Принцип турбины: Система турбонаддува — принцип работы турбины, устройство турбокомпрессора автомобиля

Содержание

Система турбонаддува — принцип работы турбины, устройство турбокомпрессора автомобиля

Мощность двигателя автомобиля напрямую зависит от того, какое количество топлива и какой объем воздуха поступают в двигатель. Чтобы повысить мощность двигателя, логично увеличить количество этих компонентов. 

Просто увеличить количество топлива недостаточно, если при этом не увеличить объем воздуха, необходимого для максимально полного сгорания топлива. Использование турбокомпрессора дает возможность доставить больший объем воздуха в цилиндры, предварительно сжав его.

Принцип работы турбины двигателя таков: в цилиндры под давлением отработанных газов подается сжатый воздух, который вращает крыльчатку. Компрессор, расположенный на одном валу с крыльчаткой, нагнетает давление в цилиндр.

Турбонаддув от выхлопных газов – наиболее эффективная система увеличения мощности двигателя. Использование турбонаддува не увеличивает объем цилиндров и не влияет на частоту вращения коленвала.

Таким образом, помимо увеличения мощности, турбонаддув позволяет рационально расходовать топливо и уменьшить токсичность отработанных газов благодаря тому, что топливо сгорает полностью. 

Устройство турбокомпрессора автомобиля

Система турбонаддува используется не только в дизельных, но и в бензиновых двигателях.

Система турбонадува состоит из следующих элементов:

  • Турбокомпрессора;
  • Интеркулера;
  • Перепускного клапана;
  • Регулировочного клапана;
  • Выпускного коллектора.

 

Принцип работы турбины дизельного двигателя

Работа дизельной турбины также основана на использовании энергии выхлопных газов. 

В общих чертах принцип работы турбины дизеля выглядит так.

От выпускного коллектора выхлопные газы направляются в приемный патрубок турбины, после попадают на крыльчатку, принуждая ее двигаться.  С крыльчаткой на одном валу расположен компрессор, который нагнетает давление в цилиндрах.

Основное отличие турбокомпрессорных агрегатов от атмосферных дизелей в том, что  здесь в цилиндры воздух подается принудительно и под высоким давлением. Поэтому на цилиндр попадает значительно большее количество воздуха. В сочетании с большим объемом подающегося топлива мы получаем прирост мощности порядка 25%. При этом пропорции воздушно-топливной смеси остаются неизменными.

Чтобы еще больше увеличить объем поступающего в цилиндры воздуха, используется интеркулер – устройство, предназначенное для охлаждения атмосферного воздуха перед подачей его в двигатель. Это позволяет за один цикл подать в цилиндр еще больше воздуха, так как, холодный, он занимает меньше места.

Технология турбонаддува используется в случаях, когда необходимо увеличить мощность мотора и при этом оставить неизменными его размеры и габариты.

Более наглядно схема работы турбины показана в этом видео:

 

 

 

Принцип работы дизельной турбины несколько отличается от работы турбины на бензиновом двигателе. В чем отличие? Давайте рассмотрим подробнее.

 

Отличие работы турбины бензинового двигателя

Основное отличие турбин бензинового двигателя от турбин дизельного в том, что последние раскручиваются с помощью выхлопных газов, температура которых достигает 850 градусов.  А турбина бензинового двигателя раскручивается с помощью газов, имеющих температуру от 1000 градусов. Имея одинаковый принцип работы, бензиновая турбина изготовлена из более жароустойчивых сплавов, нежели турбина дизельная.

Само строение бензиновой турбины также имеет некоторые отличия, в частности угол входа, крутка лопаток и т.д. По этой причине не стоит использовать дизельные турбины для наддува бензинового двигателя, впрочем, как и наоборот (подробнее в статье).

 

 

 Вернутся к списку «Статьи и новости»

Принцип работы турбины – как она работает


Турбокомпрессор или попросту турбина – это дополнительное устройство двигателя, которое для своей работы использует энергию отработавших газов. Что позволяет увеличить мощность двигателя на величину от 25% до 100%. Прежде чем понять, как работает турбокомпрессор, стоит рассмотреть функционирование двигателя внутреннего сгорания.

Принцип работы ДВС

Любой двигатель внутреннего сгорания, дизельный или бензиновый, работает на принципе получения энергии, образующейся от воспламенения топливовоздушной смеси в камерах сгорания. Через впускные клапаны в цилиндр подается отфильтрованный внешний воздух и впрыскивается топливо, причем при пассивной подаче воздуха, в цилиндр подается дозированное количество топлива. Именно эта смесь сгорает в цилиндре и заставляет двигаться поршень, который передает свою кинетическую энергию на ходовую систему автомобиля. Чем больше такой смеси подается и сгорает в цилиндрах, тем больше выходной крутящий момент и соответственно выше общая мощность мотора.

Принцип работы турбины

Для увеличения подачи воздуха в цилиндр, без изменения объема самого цилиндра, используют турбокомпрессор. При работе турбины используются продукты сгорания топливной смеси, которые приводят в действие роторный механизм турбокомпрессора, с помощью которого атмосферный воздух принудительно нагнетается в цилиндры (турбонаддув). И, благодаря этому, в цилиндр подается и большая дозировка топлива. Во время нагнетания, воздух может нагреваться, из-за чего уменьшается его плотность и масса в цилиндрах. Для подачи большего количества воздуха, его необходимо охладить. Для лучшего охлаждения используется радиаторное устройство, называемое интеркулером, который устанавливается на выходе из холодной части турбокомпрессора и через который проходит воздух перед попаданием в цилиндры. На следующем этапе поршень всасывает этот охлажденный воздух через впускные клапаны и одновременно в камеру сгорания подается топливо, образуется топливовоздушная смесь. Возгорание топливной смеси происходит от искры (бензиновые двигатели), либо от сжатия (дизельные двигатели). После того, как произошло сгорание порции смеси, продукты горения выбрасываются через выпускной клапан и попадают снова в турбину, на ее ротор.

Таким образом, она работает без участия движущих частей двигателя, используя энергию потока выхлопных газов.

Для каждого двигателя турбокомпрессор подбирается индивидуально, исходя из его собственной мощности и объема. Причем величина наддува зависит от геометрических параметров (размеров) улиток, компрессорного колеса, ротора турбины. Некоторые конструкции двигателей оборудуют не одной турбиной, а двумя: одинакового размера – би-турбо, разного размера – твин-турбо. В последнее время широкое распространение получили турбокомпрессоры с механизмом изменяемой геометрии. Стоит отметить, что сложность, а соответственно и стоимость ремонта турбины зависит от ее конструктивных особенностей и модификации.

Механизм изменяемой геометрии

Такой механизм позволяет дозировать подачу отработавших газов на колесо в турбине (ротор). Тем самым, позволяет оптимизировать работу турбокомпрессора на различных оборотах.

Это достигается за счет движения специальных лопаток, смонтированных на кольце геометрии. Они синхронно передвигаются, получая движение от вакуумного актуатора или электронного сервопривода в определенный момент, и контролируют наддув. Как правило, устанавливаются они на дизельных ДВС, потому как температура выхлопных газов у бензиновых моторов выше, чем у дизеля, соответственно лопатки геометрии могут деформироваться. Такие турбины позволяют оптимизировать процесс турбонаддува, что приводит к уменьшению расхода топлива и вредных выбросов при одновременном повышении мощности и крутящего момента.

Многие автомобилисты ошибочно полагают, что турбокомпрессор начинает включаться в работу с оборотов мотора от 1500-2000 об/мин. На самом деле, он запускается сразу после заводки автомобиля и работает на холостом ходу. А оптимальных оборотов достигает в диапазоне свыше 1500 об/мин.

Турбокомпрессор достаточно надежный агрегат, однако если Вы столкнулись с его поломкой, решить проблему Вам помогут специалисты ТурбоМикрон. Мы производим замену турбины на автомобиле, а также ремонт снятых с авто турбокомпрессоров.

Устройство и принцип действия турбокомпрессора авто

Устройство и принцип действия турбокомпрессора направлены на увеличение давления топлива в коллекторе впуска для обеспечения максимального поступление кислорода в камеру, где происходит сгорание. Основное назначение турбины – значительное увеличение мощности двигателя. Даже увеличение давления на 1 атмосферу в коллекторе приводит к попаданию в двигатель двойной порции кислорода. Это позволяет даже небольшому двигателю отдавать такую мощность, как вдвое больший его аналог, но не оснащенный турбонаддувом.


Турбонаддув – принцип работы

Рассмотрим, принцип работы турбины на авто. Поток выхлопных газов поступает из выпускного коллектора в горячую часть турбины, там воздействует на лопасти крыльчатки, приводя ее в движение вместе с валом. На нем закреплена также крыльчатка компрессора, расположенного в холодном отсеке турбины. Она при вращении повышает давление в системе впуска, обеспечивая увеличенное поступление в камеру сжигания топлива и воздуха.

Устройство турбины автомобиля не сложное, она состоит из:
  • Улитки компрессора, которая всасывает воздух, а затем нагнетает его в коллектор впуска;
  • Улитки, расположенной в горячей части – здесь выхлопные газы заставляют вращать турбину, после чего выбрасываются в систему отработанных газов на выход;
  • Крыльчатки компрессора, а также ее аналога в горячей части;
  • Шарикоподшипникового картриджа;
  • Корпуса, соединяющего улитки, имеющего систему охлаждения и системы подшипников.

Во время работы устройство подвергается значительным термодинамическим нагрузкам. Попадающие в турбину выхлопные газы достигают температуры 900°С, из-за чего ее корпус делают чугунным, причем для отливки используется особая технология. Обороты турбинного вала могут достигать показателя 200 000 об/мин, поэтому в конструкцию устанавливают высокоточные детали, которые тщательно подгоняют и затем балансируют.

Также для турбины предъявляются высокие требования к смазочным материалам. Отдельные турбонагнетатели оборудованы так, что система смазки является одновременно охлаждением узла подшипников.


Система охлаждения и устройство турбокомпрессора автомобиля

Охлаждающая система турбокомпрессоров необходима для улучшения передачи тепла от его механизмов и частей. Наиболее распространенные варианты охлаждения деталей — масляный способ и комплексное охлаждение антифризом и маслом. Оба типа имеют свои преимущества, но не лишены и недостатков.

Охлаждение маслом

Достоинства:
  • Простая конструкция;
  • Удешевление турбокомпрессора.
Недостатки:
  • Меньшая эффективность в сравнении с системой, где выполняется использование антифриза с маслом;
    Высокая требовательность к составу масла;
  • Необходимость часто его менять;
  • Требовательность к контролированию температурного режима.

Изначально устройство турбокомпрессора имело только масляное охлаждение, которое быстро достигало высоких температур, проходя через подшипники. Такое масло начинает сразу закипать, возникает эффект коксования, из-за которого забиваются каналы, существенно ограничивая доступ охлаждения и смазки к подшипникам.


В результате подшипники изнашиваются, их заклинивает, необходим дорогостоящий ремонт. У такой неполадки имеется несколько причин:
  • Некачественное или не то, которое рекомендовано для двигателя масло;
  • Превышение сроков замены масла;
  • Неисправности смазочной системы двигателя автомобиля.

Комплексное охлаждение турбины антифризом и маслом

Преимуществом этого варианта становится большая эффективность получаемого охлаждения. Существенный недостаток – усложнение конструкции турбонагнетателей, что повышает их стоимость.

Устройство турбонаддува в варианте охлаждения турбин антифризом и маслом более сложное, поскольку в нем имеется отдельный масляный контур, а также система с охлаждающей жидкостью. Зато повышается эффективность работы, устраняются проблемы закипания масла.

Для такого турбонагнетателя масло служит, как и прежде, для охлаждения и смазки подшипников, а антифриз, подаваемый из общей цепи охлаждения двигателя, предотвращает перегрев и не дает закипать маслу. Из-за такой сложности увеличивается цена турбонагнетателя.

Что такое интеркулер на авто?

При работе горячей турбины воздух, нагнетаемый компрессором в ее корпусе, сильно сжимается, отчего происходит его нагрев. Это вызывает нежелательные последствия, поскольку при высокой температуре в воздухе меньше кислорода. Значит, эффективность наддува также снижается. Для борьбы с подобным явлением начали, используя рекомендации ученых, устанавливать в турбину интеркулер – вспомогательный охладитель воздуха.

Конструкторы устройства отмечают, что нагрев воздуха далеко не единственная задача, которую им приходится решать при проектировании турбины. Насущной проблемой также становится ее инерционность – задержка реакции двигателя на открытие в коллекторе дроссельной заслонки.

Турбина максимально эффективна, когда достигаются определенные обороты вращения коленчатого вала. Среди автолюбителей даже распространено мнение, что турбонаддув включается только тогда, когда скорость автомобиля достигает определенного значения. Хотя турбина работает постоянно, а значение числа оборотов, при которых ее действие наиболее эффективно, для каждого двигателя индивидуальное.

Отличия твин турбо и битурбо

Решая проблемы устройства турбин, конструкторами была разработана схема, в которой соединились нагнетатели двух компрессоров. Эта конструкция получила название twin-turbo.


Твинтурбо – это система, в которой несколько одинаковых турбин соединены параллельно. Их задача – повысить давление и объем поступающего воздуха. Система управления включает твин-турбо в момент, когда необходимо получить на повышенных оборотах максимальную мощность.

Подобный компрессор реализован в прославленном японском авто бренда Nissan, который получил имя Skyline Gt-R.

В нем установлен мотор rb26-dett. Аналогичная система, однако, оснащенная одинаковыми небольшими турбинами позволяет получить заметный прирост мощности даже при малых оборотах, при этом поддерживать турбонаддув постоянно.

Последовательное соединение разных турбин получило название «битурбо».

Конструкция сделана так, что при невысоких оборотах функционирует лишь маленькая турбина, которая обеспечивает «отзывчивость» при плавно изменяемой скорости. Если обороты резко возрастают, включается «крупная» турбина». Это позволяет машине получить значительный прирост производительности, причем в любом диапазоне функционирования двигателя. Подобная система реализована в моделях BMW biturbo, тюнинг которых вызывает восхищение.



Инновационные разработки

В числе современных разработок, уже радующих автовладельцев, турбина VGT, у которой лопатки крыльчатки изменяют свой угол наклона, направляя ее в сторону, куда направлены выхлопные газы.


Когда обороты двигателя небольшие, становится более узким пропускное сечение выхода в турбину выхлопных газов, поэтому «выхлоп» получается более быстрым. Чаще эту систему применяют для дизельных агрегатов, но есть разработки и для бензиновых двигателей.

Также к инновационным разработкам относится система twinscroll, где благодаря двойному контуру, по которому совершают обход выхлопные газы, получается, что их энергия вращает общий ротор с компрессором и крыльчаткой.

При этом имеется два варианта реализации:
  1. Выхлопные газы проходят одновременно оба контура и система функционирует как twinturbo.
  2. Второй тип работает наподобие схемы biturbo – имеется два контура, у которых разная геометрия. Когда обороты невысокие, выхлопные газы идут по краткому контуру, увеличивающему энергию и скорость благодаря небольшому диаметру. Если обороты повышаются, выхлопные газы поступают в контур, имеющий больший диаметр – при этом рабочее давление сохраняется во впускной системе и отсутствует запор для выхлопных газов. Распределение регулируют механические элементы — клапаны, переключающие потоки.

Сейчас  выпускают усовершенствованные турбины, поэтому их популярность возрастает все больше . Турбокомпрессоры перспективны как в плане форсирования моторов, так и потому, что повышают экономичность двигателя, чистоту его выхлопа.

Принцип работы турбокомпрессора автомобиля — ПроТурбо

Принцип работы турбокомпрессора

Турбокомпрессор – важнейшая составляющая часть двигателя современного автомобиля. Благодаря ему достигается существенный прирост мощности при незначительной массе самой детали. Как известно, принцип работы турбокомпрессора заключается в сильном сжатии подаваемого в двигатель воздуха и, соответственно, создании высокой мощности взрыва в цилиндрах двигателя. Благодаря турбокомпрессору в двигатель поступает на 50% больше объема воздуха, таким образом, сжигается больший объем топлива, что увеличивает мощность двигателя на 30-40% при тех же затратах топлива. Мотор, который имеет турбину, вырабатывает намного больше полезной энергии, чем не оснащенный ею.

Механизм состоит из таких основных элементов:

  • корпус турбины, в которой выхлопные газы вращают ротор;
  • корпус компрессора, который всасывает воздух, а затем с помощью ротора нагнетает его в систему впуска;
  • картридж между турбиной и компрессором, содержащий вал с крыльчатками ротора;
  • интеркулер, который охлаждает воздух перед нагнетанием его в цилиндры двигателя.

Принцип действия автомобильной турбины

Турбокомпрессор на двигатель крепится к выпускному коллектору.  Система турбокомпрессора заключается в том, что турбина при помощи вала соединяется с компрессором, который установлен между воздушным фильтром и впускным коллектором.

Принцип действия автомобильной турбины заключается в сжатии воздуха, который поступает в цилиндры двигателя. Так возникает давление турбокомпрессора. Выхлопные газы из цилиндров вращают лопатки ротора и выходят через боковое отверстие в корпусе турбины в глушитель. Благодаря устройству турбины автомобиля ее ротор, находясь в специальном теплоустойчивом корпусе, превращает энергию потока отработавших газов в энергию вращения и перенаправляет её на компрессорный ротор.

С другой стороны вала ротор компрессора всасывает чистый атмосферный воздух из впускного тракта и направляет его под сильным давлением дальше во впускной тракт к цилиндрам мотора. Когда ротор компрессора вращается, воздух втягивается внутрь и сжимается, так как лопасти ротора вращаются с высокой скоростью. Корпус компрессора разработан таким образом, чтобы превращать поток воздуха, обладающий высокой скоростью и низким давлением, в поток воздуха с высоким давлением и низкой скоростью с помощью процесса, называемого диффузией. В этом и заключается принцип действия автомобильной турбины.

Особенности функционирования

Оба эти ротора, турбинный и компрессорный, жестко закреплены на роторном валу, вращающемся на гидростатических подшипниках. Они поддерживают вал на тонком слое масла, которое постоянно подается для снижения трения и охлаждения вала. Для правильной работы подшипники скольжения должны быть покрыты пленкой масла. Зазоры подшипников очень малы, меньше толщины человеческого волоса.

В турбомоторах воздух, который поступает в цилиндры, приходится дополнительно охлаждать – тогда его сжатие можно будет сделать еще сильнее, закачав в цилиндры двигателя больше кислорода. Ведь сжать холодный воздух легче, чем горячий. Воздух, проходящий через турбину, нагревается от сжатия, от деталей турбонаддува. Поэтому перед попаданием в цилиндры двигателя сжатый воздух охлаждается в интеркулере. Интеркулер – это радиатор жидкостного или водяного охлаждения, установленный на пути воздуха от компрессора к цилиндрам двигателя. За счет охлаждения увеличивается плотность воздуха и, соответственно, закачать в цилиндры его можно больше.

Мощность турбины автомобиля такова, что ротор турбокомпрессора вращается со скоростью до 150 тыс. оборотов в минуту, что примерно в 30 раз быстрее, чем скорость вращения автомобильного двигателя. Так как она соединена с выхлопной системой, температура в турбине также очень высокая. Работа турбокомпрессора заключается в том, что воздух поступает в компрессор при температуре окружающей среды, но при сжатии температура растет и на выходе из компрессора достигает 200°С.

На «самообслуживание» системы наддува тратится немного энергии от двигателя – всего лишь около 1,5%. Это происходит потому, что ротор турбины получает энергию от выхлопных газов за счет их охлаждения. Кроме этого, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объема большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Все это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными аналогами такой же мощности.

В последнее время популярность турбокомпрессоров резко возросла. Они оказалось перспективнее не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа. Если вы хотите купить турбокомпрессор с доставкой – вы обратились по адресу. На нашем сайте можно сделать заказ, а также узнать характеристики турбокомпрессора и характеристики турбины для модели своего автомобиля.

Принцип работы турбины, как работает турбина на дизельном двигателе

Если вам интересно, каков принцип работы турбины на дизельном двигателе, значит вы попали по адресу. О том, что такое дизельный турбокомпрессор и как он работает, вы узнаете в данной статье.

Как работает турбина на дизеле? Как работает турбина в дизельном двигателе?

Итак, турбокомпрессор — это небольшой воздушный насос, которых осуществляет работу всех элементов турбины. Как известно, турбина вращается с помощью особого тока, получаемого от собранных в процессе езды автомобиля газов. Учитывая тот факт, что скорость лопаток турбины разгоняются почти до скорости света, маневренность во время езды на автомобиле с турбиной значительно выше, чем в автомобилях без неё. Во время “зажигания”, турбина соединяется с жесткой осью и подает его в коллектор двигателя. Чем больше воздуха — тем выше мощность двигателя. Такие воздушные подушки позволяют сделать каждую поезду максимально комфортной, эффектной и маневренной. Именно эти причины вынуждают автолюбителей со всего мира покупать турбины высокого класса за доступную цену. Качество работы турбины на дизеле определяется уровнем всасываемого воздуха, уровнем сжатие этого воздуха, соотношении входа и выхода отработанных газов, мощность компрессора и турбины.

Как проверить работает ли турбина на дизеле? Как проверить справность турбины?

Турбина — штука непростая, но стоит всего лишь из корпуса и ротора. Газы, о которых мы говорили выше, попадают в специальных патрубок, проходят по небольшому каналу, ускоряются и приводят в движения лопатки турбокомпрессора. Как видите, принцип работы дизельного двигателя с турбиной заключается в скорости вращения турбины, благодаря переработанному воздуху. Что логично, скорость вращения лопаток напрямую зависит от размеров “улитки” турбины. К примеру, устройство грузовика может в несколько раз превышать размеры устройства легкового автомобиля, так как для полноценной работы турбины в большом агрегате, её корпус должен быть разделен на два отельных канала, которые поочередно перерабатывают воздух. Чтобы максимально облегчить давление воздушного потока, специалисты советуют устанавливать на турбине специальное кольцо. Компрессор, в свою очередь, производится из ротора и корпуса. Лопатки ротора, как правило, изготавливают из надежного алюминия, а форму имеют особую — улиточную. Это необходимо для того, чтобы воздух направлялся строго в центр ротора. Обычный режим работы турбокомпрессора включает в себя большое давление, которое регулярно сжимается. Важно знать, что все динамические прибора работают по принципу разности давлений.

СТО “Центр Турбин” предлагает вашему вниманию услуги по установке, реставрации и ремонту автомобильных турбин. Все наши специалисты имеют колоссальные знания и стаж работы с автомобильными турбинами. Именно поэтому качество наших услуг находится на высоком уровне. Если вы не знаете, какая турбина подходит именно вам, обратите внимание на мобильный номер, указанный на нашем сайте. Наши консультанты с радостью помогут вам выбрать модель турбины, удовлетворяющую все ваши запросы.

Эксплуатация и принцип работы турбины на дизельном двигателе

Гениальная идея использования выхлопных газов для разгона ротора позволила создать турбированный дизельный двигатель внутреннего сгорания и увеличить его мощность на 40–50%. Это притом, что во время работы в обычном режиме выброс газов сопровождается снижением коэффициента полезного действия в пределах 30 — 40%.

Принцип работы турбины дизельного двигателя основан на увеличении количества воздуха, смешиваемого с топливом и поступающего в камеру сгорания. За один и тот же период времени и при равных объемах цилиндров, двигатель с турбонаддувом может сжечь большее количество топлива, чем движок, не оснащенный таким устройством. А значит, его мощность и КПД в единицу времени значительно возрастет.

Рассмотрим устройство турбины дизельного двигателя, как работает, и каким образом достигаются такие показатели.

Конструктивные элементы системы

Для осуществления возложенных функций, система турбонаддува состоит из двух основных частей:

  1. Компрессор;
  2. Турбина.

Компрессор служит для нагнетания атмосферного воздуха в систему подачи топлива. Он состоит из корпуса и расположенной в нем крыльчатки, которая, вращаясь, всасывает воздух. Чем выше ее скорость вращения, тем больше объем принятого воздуха. Увеличению скорости способствует работа турбины.

Она также состоит из корпуса с крыльчаткой (ротором), которая приводится в движение выхлопными газами. В корпусе газы проходят через специальный канал, имеющий форму улитки, что позволяет им увеличить скорость.

Как работает турбонаддув дизельного двигателя

Ротор турбины и крыльчатка компрессора жестко закреплены на одном валу. Таким образом, скорость вращения ротора передается крыльчатке. Круг замыкается:

  • Через компрессор воздух из атмосферы, смешиваясь с топливом, подается в цилиндры двигателя;
  • Смесь сгорает, приводя в движение поршни, и образовавшиеся в результате газы поступают в выпускной коллектор;
  • Здесь они принимаются в корпус турбины, разгоняются в канале и на выходе взаимодействуют с ротором, заставляя его вращаться;
  • Ротор через вал передает вращение крыльчатке компрессора, которая всасывает в корпус атмосферный воздух.

Получается взаимосвязанная схема работы, когда количество всасываемого воздуха зависит от скорости вращения крыльчатки и, наоборот, крыльчатка вращается быстрее при большем количестве забираемого воздуха.

Принцип работы турбонаддува имеет два момента, называемые турбоямой и турбоподхватом.

Первый момент характеризуется задержкой в работе турбины после увеличения подачи топлива нажатием на педаль газа, так как для разгона ротора выхлопными газами требуется время.

Вслед за турбоямой наступает момент турбоподхвата, когда разогнавшийся ротор резко увеличивает подачу воздуха в цилиндры, повышая мощность двигателя.

Регулировка давления наддува

Турбонаддув дизельного двигателя повышает его мощность за счет возрастания давления выхлопных газов, являющихся результатом увеличения числа оборотов и интенсивности работы мотора. Этот же процесс повышает давление наддува. Если его не регулировать, то на самых высоких оборотах оно может достичь опасных значений, приводящих к поломкам и механическим повреждениям.

Регулировка давления производится с помощью выпускного предохранительного клапана, а контроль максимально допустимого значения — с помощью мембраны и пружины определенной жесткости.

Суть работы: при достижении предельного значения давления, мембрана, установленная в корпусе компрессора, преодолевает воздействие пружины и открывает регулировочный клапан.

Давление регулируют как на стороне компрессора, так и на стороне турбины:

  1. Работающий турбокомпрессор сбрасывает в атмосферу через выпускной клапан излишки забранного воздуха, тем самым снижая давление.
  2. В турбине клапан выпускает отработанные газы под воздействием мембраны компрессора, когда давление всасываемого воздуха достигает максимального уровня. Благодаря этому, ротор вращается с установленной скоростью, а компрессор не забирает лишний воздух и не увеличивает давление.

Второй вариант расположения клапана позволяет изготавливать системы меньших габаритов. Кроме того, турбонагнетатель с клапаном в компрессоре подвержен чрезмерному нагреву из-за повышенной температуры выпускаемого воздуха, что негативно сказывается на эффективности его работы.

Поэтому турбонаддув дизельного двигателя чаще оснащают регулировочным клапаном в турбине, а регулировку в компрессоре используют в качестве дополнения.

Система смазки

Смазка вала турбонагнетателя осуществляется смазочной системой двигателя.

На вал устанавливают уплотнительные кольца, предотвращающие проникновение масла в полости корпусов компрессора и турбины. Они же предохраняют корпуса от перегрева. Но герметичность обеспечивается не столько уплотнениями, сколько разностью величины давления в различных частях агрегата. Эту разницу давлений создает турбинная ось (вал), имеющая неравномерный диаметр.

Особая форма литья корпуса, в котором расположен вал, также способствует удержанию масла.

Если мотор не развивает требуемую мощность, это может быть симптомом неисправности турбонаддува. Наиболее часто встречающиеся проблемы — загрязнение воздушного фильтра или потеря герметичности впускного коллектора. Кроме потери мощности, их можно диагностировать по несвойственному для исправной машины цвету и количеству дыма, выходящего из выхлопной трубы.

Недостатки турбокомпрессоров

Принцип работы турбины на дизельном двигателе создает и негативные факторы:

  • Повышенный расход горючего. Возможность сжечь большее количество солярки за счет увеличенного объема подачи воздуха, вместе с мощностью повышает и «прожорливость» машины. Уменьшить аппетит до разумных пределов позволяет правильная регулировка системы.
  • Положительные стороны наддува приводят к многократному повышению температуры во время такта сжатия, что может вызвать детонацию в двигателе. Решается эта проблема установкой охладителей, регуляторов и прочих элементов.

Правила эксплуатации

Чтобы в полной мере использовать ресурс турбины дизельного мотора и продлить ее срок службы, необходимо выполнять ряд условий:

  • Регулярно менять масло в системе, чтобы не допустить попадания абразива в маслопровод и его засорения.
  • Применять только качественное масло, имеющее сертификат, той марки, которая соответствует указанной в паспортных данных двигателя.
  • Прогревать мотор перед началом движения и не давать холодному двигателю высоких нагрузок.
  • Никогда резко не отключать движок, а после остановки автомобиля давать ему возможность поработать несколько секунд на холостых оборотах.

Принцип работы турбины. Принцип работы турбокомпрессора.

Турбокомпрессоры состоят из турбины и колеса центробежного нагнетателя (компрессора), установленных на общем валу. Для вращения турбины используется энергия отработавших газов, воздействующих на ее лопатки. Вращение турбины приводит в действие компрессор, который, в свою очередь, засасывает окружающий воздух, сжимает его и подает в цилиндры двигателя. Частота вращения ротора турбокомпрессора не зависит от частоты вращения коленчатого вала двигателя, но она в значительной степени определяется балансом энергии, получаемой турбиной и отдаваемой компрессору.

Различные области применения турбокомпрессоров требуют применения различных вариантов их конструкций. Однако практически все турбокомпрессоры имеют одни и те же элементы: ротор в сборе, который в сочетании с корпусом подшипника образует так называемый сердечник (картридж), а также кожух компрессора.

Турбокомпрессор, приводимый в действие отработавшими газами:
1 — кожух компрессора;
2 — колесо компрессора;
3 — кожух турбины;
4 — ротор;
5 — корпус подшипника;
6 — поступление отработавших газов;
7 — выход отработавших газов;
8 — вход атмосферного воздуха;
9 — выход сжатого воздуха;
10 — подача масла;
11 — выход масла

Уплотнительные кольца, устанавливаемые со стороны входа и выхода, служат для герметизации масляной камеры, расположенной вне корпуса подшипника. В особых случаях качество уплотнения может быть улучшено установкой воздухоуловителя или торцевого уплотнения с графитовыми прижимными элементами (со стороны компрессора). В основном применяются подшипники скольжения, которые установлены радиально и имеют двойные гладкие вкладыши плавающего типа или неподвижные гладкие вкладыши, в то время как для обеспечения осевой опоры используются вкладыши с клинообразной поверхностью. Подшипники турбокомпрессора смазываются моторным маслом системы смазки двигателя. Корпус подшипника не имеет дополнительных охлаждающих устройств. Поддержание температур ниже критических значений осуществляется применением теплового экрана и теплоизоляцией корпуса подшипника.

Жидкостное охлаждение корпусов подшипников применяется в том случае, если температура отработавших газов превышает 850°С.

Кожух компрессора обычно изготавливается методом литья из алюминия. В кожух может быть вмонтирован перепускной воздушный клапан. Такие клапаны используются исключительно в наддувных двигателях с искровым зажиганием для предотвращения повышения давления компрессором, когда происходит быстрый сброс нагрузки двигателя.

Для изготовления кожухов турбин используются сплавы сортов от GGG 40 до NiResist Д5 (в зависимости от температуры отработавших газов). Турбокомпрессоры, используемые на двигателях грузовых автомобилей, содержат кожух турбины, в котором два газовых потока объединяются непосредственно перед попаданием на лопатки турбины. Эта конструкция кожуха применяется при организации получения импульсного наддува, когда давление отработавших газов дополняется их кинетической энергией.

При работе турбокомпрессора с постоянным давлением на турбину поступает только энергия отработавших газов и поэтому может быть применена турбина, кожух которой имеет окно для впуска отработавших газов. Такая конструкция особенно распространена на судовых двигателях при использовании турбин с жидкостным охлаждением. Турбокомпрессоры мощных двигателей часто имеют перед турбиной кольцевое сопло. Такое сопло обеспечивает получение равномерного и неразрывного потока газа, поступающего на лопатки турбины с одновременной возможностью проведения тонкой регулировки расхода газа.

Турбокомпрессоры этого типа, устанавливаемые на легковых автомобилях, обычно имеют однопоточные кожухи турбин. Если двигатель такого автомобиля работает в широком диапазоне частот вращения, то необходимы механизмы управления турбокомпрессором, поддерживающие давление наддува на относительно постоянном уровне во всем рабочем диапазоне. Обычно направляют часть отработавших газов от двигателя в обход турбины компрессора посредством управляющего механизма, выполненного в виде перепускного клапана или заслонки.

Такой механизм имеет пневматический привод. При использовании средств микроэлектроники управление давлением наддува может выполняться в функции программируемых режимов работы двигателя. Перспективные управляющие механизмы будут электро-или электронноприводными.

Энергия отработавших газов может быть использована более эффективно при применении управляющих систем, например, турбины с изменяемой геометрией лопаток.

Такие конструкции получили наибольшее признание, т. к. они сочетают в себе широкий диапазон управляющих функций и высокий к.п.д.

Установку угла расположения лопаток осуществляет поворотное регулировочное кольцо. Лопатки могут поворачиваться на требуемый угол специальными кулачками или рычагами. Пневматические исполнительные устройства могут работать как от источника отрицательного (вакуум), так и положительного давления. Микроэлектронная система управления обеспечивает оптимальное давление наддува на всем рабочем диапазоне ДВС.

В двигателях легковых автомобилей небольшой мощности нашли применение турбины с золотниковым регулированием (VST). Турбина VST работает аналогично турбине с неизменной геометрией, с той разницей что первоначально открывается один из двух каналов золотника. При достижении максимально допустимого давления наддува золотник, непрерывно перемещаясь в осевом направлении, открывает второй канал. Каналы выполнены так, чтобы наибольшая часть потока отработавших газов направлялась к турбине. Оставшаяся часть отработавших газов, за счет дальнейшего перемещения регулирующего золотника, направляется в обход крыльчатки компрессора внутри турбонагнетателя.

О новейших технологиях турбонаддува, последовательном и параллельном наддуве и турбинах с изменяемой геометрией читайте в нашей статье «системы турбонаддува Ауди и Фольксваген» в разделе «технологии».

Как работает ветряная турбина

От огромных ветряных электростанций, вырабатывающих электроэнергию, до небольших турбин, питающих один дом, ветровые турбины по всему миру вырабатывают чистую электроэнергию для различных нужд.

В Соединенных Штатах ветряные турбины становятся обычным явлением. С начала века общая мощность ветроэнергетики в США увеличилась более чем в 24 раза. В настоящее время в США достаточно ветроэнергетических мощностей для выработки электроэнергии, достаточной для питания более 15 миллионов домов, что помогает проложить путь к экологически чистой энергии будущего.

Что такое ветряная турбина?

Концепция использования энергии ветра для выработки механической энергии восходит к тысячелетиям. Еще в 5000 году до нашей эры египтяне использовали энергию ветра для передвижения лодок по реке Нил. Американские колонисты использовали ветряные мельницы для измельчения зерна, перекачивания воды и распиловки древесины на лесопилках. Сегодняшние ветряные турбины — это современный эквивалент ветряной мельницы, преобразующий кинетическую энергию ветра в чистую возобновляемую электроэнергию.

Как работает ветряная турбина?

Большинство ветряных турбин состоит из трех лопастей, установленных на башне из стальных труб.Реже встречаются варианты с двумя лопастями, с бетонными или стальными решетчатыми башнями. На высоте 100 футов или более над землей башня позволяет турбине использовать преимущества более высоких скоростей ветра, обнаруживаемых на больших высотах.

Турбины улавливают энергию ветра с помощью лопастей, похожих на пропеллер, которые действуют как крыло самолета. Когда дует ветер, с одной стороны лезвия образуется карман с воздухом низкого давления. Затем воздушный карман низкого давления притягивает к себе лезвие, вызывая вращение ротора.Это называется лифтом. Сила подъемной силы намного сильнее, чем сила ветра на передней стороне лопасти, что называется сопротивлением. Комбинация подъемной силы и сопротивления заставляет ротор вращаться как пропеллер.

Ряд шестерен увеличивают вращение ротора примерно с 18 оборотов в минуту до примерно 1800 оборотов в минуту — скорость, которая позволяет генератору турбины вырабатывать электричество переменного тока.

Обтекаемый корпус, называемый гондолой, содержит ключевые компоненты турбины — обычно включая шестерни, ротор и генератор — находятся внутри корпуса, называемого гондолой.Некоторые гондолы, расположенные на вершине турбинной башни, достаточно велики, чтобы на них мог приземлиться вертолет.

Еще одним ключевым компонентом является контроллер турбины, который не позволяет скорости ротора превышать 55 миль в час, чтобы избежать повреждения сильным ветром. Анемометр непрерывно измеряет скорость ветра и передает данные контроллеру. Тормоз, также расположенный в гондоле, останавливает ротор механически, электрически или гидравлически в аварийных ситуациях. Изучите интерактивный рисунок выше, чтобы узнать больше о механике ветряных турбин.

Типы ветряных турбин

Есть два основных типа ветряных турбин: с горизонтальной осью и с вертикальной осью.

Большинство ветряных турбин имеют горизонтальную ось: конструкция в виде пропеллера с лопастями, вращающимися вокруг горизонтальной оси. Турбины с горизонтальной осью работают либо против ветра (ветер ударяет лопасти перед башней), либо по ветру (ветер бьет в башню перед лопастями). Турбины против ветра также включают в себя привод рыскания и двигатель — компоненты, которые поворачивают гондолу, чтобы ротор был обращен к ветру при изменении его направления.

Хотя существует несколько производителей ветряных турбин с вертикальной осью, они не проникли на рынок коммунальных услуг (мощностью 100 кВт и более) в той же степени, что и турбины с горизонтальным доступом. Турбины с вертикальной осью делятся на две основные конструкции:

  • Drag-based или Savonius, турбины обычно имеют роторы с твердыми лопастями, которые вращаются вокруг вертикальной оси.
  • Лифтовые турбины, или турбины Дарье, имеют высокий вертикальный аэродинамический профиль (некоторые имеют форму взбивания яиц).Windspire — это тип лифтовой турбины, которая проходит независимые испытания в Национальном центре ветроэнергетики Национальной лаборатории возобновляемых источников энергии.
Применение ветряных турбин

Ветровые турбины используются в самых разных сферах — от использования морских ветровых ресурсов до выработки электроэнергии для одного дома:

  • Большие ветряные турбины, чаще всего используемые коммунальными предприятиями для подачи энергии в сеть, варьируются от 100 киловатт до нескольких мегаватт.Эти турбины для коммунальных предприятий часто объединяются в ветряные электростанции для производства большого количества электроэнергии. Ветряные электростанции могут состоять из нескольких или сотен турбин, обеспечивающих мощность, достаточную для десятков тысяч домов.
  • Небольшие ветряные турбины мощностью до 100 киловатт обычно устанавливаются рядом с местами, где будет использоваться вырабатываемая электроэнергия, например, возле домов, телекоммуникационных тарелок или водонасосных станций. Небольшие турбины иногда подключаются к дизельным генераторам, батареям и фотоэлектрическим системам.Эти системы называются гибридными ветровыми системами и обычно используются в удаленных, автономных местах, где нет подключения к коммунальной сети.
  • Морские ветряные турбины используются во многих странах для использования энергии сильных, постоянных ветров, возникающих у береговых линий. Потенциал технических ресурсов ветров над прибрежными водами США достаточен для выработки более 4000 гигаватт электроэнергии, что примерно в четыре раза превышает генерирующую мощность нынешних США.электроэнергетическая система. Хотя не все эти ресурсы будут освоены, это дает большую возможность обеспечить энергией густонаселенные прибрежные города. Чтобы воспользоваться преимуществами огромных морских ветровых ресурсов Америки, Департамент инвестирует в три демонстрационных проекта оффшорной ветроэнергетики, предназначенных для развертывания морских ветровых систем в федеральных водах и водах штата к 2017 году.
Будущее ветряных турбин

Для обеспечения будущего роста США ветроэнергетика, ветровая программа Министерства энергетики работает с отраслевыми партнерами, чтобы повысить надежность и эффективность ветряных турбин, а также снизить затраты.Исследования, проводимые в рамках программы, помогли увеличить средний коэффициент использования мощности (показатель производительности электростанции) с 22 процентов для ветряных турбин, установленных до 1998 года, до более чем 32 процентов для турбин, установленных в период с 2006 по 2012 годы. от 55 центов за киловатт-час (кВтч) в 1980 году до менее 6 центов за киловатт час сегодня в районах с хорошими ветровыми ресурсами.

Ветряные турбины предлагают уникальную возможность использовать энергию в регионах, где население нашей страны нуждается в ней больше всего.Это включает в себя потенциал оффшорного ветра для обеспечения энергией населенных пунктов вблизи береговой линии и способность наземного ветра доставлять электроэнергию в сельские общины с несколькими другими местными источниками энергии с низким содержанием углерода.

Министерство энергетики продолжает работу по развертыванию ветровой энергии в новых районах на суше и на море и обеспечению стабильной и безопасной интеграции этой энергии в электрическую сеть нашей страны.

Как работают газотурбинные электростанции

Газовые турбины, устанавливаемые на многих современных электростанциях, работающих на природном газе, представляют собой сложные машины, но в основном они состоят из трех основных частей:

  • Компрессор , который втягивает воздух в двигатель, нагнетает давление его и подает в камеру сгорания со скоростью сотни миль в час.
  • Система сгорания , обычно состоящая из кольца топливных форсунок, которые впрыскивают постоянный поток топлива в камеры сгорания, где оно смешивается с воздухом. Смесь сжигается при температуре более 2000 градусов по Фаренгейту. При сгорании образуется высокотемпературный газовый поток под высоким давлением, который входит и расширяется через секцию турбины.
  • Турбина представляет собой сложный набор чередующихся неподвижных и вращающихся лопастей с профилем крыла. Когда горячий газ сгорания расширяется через турбину, он раскручивает вращающиеся лопасти.Вращающиеся лопасти выполняют двойную функцию: они приводят в действие компрессор, чтобы втянуть больше сжатого воздуха в секцию сгорания, и вращают генератор для выработки электричества.

Наземные газовые турбины бывают двух типов: (1) двигатели с тяжелой рамой и (2) авиационные двигатели. Двигатели с тяжелой рамой характеризуются более низким коэффициентом давления (обычно ниже 20) и имеют тенденцию быть физически большими. Степень давления — это отношение давления нагнетания компрессора к давлению воздуха на входе.Двигатели на базе авиационных двигателей являются производными от реактивных двигателей, как следует из названия, и работают с очень высокими степенями сжатия (обычно превышающими 30). Двигатели на базе авиационных двигателей имеют тенденцию быть очень компактными и полезны там, где требуется меньшая выходная мощность. Поскольку турбины с большой рамой имеют более высокую выходную мощность, они могут производить большее количество выбросов и должны быть спроектированы таким образом, чтобы обеспечивать низкие выбросы загрязняющих веществ, таких как NOx.

Одним из ключевых факторов удельного расхода топлива турбины является температура, при которой она работает.Более высокие температуры обычно означают более высокую эффективность, что, в свою очередь, может привести к более экономичной эксплуатации. Газ, протекающий через обычную турбину электростанции, может иметь температуру до 2300 градусов по Фаренгейту, но некоторые из критических металлов в турбине могут выдерживать температуры только от 1500 до 1700 градусов по Фаренгейту. Следовательно, воздух из компрессора может использоваться для охлаждения. ключевые компоненты турбины, снижающие конечный тепловой КПД.

Одним из главных достижений программы передовых турбин Министерства энергетики было преодоление прежних ограничений по температурам турбин с использованием комбинации инновационных технологий охлаждения и современных материалов.Усовершенствованные турбины, появившиеся в результате исследовательской программы Департамента, смогли повысить температуру на входе турбины до 2600 градусов по Фаренгейту — почти на 300 градусов выше, чем в предыдущих турбинах, и достичь КПД до 60 процентов.

Еще одним способом повышения эффективности является установка рекуператора или парогенератора с рекуперацией тепла (HRSG) для рекуперации энергии из выхлопных газов турбины. Рекуператор улавливает отходящее тепло в выхлопной системе турбины, чтобы предварительно нагреть воздух на выходе компрессора перед его поступлением в камеру сгорания.ПГРТ вырабатывает пар за счет улавливания тепла из выхлопных газов турбины. Эти котлы также известны как парогенераторы-утилизаторы. Пар высокого давления из этих котлов можно использовать для выработки дополнительной электроэнергии с помощью паровых турбин, такая конфигурация называется комбинированным циклом.

Газовая турбина простого цикла может достигать КПД преобразования энергии в диапазоне от 20 до 35 процентов. С учетом более высоких температур, достигнутых в турбинной программе Министерства энергетики, будущие газотурбинные установки с комбинированным циклом, работающие на водороде и синтез-газе, вероятно, достигнут КПД 60 процентов или более.Когда отработанное тепло улавливается из этих систем для отопления или промышленных целей, общая эффективность энергетического цикла может приближаться к 80 процентам.

Принцип работы турбины

Инновации в турбинах и соображения

Турбины для ферментеров представляют собой вращающиеся устройства с множеством радиально выступающих лопастей. Цель состоит в том, чтобы уменьшить неоднородности в жидкости, содержащей жидкости, смешать растворимые компоненты, диспергировать газы и твердые частицы, такие как ячейки, и способствовать теплопередаче.Ферментация в значительной степени зависит от успеха конструкции ферментера для получения оптимального поля потока, распределения сдвига, распределения пузырьков, распределения кислорода, массопереноса во всем объеме жидкости ферментера. Представленная ниже конструкция турбины актуальна для биотехнологической промышленности с WV до 100 литров и названа в честь настоящего конструктора, изобретателя.

Принципиальный размер турбины
Rushton смешивание 90 и 45 градусов
турбины Раштона на валу

Турбины описываются физическими размерами, такими как диаметр, количество лопастей, угол лопастей, форма лопастей, открытый или закрытый сердечник и т. Д.Выше в общих чертах изложено общее представление о главном измерении. Характер течения, развивающийся в газовых условиях, зависит от геометрии, скорости мешалки, расхода газа, размера газовых пузырьков. Турбина Раштона с плоскими лопастями, расположенными под углом 90 градусов, генерирует только сильную радиальную картину потока и ограниченную эффективность перемешивания. Изменение угла плоской лопасти (угол Якоба) значительно улучшает возможности смешивания.

турбина Раштона РТ6-90
Эскиз Раштона
Раштон СС

Дж.Турбина Генри Раштона (Университет Пердью, Вест-Лафайет, Индиана, 47907 США) возникла в 1950-х годах. Конструкция турбины со 100% -ным радиальным потоком основана на плоском диске с 6 плоскими лопастями, установленными вертикально симметрично по окружности диска (RT6-90).

Наиболее экономичная конструкция с характеристиками, обычно ограниченными карманами или полостями, которые цепляются за заднюю часть лопасти при высоких скоростях потока газа и / или об / мин. Раштоны вызывают кавитацию, значительную обтекаемость и снижение потребляемой мощности.Когда поток газа становится слишком большим, карманы могут перекрываться между лопастями, что приводит к затоплению и серьезной механической нестабильности.

Раштон угловой
ТУР J 060 08 75 R HPD_01
турбина Раштона РТ6-45

Турбина с плоскими лопастями с симметричным расположением под углом (JT8-75 слева) сочетает радиальный поток с осевым потоком за счет избирательного наклона лопастей.Это в открытой конструкции, улучшающей производительность аэрации. Газ, впрыскиваемый под турбину, всасывается в полностью открытый объем активной зоны турбины и распределяется по всему выхлопу турбины. Должен быть механически несколько жестким, поскольку он изготовлен из пластика CerCell, способный развивать скорость 2000 об / мин при вязкости 1200 сП. Показанные металлические частично открытые RT6-45 и полностью открытые RT4-45 сопоставимы с характеристиками Jacob.

Турбина Smith с изогнутыми лопастями
Полутрубная турбина Smith
турбина Смита с узлами

Эта симметрично расположенная изогнутая (полутрубная) лопасть Smith (ST6) 1980-х годов (Philadelphia Mixing Solutions) способна обрабатывать увеличенный объем закачиваемого газа.Может рассеивать вдвое больше газа по сравнению с Раштоном (RT6) до затопления. Не испытывает такого сильного падения мощности из-за нагрузки на газ по сравнению с турбиной Раштона. Рекомендуется в сочетании с крыльчаткой с подкачивающей (морской) крыльчаткой.

Эскиз турбины
Hjort
турбина Hjort SS

The Hjorth (Scaba AB, Швеция — США 4.779.990 — 1985) или Миддлтон (ICI, UK — US 5,198,156 — 1986). Симметричная конструкция лопастей с глубоким вогнутым профилем HT6 обеспечивает еще лучшую способность диспергировать газ. Может диспергировать в 3 раза больше газа по сравнению с турбиной Раштона (RT6-90) до затопления.

Турбина Bakker SS
Эскиз турбины Баккера
ТУР Б 080 6_01

Баккер (Chemineer Inc.- US 5.791.780 — 1997) асимметричная конструкция лопастей с глубоким вогнутым профилем (BT6) обеспечивает наивысшую доступную способность диспергирования газа. Может диспергировать в 5 раз больше газа по сравнению с турбиной Раштона (RT6-90) до затопления. В отличие от многих других крыльчаток с диспергированием газа, BT6 относительно нечувствителен к вязкости.

Раштон-Смит-Баккер

Фотография показывает сравнение газовой дисперсии между Раштоном, Смитом и Баккером при расходе газа 13 VVm.

Эта статья Андре Баккера покажется вам интересной: Новое рабочее колесо для диспергирования газа с вертикально асимметричными лопастями , 2000, http://www.bakker.org

Как работает паровая турбина?

Большая часть электроэнергии в Соединенных Штатах вырабатывается с помощью паротурбинных двигателей — по данным Министерства энергетики США, более 88 процентов энергии в США производится с помощью паротурбинных генераторов на центральных электростанциях, таких как солнечные тепловые электрические, угольные и атомные электростанции.Предлагая более высокий КПД и низкую стоимость, паровые турбины стали неотъемлемой частью многих американских производств электроэнергии.

Первая паровая турбина

Первая современная паровая турбина была разработана сэром Чарльзом А. Парсонсом в 1884 году. Эта турбина использовалась для освещения выставки в Ньюкасле, Англия, и вырабатывала всего 7,5 кВт энергии. Теперь паротурбинные генераторы могут производить более 1000 МВт энергии на крупных электростанциях. Несмотря на то, что генерирующая мощность значительно увеличилась со времен Парсонса, конструкция осталась прежней.Но, как бы интуитивно ни был дизайн Парсонса, это не так просто, как пар, движущийся по лопастям. Он был основан на втором законе термодинамики и теореме Карно (), которая утверждает, что чем выше температура пара, тем выше эффективность электростанции. Давайте рассмотрим, как пар помогает приводить в действие большинство электростанций страны.

Как так много энергии забирают из пара?

Возвращаясь к школьной физике, вода кипит при 100 ° C. В этот момент молекулы расширяются, и мы получаем испаренную воду — пар.Используя энергию, содержащуюся в быстро расширяющихся молекулах, пар обеспечивает замечательную эффективность выработки энергии.

Учитывая высокую температуру и давление пара, неудивительно, что были случаи, когда аварии происходили из-за ненадлежащего использования или установки предохранительных клапанов. Один из самых заметных инцидентов произошел на атомной электростанции Три-Майл-Айленд. Все произошло из-за повышения давления пара, когда насосы, подающие воду на парогенераторы, перестали работать.

Как работает паровая турбина?

Проще говоря, паровая турбина работает с использованием источника тепла (газового, угольного, атомного, солнечного) для нагрева воды до чрезвычайно высоких температур до тех пор, пока она не превратится в пар. Когда этот пар проходит мимо вращающихся лопастей турбины, пар расширяется и охлаждается. Таким образом, потенциальная энергия пара во вращающихся лопатках турбины превращается в кинетическую энергию. Поскольку паровые турбины генерируют вращательное движение, они особенно подходят для привода электрических генераторов для выработки электроэнергии.Турбины соединены с генератором с осью, которая, в свою очередь, вырабатывает энергию через магнитное поле, которое производит электрический ток.

Как работают лопатки турбины?

Лопатки турбины предназначены для управления скоростью, направлением и давлением пара при его прохождении через турбину. Для крупномасштабных турбин к ротору прикреплены десятки лопастей, как правило, в разных наборах. Каждый набор лопастей помогает извлекать энергию из пара, сохраняя при этом давление на оптимальном уровне.

Этот многоступенчатый подход означает, что лопатки турбины снижают давление пара очень небольшими приращениями на каждой ступени. Это, в свою очередь, снижает действующие на них силы и значительно улучшает общую мощность турбины.

Важность гибких средств управления для вращающегося турбинного оборудования

При таком большом количестве энергии, проходящей через паровые турбины, необходимы механизмы управления, которые могут регулировать их скорость, управлять потоком пара и изменять температуру внутри системы.Поскольку большинство паровых турбин находятся на крупных электростанциях, которым требуются нагрузки по требованию, возможность регулировать поток пара и общую выработку энергии является необходимостью.

Как системы управления Petrotech могут повысить эффективность вашего паротурбинного генератора

Изобретение паровой турбины изменило нашу способность производить энергию в больших масштабах. И даже с такой, казалось бы, простой задачей, как пар, проходящий через набор лопастей, легко увидеть, что эти механизмы довольно сложны.Таким образом, им нужна рефлексивная интеллектуальная система управления паровой турбиной, в которой можно будет отслеживать и контролировать их работу. Усовершенствованные системы управления паровыми турбинами Petrotech для приводов компрессоров и генераторов имеют интегрированный пакет управления, который обеспечивает контроль скорости и производительности. Наша продукция включает интегрированные системы управления для газовых и паровых турбин, генераторов, компрессоров, насосов и связанного вспомогательного оборудования. Чтобы узнать больше о наших элементах управления паровой турбиной, ознакомьтесь с нашими техническими документами по усовершенствованным элементам управления паровой турбиной для генераторов и механических приводов.

Турбина

— обзор | Темы ScienceDirect

Компрессоры и турбины

Компоненты турбины и компрессора соединены валом, поскольку первый приводит в движение второй. Одновальная газовая турбина имеет только один вал, соединяющий компоненты компрессора и турбины. Двухконтурная газовая турбина имеет два концентрических вала, более длинный соединяет компрессор низкого давления с турбиной низкого давления (низкий золотник), которая вращается внутри более короткого вала большего диаметра (например.g., см. Рисунок 6 (b) и 6 (c) ). Последний соединяет турбину высокого давления с компрессором более высокого давления (высокий золотник), который вращается с более высокими скоростями, чем нижний золотник. Двигатель с тремя золотниками будет иметь третий золотник компрессора и турбины среднего давления.

Компрессоры газовых турбин могут быть центробежными, осевыми или их комбинацией. Центробежные компрессоры (радиальный отток) надежны, обычно дешевле и ограничены соотношением давлений 6 или 7: 1.Они встречаются в первых газовых турбинах или в современных газовых турбинах меньшего размера.

Более эффективный осевой компрессор с большей производительностью используется на большинстве газовых турбин (например, , рисунки 2, и , 3, ). Осевой компрессор состоит из ряда ступеней, каждая из которых состоит из ряда вращающихся лопастей (аэродинамических профилей) и ряда неподвижных лопаток (называемых статорами), сконфигурированных таким образом, чтобы поток газа сжимался (неблагоприятный или неблагоприятный градиент давления), как он проходит через каждую стадию.Было сказано, что работа компрессора может остановиться на метафорической скале, и эта скала называется стойлом. При работе и конструкции компрессора необходимо соблюдать осторожность, чтобы избежать условий, которые приводят к остановке лопастей или разделению потока. Коллективное разделение лопаток может привести к остановке компрессора или помпажу, что проявляется в нестабильности потока газа через всю газовую турбину.

Турбины, как правило, легче проектировать и эксплуатировать, чем компрессоры, поскольку поток расширяется с общим благоприятным градиентом давления.Турбинам с осевым потоком (, рис. 2, и , 3, ) потребуется меньше ступеней, чем для осевого компрессора при той же величине изменения давления. Есть несколько газовых турбин меньшего размера, в которых используются центробежные турбины (радиальный приток), но в большинстве используются осевые турбины (например, , рисунки 2, и , 3, ).

Конструкция и изготовление турбины осложняются необходимостью обеспечить долговечность компонентов турбины в потоке горячего газа. Проблема обеспечения долговечности особенно важна на первой ступени турбины, где температура наиболее высока.Необходимо использовать специальные материалы и сложные схемы охлаждения, чтобы лопатки турбины из металлических сплавов, которые размягчались или плавились при 1800–2000 ° F (982–1093 ° C), могли выжить в потоках газа с температурами до T 3 = 3600 ° F (1982 ° C), на военных реактивных двигателях.

Турбина | Британника

Турбина , любое из различных устройств, преобразующих энергию потока жидкости в механическую энергию. Преобразование обычно осуществляется путем пропускания жидкости через систему неподвижных каналов или лопаток, которые чередуются с каналами, состоящими из лопастей, похожих на ребра, прикрепленных к ротору.Путем организации потока на лопасти ротора действует тангенциальная сила или крутящий момент, ротор вращается, и работа извлекается.

Ветровые турбины возле Техачапи, Калифорния

© Грег Рэндлс / Shutterstock.com

Турбины можно разделить на четыре основных типа в зависимости от используемых жидкостей: вода, пар, газ и ветер. Хотя одни и те же принципы применимы ко всем турбинам, их конкретные конструкции достаточно различаются, чтобы заслужить отдельное описание.

Водяная турбина использует потенциальную энергию, возникающую в результате разницы в высоте между верхним водным резервуаром и уровнем воды на выходе из турбины (отводящий трубопровод), для преобразования этого так называемого напора в работу.Водяные турбины — современные преемники простых водяных колес, которым около 2000 лет. Сегодня гидротурбины в основном используются для производства электроэнергии.

Однако наибольшее количество электроэнергии вырабатывается паровыми турбинами, соединенными с электрогенераторами. Турбины приводятся в действие паром, вырабатываемым либо в генераторе, работающем на ископаемом топливе, либо в атомном генераторе. Энергия, которую можно извлечь из пара, удобно выражать через изменение энтальпии в турбине.Энтальпия отражает формы тепловой и механической энергии в процессе потока и определяется суммой внутренней тепловой энергии и произведением давления на объем. Доступное изменение энтальпии через паровую турбину увеличивается с увеличением температуры и давления парогенератора и с уменьшением давления на выходе из турбины.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Для газовых турбин энергия, извлекаемая из текучей среды, также может быть выражена через изменение энтальпии, которое для газа почти пропорционально перепаду температуры в турбине.В газовых турбинах рабочим телом является воздух, смешанный с газообразными продуктами сгорания. Большинство газотурбинных двигателей включает, по крайней мере, компрессор, камеру сгорания и турбину. Они обычно монтируются как единое целое и работают как законченный первичный двигатель в так называемом открытом цикле, когда воздух всасывается из атмосферы, а продукты сгорания, наконец, снова выбрасываются в атмосферу. Поскольку успешная работа зависит от интеграции всех компонентов, важно рассматривать устройство в целом, которое на самом деле является двигателем внутреннего сгорания, а не только турбиной.По этой причине газовые турбины рассматриваются в статье двигатель внутреннего сгорания.

Энергия ветра может быть извлечена ветряной турбиной для производства электроэнергии или для откачки воды из скважин. Ветряные турбины являются преемниками ветряных мельниц, которые были важным источником энергии с позднего средневековья до XIX века.

Фред Лэндис

Водяные турбины обычно делятся на две категории: (1) импульсные турбины, используемые для высокого напора воды и низкого расхода, и (2) реакционные турбины, обычно используемые для напора ниже примерно 450 метров и среднего или высокого расхода.Эти два класса включают в себя основные типы, обычно используемые, а именно, импульсные турбины Пелтона и реактивные турбины типа Фрэнсиса, пропеллера, Каплана и Дериаза. Турбины могут быть оборудованы как горизонтальными, так и, чаще, вертикальными валами. Для каждого типа возможны широкие вариации конструкции для соответствия конкретным местным гидравлическим условиям. Сегодня большинство гидравлических турбин используются для выработки электроэнергии на гидроэлектростанциях.

Импульсные турбины

В импульсной турбине потенциальная энергия или напор воды сначала преобразуется в кинетическую энергию путем выпуска воды через сопло тщательно продуманной формы.Струя, выбрасываемая в воздух, направляется на изогнутые ведра, закрепленные на периферии бегунка, для извлечения энергии воды и преобразования ее в полезную работу.

Современные импульсные турбины основаны на конструкции, запатентованной в 1889 году американским инженером Лестером Алленом Пелтоном. Свободная водная струя попадает в лопатки турбины по касательной. Каждый ковш имеет высокий центральный гребень, так что поток разделяется, оставляя желоб с обеих сторон. Колеса Пелтона подходят для высоких напоров, обычно выше 450 метров при относительно низком расходе воды.Для максимальной эффективности скорость конца рабочего колеса должна составлять примерно половину скорости ударной струи. КПД (работа, производимая турбиной, деленная на кинетическую энергию свободной струи) может превышать 91 процент при работе с 60–80 процентами полной нагрузки.

Мощность одного колеса можно увеличить, используя более одного жиклера. Для горизонтальных валов характерны двухструйные устройства. Иногда на одном валу устанавливаются два отдельных бегунка, приводящих в движение один электрогенератор. Агрегаты с вертикальным валом могут иметь четыре или более отдельных форсунок.

Если электрическая нагрузка на турбину изменяется, ее выходная мощность должна быть быстро отрегулирована в соответствии с потребностями. Это требует изменения расхода воды, чтобы поддерживать постоянную скорость генератора. Скорость потока через каждое сопло регулируется расположенным в центре наконечником или иглой аккуратной формы, которая скользит вперед или назад под управлением гидравлического серводвигателя.

Правильная конструкция иглы гарантирует, что скорость воды, выходящей из сопла, остается практически неизменной независимо от отверстия, обеспечивая почти постоянную эффективность в большей части рабочего диапазона.Нецелесообразно внезапно уменьшать поток воды, чтобы соответствовать уменьшению нагрузки. Это может привести к разрушительному скачку давления (гидроудару) в подающем трубопроводе или напорном затворе. Таких скачков можно избежать, добавив временное сопло для разлива, которое открывается при закрытии основного сопла, или, что более часто, частично вставляя отражающую пластину между струей и колесом, отклоняя и рассеивая часть энергии при медленном закрытии иглы.

Другой тип импульсной турбины — турбина турго.Струя падает под косым углом на бегунок с одной стороны и продолжает двигаться по единственному пути, выходя на другую сторону бегунка. Этот тип турбины использовался в установках среднего размера с умеренно высоким напором.

Реакционные турбины

В реакционной турбине силы, приводящие в движение ротор, достигаются за счет реакции ускоряющегося потока воды в рабочем колесе при падении давления. Принцип реакции можно наблюдать в роторном оросителе для газонов, где выходящая струя вращает ротор в противоположном направлении.Из-за большого разнообразия возможных конструкций рабочих колес реактивные турбины могут использоваться в гораздо большем диапазоне напоров и расходов, чем импульсные турбины. Реакционные турбины обычно имеют спиральный впускной кожух, который включает регулирующие заслонки для регулирования потока воды. На входе часть потенциальной энергии воды может быть преобразована в кинетическую энергию по мере ускорения потока. Впоследствии энергия воды отбирается в роторе.

Как отмечалось выше, широко используются четыре основных типа реактивных турбин: турбины Каплана, Фрэнсиса, Дериаза и пропеллерные.В турбинах Каплана с фиксированными лопастями и с регулируемыми лопастями (названными в честь австрийского изобретателя Виктора Каплана) через машину, по существу, существует осевой поток. Турбины типа Фрэнсиса и Дериаза (в честь американского изобретателя британского происхождения Джеймса Б. Фрэнсиса и швейцарского инженера Поля Дериаза, соответственно) используют «смешанный поток», когда вода поступает радиально внутрь и выпускается в осевом направлении. Рабочие лопатки на турбинах Фрэнсиса и пропеллера состоят из неподвижных лопастей, в то время как в турбинах Каплана и Дериаза лопасти могут вращаться вокруг своей оси, которая находится под прямым углом к ​​главному валу.

(PDF) Принципы работы газовой турбины

Эффективность цикла Брайтона довольно низкая, прежде всего потому, что значительная часть

подводимой энергии уходит в окружающую среду. Эта исчерпанная энергия обычно имеет относительно высокую температуру

, и поэтому ее можно эффективно использовать для выработки энергии.

Одним из возможных приложений является комбинированный цикл Брайтона Ренкина, в котором выхлопные газы с высокой температурой

, выходящие из газовой турбины, используются для подачи энергии в котел

цикла Ренкина, как показано на рис.3.12. Обратите внимание, что температура T

9

газов цикла Брайтона, выходящих из котла, меньше температуры T

3

пара цикла Ренкина

, выходящего из котла; это возможно в теплообменнике противотока

, котле.

7.7 Одно- и многовальное исполнение

Газовая турбина может быть одно- или многовальной конфигурации. В одновальном корпусе

газовая турбина спроектирована с примерно одинаковыми степенями давления

на всех ступенях расширения, которые механически связаны с газовым компрессором

и генератором и работают на скорости генератора (обычно 3600 или 1800 об / мин для

Электрические системы 60 Гц и 3000 или 1500 об / мин для электрических систем 50 Гц).В конфигурации с несколькими валами

компрессор механически приводится в движение набором ступеней расширения

, размер которых рассчитан на выполнение механической работы, необходимой для компрессора

, так что этот вал не соединен с электрическим генератором. и может

вращаться с разной скоростью. Воздух, производимый этим газогенератором, нагревается и

направляется в турбогенератор: заключительная стадия расширения на отдельном валу, который вращает

с оптимальной скоростью генератора.Газотурбинная установка с комбинированным циклом (ПГУ)

Поставщики

конфигурируют турбогенераторы в различных конфигурациях.

Конфигурация с несколькими валами и с одним валом позволяет настраивать

для оптимизации производительности установки, капитальных вложений, доступа для строительства и технического обслуживания, удобства эксплуатации и минимальных требований к пространству.

Разработка больших газовых турбин F-класса в течение последнего десятилетия

шла рука об руку с усилиями производителей по стандартизации конфигураций парогазовых электростанций

(CCPP), стремясь наилучшим образом использовать новую технологию.Одновальная силовая передача

(SSPT) была первоначально разработана для применений с газовыми турбинами

мощностью более 250 мегаватт. Только позже концепция была расширена до меньших

единиц в диапазоне 60 мегаватт. Новая компоновка ССПТ позволила построить отдельные блоки

мощностью до 450 мегаватт. SSPT внесли наибольший вклад в электростанции

, стремясь к экономии затрат и сокращению времени проекта и, таким образом, к снижению риска. В схемах SSPT

газовая турбина и паровая турбина соединены с общим генератором

на одном валу, тогда как в блоках мультивальной силовой передачи (MSPT) до

три газовые турбины и назначенные им котлы и генераторы совместно обычная паровая турбина

(см. рис.7.11). SSPT и MSPT созданы для рынков 50 и 60 Гц.

Основными преимуществами новой концепции, отмеченной производителями, являются более высокая гибкость работы

, меньшая занимаемая площадь, упрощенное управление, более короткое время запуска, более

стандартизированных периферийных систем, а также более высокая эффективность и доступность.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *