Принцип работы 4 х тактного двигателя: Как работают 4-тактные двигатели | Briggs & Stratton
Как работают 4-тактные двигатели | Briggs & Stratton
Хотите знать, как работает двигатель малого объема? В этом видеоролике подробно описывается то, как работают 4-тактные двигатели Briggs & Stratton для обеспечения максимальной мощности ваших газонокосилок & наружного оборудования.
Четырехтактные двигатели Briggs & Stratton являются лучшими в мире с точки зрения производительности и качества. Это связано с верхним расположением клапанов в 4-тактных двигателях. Она максимально увеличивает мощность вашего двигателя Briggs & Stratton, что в свою очередь повышает производительность вашей газонокосилки или другого наружного силового оборудования.
Процесс работы 4-тактного двигателя
- Этап 1: Такт впуска
Во время такта впуска воздух и топливо проходят через карбюратор и попадают в поршень при открытии впускного клапана. Клапан закрывается, отсекая подачу воздушно-топливной смеси, когда поршень достигает нижней части такта. - Этап 2: Такт компрессии
Теперь, когда топливо находится в камере компрессии, двигатель максимизирует создаваемую мощность, сжимая это топливо в меньшем пространстве. - Этап 3: Рабочий ход
Теперь, когда воздушно-топливная смесь сжата, самое время добавить искру. Катушка зажигания создает высокое напряжение, которое разряжается в камере свечей зажигания. Как только воздушно-топливная смесь загорается, горячий воздух заставляет поршень опуститься вниз цилиндра. - Этап 4: Такт выхлопа
Последним этапом в четырехтактном двигателе является такт выхлопа. Когда поршень выталкивает отработанные газы из камеры, открывается выпускной клапан. Как только этот процесс завершается, закрывается выпускной клапан и открывается впускной клапан, чтобы снова запустить процесс.
Для повторения каждого цикла требуется два оборота коленчатого вала. Интересно, как двигатель малого объема продолжает работать, когда только один из 4-х тактов создает мощность? Во время рабочего хода маховик получает толчок. Создаваемые импульс и инерция поддерживают его движение между рабочими тактами.
Принцип работы 2-х тактного двигателя
Для того, чтобы ответить на этот вопрос, нужно разобраться, что такое 2-х тактный двигатель, где он используется и какие преимущества и недостатки перед 4-х тактным.
Начнем по порядку. 2-х тактный двигатель – разновидность поршневого двигателя, в котором рабочий процесс совершается за два хода поршня. У такого двигателя всего 2 такта, такт сжатия и такт рабочего хода. Причем очистка и наполнения цилиндра горючий смеси осуществляется не отдельными тактами, как в 4-х тактном двигателя, а совместными. При этом число ходов поршня у двух тактного двигателя больше.
Рассмотрим принцип работы 2-х тактного двигателя.
1. Такт сжатия.
1.1 Перемещения поршня от нижней мертвой точки поршня (НМТ) к верхней мертвой точке поршня (ВМТ). При этом поршень перекрывает, сначала впускное окно, затем выпускное.
1.2 После этого начинается сжатие рабочий смеси. Одновременно с этим в кривошипной камере, под поршнем, создается разрежение, под действием которого через впускное окно поступает горючая смесь, в кривошипную камеру.
2. Такт рабочего хода.
2.1 Когда поршень достигает ВМТ, рабочая смесь воспламеняется, при помощи искры со свечи зажигания.
2.2 Под действием высокого давления поршень перемещается от ВМТ к НМТ, при этом расширяющиеся газы совершают полезную работу.
2.3 Опускаясь вниз, поршень создает высокое давление в кривошипной камере, клапан закрывается, не давая таким образом горючей смеси снова попасть во впускной коллектор.
2.4 Когда поршень проходит выпускное окно, оно открывается и начнется выпуск отработавших газов в атмосферу.
2.5 При дальнейшем перемещении поршень открывает впускное окно и сжатая в кривошипной камере горючая смесь поступает по каналу, заполняя цилиндр и осуществляя продувку его от остатков отработавших газов.
Для более полного представления рассмотрим видео взятое с сайта youtube:
Рассмотрим основные преимущества и недостатки 2-х тактных двигателей:
+ отсутствие систем смазки и газораспределения, что в разы уменьшает размер двигателя;
+ простота и дешевизна в производстве и изготовлении;
+ маленький вес и компактность.
Недостатками являются:
— больший расход топлива, чем у 4-х тактных двигателей;
— больший шум;
— меньшая долговечность. Но это спорный вопрос.
Применяются двухтактные двигатели: в садовой техники (газонокосилки, триммеры, бензопилы и др.), так же в мопедах, скутерах, некоторых мотоциклах, картах и бензиновых генераторах и др.
К выбору масла для 2-х тактной техники стоит подходить очень тщательно. Как и любые моторные масла, их, нужно подбирать по допускам, которые дают заводы производители техники. Чтобы в этом разобраться, нужно знать, как классифицируются эти моторные масла.
Рассмотрим классификацию по AP
I.
API TA | Моторные масла для двухтактных двигателей небольших мопедов, газонокосилок и другой подобной техники. |
API TB | Моторные масла для маломощных двухтактных двигателей мотоциклов. |
API TC | Моторные масла для двухтактных двигателей, работающих на суше. Данные автомасла могут применяться в случаях, когда производитель мотора требует соответствия масла классам API TA или API TB. |
API TD | Моторные масла, специально разработанные для двухтактных подвесных моторов |
Так же моторные масла для двухтактных двигателей классифицируются по JASO:
JASO FA | Для двухтактных двигателей мотоциклов и других машин (масла предназначены для применения в развивающихся странах). |
JASO FB | Для двухтактных двигателей мотоциклов и других машин (минимальные требования для применения в Японии). |
JASO FС | Для двухтактных двигателей мотоциклов и других машин, бездымное моторное масло (основное масло для применения в Японии). |
JASO FD | Для двухтактных двигателей мотоциклов и других машин, бездымное моторное масло с улучшенными характеристиками по чистоте двигателя в сравнении с FC (наивысшие требования к 2-тактным маслам в Японии). |
От правильного выбора масла зависит, как долго прослужит техника. Выбирайте качественную и надежную продукцию. Все продукты Eurol отвечают заявленному стандарту, и проходят тщательную проверку в лаборатории. Выбирая продукцию Eurol, Вы выбираете качество!
Вернуться к списку статей
Виды двигателей внутреннего сгорания
При выборе садовой техники и оборудования нужно обращать внимание на тип двигателя. Существует два типа двигателей внутреннего сгорания: 2-х тактный и 4-х тактный. Для садовой техники более крупного размера, таких как газонокосилки, мотоблоки, мотокультиваторы, мини тракторы, рейдеры и т.д. в основном используют 4-х тактные двигатели, а для садовой техники малого размера — такой как бензокосы, бензопилы, и др. в основном 2-х тактные.
Рассмотрим принцип работы этих двух видов двигателей внутреннего сгорания.
Оба двигателя приводятся в действие за счет использования расширения газов при нагревании, которое происходит за счет принудительного воспламенения горючей смеси, поступаемой в воздушное пространство цилиндра. Все двигатели внутреннего сгорания, независимо от его типа, имеют основные механизмы, такие как кривошипно-шатунный механизм, газораспределительный механизм, система смазки, система охлаждения, система питания и система зажигания. Передача полезной энергии расширяющегося газа происходит через кривошипно-шатунный механизм, а за впрыск топливной смеси в цилиндр отвечает механизм газораспределения.
Принцип работы двухтактного двигателя
Рабочий цикл 2-х тактного двигателя состоит из двух этапов: ими являются сжатие и рабочий ход.
Сжатие.
Основными положениями поршня являются верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ). Двигаясь от НМТ к ВМТ, поршень поочередно перекрывает сначала продувочное окно, а затем выпускное окно, после чего смесь попадает в цилиндр и начинает сжиматься. При этом через впускное окно в кривошипную камеру поступает свежая горючая смесь, которая будет использована в последующем такте.
Рабочий ход.
После того, как горючая смесь максимально сжата, она воспламеняется при помощи электрической искры, образуемой свечой. При этом температура газовой смеси резко возрастает и объем газа стремительно растет, осуществляя давление, при котором поршень начинает движение к НМТ. Опускаясь, поршень открывает выпускное окно, при этом продукты горения горючей смеси выбрасываются в атмосферу. Следующее движение поршня приводит к повторному сжатию свежей горючей смеси и открытию продувочного отверстия, через которое горючая смесь поступает в камеру сгорания и так такт за тактом химическая энергия топлива превращается в механическую работу двигателя и его агрегатов.
Недостатком двухтактного двигателя является большой расход топлива, причем часть топлива не успевает сгорать и выбрасывается в атмосферу. Это связано с наличием момента, при котором продувочное и выпускное отверстие одновременно открыты. Требуется смесь на основе бензина и масла для смазки механизмов двигателя, что требует дополнительных расходов на покупку масла и необходимости постоянно готовить топливную смесь. Основными преимуществами двухтактного двигателя является его маленькие по сравнению с 4-х тактным двигателем размер и вес.
Принцип работы четырехтактного двигателя
Принцип работы четырехтактного двигателя значительно отличается от работы двухтактного. Рабочий цикл четырехтактного двигателя состоит из четырех этапов: впуск, сжатие, рабочий ход и выпуск, что стало возможным за счет применения системы клапанов. Когда происходит впускной этап поршень двигается вниз, открывается впускной клапан, в цилиндр поступает горючая смесь, которая при смешении с остатками отработанной смеси образует рабочую смесь. При сжатии поршень движется из НМТ к ВМТ, все два клапана закрыты. Чем выше поднимается поршень, тем выше давление и температура рабочей смеси.
Рабочий ход четырехтактного двигателя представляет собой принудительное движение поршня из ВМТ к НМТ за счет воздействия резко расширяющейся рабочей смеси, воспламененной искрой от свечи. Как только поршень достигает НМТ, открывается выпускной клапан. Во время выпускного этапа продукты сгорания, вытесняемые давлением поршня, движущимся из НМТ к ВМТ, выбрасываются в атмосферу через выпускной клапан.
За счет применения системы клапанов и фаз газораспределения четырехтактные двигатели внутреннего сгорания намного экономичнее и экологичнее — потому что исключает выброс неиспользованной топливной смеси. При работе 4-х тактные двигатели значительно тише, чем 2-х тактные и в эксплуатации намного проще. Масло в данных двигателях заливается в масляный картер, что значительно уменьшает его потребление и избавляет от заботы по приготовлению бензино-маслянной смеси. На сегодняшний день 4-х тактные двигатели становятся все компактнее, и ими оснащают такую садовую технику как бензокосы, мотобуры и т.д.
Для справки: Сравнение преимуществ и недостатков
Двигатели | Преимущества |
Двигатель внутреннего сгорания |
|
Электродвигатель |
|
Паровой двигатель |
|
Реактивный двигатель |
|
Двигатели | Недостатки |
Двигатель внутреннего сгорания |
|
Электродвигатель |
|
Паровой двигатель |
|
Реактивный двигатель |
|
Принцип работы и рабочие циклы двигателя автомобиля (ДВС)
На автомобилях устанавливают двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу положено свойство газов расширяться при нагревании. Рассмотрим принцип работы двигателя и его рабочие циклы.
Рабочий цикл четырехтактного бензинового двигателя
Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным. Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ).
Принцип работы ДВС — схематично
1. Впуск
По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.2. Сжатие
После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.3. Расширение или рабочий ход
В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200оС.
4. Выпуск
При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.Рабочий цикл четырехтактного дизеля
В отличие от бензинового двигателя, при такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600оС. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.
Впуск
При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60°С.Сжатие
Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.Расширение или рабочий ход
Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0.3 — 0.5 МПа, а температура до 700 — 900оС.Выпуск
Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700оС. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.Принцип работы многоцилиндровых двигателей
На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Значит после рабочего хода в первом цилиндре следующий происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.
Диаграмма работы двигателя по схеме 1-2-4-3
Многоцилиндровые двигатели бывают рядными и V-образными. В рядных двигателях цилиндры расположены вертикально, а в V-образных — под углом. Последние характеризуются меньшей габаритной длиной по сравнению с первыми. Современные восьмицилиндровые двигатели выполняют двухрядными с V-образным расположением цилиндров.
Одноцилиндровый четырехтактный двигатель принцип работы
Устройство и принцип работы одноцилиндрового 4х-тактного двигателя
Принцип работы двигателя внутреннего сгорания изучают в школе, но я все же опишу его.
Первый такт, впуск. Поршень идет вниз, клапан впуска открывается, и топливная смесь поступает из карбюратора в цилиндр. Когда поршень достигает нижнего положения, клапан впуска закрывается.
Второй такт, сжатие. Поршень идет вверх, топливная смесь сжимается. Кокда поршень находится в нескольких миллиметрах от верхней мертвой точки (ВМТ), свеча воспламеняет топливо, сжатое поршнем.
Третий такт, рабочий ход (расширение). После воспламенения горючего оно сгорает, горячие газы быстро расширяются, толкая поршень вниз (оба клапана закрыты).
Четвертый такт, выпуск. По инерции коленвал продолжает свое вращение (для равномерности вращения на коленвале установлены грузы – щеки коленвала), поршень идет наверх. Одновременно открывается выпускной клапан, и отработавшие газы выходят в выхлопную трубу. При достижениии поршнем ВМТ, выпускной клапан закрывается.
Далее повторяются все четыре такта.
Изобретатель 4-тактного двигателя внутреннего сгорания (как впрочем, и двухтактного) немец Николаус Август Отто (1832-1891). Поэтому ДВС иногда называют двигателем Отто.
Из соображений экономичности, все больше лодочных моторов оснащается четырехтактными двигателями. Хотя эти моторы при одинаковом объеме цилиндра уступают по мощности двухтактным, они обладают своими преимуществами:
-экономичность расхода топлива
-четырехтактный двигатель работает тише и устойчивей.
В отличие от двухтактного двигателя, в котором смазка коленвала, подшипников коленвала, компрессионных колец, поршня, пальца поршня и цилиндра осуществляется благодаря добавлению масла в топливо; коленвал четырехтакного двигателя находится в маслянной ванне. Благодаря этому Вам не надо смешивать бензин с маслом или доливать масло в специальный бачок (на моделях двухтактных лодочных моторов с раздельной системой смазки). Достаточно залить чистый бензин в топливный бак и можно ехать, при этом отпадает необходимость покупки специального масла для 2-тактных двигателей. Так же на зеркале поршня и стенках глушителя и выхлопной трубы образуется значительно меньше нагара. К тому же, в 2-тактном двигателе происходит выброс несгоревшей топливной смеси в воду, что объясняется его конструкцией.
На коленвале установлена ведущая звездочка, обеспечивающая (через цепь) вращение распределительного вала, находящегося в головке цилиндра. Этот вал определяет, когда должен быть открыт или закрыт один из двух клапанов (клапаны впуска и выпуска), в зависимости от положения поршня. На распредвале находятся кулачки, которые задействуют коромысла клапанов. (на схеме изображен распределительный вал)
Коромысла нажимают на тот или иной клапан, открывая его. Между регулировочным болтом коромысла и клапаном должен быть зазор, так называемый тепловой зазор. При нагревании металл расширяется, и если тепловой зазор мал или его нет совсем, то клапаны не будут плотно закрывать впускной или выпускной каналы, поэтому так важно регулировать зазор клапанов. Выхлопные газы горячее топливной смеси, и выпускной клапан нагревается (а следовательно и расширяется) больше, чем впускной. Этим объясняется разница зазоров на впускном и выпускном клапанах.
Двигатели внутреннего сгорания должны были заменить промышленную паровую машину. Однако энтузиасты, которые работали над созданием мотора, смогли ощутить потенциал, который заложен в него. Изобретателям удалось отыскать способы, которые позволили в значительных пределах увеличить мощность агрегата без существенного увеличения массы. Так, Николаус Отто сыграл одну из главных ролей в этом проекте.
Как Отто двигатель разрабатывал
Агрегат, изобретенный ученым по имени Альфонс Бо де Роша, а затем построенный немецким инженером Николаусом Отто в 1867 году, в те годы считался максимумом технологичности и практически совершенством. Аналогов для него просто не существовало. Мотор был очень недорогим в эксплуатации, имел компактные размеры, а также ему не нужно было частое обслуживание.
Работа четырехтактного двигателя была построена по четкому алгоритму. Сегодня его называют «циклом Отто». В 1875 г. Николаус Отто в своей компании выпускал больше, чем 600 двигателей за год.
От четырехтактного ДВС до автомобиля
В команде инженеров, которые работали над созданием агрегата, был один талантливый парень – Готлиб Даймлер.
Он тогда горел идеей создания на базе этого мотора настоящего автомобиля. Но Отто не желал модернизировать уже имевшийся успешный мотор. Даймлер был вынужден уйти из проекта, но желание построить автомобиль никуда не делось.
В итоге вместе со своим другом и единомышленником в 1889 году Даймлер таки собирает автомобиль, в основе которого лежит бензиновый четырехтактный двигатель, функционирующий по алгоритму Отто.
Отличие 4-тактного двигателя от 2-тактного
Цикл работы ДВС – это несколько процессов, которые направлены на получение порции силы, которая будет воздействовать на коленвал. Цикл этот состоит из впрыска топлива, сжатия, зажигания топливной смеси, расширения газов, выпуска.
Такт в двигателе внутреннего сгорания – это один ход поршня либо вверх, либо вниз. В двухтактном моторе за один оборот коленвала совершается два такта. Когда газы расширяются, поршень совершает полезную работу.
Агрегаты, где рабочий ход происходит в два такта, называют двухтактными. А если за два оборота коленчатого вала совершается четыре такта, то это уже четырехтактный двигатель.
И те, и другие могут быть как бензиновыми, так и для дизельного топлива. Чтобы понять особенности конструкции и эксплуатации, различия между разными моторами, нужно рассмотреть принципы их работы.
Принцип работы четырехтактного двигателя
Главное отличие 4-тактного ДВС от 2-тактного – в работе газораспределения.
Такт впуска
На первом такте осуществляется впуск. В этот самый момент поршень начинает свое движение вниз из своей верхней мертвой точки. В цилиндре вследствие этого создается разряжение. Тем временем открывается впускной клапан. Топливная смесь всасывается в полость цилиндра. Когда поршень достигает своего крайнего нижнего положения, клапан впуска закрыватся и впускная фаза полностью завершается.
Сжатие топливной смеси
Это второй такт. Здесь поршень движется вверх, а клапаны полностью закрыты. В этот момент топливно-воздушная смесь сжимается, тем самым нагреваясь. Это нужно для более эффективного сгорания смеси.
Рабочий ход поршня
Поршень не доходит до своего крайнего верхнего положения. В бензиновых агрегатах – от свечи, а в дизельных – от сжатия топливная смесь загорается. Газы от сгорания очень резко расширяются, сила воздействует на поршень, и он идет вниз. Так четырехтактный двигатель совершает работу.
Выпуск отработанных газов
После того как поршень совершил свою полезную работу, он находится в крайнем нижнем положении. Теперь нужно удалить из полости цилиндра отработанные газы. Это выполняется через выпускной клапан. Газы выталкиваются из цилиндра в тот момент, когда поршень идет вверх.
Такты в дизельных ДВС
Порядок или алгоритм в дизельных двигателях отличается только тем, что в момент сжатия в полость цилиндра подается лишь воздух. Дизельное топливо подается в камеру только в конце такта сжатия топлива при помощи форсунок.
Отличия двухтактного и четырехтактного двигателя
Среди основных отличий, как уже говорилось, выделяется разная система газообмена.
В двухтактном же моторе и процесс заполнения камеры сгорания, и ее очистка осуществляются вместе с тактом сжатия и расширения. Для этого в цилиндре имеются специальные технологические отверстия для впуска смеси и выброса газов. В агрегатах с такой конструкцией нет механизма ГРМ, что делает эти моторы гораздо проще и легче.
Одноцилиндровый четырехтактный двигатель
Моторы этой конструкции очень распространены. Их можно найти не только в автомобилях, но и в мотоциклах, скутерах, тракторах, мотоблоках. В Китае производят литровые двигатели, которые используются для работы с мотоблоками.
Одно из главных достоинств таких ДВС – это очень маленькое отношение площади камеры сгорания к объему. Это дает минимальные потери тепловой энергии. КПД в таких двигателях очень высокий.
Устройство аналогично многоцилиндровым двигателям. Ничего нового здесь нет.
Этот четырехтактный двигатель предназначен для применения в утилитарных мотоциклах, мопедах, скутерах.
Капризы одноцилиндровых моторов
Во время работы двигателя создаются очень высокие температуры. Детали, которые работают в парах трения, должны периодически охлаждаться и хорошо смазываться. Зазоры между узлами нужно промывать, чтобы удалить продукты износа. Также хорошее масло отлично отводит тепло от поверхностей, которые работают наиболее интенсивно.
Также нужно позаботиться о хорошей дополнительной системе охлаждения. В мотоциклах и скутерах охлаждение зачастую воздушное.
Четырехтактники на мотоциклах
Да, эти моторы очень популярны среди производителей хороших, серьезных мотоциклов. Основное отличие – это дизайн. Если в автомобилях двигатель спрятан под капотом и дизайн его особо не разрабатывали, то в мире мотоциклов внешний вид силового агрегата имеет серьезное значение.
Вот уже более 15 лет в моде двухцилиндровый четырехтактный двигатель мотоцикла, представленный сегодня множеством моделей с самым разным объемом. Отличить такие двигатели можно по характерному звуку.
Однако среди мотоциклистов особой популярностью пользуются рядные четырехцилиндровые агрегаты. Эти моторы лишь немного опережают автомобильные ДВС. К примеру, схема на четырех клапанах лишь недавно получила признание в строительстве автомобилей. А на мотоциклах она использовалась еще с 70-х.
Для мотоцикла четырехтактник является более актуальным. Так, эти ДВС более экономичны, эффективны, экологичны, чем двухтактные агрегаты. Это – преимущества данных двигателей на мотоциклах. Также двигатели для мотоциклов сделаны таким образом, чтобы работать на высоких оборотах. Максимальная мощность выдается на оборотах до 14-16 тысяч на современных моделях.
Новые технологии по старому принципу
С того самого момента, как изобрели четырехтактный двигатель, он постоянно совершенствовался.
Произошли изменения и в системе питания. Современные моторы больше не используют карбюратор – везде инжекторы и электроника.
Чтобы улучшить наполняемость камер сгорания воздухом, применяют системы наддува. Это позволяет увеличить мощность при малом объеме, а также снизить расход топлива.
Но при всем этом принцип действия ДВС остается все тем же, каким и был.
Четыре такта: недостатки и достоинства
Основной и “жирный” плюс таких агрегатов – это экономичность. К тому же они не слишком шумные.
Еще одно преимущество – это, конечно же, высокая надежность. Ресурс может доходить до миллиона километров, и это далеко не предел. Ремонт четырехтактного двигателя нужно делать не так часто.
Среди недостатков – сложная конструкция, дорогое производство, требовательность в эксплуатации. Этим агрегатам обязательно нужно качественное топливо и масло. Осуществить ремонт самостоятельно практически невозможно.
Чтобы с этими моторами никогда не было проблем, «кормите» их только качественным бензином. И тогда они будут работать долго, надежно и исправно. Конструкция, которая столько лет не меняется, – это показатель надежности и эффективности.
“>
Одноцилиндровый четырехтактный бензиновый двигатель принцип работы.
Одноцилиндровый четырехтактный бензиновый двигатель принцип работы.
- Подробности
В наше время на автомобилях используются четырехтактные многоцилиндровые двигатели. Для того, чтобы вы могли самостоятельно ремонтировать двигатель и определять характер неисправности, вначале необходимо узнать его устройство и принцип работы. Для того чтобы представить как же он все таки работает, рассмотрим принцип работы одноцилиндрового четырехтактного бензинового двигателя. Отличие у них только в количестве цилиндров.
Рис 1 – Одноцилиндровый четырехтактный бензиновый двигатель в разрезе.
1 – глушитель. 2 – пружина клапана. 3 – карбюратор. 4 – впускной клапан. 5 – поршень. 6 — свеча зажигания. 7 – выпускной клапан. 8 – шатун. 9 – маховик. 10 – распределительный вал. 11 – коленчатый вал.
- Принцип работы одноцилиндрового четырехтактного двигателя следующий:
- Такт впуска. Такт – это процесс, происходящий в цилиндре за один ход поршня.
Рис 2 – Такт впуска.
1 – впускной клапан. 2 – свеча зажигания. 3 – выпускной клапан. 4 – шатун.
Направление вращения коленчатого вала происходит по часовой стрелке. Вначале поршень у нас находится в верхней мертвой точке ВМТ. За первый такт коленчатый вал совершает пол оборота (180 градусов), тем самым перемещая поршень из ВМТ в нижнюю мертвую точку НМТ. Когда поршень перемещается вниз, у нас в цилиндре создается разряжение. Одновременно с перемещением поршня открывается впускной клапан 1, в конце первого такта клапан откроется полностью. Благодаря создавшемуся разряжению в цилиндре засасывается горючая смесь, которая представляет собой смешанные пары бензина с воздухом. Не забываем, что в цилиндре у нас еще присутствуют продукты сгорания от предыдущего цикла. В итоге это все смешивается и у нас получается рабочая смесь. Подробнее о такте впуска. - Такт сжатия.
Рис 3 — Такт сжатия.
Следующий оборот на 180 градусов приводит перемещение из НМТ в ВМТ. В этом такте оба клапана у нас закрыты, что приводит рабочую смесь к сжатию и повышению давления до 1.8 МПа и температуры 600 градусов Цельсия. Подробнее о такте сжатия. - Такт расширение. Рабочий ход.
Рис 4 — Такт расширение. Рабочий ход.
По окончанию сжатия происходит воспламенение рабочей смеси от искры создаваемой свечей 2 и ее сгорание. Что приводит к увеличению температуры до 2500 градусов Цельсия и давления до 5 МПа. За счет резкого повышения давления, поршень начинает перемещаться вниз, толкая шатун 4, который в свою очередь совершает вращательное действие на коленчатый вал. В этом такте совершается полезная работа, тепловая энергия преобразуется в механическую. При подходе поршня к НМТ начинает открываться выпускной клапан 3, через который отводятся отработанные газы. В результате температура у нас падает до 1200 градусов, а давление до 0.65 МПа. Подробнее о такте рабочего хода. - Такт выпуска.
Рис 5 – Такт выпуска.
В этом такте у нас полностью открывается выпускной клапан 3. Поршень перемещается из нижней мертвой точки в высшую, выталкивая отработанные газы. Далее газы попадают в выпускной коллектор, затем пройдя через глушитель в атмосферу. В конце такта температура в цилиндре падает до 500 градусов, а давление до 0.1 МПа. Полностью цилиндр от отработанных газов не освобождается, какой-то их процент остается и участвует в последующем такте. Подробнее о такте выпуска.
В процессе работы двигателя все перечисленные такты повторяются циклически. При 3 такте, где совершается рабочий ход поршня, механическая энергия от коленвала передается маховику, которую он накапливает и использует ее в последующих тактах. Благодаря маховику работа двигателя становится ровной и устойчивой.
Отличия 2-х тактного от 4-х тактного двигателя
Это общий вопрос, который многих интересует, особенно когда стоит выбор перед покупкой бензоинструмента с разными типами двигателей. У каждого типа двигателя есть свои преимущества и недостатки, которые мы постараемся изложить в этой статье. Давайте начнем…
Основное отличие двухтактных и четырехтактных двигателей в основном сосредоточена вокруг области применения, для которой используется двигатель. Небольшие двигателя, работающие на высоких оборотах, как правило, двухтактные. Более крупные двигателя, с большим крутящим моментом при более низких оборотах, обычно имеют 4-тактные двигателя.
Принцип работы двигателя.
Совокупность периодически повторяющихся в определенной последовательности процессов, в результате которых происходит преобразование тепловой энергии в механическую называется замкнутым рабочим циклом. А именно двигатель приводится в движение с помощью поршня, который движется вверх и вниз в цилиндре, за счет возгорания смеси из бензина и воздуха. Бензиновые двигатели используют электрическую искру для зажигания горючей смеси, от сгорания которой создается давление, необходимое для движение поршня. Этот процесс происходит в вакууме и изолирован в блоке цилиндра.
Рабочий цикл, включающий в себя подачу бензина и воздуха, воспламенение горючей смеси, выталкивание отработанных газов, и повторяется тысячи раз в минуту. Так для оборота коленчатого вала на 360 ° или одного оборота, поршень должен перемещаться из своей наивысшей точки, верхней мертвой точки (ВМТ), в свою нижнюю точку, в нижнюю мертвую точку (НМТ), а затем обратно в ВМТ. К примеру, при 1000 оборотах в минуту рабочий цикл происходит 1000 раз в минуту.
По этому принципу работают все двигатели внутреннего сгорания, разница между 4-тактным и 2-тактным двигателями заключается в действиях, при которых происходит подача, сжатие топлива, выхлоп газов.
Как работает двухтактный двигатель?
Двухтактный двигатель не использует впускные и выпускные клапаны, для подачи горючей смеси и вывода отработанных газов из камеры сгорания. За полный рабочий цикл, то есть за один ход коленчатого вала выполняется два такта.
Вместо клапанов двухтактный двигатель имеет впускной и выпускной каналы – отверстия в боковой части цилиндра, которые совпадают с предварительно рассчитанным положением поршня, где поршень используется для закрытия или открытия этих каналов.
Впускной канал расположен чуть ниже положения ВМТ (верхняя мертвая точка) и когда поршень движется вверх из НМТ, этот канал открыт и производится подача топливной смеси в камеру сгорания. Когда поршень проходит мимо впускного канала, боковая стенка поршня блокирует отверстие, а свеча зажигания зажигает топливо. Сжатие происходит из-за движения поршня к ВМТ, закрывающего впускное отверстие, в сочетании с одновременным сгоранием. Таким образом, такт сжатия и зажигания происходит как одно целое.
Выпускной канал находится на противоположной стороне цилиндра рядом с ВМТ. Когда поршень приближается к самой низкой точке (НМТ), он проходит через выпускной канал открывая его, в результате чего выходят сгоревшие газы.
Рабочий цикл двухтактного двигателя.
Такт 1: впуск и зажигание горючей смеси
Когда поршень движется вверх, топливо и воздух нагнетаются в камеру сгорания и свеча зажигания дает искру. Это происходит как раз перед тем, как поршень достигает ВМТ.
Такт 2: Сжатие и Выхлоп
В положении ВМТ поршень блокирует впускное отверстие, герметизируя камеру сгорания, и в результате воспламенения смеси температура и давление газов резко возрастают. Под этим действием поршень перемещается вниз к НМТ. В самой нижней точке выпускное отверстие больше не закрыто поршнем, и происходит выход отработанных газов.
Как работает четырехтактный двигатель?
Четырехтактный двигатель разделяет каждый этап: процесс сгорания и выпуска на
четыре отдельных шага или такта.
Чтобы топливо могло попасть в камеру сгорания, непосредственно перед тем, как поршень достигнет ВМТ, открывается впускной клапан, позволяющий подавать топливно-воздушную смесь из карбюратора или системы впрыска топлива. Когда в камеру сгорания поступает достаточно топлива, клапан закрывается и создается вакуум и герметизация цилиндра. После свеча зажигания дает искру вызывающую воспламенение горючей смеси (взрыв смеси), это заставляет поршень двигаться вниз. Затем открывается выпускной клапан, позволяющий отходящим газам выходить. В это время герметизация нарушается, что вызывает декомпрессию в цилиндре, и импульс коленчатого вала толкает поршень обратно в верхнее положение ВМТ, и весь процесс начинается заново.
Рабочий цикл четырехтактного двигателя.
такт 1: впуск
Во время первого такта поршень начинает движение от ВМТ и заканчивается в НМТ, в этот момент клапан впрыска находится в открытом положении и поршень втягивает топливовоздушную смесь в цилиндр, путем создания вакуума.
такт 2: сжатие
Второй такт начинается в НМТ и заканчивается в ВМТ, то есть сразу после поступления горючей смеси в цилиндр, поршень поднимаясь сжимает ее, подготавливая к возгоранию во время рабочего хода. Впускной и выпускной клапана на этом этапе закрыты.
такт 3: воспламенение
В этот момент коленвал завершил полный оборот на 360 градусов и пока поршень находится в ВМТ (конец такта сжатия), сжатый воздух и топливо воспламеняется от свечи зажигания (в бензиновом двигателе) и затем под действием силы взрыва поршень совершает рабочий ход вниз к НМТ и производит механическую работу для поворота коленвала.
такт 4: выпуск
После возгорания горючей смеси поршень сначала опускается к НМТ и затем поднимается к ВМТ. Двигаясь (поршень) к ВМТ выталкивает из цилиндра продукты сгорания через открытый выпускной клапан.
Механические Различия | 2-х тактного и 4-х тактного двигателей.
При рассмотрении, различия этих двигателей выходят за рамки основного процесса сгорания. Четырехтактный двигатель имеет клапана находящиеся в головке блока цилиндров, работающие независимо друг от друга, и требующие особого контроля, чтобы открываться и закрываться точно в нужный момент. Другими словами – газораспределительный механизм, работа которого регулируется механически с помощью цепи или ремня ГРМ, которая приводит в движение распределительный вал, в тех случаях, если в двигателе больше одного цилиндра. Этому способствуют гидравлические подъемники, которые используют давление моторного масла для подъема клапанов.
Ремень ГРМ приводится в движение коленвалом в нижней части двигателя и затем ремень (цепь) приводит в движение распределительный вал (газораспределительный механизм). При вращении вала кулачки прижимаются к коромыслам или толкателям клапанов, чтобы открывать и закрывать клапаны. Распределительные валы работают с помощью клапанных кулис, которые непосредственно соприкасаются с кулачком и клапаном.
Четырехтактный двигатель имеет полностью герметичный цилиндр, клапана открываются только сверху, в камеру сгорания. Таким образом, масло, смазывающее двигатель, не попадает в камеру сгорания. В двухтактном двигателе все иначе, когда поршень проходит через впускное отверстие, камера сгорания открыта, а это означает, что масло свободно попадает в цилиндр и смешивается с топливом. Именно поэтому, в двухтактных двигателях для смазки двигателя используется масло другого типа, которое сгорает вместе с топливом. Смешивание топлива с маслом производят перед заливкой в бак.
Производительность.
Двухтактный двигатель имеет меньше компонентов и поэтому легче и компактнее, это предпочтительней для агрегатов, которые пользователю необходимо держать на весу или удерживать. Ручные инструменты, такие как бензопилы и садовые инструменты, работающие на бензине, являются хорошим примером весового преимущества двухтактных двигателей. Уменьшение веса машины облегчает управление и удержание одновременно.
Также двухтактный двигатель имеет более низкую степень сжатие и вращается более свободно. Это приводит к более быстрой реакции при увеличении подачи топлива и набирают обороты намного быстрее, чем четырехтактные.
При запуске двигателя при помощи ручного стартера более низкое сжатие означает, что для запуска двигателя требует меньших усилий. Для ручного запуска 4-тактных двигателей используют декомпрессионное устройство для открытия клапанов и снижения компрессии, а это означает, что двигатель должен иметь дополнительные механические компоненты, увеличивая вес и добавляя процедуры при техническом обслуживании и ремонте. Если 4-тактный двигатель оборудован электростартером, то декомпрессионное устройство не требуется, так как электродвигатель достаточно мощный, чтобы преодолеть сжатие и запустить двигатель.
Недостатком 2-тактных двигателей является то, что они плохо работают на низких оборотах и имеют оптимальный диапазон мощности только на высоких оборотах – когда двигатель встречает слишком большое сопротивление, обороты могут упасть, что приводит к потере мощности и возникает большая вероятность остановки двигателя.
4-тактный двигатель более устойчив при усилении сопротивления (нагрузки), пример: при увеличении нагрузки на двигатель генератора число оборотов в минуту падает и быстро восстанавливается, для поддержания постоянного количества числа оборотов, необходимых для выработки стабильного электрического тока.
Из-за этих ограничений двухтактные двигатели не используют в больших мотоциклах и других транспортных средствах, так как вес машин слишком велик для стабильной работы двигателя. Они также не всегда подходят для генераторов, поскольку генератор предполагает большие перепады нагрузки на двигатель.
В то время как 4-тактный двигатель стабилен при работе на низких оборотах, он не может ускоряться так же быстро, как 2-тактный двигатель.Время задержки является распространенным явлением, когда 4-тактный двигатель должен ускориться, так как механическая работа, связанная с работой клапанов требует времени – это и приводит к основной причине задержке ускорения.
Поскольку 4-тактным двигателям требуется больше времени для ускорения, 2-тактные двигатели являются предпочтительными для высокопроизводительных мотоциклов и моторных лодок. Хотя это можно применять только в том случае, если мотоцикл или лодка не слишком тяжелые. Облегченное транспортное средство, приводимое в действие двухтактным двигателем, имеет лучшее ускорение, если обороты остаются достаточно высокими, чтобы поддерживать оптимальную работу двигателя в диапазоне высоких оборотов.
Техническое обслуживание и ремонт
Двухтактный двигатель требует частого технического обслуживания, это вызвано тем, что моторное масло смешивается с топливом, а масло в свою очередь при сгорании с топливом оставляет черный след (диоксид и оксид углерода) на свече зажигания и требует периодичной очистки свечи. Также остатки масла накапливаются в карбюраторе, и требует своевременного обслуживания.
Топливная смесь для работы 2-тактного двигателя требует особого внимания: если в топливной смеси слишком много масла, сгорание будет не полным. Это снижает производительность двигателя и потребует более частой очистки свечи зажигания и карбюратора; если в топливной смеси слишком мало масла, это может привести к недостаточной смазке блока цилиндра, перегреву и сокращению срока службы двигателя.
Двухтактный двигатель нуждается в частом техническом обслуживании, но эти процедуры просты в исполнении и недороги. Текущее техническое обслуживание 4-тактного двигателя проводиться через определенное количество моточасов или километров. По сравнению с двухтактным двигателем, он не такой частый по времени, но более сложный и дороже. Поскольку современные 4-тактные двигатели используют гидравлические подъемники для управления клапанами, особое внимание следует уделять уровню и типу используемого масла. Так как давление масла и его вязкость напрямую влияют на работу гидравлических подъемников клапанов.
Если уровень масла слишком низкий или неисправен масляный насос, давление масла будет ниже, чем должно быть. Низкое давление масла приводит к неисправности клапанов и может легко привести к поломке двигателя или серьезному повреждению. Если давление масла слишком высокое из-за переполнения масляного картера, двигатель также будет поврежден. Ремонт клапанов двигателя – сложная и дорогостоящая процедура, поэтому крайне важно, чтобы 4-тактный двигатель всегда работал при правильном давлении масла, используя правильный тип масла.
При сравнении технического обслуживания и ремонту двухтактные двигатели проще и обойдутся дешевле. Из-за своей простоты двухтактный двигатель намного легче разобрать и собрать, это занимает меньше времени и требует меньше навыков для ремонта. Отсутствие клапанов или масляного насоса, означает – меньше проблем. В четырехтактным двигателе при длительном использовании клапана будут нуждаться во внимании. С течением времени изнашиваются уплотнения и прокладки штока клапана, а также сами клапана и отверстия клапанов в головке двигателя. Снятие и ремонт клапанов – это сложная операция и требует вмешательство специалиста.
Уровень шума
Когда дело доходит до уровня шума, 4-тактные двигатели, как правило, на холостом ходу работают тише.
Please follow and like us:
Принципы работы 2-тактных и 4-тактных двигателей и их отличия
Работа четырехтактных двигателей |
Почти каждый проданный сегодня автомобиль имеет 4 тактный двигатель. Так же много мотоциклов, газонокосилок, снегоуборочных машин и прочего. механическое оборудование. Но в мире по-прежнему много двухтактных двигателей. небольшие мотоциклы, небольшие газонокосилки, снегоочистители, снегоочистители и т. д.
Разница между типами двухтактных и четырехтактных двигателей заключается в том, сколько раз поршень
перемещается вверх и вниз в цилиндре за один цикл сгорания.Возгорание
цикл — это весь процесс всасывания, сжатия, удара и удара (всасывание топлива и воздуха в поршень, нагнетание в него давления, воспламенение
это и выгоняя выхлоп)
Принцип работы четырехтактного двигателя
4-тактные двигатели обычно имеют гораздо большую мощность, чем 2-тактные, и имеют гораздо более сложную структуру. Вместо того, чтобы полагаться на простую механическую концепцию язычковых клапанов, 4-тактные двигатели обычно имеют клапаны в верхней части камеры сгорания.Самый простой тип имеет один впускной и один выпускной клапан. У более сложных двигателей есть два из одного и один из другого, или по два каждого из них. Таким образом, когда вы видите «16v» на значке на задней части автомобиля, это означает, что это 4-цилиндровый двигатель с 4 клапанами на цилиндр — два впускных и два выпускных — то есть 16 клапанов, или «16v». Клапаны открываются и закрываются вращающимся распределительным валом в верхней части двигателя. Распределительный вал приводится в движение либо шестернями непосредственно от кривошипа, либо, чаще, ремнем газораспределительного механизма.
На следующей анимации показан 4-тактный цикл сгорания.Когда поршень (красный) отступает на первом такте, впускной клапан (левый зеленый клапан) открывается, и топливно-воздушная смесь всасывается в камеру сгорания. Клапан закрывается, когда поршень опускается до дна. Когда поршень начинает продвигаться, он сжимает топливно-воздушную смесь. Когда свеча зажигания достигает верхней точки своего хода, воспламеняет топливно-воздушную смесь, и она горит. Расширяющиеся газы заставляют поршень опускаться во время второго хода. В конце этого хода выпускной клапан (правый зеленый клапан) открывается, и когда поршень продвигается во второй раз, он вытесняет отработанные газы из выпускного отверстия.Когда поршень снова начинает отступать, цикл начинается заново, всасывая свежий заряд топливно-воздушной смеси в камеру сгорания.
Из-за природы 4-тактных двигателей вы не часто найдете одноцилиндровый 4-тактный двигатель. Они действительно существуют в некоторых мотоциклах для бездорожья, но они обладают такой динамикой, что им требуются большие балансировочные валы или противовесы на кривошипе, чтобы попытаться сделать поездку более плавной. Им также требуется немного больше времени для запуска из холодного состояния, потому что вам нужно провернуть один поршень как минимум дважды, прежде чем можно будет запустить цикл сгорания.Если больше одного поршня, двигатель станет намного плавнее, лучше запускается и даже близко не будет таким тяжелым. Это одно из преимуществ двигателей V-6 и V-8. Помимо увеличенного объема, большее количество цилиндров обычно означает более плавный двигатель, потому что он будет более сбалансированным.
Работа двухтактных двигателей |
Двухтактный двигатель отличается от
4-тактный двигатель двумя основными способами.Сначала цикл сгорания завершается.
в пределах одного хода поршня, в отличие от двух ходов поршня, и, во-вторых,
смазочное масло для двигателя смешивается с бензином или топливом. В некоторых
В таких случаях, как газонокосилки, вы должны предварительно смешать масло и бензин.
вылейте себя в емкость, а затем залейте ее в топливный бак. В остальных случаях такие
как и маленькие мотоциклы, у велосипеда есть дополнительный масляный бак, который вы заполняете двумя
масло для хода, а затем в двигателе есть небольшой насос, который смешивает масло и бензин
вместе для вас.
Простота двухтактного двигателя заключается в пластинчатом клапане и конструкции
сам поршень. На рисунке справа показан 4-тактный поршень (слева) и
2-тактный поршень (справа). Двухтактный поршень обычно выше, чем четырехтактный.
такта, и в нем есть два прорези, вырезанные с одной стороны. Эти слоты,
в сочетании с пластинчатым клапаном — вот что заставляет двухтактный двигатель работать так, как он
делает. На следующей анимации показан двухтактный цикл сгорания. Как поршень
(красный) достигает верхней точки своего хода, свеча зажигания воспламеняет топливо-воздух-масло.
смесь.Поршень начинает отступать. При этом прорези врезаются в
поршень справа начинает совмещаться с перепускным отверстием в стенке цилиндра
(зеленый продолговатый справа). Отступающий поршень нагнетает давление в картер двигателя.
который заставляет язычковый или откидной клапан (фиолетовый на этой анимации) закрываться, и
при этом вытесняет топливно-масляную смесь, уже находящуюся в картере
через прорези поршня в байпасный порт. Это эффективно направляет
перемешивает сторону цилиндра и впрыскивает его в камеру сгорания
над поршнем, заставляя выхлопные газы выходить через зеленый выхлоп
порт слева.Как только поршень снова начинает двигаться, он генерирует
вакуум в картере. Тростниковый или откидной клапан всасывается и свежий
Заряд топливовоздушной смеси засасывается в картер двигателя. Когда поршень
достигает максимума своего хода, свеча зажигания воспламеняет смесь, и цикл
начинается снова.
Для того же объема цилиндра 2 Тактные двигатели обычно более мощные, чем 4-тактные версии. Обратная сторона загрязняющие вещества в выхлопных газах; поскольку масло смешивается с бензином, каждые 2 тактный двигатель выталкивает сгоревшее масло вместе с выхлопом.Масла для 2-тактных двигателей обычно предназначены для сжигания чище, чем их 4-тактные аналоги, но, тем не менее, 2-тактный двигатель может быть дымным зверьком. Если, как и я, вы выросли где-нибудь в Европа, где скутеры были в моде для подростков, тогда просто запах 2 такт выхлопа может вызвать теплые воспоминания. Другой недостаток 2-х тактного двигателей в том, что они более шумные по сравнению с 4-х тактными двигателями. Обычно шум описывается как «гудящий».
Различные части 4-тактного двигателя
4-тактный двигатель — это тип небольшого двигателя внутреннего сгорания, в котором для завершения одного рабочего цикла используются четыре различных хода поршня.Во время этого цикла коленчатый вал дважды поворачивается, а поршень дважды поднимается и опускается, чтобы запустить свечу зажигания.
Перечень деталей 4-тактного двигателя
Составные части 4-тактного маломощного двигателя:
- Поршень
- Коленчатый вал
- Распредвал
- Свеча зажигания
- Цилиндр
- Клапаны
- Карбюратор
- Маховик
- Шатун
- Форсунки
Циклы 4-тактного двигателя
Вот детали и функции 4-тактного дизельного двигателя.
1. Ход всасывания
Малые двигатели получают топливо и воздух через карбюратор. Затем карбюратор объединяет топливо и воздух для сгорания. Во время такта впуска впускной клапан между камерой сгорания и карбюратором открывается, что позволяет атмосферному давлению выталкивать топливно-воздушную смесь в цилиндр, когда поршень движется вниз.
2. Ход сжатия
Впускной и выпускной клапаны закрыты в такте сжатия. По мере того, как поршень движется вверх, он сжимает топливно-воздушную смесь.Сжатие облегчает воспламенение свечой зажигания топливно-воздушной смеси в рабочем такте.
3. Рабочий ход
Когда поршень достигает вершины, это оптимальная точка для воспламенения топлива. Свеча зажигания создает высокое напряжение, необходимое для зажигания. Тепло, создаваемое искрой, воспламеняет газ, который затем заставляет поршень снова опускаться в цилиндр.
4. Ход выхлопа
Когда поршень достигает дна, открывается выпускной клапан.Когда поршень движется обратно вверх, он вытесняет выхлопные газы из цилиндра. Как только поршень достигает вершины, выпускной клапан снова закрывается. Впускной клапан снова открывается, и 4-тактный процесс повторяется.
Свяжитесь с Prime Source Parts and Equipment сегодня
В Prime Source Parts and Equipment мы предлагаем решения по поддержке продукции и стремимся помочь нашим клиентам найти именно те детали, которые нужны. Благодаря нашей обширной сети поставщиков у нас есть беспрецедентный доступ к лучшим запасным частям.
Если вам нужны мелкие детали двигателя или услуги, свяжитесь с нами сегодня. Наши опытные сотрудники и технические специалисты помогут вам точно определить, какие решения лучше всего подходят для ваших нужд.
Четырехтактный цикл— обзор
13.18 Цикл Отто
Циклы внешнего сгорания газа Стерлинга и Эрикссона изначально были разработаны для борьбы с опасными котлами высокого давления первых паровых двигателей. Двигатель внутреннего сгорания Ленуара был проще, меньше по размеру и использовал более удобное топливо, чем любой из этих двигателей, но имел очень низкий тепловой КПД.Брайтону удалось повысить тепловой КПД двигателя внутреннего сгорания, обеспечив процесс сжатия перед сгоранием с использованием двухпоршневой техники Стирлинга и Эрикссона с отдельной камерой сгорания. Но конечной целью разработки коммерческих двигателей внутреннего сгорания было объединение всех основных процессов впуска, сжатия, сгорания, расширения (мощности) и выпуска в одном поршневом цилиндре. Это было окончательно достигнуто в 1876 году немецким инженером Николаусом Августом Отто (1832–1891).Основные элементы модели ASC цикла Отто показаны на рисунке 13.48. Он состоит из двух изохорных процессов и двух изоэнтропических процессов.
Рисунок 13.48. Стандартный цикл воздуха Отто.
После нескольких лет экспериментов Отто наконец построил успешный двигатель внутреннего сгорания, который позволил всем основным процессам происходить в пределах одного поршневого цилиндра. Для завершения термодинамического цикла двигателя Отто требовалось четыре хода поршня и два оборота коленчатого вала, но он работал плавно, был относительно тихим и очень надежным и эффективным.Двигатель Отто имел немедленный успех, и к 1886 году было продано более 30 000 экземпляров. Они стали первым серьезным конкурентом паровой машины на рынке двигателей малого и среднего размера.
Первоначально двигатель Отто использовал осветительный газ (метан) в качестве топлива, но к 1885 году многие двигатели с циклом Отто уже были преобразованы в двигатели, работающие на жидких углеводородах (бензине). Разработка гениального карбюратора с поплавковой подачей для испарения жидкого топлива в 1892 году немцем Вильгельмом Майбахом (1847–1929) ознаменовала начало автомобильной эры.Немецкому инженеру Карлу Фридриху Бенцу (1844–1929) обычно приписывают создание первого практичного автомобиля с использованием низкоскоростного двигателя цикла Отто, работающего на жидком углеводородном топливе, в 1885 году. Он использовал тепло выхлопных газов двигателя для испарения топлива до того, как оно испарилось. подается в двигатель.
Кто изобрел цикл «Отто»?
Николаус Отто не знал, что четырехтактный двигатель внутреннего сгорания был запатентован в 1860-х годах французским инженером Альфонсом Эженом Бо де Роша (1815–1893).Однако Рошас на самом деле не строил и не тестировал двигатель, который он запатентовал. Поскольку Отто был первым, кто фактически сконструировал и эксплуатировал двигатель, цикл назван в его честь, а не в честь Роша.
В 1878 году шотландский инженер Дугальд Клерк (1854–1932) разработал двухтактную версию цикла Отто, производящую один оборот коленчатого вала за термодинамический цикл (это было похоже на двигатель Ленуара, но с предварительным сжатием). В 1891 году Клерк продолжил разработку концепции наддува двигателя внутреннего сгорания.Это увеличило тепловой КПД двигателя за счет дальнейшего сжатия индукционного заряда перед зажиганием.
Хотя двухтактный двигатель Клерка по своей природе был менее экономичен, чем четырехтактный двигатель Отто, он давал более равномерную выходную мощность (что важно только для одно- или двухцилиндровых двигателей) и имел почти вдвое большую мощность по сравнению с массой. передаточное отношение двигателя Отто. Двухтактный двигатель с циклом Отто (он никогда не стал известен как цикл Клерка) стал успешным в качестве небольшого и легкого двигателя для лодок, газонокосилок, пил и т. Д.
Тепловой КПД цикла Отто определяется как
(ηT) Otto = (W˙out) netQ˙H = Q˙H− | Q˙L | Q˙H = 1− | Q˙L | Q˙ H
, где из рисунка 13.48 | Q˙L | = m˙ (u2s − u3) и Q˙H = m˙ (u1 − u4s).
Тогда тепловой КПД Otto hot ASC составляет
(ηT) Ottohot ASC = 1 − u2s − u3u1 − u4s
Для Otto hot ASC , таблица C.16a или C.16b в термодинамических таблицах для сопровождения современной инженерной термодинамики используются для определения значений удельных внутренних энергий.Поскольку процессы от 1 до 2 s и от 3 до 4 s являются изоэнтропическими, мы используем столбцы v r в этих таблицах, чтобы найти
v3v4s = vr3vr4 = v2sv1 = vr2vr1 = CR
, где CR = v3 / v4s — степень изоэнтропического сжатия. Если температура и давление на входе ( T 3 и p 3 ) известны, мы можем найти u 3 и v r 3 из таблицы.Затем, если мы знаем степень сжатия (CR), мы можем найти
vr4 = vr3CR и vr2 = vr1 × CR
Теперь мы можем найти u 4 s и T 4 s из таблиц. Однако, чтобы найти u 1 , T 1 , u 2s и T 2s , нам необходимо знать больше информации о системе. Следовательно, теплота сгорания ( Q H / м = Q˙H / m˙), максимальное давление ( p 1 ) или максимальная температура ( T 1 ) в цикле обычно дается полный анализ.
Для Otto холодный ASC ,
| Q˙L | = m˙ (u2s − u3) = m˙cv (T2s − T3) и Q˙H = m˙ (u1 − u4s) = m˙cv (T1 − T4s).
Тогда
(ηT) Ottocold ASC = 1 − T2s − T3T1 − T4s = 1− (T3T4s) (T2s / T3−1T1 / T4s − 1)
Процесс с 1 по 2 с и процесс с 3 по 4 s изоэнтропичны, поэтому
T1 / T2s = T4s / T3 = (v1 / v2s) 1 − k = (v4s / v3) 1 − k = (p1 / p2s) (k − 1) / k = ( p4s / p3) (k − 1) / k
Поскольку T1 / T4s = T2s / T3,
(13.30) (ηT) Ottocold ASC = 1 − T3 / T4s = 1 − PR (1 − k) / k = 1-CR1-k
, где CR = v3 / v4s — степень изоэнтропического сжатия, а PR = p4s / p3 — степень изоэнтропического давления.
Поскольку T3 = TL, но T4s
Изэнтропическая степень сжатия бензинового двигателя с циклом Отто новой газонокосилки составляет 8.От 00 до 1, а температура входящего воздуха составляет T 3 = 70,0 ° F при давлении p 3 = 14,7 фунтов на кв. Дюйм. Определите
- a.
Температура воздуха в конце такта изоэнтропического сжатия T 4 с .
- б.
Давление в конце такта изоэнтропического сжатия перед воспламенением p 4 s .
- г.
Тепловой КПД двигателя Otto cold ASC.
Решение
- a.
Изэнтропическая степень сжатия для двигателя с циклом Отто определяется как
CR = v3v4s = (T3T4s) 11 − k
, откуда мы получаемT4s = T3CR1 − k = T3 × CRk − 1 = (70,0 + 459,67 R ) (8,00) 0,40 = 1220 R
- б.
Для цикла Отто изоэнтропическое давление и степени сжатия связаны соотношением PR = CR k , где PR = p4s / p3 и CR = v 3 / v 4 s .Тогда
p4s = p3CRk = (14,7 psia) (8,00) 1,40 = 270. psia
- c.
Уравнение (13.30) дает тепловой КПД холодного ASC Отто как
(ηT) Ottocold ASC = 1 − T3T4s = 1 − PR1 − kk = 1 − CR1 − k = 1− (8,00) 1−1,40 = 0,565 = 56,5%
Упражнения
- 40.
Если газонокосилка в примере 13.14 остается на улице в холодный день, когда температура T 3 понижается с 70,0 ° F до 30,0 ° F, определите новую температура в конце такта изоэнтропического сжатия.Предположим, что все остальные переменные не изменились. Ответ : T 4 s = 1130 R.
- 41.
Если зазор газонокосилки в Примере 13.14 уменьшен таким образом, что степень сжатия увеличится с 8,00 до 8,50 до 1, определите новое давление в конце такта изоэнтропического сжатия. Предположим, что все остальные переменные не изменились. Ответ : с 4 с = 294.1 фунт / кв. Дюйм.
- 42.
Если максимальная температура в цикле ( T 4 с ) составляет 2400 R, определите тепловой КПД цикла Отто hot ASC этого двигателя. Предположим, что все остальные переменные не изменились. Ответ : ( η T ) Otto hot ASC = 52,8%.
Фактическая диаграмма «давление-объем» для двигателя, работающего в газовом или паросиловом цикле, называется индикаторной диаграммой , 10 , а замкнутая площадь равна чистой реверсивной работе, производимой внутри двигателя.Среднее эффективное давление (мэп) поршневого двигателя — это среднее эффективное давление , действующее на поршень во время его перемещения. указывает (или обратимый) рабочий выход (WI) из поршня — это чистая положительная площадь, ограниченная индикаторной диаграммой, как показано на рисунке 13.49, и равна произведению mep и смещения поршня, V̶2− V̶1 = π4 (Диаметр отверстия) 2 (Ход), или
(13,31) (WI) out = mep (V̶2 − V̶1)
Рисунок 13.49. Соотношение среднего эффективного давления (mep) и индикаторной диаграммы.
Указанный Выходная мощность (Вт˙I) — это чистая (реверсивная) мощность, развиваемая внутри всех камер сгорания двигателя, содержащего n цилиндров, и составляет
(13,32) (Вт˙I) вне = mep (n) (V̶2 − V̶1) (N / C)
, где N — частота вращения двигателя, а C — количество оборотов коленчатого вала на рабочий ход ( C = 1 для двух -тактный цикл и C = 2 для четырехтактного цикла).Фактическая выходная мощность двигателя , измеренная динамометром, называется выходной мощностью тормоза (Вт˙Б), а разница между указанной мощностью и мощностью торможения известна как мощность трения (т. Е. Мощность рассеивается на внутреннем трении двигателя) W˙F, или
(W˙I) out = (W˙B) out + W˙F
, следовательно, механический КПД двигателя η м просто равен ( см. таблицу 13.2)
(13,33) ηm = W˙actualW˙reversible = (W˙B) out (W˙I) out = 1-W˙F (W˙I) out
Из уравнения.(13.31) можно записать
mep = (WI) out / (V̶2 − V −1) = ((WI) out / ma) / v2 − v1 = [(W˙I) out / m˙a] / (v2 −v1)
где m a и m˙a — масса воздуха в цилиндре и массовый расход воздуха в цилиндре, соответственно. Тепловой КПД двигателя любого двигателя внутреннего или внешнего сгорания модели теперь можно записать как
(ηT) ASC = (W˙out) обратимый Q˙in = (W˙1). outQ˙fuel = (W˙1) out / m˙aQ˙fuel / m˙a
где Q˙in = Q˙fuel — теплотворная способность топлива.Объединение этих уравнений дает
mep = (ηT) ASC (Q˙fuel / m˙a) v2 − v1 = (ηT) ASC (Q˙fuel / m˙fuel) (A / F) (v2 − v1)
где A / F = m˙a / m˙fuel — соотношение воздух-топливо в двигателе. Теперь
v2 − v1 = v1 (v2 / v1−1) = RT1 (CR − 1) / p1
, поэтому уравнение. (13.32) становится
(13.34) (W˙1) out = (ηT) ASC (Q˙ / m˙) fuel (DNp1 / C) (A / F) (RT1) (CR − 1)
где D = n (V̶2 − V̶1) = π4 (Диаметр цилиндра) 2 × (Ход) × (Количество цилиндров) — общий рабочий объем поршня двигателя. Уравнение (13.34) позволяет нам определить выходную мощность идеального двигателя внутреннего сгорания без трения, и, когда доступны фактические данные динамометрических испытаний, уравнение.(13.33) позволяет определить механический КПД двигателя.
Пример 13,15Шестицилиндровый четырехтактный двигатель внутреннего сгорания с циклом Отто имеет полный рабочий объем 260, 3 и степень сжатия от 9,00 до 1. Он работает на бензине с удельной теплотворной способностью 20,0 × 10 3 Btu / lbm и представляет собой впрыскиваемое топливо с массовым соотношением воздух-топливо от 16,0 до 1. Во время динамометрического испытания давление и температура на впуске оказались равными 8,00 psia и 60.0 ° F, в то время как двигатель выдавал 85,0 л. С. На торможении при 4000 об / мин. Для холодного ASC Отто с k = 1,40 определите
- a.
Холодный ASC тепловой КПД двигателя.
- б.
Максимальное давление и температура цикла.
- г.
Указанная выходная мощность двигателя.
- г.
Механический КПД двигателя.
- e.
Фактический тепловой КПД двигателя.
Решение
- a.
Из уравнения. (13.30), используя k = 1,40 для холодного ASC,
(ηT) Ottocold ASC = 1 − CR1 − k = 1−9,00−0,40 = 0,585 = 58,5%
- b.
Из рисунка 13.48 a ,
Q˙H = Q˙fuel = (m˙cv) a (T1 − T4s) = m˙fuel (A / F) (cv) a (T1 − T4s)
иT1 = Tmax = T4s + (Q˙ / m˙) топливо (A / F) масса (cv) a
Поскольку процесс 3-4 s является изэнтропическим, уравнение. (7.38) дает
T4s = T3CRk − 1 = (60,0 + 459.67) (9,00) 0,40 = 1250 R
Тогда
Tmax = 20,0 × 103 Btu / lbm топлива (16,0 lbm air / lbm fuel) [0,172 Btu / (lbm air · R)] + 1250 R = 8520 R
Поскольку процесс 4 s до 1 изохорический, уравнение состояния идеального газа дает
pmax = p1 = p4s (T1 / T4s)
и, поскольку процесс 3–4 s изоэнтропен,T4s / T3 (p4s / p3) (k − 1) / k
илиp4s = p3 (T4s / T3) k / (k − 1) = (8,00 psia) (1250 R520 R) 1,40 / 0,40 = 172 psia
, тогдаpmax = (172 фунтов на кв. дюйм) [(8520 R) / 1250 R] = 1170 фунтов на квадратный дюйм
- c.
Уравнение (13.34) дает указанную мощность как
| W˙I | out = (0,585) (20,0 × 103 БТЕ / фунт) (260 дюймов3 / об) (4000 об / мин) (1170 фунт-сила / дюйм2) / 2 (16,0) [0,0685 БТЕ / (фунт · м · R)] (8520 R) (9,00-1) (12 дюймов / фут) (60 с / мин) = (132,00 ft⋅lbf / s) (1 л.с. 550 фут · фунт-сила / с) = 241 л.с.
- d.
Уравнение (13.33) дает механический КПД двигателя как
ηm = (W˙B) out (W˙I) out = 85,0 л.с. 241 л.с. = 0,353 = 35,3%
- e.
Наконец, фактический тепловой КПД двигателя может быть определен по формулам.(7,5) и (13,33) как
(ηT) Ottoactual = (W˙B) outQ˙fuel = (ηm) (W˙I) outQ˙fuel = (ηm) (ηT) Ottocold ASC = (0,353) (0,585 ) = 0,207 = 20,7%
Упражнения
- 43.
Если у двигателя с циклом Отто, описанного в примере 13.15, степень сжатия увеличится до 10,0: 1, какова будет его новая тепловая эффективность холодного ASC Отто? Предположим, что все остальные переменные остаются неизменными. Ответ : ( η T ) Отто холодный ASC = 60.2%.
- 44.
Найдите p max и T max для двигателя с циклом Отто, описанного в примере 13.15, когда степень сжатия снижается с 9,00 до 8,00 до 1. Предположим, что все остальные переменные остаются неизменными. . Ответ : p max = 1040 psia и T max = 8460 R.
- 45.
Определите указанную в примере 13.15 мощность в лошадиных силах, если рабочий объем двигателя увеличился с 260.в 3 до 300. в 3 . Предположим, что все остальные переменные остаются неизменными. Ответ : (W˙I) из = 280. л.с.
- 46.
Определите механический КПД двигателя с циклом Отто в Примере 13.15, если фактическая тормозная мощность составляет 88,0 л.с. вместо 85,0 л.с. Предположим, что все остальные переменные остаются неизменными. Ответ : η м = 36,3%.
Предыдущий пример показывает, что анализ холодного ASC Отто обычно предсказывает термический КПД, который намного превышает фактический тепловой КПД.Типичные двигатели с циклом Отто IC имеют фактический рабочий тепловой КПД в диапазоне 15-25%. Большая разница между тепловым КПД холодного АСК (который содержит по крайней мере один изоэнтропический процесс) и фактическим тепловым КПД обусловлена влиянием второго закона термодинамики за счет большого количества тепловых и механических необратимостей, присущих этому типу поршневого поршня. -цилиндровый двигатель. Для повышения фактического теплового КПД необходимо уменьшить тепловые потери при сгорании и количество движущихся частей в двигателе.
Какой самый маленький двигатель внутреннего сгорания?
Модель авиадвигателя Cox Tee Dee .010 (рис. 13.50) имеет самый маленький двигатель внутреннего сгорания, когда-либо производившийся в производстве. Этот удивительный маленький двигатель весит чуть меньше унции и работает со скоростью 30 000 об / мин. Топливо представляет собой 10–20% касторового масла плюс 20–30% нитрометана, смешанного с метанолом. С отверстием 0,237 дюйма (6,02 мм) и ходом 0,226 дюйма (5,74 мм) он имеет выходную мощность около 5 Вт.
Рисунок 13.50. Двигатель Cox Tee.
2-тактный / 4-тактный — мотоцикл
В чем разница между 2-тактными и 4-тактными двигателями?
Топливо для двухтактного двигателя содержит небольшое количество масла. Это называется «2-тактным», потому что всего одно движение поршня вверх и вниз — 2 хода — выполняет полный цикл впуска, сжатия, сгорания и выпуска. Впускные или выпускные клапаны не используются, а вместо этого используются небольшие отверстия, называемые продувочными портами в стенке цилиндра, для втягивания воздуха и удаления выхлопных газов.Поскольку сгорание происходит при каждом обороте коленчатого вала в 2-тактном двигателе, этот формат обеспечивает большую мощность, чем 4-тактный двигатель, и мощность имеет более мгновенную подачу. Это некоторые причины, по которым двухтактные двигатели давно используются на многих различных типах мотоциклов.
Однако озабоченность по поводу более экологичных характеристик возросла, и теперь 4-тактные двигатели стали нормой, потому что они по своей сути имеют лучшую экономию топлива и меньше дыма выхлопных газов. По состоянию на 2019 год только двухтактные мотоциклы Yamaha выпускаются для соревнований по закрытому маршруту, а некоторые модели предназначены для экспорта.Тем не менее, двухтактные продукты Yamaha имеют простую, легкую конструкцию и сравнительно легкие в обслуживании, а их высокая надежность делает их популярными во многих регионах. Сегодня двухтактные снегоходы Yamaha используются для передвижения по ледяной и холодной окружающей среде России, а наши двухтактные подвесные моторы широко используются в Африке для рыбной ловли. И многие энтузиасты мотоциклов продолжают любить двухтактные двигатели за их резкое, захватывающее чувство ускорения.
Что касается 4-тактных двигателей, они работают на бензине без подмешивания масла, а поршень поднимается и опускается два раза за каждый цикл сгорания, поэтому он называется «4-тактный».Однако для 4-тактных двигателей требуются клапаны для впуска и выпуска, которые должны работать с высокой точностью, что делает этот тип двигателя более сложным, тяжелым и имеет другие недостатки. Но они обеспечивают стабильную подачу мощности, хорошую топливную эффективность, более чистые выбросы и многое другое. Вот почему почти все двухколесные автомобили, от больших мотоциклов до маленьких скутеров, используют четырехтактные двигатели.
: основные части, принцип, работа, применение, преимущества и недостатки
Что вы узнаете из этой статьи?
- Основная часть четырехтактных двигателей SI и CI.
- Концепция работы четырехтактных двигателей с искровым зажиганием (бензин) и с воспламенением от сжатия (дизель) и ее применение.
- Преимущества и недостатки четырехтактных двигателей.
В наших предыдущих статьях мы узнали о двигателе типа и его основных частях , а также о терминологии , использованной в двигателе . Мы знаем, что двигатель IC можно классифицировать по-разному. Одним из наиболее полезных двигателей является четырехтактный двигатель, который в основном используется в автомобильной промышленности.Эти двигатели могут быть далее классифицированы на двигатели с искровым зажиганием или бензиновые двигатели и двигатели с воспламенением от сжатия или дизельные двигатели. Двигатель SI разработан Николаусом Отто, а двигатель CI разработан Рудольфом Дизелем. Эти двигатели имеют много общего с некоторыми принципиальными различиями.
Четырехтактные двигатели:
Принцип:
Мы знаем, что ход определяется как максимальное перемещение поршня в любом направлении внутри цилиндра двигателя. Например, если поршень перемещается из нижней мертвой точки в верхнюю мертвую точку , это называется ходом.Если он возвращается обратно в нижнюю мертвую точку , это называется двухтактным. Точно так же, если он снова движется к ВМТ и возвращается в НМТ, он выполняет четыре хода. Это основной принцип четырехтактного двигателя.
Двигатель, который совершает четыре такта в один рабочий такт или для завершения одного цикла, называется четырехтактным двигателем. Коленчатый вал совершает один оборот за два хода. Таким образом, он совершает два оборота в четырехтактных двигателях.
Детали:
1.Поршень
2. Цилиндр
3. Камера сгорания
4. Впускной и выпускной клапаны
5. Впускной и выпускной коллектор
6. Свеча зажигания
7. Форсунка
8. Шатун
9. Коленчатый вал
10. Поршневые кольца
11. Штифт поршневого поршня
12. Распределительный вал
13. Маховик
14. Картер
Вы можете узнать больше об этих деталях на сайте Основные детали двигателей
Работа:
Четырехтактный двигатель завершает свою циклическую работу на четыре ходы поршня или два оборота коленчатого вала.Эти ходы представляют собой ход всасывания, ход сжатия, ход мощности или расширения и ход выпуска. Оба двигателя SI и CI следуют этим четырем тактам, чтобы завершить один цикл. Рабочие операции этих ударов можно резюмировать следующим образом.
Ход всасывания:
Всасывание означает всасывание заряда (воздушно-топливной смеси в двигателях SI и только воздуха в двигателях CI) в цилиндр двигателя. Он всасывается через впускной клапан. Во время этого хода поршень перемещается из ВМТ в НМТ . Воздух засасывается за счет разницы давлений между цилиндром двигателя и атмосферой в двигателе без наддува и воздушным компрессором в двигателях с наддувом.
Ход сжатия:
В этом ходе поршень перемещается из НМТ в ВМТ. Впускной и выпускной клапаны закрыты, и поршень сжимает заряд во время этого хода. Движение поршня происходит из-за инерции или проворачивания двигателя. Этот процесс происходит асестропически в обоих модулях SI и CI.
Ход мощности и расширения:
В этом ходе поршень перемещается из ВМТ в НМТ. Впускной и выпускной клапаны закрыты во время этого хода.
В двигателях SI свеча зажигания генерирует искру, воспламеняющую топливно-воздушную смесь.Поскольку все топливо доступно внутри цилиндра, сжигание происходит мгновенно, поэтому этот процесс рассматривается как сжигание постоянного объема для идеального цикла. Из-за сгорания топлива внутри цилиндра создается сила высокого давления, которая действует как движущая сила поршня и коленчатого вала. После сгорания поршень расширяется от ВМТ до НМТ в изэнтропическом режиме.
В двигателях CI форсунка впрыскивает топливо в камеру сгорания. Топливо горит из-за тепла, выделяемого во время такта сжатия. В этих двигателях топливо подается через форсунку, поэтому забор топлива не происходит мгновенно.Топливо сгорает равномерно, поэтому этот процесс рассматривается как горение при постоянном давлении для идеального цикла. После горения поршень перемещается из ВМТ в НМТ по изэнтропическому режиму.
Ход выпуска:
Когда поршень достигает НМТ, выпускной клапан открывается, и поршень начинает перемещаться из НМТ в ВМТ из-за инерции поршня. Сгоревшие газы выходят из выпускного клапана из цилиндра двигателя в окружающую среду. Когда поршень достигает ВМТ, новый заряд поступает в цилиндр, и этот цикл повторяется.
Применение:
- Четырехтактный двигатель, широко используемый в автомобильной промышленности.
- Применяются в автобусах, грузовиках и других транспортных средствах.
- Применяются в насосной системе.
- Эти двигатели находят применение в мобильных электрогенераторах.
- Эти двигатели широко используются в авиационных и морских двигателях.
- Дизельные двигатели находят применение в насосных агрегатах, строительной технике, воздушных компрессорах, буровых установках и т. Д.
Преимущества и недостатки:
Преимущества:
- Четырехтактные двигатели обеспечивают более высокий КПД.
- Создает меньше загрязнения.
- Меньший износ за счет хорошей системы смазки.
- Легче в эксплуатации.
- Он работает чище, поскольку в топливо не добавляется дополнительное масло.
- Они дают высокие обороты при малой мощности.
Недостатки:
- Эти двигатели более сложные за счет клапанного механизма и системы смазки.
- Это дороже по сравнению с двухтактными двигателями.
- Четырехтактные двигатели дают меньшую мощность.
Теперь вы должны задать себе эти вопросы.
Каковы основные компоненты четырехтактного двигателя?
Что такое инсульт? Как двигатель четырехтактного двигателя вырабатывает мощность?
Каковы преимущества четырехтактных двигателей?
Если вам понравилась эта статья, задайте вопросы в поле для комментариев, поделитесь ею в своей социальной сети и подпишитесь на наш сайт.
Двигатель внутреннего сгорания и четырехтактный двигатель | Беданг Сен | The Startup
Рис. 1: Двигатели внутреннего сгорания в автомобиляхСегодня у нас есть массивные самолеты, которые могут облететь нас по всему миру за считанные часы, генераторы, которые могут эффективно вырабатывать электроэнергию в самых отдаленных местах, тракторы и насосы, которые помогают нам выращивать урожаи быстрее, и, конечно же, наши собственные личные автомобили, чтобы путешествовать по шоссе.Но что сделало все это возможным? Ответ — двигатель внутреннего сгорания. Двигатель внутреннего сгорания стал неотъемлемой частью каждого человека на Земле. Он предлагает относительно небольшой и легкий источник энергии, который он производит. Простая цель этих тепловых двигателей — преобразовать химическую энергию топлива в механическую, которая обычно передается на вращающийся вал.
Одним из наиболее важных применений двигателя внутреннего сгорания является автомобиль.Транспортные технологии навсегда изменились с массовым производством автомобилей с двигателем внутреннего сгорания. Двигатель внутреннего сгорания — это двигатель, который использует взрыв топлива, называемый сгоранием, для толкания поршня внутри цилиндра. Когда поршень выталкивается из цилиндра, он вращает коленчатый вал, который вращает колеса автомобиля. Наиболее распространенным видом топлива, которое используется для этого сгорания, является бензин.
Технология, которую мы видим сегодня, является продуктом многовековой эволюции и развития, начиная с начала 16 века с Леонардо да Винчи и его раннего описания двигателя без сжатия.Однако первый экспериментальный двигатель внутреннего сгорания был создан более века спустя, в 1680 году, голландским астрономом Кристианом Гюйгенсом, применившим принцип вытягивания воды. Этот принцип был основан на том факте, что взрыв небольшого количества пороха в закрытой камере, снабженной выпускными клапанами, создавал вакуум, когда газы сгорания охлаждались. Используя цилиндр с поршнем, Гюйгенс мог перемещать его таким образом за счет внешнего атмосферного давления.
Рисунок 2: Двигатель внутреннего сгорания ЛенуараЗа ним последовал первый коммерчески практичный двигатель внутреннего сгорания, построенный французским инженером Этьеном Ленуаром примерно в 1859–1860 годах, на котором в качестве топлива использовался осветительный газ. Два года спустя, в 1862 году, Альфонс Бо де Роша запатентовал, но не построил четырехтактный двигатель. Всего четырнадцать лет спустя, в 1876 году, родился первый предок двигателя внутреннего сгорания, который используется сегодня. Этот подвиг был совершен Николаусом Августом Отто, которому удалось создать двигатель с гораздо более высоким КПД по сравнению с более ранними конструкциями за счет сжатия топлива перед сгоранием.Это стало известно как «цикл Отто».
Важнейшими частями цикла Отто является камера сгорания, состоящая из цилиндра. Цилиндр обычно неподвижен и закрыт с одного конца и в котором скользит плотно прилегающий поршень. Движение поршня изменяет объем камеры между закрытым концом цилиндра и внутренней поверхностью поршня. Чтобы преобразовать возвратно-поступательное движение поршня во вращательное движение, используется шатун, чтобы прикрепить коленчатый вал к внешней поверхности поршня.На верхних поверхностях цилиндра, также называемых головкой цилиндра, вырезаны два отверстия, в которых находятся клапаны, которые работают с помощью консервного механизма. Это впускной коллектор и выпускной коллектор. В двигателе внутреннего сгорания используется топливная система, которая состоит из бака, топливного насоса и карбюратора для испарения жидкого топлива. Затем испаренное топливо проходит через впускной коллектор, а газы, образующиеся при сгорании, выводятся через выпускной коллектор.Клапаны обычно удерживаются закрытыми за счет давления пружин и открываются в нужное время во время рабочего цикла кулачками на вращающемся распределительном валу, который соединен с коленчатым валом.
Рисунок 3: Компоненты двигателя внутреннего сгоранияСмесь воздуха и паров бензина, подаваемая в цилиндр из карбюратора, воспламеняется, вызывая проскакивание искры в зазоре между электродами свечи зажигания, которая выступает через стенки цилиндра. Один электрод изолирован фарфором или слюдой; другой заземлен через металл вилки, и оба образуют часть вторичной цепи индукционной системы.
Четырехтактный цикл
Почти каждый автомобиль с бензиновым двигателем использует четырехтактный цикл сгорания для преобразования бензина в движение. Четыре такта:
1. Такт всасывания
2. Ход сжатия
3. Такт сгорания
4. Ход выпуска
Рис. 4: Четырехтактный циклВ первом такте, также известном как такт всасывания или Индукция, поршень перемещается из верхней мертвой точки (ВМТ) в нижнюю мертвую точку (НМТ) при открытом впускном клапане и закрытом выпускном клапане.Это создает вакуум из-за увеличения объема в камере сгорания. Разница давлений между атмосферным давлением снаружи и вакуумом внутри заставляет воздух выталкиваться в цилиндр. Затем используется карбюратор для добавления желаемого количества топлива в систему.
За этим следует такт сжатия, при котором впускной клапан закрывается, а поршень возвращается в ВМТ при закрытых всех клапанах. Это вызывает сжатие топливовоздушной смеси, повышая как давление, так и температуру в цилиндре.В конце такта сжатия сгорание инициируется зажиганием свечи зажигания. Сгорание топливовоздушной смеси происходит за очень короткий, но конечный промежуток времени, когда поршень находится в ВМТ. Сгорание изменяет состав газовой смеси на состав продуктов выхлопа и увеличивает температуру в цилиндре до очень высокого пикового значения, в результате чего давление в цилиндре повышается до очень высокого пикового значения.
Затем происходит расширение хода или мощности хода.Этот ход производит основную работу цикла. Когда все клапаны закрыты, высокое давление, создаваемое процессом сгорания, отталкивает поршень от ВМТ. Когда поршень перемещается из ВМТ в НМТ, объем цилиндра увеличивается, что приводит к падению давления и температуры. Когда поршень приближается к НМТ, выпускной клапан открывается, и газы, образующиеся при сгорании, выдуваются. Открытие выпускного клапана до НМТ снижает работу, выполняемую во время рабочего хода, но требуется из-за конечного времени, необходимого для продувки выхлопных газов.
И, наконец, последний ход — это ход выхлопа. Пока выпускной клапан остается открытым, поршень перемещается из НМТ в ВМТ, вытесняя оставшиеся выхлопные газы из цилиндра в выхлопную систему. Ближе к концу такта выпуска впускной клапан начинает открываться таким образом, что он полностью открывается к тому времени, когда поршень достигает ВМТ. Точно так же выпускной клапан начинает закрываться и полностью закрывается примерно в то время, когда поршень достигает ВМТ. Этот период, когда впускной и выпускной клапаны открыты, называется перекрытием клапанов.
Когда поршень возвращается в ВМТ, происходит следующий такт впуска, начиная цикл снова.
Engihub.com. (2019). Работа двигателя : как работает четырехтактный двигатель? . [онлайн] Доступно по адресу: https://www.engihub.com/engine-working/ [доступ 3 июня 2019 г.].
Гарден, Х., Худ, У. и Двигатели, Т. (2019). Как работают автомобильные двигатели . [онлайн] HowStuffWorks. Доступно по адресу: https://auto.howstuffworks.com/engine1.htm [доступ 3 июня 2019 г.].
Newworldencyclopedia.орг. (2018). Двигатель внутреннего сгорания — Энциклопедия Нового Света . [онлайн] Доступно по адресу: https://www.newworldencyclopedia.org/entry/Internal_combustion_engine [доступ 3 июня 2019 г.].
Scienceclarified.com. (2009). Двигатель внутреннего сгорания — корпус, бывший в употреблении, процесс, срок службы, тип, форма, энергия, газ, воздух . [онлайн] Доступно по адресу: http://www.scienceclarified.com/He-In/Internal-Combution-Engine.html [доступ 3 июня 2019 г.].
Информация (2019). Двигатель внутреннего сгорания: Эволюция двигателя внутреннего сгорания | Информационная справка .[онлайн] Доступно по адресу: https://www.infoplease.com/encyclopedia/science/tech/terms/internalcombustion-engine/evolution-of-the-internalcombustion-engine [доступ 3 июня 2019 г.].
Принцип работы 4-тактного двигателя I.C. Вопросы и ответы
Этот набор вопросов и ответов с несколькими вариантами ответов (MCQ) для сельскохозяйственной техники посвящен теме «Двигатель внутреннего сгорания — Принципы работы 4-тактного двигателя».
1. Какова степень вращения кривошипа при завершении четырехтактного цикла?
a) 90 °
b) 279 °
c) 180 °
d) 360 °
Посмотреть ответ
Ответ: c
Объяснение: В четырехтактном двигателе рабочий цикл завершается за четыре хода поршня. или два оборота коленвала.Каждый ход состоит из поворота коленчатого вала на 180 ° и, следовательно, четырехтактный цикл завершается поворотом кривошипа на 720 °.
2. Какая степень сжатия у двигателя SI?
a) 6 — 10
b) 3 — 5
c) 1 — 2
d) 11 — 15
Просмотреть ответ
Ответ: a
Объяснение: Бензин, высоколетучее топливо, используется в двигателях SI, верхний предел исправлено антидетонационное качество топлива. Степень сжатия в двигателе SI 6-10.
3. Каков порядок работы четырехцилиндровых двигателей?
a) 1-3-4-2
b) 1-4-3-2
c) 1-2-3-4
d) 4-3-2-1
Посмотреть ответ
Ответ: a
Объяснение : Порядок включения четырехцилиндровых двигателей — 1-3-4-2.Последовательность, в которой происходит рабочий ход в каждом цилиндре двигателя, называется порядком зажигания. Расположение шатунной шейки на коленчатом валу и конструкция распределительного вала определяют порядок зажигания.
4. Что из следующего описывает интервал между запусками в четырехтактном двигателе?
а) Ф. = 720 ° / Количество цилиндров
б) F.I. = 360 ° / Количество цилиндров
c) F.I. = 270 ° / Количество цилиндров
d) F.I. = 180 ° / Число цилиндров
Посмотреть ответ
Ответ: a
Пояснение: Интервал между последовательными тактами в разных цилиндрах двигателя называется интервалами включения.Во время первого поворота коленчатого вала на 180 ° цилиндр 1 получает рабочий ход, цилиндр 2 — такт сжатия, а цилиндры 3 и 4 — такт выпуска и всасывания соответственно.
5. Каков КПД двигателя со сжатым зарядом?
a) 40%
b) 20%
c) 30%
d) 10%
Посмотреть ответ
Ответ: c
Объяснение: При увеличении числа оборотов двигателя скорость фронта пламени не изменяется, поэтому точка искры продвигается раньше в цикле, чтобы обеспечить сгорание заряда в большей части цикла до начала рабочего такта.КПД двигателя сжатого заряда 30%.
6. Диаметр и длина хода поршня 4-тактного 4-цилиндрового дизельного двигателя 10 см и 12 см соответственно, частота вращения коленчатого вала 2000 об / мин. Рассчитайте тормозную мощность.
a) 18,90 кВт
b) 12,89 кВт
c) 12,98 кВт
d) 18,98 кВт
Просмотреть ответ
Ответ: d
Пояснение: Интегрированная мощность = \ ((\ frac {pLAN} {60,000}) \) * n / 2
= \ (\ frac {7 * 105 * 0,12 * \ frac {π} {4} * (0,1) 2 * 2000 * 4} {60000 * 2} \)
= 43.98 кВт
Мощность тормоза = Интегрированная мощность — Мощность трения
= 43,98-25
= 18,98 кВт.
7. Шестицилиндровый двигатель имеет ход 130 мм и внутренний диаметр 109,4 мм. Объем двигателя при степени сжатия 17: 1 равен _________
а) 5,4 л
б) 7,32 л
в) 8,27 л
г) 6,96 л
Посмотреть ответ
Ответ: б
Пояснение: V d = \ (\ frac {π} {4} \) D 2 Ln
= \ (\ frac {π} {4} \) * (109,4) 2 * 130 * 6
= 7.32 л.
8. Какой процент поставляемой энергии преобразуется в механическую работу двигателем внутреннего сгорания?
a) 10% -20%
b) 30% -40%
c) 50% -60%
d) 70% -80%
Посмотреть ответ
Ответ: b
Объяснение: Двигатель IC в среднем способен преобразования всего 30-40% поставляемой энергии в механическую работу, потому что большая часть ненужной энергии находится в форме тепла, которое выделяется в окружающую среду через охлаждающую жидкость, ребра и т. д.
Серия Sanfoundry Global Education & Learning — Сельскохозяйственная техника.