки) в дизеле

Одна большая разница между дизельным двигателем и бензиновым двигателем заключается в процессе впрыска топлива. Большинство автомобильных двигателей используют инжектор для этого (или в редких уже на сегодняшний день случаях карбюратор). Инжектор впрыскивает топливо непосредственно перед тактом впуска (вне цилиндра). Карбюратор смешивает воздух и топливо задолго до того, как воздух поступает в цилиндр. В двигателе автомобиля, таким образом, все топливо загружается в цилиндр во время такта впуска, а затем сжимается поршнем. Сжатие топливо-воздушной смеси ограничивает степень сжатия двигателя - если сжать слишком много воздуха, то смесь топлива и воздуха спонтанно воспламенится и испортит двигатель, так как такт воспламенения начнётся раньше того момента, когда поршень достигнет верхней точки.

Дизельные двигатели используют непосредственный впрыск топлива - дизельное топливо впрыскивается непосредственно в цилиндр уже после того, как туда попадёт воздух. Инжектор или, как правильнее, топливные форсунки в дизельном двигателе является наиболее сложным компонентом и, нужно отметить, предметом большой доли экспериментов - в каждом конкретном двигателе инжектор может быть расположен в самых различных, а иногда и неожиданных местах. Инжектор должен быть способен выдерживать температуру и давление, которое создаётся внутри цилиндра, а ещё он должен смочь доставить топливо в виде мелкодисперсного тумана. Сделать так, чтобы этот туман, попадая в цилиндр, равномерно распределялся по нему, является большой проблемой, вот почему ряд дизельных двигателей используют специальные индукционные клапаны, камеры предварительного сгорания или другие устройства, чтобы создать завихрение воздуха в камере сгорания или иначе улучшить процесс зажигания и горения.

Работа топливной форсунки

Некоторые дизельные двигатели всё же содержат свечу. Когда дизельный двигатель холодный, процесс сжатия может не поднять до достаточно высокой температуры для воспламенения топлива сжатый воздух. Специальная свеча накаливания в дизеле по сути является проводом для электрического подогрева (представьте горячие проводки, которые Вы видели в тостере), который нагревает камеру сгорания и повышает, тем самым, температуру воздуха, когда двигатель холодный, так чтобы двигатель мог завестись.

Все функции в современном дизельном двигателе контролируются компьютером и продуманным набором датчиков, измеряющих практически всё: от оборотов коленчатого вала до системы охлаждения двигателя и температуры масла и даже положение двигателя относительно горизонта. Свечи накаливания используются редко сегодня на более мощных двигателях. Вместо них используются другие технологии, самая распространённая из которых - это более сильное сжатие воздуха (для большего нагрева) и более поздний впрыск топлива.

Тем не менее, в ряде дизельных двигателей не представляется возможным решить проблему запуска в холодную погоду указанным выше способом. Кроме того, есть двигатели, которые не имеют такие продвинутые технологии управления компьютером. Потому использование свечей накаливания для двух случаев выше решает проблему холодного запуска.

Дизельное топливо

Любое нефтяное топливо берёт своё начало из сырой нефти, которая, естественно, добывается из земли. Далее сырая нефть перерабатывается на нефтеперерабатывающих заводах и может быть разделена на несколько разных видов топлива, в том числе бензин, реактивное топливо, керосин и, конечно же, дизельное топливо (солярку).

Если Вы хоть раз пытались сравнить дизельное топливо и бензин, то Вы знаете, что они сильно разные. Даже их запах сильно отличается. Дизельное топливо тяжелее и более жирное. Оно испаряется значительно медленнее, чем бензин, а температура его кипения на самом деле выше, чем температура кипения воды. Вы, вероятно, часто слышали, что дизельное топливо называют "соляркой" - это потому что оно такое жирное (есть такое вещество - соляровое масло, и его раньше часто сравнивали с дизельным топливом).

Дизельное топливо испаряется медленнее, потому что оно тяжелее. Оно содержит больше углеродоатомов в длинных цепочках, чем бензин (бензин, как правило, имеет химическую формулу C9h30 (но может иметь и другую в зависимости от марки, октанового числа и т.п.), в то время как дизельное топливо, как правило, характеризуется формулой C14h40). Требуется меньшее время и количество этапов переработки для создания дизельного топлива, и поэтому оно как бы должно быть дешевле, чем бензин. Но в последние годы, однако, спрос на дизель поднялся по нескольким разным причинам, в том числе из-за повышенной индустриализации и строительства в нашей стране, и потому на сегодняшний день дизельное топливо стоит дороже бензина.

Дизельное топливо имеет более высокую так называемую плотность энергии, чем бензин. В среднем, 1 галлон (3,8 л) дизельного топлива содержит около 155x106 джоулей энергии, в то время как 1 галлон бензина содержит 132x106 джоулей. Это, в сочетании с повышенной эффективностью дизельных двигателей за счёт большей степени сжатия, объясняет, почему дизельные двигатели расходуют намного меньше топлива, нежели эквивалентные им бензиновые двигатели.

Дизельное топливо используется для питания широкого спектра транспортных средств и другой техники. Сюда, прежде всего, нужно включить, конечно же, дизельные грузовики, которые Вы видите крейсерящими по шоссе, но также дизель помогает двигаться лодкам, школьным автобусам, поездам, кранам, сельскохозяйственному оборудованию и тракторам, генераторам электричества и многой-многой другой технике. Подумайте о том, насколько важен дизель в экономике - без высокой эффективности дизельного топлива строительная индустрия и сельскохозяйственные предприятия страдали бы от требуемых инвестиций в топлива с низким энергопотреблением и эффективностью. Около 94 процентов грузов во всём мире - будь то отправленные грузовиками, поездами или кораблями - доставляются в конечные точки именно за счёт дизельного топлива.

Улучшение дизельного двигателя и дизельного топлива

С точки зрения окружающей среды дизель имеет и плюсы, и минусы. Плюс - дизель испускает очень небольшое количество угарного газа, углеводородов и углекислого газа - выбросов, более всего приводящих к глобальному потеплению. Минус - большие количества соединений азота и твёрдых частиц (сажи) высвобождаются во время сжигания дизельного топлива, что приводит к выпадению кислотных дождей, смогу и неудовлетворительному состоянию здоровья.

Во время большого нефтяного кризиса в 1970-х годах, европейские автомобильные компании начали рекламировать дизельные двигатели для коммерческого использования в качестве альтернативы бензину. Однако, те, кто попробовал их, были разочарованы - двигатели были очень громкими, и, когда потребители дизеля осматривали свои машины, то могли обнаружить их покрытыми чёрной копотью - той же сажи, ответственной за смог в больших городах.

За последние 30 до 40 лет, однако, огромные улучшения были сделаны в работе дизельного двигателя и чистоты дизельного топлива. Прямые впрыскивающие устройства в настоящее время контролируются передовыми компьютерами, которые контролируют сгорание топлива, повышение эффективности сокращения выбросов. Гораздо лучше рафинированные виды дизельного топлива, такие как дизтопливо с ультра низким содержанием серы в топливе (ULSD) снижает количество вредных выбросов. А модернизации двигателей, чтобы сделать их совместимыми с чистым топливом, становятся простой задачей. Другие технологии, такие как фильтры твёрдых частиц и каталитические нейтрализаторы, сжигают сажу и сокращают выбросы твёрдых частиц, оксида углерода и углеводородов на целых 90 процентов. Постоянно совершенствуя стандарты для экологически чистого топлива, Европейский Союз также будет толкать автоотрасль работать усерднее над снижением выбросов.

Вы может также слышали такой термин как "биодизель". Это то же самое, что дизельное топливо? Биодизель является альтернативой или добавкой к дизельному топливу, которая может использоваться в дизельных двигателях практически без модернизации самих двигателей. При этом, как видно из названия, биодизель изготавливается не из нефти, вместо этого он приходит к нам из растительных масел или животных жиров, которые были химически изменены. Интересный факт: сам Рудольф Дизель изначально рассматривал растительное масло в качестве топлива для своего изобретения.

Биодизель может быть использован либо в сочетании с обычным дизельным топливом, либо полностью самостоятельно. Вы можете прочитать больше об альтернативных видах топлива.

howcarworks.ru

Что такое дизель? Принцип работы, устройство и технические характеристики дизельного двигателя

Дизельные двигатели весьма распространены на легковых автомобилях. Многие модели имеют хотя бы один вариант в моторной гамме. И это без учета грузовиков, автобусов и строительной техники, где их применяют повсеместно. Далее рассмотрено, что такое дизель, конструкция, принцип работы, особенности.

Определение

Данный агрегат представляет собой поршневой двигатель внутреннего сгорания, функционирование которого основано на самовоспламенении распыленного топлива от нагрева либо сжатия.

Особенности конструкции

Бензиновый двигатель имеет те же конструктивные элементы, что и дизель. Схема функционирования в целом также аналогична. Отличие состоит в процессах формирования топливовоздушной смеси и ее сгорания. К тому же дизельные моторы отличаются более прочными деталями. Это обусловлено примерно вдвое более высокой степенью сжатия, чем у бензиновых двигателей (19-24 против 9-11).

Классификация

По конструкции камеры сгорания дизели подразделяют на варианты с раздельной камерой сгорания и с непосредственным впрыском.

В первом случае камера сгорания отделена от цилиндра и соединена с ним каналом. При сжатии поступающий в камеру вихревого типа воздух закручивается, что улучшает смесеобразование и самовоспламенение, которое начинается там и продолжается в основной камере. Дизельные двигатели данного типа ранее были распространены на легковых автомобилях в связи с тем, что они отличались пониженным уровнем шума и большим диапазоном оборотов от рассмотренных далее вариантов.

В дизельных двигателях с непосредственным впрыском камера сгорания находится в поршне, а топливо подается в надпоршневое пространство. Такая конструкция изначально использовалась на низкооборотных моторах большого объема. Они отличались высоким уровнем шума и вибраций и низким расходом топлива. Позднее, с появлением топливных насосов высокого давления с электронным управлением и оптимизацией процесса сгорания, конструкторы достигли стабильной работы при диапазоне до 4500 об./мин. К тому же возросла экономичность, снизилась шумность и уровень вибраций. Среди мер по уменьшению жесткости работы – многостадийный предвпрыск. Благодаря этому двигатели данного типа получили в последние два десятилетия обширное распространение.

По принципу функционирования дизели подразделяют на четырехтактные и двухтактные, как и бензиновые моторы. Их особенности рассмотрены далее.

Принцип функционирования

Чтобы понимать, что такое дизель и чем обусловлены его функциональные особенности, необходимо рассмотреть принцип работы. Приведенная выше классификация поршневых ДВС основана на количестве тактов, входящих в рабочий цикл, которые выделяют по величине угла поворота коленчатого вала.

Следовательно, рабочий цикл четырехтактных двигателей включает 4 фазы.

  • Впуск. Происходит при повороте коленвала от 0 до 180°. При этом воздух проходит в цилиндр через открытый на 345-355° впускной клапан. Одновременно с ним во время поворота коленвала на 10-15° открыт выпускной клапан, что называют перекрытием.
  • Сжатие. Поршень, двигаясь вверх при 180-360°, сжимает воздух в 16-25 раз (степень сжатия), а впускной клапан закрывается в начале такта (при 190-210°).
  • Рабочий ход, расширение. Происходит при 360-540°. В начале такта до достижения поршнем верхней мертвой точки топливо подается в горячий воздух и воспламеняется. Это особенность дизельных двигателей, отличающая их от бензиновых, где происходит опережение зажигания. Выделяющиеся при этом продукты горения толкают поршень вниз. При этом время сгорания топлива равно времени его подачи форсункой и длится не дольше продолжительности рабочего хода. То есть при рабочем процессе давление газов постоянно, вследствие чего дизели развивают больший крутящий момент. Также важной особенностью таких моторов является необходимость обеспечения избытка воздуха в цилиндре, так как пламя занимает небольшую часть камеры сгорания. То есть отличается пропорция топливовоздушной смеси.
  • Выпуск. При 540-720° поворота коленвала открытый выпускной клапан поршень, двигаясь вверх, вытесняет выхлопные газы.

Двухтактный цикл отличается укороченными фазами и единым процессом газообмена в цилиндре (продувкой), происходящей между концом рабочего хода и началом сжатия. При движении поршня вниз продукты горения удаляются через выпускные клапаны или окна (в стенке цилиндра). Позже открываются впускные окна для поступления свежего воздуха. Когда поршень поднимается, все окна закрываются, и начинается сжатие. Чуть ранее достижения ВМТ впрыскивается и воспламеняется топливо, начинается расширение.

Из-за сложности обеспечения продувки вихревой камеры двухтактные моторы бывают только с непосредственным впрыском.

Производительность таких двигателей выше в 1,6-1,7 раз, чем характеристики дизеля четырехтактного типа. Ее прирост обеспечивается вдвое более частым осуществлением рабочих ходов, но частично сокращается из-за их меньшей величины и продувки. Вследствие удвоенного количества рабочих ходов двухтактный цикл особо актуален в случае невозможности увеличения частоты вращения.

Основной проблемой таких двигателей является продувка из-за ее непродолжительности, что невозможно компенсировать без снижения эффективности за счет укорочения рабочего хода. К тому же невозможно разделить выхлоп и свежий воздух, из-за чего часть последнего удаляется с отработанными газами. Данную проблему можно решить путем обеспечения опережения выпускных окон. В таком случае газы начинают удаляться до продувки, и после закрытия выпуска цилиндр дополняется свежим воздухом.

К тому же при использовании одного цилиндра возникают сложности с синхронностью открытия/закрытия окон, поэтому существуют двигатели (ПДП), в которых каждый цилиндр имеет два поршня, движущихся в одной плоскости. Один из них контролирует впуск, другой – выпуск.

По механизму осуществления продувку подразделяют на щелевую (оконную) и клапанно-щелевую. В первом случае окна служат и впускными и выпускными отверстиями. Второй вариант предполагает их использование в качестве впускных отверстий, а для выпуска служит клапан в головке цилиндра.

Обычно двухтактные дизели применяют на тяжелых транспортных средствах вроде кораблей, тепловозов, танков.

Топливная система

Топливная аппаратура дизельных двигателей существенно сложнее, чем у бензиновых. Это объясняется высокими требованиями к точности подачи топлива по времени, количеству и давлению. Основные компоненты топливной системы – ТНВД, форсунки, фильтр.

Широко применяется система подачи топлива с компьютерным управлением (Common-Rail). Она впрыскивает его двумя порциями. Первая из них маленькая, служащая для повышения температуры в камере сгорания (предвпрыск), что позволяет снизить шум и вибрации. К тому же данная система повышает на малых оборотах крутящий момент на 25%, снижает расход топлива на 20% и содержание сажи в выхлопных газах.

Турбонаддув

На дизельных двигателях очень широко применяют турбины. Это объясняется более высоким (в 1,5-2) раза давлением выхлопных газов, которые раскручивают турбину, что позволяет избежать турбоямы, обеспечив наддув с более низких оборотов.

Холодный запуск

Можно найти множество отзывов о том, что при отрицательных температурах не заводится дизель. Сложность запуска таких моторов в холодных условиях обусловлена тем, что для этого требуется больше энергии. Для облегчения процесса их оснащают предпусковым подогревателем. Данное устройство представлено свечами накаливания, размещенными в камерах сгорания, которые при включении зажигания подогревают воздух в них и работают еще в течение 15-25 секунд после запуска для обеспечения стабильности работы непрогретого мотора. Благодаря этому дизели заводятся при температурах -30...-25 °С.

Особенности обслуживания

Для обеспечения долговечности при эксплуатации необходимо знать, что такое дизель и как его обслуживать. Относительно невысокая распространенность рассматриваемых двигателей в сравнении с бензиновыми объясняется в том числе более сложным обслуживанием.

Прежде всего это касается топливной системы высокой сложности. Из-за этого дизели крайне чувствительны к содержанию в топливе воды и механических частиц, а ее ремонт дороже, как и двигателя в целом в сравнении с бензиновым того же уровня.

В случае наличия турбины также высоки требования к качеству моторного масла. Ее ресурс обычно составляет 150 тыс. км, а стоимость высока.

В любом случае на дизельных двигателях менять масло следует чаще, чем на бензиновых (в 2 раза по европейским нормам).

Как было отмечено, у данных моторов встречаются проблемы холодного запуска, когда при низких температурах не заводится дизель. В некоторых случаях это вызвано использованием неподходящего топлива (в зависимости от сезона на таких двигателях применяют различные сорта, так как летнее топливо при низких температурах застывает).

Эксплуатационные качества

К тому же многим не по душе такие качества дизельных моторов, как меньшие мощность и диапазон рабочих оборотов, более высокий уровень шума и вибраций.

Бензиновый двигатель действительно обычно превосходит в производительности, в том числе и литровой мощности, аналогичный дизель. Мотор рассматриваемого типа при этом имеет более высокий и ровный график крутящего момента. Повышенная степень сжатия, обеспечивающая больший крутящий момент, вынуждает применять более прочные детали. Так как они тяжелее, снижается мощность. К тому же это сказывается на массе двигателя, а следовательно, и автомобиля.

Небольшой диапазон рабочих оборотов объясняется более длительным возгоранием топлива, вследствие чего на высоких оборотах оно не успевает догореть.

Повышенный уровень шума и вибраций вызывает резкое нарастание давления в цилиндре при воспламенении.

Основными достоинствами дизелей считают более высокую тяговитость, экономичность и экологичность.

Тяговитость, то есть высокий крутящий момент на малых оборотах, объясняется сгоранием топлива по мере впрыска. Это обеспечивает большую отзывчивость и облегчает эффективное использование мощности.

Экономичность обусловлена как низким расходом, так и тем, что топливо для дизеля дешевле. К тому же возможно использовать в качестве него низкосортные тяжелые масла благодаря отсутствию строгих требований к испаряемости. А чем топливо тяжелее, тем выше эффективность мотора. Наконец, дизели работают на бедных смесях в сравнении с бензиновыми моторами и при высокой степени сжатия. Последнее обеспечивает меньшие потери тепла с отработанными газами, то есть большую эффективность. Все данные меры снижают расход топлива. Дизель, благодаря этому, тратит его на 30-40% меньше.

Экологичность дизелей объясняется тем, что в их выхлопных газах ниже содержание окиси углерода. Это достигается применением сложных систем очистки, благодаря чему сейчас бензиновый двигатель соответствует тем же экологическим нормам, что и дизель. Мотор такого типа ранее значительно уступал бензиновому в данном отношении.

Применение

Как понятно из того, что такое дизель и каковы его характеристики, такие моторы наиболее подходят для тех случаев, когда необходима высокая тяга на низких оборотах. Поэтому ими оснащают почти все автобусы, грузовики и строительную технику. Что касается частных транспортных средств, среди них такие параметры наиболее важны для внедорожников. Благодаря высокой экономичности данными моторами оснащают и городские модели. К тому же они удобнее в управлении в таких условиях. Тест-драйвы дизелей свидетельствуют об этом.

fb.ru

Принцип работы дизельного двигателя - фото и видео процесса

Дизельным двигателям удалось пройти длительный и успешный путь развития от неэффективных и загрязняющих экологию агрегатов начала двадцатого века, до супер экономных и абсолютно беззвучных, которые сегодня устанавливаются на добрую половину всех выпускаемых автомобилей. Но, несмотря на такие удачные модификации, общий принцип их действия, отличающий дизельные моторы от бензиновых, остался все тем же. Постараемся рассмотреть данную тему подробнее.

В чем основные отличия дизельных двигателей от бензиновых?

Уже видно из самого названия, что дизельные двигатели работают не на бензине, а на дизельном топливе, которое также называют соляркой, ДТ или просто дизелем. Вникать во все подробности химических процессов перегонки нефти мы не будем, скажем только, что и бензин и дизель производят из нефти. Во время перегонки нефть делится на различные фракции:

  • газообразные — пропан, бутан, метан;
  • нарты (короткие цепочки углеводов) — используются для производства растворителей;
  • бензин — взрывоопасная и быстро испаряющая прозрачная жидкость;
  • керосин и дизель — жидкости с желтоватым оттенком и более вязкой структурой, чем у бензина.

То есть солярка производится из более тяжелых фракций нефти, ее важнейшим показателем является воспламеняемость, определяемая цетановым числом. Также ДТ характеризуется большим содержанием серы, которое, однако, стараются всеми силами уменьшать, чтобы топливо соответствовало экологическим стандартам.

Как и бензин, дизель делится на разные виды в зависимости от температурных режимов:

  • летний;
  • зимний;
  • арктический.

Стоит также заметить, что дизельное топливо производят не только из нефти, но и из различных растительных масел — пальмового, соевого, рапсового и др., смешанных с техническим спиртом — метанолом.

Однако, заливаемое топливо — это не главное отличие. Если мы посмотрим на бензиновый и дизельный двигатели «в разрезе», то разницы никакой визуально не заметим — те же поршни, шатуны, коленчатый вал, маховик и так дальше. Но разница есть и она очень существенная.

Принцип работы дизельного двигателя

В отличие от бензиновых, в дизеле совсем по другому принципу происходит зажигание воздушно-топливной смеси. Если в бензиновых — как в карбюраторных, так и инжекторных — движках сначала происходит приготовление смеси, а затем ее воспламенение с помощью искры от свечи зажигания, то в дизеле в камеру сгорания поршня нагнетается воздух, затем воздух сжимается, разогреваясь до температур 700 градусов, и вот в этот момент в камеру попадает топливо, которое тут же взрывается и толкает поршень вниз.

Дизельные двигатели — четырехтактные. Рассмотрим каждый такт:

  1. Такт первый — поршень движется вниз, открывается впускной клапан, тем самым в камеру сгорания попадает воздух;
  2. Такт второй — поршень начинает подниматься, воздух начинает под давлением сжиматься и разогреваться, именно в этот момент через форсунку впрыскивается солярка, происходит ее возгорание;
  3. Такт третий — рабочий, происходит взрыв, поршень начинает двигаться вниз;
  4. Такт четвертый — открывается выпускной клапан и все отработанные газы выходят в выпускной коллектор или в патрубки турбины.

Конечно, все это происходит очень быстро — несколько тысяч оборотов в минуту, требуется очень слаженная работа и подгонка всех узлов — поршней, цилиндров, распределительного вала, шатунов коленвала, а самое главное датчиков — которые в секунду должны передавать на CPU сотни импульсов для мгновенной обработки и вычисления необходимых объемов воздуха и солярки.

Дизельные двигатели выдают больший коэффициент полезного действия, именно поэтому их используют на грузовых авто, комбайнах, тракторах, военной технике и так далее. ДТ более дешевое, но нужно отметить, что сам двигатель обходится дороже в эксплуатации, потому что уровень компрессии здесь почти в два раза выше, чем в бензиновом, соответственно нужны поршни особой конструкции, а все используемые узлы, детали и материалы усиленные, то есть стоят дороже.

Также очень строгие требования предъявляются к системам подачи топлива и отвода отработанных газов. Ни один дизель не сможет работать без качественного и надежного ТНВД — топливного насоса высокого давления. Он обеспечивает корректную подачу топлива на каждую форсунку. Кроме того на дизелях используются турбины — с их помощью отработанные газы используются повторно, тем самым повышая мощность двигателя.

Есть у дизеля и некоторый ряд проблем:

  • повышенный шум;
  • больше отходов — топливо более маслянистое, поэтому нужно регулярно проводить замену фильтров, следить за выхлопом;
  • проблемы со стартом, особенно холодным, используется более мощный стартер, топливо быстро густеет при понижении температуры;
  • дорого обходится ремонт, особенно топливной аппаратуры.

Одним словом — каждому свое, дизельные двигатели характеризуются большей мощностью, ассоциируются с мощными внедорожниками и грузовиками. Для простого же горожанина, который ездит на работу — с работы и по выходным выезжает за город, хватит и маломощного бензинового движка.

Видео, на котором показан весь принцип работы дизельного двигателя внутреннего сгорания

Загрузка...

Поделиться в социальных сетях

vodi.su

Устройство и принцип работы дизельного двигателя

В последние годы благодаря высокому крутящему моменту, экономичности и более дешевому топливу дизели становятся все более популярными среди автомобилистов.

Рассмотрим конструктивные особенности, устройство и принцип работы дизельного двигателя.

Сам факт установки дизельного мотора на автомобиле сегодня можно определить только по характерному постукиванию из-под капота. По уровню шума и удельным характеристикам последние поколения дизелей вплотную приблизились к бензиновым двигателям. Эта цель достигнута без ущерба надежности и экономичности.

Конструктивные особенности дизельного мотора

На первый взгляд конструкция дизельного двигателя практически не отличается от бензинового мотора. Исключением являются усиленные клапанные элементы, что сделано для восприятия более высоких нагрузок. Поэтому габариты и масса дизелей больше.

Особенностью дизельных двигателей являются принципиально иные способы подготовки, воспламенения и сгорания топливно-воздушной смеси. В бензиновых силовых установках смесь формируется во впускной системе и воспламеняется в цилиндре искрой свечи зажигания.

В дизелях реализована раздельная подача топлива и воздуха. Чистый воздух поступает в цилиндры, сжимается и нагревается до 700-800°С. Далее под давлением 10-30 МПа форсунки впрыскивают топливо в камеру сгорания, после чего оно практически сразу самовоспламеняется. Поскольку после воспламенения резко увеличивается давление в цилиндре, повышается жесткость и шумность работы мотора.

Благодаря такому подходу можно использовать бедные и более дешевые топливные смеси. Это позволяет добиваться более высокой экономичности и хороших экологических показателей, поскольку выброс вредных веществ от сгорания бедных смесей намного меньше.

К недостаткам дизельного двигателя можно отнести заметную вибрацию, повышенную шумность, сложности холодного пуска и меньшую литровую мощность. Однако в современных моделях дизельных авто эти минусы не столь очевидны.

Типы камер сгорания дизельных моторов

  1. Дизели с непосредственным впрыском. Оснащаются неразделенной камерой сгорания, выполненной в поршне. В таких моторах топливо впрыскивается в пространство над поршнем. В последнее время неразделенные камеры используются в паре с электронными топливными насосами высокого давления. Это позволило организовать двухступенчатый впрыск топлива, улучшить процесс сгорания, добиться устойчивой работы системы на оборотах до 4500 об/мин, оптимизировать экономичность, снизить вибрацию и шум.
  2. Дизели с раздельной камерой сгорания. Топливо впрыскивается в дополнительную камеру, а не цилиндр. Обычно это специальная вихревая камера в головке блока цилиндров, которая соединяется с цилиндром специальным каналом. При попадании в вихревую камеру сжатый воздух интенсивно закручивается, благодаря чему улучшается процесс смесеобразования и самовоспламенения. Такая конструкция позволяет снизить темп увеличения давления в цилиндре, увеличить максимальные обороты и погасить шумность. Сегодня дизели с раздельной камерой сгорания составляют подавляющее большинство (порядка 90%) среди силовых установок, устанавливаемых производителями на дизельные авто.

Устройство топливной системы дизельного мотора

Топливная система отвечает за подачу строго определенного количества топлива с определенным давлением по определенному графику. Поэтому это достаточно сложный и дорогой узел дизельного двигателя. Топливная система включает следующие основные элементы:

  1. Топливный насос высокого давления. Подает топливо к форсункам в зависимости от действий водителя, режима работы мотора и инструкций управляющей программы. Современные топливные насосы представляют собой главный исполнительный механизм, который отрабатывает директивы шофера и управляет двигателем. На последних моделях легковых дизельных авто устанавливают топливные насосы распределительного типа, которые равномернее подают топливо, хорошо работают на высоких оборотах, имеют компактный размер.
  2. Форсунки. Совместно с топливным насосом подают дозированное количество топлива в камеру сгорания. Тип распылителя форсунки задает форму факела сгорания топлива, давление её открытия – рабочее давление топливной системы. В настоящее время используются форсунки с многодырчатым и шрифтовым распылителем. Распылители форсунок обычно изготавливают из жаропрочных материалов, поскольку они непосредственно контактируют с камерой сгорания.
  3. Топливный фильтр. Отделяет засоры и воду в топливной смеси. Насос ручной подкачки позволяет удалить воздух из топливной системы. Дополнительная установка электрического подогрева на топливном фильтре позволяет облегчить запуск мотора при низких температурах, избежать забивания фильтра парафином после кристаллизации дизельного топлива.

Процесс пуска дизельного мотора

Для холодного пуска дизельного двигателя предусмотрена система предпускового подогрева. Она представляет собой электрические свечи накаливания, помещенные в камеру сгорания. После включения зажигания они быстро нагреваются до 800-900°С и подогревают воздух в камере сгорания, что облегчает самовоспламенение топливной смеси. В процессе пуска двигателя на водительской панели загорается и гаснет соответствующий контрольный индикатор.

Следует отметить, что электропитание снимается со свечей не сразу, а через некоторое время после пуска. Это необходимо для стабильной работы непрогретого мотора. Современные системы предпускового обогрева позволяют легко заводить исправные двигатели при условии использования качественного топлива и рекомендованного производителем масла.

Дизельные моторы с турбонаддувом

Использование турбины позволяет повысить гибкость и мощность работы дизеля. Это происходит благодаря подаче дополнительного количества воздуха в цилиндры и увеличению подачи топлива на рабочем цикле. Турбокомпрессоры на дизелях обеспечивают эффективный дополнительный наддув, начиная с самых низких оборотов без провалов (“турбоям”), которые характерны для бензиновых турбомоторов. Слабым местом дизельных двигателей с турбонаддувом является недостаточная надежность турбокомпрессоров, ресурс которых обычно не превышает 150 тыс. км.

Система Common-Rail в дизельных моторах

Автоматизированное управление процессом подачи топлива позволяет впрыскивать в камеру сгорания две четко дозированные порции. Первый крохотный впрыск повышает при сгорании температуру в камере, затем следует основной “заряд”. Такой подход дает возможность плавно наращивать давление в камере сгорания, благодаря чему двигатель работает тише и без рывков.

В результате расход топлива дизельных авто с системой Common-Rail сокращается на 15-20%, уменьшается содержание сажи в выхлопе, увеличивается крутящий момент на малых оборотах на 20-25%.

all-drive.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *