Принцип работы дизельного двигателя: Дизельные двигатели: виды, принцип работы, преимущества дизельных двигателей

Содержание

Принцип работы дизельного генератора

Электричество уже давно стало незаменимым ресурсом, без которого невозможно представить ни один из аспектов современной жизни. Главным поставщиком электричества как в городах, так и в менее крупных населённых пунктах являются электростанции различного типа, но не во всех ситуациях можно подключиться к электростанции, которая, к тому же нередко даёт сбои. В таких случаях широко используются автономные источники электричества – дизельные и бензиновые генераторы.

История дизельного генератора берёт начало в конце 19 века, когда Рудольф Дизель, немецкий инженер, в чью честь были названы и двигатель, и топливо, разработал и собрал первый дизельный двигатель внутреннего сгорания, принцип работы которого основан на использовании энергии воспламенённого топлива. Он обнаружил, что дизельное топливо, сгорая, сильно увеличивается в объёме, и решил, что высвобождающуюся энергию можно превратить в механическую работу, например, вращение оси. На этом принципе сегодня работают дизельные двигатели автомобилей.

Позднее при совмещении принципов работы двигателя внутреннего сгорания с открытиями в области электромагнетизма был разработан проект генератора, способного использовать энергию дизельного топлива для добычи электричества. Уже в начале 20 века началось массовое производство дизельных генераторов, применявшихся в качестве основного и альтернативного источника электроэнергии.

Устройство дизельного генератора достаточно просто: в металлическом корпусе, иногда облачённом в специальный шумоподавляющий кожух, собрано устройство из дизельного двигателя внутреннего сгорания, системы электромагнитов, создающих магнитное поле, и проводника, возбуждающего электромагнитное поле.

При запуске дизельной электростанции топливо внутри цилиндра воспламеняется от искры свечи и резко увеличивается в объёме, приводя в движение систему, состоящую из поршня и шатуна. Несколько таких систем, образующих несколько цилиндров, в свою очередь, приводят в движение коленчатый вал, на котором установлен ротор.

Ротор, называемый также якорем, представляет собой вращающуюся часть генератора, изготовленную из твёрдого сплава и имеющую медную обмотку в виде проволоки или узких полос. Вращаясь, ротор возбуждает электромагнитное поле, и в его обмотке концентрируется индукционный переменный ток, передаваемый на устройства, подключенные к генератору.

Соответственно, подача тока будет продолжаться до тех пор, пока происходит вращение ротора. Современные генераторы способны выдавать до 600 кВт, приближаясь по мощности к небольшой стационарной электростанции. Для бытового использования применяются генераторы мощностью от 5 до 20 кВт, и этого хватает для обеспечения электричеством стандартного набора приборов в виде телевизора, холодильника и плиты, если он используется в загородном доме, и бетономешалки, циркулярной пилы и отбойного молотка, если его применение связано, например, со строительством.


Двухтактный дизельный двигатель: устройство и принцип работы

Двухтактный дизельный двигатель представляет собой двигатель внутреннего сгорания. Топливо-воздушная смесь сгорает за 2 движения поршня. Цикл завершается всего за 1 оборот коленвала. Такие показатели кажутся впечатляющими, однако существует несколько особенностей работы агрегата, о которых стоит узнать подробнее.

Главным достоинством такого мотора можно считать меньший расход топлива в сравнении с бензиновыми агрегатами. Это происходит за счет одной из особенностей дизельного топлива. Оно плотнее бензина, поэтому при сгорании дает на 15% энергии больше. Это обеспечивается более длинной цепочкой углеродов. Кроме того, технические характеристики таких двигателей стоят наравне с показателями аналогичных двигателей.

Строение

В состав двухтактного дизеля входит картер, совмещенный с коленчатым валом поршень, форсунки, впускные и выпускные окна цилиндра, топливный и водяной насосы. Последний снабжается плунжерным переключателем и датчиком температуры, а также емкостями, которые наполняются водой. Агрегат обеспечивает повышение КПД и за счет улучшенного сгорания топливо-воздушной смеси. Токсичность отходов при этом снижается.

В двухтактном моторе расположена газовая турбина и нагнетатель. Последний отвечает за повышение давления в цилиндрах — это обеспечивает экономию топлива и повышение мощности. Газовая турбина запускает преобразователь энергии тепла в энергию движения.

Продувочный воздух поступает в двухтактный дизельный двигатель несколькими способами — с помощью:

  • насосов;
  • продувочных камер;
  • компрессоров.

Продувка может осуществляться по одной из схем — контурной или клапанно-щелевой.

Стоит отметить, что использование контурной схемы снижает как экономические, так и технические показатели агрегата. Это объясняется тем, что в цилиндрах имеются не продуваемые области.

Цилиндры монтированы вдоль. Каждый из них оснащается выпускными и вентиляционными отверстиями. Газ поступает к турбине через коллектор. Когда поршни двигаются, рабочая камера периодически открывается и закрывается. Коленчатые валы взаимодействуют друг с другом. Это обеспечивается механизмом основной передачи.Топливо при этом сгорает при достаточно высокой температуре.

Для смазки трущихся деталей и подшипников применяется смесь масла и топлива. Она подается в цилиндр и кривошипную камеру. Смазки эти узлы не имеют, поскольку она смылась бы топливом. Именно поэтому к горючему его доливают в определенном соотношении.

При этом для двухтактного дизельного двигателя используется определенное масло. Оно выдерживает продолжительное воздействие высоких температур, способно практически не оставлять после сгорания зольных отложений.

Как работает?

Принцип работы двухтактного дизеля основан на выполнении 2 тактов: сжатие и рабочий ход. Конструкция агрегата позволяет выполнять весь цикл вдвое быстрее, чем в четырехтактных моторах.

Для двухтактных дизельных двигателей принцип работы следующий:

  1. Поршень из НМТ начинает двигаться вверх. В цилиндре имеется воздух. Приходе поршня вверх он сжимается, а когда поршень подходит к ВМТ, впрыскивается порция свежего топлива. При этом горючее самовоспламеняется и осуществляется рабочий ход.
  2. Продукты сгорания толкают поршень, вследствие чего тот движется вниз. Когда поршень доходит до НМТ, осуществляется продувка —воздух замещает продукты сгорания. Это является завершением цикла.

Внизу цилиндра имеются продувочные окна. Они необходимы для процесса продувки. Когда поршень снизу, они открыты. Во время подъема поршня они закрываются. Значительное увеличение показателя мощности двухтактных моторов происходит за счет повышения числа рабочих ходов. Двухтактный дизельный двигатель, принцип работы которого достаточно прост, обладает массой преимуществ.

Мифы о двухтактных дизельных моторах

Существует несколько распространенных мифов касательно двухтактных двигателей:

  1. Слишком медленная работа. В действительности современные моторы с турбонаддувом гораздо эффективнее предыдущих моделей.
  2. Такие моторы слишком громкие. Чтобы этого избежать, необходима правильная настройка двигателя. При правильном выполнении всех настроек работа мотора происходит немногим громче бензинового аналога. Высокий уровень шума свидетельствует о неправильной настройке мотора или его неисправности. Для старых моделей высокий уровень шума — характерная черта, создание появление аккумуляторных систем с высоким давлением существенно снизило уровень шума.
  3. Покупать дизель выгоднее бензина. Это так, но лишь отчасти. Несколько лет назад дизельное топливо стоило намного дешевле бензина, однако сегодня разница составляет всего 10-20%. Основная экономичность заключается в способности теплотворной способности горючего.
  4. Такие моторы плохо заводятся зимой. Раньше проблемы с ними действительно возникали. Однако современные автомобили с дизельными двигателями оснащены быстрым запуском, что снижает время на ежедневные подготовки к поездкам.

Срок службы дизеля превышает бензиновые агрегаты. Он может достигать 400-600 тыс. км.

Каждый двухтактный дизельный двигатель имеет одну отличительную особенность — через окна цилиндров впускается воздух и устраняются отработавшие газы. Когда они выходят через клапан в цилиндре, а воздух поступает через окна, система такой очистки называется клапанно-щелевой.

Подобные системы очистки имеют одну особенность — в цилиндре остается только часть воздуха. Поднимаясь вверх, он частично выходит за пределы мотора. Такую очистку еще называют прямоточной. Она обеспечивает максимальную эффективность очистки двигателя от продуктов сгорания.

Помимо прямоточной продувки существует и петлевая, однако она отличается меньшим качеством очистки. Именно поэтому для современных автомобилей она используется нечасто. Рабочие ходы такого агрегата выполняются в два раза чаще, однако на мощности это сказывается незначительно (она увеличивается в 1,5-1,7 раза). Это объясняется наличием продувки, а также тем, что внутри цилиндра происходит более короткий ход.

Преимущества

Двухтактные дизельные двигатели стали производиться относительно недавно. Такие моторы на сегодняшний день имеют множество модификаций. К примеру, зажигание бывает 2 типов: контактным и бесконтактным.Также отличаются и схемы таких моторов. Применяется двухтактная система на танках, в самолетах, в тяжелой промышленной технике.

Другие достоинства:

  1. Небольшой размер. Для установки агрегата требуется совсем немного места. Такие моторы легко умещаются под капотом транспортных средств.
  2. Небольшая масса. Стандартный турбодизель весит почти в 2 раза больше, чем двухтактный дизельный двигатель.
  3. Значительная экономия топлива. Расход горючего снижен практически в 2 раза по сравнению с обычным дизельным агрегатом.
  4. Простая конструкция. При обслуживании таких двигателей нет необходимости применять специальные технологии.

Такие преимущества выгодно выделяют двухтактные дизельные двигатели на фоне бензиновых собратьев. Имеются у таких моторов и серьезные недостатки.

Недостатки

Небольшое распространение агрегатов объясняется рядом причин. К примеру, детали на такие моторы найти получится с трудом. Именно поэтому выполнить ремонт двухтактного дизельного двигателя становится проблематично. Кроме того, специалистов по обслуживанию таких агрегатов достаточно мало.

Другие недостатки:

  • высокая цена дизельных двигателей и малый выбор моделей;
  • увеличенный расход масла;
  • необходимость установки воздушных фильтров.

Явным недостатком дизелей является использование мощного стартера. На морозе дизельное топливо мутнеет и застывает. Ремонт топливной аппаратуры затрудняется тем, что насосы высокого давления изготавливаются с высокой точностью.

Существенным минусом двухтактных дизелей является невозможность их применения в высокотемпературных режимах. Масло при таких условиях закоксовывается, возникает залегание поршневых колец. Кроме того, из-за недостаточной продувки топливо сгорает не полностью, что сказывается на значении КПД и уровне токсичности.

Итоги

Дизельные двигатели, имеющие два такта, изобретались с одной целью — снизить токсичность отработавших газов, а также увеличить экономичность двигателя, повысить КПД.

Стоит упомянуть о зажигании. Чтобы топливо воспламенилось, необходимо время, поэтому разряд на свече возникает заранее, перед тем, как поршень достигнет ВМТ. Чем быстрее происходит движение поршня, тем раньше должна зажигаться свеча. Существуют специальные устройства, позволяющие менять угол зажигания в зависимости от частоты вращения коленвала.

Общий принцип работы дизельного двигателя


 

Общий принцип работы дизельного двигателя дизельной электростанции

Главным отличием ДВС с воспламенением от сжатия (дизеля) от ДВС с воспламенением от искры (бензиновый двигатель) являются способы смесеобразования и воспламенения топливовоздушной смеси. В бензиновом двигателе топливо смешивается с воздухом до входа в цилиндр, а топливовоздушная смесь воспламеняется в определенный момент при помощи искры. В дизельном двигателе в цилиндр попадает «чистый» воздух, который затем сжимается, когда поршень идет к верней мертвой точке. Так как степень сжатия в дизельном двигателе довольно большая (обычно 20:1), воздух при сжатии нагревается до температуры 750С. При подходе поршня к верхней мертвой точке топливо начинает впрыскиваться в цилиндр под высоким давлением. Температура воздуха достаточно высокая для воспламенения впрыснутого топлива, когда оно смешается с воздухом. Топливовоздушная смесь воспламеняется, выделившаяся энергия воздействует на поршень, поршень начинает движение вниз, совершая полезную работу. Необходимо отметить, что новый бензиновый двигатель GDI от MMC имеет такой же способ смесеобразования, как и дизель.
При запуске дизельного двигателя дизельной электростанции в холодную погоду температура сжатого воздуха может быть недостаточна для того, чтобы воспламенить топливо. Поэтому на дизельных двигателях устанавливают системы предпускового подогрева воздуха. При очень низких температурах (-50 град.С) решением может быть только контейнерная дизель-генераторная установка.

Способы впрыска топлива дизельного двигателя

На практике довольно сложно добиться плавного сгорания топлива в двигателях с небольшим объемом, впрыскивая топливо непосредственного в камеру сгорания. Чтобы добиться более плавного сгорания топливовоздушной смеси были разработаны дизели с разделенными камерами сгорания: вихрекамерные и предкамерные. Дизели с разделенными камерами сгорания имеют меньший КПД и более требовательны к системе предпускового подогрева воздуха по сравнению с дизелями с непосредственным впрыском, но эти недостатки перекрываются более тихой и мягкой работой.

Шум и черный дым дизельного двигателя

За дизельными двигателями закрепился имидж шумных и дымных машин, который в общем-то верен.
Шум дизельного двигателя вызван следующим: в камере сгорания при впрыске топлива и начале его горения резко возрастает давление, которое и вызывает этот многим неприятный шум. Данный шум в общем неизбежен при работе двигателя, но за последние годы он был значительно снижен: улучшения в конструкциях камеры сгорания и форсунок, а также применение шумозащитных кожухов с низкошумными глушителями.
Повышение шумности дизеля часто бывает вызвано неисправностью форсунок.
Дымность дизеля связана с неправильным сгоранием топлива. В отличии от шума этот вопрос практически полностью решаем. Во время запуска и прогревания двигателя небольшое количество белового или голубого дыма является нормальным, но при работе под статичной нагрузкой в нормальных условиях его не должно быть. Черный дым обычно вызван недостатком воздуха: либо забит воздушный фильтр, либо впрыснуто большое количество топлива (при значительном набросе нагрузки).

 

Поиск неисправностей дизельного двигателя

  • Двигатель дизельной электростанции не заводится в холодную погоду
  1. неправильно используется система предварительного подогрева
  2. неисправность системы предварительного подогрева
  3. парафинизация топлива (очень холодно)
  4. неисправность механизма холодного пуска
  • Двигатель не заводится в теплую и холодную погоду
    1. недостаточная частота вращения стартера
    2. недостаточная компрессия
    3. отсутствие топлива в баке
    4. воздух в топливе
    5. дополнительное сопротивление в системе подачи топлива
    6. загрязнение топлива
    7. неисправность эл.маг. клапана
    8. внутренняя поломка ТНВД
  • Недостаточная частота вращения стартера
    1. аккумуляторная батарея недостаточной емкости
    2. масло не соответствует требованиям производителя двигателя
    3. высокое сопротивление в электрической цепи стартера
    4. неисправность стартера
  • Двигатель трудно заводится
    1. неправильная процедура пуска двигателя
    2. неисправность стартера или аккумуляторной батареи
    3. неисправность системы предпускового подогрева
    4. воздух в топливе
    5. дополнительное сопротивление в системе подачи топлива
    6. недостаточная компрессия
    7. неправильно отрегулирован зазор клапанов
    8. дополнительное сопротивление в выпускной системе
    9. неправильно отрегулирован механизм газораспределения
    10. неисправность форсунки/форсунок
    11. неправильно выставлен момент впрыска
    12. внутренняя поломка ТНВД
  • Двигатель заводится, но сразу глохнет
    1. мало топлива в баке
    2. воздух в топливе
    3. неправильно установлены обороты холостого хода
    4. дополнительное сопротивление в системе подачи топлива или системе слива лишнего топлива в бак
    5. воздушный фильтр загрязнен
    6. дополнительное сопротивление во впускной или выпускной системах
    7. неисправность форсунок
  • Двигатель не останавливается после выключения подачи топлива
    1. неисправность эл.маг. клапана
  • Нестабильная работа на холостых оборотах
    1. воздушный фильтр загрязнен
    2. дополнительное сопротивление во впускной системе
    3. воздух в топливе
    4. дополнительное сопротивление в системе подачи топлива
    5. неправильно отрегулирован зазор клапанов
    6. пружины клапанов ослабли или сломались
    7. недостаточная компрессия
    8. перегрев
    9. неправильно подсоединены трубки к форсункам или трубки не соответствуют требованиям производителя мотора
    10. неправильно отрегулирован механизм газораспределения
    11. неисправность форсунок
    12. неисправность ТНВД
  • Недостаток мощности
    1. необходимо проверить тягу ТНВД
    2. воздушный фильтр загрязнен
    3. дополнительное сопротивление во впускной системе
    4. воздух в топливе
    5. дополнительное сопротивление в системе подачи топлива
    6. неправильно отрегулирован механизм газораспределения
    7. неправильно установлен момент впрыска
    8. дополнительное сопротивление в выпускной системе
    9. недостаточное давление турбонаддува
    10. неправильно отрегулирован зазор клапанов
    11. недостаточная компрессия
    12. неисправность форсунок
    13. неисправность ТНВД
  • Чрезмерный расход топлива
    1. внешняя утечка
    2. топливо протекает в поддон двигателя
    3. воздушный фильтр загрязнен
    4. дополнительное сопротивление во впускной системе
    5. неправильно отрегулирован зазор клапанов
    6. недостаточная компрессия
    7. неправильно установлен момент впрыска
    8. неисправность форсунок
    9. неисправность ТНВД
  • Двигатель сильно стучит
    1. воздух в топливной системе
    2. некачественное топливо
    3. неисправность форсунок
    4. пружины клапанов ослабли или сломались
    5. неправильно отрегулирован зазор клапанов
    6. неправильно отрегулирован механизм газораспределения
    7. неправильно установлен момент впрыска
    8. поршневые кольца изношены или сломались
    9. износ цилиндропоршневой группы
    10. поврежден или слома подшипник коленвала
    11. износ распредвала
  • Выхлоп черного цвета
    1. воздушный фильтр загрязнен
    2. дополнительное сопротивление во впускной системе
    3. неправильно отрегулирован зазор клапанов
    4. недостаточная компрессия
    5. недостаточное давление турбонаддува
    6. дополнительное сопротивление в выпускной системе
    7. неправильно отрегулирован механизм газораспределения
    8. неисправность форсунок
    9. неправильно установлен момент впрыска
    10. неисправность ТНВД
  • Выхлоп голубого или белого цвета
    1. некачественное масло или масло не соответствует требования производителя двигателя
    2. неисправность свечей накаливания или реле этих свечей (дым только при запуске)
    3. загрязнен воздушный фильтр
    4. дополнительное сопротивление во впускной системе
    5. неправильно отрегулирован механизм газораспределения
    6. неправильно установлен момент впрыска
    7. неисправность форсунок или теплоотражателей
    8. неисправно уплотнение клапана (штока)
    9. недостаточная компрессия
    10. прокладка блока повреждена
    11. поршневые кольца изношены или сломались
    12. изношена цилиндропоршневая группа
  • Чрезмерный расход масла
    1. внешняя утечка
    2. некачественное или несоответствующее требованиям производителя масло
    3. уровень масла в двигателе слишком высок
    4. дополнительное сопротивление в системе вентиляции картера
    5. утечка масла из масляной системы в топливную
    6. утечка масла из дополнительного оборудования
    7. утечка масла из масляной системы в систему охлаждения
    8. утечка масла в ТНВД
    9. загрязнен воздушный фильтр
    10. дополнительное сопротивление во впускной системе
    11. лаковые отложения на стенках цилиндра
    12. поршневые кольца изношены или сломались
    13. изношена цилиндропоршневая группа
    14. износ направляющей/штока клапана
    15. износ уплотнений штока клапана
  • Перегрев
    1. утечка ОЖ
    2. слишком высокий уровень масла
    3. поломка вентилятора
    4. насос системы охлаждения неисправен
    5. неисправен радиатор
    6. патрубки системы охлаждения повреждены
    7. термостат неисправен
    8. воздушный фильтр загрязнен
    9. повреждена прокладка блока
    10. дополнительное сопротивление во впускной или выпускной системе
    11. деформация головки блока или трещины в ней
    12. неправильно отрегулирован механизм газораспределения
    13. неправильно установлен момент впрыска (слишком рано)
    14. неисправность форсунок
    15. неисправность ТНВД
  • Повышенное давление в картере
    1. дополнительное сопротивление в системе вентиляции картера
    2. негерметичность в вакуумном насосе
    3. поршневые кольца сломались
    4. повреждена прокладка блока
  • Неустойчивая работа двигателя
    1. неправильная рабочая температура
    2. тяга ТНВД нуждается в регулировке
    3. воздушный фильтр загрязнен
    4. дополнительное сопротивление во впускной системе
    5. воздух в топливе
    6. неправильно подсоединены трубки к форсункам
    7. дополнительное сопротивление в системе подачи топлива или системе слива лишнего топлива в бак
    8. неправильно отрегулирован зазор клапанов
    9. пружины клапанов ослабли или сломались
    10. недостаточная компрессия
    11. ослабло крепление ТНВД
    12. неправильно установлен момент впрыска
    13. неисправность ТНВД
  • Вибрация
    1. тяга ТНВД нуждается в регулировке
    2. крепление двигателя ослабло или изношено
    3. вентилятор неисправен
    4. гаситель крутильных колебаний двигателя неисправен или ослабло его крепление
    5. неправильно подсоединены форсунки
    6. ослабло крепление маховика
    7. недостаточная компрессия
  • Низкое давление масла
    1. уровень масла низок
    2. масло не соответствует требованиям производителя
    3. масляный фильтр загрязнен
    4. перегрев
    5. масло загрязнено
    6. датчик масляного давления неисправен
    7. фильтр грубой очистки загрязнен
    8. всасывающая гидролиния насоса повреждена или забита
    9. поврежден предохранительный клапан
    10. изношен насос
    11. изношены подшипники коленвала
  • Высокое давление масла
    1. масло не соответствует требованиям производителя
    2. неисправен датчик
    3. поврежден предохранительный клапан

     

    Работа дизельного двигателя – ПРОТРАК

    Дизельный двигатель был назван в честь своего создателя Рудольфа Дизеля, который получил патент за своё изобретение в 1890 году. Первые дизели были весьма громоздкими, и несмотря на высокий коэффициент полезного действия (КПД) применялись достаточно редко, ведь по своим габаритам они едва ли уступали своим главным конкурентам паровым машинам.

    И лишь к концу XX века, после значительного усовершенствования дизельные двигатели становятся популярными и применяются повсеместно, в том числе и на легковых автомобилях.

    Стоит отметить, что дизельные ДВС по прежнему значительно превосходят своих бензиновых конкурентов по размерам и выдают больший крутящий момент при низких оборотах. Однако при этом уровень КПД при работе дизелей значительно выше.

    Такая особенность обуславливает популяризацию их применения преимущественно на транспорте с внушительными размерами, а именно в строительстве морских судов, тепловозов, тракторов, автобусов и грузовых автомобилях.

    Принцип работы дизельного двигателя

    Принцип работы дизельного двигателя можно разделить на 4 этапа, которые происходят последовательно и непрерывно. 

    Стоит уточнить, что все процессы, или такты, как их принято называть, происходят в процессе поворота коленвала ‒ механической детали сложной формы, которая и обеспечивает превращение энергии от сжигания топлива в энергию вращения колес. Он осуществляет вращательное движение, и его положение напрямую связано с началом или концом следующего такта.

    Четырехтактный цикл начинается с такта впуска, при котором воздух поступает в цилиндры через специальные впускные клапаны, а поршень при этом опускается. Когда угол поворота коленвала достигает 190°- 210° впускной клапан закрывается, что предшествует началу следующего такта ‒ сжатию.

    Такт сжатия характеризуется движением поршня вверх до так называемой мертвой точки (ВМТ), благодаря чему воздух сжимается в 16-25 раз, а температура воздуха увеличивается до 700°- 800°. Поворот коленвала при этом составляет 180°- 360°.

    На такте рабочего хода (расширения) топливо через форсунки впрыскивается в цилиндры, которое за счет высоких температур самовоспламеняется и взрывается. Продукты горения при выделении провоцируют движение поршня вниз. Этот процесс осуществляется на 360°- 540° поворота коленвала.

    Таким образом, процесс воспламенения осуществляется без применения свечей зажигания, как в бензиновых двигателях. Однако, в конструкции дизелей есть свечи накаливания, которые нагревают цилиндры для упрощения запуска ДВС в холодное время года.

    Они размещаются в камере сгорания или вихревой камере, в зависимости от модификации, и обеспечивают нагревание воздуха в районе тысячи градусов, что упрощает процессы самостоятельного воспламенения топлива. Изготавливаются в форме металлических или керамических спиралей.

    Итак, после завершения такта рабочего хода, при опускании поршня в изначальное положение двигатель начинает свою работу, что сопровождается характерным и знакомым для всех звуком запуска.

    Однако процесс ещё не закончен и прежде, чем впускные клапаны откроются вновь и запустят новый процесс сжигания топлива, дизель вытолкнет отработанные газы из выхлопного клапана. Это четвертый и завершающий такт работы, который называется выпуском и протекает при повороте коленвала на 540°- 720°.  

    Только после этого циклическая работа дизельного ДВС будет продолжена и будет осуществляться на протяжении всего процесса подачи топлива.

    Есть все основания полагать, что дизельные двигатели еще не полностью раскрыли свой потенциал и в ходе технологического процесса будут становиться всё лучше и совершеннее. Их КПД будет расти, размеры будут уменьшаться и со стечением времени они полностью заменят своих бензиновых конкурентов.

    Стоимость капитального ремонта дизельного двигателя определяется исходя из  марки автомобиля и его параметров. Более подробно вы можете уточнить по телефонам, или обратившись к нашим специалистам по адресу:

    СТО ПРОТРАК — Грузовой сервис и грузовой магазин:

    г. Екатеринбург, Полевской тракт 19 км, дом 16 (база №16)

    Тел.: 8 (800) 511-58-20 многоканальный 

    график работы: пн-пт: 10:00-22:00 сб-вс: выходной

    Принцип работы дизельного двигателя

    Наконец-то ответим на один из самых задаваемых вопросов в сети: «Чем отличается бензиновый двигатель от дизельного?» 

    Но как ни странно, история изобретения дизельного двигателя началась с создания бензинового двигателя. Изобретен и запатентован бензиновый двигатель был в 1876 году и изобрел его Николаус Август Отто. Бензиновый двигатель использовал четырехтактный цикл сгорания топлива. Но вначале польза от бензинового движка была очень низкой и данное изобретение не могло конкурировать с паровым двигателем. Только 10% всего топлива заставляло авто передвигаться, а 90% вырабатывали лишнее тепло.

     

    В 1878 году Рудольф Дизель узнал о низкой отдаче теплового и бензинового двигателей. Этот неприятный факт и сподобил его изобрести двигатель большего КПД. И в 1892 году Рудольф Дизель получил патент на дизельный двигатель.

     

    В своих расчетах Дизель предположил, что более значительный уровень сжатия топливной массы приводит к большей выработки двигателя. Как только поршень начинает сжатие воздуха в цилиндре, так сразу увеличивается концентрация воздуха. Топливо для дизельных двигателей владеет высокой концентрацией энергии и тем самым происходит увеличение реакции топлива с концентрированным воздухом. Взглянем с другой точки зрения, когда молекулы так близко расположены друг с другом, как при сжатии, дизельное горючее вступает в реакцию с большим количеством молекул кислорода.  

     

    Если посмотреть с точки зрения принципа работы, то бензиновый и дизельный двигатели похожи. Это можно увидеть на примере обучающей игры «Найди отличия». Оба вида двигателя считаются двигателями внутреннего сгорания, которые преобразуют химическую энергию самого топлива в энергию движения. Уже потом механическая энергия начинает двигать поршни в цилиндрах вверх-вниз. И в свою очередь поршни совмещаются с коленвалом, и линейное движение поршней преобразуется в круговое, что и требуется для вращения колес автомобиля.

     

    Бензиновый и дизельный двигатели переносят всю силу энергии топлива в само движение через серию взрывов и сгораний. Главное отличие – как происходит само сгорание. В бензиновом движке горючее воспламеняется от искры, а в дизельном движке вначале происходит сжатие воздуха, а потом подается горючее. При сжатии происходит нагревание воздуха и горючее воспламеняется.

    Стать автором

    Проект “Дизельный двигатель” — презентация онлайн

    1. Физика

    Проект “Дизельный двигатель”
    СОЗДАТЕЛЬ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ
    ПРИНЦИП РАБОТЫ И УСТРОЙСТВО ДИЗЕЛЬНОГО ДВИГАТЕЛЯ
    ОТЛИЧИТЕЛЬНЫЕ ОСОБЕННОСТИ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ ОТ ДРУГИХ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО
    СГОРАНИЯ
    НЕДОСТАТКИ ДАННОГО ДВИГАТЕЛЯ

    3. Создатель дизельного двигателя

    СОЗДАТЕЛЬ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ
    • Рудо́льф Кристиа́н Карл
    Ди́ зель — немецкий
    инженер и изобретатель,
    создатель дизельного
    двигателя.
    • Родился: 18 марта 1858
    г., Париж, Франция
    • Умер: 29 сентября 1913
    г., Ла-Манш
    далее

    4. Создатель дизельного двигателя

    СОЗДАТЕЛЬ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ
    • Рудольф Дизель обучался в Германии, закончил училище, а затем
    Аугсбургскую политехническую школу.
    • С 1893 года Дизель ведет разработки нового двигателя на
    Аугсбургском машиностроительном заводе при финансовом
    участии компаний Фридриха Круппа и братьев Зульцер.
    • 1 января 1898 года Дизель открыл собственный завод по
    производству дизельных двигателей. Работа шла успешно.
    Первый корабль с дизельным двигателем был построен в 1903
    году, через пять лет построен первый дизельный двигатель
    малых размеров, первый грузовой автомобиль и первый
    локомотив на дизельном двигателе.
    вернуться

    5. Принцип работы и устройство дизельного двигателя

    ПРИНЦИП РАБОТЫ И УСТРОЙСТВО ДИЗЕЛЬНОГО
    ДВИГАТЕЛЯ
    Устройство дизельного двигателя
    представлено следующим образом.
    Начинается все с впускного клапана,
    посредством которого воздух может
    попасть в рабочие цилиндры. Поршень
    создает необходимое давление, чтобы
    попадаемый воздух нагрелся до
    требуемой температуры, а коленчатый вал
    воспринимает усилие, поступающее от
    поршня, и преобразует его в крутящий
    момент.
    далее

    6. Принцип работы и устройство дизельного двигателя

    ПРИНЦИП РАБОТЫ И УСТРОЙСТВО ДИЗЕЛЬНОГО
    ДВИГАТЕЛЯ
    • Важно знать, как работает дизельный
    двигатель по четырехтактной схеме. В
    первый такт делается впуск воздуха, в
    это же время открыт и выхлопной
    клапан. Второй такт соответствует
    сжатию воздуха, чтобы он достиг
    необходимой температуры.
    вернуться
    • На третьем такте впрыскивается
    горючая смесь в камеру сгорании, и в
    результате взаимодействия с
    разогретым воздухом происходит
    взрыв. Во время четвертого такта
    осуществляется вывод выхлопных газов
    из тела цилиндра.

    7. Отличительные особенности дизельного двигателя

    далее
    ОТЛИЧИТЕЛЬНЫЕ ОСОБЕННОСТИ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ
    ОСОБЕННОСТИ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ,
    ТАКИЕ КАК ЭКОНОМИЧНОСТЬ, ВЫСОКИЙ
    КРУТЯЩИЙ МОМЕНТ И БОЛЕЕ ДЕШЕВОЕ
    ТОПЛИВО, ДЕЛАЮТ ЕГО
    ПРЕДПОЧТИТЕЛЬНЫМ ВАРИАНТОМ.
    ДИЗЕЛИ ПОСЛЕДНИХ ПОКОЛЕНИЙ
    ВПЛОТНУЮ ПРИБЛИЗИЛИСЬ К
    БЕНЗИНОВЫМ МОТОРАМ ПО ШУМНОСТИ,
    СОХРАНЯЯ ПРИ ЭТОМ ПРЕИМУЩЕСТВА В
    ЭКОНОМИЧНОСТИ И НАДЕЖНОСТИ.

    8. Отличительные особенности дизельного двигателя

    ОТЛИЧИТЕЛЬНЫЕ ОСОБЕННОСТИ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ
    У бензинового мотора смесь
    образуется во впускной системе, а в
    цилиндре воспламеняется искрой
    свечи зажигания. В дизельном
    двигателе подача топлива и воздуха
    происходит раздельно. Вначале в
    цилиндры поступает чистый воздух. В
    конце сжатия, когда он нагревается до
    температуры 700-800оС, в камеру
    сгорания форсунками, под большим
    давлением впрыскивается топливо,
    которое почти мгновенно
    самовоспламеняется.
    вернуться

    9. Недостатки

    НЕДОСТАТКИ
    Явными недостатками дизельных двигателей являются необходимость
    использования стартера большой мощности, помутнение и застывание
    летнего дизельного топлива при низких температурах, сложность
    в ремонте и регулировке топливной аппаратуры (ТНВД), так как
    насосы высокого давления являются устройствами, изготовленными с
    высокой точностью. Также дизель-моторы крайне чувствительны к
    загрязнению топлива механическими частицами и водой. Такие
    загрязнения очень быстро выводят топливную аппаратуру из строя.

    10. Благодарим за внимание


    HTTPS://RU.WIKIMEDIA.ORG
    HTTP://WWW.TECHGIDRAVLIKA.RU
    HTTP://JOYREACTOR.CC/

    Дизельный двигатель — это… Что такое Дизельный двигатель?

    Ди́зельный дви́гатель — поршневой двигатель внутреннего сгорания, работающий по принципу самовоспламенения распылённого топлива от воздействия разогретого при сжатии воздуха.[1]

    Спектр топлива для дизелей весьма широк, сюда включаются все фракции нефтеперегонки от керосина до мазута и ряд продуктов природного происхождения — рапсовое масло, фритюрный жир, пальмовое масло и многие другие. Дизель может с определённым успехом работать и на сырой нефти.

    Компрессионные карбюраторные двигатели не относят к дизельным двигателям, так как в «дизелях» происходит сжатие чистого воздуха, а не топливо-воздушной смеси. Топливо впрыскивается в конце такта сжатия.[2][3].

    История

    В 1824 году Сади Карно формулирует идею цикла Карно, утверждая, что в максимально экономичной тепловой машине нагревать рабочее тело до температуры горения топлива необходимо «изменением объема», то есть быстрым сжатием. В 1890 году Рудольф Дизель предложил свой способ практической реализации этого принципа. Он получил патент на свой двигатель 23 февраля 1892 года (в США в 1895 году[2]), в 1893 году выпустил брошюру. Ещё несколько вариантов конструкции были им запатентованы позднее.[3] После нескольких неудач первый практически применимый образец, названый Дизель-мотором, был построен Дизелем к началу 1897 года, и 28 января того же года он был успешно испытан. Дизель активно занялся продажей лицензий на новый двигатель. Несмотря на высокий КПД и удобство эксплуатации по сравнению с паровой машиной практическое применение такого двигателя было ограниченным: он уступал паровым машинам того времени по размерам и весу.

    Первые двигатели Дизеля работали на растительных маслах или лёгких нефтепродуктах. Интересно, что первоначально в качестве идеального топлива он предлагал каменноугольную пыль. Эксперименты же показали невозможность использования угольной пыли в качестве топлива — прежде всего из-за высоких абразивных свойств как самой пыли, так и золы, получающейся при сгорании; также возникали большие проблемы с подачей пыли в цилиндры.

    Инженер Экройд Стюарт (англ.)русск. ранее высказывал похожие идеи и в 1886 году построил действующий двигатель (см. полудизель). Он предложил двигатель, в котором воздух втягивался в цилиндр, сжимался, а затем нагнетался (в конце такта сжатия) в ёмкость, в которую впрыскивалось топливо. Для запуска двигателя ёмкость нагревалась лампой снаружи, и после запуска самостоятельная работа поддерживалась без подвода тепла снаружи. Экройд Стюарт не рассматривал преимущества работы от высокой степени сжатия, он просто экспериментировал с возможностями исключения из двигателя свечей зажигания, то есть он не обратил внимания на самое большое преимущество — топливную эффективность.

    Независимо от Дизеля в 1898 году на Путиловском заводе в Петербурге инженером Густавом Тринклером был построен первый в мире «бескомпрессорный нефтяной двигатель высокого давления», то есть дизельный двигатель в его современном виде с форкамерой, который назвали «Тринклер-мотором». При сопоставлении Дизель-мотора и Тринклер-мотора русская конструкция, появившаяся на полтора года позднее немецкой и испытанная на год позднее, оказалась гораздо более удачной в плане практического использования. Именно Тринклер-мотор был первым двигателем с воспламенением от сжатия, работавшим на сырой нефти. Использование гидравлической системы для нагнетания и впрыска топлива позволило отказаться от отдельного воздушного компрессора и сделало возможным увеличение скорости вращения. Российская конструкция оказалась проще, надёжнее и перспективнее немецкой.[4] Однако под давлением Нобелей и других обладателей лицензий Дизеля работы над двигателем в 1902 году были прекращены.

    В 1898 г. Эммануэль Нобель приобрёл лицензию на двигатель внутреннего сгорания Рудольфа Дизеля. С 1899 г. Механический завод «Людвиг Нобель» в Петербурге развернул массовое производство дизелей. В Петербурге Тринклер приспособил двигатель для работы на сырой нефти вместо керосина. В 1900 г на Всемирной выставке в Париже двигатель Дизеля получил Гран-при, чему способствовало известие, что завод Нобеля в Петербурге наладил выпуск двигателей, работавших на сырой нефти. Этот двигатель получил в Европе название «русский дизель».[5] Выдающийся русский инженер Аршаулов впервые построил и внедрил топливный насос высокого давления оригинальной конструкции — с приводом от сжимаемого в цилиндре воздуха, работавший с бескомпрессорной форсункой (В. Т. Цветков, «Двигатели внутреннего сгорания», МАШГИЗ, 1954 г.).

    В настоящее время для обозначения ДВС с воспламенением от сжатия используется термин «двигатель Дизеля», «дизельный двигатель» или просто «дизель», так как теория Рудольфа Дизеля стала основой для создания современных двигателей этого типа. В дальнейшем около 20—30 лет такие двигатели широко применялись в стационарных механизмах и силовых установках морских судов, однако существовавшие тогда системы впрыска топлива с воздушными компрессорами не позволяли применять дизели в высокооборотных агрегатах. Небольшая скорость вращения, значительный вес воздушного компрессора, необходимого для работы системы впрыска топлива сделали невозможным применение первых дизелей на автотранспорте.

    В 20-е годы XX века немецкий инженер Роберт Бош усовершенствовал встроенный топливный насос высокого давления, устройство, которое широко применяется и в наше время. Он же создал удачную модификацию бескомпрессорной форсунки. Востребованный в таком виде высокооборотный дизель стал пользоваться всё большей популярностью как силовой агрегат для вспомогательного и общественного транспорта, однако доводы в пользу карбюраторных двигателей (традиционный принцип работы, лёгкость и небольшая цена производства) позволяли им пользоваться большим спросом для установки на пассажирских и небольших грузовых автомобилях: с 50-х — 60-х годов XX века дизель устанавливается в больших количествах на грузовые автомобили и автофургоны, а в 70-е годы после резкого роста цен на топливо на него обращают серьёзное внимание мировые производители недорогих маленьких пассажирских автомобилей.

    В дальнейшие годы происходит рост популярности дизельных двигателей для легковых и грузовых автомобилей, не только из-за экономичности и долговечности дизеля, но также из-за меньшей токсичности выбросов в атмосферу. Все ведущие европейские производители автомобилей в настоящее время имеют модели с дизельным двигателем.

    Дизельные двигатели применяются также на железной дороге. Локомотивы, использующие дизельный двигатель — тепловозы — являются основным видом локомотивов на неэлектрифицированных участках, дополняя электровозы за счёт автономности. Тепловозы перевозят до 40 % грузов и пассажиров в России, они выполняют 98 % маневровой работы[источник не указан 995 дней]. Существуют также одиночные автомотрисы, дрезины и мотовозы, которые повсеместно используются на электрифицированных и неэлектрифицированных участках для обслуживания и ремонта пути и объектов инфраструктуры. Иногда автомотрисы и небольшие дизель-поезда называют рельсовыми автобусами.

    Принцип работы

    Четырёхтактный цикл

    Работа четырёхтактного дизельного двигателя.
    • 1-й такт. Впуск. Соответствует 0° — 180° поворота коленвала. Через открытый ~от 345—355° впускной клапан воздух поступает в цилиндр, на 190—210° клапан закрывается. По крайней мере до 10-15° поворота коленвала одновременно открыт выхлопной клапан, время совместного открытия клапанов называется перекрытием клапанов.
    • 2-й такт. Сжатие. Соответствует 180° — 360° поворота коленвала. Поршень, двигаясь к ВМТ (верхней мёртвой точке), сжимает воздух в 16(в тихоходных)-25(в быстроходных) раз.
    • 3-й такт. Рабочий ход, расширение. Соответствует 360° — 540° поворота коленвала. При распылении топлива в горячий воздух происходит инициация сгорания топлива, то есть частичное его испарение, образование свободных радикалов в поверхностных слоях капель и в парáх, наконец, оно вспыхивает и сгорает по мере поступления из форсунки, продукты горения, расширяясь, двигают поршень вниз. Впрыск и, соответственно, воспламенение топлива происходит чуть раньше момента достижения поршнем мёртвой точки вследствие некоторой инертности процесса горения. Отличие от опережения зажигания в бензиновых двигателях в том, что задержка необходима только из-за наличия времени инициации, которое в каждом конкретном дизеле — величина постоянная и изменению в процессе работы не подлежит. Сгорание топлива в дизеле происходит, таким образом, длительно, столько времени, сколько длится подача порции топлива из форсунки. Вследствие этого рабочий процесс протекает при относительно постоянном давлении газов, из-за чего двигатель развивает большой крутящий момент. Из этого следуют два важнейшие вывода.
      • 1. Процесс горения в дизеле длится ровно столько времени, сколько требуется для впрыска данной порции топлива, но не дольше времени рабочего хода.
      • 2. Соотношение топливо/воздух в цилиндре дизеля может существенно отличаться от стехиометрического, причем очень важно обеспечить избыток воздуха, так как пламя факела занимает небольшую часть объема камеры сгорания и атмосфера в камере должна до последнего обеспечить нужное содержание кислорода. Если этого не происходит, возникает массивный выброс несгоревших углеводородов с сажей — «тепловоз „даёт“ медведя».).
    • 4-й такт. Выпуск. Соответствует 540° — 720° поворота коленвала. Поршень идёт вверх, через открытый на 520—530° выхлопной клапан поршень выталкивает отработавшие газы из цилиндра.

    Далее цикл повторяется.

    В зависимости от конструкции камеры сгорания, существует несколько типов дизельных двигателей:

    • Дизель с неразделённой камерой: камера сгорания выполнена в поршне, а топливо впрыскивается в надпоршневое пространство. Главное достоинство — минимальный расход топлива. Недостаток — повышенный шум («жесткая работа»), особенно на холостом ходу. В настоящее время ведутся интенсивные работы по устранению указанного недостатка. Например, в системе Common Rail для снижения жёсткости работы используется (зачастую многостадийный) предвпрыск.
    • Дизель с разделённой камерой: топливо подаётся в дополнительную камеру. В большинстве дизелей такая камера (она называется вихревой либо предкамерой) связана с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в оную камеру, интенсивно завихрялся. Это способствует хорошему перемешиванию впрыскиваемого топлива с воздухом и более полному сгоранию топлива. Такая схема долго считалась оптимальной для легких дизелей и широко использовалась на легковых автомобилях. Однако, вследствие худшей экономичности, последние два десятилетия идёт активное вытеснение таких дизелей двигателями с нераздельной камерой и с системами подачи топлива Common Rail.

    Двухтактный цикл

    Принцип работы двухтактного дизельного двигателя Продувка двухтактного дизельного двигателя: внизу — продувочные окна, выпускной клапан верху открыт

    Кроме вышеописанного четырёхтактного цикла, в дизеле возможно использование двухтактного цикла.

    При рабочем ходе поршень идёт вниз, открывая выпускные окна в стенке цилиндра, через них выходят выхлопные газы, одновременно или несколько позднее открываются и впускные окна, цилиндр продувается свежим воздухом из воздуходувки — осуществляется продувка, совмещающая такты впуска и выпуска. Когда поршень поднимается, все окна закрываются. С момента закрытия впускных окон начинается сжатие. Чуть не достигая ВМТ, из форсунки распыляется и загорается топливо. Происходит расширение — поршень идёт вниз и снова открывает все окна и т. д.

    Продувка является врожденным слабым звеном двухтактного цикла. Время продувки, в сравнением с другими тактами, невелико и увеличить его невозможно, иначе будет падать эффективность рабочего хода за счет его укорочения. В четырёхтактном цикле на те же процессы отводится половина цикла. Полностью разделить выхлоп и свежий воздушный заряд тоже невозможно, поэтому часть воздуха теряется, выходя прямо в выхлопную трубу. Если же смену тактов обеспечивает один и тот же поршень, возникает проблема, связанная с симметрией открывания и закрывания окон. Для лучшего газообмена выгоднее иметь опережение открытия и закрытия выхлопных окон. Тогда выхлоп, начинаясь ранее, обеспечит снижение давления остаточных газов в цилиндре к началу продувки. При закрытых ранее выхлопных окнах и открытых — еще — впускных осуществляется дозарядка цилиндра воздухом, и, если воздуходувка обеспечивает избыточное давление, становится возможным осуществление наддува.

    Окна могут использоваться и для выпуска отработавших газов, и для впуска свежего воздуха; такая продувка называется щелевой или оконной. Если отработавшие газы выпускаются через клапан в головке цилиндра, а окна используются только для впуска свежего воздуха, продувка называется клапанно-щелевой. Существуют двигатели, где в каждом цилиндре находятся два встречно двигающихся поршня; каждый поршень управляет своими окнами — один впускными, другой выпускными (система Фербенкс-Морзе — Юнкерса — Корейво: дизели этой системы семейства Д100 использовались на тепловозах ТЭ3, ТЭ10, танковых двигателях 4ТПД, 5ТД(Ф) (Т-64), 6ТД (Т-80УД), 6ТД-2 (Т-84), в авиации — на бомбардировщиках Junkers (Jumo 204, Jumo 205).

    В двухтактном двигателе рабочие ходы происходят вдвое чаще, чем в четырёхтактном, но из-за наличия продувки двухтактный дизель мощнее такого же по объёму четырёхтактного максимум в 1,6—1,7 раз.

    В настоящее время тихоходные двухтактные дизели весьма широко применяются на больших морских судах с непосредственным (безредукторным) приводом гребного винта. Ввиду удвоения количества рабочих ходов на одних и тех же оборотах двухтактный цикл оказывается выгодным при невозможности повысить частоту вращения, кроме того, двухтактный дизель технически проще реверсировать; такие тихоходные дизели имеют мощность до 100 000 л.с.

    В связи с тем, что организовать продувку вихревой камеры (или предкамеры) при двухтактном цикле сложно, двухтактные дизели строят только с неразделёнными камерами сгорания.

    Варианты конструкции

    Крейцкопфный (слева) и тронковый (справа) двигатели. Номером 10 обозначен крейцкопф.

    Для средних и тяжелых двухтактных дизельных двигателей характерно применение составных поршней, в которых используется стальная головка и дюралевая юбка. Основной целью данного усложнения конструкции является снижение общей массы поршня при сохранении максимально возможной жаростойкости донышка. Очень часто используются конструкции с масляным жидкостным охлаждением.

    В отдельную группу выделяются четырехтактные двигатели, содержащие в конструкции крейцкопф. В крейцкопфных двигателях шатун присоединяется к крейцкопфу — ползуну, соединенному с поршнем штоком (скалкой). Крейцкопф работает по своей направляющей — крейцу, без воздействия повышенных температур, полностью ликвидируя воздействие боковых сил на поршень. Данная конструкция характерна для крупных длинноходных судовых двигателей, часто — двойного действия, ход поршня в них может достигать 3 метров; тронковые поршни таких размеров были бы перетяжеленными, тронки с такой площадью трения существенно снизили бы механический КПД дизеля.

    Реверсивные двигатели

    Большинство ДВС рассчитаны на вращение только в одну сторону; если требуется получить на выходе вращение в разные стороны, то используют передачу заднего хода в коробке перемены передач или отдельный реверс-редуктор. Электрическая передача также позволяет менять направление вращения на выходе.

    Однако на судах с жёстким соединением двигателя с гребным винтом фиксированного шага приходится применять реверсивные двигатели, чтобы иметь возможность двигаться задним ходом. Для этого нужно изменять фазы открытия клапанов и впрыска топлива. Обычно распределительные валы снабжаются двойным количеством кулачков; при остановленном двигателе специальное устройство приподнимает толкатели клапанов, что даёт возможность передвинуть распредвалы в новое положение. Встречаются также конструкции с реверсивным приводом распределительного вала — здесь при изменении направления вращения коленчатого вала сохраняется направление вращения распределительного вала. Двухтактные двигатели с контурной продувкой, когда газораспределение осуществляется поршнем, не нуждаются в специальных реверсивных устройствах (однако в них всё же требуется корректировка момента впрыска топлива).

    Реверсивные двигатели также применялись на ранних тепловозах с жёстким соединением вала двигателя с колёсами.

    Преимущества и недостатки

    Проверить информацию.

    Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.
    На странице обсуждения должны быть пояснения.

    Возможно, эта статья содержит оригинальное исследование.

    Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление.
    Дополнительные сведения могут быть на странице обсуждения.

    Современные дизельные двигатели обычно имеют коэффициент полезного действия до 40-45 %, некоторые малооборотные крупные дизели — свыше 50 % (например, MAN S80ME-C7 тратит только 155 гр на кВт*ч, достигая эффективности 54,4 %).[6] Дизельный двигатель из-за особенностей рабочего процесса не предъявляет жестких требований к испаряемости топлива, что позволяет использовать в нём низкосортные тяжелые масла.

    Дизельный двигатель не может развивать высокие обороты — топливо не успевает догореть в цилиндрах, для возгорания требуется время инициации. Высокая механическая напряженость дизеля вынуждает использовать более массивные и более дорогие детали, что утяжеляет двигатель. Это снижает удельную мощность двигателя, что послужило причиной малого распространения дизелей в авиации (только некоторые бомбардировщики Junkers, а также советский тяжёлый бомбардировщик Пе-8 и Ер-2, оснащавшиеся авиационными дизелями АЧ-30 и АЧ-40 конструкции А. Д. Чаромского и Т. М. Мелькумова). На максимальных эксплуатационных режимах топливо в дизеле не догорает, приводя к выбросу облаков сажи.

    Сгорание впрыскиваемого в цилиндр дизеля топлива происходит по мере впрыска. Потому дизель выдаёт высокий вращающий момент при низких оборотах, что делает автомобиль с дизельным двигателем более «отзывчивым» в движении, чем такой же автомобиль с бензиновым двигателем. По этой причине и ввиду более высокой экономичности в настоящее время большинство грузовых автомобилей оборудуются дизельными двигателями[источник не указан 196 дней]. Например, в России в 2007 году почти все грузовики и автобусы были оснащены дизельными двигателями (окончательный переход этого сегмента автотранспорта с бензиновых двигателей на дизели планировалось завершить к 2009 году)[7]. Это является преимуществом также и в двигателях морских судов, так как высокий крутящий момент при низких оборотах делает более лёгким эффективное использование мощности двигателя, а более высокий теоретический КПД (см. Цикл Карно) даёт более высокую топливную эффективность.

    По сравнению с бензиновыми двигателями, в выхлопных газах дизельного двигателя, как правило, меньше окиси углерода (СО), но теперь, в связи с применением каталитических конвертеров на бензиновых двигателях, это преимущество не так заметно. Основные токсичные газы, которые присутствуют в выхлопе в заметных количествах — это углеводороды (НС или СН) , оксиды (окислы) азота (NOх) и сажа (или её производные) в форме чёрного дыма. Больше всего загрязняют атмосферу в России дизели грузовиков и автобусов, которые часто являются старыми и неотрегулированными.

    Другим важным аспектом, касающимся безопасности, является то, что дизельное топливо нелетучее (то есть легко не испаряется) и, таким образом, вероятность возгорания у дизельных двигателей намного меньше, тем более, что в них не используется система зажигания. Вместе с высокой топливной экономичностью это стало причиной широкого применения дизелей на танках, поскольку в повседневной небоевой эксплуатации уменьшался риск возникновения пожара в моторном отделении из-за утечек топлива. Меньшая пожароопасность дизельного двигателя в боевых условиях является мифом, поскольку при пробитии брони снаряд или его осколки имеют температуру, сильно превышающую температуру вспышки паров дизельного топлива и так же способны достаточно легко поджечь вытекшее горючее. Детонация смеси паров дизельного топлива с воздухом в пробитом топливном баке по своим последствиям сравнима со взрывом боекомплекта[источник не указан 400 дней], в частности, у танков Т-34 она приводила к разрыву сварных швов и выбиванию верхней лобовой детали бронекорпуса[источник не указан 400 дней]. С другой стороны, дизельный двигатель в танкостроении уступает карбюраторному в плане удельной мощности, а потому в ряде случаев (высокая мощность при малом объёме моторного отделения) более выигрышным может быть использование именно карбюраторного силового агрегата (хотя это характерно для слишком уж лёгких боевых единиц).

    Конечно, существуют и недостатки, среди которых — характерный стук дизельного двигателя при его работе. Однако, они замечаются в основном владельцами автомобилей с дизельными двигателями, а для стороннего человека практически незаметны.

    Явными недостатками дизельных двигателей являются необходимость использования стартёра большой мощности, помутнение и застывание (запарафинивание) летнего дизельного топлива при низких температурах, сложность и более высокая цена в ремонте топливной аппаратуры, так как насосы высокого давления являются прецизиоными устройствами. Также дизель-моторы крайне чувствительны к загрязнению топлива механическими частицами и водой. Ремонт дизель-моторов, как правило, значительно дороже ремонта бензиновых моторов аналогичного класса. Литровая мощность дизельных моторов также, как правило, уступает аналогичным показателям бензиновых моторов, хотя дизель-моторы обладают более ровным и высоким крутящим моментом в своём рабочем объёме. Экологические показатели дизельных двигателей значительно уступали до последнего времени двигателям бензиновым. На классических дизелях с механически управляемым впрыском возможна установка только окислительных нейтрализаторов отработавших газов, работающих при температуре отработавших газов свыше 300 °C, которые окисляют только CO и CH до безвредных для человека углекислого газа (CO2) и воды. Также раньше данные нейтрализаторы выходили из строя вследствие отравления их соединениями серы (количество соединений серы в отработавших газах напрямую зависит от количества серы в дизельном топливе) и отложением на поверхности катализатора частиц сажи. Ситуация начала меняться лишь в последние годы в связи с внедрением дизелей так называемой системы Common rail. В данном типе дизелей впрыск топлива осуществляется электронно-управляемыми форсунками. Подачу управляющего электрического импульса осуществляет электронный блок управления, получающий сигналы от набора датчиков. Датчики же отслеживают различные параметры двигателя, влияющие на длительность и момент подачи топливного импульса. Так что, по сложности современный — и экологически такой же чистый, как и бензиновый — дизель-мотор ничем не уступает своему бензиновому собрату, а по ряду параметров (сложности) и значительно его превосходит. Так, например, если давление топлива в форсунках обычного дизеля с механическим впрыском составляет от 100 до 400 бар (приблизительно эквивалентно «атмосфер»), то в новейших системах «Common-rail» оно находится в диапазоне от 1000 до 2500 бар, что влечёт за собой немалые проблемы. Также каталитическая система современных транспортных дизелей значительно сложнее бензиновых моторов, так как катализатор должен «уметь» работать в условиях нестабильного состава выхлопных газов, а в части случаев требуется введение так называемого «сажевого фильтра» (DPF — фильтр твёрдых частиц). «Сажевый фильтр» представляет собой подобную обычному каталитическому нейтрализатору структуру, устанавливаемую между выхлопным коллектором дизеля и катализатором в потоке выхлопных газов. В сажевом фильтре развивается высокая температура, при которой частички сажи способны окислиться остаточным кислородом, содержащимся в выхлопных газах. Однако часть сажи не всегда окисляется, и остается в «сажевом фильтре», поэтому программа блока управления периодически переводит двигатель в режим «очистки сажевого фильтра» путём так называемой «постинжекции», то есть впрыска дополнительного количества топлива в цилиндры в конце фазы сгорания с целью поднять температуру газов, и, соответственно, очистить фильтр путём сжигания накопившейся сажи. Стандартом де-факто в конструкциях транспортных дизель-моторов стало наличие турбонагнетателя, а в последние годы — и «интеркулера» — устройства, охлаждающего воздух после сжатия турбонагнетателем — чтобы после охлаждения получить большую массу воздуха (кислорода) в камере сгорания при прежней пропускной способности коллекторов, а Нагнетатель позволил поднять удельные мощностные характеристики массовых дизель-моторов, так как позволяет пропустить за рабочий цикл большее количество воздуха через цилиндры.

    В своей основе конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако, аналогичные детали у дизеля тяжелее и более устойчивы к высоким давлениям сжатия, имеющим место у дизеля, в частности, хон на поверхности зеркала цилиндра более грубый, но твёрдость стенок блока цилиндров выше. Головки поршней, однако, специально разработаны под особенности сгорания в дизельных двигателях и почти всегда рассчитаны на повышенную степень сжатия. Кроме того, головки поршней в дизельном двигателе находятся выше (для автомобильного дизеля) верхней плоскости блока цилиндров. В некоторых случаях — в устаревших дизелях — головки поршней содержат в себе камеру сгорания («прямой впрыск»).

    Сферы применения

    Дизельные двигатели применяются для привода стационарных силовых установок, на рельсовых (тепловозы, дизелевозы, дизель-поезда, автодрезины) и безрельсовых (автомобили, автобусы, грузовики) транспортных средствах, самоходных машинах и механизмах (тракторы, асфальтовые катки, скреперы и т. д.), а также в судостроении в качестве главных и вспомогательных двигателей.

    Мифы о дизельных двигателях

    Цех судовых дизелей завода «Даймлер-Бенц» в Штутгарте Дизельный двигатель с турбонаддувом
    • Дизельный двигатель слишком медленный.

    Современные дизельные двигатели с системой турбонаддува гораздо эффективнее своих предшественников, а иногда и превосходят своих бензиновых атмосферных (без турбонаддува) собратьев с таким же объёмом. Об этом говорит дизельный прототип Audi R10, выигравший 24-х часовую гонку в Ле-Мане, и новые двигатели BMW, которые не уступают по мощности атмосферным (без турбонаддува) бензиновым и при этом обладают огромным крутящим моментом.

    • Дизельный двигатель слишком громко работает.

    Громкая работа двигателя свидетельствует о неправильной эксплуатации и возможных неисправностях. На самом деле некоторые старые дизели с непосредственным впрыском действительно отличаются весьма жёсткой работой. С появлением аккумуляторных топливных систем высокого давления («Common-rail») у дизельных двигателей удалось значительно снизить шум, прежде всего за счёт разделения одного импульса впрыска на несколько (типично — от 2-х до 5-ти импульсов).

    • Дизельный двигатель гораздо экономичнее.

    Основная экономичность обусловлена более высоким КПД дизельного двигателя. В среднем современный дизель расходует топлива до 30 % меньше[8]. Срок службы дизельного двигателя больше бензинового и может достигать 400—600 тысяч километров. Запчасти для дизельных двигателей несколько дороже, стоимость ремонта так же выше, особенно топливной аппаратуры. По вышеперечисленным причинам, затраты на эксплуатацию дизельного двигателя несколько меньше, чем у бензинового. Экономия по сравнению с бензиновыми моторами возрастает пропорционально мощности, чем определяется популярность использования дизельных двигателей в коммерческом транспорте и большегрузной технике.

    • Дизельный двигатель нельзя переоборудовать под использование в качестве топлива более дешёвого газа.

    С первых моментов построения дизелей строилось и строится огромное количество их, рассчитанных для работы на газе разного состава. Способов перевода дизелей на газ, в основном, два. Первый способ заключается в том, что в цилиндры подаётся обеднённая газо-воздушная смесь, сжимается и поджигается небольшой запальной струёй дизельного топлива. Двигатель, работающий таким способом, называется газодизельным. Второй способ заключается в конвертации дизеля со снижением степени сжатия, установкой системы зажигания и, фактически, с построением вместо дизеля газового двигателя на его основе.

    Рекордсмены

    Самый большой/мощный дизельный двигатель

    Судовой, 14 цилиндровый — Wärtsilä-Sulzer RTA96-C, созданный финской компанией Wärtsilä в 2002 году, для установки на крупные морские контейнеровозы и танкеры, является самым большим дизелем в мире[9].

    Конфигурация — 14 цилиндров в ряд

    Рабочий объём — 25 480 литров

    Диаметр цилиндра — 960 мм

    Ход поршня — 2500 мм

    Среднее эффективное давление — 1,96 МПа (19,2 кгс/см²)

    Мощность — 108 920 л.с. при 102 об/мин. (отдача с литра 4,3 л.с.)

    Крутящий момент — 7 571 221 Н·м

    Расход топлива — 13 724 литров в час

    Сухая масса — 2300 тонн

    Габариты — длина 27 метров, высота 13 метров

    Самый большой дизельный двигатель для грузового автомобиля[источник не указан 1275 дней]

    MTU 20V400 предназначен, для установки на карьерный самосвал БелАЗ-7561.

    Мощность — 3807 л.с. при 1800 об/мин. (Удельный расход топлива при номинальной мощности 198 г/кВт*ч)

    Крутящий момент — 15728 Н·м

    Самый большой/мощный серийный дизельный двигатель для серийного легкового автомобиля[источник не указан 1275 дней]

    Audi 6.0 V12 TDI с 2008 года устанавливается на автомобиль Audi Q7.

    Конфигурация — 12 цилиндров V-образно, угол развала 60 градусов.

    Рабочий объём — 5934 см³

    Диаметр цилиндра — 83 мм

    Ход поршня — 91,4 мм

    Степень сжатия — 16

    Мощность — 500 л.с. при 3750 об/мин. (отдача с литра — 84,3 л.с.)

    Крутящий момент — 1000 Нм в диапазоне 1750-3250 об/мин.

    См. также

    Примечания

    Ссылки

    Дизельный двигатель

    : как работает 4-тактный дизельный двигатель ИЛИ цикл воспламенения от сжатия?

    Объяснение принципа действия и рабочего цикла дизельного двигателя:

    В основном существует два типа дизельных двигателей — четырехтактный и двухтактный. «Дизельный цикл» использует более высокую степень сжатия. Он был назван в честь немецкого инженера Рудольфа Дизеля, который изобрел и разработал первый четырехтактный дизельный двигатель. Четыре такта дизельного цикла аналогичны бензиновому двигателю. Однако «дизельный цикл» значительно замедляет то, как топливная система подает дизельное топливо в двигатель и зажигает его.

    Обычный дизельный двигатель внутреннего сгорания работает по «Дизельному циклу». В простых дизельных двигателях инжектор впрыскивает дизельное топливо в камеру сгорания непосредственно над поршнем. «Двигатель с воспламенением от сжатия» — это еще одно название дизельного двигателя. Это главным образом потому, что он сжигает дизельное топливо горячим и сжатым воздухом. Температура воздуха внутри камеры сгорания поднимается выше 400–800 ° C. Это, в свою очередь, воспламеняет дизельное топливо, впрыскиваемое в камеру сгорания.Таким образом, «Дизельный цикл» не использует внешний механизм, такой как свеча зажигания, для воспламенения топливовоздушной смеси.

    Четырехтактный дизельный двигатель работает по следующему циклу:

    1. Ход всасывания — При движении поршней вниз и открытии впускного клапана происходит всасывание чистого воздуха в цилиндры.

    Дизельный ход всасывания

    2. Компрессия — При закрытии впускного клапана область над поршнем закрывается.Поршень движется вверх, что приводит к сжатию воздуха в ограниченном пространстве при более высокой степени сжатия.

    Такт сжатия дизельного топлива

    Процесс сгорания — На этом этапе форсунка распыляет дизельное топливо в камеру сгорания. Повышение температуры воздуха, вызванное его сжатием; приводит к мгновенному сгоранию дизельного топлива со взрывом. Это вызывает выделение тепла, которое генерирует расширяющие силы, известные как мощность.

    Сгорание дизельного двигателя

    3.Power Stroke — Кроме того, эти силы снова толкают поршни вниз, вызывая их возвратно-поступательное движение.

    Дизель Power Stroke

    4. Такт выхлопа — По пути вверх поршни выталкивают выхлопные газы над собой через выпускной клапан, который открывается во время такта выпуска.

    Такт выхлопа дизельного двигателя

    Этот цикл повторяется до тех пор, пока двигатель не выключится, что приводит к продолжению работы двигателя.

    Анимация 4-тактного дизельного двигателя

    Дизельные двигатели в основном подразделяются на два типа — с косвенным впрыском (IDI) и с прямым впрыском (DI).Дизельный цикл с прямым впрыском был технологией более раннего поколения. Позже он превратился в своего преемника и более продвинутый CRDi. В грузовых автомобилях, грузовиках, автобусах и генераторах более ранних поколений все еще широко используются простые двигатели DI. Кроме того, в недавнем прошлом сложные и усовершенствованные двигатели CRDi стали очень популярными в седанах, минивэнах, внедорожниках и автомобилях класса люкс.

    Для получения дополнительной информации нажмите здесь:

    https://www.cummins.com

    Подробнее: Как работает двухтактный двигатель с воспламенением от сжатия? >>

    О компании CarBikeTech

    CarBikeTech — технический блог.Его члены имеют опыт работы в автомобильной сфере более 20 лет. CarBikeTech регулярно публикует специальные технические статьи по автомобильным технологиям.

    Посмотреть все сообщения CarBikeTech

    Как работает дизельный двигатель?

    (Обновлено 17 апреля 2020 г.)

    Когда люди думают о дизельном двигателе, они часто представляют себе большой грузовик, который везет много предметов. Хотя дизельные двигатели обычно используются в более крупных транспортных средствах, они действительно могут быть установлены на транспортных средствах любого размера.Преимущество дизельного двигателя — увеличение количества миль на галлон. Поскольку водители грузовиков постоянно находятся в пути большую часть дня, для них более экономично управлять автомобилем с дизельным двигателем, чем на автомобиле с бензиновым двигателем. Причина того, что дизельные двигатели обеспечивают лучший расход топлива, заключается в том, что они имеют меньшее количество оборотов в минуту.

    В отличие от бензинового двигателя, воздух — единственное, что сжимается в камере. Затем этот сильно сжатый воздух используется для воспламенения дизельного топлива.Это отличается от бензинового двигателя, который требует отдельных свечей зажигания для создания искры зажигания. Дизельному двигателю такая искра не нужна. Он полагается исключительно на сильно сжатый воздух, чтобы произвести достаточно тепла для надлежащего воспламенения топлива.

    Читайте также: Принцип работы бензинового двигателя

    Четыре такта дизельного двигателя

    Есть два типа дизельных двигателей; четырехтактный двигатель и двухтактный двигатель. Типичный дизельный двигатель будет иметь четыре такта, как и бензиновый двигатель.Однако процесс гребков отличается от тактов на бензине. Основное различие между этими двумя процессами связано с тем, как топливо подается и зажигается.

    По иронии судьбы, еще один немецкий инженер был ответственным за изобретение четырехтактного дизельного двигателя. Звали этого изобретателя Рудольф Дизель, который изобрел процесс, названный «Дизельный цикл». Этот цикл основан на более высокой степени сжатия воздуха. Тепло, вырабатываемое этим сжатым воздухом, может достигать температуры от 400 ° C до 800 ° C.Иногда температура даже поднимается выше этой. Но необходимо, чтобы температура поднялась до этой величины, потому что в противном случае дизельное топливо не сможет воспламениться.

    Ниже представлены 4 такта дизельного двигателя.

    Ход № 1 — Первый ход дизельного цикла практически идентичен бензиновому циклу. Впускной клапан открывается и пропускает наружный воздух внутрь. Цилиндры внизу получают этот воздух из-за движения вниз поршней, которые втягивают воздух в них.

    Ход № 2 — Второй ход включает сжатие. После закрытия впускного клапана воздух сжимается, поскольку поршни начинают двигаться вверх. В этой области есть небольшое замкнутое пространство, обеспечивающее более высокое сжатие.

    Ход № 3 — Третий ход будет включать сгорание. Когда воздух становится сильно сжатым, он начинает сильно нагреваться. Топливные форсунки будут распылять дизельное топливо в камеру сгорания, где находится весь этот горячий сжатый воздух.Как только топливо соприкасается с этим сжатым воздухом, оно немедленно воспламеняется. Результатом этого воспламенения является тепловая энергия, которая создает мощность, необходимую для движения транспортного средства.

    Ход № 4 — Четвертый ход связан с выхлопом. Все образовавшиеся выхлопные газы будут вытеснены из открытого выпускного клапана из-за поршней. Это создает печально известный черный дым, которым славятся дизельные автомобили. Этот дым будет выходить из труб и / или выхлопной трубы.

    Читайте также: Сравнение дизельного двигателя и бензинового двигателя

    Заключение

    Опять же, для дизельных двигателей нет свечей зажигания, о которых нужно беспокоиться. Это может стать на одну часть обслуживания меньше, о чем вам придется беспокоиться. С другой стороны, вы все равно должны продолжать обслуживать свой двигатель, регулярно принося свой автомобиль в автомагазин для проверки. Это гарантирует, что вы получите максимально возможный срок службы вашего дизельного двигателя.

    Как работают дизельные двигатели?

    Если вы попали на эту страницу, мы считаем, что можно с уверенностью считать, что вы уже знаете, что дизельный двигатель — это тип двигателя внутреннего сгорания.Но что это на самом деле означает? Что ж, давайте разберемся с этим для вас. Горение является синонимом горения, что означает, что топливо, в данном случае дизельное топливо, сжигается внутри (внутри) двигателя для выработки энергии. То же самое верно и для бензиновых двигателей, однако есть резкая (или искрящаяся!) Разница в способах зажигания каждого из этих двигателей.

    Благодаря внутреннему сгоранию в дизельных двигателях топливо сгорает внутри цилиндров, что позволяет максимально использовать энергию, поскольку нет необходимости в тепле, поступающем из другого места в цилиндр.Все основные процессы происходят в одном месте, тем самым повышая общую эффективность двигателя в целом. Проще говоря, двигатели внутреннего сгорания вырабатывают больше энергии из того же объема топлива и поэтому намного эффективнее двигателей вечного сгорания.

    Принцип работы дизельного двигателя

    Теперь, когда основы рассмотрены, пора глубже изучить механику дизельного двигателя!

    Прежде всего, атмосферный воздух попадает в цилиндр двигателя.Поршень в нем сжимает воздух в 14-25 раз больше его первоначального объема. Напоминаем, что это сжатие намного меньше в бензиновом двигателе, где воздух сжимается только до одной десятой своего объема.

    При таком высоком уровне сжатия воздуха выделяется столько тепла, что температура достигает 1000 ° F, а в некоторых случаях даже выше. Когда воздух сжимается, срабатывает электронная система впрыска топлива, которая обычно распыляет топливный туман в цилиндр, как аэрозольный баллончик.Конечно, объем впрыскиваемого топлива зависит от ускорения, применяемого водителем. Поскольку воздух очень горячий, топливо воспламеняется почти мгновенно и взрывается, в результате чего поршень выталкивается из цилиндра. Этот толчок приводит к выработке мощности, которая позволяет управлять транспортным средством или машиной, приводимой в движение двигателем. Когда поршень возвращается в исходное положение, выхлопные газы направляются к выпускному клапану. Этот процесс известен как дизельный цикл и повторяется по крайней мере сотни и даже тысячи раз каждую минуту!

    Типы дизельных двигателей

    В зависимости от количества ступеней в одном цикле дизельные двигатели могут быть классифицированы как четырехтактные двигатели или двухтактные двигатели.Давайте разберемся с каждым из них более подробно.

    Четырехтактные двигатели Источник: Britannica, Inc

    В этом случае дизельный двигатель функционирует, повторяя цикл из четырех тактов или ступеней. Характеризуется двукратным перемещением поршня вверх и вниз. Проще говоря, в четырехтактном двигателе коленчатый вал вращается дважды за цикл. Четыре ступени этого типа двигателя следующие —

    Впускной: Открытый впускной воздушный клапан втягивает воздух в цилиндр, в результате чего поршень движется вниз.

    Сжатие: Затем впускной клапан закрывается, поршень движется вверх и в результате сжимает воздух, вызывая его нагрев. Затем клапан впрыска топлива впрыскивает топливо в горячее, что приводит к самовозгоранию топлива.

    Мощность: Когда смесь воздуха и топлива воспламеняется и начинает гореть, поршень толкается вниз, давая возможность коленчатому валу приводить в движение, соответственно приводя в действие колеса.

    Выхлоп: Затем выпускной клапан открывается, помогая выходу выхлопных газов, которые дополнительно выталкиваются движением поршня вверх.

    Двухтактные двигатели Источник: Britannica, Inc

    В двухтактном двигателе поршень перемещается вверх и вниз только один раз за цикл. Тем не менее, в двухтактном цикле есть три стадии. Поговорим о создании неразберихи! Что ж, не волнуйтесь, раз уж мы здесь, чтобы пролить свет на вас. Три ступени в этом типе двигателя следующие —

    Выпускной и впускной: Во-первых, впускной клапан пропускает свежий воздух в боковую часть цилиндра, что приводит к выталкиванию старого воздуха через выпускной клапан.

    Компрессия: Затем как впускной, так и выпускной клапаны закрываются. Теперь поршень движется вверх, вызывая сжатие и нагрев воздуха. Когда поршень достигает верха цилиндра, топливо впрыскивается и воспламеняется почти самопроизвольно.

    Мощность: Когда смесь воздуха и топлива воспламеняется и начинает гореть, поршень толкается вниз, давая возможность коленчатому валу приводить в движение, соответственно приводя в действие колеса.

    Как вы уже могли догадаться, двухтактные двигатели относительно меньше и легче четырехтактных.Кроме того, они более энергоэффективны, поскольку мощность вырабатывается при каждом обороте! Тем не менее, двухтактные двигатели также нуждаются в дополнительном охлаждении и смазке из-за большей доли износа, вызванного сильным нагревом и трением!

    Теперь, когда вы знаете все о дизельных двигателях и принципах их работы, мы уверены, что вы в лучшем случае можете принять обоснованное решение относительно дизельного двигателя, который вы хотите купить! Если вам все еще нужна помощь, вы всегда можете связаться с нашими экспертами в Swift Equipment, и мы будем более чем рады прояснить любые сомнения, которые могут у вас возникнуть.Что еще? У нас есть широкий выбор новых и подержанных дизельных двигателей, а также дизель-генераторов на ваш выбор! Так чего же ты ждешь? Начните просматривать лучшие дизельные двигатели и посмотрите, найдете ли вы что-то, что привлечет ваше внимание.

    Часто задаваемые вопросы владельцев бизнеса

    Каковы основные преимущества дизельных двигателей? Дизельные двигатели

    обладают многочисленными преимуществами, наиболее заметными из которых являются —

    .
    • Самый высокий КПД среди всех двигателей внутреннего сгорания
    • Без ограничений для всасываемого воздуха, кроме всасываемого трубопровода и воздушных фильтров
    • Низкие затраты на топливо
    • Хорошие смазывающие свойства
    • Высокая плотность энергии
    • Низкий риск возгорания
    • Впечатляющие выхлопные характеристики
    • Легкая адаптация к влажной среде
    • Нет естественных ограничений в отношении допустимости сверхвысокого давления или давления наддува

    Почему дизельные двигатели шумят?

    Шум, создаваемый дизельными двигателями, обычно известен как дизельный грохот, который в первую очередь возникает в результате внезапного воспламенения топлива, когда создается волна давления, когда дизельное топливо впрыскивается в камеру сгорания.Это вызывает слышимый стук. К счастью, этот «стук» в современных дизельных двигателях в значительной степени устранен.

    Принцип работы дизельного двигателя Cummins

    | by Starlight Generator

    Как мы знаем, Cummins является крупнейшей в мире компанией по разработке, производству и продаже дизельных двигателей и двигателей, работающих на сжатом природном газе. Самая известная компания Cummins в Китае — DCEC Cummins и CCEC Cummins (совместное китайско-американское предприятие, основанное в октябре 1995 года и расположенное в городе Чингцин.).

    В этой статье мы в основном говорим о принципе работы дизельных двигателей CCEC Cummins.

    ПРИМЕЧАНИЕ: От дизельного двигателя Chong Qing-Cummins можно ожидать надежного обслуживания, если рабочие процедуры основаны на четком понимании принципов работы двигателя. Каждая часть двигателя влияет на работу всех остальных рабочих частей и двигателя в целом. Дизельные двигатели Ching Qing-Cummins, рассматриваемые в данном руководстве, представляют собой четырехтактные, высокоскоростные, полностью дизельные двигатели.

    Дизельные двигатели Chong Qing-Cummins (CCEC Cummins) отличаются от двигателей с искровым зажиганием по многим параметрам. Степени сжатия выше, заряд, попадающий в камеру сгорания во время такта впуска, состоит только из воздуха без топливной смеси. Форсунки Cummins получают топливо под низким давлением от топливного насоса и доставляют его в отдельные камеры сгорания в нужное время в равном количестве и в распыленном состоянии для сжигания. Возгорание топлива вызвано теплом сжатого воздуха в камере сгорания.

    Легче понять функцию частей двигателя, если известно, что происходит в камере сгорания во время каждого из четырех ходов поршня цикла. Четыре хода и порядок, в котором они происходят: ход впуска, ход сжатия, ход мощности и ход выпуска.

    Для правильной работы четырех тактов клапаны и форсунки должны действовать в прямом отношении к каждому из четырех ходов поршня. Впускные клапаны, выпускные клапаны и форсунки приводятся в действие распределительным валом, связаны толкателями или толкателями, толкателями, коромыслами и крейцкопфами клапанов.Распределительный вал приводится в действие шестерней коленчатого вала, поэтому вращение коленчатого вала направляет действие распределительного вала, который, в свою очередь, управляет последовательностью открытия и закрытия клапанов и синхронизацией впрыска (подача топлива).

    Ход впуска

    Во время такта впуска поршень движется вниз; впускные клапаны открыты, а выпускные клапаны закрыты. Движение поршня вниз позволяет воздуху из атмосферы попадать в цилиндр. На двигателях с турбонаддувом во впускном коллекторе создается давление, поскольку турбонагнетатель нагнетает больше воздуха в цилиндр через впускной коллектор.Впускной заряд состоит только из воздуха без топливной смеси.

    Ход сжатия

    В конце такта впуска впускные клапаны закрываются, и поршень начинает движение вверх на такте сжатия. Выпускные клапаны остаются закрытыми.

    В конце такта сжатия воздух в камере сгорания был вынужден поршнем занимать меньшее пространство (в зависимости от модели двигателя и от одной четырнадцатой до одной шестнадцатой по объему), чем он занимал в начале такта.Таким образом, степени сжатия прямо пропорциональны количеству воздуха в камере сгорания до и после сжатия.

    Сжатие воздуха в небольшом пространстве вызывает повышение температуры этого воздуха до точки, достаточной для воспламенения топлива.

    Во время последней части такта сжатия и начальной части рабочего такта в камеру сгорания впрыскивается небольшой дозированный заряд топлива.

    Почти сразу после впрыска топлива в камеру сгорания топливо воспламеняется имеющимся горячим сжатым воздухом.

    Power Stroke

    В начале рабочего хода поршень толкается вниз горящими и расширяющимися газами; как впускной, так и выпускной клапаны закрыты. По мере того, как добавляется и сгорает больше топлива, газы нагреваются и расширяются, заставляя поршень опускаться вниз и тем самым добавляя движущую силу к вращению коленчатого вала.

    Ход выпуска

    Во время такта выпуска впускные клапаны закрыты, выпускные клапаны открыты, а поршень движется вверх.

    При движении поршня вверх сгоревшие газы выходят из камеры сгорания через открытые отверстия выпускного клапана в выпускной коллектор.

    Правильная работа двигателя зависит от двух вещей: во-первых, сжатия для зажигания; и во-вторых, чтобы топливо измерялось и впрыскивалось в цилиндры в нужном количестве в нужное время.

    Возможно, вам также понравится Бесшумный генератор Cummins

    Принципы работы, преимущества и недостатки дизельного двигателя

    Дизельный двигатель — это двигатель внутреннего сгорания, работающий с адиабатическим сжатием.Принцип работы дизельного двигателя сильно отличается от бензинового, поэтому их эффективность и производительность различаются. Адиабатическое сжатие объяснялось в моей предыдущей статье. проверить!

    Общие сведения об эффективности, истории и принципах работы дизельного двигателя

    Сегодня я познакомлю вас с принципами работы дизельного двигателя, его достоинствами и недостатками.

    Дизельный двигатель, обладающий некоторыми характеристиками, которые вы должны знать, включая воспламенение от сжатия, образование смеси внутри камеры сгорания, регулировку частоты вращения двигателя в зависимости от качества смеси, неоднородную воздушно-топливную смесь, высокое воздушное соотношение, диффузионное пламя и, наконец, топливо с высоким производительность зажигания.Все это объясняется принципами работы дизельного двигателя. Так что продолжайте читать!

    Принцип работы дизельного двигателя

    Дизельные двигатели предназначены для воспламенения топлива без каких-либо устройств зажигания, таких как свеча зажигания, которая хорошо известна для бензиновых двигателей. Для воспламенения топлива в нем используется сильно сжатый горячий воздух, а не свеча зажигания. Смесь воздуха и топлива происходит в камере сгорания, а не во впускном коллекторе. Принцип работы дизельного двигателя настолько интересен, что в камеру сгорания изначально вводится только воздух.Затем воздух сжимается в соотношении от 15: 1 до 23: 1 в зависимости от типа дизельного двигателя и его применения. Сильное сжатие вызывает повышение температуры воздуха. В этот момент топливо впрыскивается в горячий воздух, когда такт сжатия приближается к вершине. Все это происходит в камере сгорания наверху поршня.

    Форсунка помогает впрыскивать топливо в камеру сгорания мелкими каплями и равномерно распределять. Сжатый воздух сильно нагревается, вызывая испарение топлива с поверхности капель.Затем пар воспламеняется с использованием того же тепла в камере сгорания. Испарение капель продолжалось до полного сгорания. Сгорание происходит при практически постоянном давлении во время начальной части рабочего такта. Когда сгорание завершено, газообразные продукты сгорания расширяются при дальнейшем опускании поршня; высокое давление в цилиндре перемещает поршень вниз, передавая мощность на коленчатый вал. Регулировка оборотов двигателя сильно зависит от качества смеси.То есть величина создаваемого крутящего момента определяется исключительно массой впрыскиваемого топлива, всегда смешанного с максимально возможным количеством воздуха. Это приводит к разнице частоты вращения коленчатого вала.

    Высокая степень сжатия дизельного двигателя обеспечила высокий КПД. Отсутствие дроссельной заслонки позволяет осуществлять перезарядку с небольшими потерями, что приводит к низкому расходу топлива. Это делает дизельный двигатель более экономичным.

    Посмотрите, как работает дизельный двигатель, в видео ниже :

    Итак, сегодня большой вопрос: каковы преимущества и недостатки дизельных двигателей…

    Преимущества дизельных двигателей

    Дизельный двигатель имеет ряд преимуществ перед двигателем с другими принципами работы.Следующее, указанное ниже, относится к области применения дизельных двигателей.

    1. Он имеет самый высокий КПД среди всех двигателей внутреннего сгорания

    2. Дизельный двигатель может сжигать самые разные виды топлива

    3. Низкие затраты на топливо. То есть экономично.

    4. Обладает высокой плотностью энергии

    5. Хорошие смазывающие свойства

    6. Низкий риск возгорания, так как горючие пары не образуются.

    7. Впрыск топлива непосредственно в камеру сгорания, кроме воздушных фильтров, нет препятствий для забора воздуха.

    8. Дизельные двигатели обладают очень хорошими выхлопными свойствами.

    Недостатки дизельных двигателей

    Несмотря на большие преимущества дизельных двигателей, они все же имеют некоторые ограничения. Ниже перечислены недостатки дизельных двигателей.

    1. Автомобили с дизельным двигателем обычно стоят больше, чем стандартный автомобиль

    2. Стоимость дизельного топлива высока в большинстве географических регионов.

    3. Техническое обслуживание и ремонт дизельного двигателя дороже.

    4.У вас может не быть такого доступа к топливу, которое вам нужно с дизельным топливом.

    5. Новое дизельное топливо не обладает такими смазочными качествами.

    6. В холодную погоду сложно запустить дизель.

    7. Дизельные двигатели намного шумнее бензиновых аналогов.

    См. Также:

    В этом руководстве «Принципы работы, преимущества и недостатки дизельных двигателей. Мы надеемся, что вы нашли этот пост полезным и получили удовольствие от чтения. Если да, то поделитесь этим постом со своими друзьями и однокурсниками в социальных сетях.

    Принцип работы четырехтактного дизельного двигателя — Engihub

    Все студенты инженерных специальностей, особенно машиностроители, прошли через слово «Дизельный двигатель». Эти люди могли бы лучше знать принцип работы дизельного двигателя, а также двигателя автомобиля.

    Если у вас нет степени бакалавра в области машиностроения, вы все равно можете легко понять, как работает двигатель внутреннего сгорания. Вам просто нужно прочитать статью полностью.

    Дизельный двигатель широко используется в автомобилестроении, автомобилестроении и автомобилестроении.Его также можно использовать в дизель-генераторах и на кораблях. В настоящее время сельскохозяйственный насос также работает от небольшого дизельного двигателя.

    Если вы дизельный механик или хотите быть дизельным сервисным техником и механиком, этот пост для вас.

    Вы также можете посмотреть и подписаться на наш канал YouTube с обучающими видео по инженерным наукам, нажав здесь https://goo.gl/4jeDFu

    • Итак, как работает четырехтактный дизельный двигатель

    Я хотел бы поделиться подробностями очень просто, чтобы вы лучше понимали работу двигателя.

    В дизельном двигателе в качестве топлива используется дизельное топливо, легкое и тяжелое масло. Это топливо воспламеняется при впрыске в цилиндр двигателя воздуха, сжатого до очень высокого давления.

    Температура этого сжатого воздуха достаточно высока для воспламенения топлива. Следовательно, в дизельном двигателе не используется свеча зажигания.

    Этот высокотемпературный сжатый воздух в виде очень тонкой струи впрыскивается с контролируемой скоростью. Таким образом, сгорание топлива происходит при постоянном давлении.

    Топливная форсунка или ТНВД, топливная форсунка используется для этой операции. Мощность создается за счет завершения рабочего хода.

    • Рабочие ходы дизельного двигателя

    Ход всасывания

    В этом ходе поршень движется вниз от верхней мертвой точки к нижней мертвой точке. В результате открывается впускной клапан, и воздух втягивается в цилиндр.

    После всасывания достаточного количества воздуха под давлением всасывающий клапан закрывается в конце хода.Выпускной клапан остается закрытым во время этого хода.

    Ход сжатия

    В этом ходе поршень перемещается вверх от нижней мертвой точки до верхней мертвой точки. Во время этого хода закрываются как впускной, так и выпускной клапаны.

    Воздух, всасываемый в цилиндр во время такта всасывания, захватывается внутри цилиндра и сжимается из-за движения поршня вверх.

    В дизельном двигателе используется очень высокая степень сжатия, в результате воздух, наконец, сжимается до очень высокого давления — до 40 кг / см², при этом давлении, и температура воздуха достигает 1000 ° по Цельсию, которого достаточно, чтобы зажечь топливо.

    Ход при постоянном давлении

    В этом такте топливо впрыскивается в горячий сжатый воздух, где оно начинает гореть при постоянном давлении. Когда поршень перемещается в верхнюю мертвую точку, подача топлива прекращается.

    Следует сказать, что топливо впрыскивается в конце такта сжатия, и впрыск продолжается до точки отсечки, но на практике зажигание начинается до конца такта сжатия, чтобы позаботиться о метке зажигания. .

    Рабочий или рабочий ход

    В этом такте впускной и выпускной клапаны остаются закрытыми.

    Горячие газы (которые образуются из-за воспламенения топлива во время такта сжатия) и сжатый воздух теперь адиабатически расширяются в цилиндре, толкая поршень вниз, и, следовательно, работа выполняется.

    В конце хода поршень наконец достигает нижней мертвой точки.

    Ход выхлопа

    В этом ходе поршень снова движется вверх.Выпускной клапан открывается, а впускной и топливный клапаны закрываются. Большая часть сгоревших топливных газов улетучивается за счет собственного расширения.

    Движение поршня вверх выталкивает оставшиеся газы через открытый выпускной клапан. В камере сгорания остается лишь небольшое количество выхлопных газов.

    В конце такта выпуска выпускной клапан закрывается, и, таким образом, цикл завершается.

    Так как при работе впускного и выпускного клапана возникает некоторое сопротивление, и часть сгоревших газов остается внутри цилиндра во время цикла, что приводит к насосным потерям.

    Эти насосные потери рассматриваются как отрицательная работа и поэтому вычитаются из фактической работы, выполненной в течение цикла. Это даст нам сеть из цикла.

    На самом деле, все эти удары выполняются с такой большой скоростью; вы не можете увидеть это шаг за шагом, но это происходит в каждом четырехтактном двигателе.

    Помимо этой информации, вам предлагается прочитать что-нибудь еще ниже Engineering Books

    Итак, здесь вы найдете лучшие инженерные ресурсы для получения более подробной информации

    Чтобы получить более подробную информацию по теме, я также рекомендую прочитать

    Если вам понравился пост, поделитесь им с друзьями, а также в социальных сетях.Нажмите на колокольчик, чтобы подписаться

    Как работает судовой двигатель?

    Судовые двигатели на судах отвечают за перемещение судна из одного порта в другой. Независимо от того, идет ли речь о небольшом корабле, курсирующем в прибрежных районах, или о большом корабле, путешествующем по международным водам, на борту корабля для двигательной цели установлен четырехтактный или двухтактный морской двигатель.

    Судовые двигатели — это тепловые двигатели, используемые для преобразования тепла, выделяемого при сжигании топлива, в полезную работу, т.е.е. вырабатывая тепловую энергию и преобразуя ее в механическую энергию. Двигатели, используемые на борту судов, представляют собой двигатели внутреннего сгорания (тип), в которых сгорание топлива происходит внутри цилиндра двигателя, а тепло выделяется после процесса сгорания.

    Принцип работы судового двигателя

    Как упоминалось ранее, двигатели внутреннего сгорания (внутреннего сгорания) в основном используются для морских силовых установок и выработки электроэнергии. Работу судового двигателя можно объяснить следующей процедурой:

    — Топливо впрыскивается в контролируемом количестве под высоким давлением

    — Смесь топлива и воздуха сжимается внутри цилиндра двигателя с помощью поршня, что приводит к взрыву смеси при повышении давления за счет сжатия.В результате выделяется тепло, которое увеличивает давление горящего газа

    2-тактные и 4-тактные двигатели

    — Внезапное увеличение давления толкает поршень вниз и передает поперечное движение во вращательное движение коленчатого вала с помощью шатуна. Взрыв повторяется непрерывно для поддержания выходной мощности в зависимости от типа морского двигателя и его использования.

    Чтение по теме: 14 терминов, используемых для определения мощности судового силового двигателя

    Коленчатый вал через маховик соединен либо с генератором, либо с гребным винтом для выполнения механической работы.Чтобы коленчатый вал постоянно вращался, взрыв необходимо повторять непрерывно.

    Перед следующим взрывом отработанные газы вытягиваются из цилиндра через выпускной клапан и подается свежий воздух, который помогает вытолкнуть отработанный газ, а также обеспечивает свежий воздух для следующего процесса сгорания.

    Прочтите по теме: Компоненты и конструкция системы выпуска отработавших газов

    Типы судовых дизельных двигателей:

    Два основных типа судовых дизельных двигателей: —

    • 4-тактный двигатель
    • Двухтактный двигатель

    Четырехтактный двигатель может быть установлен на судне для выработки электроэнергии, а также для приведения в движение корабля (обычно на небольших судах).Этому двигателю требуется 4 цикла для завершения передачи мощности от камеры сгорания к коленчатому валу.

    Связанное чтение: Почему 2-тактные двигатели чаще используются для движения на кораблях, чем 4-тактные?

    События, происходящие в I.C. двигатель следующие:

    1. Ход всасывания для забора свежего воздуха внутрь камеры — это движение поршня вниз
    2. Такт сжатия для сжатия топливовоздушной смеси — движение поршня вверх
    3. Рабочий ход — при котором происходит взрыв, и поршень толкается вниз
    4. Такт выпуска — движение поршня вверх для откачивания отработанных газов

    Четыре события завершаются четырьмя тактами поршня (два оборота коленчатого вала).Впускной и выпускной клапаны расположены в верхней части головки блока цилиндров для всасывания свежего воздуха и удаления отработанных выхлопных газов.

    И клапаны, и топливный насос (подающий топливо в форсунку) приводятся в действие с помощью распределительного вала, который приводится в движение коленчатым валом с помощью зубчатой ​​передачи. В четырехтактном двигателе распределительный вал вращается на половине скорости коленчатого вала. Картер открыт для гильзы поршня, которая способствует смазке гильзы.

    2-тактные двигатели используются для движения судов и имеют больший размер по сравнению с 4-тактными двигателями.В этом двигателе полная последовательность выполняется за два цикла, т. Е.

    .
    1. Такт всасывания и сжатия — это движение поршня вверх для втягивания внутрь свежего воздуха и сжатия топливовоздушной смеси
    2. Мощность и выхлоп — движение поршня вниз из-за взрыва внутри камеры с последующим удалением выхлопных газов через выпускной клапан, установленный в верхней части цилиндра. Используется сальник, который отделяет картер и герметизирует его от камеры сгорания.

    Ниже показано базовое видео о работе судового двигателя:

    В этом видео показано, как работает двухтактный судовой двигатель на судне —

    Как и где производится судовой двигатель?

    Если вы видели двигатели на кораблях, в том числе небольшие четырехтактные двигатели-генераторы, а также массивные двухтактные двигатели, одна мысль, которая должна была прийти вам в голову, — как и где были сделаны эти двигатели?

    Наиболее известные производители двигателей, двигатели которых используются на судах:

    1. MAN Diesel & Turbo (ранее двигатели B&W) — известные судовые двигатели с высокой, средней и низкой частотой вращения
    2. Wartsila (ранее Sulzer Engines) — известна производством судовых двигателей с высокой, средней и малой скоростью.
    3. Mitsubishi — производство двигателей для легких, средних и тяжелых условий эксплуатации
    4. Rolls Royce — известный своими двигателями для круизных лайнеров и кораблей
    5. Caterpillar производит — для среднеоборотных и высокоскоростных судовых дизельных двигателей

    Прочтите по теме: Самые популярные судовые двигатели в судоходной отрасли

    Wartsila по-прежнему является держателем рекордов Гиннеса за самый большой из когда-либо построенных судовых двигателей.

    Двухтактный двигатель Wärtsilä RT-flex96C с турбонагнетателем удерживает этот рекорд. Изготовлен для крупных контейнеровозов, его габариты следующие:

    Длина — 27 метров (88 футов 7 дюймов),

    Высота — 13,5 метра (44 фута 4 дюйма)

    вес> 2300 тонн.

    Выходная мощность ~ 84,42 МВт (114800 л.с.).

    Размер судового двигателя варьируется от корабля к кораблю, типа хода и выходной мощности. Судовой двигатель может достигать высоты пятиэтажного здания, и для его размещения необходимо соответствующим образом спроектировать судовое машинное отделение.

    Где производятся судовые двигатели?

    Эти судовые двигатели построены на мощностях производителей. Например, MAN Diesel имеет производственные мощности в Аугсбурге, Копенгагене, Фредериксхавне, Сен-Назере, Шанхае и т. Д.

    Аналогичным образом, Wartsila имеет производственные мощности в Финляндии, Германии, Китае и т. Д.

    Судовой двигатель также может быть изготовлен на известной верфи при наличии контракта между двумя компаниями.

    Двигатель обычно состоит из трех частей (поясняется ниже) и, в зависимости от размера машинного отделения и доступа для установки, он может быть установлен на верфи либо по частям, либо в сборе.

    Связанное чтение: Насколько массивные главные двигатели устанавливаются в машинном отделении корабля?

    Материал, используемый для изготовления судового двигателя

    Материал, из которого изготовлен судовой двигатель и различные детали судового двигателя:

    Опорная плита: Опорная плита — это самая нижняя часть двигателя, которая является его основанием и вмещает подшипники коленчатого вала и А-образную раму. Для небольшого двигателя используется одинарная отливка из чугуна, а для больших двухтактных двигателей используются сборные литые стальные поперечные секции с продольными балками.

    Чтение по теме: Важные вещи, которые нужно проверить Опорная плита судового двигателя

    Рама: А-образная рама, как следует из названия, имеет форму буквы «А» и установлена ​​над фундаментной плитой двигателя. Он построен отдельно, чтобы нести направляющую крейцкопфа, а сверху он поддерживает основание антаблемента. Нижняя поверхность А-образной рамы обработана для создания сопрягаемой поверхности для установки поверх опорной плиты.

    Антаблемент: Антаблемент, также известный как блок цилиндров, изготовлен из чугуна и используется для размещения охлаждающей воды и продувочного воздушного пространства.В зависимости от размера двигателя отливка может быть индивидуальной или многоцилиндровой (скрепленной болтами). Нижняя часть блока цилиндров обработана на станке для образования сопрягаемой поверхности и прикреплена к А-образной раме с помощью установленных болтов.

    Другие части судового двигателя, которые устанавливаются внутри двигателя:

    Детали двигателя Wartsila RTFlex Electronic

    Поршень, гильза, цилиндр, шатун, коленчатый вал, распределительный вал, топливный насос, выпускной клапан и т. Д., И эти важные детали можно подробно изучить в нашей электронной книге —

    Техническое обслуживание судовых двигателей

    Базовое техническое обслуживание судового двигателя включает плановое техническое обслуживание, которое включает в себя капитальный ремонт важных подвижных и неподвижных частей камеры сгорания.

    Ниже приведены некоторые из наиболее распространенных видов технического обслуживания судового двигателя:

    1. Ремонт и измерение поршня, колец и штока
    2. Ремонт и обмер гильзы цилиндра
    3. Капитальный ремонт и обмер выпускного клапана
    4. Ремонт и обмер сальника
    5. Ремонт и измерение шатунных и крейцкопфных подшипников
    6. Ремонт и измерение коренных подшипников

    Прочтите по теме: Типы коренных подшипников судовых двигателей и их свойства

    7.Измерение прогиба коленчатого вала

    8. Контроль и измерение фаз газораспределения топливного насоса

    9. Проверки и капитальный ремонт пусковой воздушной системы

    Промежуток времени между капитальным ремонтом различных частей двигателя указывается производителем в руководстве по эксплуатации двигателя. Техническое обслуживание необходимо проводить в соответствии со временем, указанным между двумя периодами капитального ремонта, независимо от проблем, обнаруженных двигателем.

    Помимо своевременного ремонта, параметры двигателя и мощность необходимо проверять с помощью цифрового индикатора мощности.Осмотр продувочного пространства также проводится для проверки состояния поршневого кольца, которое, в свою очередь, определяет эффективность системы смазки гильзы цилиндра.

    Судовые двигатели, используемые на судах, являются одними из самых сложных инженерных сооружений. Поэтому морские инженеры проходят специальную подготовку по эксплуатации, техническому обслуживанию и устранению неисправностей судовых двигателей на борту судов.

    Вы также можете прочитать:

    На что следует обратить внимание при капитальном ремонте топливного клапана

    Заявление об ограничении ответственности: Мнения авторов, выраженные в этой статье, не обязательно отражают точку зрения Marine Insight.Данные и диаграммы, если они используются в статье, были получены из доступной информации и не были подтверждены каким-либо установленным законом органом. Автор и компания «Марин Инсайт» не заявляют об их точности и не берут на себя ответственность за них. Взгляды представляют собой только мнения и не представляют собой каких-либо руководящих принципов или рекомендаций относительно какого-либо курса действий, которым должен следовать читатель.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *