Принцип работы газового редуктора ловато: Редукторы ГБО | lovato.ru

Содержание

Редукторы ГБО | lovato.ru

Данный материал рассказывает об эволюции автомобильных газовых редукторов производства компании Lovato, но большинство из нижесказанного справедливо и для других марок, представленных на рынке России.

Назначение газового редуктора

Нагрев и испарение

Первой задачей любого автомобильного пропанового редуктора, не зависимо от поколений ГБО, является перевод газа из жидкого состояния в газообразное и поддержание в процессе работы двигателя температуры газа в стабильном состоянии.

Второй задачей является обеспечение давления газа на выходе редуктора, в соответствии с текущей потребностью топлива двигателем автомобиля. Задачи, в общем-то, несложные, но очень важные для правильной работы всей газовой системы любого поколения ГБО.

Результат исполнения этой задачи зависит не только от качества редуктора Ловато, но и от грамотного и честного выполнения установщиком ГБО нескольких условий:

  • Важно подключиться к системе охлаждения двигателя так, чтобы циркуляция охлаждающей жидкости (ОЖ) через редуктор была эффективной на всех режимах работы ДВС, и в то же время, данное подключение не должно влиять на работу печки или других устройств автомобиля.
    Проще говоря, газовый редуктор не должен остывать в процессе работы, а все устройства, работавшие в автомобиле до установки ГБО и после, должны работать без изменений.
  • Максимальная мощность редуктора Lovato должна соответствовать или превышать мощность двигателя (в случае с системами 1-го и 2-го поколений установка редуктора большей, чем нужно мощности не рекомендуется). Это важно не только для эффективного испарения газа, но и для возможности поддержания редуктором стабильного дифференциального давления, что чрезвычайно важно для систем ГБО Ловато 4-го поколения.

Если на автомобиле установлен редуктор меньшей, чем необходимо мощности, это не позволит газовой системе Lovato нормально и безопасно работать в режимах высоких нагрузок на двигатель (могут наблюдаться перебои в работе, выраженные в рывках, или ощутимая, по сравнению с бензином, потеря мощности, а в некоторых случаях, при резком ускорении, может появляться запах газа).

Очистка газа

Для долгой и безотказной работы любого газового редуктора Ловато имеет большое значение отсутствие грязи и отложений на рабочих механических частях системы. Для этого большинство редукторов оснащаются на входе фильтрами Lovato для очистки газа. Очень важно своевременно (в соответствии с сервисной книжкой) менять фильтрующие элементы, так как их загрязнение напрямую влияет на производительность (мощность) редуктора.

Вакуумный редуктор Lovato (1 поколение ГБО)

Это полностью механическое устройство, созданное и предназначенное только для карбюраторных автомобилей. Вакуумный редуктор Ловато имеет встроенную механическую функцию «Car Safety» — «Безопасный автомобиль» (при заглушенном двигателе перекрывается подача газа независимо от положения ключа зажигания).

Редуктор состоит из 2-х ступеней: первая служит для испарения газа и снижения давления до 0,45 — 0,65 бар, вторая камера соединена со смесителем, в зависимости от давления во впускном коллекторе автомобиля увеличивает или уменьшает количество газа, подаваемое вакуумным редуктором Lovato в двигатель. В линейке продуктов редуктор первого поколения Lovato называется RGV и выпускается в двух вариантах для двигателей до 122 л. с. (RGV90) и до 160 л.с. (RGV140).

Электронный редуктор Lovato (2 поколение ГБО)

Электронный редуктор Ловато 2 поколения был создан с появлением на рынке инжекторных автомобилей, так как вакуумный не мог обеспечить комфортного переключения с бензина на газ и обратно на данном типе автомобилей.

Его конструкция, практически, идентична вакуумному редуктору, но из неё изъята вакуумная мембрана, обеспечивающая функцию «Car Safety». Вместо неё установлен электрический клапан, управляемый переключателем. Последний и обязан обесточить (закрыть) клапан, в случае, если двигатель не работает. Электронный редуктор Ловато 2 поколения в линейке продуктов Lovato называется RGE и выпускается в трёх вариантах для двигателей до 122 л.с. (RGE90), 160 л.c. (RGE140) и до 300 л.с. (RGE220).

Газовый редуктор Ловато для впрысковой системы (4 поколение ГБО)

Появление на свет систем инжекторного впрыска газа потребовало создания принципиально другого редуктора (смотрите раздел принцип работы ГБО). Основным назначением остались нагрев и испарение поступавшего из баллона газа, а также, поддержание стабильного дифференциального давления на выходе редуктора.

Под дифференциальным давлением мы понимаем разницу между давлением на выходе редуктора, и давлением во впускном коллекторе двигателя автомобиля. И при нажатии водителем педали акселератора, давление газа на выходе из редуктора будет расти пропорционально увеличению давления во впускном коллекторе, за счет постоянной обратной связи коллектора с рабочей мембраной редуктора.

Впрысковые редукторы, как правило, одноступенчатые. Но, несмотря на кажущееся упрощение конструкции, выбрать хороший и подходящий газовый редуктор для данного автомобиля и газовой электроники, может оказаться достаточно сложной задачей.

Редуктор должен надёжно прогревать газ перед подачей его на газовые форсунки и обеспечивать стабильное давление, о чем говорилось выше. Газовый редуктор Ловато 4 поколения должен качественно отрабатывать некоторые переходные моменты при работе двигателя. Например, для многих редукторов очень сложным режимом является выход из режима cut-off (торможение двигателем), в этом режиме многие редукторы сильно подбрасывают дифференциальное давление, что часто приводит к попытке двигателя заглохнуть. Вторым критическим моментом является резкое увеличение нагрузки на двигатель — многие редукторы из-за недостаточной производительности сначала роняют давление, и только потом начинают его выравнивать.

Благодаря продуманной конструкции все редукторы Lovato, практически, лишены вышеперечисленных недостатков. А незначительные отклонения давления компенсируются электроникой, т.к. в программном обеспечении электронного блок газовой системы Lovato учтены, инженерами компании, все особенности поведения своих редукторов.

На момент написания статьи Lovato выпускает 3 модели впрысковых пропановых редукторов 4 поколения:

  • RGJ 3.2.L – для автомобилей малой и средней мощности, позволяющий уверенно работать газовой системе Ловато на двигателях до 150 лошадиных сил;
  • RGJ UHP — для автомобилей средней и большой мощности, позволяет устанавливать ГБО Ловато на двигатели до 350 лошадиных сил;
  • RGJ 3.
    2.L-DD — для комплектов, предназначенных на автомобили с непосредственным впрыском бензина. У данного редуктора давление на выходе меняется в другом соотношении (в большую сторону) по отношению к давлению во впускном коллекторе, что позволяет ему обеспечивать более комфортные условия для газового блока управления (ЭБУ) Ловато при работе с непосредственным впрыском.

Все пропановые редукторы Lovato сконструированы и произведены в строгом соответствии с европейскими нормами ECE 67R-01 и сертифицированы на территории России в соответствии с Техническим Регламентом Таможенного союза (ТР ТС 018/2011).

Метановый редуктор Lovato

Метановые редукторы отличаются от своих пропановых аналогов наличием дополнительной ступени для понижения давления с 200 Бар до 10 Бар. Для метановых редукторов меньшее значение имеет обогрев, так как метан поступает в редуктор в газообразном состоянии. Метановые редукторы Lovato имеют высокую производительность и надёжность, что подтверждается частым выбором этих компонентов автопроизводителями, при установке газовой системы на конвейере (OEM проекты).

Впрысковые метановые редукторы Lovato

На момент написания статьи Lovato выпускает 2 модели впрысковых метановых редукторов:

  • RMJ 3.2.S — для автомобилей малой и средней мощности до 190 лошадиных сил;
  • RMJ 3.2.HP – для автомобилей средней и большой мощности, позволяет уверенно работать системе на двигателях до 272 лошадиных сил.

Все впрысковые метановые редукторы Lovato произведены в соответствии с правилами ECE R110, ARAI, INMETRO и соответствуют стандартам ISO 15500 – 9, сертифицированы на территории России в соответствии с Техническим Регламентом Таможенного союза (ТР ТС 018/2011). Обе модели редуктора оснащены электрическим запорным клапаном с удлиненным фильтром на входе. Они укомплектованы манометром с возможностью подключения датчика уровня с индикацией запаса газа с выводом на переключатель вида топлива.

Традиционные метановые редукторы Lovato

Lovato производит 3 автомобильных газовых редуктора для традиционных систем:

  • RME 090 – для автомобилей малой и средней мощности, предназначен для двигателей до 122 лошадиных сил;
  • RME 140 – для автомобилей до 190 лошадиных сил;
  • RME 180 – редуктор большой мощности для двигателей до 245 лошадиных сил.

Все редукторы модели RME представляет собой трехступенчатый редуктор для карбюраторных (подача газа через смеситель) систем с использованием компримированного природного газа. Производство осуществляется в соответствии с постановлениями ECE R110, ARAI и INMETRO, соответствует стандартам ISO 15500. Редукторы сертифицированы на территории России в соответствии с Техническим Регламентом Таможенного союза (ТР ТС 018/2011). Редукторы оснащены электромагнитным клапаном, расположенным между второй и третьей ступенью, и регулировочным винтом качества смеси.

Безопасность газовых редукторов Lovato

Традиционно, вопросам безопасности компания Lovato уделяет самое пристальное внимание, и редукторы, конечно же, удовлетворяют всем необходимым нормам безопасности ГБО. Например, впрысковые редукторы Ловато — помимо обязательного электромагнитного клапана, перекрывающего поток газа, если автомобиль не использует газовое топливо или двигатель не работает — оборудованы отдельным дополнительным клапаном безопасности. Клапан безопасности срабатывает (уменьшает давление внутри редуктора) в случае, если давление внутри редуктора превышает норму (примерно 4,5-5 Бар). Наличие клапана безопасности гарантирует целостность редуктора, а также исключает разрыв газового шланга на выходе редуктора. Это только один пример того, почему мы считаем, что Ловато идет на шаг впереди в вопросах безопасности ГБО.

Проверка подлинности редукторов Lovato

На сегодняшний день редукторы Lovato заслуженно завоевали огромную популярность как у установщиков ГБО, так и у простых пользователей. Естественной реакцией рынка стало появление подделок. Пока их уровень достаточно низок — их не сложно отличить визуально, но Lovato уже сейчас предпринимает активные меры по защите своей продукции. Каждый редуктор маркируется специальным кодом, и у каждого изделия можно определить не только когда выпущена деталь, но и для какой страны и какой поставщик занимался её реализацией.

Подлинность редукторов Ловато любого поколения можно проверить здесь.

Остерегайтесь подделок!

Газовый клапан Ловато, виды и неисправности.

Автовладельцы машин, которые используют в качестве альтернативы бензину газовое топливо, стараются выбрать качественные комплектующие. Это позволит не только экономить на топливе, но и на обслуживании газобаллонного оборудования. Надёжностью и долговечностью зарекомендовали комплектующие итальянского бренда Ловато.

Одной их важных составляющих ГБО 2-го и 4-го поколения является электромагнитный газовый клапан Ловато. Он предназначен для своевременного открытия и закрытия подачи газа и оснащён фильтром, защищающим топливную смесь от механических примесей.

Электромагнитный газовый клапан Ловато

Газовый электромагнитный клапан Lovato эффективно справляется с функцией перекрытия подачи газа от баллона, когда мотор не работает или переключен на бензиновое горючее. В заводской сборке оснащён фильтром очистки газовой смеси перед подачей её в редуктор.

Особенность электроклапана газа Lovato в том, что его можно ставить на любое авто, оснащённое газобаллонной установкой для пропан-бутана.

Электромагнитный газовый клапан не только подключит и перекроет подачу пропан-бутана, но и эффективно очистит газ от грязи. Преимущество устройства в том, что фильтрующая деталь сменная. Компания Lovato рекомендует автовладельцам менять фильтр электроклапана через 8-10 тыс. км. пробега.

Катушка газового клапана Lovato 12 V полностью герметична, мощности 11 Ватт достаточно для выполнения основной функции.

В обычном состоянии клапан отключён. Управление электромагнитным клапаном газ бензин осуществляется при непосредственном участии водителя в салоне кнопкой переключения одного вида топлива на другое либо с помощью ЭБУ (ГБО 4-го поколения).

На задней части газового клапана Lovato находится кронштейн для крепления устройства на двух саморезах. Вход и выход под трубку диаметром 6 мм. Газовая магистраль для подключения может быть из термопластика или меди. Монтируют клапан катушкой кверху.

ЭКГ комплектуется двумя гайками и двумя ниппелями для трубопровода и крепёжными саморезами.

Виды клапанов ГБО

Электроклапана Ловато отличаются на газовом оборудовании для разных генераций. Так, в ГБО 2-го поколения, предназначенном для установки в карбюраторном двигателе, монтируют два разных прибора:

  • бензиновый, для подачи и перекрытия штатного горючего;
  • электрический газовый.

Газобаллонное оборудование для инжекторных двигателей, в которых бензиновое горючее подаётся в цилиндры с помощи форсунок, оснащены лишь газовыми электроклапанами.

Устройство и принцип действия газового электроклапана

ЭКГ Ловато в классическом исполнении состоит из следующих деталей:

  • сердечника;
  • пружинного возвратного клапана;
  • электрокатушки;
  • прокладок и уплотнительных резинок;
  • фильтра грубой очистки.

ЭГК Lovato схема подключения предусматривает его установку перед газовым редуктором.

Принцип работы:

  • электроклапан в покое закрытый;
  • при готовности авто перейти на газ, ЭБУ (либо посредством механического переключения) подается электрический импульс;
  • магнитная катушка просыпается и поднимает запорный клапан.

После этих манипуляций газовое топливо проходит через фильтр и далее в редуктор-испаритель.

Возможные неисправности клапана

Любые детали системы подвержены поломкам. Когда речь идёт о газовой системе, то очень важно, чтобы вся запорная арматура работала бесперебойно. От этого зависит безопасность эксплуатации ГБО.

Электроклапан стоит недорого, но не всегда есть смысл его замены. Бывают поломки, подлежащие быстрому и недорогому ремонту. Рассмотрим наиболее вероятные причины выхода из строя ЭГК и дальнейший алгоритм действий.

Попадание инородных частиц в клапан

Распространённая причина — загрязнение деталей самого клапана. Это устройство устанавливают в подкапотное пространство, которое подвержено воздействию пыли и грязи. Кроме того, велика вероятность коррозии, могут образовываться окалины, попасть мусор внутрь механизма. В результате он заклинит. Поможет элементарная разборка и чистка от инородных частиц.

Засорение фильтрующего элемента

Возможно засорение фильтра до срока его замены, рекомендованного производителем устройства. Фильтр грубой очистки не является частью механизма электроклапана, а лишь вспомогательной составляющей ГБО. Но если он забьётся, ЭГК стабильно работать не будет. В этом случае машина может вообще не перейти на газ. После смены фильтра работоспособность системы восстанавливается. Если не дожидаться критического момента, а 2-3 раза в год менять фильтрующий элемент, проблемы можно избежать. Когда машина эксплуатируется интенсивно, фильтр меняют ещё чаще.

Большое значение имеет качество топлива. Поэтому заправляться следует на внушающих доверие газовых АЗС.

Неисправная катушка

Неисправность самой катушки определяют методом измерения сопротивления с помощью мультиметра. Если выйдет из строя эта деталь, ЭГК работать не будет, машина не переключится на газ. Катушка ремонту не подлежит, её необходимо заменить на другую с аналогичными параметрами.

Окислы или обрыв кабеля

Данный элемент связан с электричеством. Поэтому не исключена вероятность окисления контактов ЭГК либо обрыва электропровода. Окисление возможно в сырой сезон. После проверки исправности кабеля и обнаружения окислов необходимо зачистить контакты. Обрыв кабеля проверяют тестером или подключением автомобильной лампы.

Если машина не переходит на газ, первое, что нужно проверить — исправен ли электрический клапан.

Электроклапан, который идёт в комплекте к газовому оборудованию для автомашин с моторами инжекторного или карбюраторного типа не являются цельными деталями. Их можно разбирать и собирать. Поэтому заменить фильтр в клапанном корпусе не составляет труда. При своевременном обслуживании данного элемента ГБО его ресурс значительно увеличивается.

Регулировка и ремонт газового редуктора Lovato

На чтение 4 мин. Просмотров 1k.

В газобаллонном оборудовании редуктору отведена наибольшая значимость среди всех узлов. Его задача: предоставить возможность водителю понизить давление, которое поступает из баллона

В газобаллонном оборудовании редуктору отведена наибольшая значимость среди всех узлов. Его задача: предоставить возможность водителю понизить давление, которое поступает из баллона. Ремонт, а именно регулировка, на редукторе автомобиля предусматривает работу с одним или двумя регуляторами: в этоми заключается главное отличие.

В принципе газовый редуктор примитивный регулятор давления, устроенный с целью поддерживать стандартное значение давления от расхода топлива автономно. Как показывает практика, устройство поддерживает его с незначительным коллебанием. Давление немного снижается с повышением расхода газа. Это не очень существенный момент, но требующий внимания.

Предложение от производителя

Редуктора Lovato

Устройство редуктора Lovato характеризуется универсальностью, простотой и надежностью. Для турецких полукустарных производителей изготовитель является образцом для подражания. Практически все поколения турецких редукторов переняли дизайн сплюснутого «барабана», на торцах которого две штампованные крышки. Компания «OFFICINE Lovato S. p.A.» принадлежит к предприятию семейного типа которое было основано в послевоенное время в условиях острой нехватки горючего. В современных условиях компания Lovato– один из лидеров мирового рынка газобаллонной системы. Ремонт, а именно регулировка, аналогов Lovato зависит от следующих факторов:

  • поколения механизма;
  • количества регуляторов;
  • топливной системы.

Товарный ряд производителя:

  • Редуктор пропановый Lovato вакуумный на 90 и 140 kW. Устройство предназначено для систем 1-го поколения ГБО на авто карбюраторного типа с мощностью до 123 лошадиных сил. Редуктор предназначен исключительно для переоборудования на пропан.
  • Пропановый редуктор Lovato электронный 90, 140, 170 kW. Устройство предназначено для систем ГБО 1, 2 и 3-го поколения на авто инжекторного, моноинжекторного и карбюраторного типа с мощностью двигателя до 123 лошадиных сил. Редуктор предназначен для пропан-бутана.
  • Редуктор Lovato метановый. Устройство 2-го поколения применяется для переоборудования на метановое топливо автомобилей и автобусов.

Настройки редуктора

Ремонт, а именно регулировка, редуктора предусматривает ориентацию в его настройках. Пропановые аналоги в основном имеют два регулятора, но и встречаются с одним. Редуктора метанового типа почти всегда характеризуются одним регулятором. В их управлении эти настройки являются наиболее проблемными.

Ремонт для газового поколения редукторов с одной уникальной настройкой предусматривает манипуляции исключительно с давлением передаваемого газа. Владельцы автотранспорта с особым энтузиазмом предпочитают «подкручивать» давление самостоятельно. Задав единственное верное и что немало важно, истинное значение давления, один лишь топливный редуктор даст возможность ограничить потребление газа в режимных мощностях за счёт элемента, именуемого винтом жадности.

Ремонт обладает некоторыми сложностями в случае, когда винт находится в положении «закрыто». Для сохранения холостого хода в этом случае требуется нарастить давление, процесс которого предусматривает:

  • Проверку редуктора перед настройкой, а именно, открыт ли «винт жадности».
  • После реализации предыдущего этапа можно приступить к регулировочным работам.
Устройство редуктора Lovato

Процесс регулировки

Непосредственно газовый регулятор ловато представлен в виде винта, сжимающего пружину. Для того чтобы его установить, следует учесть:

  • при закручивании подача газа будет сбавляться редуктором;
  • при выкручивании – наростать.

Иногда винты встречаются с левой резьбой, чаще всего она правая. Этот момент зависит от дизайнерской фантазии производителя. Чтобы слегка упростить эту задачу необходимо учесть: при любом вращении ему свойственны вышеперечисленные характеристики изменения давления газа.

Регулировка холостого хода на автотранспорте объясняется степенью тряски мотора. Его спокойная работа свидетельствует о том, что ремонт редуктора выполнен грамотно и качественно.

Итак, запускаем мотор и удерживаем открытой дроссельную заслонку. Затем плавно отпускаем её и сбавляем обороты до тех пор, пока силовой агрегат заглохнет. В тоже время не забывайте условие: газовый редуктор двигателя автомобиля должен продолжать работать. Для «чайников» пояснение: двигателю не заглохнет полностью, если начать кручение регулятора дроссельной заслонкой в произвольном направлении. Если просматривается худшая работа мотора, придётся изменить курс вращения редуктора и восстановить его стабильную деятельность.

Тайна редукторов 2го поколения ГБО

Ну, настало время вам открыть маленький секрет !!!
Вот что вам не говорят или попросту не знают наши коллеги про тайну редукторов второго поколения.
Пример как выглядит редуктор можно посмотреть на фото.
Это практически самый распространенный из редукторов что ставят на автомобили с установленным ГБО второго поколения.

Tomasetto Model AT

Итак вам кто то подсказал или сказал ( это не так важно) , что вам стоит заменить или отремонтировать ваш редуктор.
Напоминаю речь идет только о редукторах 2го поколения !!!!! Не путать с редукторами для поколения ГБО 4!!! Там другая история!!!
Вы естественно решите скорее всего отремонтировать свой редуктор по причине того, что это дешевле нежели покупать и ставить новый.
Такое решение вполне естественно для любого человека у которого средний достаток. 
Но как правило вам доносят к сожалению не всю информацию о том что происходит после ремонта редуктора.
Как я вам уже напоминал это зависит от порядочности и компетентности как мастера так и продавца.

Суть состоит вот в чем!!!
К примеру есть редуктор и новый ремкомплект для него
Казалось бы, что еще нужно, разобрали старые мембраны, выкинули, новые поставили.
Ремкомплекты примерно выглядят так, смотрим фото:

 


На фото видим две мембраны что нам дают и множество резинок.
Но самое важное как всегда отсутствует!!!!
В любом редукторе когда мы разбираем его есть основная пружина назовем ее условно «пружина мощности».
выглядит она вот так, смотрим фото:

 Роль этой пружины в редукторе чуть ли не самое важная.
Сделана она из самого простого металла не каленого.
Она отвечает за пропускную способность в канале на выходе давая к примеру давление нужное для работы авто.
Со временем эта самая пружина и дает нам о себе знать когда мы начинаем задумываться о расходе газа на нашем любимом автомобиле.
Все или многие установившие себе ГБО 2 заводят рано или поздно авто на «холодном двигателе»!!!!!!
Ну летом это не так страшно а вот в другие времена года это очень плохо.
Постараюсь объяснить что происходит от заводки машины на газу при НЕ прогретом двигателе!!!
В баллоне газ в жидкой фазе, поступив в редуктор который уже прогрет жидкая фаза превращается в парообразную и подается в теплом виде в сам двигатель.
За это время редуктор уже прогрет пружина!!!! наша, тоже прогрета и приняла естественную форму для работы на газу, новые мембраны тоже готовы к работе под нагрузкой. Газ поступает через фильтр в жидкой фазе в редуктор и начинается процесс превращения жидкостной фазы в парообразную.

Вот вам обратная ситуация.

Жидкая фаза газа поступила в холодный НЕ разогретый редуктор.
Пружина как та бутылка шампанского что забыли в морозилке начинает менять свои характеристики что заложены при изготовлении ее на заводе она сжимается!!!! и гнется в разные стороны.
Мембраны новые так же страдают от этого так как резина взаимодействуя с  жидкой фазой газа начинает «задубевать» — становится не эластичной и жесткой.
Появляются микро трещины и так далее. 
На первых  порах этот эффект не сильно отражается на работе только что купленного или сделанного редуктора.
Но позже все станет на свои места. Машина работает, немного чихает )))) 
И тут самое интересное тосол что подведен к нашему редуктору начинает прогревать редуктор работающий в предельной нагрузке.
И наши внутренние детали начинают возвращаться в нормальное казалось бы состояние.
Но не тут то было!!!!
Пружина злосчастная настолько нагруженна разностью температур что еще раз начинает менять свои технические характеристики заложенные производителем. И теряет попросту свои свойства.
Это касается и мембран.

Описав вам что да как мне становится интересным стоит ли ремонтировать теперь редуктор после прочитанного или купить новый и не морочить себе  и нам голову.
Ремонт редуктора стоит в среднем 350
Новый редуктор с работой стоит 750
Почти пол стоимости самого редуктора )))))

И так мораль!!!!!
Дешевле прогреть немного машину на бензине и продлить время работы редуктора.
Либо сделать ремонт с новыми мембранами но со старой поношенной и жутко пострадавшей пружиной и дальше удивляться что расход жуткий.

Надеюсь вам было интересно и полезно узнать то чего вы я уверен и не знали.
Нажав кнопку воспроизведения на плеере ниже, вы услышите мой комментарий в аудио записи.
Хочу напомнить это сугубо моё личное мнение на данную проблему.

Секрет ремонта редуктора 2 поколения

 

 

Или посмотреть видео как настроить редуктор 2 поколения

 

 

Газовые редукторы на авто 4 поколения

С каждым годом возрастает стоимость бензина и солярки, по этой причине большинство автовладельцев переходят на газовое оборудование. По средним подсчетам экономия на топливе может достигать 50 %, а окупаемость самого оборудования, вместе с постановкой на учет, составляет примерно один год.

Однако для того, чтобы газовая система работала исправно, и не случалось поломок, необходимо ответственно подойти к выбору фирмы-производителя, а также установку должны производить только квалифицированные сотрудники автосервиса, который специализируется на работе с газовым оборудованием.

В основном, сейчас на транспортные средства устанавливается оборудование 4 поколения, которое может работать на любых типах моторных систем. Оно имеет уже электронную систему управления, что является наиболее удобным механизмом переключения. Однако стоимость оборудования и ремонтного комплекта немного выше. Чтобы редуктор 4 поколения работал бесперебойно, необходимо своевременно проходить техобслуживание. И к тому же нужно соблюдать правила эксплуатации и заправляться качественным топливом.

Редуктор ГБО 4 поколения – особенности

Газ отличается по плотности от бензина, и если задуматься над тем, как работает газовая система, то возникает вопрос: как происходит сброс давления в баллоне. Ведь в двигательную систему сможет поступать газ, который имеет только 0,4 атмосфер, если этот показатель будет превышен, то топливо не сможет проходить по магистралям. Для того чтобы использовать газ, как альтернативное топливо, необходим редуктор ГБО 4 поколения. Именно от его работы зависит, насколько качественно будет происходить работа всей системы и движение автомобиля.

Редуктор ГБО 4 поколения – это устройство, которое состоит из нескольких элементов, и они напрямую зависят друг от друга. Стоит отметить, что прибор данного поколения отличается разнообразием функций, которые он выполняет, но при этом довольно не сложен в управлении. Газовые редукторы на авто 4 поколения имеют другую систему работы: распылительная система вспрыгивает вещество в каждый цилиндр, при этом не требуется специальных мембран, которые имеют высокую чувствительность. Наряду с этим, в механизм включено огромное количество датчиков, а также монтируется фильтр высокой очистки.

Важно! Не следует самостоятельно регулировать редуктор ГБО 4 поколения и выполнять ремонт, потому как некачественная работа может привести к проблемам во всей системе. Ремонт и настройка должны выполняться профессиональными мастерами, потому как газ относится к веществам, которые легко воспламеняются.

Установка и настройка

Регулировка устройства редуктора ГБО 4 поколения происходит во время установки, с помощью подключения системы к компьютеру, где имеется программное обеспечение. Это отличает данный редуктор от предшественников, так как на первых газовых системах нужно было настраивать все вручную. Кроме того, стоит отметить, что регулировка и настройка может понадобиться после того, как пробег составит 100 тыс. км, как правило, в среднем, это составляет от 3 до 4 лет эксплуатации автотранспорта.

Важно! Газовый редуктор 4 поколения – это устройство, которое довольно сложно самостоятельно настроить. Поэтому, во избежание любых негативных последствий, лучше всего обратиться за помощью к профессиональным мастерам.

До того, как начать выполнять работы по настройке, необходимо прогреть автотранспортное средство, затем отключить подачу жидкого топлива, так, чтобы двигатель его полностью переработал. Сначала выполняется регулировка холостого хода:

  • устанавливаем показатель мощности до максимального уровня;
  • винт холостого хода закручивается до конца, а затем скручивается на 5 оборотов;
  • необходимо выставить регулятор, который отвечает за чувствительность, на средний уровень;
  • производится запуск агрегата, при этом необходимо с помощью подсоса повышать обороты, желательно достичь показателя в 2 тысячи;
  • затем нужно почувствовать момент, когда стартер достигнет максимальных показателей; плавно убирается подсос;
  • машина должна работать бесперебойно на холостых оборотах после того, как полностью уберется подсос;
  • регулятор, отвечающий за чувствительность, полностью закрывается.

После того, как закончится регулировка холостого хода, производится настройка самого редуктора ГБО 4 поколения:

  • весьма плавно нужно произвести отворачивание регулятора чувствительности до того момента, пока не начнутся изменения в работе мотора;
  • после того, как произошло изменение в количестве оборотов, можно закручивать регулятор до конца;
  • в конце обязательно нужно проверить, правильно ли произошла настройка. Для этого нужно резко нажать на педаль газа, при этом не должно происходить каких-либо изменений в работе мотора.

Важно: если настройка и установка проведены по всем правилам, то никаких сбоев в работе газового оборудования не случится.

Возможные неисправности

Большинство неисправностей возникают по вине самих автовладельцев. В целях экономии заправляются некачественным топливом, а также приобретают комплектующие, которые не отвечают требованиям. Плохое топливо оставляет налет на всех частях газового оборудования, поэтому данную поломку можно устранить, только если прочистить все детали и фильтры.

Оборудование необходимо закупать только у проверенных поставщиков, которые могут гарантировать качество своей продукции. Так, например, можно приобрести газовый редуктор Ловато 4 поколения и различные устройства этой марки – данная итальянская компания является лидером на рынке. К тому же самостоятельно производит все ГБО и его комплектующие, например, газовые форсунки.

Также часто поломка случается, когда водитель пытается сэкономить на бензине и не прогревает транспортное средство до 30 градусов, а сразу при запуске переключается на газ. Из-за этого мембрана начинает мерзнуть, и система выходит из строя.

Как разобрать газовый редуктор Lovato? Чистка и установка ремкомлекта редуктора «Ловато»

Здравствуйте. В предыдущей статье я рассказывал о том, как разобрать газовый редуктор Tomasetto AT-07 в домашних условиях. На этот раз речь снова пойдет о газовом редукторе, и сегодня вы узнаете, как разобрать газовый редуктор Lovato и установить ремонтный комплект.Необходимость разбирать и чистить редуктор возникает при определенных симптомах, которые свидетельствуют о неисправностях. Как понять, что редуктор пора чистить, написано в этой статье.

Для работы вам потребуется:

  1. Набор шестигранников и отверток;
  2. Ремкомлект редуктора Lovato;
  3. «Уайт-Спирит», моющее средство;
  4. Ветошь.

Безопасность превыше всего! Перед тем как разобрать редуктор: найдите хорошо проветриваемое помещение, перекройте подачу газа, снимите минусовую клемму с аккумулятора. И самое главное — уберите любые источники огня!

Разборка редуктора Lovato — пошаговая инструкция:

1. Итак, подача газа перекрыта, все меры безопасности соблюдены, можно приступать. Первым делом необходимо снять шланги подачи газа и демонтировать редуктор.

2. Затем берем шестигранник «h5» и откручиваем 6 болтов крепления верхней крышки редуктора.

3. Сняли крышку, под которой расположена первая мембрана. Поддеваем мембрану и снимаем ее по направлению указанному на фото.

4. После этого у вас будет доступ к коромыслу клапана. Открутите два болта крепления коромысла.

5. Выкручиваем винт регулировки чувствительности.

6. Поддеваем коромысло отверткой и снимаем его.

7. Шестигранником откручиваем 4 болта, затем снимаем диафрагму и пружину расположенную под диафрагмой.

8. Переверните редуктор и открутите 8 крепежных винтов, снимите крышку вместе с пружиной расположенной под ней.

9. Далее по тому же принципу снимаем мембрану.

10. После того как вы разобрали редуктор, выполните его чистку, мойку, а также произведите замену всех необходимых резинок и сальников. Перед сборкой дайте всем деталям высохнуть. Сборка выполняется в обратной последовательности.

На этом у меня все, спасибо за внимание и до новых встреч на ГБОшнике.

Актуально:

Источник фото: Бортжурнал

Принципы работы оксигенатора: газообмен, теплопередача и работа

ВВЕДЕНИЕ


С начала 1950-х годов, когда впервые началась разработка аппарата искусственного кровообращения, произошла огромная эволюция устройств и оборудования для поддержки сердца (1 , 2). Однако, несмотря на разнообразие конструкций на протяжении многих лет, все они содержат три основных компонента: механизм циркуляции крови, метод газообмена на кислород и углекислый газ и некоторый механизм контроля температуры.В главе 2 был рассмотрен первый важный компонент, а теперь мы сосредоточимся на двух последующих элементах: газообмене и теплопередаче. И хотя его называют «оксигенатором», мы должны признать, что он отвечает за перемещение как кислорода внутрь, так и углекислого газа наружу. Обсуждение начнется с базового обзора принципов физики, а затем мы применим эти принципы к устройствам, используемым специально для экстракорпоральной поддержки, включая сердечно-легочный обход (CPB) и экстракорпоральную мембранную оксигенацию (ECMO).
По мере прохождения этой главы вы можете заметить, что торговых наименований и названий производителей мало. Автор намеренно избегает их использования. Основная цель заключалась в том, чтобы сосредоточить внимание на физиологии, физике и химии оксигенатора и теплообменника, а также подчеркнуть тот факт, что существует большое количество производителей, производящих множество продуктов, которые, как было доказано, работают очень хорошо. Несмотря на то, что мы стали свидетелями значительных улучшений в процессе перехода от пузырьковых оксигенаторов к мембранным и полым волоконным оксигенаторам, имеется мало данных, демонстрирующих окончательное превосходство одного продукта над другим в пределах одного класса, например, оксигенаторов из полого волокна из полипропилена, если таковые вообще имеются.Фактически, многие сравнения продемонстрировали лишь незначительные различия, которые имеют минимальное влияние на клиническую практику (3). Это включает в себя множество различных покрытий, которые мы обсудим, используя общие химические названия. Время от времени мы приводили ссылки, в которых конкретно сравнивались различные продукты, такие как покрытия биосовместимости, но не будем включать эту информацию в текст. Поступая таким образом, нам будет легче устранить любую коммерческую предвзятость, и мы надеемся предложить читателю лучшее понимание принципов и функциональности устройств, чтобы они могли сами оценить доступные коммерческие варианты и выбрать продукты, которые наилучшим образом соответствуют их потребностям. о приложениях, доступности, запасах прочности, стоимости и послужном списке.

ФИЗИКА ГАЗООБМЕНА

Движение молекул кислорода (O2) и углекислого газа (CO 2 ) между воздухом и кровью через биологический или синтетический барьер регулируется несколькими конкретными законами физики. Сначала мы рассмотрим принципы этих законов, а затем обсудим их прямое применение к естественным процессам в легких человека, а также нашу попытку имитировать естественный процесс с помощью различных устройств и методов.

Закон Дальтона (Джон Дальтон, 1801):


Общее давление смеси газов равно сумме парциальных давлений всех отдельных газов в этом объеме.На уровне моря это должно быть 760 мм рт.

Первый закон диффузии Фика (Адольф Фик, 1855):



В этой математической формуле J представляет собой диффузионный поток или количество вещества (например, O2), перемещаемого на единицу площади за единицу времени. D, коэффициент диффузии, является константой для конкретного барьера в зависимости от его состава и т. Д. Его также называют «коэффициентом диффузии», и предыдущий отрицательный знак просто делает поток J положительным, когда движение идет вниз по градиенту концентрации.Коэффициент диффузии определенных молекул газа через биологические мембраны, такие как альвеолы, может изменяться относительно быстро из-за воспаления, отека или повреждения, которое может изменить характеристики мембраны. Однако он должен быть постоянным для синтетических барьеров, таких как мембранные оксигенаторы, на которые влияют только значительные изменения температуры и давления (или, по крайней мере, до тех пор, пока он не будет помещен в биологическую среду, когда на него может повлиять свертывание и т. Д.). Концентрация вещества представлена ​​буквой φ, а длина — x.В целях обсуждения переноса газа через мембраны первый закон диффузии Фика говорит нам, что движение O 2 и CO 2 через барьер будет происходить в направлении от более высокой до более низкой концентрации (парциальное давление) с величина, которая пропорциональна градиенту и пропорциональна вовлеченной площади, и обратно пропорциональна
коэффициенту диффузии или «коэффициенту диффузии». Проще говоря, диффузия газа происходит быстрее, когда градиент через мембрану выше, и «более тонкий» барьер позволяет диффузию газа в большей степени, чем «более толстый», в то время как барьер такой же «толщины», но гораздо большей площади поверхности допускает большее газ диффундировать в течение того же промежутка времени.

Закон Грэма (Thomas Graham, 1848):


Скорость диффузии газа обратно пропорциональна квадратному корню из его молекулярной массы.

Закон Генри (Уильям Генри, 1803):


Количество газа, которое может раствориться в объеме жидкости, прямо пропорционально парциальному давлению газа в этой жидкости. Математически, где p — парциальное давление конкретного газа, c — концентрация растворенного газа, а kH — постоянная величина для конкретного газа в конкретном растворе; например, kH для O2, растворенного в воде при 298 K, составляет 769.2 л атм / моль. Именно этот принцип позволяет пузырькам газа выходить из раствора в крови во время разгерметизации, как когда аквалангисты получают «повороты» из-за слишком быстрого всплытия во время погружения. Закон Генри позволяет большему количеству газов, вдыхаемых на глубине при гораздо более высоком парциальном давлении из-за окружающей воды, растворяться в крови, особенно при более длительных периодах воздействия. Если ныряльщик быстро всплывает до того, как легкие смогут постепенно вытеснить поглощенный газ, тогда избыточный газ образует пузырьки воздуха в крови, которые ответственны за симптомы и повреждение органов декомпрессионной болезни, также известной как «изгибы» или кессон. болезнь.






РИСУНОК 3. 1. Параллельный поток против противотока. Повышенный перенос происходит из-за движения по всей системе с противотоком, а не из-за максимального равновесия 50:50, достигаемого при одновременном потоке.


Принцип противоточного обмена


При наличии двух параллельных трубок, заполненных жидкостью или газом, разделенных мембраной с некоторой степенью проницаемости для компонентов этой жидкости или газа, обмен молекулами или частицами через барьер больше эффективен, если движения жидкостей противоположны по направлению.В теоретическом примере с легко диффундирующим газом G, который мы хотим переместить из одной системы в другую посредством диффузии, мы предположим, что концентрация G в том, что мы будем называть «донорной» системой, составляет 100%, и что там — нулевое количество G на «принимающей» стороне системы (рис. 3.1). Если две системы движутся параллельно (одновременно), то на входе концентрации составляют 100% и 0%. По мере продвижения двух систем происходит постоянная диффузия G через барьер с уменьшением концентрации G на донорной стороне и увеличением концентрации на принимающей стороне. Постепенно концентрации изменяются до 90%: 10%, 80%: 20% и так далее, пока не будет достигнуто равновесие 50%: 50%. Продолжение движения по дополнительной длине трубки не обеспечивает дополнительного обмена G в принимающей системе, и конечный результат на участке выхода остается 50%. Если мы теперь изменим направление одной из систем так, чтобы донорская и реципиентная системы текли в противоположных направлениях (противоток), движение G может происходить по всей длине системы, потому что градиент, приводящий к диффузии, может сохраняться. .Если системы имеют достаточную длину, концентрация G может потенциально достигать 100% в месте его выхода, непосредственно рядом с входной стороной донорной системы
, где концентрация также составляет 100%. Таким образом, равновесие достигается на 100%, а не на 50%. Газообмен через жабры рыб — пример естественного биологического применения этого эффективного принципа противоточного обмена. Противоточный обмен применяется не только к передаче газов, как в примере, но в равной степени к перемещению веществ между жидкостями, газом и жидкостью, а также к передаче тепла между двумя жидкостями (жидкостями или газами).

ОКСИГЕНАТОРЫ ДЛЯ ЭКСТРАКОРПОРАЛЬНОЙ ПОДДЕРЖКИ


Базовая конструкция оксигенатора

Естественный процесс газообмена в легких включает направление крови в мелкие капилляры, прилегающие к тонкостенным альвеолам, содержащим вдыхаемый воздух, так что кислород может диффундировать, а углекислый газ может диффундировать. out, основываясь на принципах диффузии в законе Фика, изложенном выше. Размер капилляров таков, что клетки перемещаются по существу по одной, чтобы обеспечить максимальное воздействие и время для газообмена.Большая площадь респираторной поверхности нормального легкого человека обеспечивает чрезвычайно эффективный обмен большого объема O2 и CO 2 . Соответствующий обмен действительно требует эффективного движения воздуха в альвеолы ​​и из них через одни и те же проходы, что создает возможность проблем с вентиляцией мертвого пространства.

При разработке эквивалента искусственного легкого, который будет использоваться в течение коротких периодов времени во время CPB, необходимо учитывать множество факторов, которые часто играют друг против друга.Например, наличие очень большой площади поверхности максимизирует возможность газообмена, но затем также увеличит размер устройства и, следовательно, объем заливки, необходимый для его заполнения, а также связанные с ним гемодилюции и потенциальные потребности в переливании. Имитация естественного легкого с крошечными «капиллярными» кровеносными проходами также максимизирует эффективность обмена, но при этом создаст чрезвычайно высокое сопротивление внутри мембраны, требующее очень большой площади поверхности и приводящее к большему напряжению сдвига, гемолизу и т. Д. .Таким образом, разработка идеального устройства для газообмена была построена на ряде компромиссов между преимуществами и недостатками доступной площади поверхности, сопротивления потоку, размера, объема заливки, способности к диффузии, утечки плазмы и биосовместимости.


Измерения производительности и возможностей оксигенаторов


В попытке создать отраслевые стандарты для сравнения возможностей оксигенаторов Ассоциация по развитию медицинского оборудования ранее разработала набор стандартов для оксигенаторов.Однако надежность этих стандартов была подвергнута сомнению, поскольку в них не учитывалось влияние изменчивости условий на входе, которое влияет на изменчивость переноса газа. Впоследствии было показано, что улучшение газообмена в некоторых устройствах может быть продемонстрировано путем изменения условий, при которых оценивались оксигенаторы (4,5,6). Несмотря на непринятие этих стандартов, существует серия измерений, которые помогают определить физические и функциональные возможности оксигенаторов.Как упоминалось ранее, заправочный объем — это объем жидкости (кристаллоида или крови), необходимый для заполнения фазы крови устройства, включая любой встроенный теплообменник. Это также может включать некоторый минимальный уровень в резервуаре в зависимости от устройства и производителя. Производители также предоставляют минимальные и максимальные рабочие объемы для своих конкретных устройств. Способность оксигенатора насыщать кровь кислородом выражается в эталонном потоке кислорода, который определяется как скорость потока цельной крови при нормотермии, с нормальным гемоглобином (12 г / дл), с нулевым базовым избытком, который будет увеличить содержание кислорода в венозной крови с насыщением кислородом 65% на 45 мл / л потока.Подобные измерения способности устройства удалять CO 2 выражаются в эталонном потоке крови по диоксиду углерода. Также предоставляется индекс гемолиза для устройства, выраженный как количество свободного гемоглобина / 100 см3 крови, прокачиваемое через оксигенатор во время теста in vitro. Наконец, номинальный поток или эталонный поток — это максимальный рекомендуемый поток для достижения адекватного газообмена, и он равен самому низкому потоку среди эталонного потока кислорода, эталонного потока крови по диоксиду углерода, максимального рекомендованного производителем потока или 8 л / мин ( 7).

Оксигенаторы с прямым контактом (пузырь, грохот, вращающийся диск, барабан)


Не повторяя историю разработки оксигенаторов раннего поколения, описанную в предыдущих главах этой книги, мы обсудим только физиологические концепции газообмена, где это прямой контакт крови с газовой фазой, а не особенности конструкции различных ранних машин. Во всех устройствах кровь из тела пациента поступала в машину и в какой-то момент непосредственно смешивалась с газовой смесью, состоящей в основном из кислорода, в виде очень маленьких пузырьков, образующихся с помощью нескольких механизмов, часто с использованием устройства, называемого барботером, которое генерировало пузырьки газа (8).Каждый пузырек обеспечивал площадь поверхности в крови для газообмена. Размер пузырьков стал очень важным, поскольку доступная площадь поверхности для газообмена обратно пропорциональна диаметру пузырьков: меньшие пузырьки обеспечивали большую площадь поверхности и более эффективный перенос кислорода. Однако, если пузырьки были слишком маленькими, быстрое увеличение натяжения CO 2 ограничивало количество удаления CO 2 , которое было возможным. Постепенно производители определили пузырьки надлежащего размера, которые обеспечили бы идеальный респираторный коэффициент для системы около 0.8 (Выведение CO 2 : поглощение O2). Как только пузырьки образуются и смешиваются с венозной кровью, у смеси есть достаточно времени для передачи кислорода непосредственно молекулам гемоглобина в крови (очень небольшая часть переходит в раствор). Одновременно CO 2 покидает раствор и входит в пузырьки, выходя из верхней части устройства или в сепаратор. По мере продвижения крови любые остаточные пузырьки будут постепенно сливаться и отфильтровываться из крови, прежде чем она будет возвращена
пациенту.Одним из самых больших препятствий для этой конструкции было образование пены в результате аэрации крови, и для минимизации этой проблемы использовались различные пеногасители и конструкции. Основным преимуществом был очень эффективный газообмен, обеспечиваемый прямым контактом. Однако такое же прямое воздействие также серьезно повредило клеточные компоненты крови при использовании в течение длительных периодов времени. Другим преимуществом является очень низкий перепад давления или сопротивление конструкции пузырькового оксигенатора, поскольку не было необходимости направлять кровь через небольшие трубопроводы, примыкающие к газовой фазе, для обмена O2 и CO 2 , как в мембране.Движущей силой венозной крови был просто гидростатический столб, и его движению вверх во время газообмена способствовали поднимающиеся пузырьки. Большой размер и емкость устройств означали, что они также могут служить венозными резервуарами системы.

Несмотря на физиологическую простоту пузырьковых оксигенаторов и других устройств прямого контакта, стоимость и сложность установки, наряду с ограничениями, вызванными прямым повреждением крови, делали ее менее практичной для более длительных или более сложных кардиологических операций и привели к к разработке более сложных оксигенаторов.


Мембранные оксигенаторы


В первых конструкциях газообменных устройств были испытаны многие различные материалы, в том числе керамика, пластмассы, резина и ряд синтетических продуктов, таких как целлюлоза, полиэтилен и тефлон. За это время было достигнуто понимание механизмов газообмена через мембранный оксигенатор (9). Однако первый широко применяемый клинический оксигенатор, который полностью исключил прямой контакт фаз крови и газа, что сделало его настоящим мембранным оксигенатором, был разработан Колобоу и его коллегами (10,11).Преимущества предлагаемой новой мембраны заключались в разделении крови и газа, уменьшении повреждений и тромбозов, наблюдаемых при использовании пузырьковых оксигенаторов (12), а также в уменьшении газовых эмболов (13). Кроме того, с новыми оксигенаторами кровь больше не выталкивалась вверх движущимися пузырьками газа, а прокачивалась через мембрану независимо от потока газа, что позволяло отдельно регулировать скорость и состав газовой фазы для управления O2 и CO 2 обмен. Мембрана была сконструирована в виде длинной свернутой катушки из листа силиконового полимера, который полностью разделял газовую и кровяную фазы.Газообмен был не таким эффективным, как через другие материалы, поскольку кислород должен был по существу диффундировать в фазу силиконового полимера, а затем диффундировать в кровь, с тем же процессом, обратным для диоксида углерода. Таким образом, требовались гораздо большие площади поверхности и одновременно большие объемы заливки. Мембрана также имела относительно высокое сопротивление или падение давления от входа до выхода фазы крови. Мембрана обладала приемлемой биосовместимостью, требовала значительной антикоагуляции, и было признано, что она стимулирует фибринолитическую систему, а также было обнаружено, что она поглощает большие количества определенных лекарств, что часто затрудняет достижение терапевтических уровней.Однако, в отличие от других синтетических пластиков, используемых для клинических оксигенаторов, в первую очередь из полипропилена, силиконовая мембрана оставалась практически непроницаемой для белков плазмы и часто могла использоваться в течение нескольких недель без сбоев, что делало ее идеальной для долгосрочной поддержки, такой как ЭКМО. В операционной, где оксигенатор должен был работать всего несколько часов и где утечка плазмы и отказ оксигенатора были менее серьезными проблемами, большой размер и объемы заправки делали его гораздо менее практичным, чем другие доступные варианты.

Микропористые оксигенаторы

В отличие от больших и менее эффективных оксигенаторов с силиконовыми мембранами, так называемые микропористые оксигенаторы с полыми волокнами были разработаны специально для нужд операционной, где кратковременное использование небольших устройств, требующих малых объемов заливки и низкого сопротивления, было очень выгодно. Подавляющее большинство оксигенаторов были изготовлены из полых волокон полипропилена, хотя в некоторых использовались листы полипропилена, в которых микропоры размером менее 1 мкм создаются в процессе нагрева и растяжения материала.Газ движется через мелкие волокна, окруженные кровью, движущейся противотоком. После контакта с кровью поры волокон покрываются белками плазмы, через которые могут проходить молекулы газа, но через которые белки плазмы и вода не проходят из-за поверхностного натяжения крови. Со временем поры в конечном итоге пропускают компоненты плазмы через поры в газовую фазу, что называется утечкой плазмы. Обычно это занимает несколько часов или даже дней, что намного больше, чем требуется для поддержки CPB; поэтому это обычно не имеет клинического значения, за исключением случаев, когда эти мембраны используются для долгосрочной поддержки, такой как ЭКМО.В таких случаях требуется очень тщательный мониторинг функции оксигенатора и частая замена оксигенатора.


Хотя цель оксигенатора — имитировать функцию нативного легкого, обеспечивая достаточную подачу кислорода и удаление углекислого газа, воспроизвести структуру легкого невозможно. Газовый поток движется через оксигенатор, а не входит и выходит из дыхательных путей, что дает некоторое преимущество для эффективности оксигенатора, возможно, компенсируя тот факт, что оксигенатор не может начать воспроизводить легочную модель газообмена.Богатый кислородом воздух поступает в альвеолы ​​с вдохом и некоторое время находится в массивной области респираторной поверхности, которой является легкое. Рядом с миллионами альвеол находится такое же количество крошечных капилляров, настолько маленьких, что красные кровяные тельца (эритроциты) выстраиваются один за другим, чтобы пройти через них, выполняя необходимый обмен молекулами газа. Оксигенаторы из полого волокна не могут конкурировать с такой эффективной системой. Однако с дополнительным пониманием динамики жидкости и газообмена инженеры смогли разработать чрезвычайно эффективные устройства, компенсируя недостатки дополнительными преимуществами.Это связано с чрезвычайно сложной физикой гидродинамики, которая подробно объяснялась в другом месте (14) и которую мы попытаемся упростить здесь для применения оксигенаторов. Ранее мы отмечали, что наименьший возможный конструктивный путь для крови все еще в
более 100 раз превышает размер капилляров, и если его уменьшить, сопротивление становится недопустимым для целей экстракорпоральной поддержки. Это компенсируется увеличением длины кровотока более чем в 1000 раз.Таким образом, вместо того, чтобы каждая клетка на короткое время проходила через отдельную альвеолу, теперь у нас есть большее количество крови, проходящей через более широкие, но очень большие расстояния, чтобы создать более эффективную площадь поверхности для газообмена. Поскольку кровь представляет собой вязкую жидкость, скорость потока внутри оксигенатора не везде одинакова. И хотя на самом деле газ течет внутри микроволокон, а кровь вокруг них, давайте рассмотрим движение крови, как если бы она была в трубке, чтобы лучше понять динамику жидкости и ее влияние на газообмен.Внутри «трубки» скорость крови меняется: самый быстрый поток в центре, а окружающая кровь движется с постепенно уменьшающимися скоростями по мере того, как она удаляется от центра и приближается к внешнему краю, который был бы границей раздела с газовая фаза. В этот момент скорость теоретически равна нулю, а центральный поток максимален. На границе раздела с нулевой скоростью образуется пограничный слой, в котором происходит диффузия кислорода через мембрану. Поскольку растворимость кислорода в жидкой части крови очень низкая, большая часть диффузии происходит на границе раздела или рядом с ним на гемоглобин внутри крови вблизи пограничного слоя.Распространение дальше в поток труднее из-за расстояния. Если длина кровеносного пути короткая и поток является абсолютно ламинарным, то к гемоглобину в центральном потоке крови попадет очень мало кислорода или вообще не будет. Однако поток не является ламинарным, и турбулентность нарушает слои градиента скорости и увеличивает вихревые токи и перемешивание. В этом случае это очень желательно, чтобы увеличить способность кислорода диффундировать к более доступным молекулам гемоглобина.Эта проблема также может быть решена путем увеличения длины пути прохождения крови и времени пребывания, но это резко увеличит площадь поверхности, размер оксигенатора и, следовательно, основной объем. Другое решение могло бы заключаться в уменьшении ширины пути прохождения крови, уменьшении расстояния между границей раздела и центральным потоком, но, как указывалось ранее, это могло бы значительно увеличить сопротивление потоку до непрактичного уровня. Пропуская газ через волокна вместо крови, сопротивление намного ниже и обеспечивает соответствующий контакт для газообмена.Газосодержащие микроволокна размещены нелинейным образом с рядом мягких изгибов и поворотов, создающих турбулентность и повышенное перемешивание, но не настолько, чтобы увеличивать напряжение сдвига и вызывать повреждение эритроцитов. Дополнительные вентиляторы или небольшие лопасти помещаются в фазу крови для достижения того же эффекта, который известен как «вторичный поток» (15).
В отличие от кислорода, углекислый газ гораздо более растворим в крови, где он быстро превращается в бикарбонат. Дополнительные молекулы CO 2 транспортируются на аминогруппах белков плазмы, включая гемоглобин, что делает выведение CO 2 гораздо менее проблематичным, чем доставка кислорода (рис.3.2 и 3.3).




РИСУНОК 3.2. Типичная открытая система для взрослых, показывающая резервуар для кардиотомии (A), складную венозную сборную камеру (B) и комбинированный полипропиленовый оксигенатор и теплообменник (C).


Оксигенаторы с полым волокном «с плотной плазмой»


В 2008 году первый оксигенатор из полого волокна на основе полиметилпентена (PMP) был одобрен Управлением по контролю за продуктами и лекарствами (FDA) для использования в США для экстракорпоральной поддержки.Хотя оксигенаторы PMP использовались в Европе в течение многих лет, их внедрение в Соединенных Штатах стало важным новым инструментом для долгосрочной экстракорпоральной поддержки. Как и предшественник полипропилена, оксигенаторы PMP обладали очень эффективным газообменом, малой площадью поверхности и объемом заливки, превосходной биосовместимостью и очень низким сопротивлением кровотоку. Однако полые волокна PMP были действительно непористыми, вместо того, чтобы быть покрытыми очень тонкой мембраной, которая обеспечивала эффективный газообмен без возможной утечки плазмы, хотя сообщалось о редких случаях (16).Хотя это мало что изменило в операционной, оно произвело революцию в поддержке ЭКМО в этой стране и во всем мире, предоставив маломощный, биосовместимый и эффективный оксигенатор с низким уровнем сопротивления, который можно было использовать в течение нескольких дней или недель подряд (рис. . 3.4). Единственный недостаток этих оксигенаторов, отмеченных автором по сравнению с ранее использовавшимися силиконовыми мембранами
, — это скорость, с которой они выходят из строя при тромбозе. В то время как стимул для коагуляции, кажется, меньше у PMP и его различных покрытий, потому что площадь поверхности и объем настолько малы, когда тромбоз инициируется, он может прогрессировать чрезвычайно быстро, вызывая относительно внезапный отказ оксигенатора.Это становится чрезвычайно важным в свете тенденций в поддержке ЭКМО и стремления к более простой, более «автоматизированной» и компактной системе, которая привела к меньшему мониторингу пред- и постмембранного давления и меньшему внимательному наблюдению со стороны опытного персонала. С этим приходит меньше предупреждений о потенциальных проблемах и, возможно, меньше запаса прочности для предотвращения внезапного и потенциально катастрофического отказа системы.




РИСУНОК 3.3. Миниатюрный педиатрический контур для младенцев с венозным резервуаром (A) и полипропиленовым оксигенатором / теплообменником (B).Также показаны роликовый насос (C) и гемофильтр (D).


Резервуары


Системы для CPB также включают некоторую форму резервуара — либо мягко складывающееся устройство, либо твердый контейнер, который выполняет ряд функций, или некоторую комбинацию (см. Рис. 3.2 и 3.3). Основная функция — регулирование объема и обеспечение насоса постоянным источником крови для доставки пациенту, даже если имеется временное прерывание венозного возврата от пациента, намеренное или непреднамеренное.Резервуар делают достаточно большим для полного обескровливания объема крови пациента в случае глубокой гипотермической остановки кровообращения. После попадания в резервуар кровь проводит там короткое время, позволяя любым пузырькам, которые могли попасть в резервуар, подняться наверх, так как кровь затем сливается со дна резервуара и затем прокачивается через оксигенатор и теплообменник . Этот временный застой очень полезен для удаления воздуха из крови, особенно при использовании аспирационных устройств, которые возвращают пролитую кровь непосредственно обратно в насос, но также является причиной того, что CPB требует более высокого уровня антикоагуляции (обычно время свертывания активируется более 400 секунд) по сравнению с контурами ЭКМО, которые не имеют резервуара, имеют минимальные области застоя и могут работать с гораздо более низкими уровнями антикоагуляции.Но поскольку контуры ЭКМО не имеют резервуара (кроме небольшого серворегулятора или камеры податливости), их дальнейшее функционирование полностью зависит от стабильной и непрерывной подачи венозного возврата от пациента. Существуют дополнительные устройства безопасности, такие как артериальные фильтры (которые теперь могут быть встроены в сам оксигенатор) и детекторы пузырьков, но они будут обсуждаться более подробно в главе 23. Системы ЭКМО являются «закрытыми», поскольку в них нет резервуаров. ; поэтому каждый кубический сантиметр крови, который закачивается пациенту, должен быть заменен кубическим сантиметром, поступающим в венозную возвратную сторону.Хотя многие системы имеют очень маленькие складные отсеки, используемые либо в качестве серворегуляторов для роликовых насосов, либо в качестве камер соответствия
, чтобы минимизировать кавитацию воздуха из-за высокого отрицательного давления, создаваемого центробежными насосами, они не являются резервуарами и не имеют возможности хранить или объем подачи крови. Однако это также устраняет большую часть застоя крови в системе и является причиной того, что ЭКМО может работать при значительно более низких уровнях антикоагуляции по сравнению с CPB.




РИСУНОК 3.4. Оксигенатор из полиметилпентена с комбинированным внутренним теплообменником, обычно используемый для долгосрочной поддержки (ECMO).


Работа оксигенатора


Аппарат искусственного кровообращения обычно контролируется перфузиологом, который отвечает за обеспечение адекватной доставки кислорода ко всем тканям и органам тела в течение периода поддержки. Точно так же контур ЭКМО поддерживается персоналом, который выполняет аналогичные роли на долгосрочной основе.Это включает в себя все три тесно взаимосвязанных компонента поддержки: насос, оксигенатор и контроль температуры. Обеспечение адекватного потока насоса эквивалентно естественному сердечному выбросу. Контролируемое переохлаждение приводит к защитному эффекту во время поддержки или после острой ишемии / гипоперфузии за счет снижения метаболических требований. А адекватный газообмен обеспечивает необходимый кислород тканям (при условии адекватного потока и адекватной пропускной способности кислорода гемоглобином), а также удаление углекислого газа.Движение O2 и CO 2 Только золотые участники могут продолжить чтение. Войдите или зарегистрируйтесь, чтобы продолжить

Связанные

Принцип работы и применение планетарного редуктора

Принцип работы планетарного редуктора
Планетарный редуктор и коробка передач являются своего рода передаточным механизмом.В нем используется датчик скорости коробки передач для уменьшения числа оборотов двигателя до необходимого и получения большого крутящего момента. Как работает планетарный редуктор? Мы можем узнать об этом больше из структуры.
Основная конструкция трансмиссии планетарного редуктора состоит из планетарных шестерен, солнечной шестерни и коронной шестерни. Зубчатый венец находится в плотном контакте с внутренним картером редуктора. Солнечная шестерня, приводимая в действие внешним источником энергии, находится в центре зубчатого венца. Между солнечной шестерней и коронной шестерней находится планетарный ряд, состоящий из трех шестерен, равномерно установленных на водило планетарной передачи, которое плавает между ними, опираясь на опору выходного вала, коронной шестерни и солнечной шестерни.Когда солнечная шестерня приводится в действие входной мощностью, планетарные шестерни будут вращаться, а затем вращаться вокруг центра вместе с орбитой коронной шестерни. Вращение планетарных шестерен приводит в движение выходной вал, соединенный с водилом, для вывода мощности.

Применение планетарных редукторов
Планетарные редукторы и коробки передач имеют множество преимуществ, таких как небольшой размер, легкий вес, высокая грузоподъемность, длительный срок службы, высокая надежность, низкий уровень шума, большой выходной крутящий момент, широкий диапазон передаточного числа, высокая эффективность и так далее.Кроме того, редукторы планетарных редукторов на ATO.com разработаны с квадратным фланцем, которые просты и удобны в установке и подходят для серводвигателей переменного / постоянного тока, шаговых двигателей, гидравлических двигателей и т. Д.
Благодаря этим преимуществам можно применять планетарные редукторы. для подъемного транспорта, машиностроительного оборудования, металлургии, горнодобывающей, нефтехимической, строительной техники, легкой и текстильной промышленности, медицинского оборудования, приборов и средств измерения, автомобилей, кораблей, вооружений, аэрокосмической и других отраслей промышленности.

Развитие газового насоса

Развитие газового насоса
Это было в 1885 году в Форт-Уэйне, штат Индиана, где изобретатель керосинового газового насоса С.Ф. Баузер продал свой первый недавно изобретенный керосиновый насос владельцу продуктового магазина. Это должно было решить проблему и беспорядок кладовщика, разливающего горючую жидкость в любой случайный контейнер, который принес покупатель.

Керосин использовался только в качестве топлива для печей и ламп, а в то время бензин был всего лишь летучим побочным продуктом очистки керосина, к тому же автомобиль не был изобретен и коммерчески доступен примерно до 1910 года.

Изобретение Баузера, которое надежно измеряло и распределяло керосин — продукт, пользующийся большим спросом почти 50 лет — вскоре превратилось в дозирующий бензонасос.

Оригинальный насос Bowser имел утилитарный вид и представлял собой квадратный металлический резервуар с деревянным корпусом, оснащенный всасывающим насосом, управляемым ручным рычагом с ручным ходом. В 1905 году была добавлена ​​насадка для шланга для заливки бензина непосредственно в топливный бак.

Есть несколько претензий к первой в мире автозаправочной станции.Standard Oil утверждает, что в 1907 году у нее была станция в Сиэтле, штат Вашингтон, хотя также утверждается, что первая появилась в Сент-Луисе несколькими годами ранее. Однако большинство понимает, что, когда в 1913 году в центре Питтсбурга поступил в продажу «Good Gulf Gasoline», был открыт первый настоящий сервис по подержанию автомобилей. «В первый день работы на станции было продано 30 галлонов бензина по цене 27 центов за галлон. В первую субботу новая автозаправочная станция Gulf перекачала 350 галлонов бензина », — отметила Комиссия по истории и музеям Пенсильвании.Станция была расположена прямо рядом с автосалонами, что заставляло новых владельцев автомобилей заправляться сразу после выезда со стоянки.

Это было действительно началом для производителей, заключающих механические части насосов тротуара в шкафы. Эти шкафы различались по дизайну и стилю. В одних базовых шкафах просто хранятся части оборудования, в других — более стилизованных. Это были первые дни, когда логотипы компаний начали появляться на насосах, прямо на корпусе или на глобусе над насосом.

Временная шкала: *

1890–1900 — ручной насос без измерительного устройства

1900–1910 — ручной насос, некоторые с циферблатом для измерения

1910–1920 — ручные насосы с минимальным цветом. Некоторые из них с циферблатом (возможно, прикрепленным видимым приложением)

1920-1930 — ручные насосы, некоторые цветные, некоторые с циферблатом, некоторые со светящимся маркетинговым глобусом наверху

1930-1940 — арт-деко в цвете, некоторые с циферблатом и стеклянные цилиндры, светящийся шар наверху

1940-1950 — квадратный дизайн и цвет, электронный с циферблатом и цилиндром, некоторые со смотровым стеклом (цилиндр меньшего размера), сверху еще светящийся глобус

1950-1960 — только в стиле коробки, Компьютеризированные измерения и расчет цен в светящемся свете

К 1918 году был представлен первый насос видимого диапазона.Покупатель мог видеть, сколько топлива он покупает, включив в него большой стеклянный цилиндр, подключенный к насосу. При первом внедрении стеклянные цилиндры были модернизированы для уже существующих насосов с бордюрами. В 1923 году компании начали разрабатывать новые насосы с цилиндрами, прикрепленными непосредственно к ним. Это было также ранней попыткой экспериментов с моторизованными насосными механизмами по сравнению с ручным кривошипом. Примерно в 1925 году видимый цилиндр был заменен счетчиком в виде часов, который был доминантой бензоколонок начала 1930-х годов.

1934 год был годом, когда компьютерный счетчик был разработан компанией Wayne Pump. С этим изобретением отход от традиционного стиля циферблатов был заменен на более цифровую форму. Галлоны и цены были отображены прямо на циферблате, и это быстро прижилось. К концу 30-х все компании использовали компьютерные счетчики. Это было началом периода ар-деко, который охватывает эстетику машин. Бензиновые насосы в ту эпоху имели геометрическую форму с яркими ступенчатыми узорами из нержавеющей стали.Хотя края были слегка закруглены, в целом помпа выглядела более квадратной. Этот стиль доминировал во время Второй мировой войны, поскольку правительство ограничивало их производство.

Когда закончилась Вторая мировая война, автомобили опустились ниже, и поэтому они стали препятствием для просмотра метров с новой точки зрения автомобиля. В результате были разработаны новые, более короткие бензонасосы, которые получили название низкопрофильных насосов. По большей части эти насосы отличались закругленными краями, отделкой из нержавеющей стали, крупными метрическими поверхностями и более простыми деталями, чем то, что было видно в стилях ар-деко 1930-х годов.

В 1950-е годы продолжалась тенденция отхода от закругленных краев, и насос из нержавеющей стали был популярен. Фурнитура была короче, квадратнее по форме и имела неокрашенные поверхности из нержавеющей стали. Верхняя часть насоса часто была больше и располагалась на более узком сужающемся основании. Агрегаты часто располагались рядом друг с другом длинными рядами, обеспечивая различные виды топлива и услуг.

«Сегодня здесь 152 995 АЗС, в том числе 123 289 круглосуточных магазинов», — сообщает Эрнст.В среднем каждое место продает около 4000 галлонов топлива в день, «значительный скачок по сравнению с 30 галлонами, проданными на станции Gulf в Питтсбурге 1 декабря 1913 года».


Ежедневно через всю страну в массовых количествах идет газ. Независимо от того, заправляется ли он в ваш автомобильный бак или во время транспортировки, ключевым моментом является наличие надлежащего и безопасного оборудования для обработки этой жидкости. В начале 1900-х годов в насос был включен шланг, позволяющий осуществлять прямую перекачку. В настоящее время шланги включают в себя шарнирные соединения и предохранительные отломы для обеспечения безопасной транспортировки и перекачки жидкостей.

Современный бензонасос наполнен новыми функциями, но миссия остается прежней. Насос должен эффективно перекачивать и учитывать топливо, которое хранится в подземном резервуаре, в топливный резервуар потребителя. Использование шарнирных соединений является стандартным, что позволяет легко разместить топливную форсунку на топливном баке автомобиля. Системы улавливания паров также являются стандартными и в некоторых случаях требуются для современных насосов. Эти системы возвращают уходящие пары обратно в резервуар, чтобы выполнить две задачи…

  • Защита окружающей среды
  • Остановить потерю продукта
  • Другие элементы современных насосов включают более точный учет для продавца и потребителя с использованием современных средств измерения расхода.Сегодняшние насосы часто имеют небольшие видеоэкраны, на которых транслируются новости и реклама. Считыватели карт Point Of Purchase позволяют производить оплату на месте и отслеживать программу лояльности, которая передает сбережения и сделки с продуктами потребителям.

    SafeRack — ведущий дистрибьютор систем перекачки жидкости, поэтому, будь то шарнирные соединения, загрузочные рычаги, муфты для перекачки жидкости или переходники, наши опытные специалисты создают систему, адаптированную к любой среде перекачки жидкости.

    Источники:

    http: // www.CarDrivemuseum.org/the-history-and-collectability-of-gas-pumps/

    http://aoghs.org/transportation/first-gas-pump-and-service-stations/

    Управление и эксплуатация центробежных насосов — пуск, останов, самовсасывание и кавитация — решение для цистерны-химовоза

    Эксплуатация центробежных насосов

    Во время работы необходимо учитывать преобладающие условия всасывания и нагнетания в отношение к эксплуатационным характеристикам насосов.Это особенно важно при эксплуатации грузовые насосы, у которых номинальная мощность достигается при относительно высоком общем напоре. Операция по эти насосы с низким общим напором могут значительно превышать номинальную мощность насосов и вызывать чрезмерные скорости жидкости в трубопроводных системах.


    Рис: Центробежный насос

    Нагнетательные клапаны

    Управление центробежным насосом может быть достигнуто путем регулировки выпускного клапана насоса и / или ограничение скорости насоса.Клапан управления нагнетанием выполняет три основные функции:

    • Их можно использовать для регулирования производительности насосов переменной и постоянной скорости, а также для предотвращать перегрузку в насосах с постоянной скоростью.
    • Могут использоваться вместе с самовсасывающими системами для обеспечения самовсасывания. возможность центробежных насосов.
    • Их можно использовать для уменьшения производительности насоса и, таким образом, уменьшения чистой Требуется положительная всасывающая головка.

    Самовсасывающий

    В самовсасывающей системе выпускной регулирующий клапан выполняет две функции:

    1. За счет ограничения производительности насоса напор искусственно поднимается до уровня выше нормы сопротивление системы разряда при данной пропускной способности.
    2. Производительность снижается до уровня, равного или ниже естественного потока жидкости к насосу, поэтому кавитация не происходит, т.е. поток жидкости в всасывающий патрубок резервуара точно соответствует производительности насоса.
    Производительность центробежного насоса снижается, если перекачиваемая жидкость захватывает газ. Ручное согласование входа и выхода насоса затруднено, и без внешней помощи всасывание невозможно. восстанавливается после того, как звук будет раскрыт и воздух попадет во всасывающий трубопровод. Это для по этой причине обычно устанавливаются отдельные системы зачистки поршневого насоса.

    Центробежные насосы можно сделать самовсасывающими, если из перекачиваемой жидкости удалить воздух или газ. до того, как он попадет на всасывание насоса.Нагнетательный клапан на насосе выполняет важную функцию. во время этого процесса путем согласования скорости нагнетания насоса с естественным потоком жидкости в насос всасывающий. Последовательность событий такова:

    1. Начинается слив, насос и сепаратор заполняются маслом.
    2. Вакуумный насос и клапан в линии отбора газа отключаются поплавковым выключателем в насосе разделитель.
    3. Нагнетательный клапан полностью открыт, система управления реагирует на уровень сепаратора.
    4. Уровень в баке падает до точки, при которой уровень сепаратора начинает падать, вызывая тем самым вакуумный насос. начать отвод газов, заполняющих верхнюю часть сепаратора, предотвращая кавитацию. В извлеченные газы сбрасываются в отстойный резервуар.
    5. Когда уровень сепаратора падает, система управления частично закрывает нагнетательный клапан на насосе для уменьшения производительности насоса.
    Таким образом, операции выгрузки и зачистки могут продолжаться, при этом выпускной клапан постепенно закрывается, так как вакуумные насосы должны работать интенсивнее, чтобы сепаратор оставался заполненным.

    Кавитация

    Насос считается кавитационным, когда давление на всасывании насоса упало до такой степени, что в перекачиваемой жидкости образуются пузырьки пара.
    В центробежном насосе пузырьки могут образовываться с большой скоростью на всасывании насоса и могут переноситься в области более высокого давления внутри насоса. Затем пузырьки быстро схлопываются и в процесс разрушения создает эффект молотка. Этот эффект, хоть и минутный, но часто повторяемый, может вызвать повреждение насоса.Остаточные эффекты кавитации, а также сама кавитация, может быть проблемой и включать: —

    • Эрозия металлических поверхностей, которая, если она серьезна, может вызвать нарушения потока.
    • Вибрация, которая может привести к повреждению насоса или, чаще, подключенного оборудования с насосом и установкой.
    В центробежных насосах нельзя допускать кавитации.

    Запуск и остановка насосов

    При работе с парогидроэлектрическими или электрическими грузовыми насосами: процедуры должны соблюдаться:

    1. Дежурный инженер должен быть уведомлен о запуске или остановке грузовых насосов.
    2. Насосное отделение необходимо проверить как можно скорее после запуска любого насосного агрегата.
    3. Перед запуском насоса из корпуса необходимо удалить воздух или газ и заполнить его жидкостью. насос.
    4. Пуск паровых центробежных насосов производится в соответствии с инструкции производителя, и за ними внимательно следит дежурный инженер.
    5. Центробежные насосы не могут работать с частотой вращения выше минимальной, пока дежурный инженер не удовлетворится с рабочим состоянием привода.
    6. Центробежные насосы с паровым приводом должны запускаться при закрытом нагнетательном клапане. Однажды насос вращается, клапан следует открывать постепенно, поскольку насос медленно поднимается до желаемая рабочая скорость.
    7. Центробежные насосы с электрическим приводом, работающие с постоянной скоростью, должны запускаться против закрытый нагнетательный клапан. После того, как насос заработает, необходимо открыть нагнетательный клапан. пока не будет достигнуто желаемое давление нагнетания.
    8. Останов паровых центробежных насосов должен производиться дежурным инженером, однако обычная остановка может быть выполнена с помощью пульта дистанционного управления, предварительно уведомив об этом. передан дежурному инженеру.
    9. Остановка насосов с электрическим приводом может производиться из диспетчерской. Перед остановкой насоса необходимо снизить нагрузку на насос путем включения на нагнетательном клапане. Дежурный инженер всегда должен быть предупрежден о том, что такой насос останавливается, чтобы он мог контролировать электростанцию, поскольку электрическая нагрузка изменения.

    Аварийная остановка насосов

    Аварийная остановка грузовых насосов должна выполняться любыми средствами управления самый доступный.Весь персонал, задействованный в грузовых операциях, должен знать местонахождение аварийные отключения / остановки грузового насоса.

    Дополнительная информация

    Параметры работы насосов — риск перегрузки или недогрузки грузового насоса

    Риск и опасность химического загрязнения на борту

    Погрузка, подключение и использование грузовых шлангов

    Порядок эксплуатации и технического обслуживания PV-клапанов

    Управление и эксплуатация центробежных насосов

    Как проверить среду резервуара перед входом?

    Как определить уровень жидкости в химической емкости

    1. Меры противодействия протечкам в грузовой магистрали
      Существует множество причин, которые могут привести к отказу грузовой линии на борту танкера-химовоза.Гальваническая коррозия в грузовых и зачистных трубопроводах может вызвать несколько утечек. Один из источников такой коррозии трубопроводов. изменение коррозионной стойкости в соседних точках трубопровода.

    2. Контрольный список для работы с опасными жидкими химикатами наливом
      Имеется ли информация, дающая необходимые данные для безопасного обращения с грузом, и, если применимо, предоставлена ​​производителем сертификат ингибирования имеется? Информация о продукте, с которым предстоит работать, должна быть доступна на борту судна и на берегу до и во время операции.

    3. Рекомендуемое бортовое оборудование для контроля температуры
      Датчики температуры установлены таким образом, чтобы можно было контролировать температуру груза, особенно там, где это требуется Кодексом IBC. Важно знать температуру груза, чтобы иметь возможность рассчитать вес груза на борту, и потому что резервуары или их покрытия часто имеют максимальный температурный предел. Многие грузы чувствительны к температуре и могут быть повреждены из-за перегрева или затвердевания.Также могут быть установлены датчики для контроля температуры конструкции вокруг грузовой системы.

    4. Практический пример решения задач по очистке резервуаров
      Очистка резервуаров необходима на танкере-химовозе, но она должна быть признана потенциально опасной операцией, и на протяжении всего процесса следует соблюдать строгие меры предосторожности. Вместе с дегазацией это, вероятно, самая опасная операция, обычно выполняемая на химовозе.
      Предварительная очистка / мойка грузовых танков

    5. Предварительная очистка / мойка грузовых танков
      Промывка грузов разных сортов является наиболее частой причиной очистки танков.В большинстве грузовых операций на танкерах-химовозах эта очистка может состоять не более чем из простой мойки горячей или холодной морской водой. Простая промывка водой будет рассеивать многие типы химикатов и оказалась эффективной для чистых нефтепродуктов, таких как газойль и керосин.

    6. Окончательная очистка грузовых танков перед погрузкой
      Используемый метод окончательной очистки зависит как от предыдущего груза, так и от груза, который будет загружен. Как правило, перед загрузкой резервуары и трубопроводы должны быть полностью осушены от воды или остатков.Дно емкостей, возможно, придется просушить ветошью.

    7. Опасности при очистке и хранении резервуаров
      Определенные вещества действуют на ткани локально как раздражитель (масло скорлупы кешью) или вызывают серьезные повреждения глаз, кожи или слизистых оболочек (например, сильные кислоты и едкие вещества). Другие вещества могут абсорбироваться при контакте с кожей без местного воздействия (например, нитробензол, анилин).

    8. Испытания танков и грузов
      Наиболее распространенные испытания и проверки нефтяных и химических грузов включают испытание стенок танков на чистоту.Испытания обычно проводятся независимыми инспекторами, которые, согласно местной практике или письменному соглашению в чартере, принимаются грузоотправителем, получателем и владельцем.

    9. Практические методы очистки танков от различных ядовитых жидких грузов
      Цистерны, которые могли содержать мономеры или олифы, следует сначала промыть достаточным количеством холодной воды, чтобы избежать полимеризации остатков груза. В некоторых случаях необходимо использовать химические вещества для очистки резервуаров, но их использование обычно ограничено, так как может быть трудно избавиться от сточных вод.

    10. Специальный метод очистки танков
      Если будет использоваться специальный метод с использованием чистящих средств, это может создать дополнительную опасность для экипажа. Судовые процедуры должны гарантировать, что персонал знаком с опасностями для здоровья, связанными с таким методом, и защищен от них. Чистящие средства можно добавлять в промывочную воду или использовать отдельно. Принятые процедуры очистки не должны влечь за собой необходимость входа персонала в резервуар.

    11. Определение надлежащей очистки танков методом кислотной промывки
      Метод кислотной промывки используется, если есть какие-либо подозрения, что груз ароматических углеводородов мог быть загрязнен предыдущим грузом нефти.Этот метод также используется для проверки того, что резервуар достаточно очищен перед загрузкой ароматических углеводородов.

    12. Надзор за всеми операциями по очистке резервуаров и дегазации
      Очистка резервуаров необходима на танкере-химовозе, но она должна быть признана потенциально опасной операцией, и на протяжении всего процесса следует соблюдать строгие меры предосторожности. Вместе с дегазацией это, вероятно, самая опасная операция, обычно выполняемая на химовозе.

    13. Утилизация промывных вод танков, отстоев и грязного балласта — безопасный метод
      Во время нормальной эксплуатации химовоза основная необходимость в удалении остатков химических веществ, отстоев или воды, загрязненной грузом, возникает во время или сразу после очистки танка.Окончательная утилизация стоков или промывных вод должна производиться в соответствии с судовым Руководством по P&A. Смывные воды из танков и отстои могут оставаться на борту в отстойных танках или сбрасываться на берег или на баржи.

    14. PV-клапаны — требования к функционированию и техническому обслуживанию
      Клапаны давления / вакуума предназначены для защиты всех грузовых танков от избыточного / пониженного давления и обеспечения потока небольших объемов атмосферы танка в результате колебаний температуры в грузовом танке (ах) и должны работать перед выключателем давления / вакуума, где используется система IG….

    15. Уплотнение палубы, обратные клапаны резервуара и требования к замерам резервуара
      На судах, оборудованных системой инертного газа, необходимо поддерживать герметичное уплотнение между грузовыми танками и инертным газом. на электростанции это обычно достигается за счет использования обратного клапана и водяного затвора палубы …

    16. Компьютер нагрузки / стресса
      Этот прибор предоставляется в дополнение к буклету остойчивости судна. Это позволяет ответственному офицеру выполнять различные сложные вычисления, необходимые для обеспечения того, чтобы судно не было перенапряжено или повреждено во время перевозки назначенных грузов..

    17. Требования к перевозке различного оборудования для обеспечения безопасности при обработке грузов
      На танкерах-химовозах важно, чтобы каждый до начала работы с ядовитыми химическими грузами хорошо знал средства безопасности своего судна. Также за это должен нести ответственность капитан / старший помощник.

    18. Требование ограничения выбросов паров для танкеров-химовозов
      Сосуды, оборудованные системой VEC, должны иметь независимую сигнализацию перелива, обеспечивающую звуковое и визуальное предупреждение.Они должны быть испытаны на резервуаре, чтобы убедиться в их правильной работе до начала загрузки, если система не имеет возможности электронного самотестирования. Стационарные измерительные системы должны постоянно поддерживаться в полностью рабочем состоянии. …..

    19. Руководство по использованию и исправлению показаний детекторных трубок Draegar Chemical
      Эти инструменты, часто называемые трубками Дрегера, обычно работают путем отбора пробы атмосферы, которая должна быть проверена, с помощью запатентованного химического реагента в стеклянной трубке.Реагент обнаружения постепенно обесцвечивается, если в образце присутствует пар загрязняющего вещества. Длина пятна обесцвечивания является мерой концентрации химического пара, которую можно определить по градуированной шкале, нанесенной на трубку. Детекторные трубки дают точную индикацию концентрации химических паров независимо от содержания кислорода в смеси

    20. Требования к обогреву химических грузов различного качества
      : Заказы на рейс будут содержать информацию о отоплении, если отопление требуется.Как правило, Окончательные инструкции по нагреву отправляются Грузоотправителем в письменной форме капитану / старшему помощнику капитана в порту погрузки. Если эти письменные инструкции не даны, капитан должен запросить их и выдать письмо протеста, если они не будут получены при отбытии. В последнем случае следует немедленно сообщить об этом в офис администрации.

    21. Рекомендуемое бортовое оборудование для мониторинга температуры
      : Датчики температуры установлены так, чтобы можно было контролировать температуру груза, особенно там, где это требуется Кодексом IBC.Важно знать температуру груза, чтобы иметь возможность рассчитать вес груза на борту, и потому что резервуары или их покрытия часто имеют максимальный температурный предел. Многие грузы чувствительны к температуре и могут быть повреждены из-за перегрева или затвердевания. Также могут быть установлены датчики для контроля температуры конструкции вокруг грузовой системы.

    22. Грузовые инструменты
      : Для поддержания надлежащего контроля атмосферы в резервуаре и проверки эффективности дегазации, особенно перед входом в резервуар, необходимо иметь в наличии несколько различных газоизмерительных приборов.Какой из них использовать, будет зависеть от типа измеряемой атмосферы.

    23. Датчики уровня жидкости
      : Точность, требуемая от датчиков уровня химовозов, высока из-за характера и стоимости груза. Для ограничения воздействия на персонал химикатов или их паров во время перевозки груза. при перегрузке или во время перевозки в море Кодекс IBC определяет три метода измерения уровня жидкости в танке — открытый, ограниченный или закрытый

    24. Контроль перелива
      : для некоторых грузов требуется, чтобы указанный резервуар был оборудован отдельной сигнализацией высокого уровня, чтобы подавать предупреждение до того, как резервуар станет полным.Тревога может быть активирована либо поплавком, приводящим в действие переключающее устройство, емкостным датчиком давления, либо ультразвуковым или радиоактивным источником. Точка активации обычно предварительно устанавливается на 95% емкости бака.

    25. Анализаторы кислорода
      : Анализаторы кислорода обычно используются для определения уровня кислорода в атмосфере замкнутого пространства: например, чтобы проверить, можно ли считать грузовой танк полностью инертированным или безопасно ли вход в отсек.

      Обнаружение паров
      : Суда, перевозящие токсичные или легковоспламеняющиеся продукты (или и то, и другое), должны быть оборудованы как минимум двумя приборами, которые разработаны и откалиброваны для проверки газов перевозимых продуктов.Если инструменты не могут быть проверены на токсичность концентрации и легковоспламеняющиеся концентрации, тогда необходимо предоставить отдельные наборы инструментов.


    26. Схема аварийной сигнализации
      : важной особенностью многих современных контрольно-измерительных приборов является способность сигнализировать об определенной ситуации. Это может быть основной рабочий аварийный сигнал, индикация заранее установленной ситуации, например уровня жидкости в резервуаре, или аварийный сигнал неисправности, указывающий на отказ в собственном рабочем механизме датчика.Конструкции и назначение цепей аварийной сигнализации и отключения сильно различаются, а их рабочая система может быть пневматической, гидравлической, электрической или электронной. Безопасная работа установки и систем зависит от правильной работы этих цепей и грамотной реакции на них.

    27. Процедура обеспечения безопасности вентиляции грузовых танков
      Система вентиляции грузовых танков должна быть настроена в соответствии с типом выполняемой операции. Грузовые пары, вытесняемые из танков во время погрузки или балластировки, должны отводиться через установленную вентиляционную систему в атмосферу, за исключением случаев, когда требуется возврат паров на берег.Скорость загрузки груза или балласта не должна превышать скорость потока пара в пределах мощности установленной системы.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *