Работа датчика холла: принцип работы, как проверить своими руками, применение

Содержание

принцип работы, как проверить своими руками, применение

Электромагнитное устройство, именуемое датчиком Холла (далее ДХ), применяется во многих приборах и механизмах. Но наибольшее применение ему нашлось в автомобилестроении. Практически во всех моделях отечественного автопрома (ВАЗ 2106, 2107, 2108 и т.д.) бесконтактная система зажигания для бензинового двигателя управляется этим датчиком. Соответственно, при его выходе из строя возникают серьезные проблемы с работой двигателя. Чтобы не ошибиться при диагностике, необходимо понимать принцип работы датчика, знать его конструкцию и методы тестирования.

Кратко о принципе работы

В основу принципа действия датчика зажигания положен эффект Холла, получивший свое название в честь американского физика, открывшего это явление в 1879 году. Подав постоянное напряжение на края прямоугольной пластины (А и В на рис. 1) и поместив ее в магнитное поле, Эдвин Холл обнаружил разность потенциалов на двух других краях (С и D).

Рис .1. Демонстрация эффекта Холла

В соответствии с законами электродинамики, сила Лоренца воздействует на носители заряда, что и приводит к разности потенциалов. Величина напряжения U

холла довольно мала, в пределах от 10 мкВ до 100 мВ, она зависит как от силы тока, так и напряженности электромагнитного поля.

До середины прошлого века открытие не находило серьезного технического применения, пока не было налажено производство полупроводниковых элементов на основе кремния, сверхчистого германия, арсенида индия и т.д., обладающих необходимыми свойствами. Это открыло возможности для производства малогабаритных датчиков, позволяющих измерять как напряженность поля, так и силу тока, идущего по проводнику.

Типы и сфера применения

Несмотря на разнообразие элементов, применяющих эффект Холла, условно их можно разделить на два вида:

  • Аналоговые, использующие принцип преобразования магнитной индукции в напряжение. То есть, полярность, и величина напряжения напрямую зависят от характеристик магнитного поля. На текущий момент этот тип приборов, в основном, применяется в измерительной технике (например, в качестве, датчиков тока, вибрации, угла поворота). Датчики тока, использующие эффект Холла, могут измерять как переменный, так и постоянный ток
  • Цифровые. В отличие от предыдущего типа датчик имеет всего два устойчивых положения, сигнализирующих о наличии или отсутствии магнитного поля. То есть, срабатывание происходит в том случае, когда интенсивность магнитного поля достигла определенной величины. Именно этот тип устройств применяется в автомобильной технике в качестве датчика скорости, фазы, положения распределительного, а также коленчатого вала и т.д.

Следует отметить, что цифровой тип включает в себя следующие подвиды:

  • униполярный – срабатывание происходит при определенной силе поля, и после ее снижения датчик переходит в изначальное состояние;
  • биполярный – данный тип реагирует на полярность магнитного поля, то есть один полюс производит включение прибора, а противоположный – выключение.
Внешний вид цифрового датчика Холла

Как правило, большинство датчиков представляет собой компонент с тремя выводами, на два из которых подается двух- или однополярное питание, а третий является сигнальным.

Пример использования аналогового элемента

Рассмотрим в качестве примера конструкцию датчика тока ы основе работы которого используется эффект Холла.

Упрощенная схема датчика тока на основе эффекта Холла

Обозначения:

  • А – проводник.
  • В – незамкнутое магнитопроводное кольцо.
  • С – аналоговый датчик Холла.
  • D – усилитель сигнала.

Принцип работы такого устройства довольно прост: ток, проходящий по проводнику, создает электромагнитное поле, датчик измеряет его величину и полярность и выдает пропорциональное напряжение UДТ, которое поступает на усилитель и далее на индикатор.
https://www.youtube.com/watch?v=fmLs9WsKx3I

Назначение ДХ в системе зажигания автомобиля

Разобравшись с принципом действия элемента Холла, рассмотрим, как используется данный датчик в системе бесконтактного зажигания линейки автомобилей ВАЗ. Для этого обратимся к рисунку 5.

Рис. 5. Принцип устройства СБЗ

Обозначения:

  • А – датчик.
  • B – магнит.
  • С – пластина из магнитопроводящего материала (количество выступов соответствует числу цилиндров).

Алгоритм работы такой схемы выгладит следующим образом:

  • При вращении вала прерывателя-распределителя (движущемуся синхронно коленвалу) один из выступов магнитопроводящей пластины занимает позицию между датчиком и магнитом.
  • В результате этого действия изменяется напряженность магнитного поля, что вызывает срабатывание ДХ. Он посылает электрический импульс коммутатору, управляющему катушкой зажигания.
  • В Катушке генерируется напряжение, необходимое для формирования искры.

Казалось бы, ничего сложного, но искра должна появиться именно в определенный момент. Если она сформируется раньше или позже, это вызовет сбой в работе двигателя, вплоть до его полной остановки.

Внешний вид датчика Холла для СБЗ ВАЗ 2110

Проявление неисправности и возможные причины

Нарушения в работе ДХ можно обнаружить по следующим косвенным признакам:

  • Происходит резкое увеличение потребления топлива. Это связано с тем, что впрыск топливно-воздушной смеси производится более одного раза за один цикл вращения коленвала.
  • Проявление нестабильной работы двигателя. Автомобиль может начать «дергаться», происходит резкое замедление. В некоторых случаях не удается развить скорость более 50-60 км.ч. Двигатель «глохнет» в процессе работы.
  • Иногда выход из строя датчика может привести к фиксации коробки передач, без возможности ее переключения (в некоторых моделях импортных авто). Для исправления ситуации требуется перезапуск мотора. При регулярных подобных случаях можно уверенно констатировать выход из строят ДП.
  • Нередко поломка может проявиться в виде исчезновения искры зажигания, что, соответственно, повлечет за собой невозможность запуска мотора.
  • В системе самодиагностики могут наблюдаться регулярные сбои, например, загореться индикатор проверки двигателя, когда он на холостом ходу, а при повышении оборотов лампочка гаснет.

Совсем не обязательно, что перечисленные факторы вызваны выходом из строя ДП. Высока вероятность того, неисправность вызвана другими причинами, а именно:

  • попаданием мусора или других посторонних предметов на корпус ДП;
  • произошел обрыв сигнального провода;
  • в разъем ДП попала вода;
  • сигнальный провод замкнулся с «массой» или бортовой сетью;
  • порвалась экранирующая оболочка на всем жгуте или отдельных проводах;
  • повреждение проводов, подающих питание к ДП;
  • перепутана полярность напряжения, поступающего на датчик;
  • проблемы с высоковольтной цепью системы зажигания;
  • проблемы с блоком управления;
  • неправильно выставлен зазор между ДП и магнитопроводящей пластиной;
  • возможно, причина кроется в высокой амплитуде торцевого биения шестеренки распределительного вала.

Как проверить работоспособность датчика Холла?

Есть разные способы, позволяющие проверить исправность датчика СБЗ, кратко расскажем о них:

  1. Имитируем наличие ДХ. Это наиболее простой способ, позволяющий быстро провести проверку. Но его эффективности может идти речь только в том случае, если не формируется искра при наличии питания на основных узлах системы. Для тестирования следует выполнить следующие действия:
  • отключаем от трамблера трехпроводной штекер;
  • запускаем систему зажигания и одновременно с этим «коротим» проводом массу и сигнал с датчика (контакты 3 и 2, соответственно). При наличии искры на катушке зажигания, можно констатировать, что датчик СБЗ потерял работоспособность и ему необходима замена.

Обратим внимание, что для выявления искрообразования высоковольтный проводок должен находиться рядом с массой.

  1. Применение мультиметра для проверки. Это способ наиболее известный, и приводится в руководстве к автомобилю. Нужно подключить щупы прибора, как продемонстрировано на рисунке 7, и произвести замеры напряжения.
Схема подключения мультиметра для проверки ДХ

На исправном датчике напряжение будет колебаться в диапазоне от 0,4 до 11 вольт (не забудьте перевести мультиметр в режим измерения постоянного тока). Следует заметить, что проверка осциллографом будет намного эффективней. Подключается он таким же образом, как и мультиметр. Пример осциллограммы рабочего ДХ приведен ниже.

Осциллограмма исправного датчика Холла СБЗ
  1. Установка заведомо рабочего ДХ. Если в наличии имеется еще один однотипный датчик, или имеется возможность взять его на время, то данный вариант тоже имеет место на существование, особенно если первые два сделать затруднительно.

Ест еще один вариант проверки, по принципу напоминающий второй способ. Он может быть полезен, если под рукой нет измерительных приборов. Для тестирования понадобиться резистор номиналом 1,0 кОм, светодиод, например, из фонарика зажигалки и несколько проводков. Из всего этого набора собираем прибор в соответствии с рисунком 9.

Рис. 9. Светоиндикаторный тестер для проверки ДХ

Тестирование осуществляем по следующему алгоритму:

  1. Проверяем питание на датчике. Для этой цели подключаем (соблюдая полярность) наш тестер к клеммам 1 и 3 ДХ. Включаем зажигание, если с питанием все нормально, светодиод загорится, в противном случае потребуется проверять цепь питания (предварительно убедившись в правильном подключении светодиода).
  2. Проверяем сам датчик. Для этого провод с первой клеммы «перебрасываем» на вторую (сигнал с ДХ). После этого начинаем крутить распредвал (руками или стартером). Моргание светодиода засвидетельствует исправность ДХ. В противном случае, на всякий случай проверяем соблюдение полярности при подключении светодиода, и если оно выполнено правильно, — меняем датчик на новый.

Датчик Холла | Виды, принцип работы, как проверить

Что такое датчик Холла


Датчики Холла представляют из себя твердотельные радиоэлементы, которые становятся все более популярными в радиолюбительской среде и разработке радиоэлектронных устройств. Они применяются в датчиках измерения положения, скорости или направленного движения. Они все чаще заменяют собой путевые выключатели и герконы. Так как такие датчики являются абсолютно герметичными и представляют из себя простой радиоэлемент, то они не боятся вибрации, пыли и влаги. То есть по сути датчик Холла простыми словами – это радиоэлемент, который реагирует на внешнее магнитное поле.

Эффект Холла

Дело было еще в 19-ом веке. Американский физик Эдвин Холл обнаружил очень странный эффект. Он взял пластинку золота и стал пропускать через неё постоянный ток. На рисунке эту пластинку я пометил гранями ABCD.

Он пропускал постоянный ток через грани D и B. Потом поднес перпендикулярно пластинке постоянный магнит и обнаружил напряжение на гранях А и C!  Этот эффект и был назван в честь этого великого ученого. Основной физический принцип данного эффекта был основан на силе Лоренца. Поэтому радиоэлементы, основанные на эффекте Холла, стали называть датчиками Холла. 

Но здесь один маленький нюанс. Дело в том, что напряжение Холла даже при самой большой напряженности магнитного поля будет какие-то микровольты. Согласитесь, это очень мало. Поэтому, помимо самой пластинки в датчик Холла устанавливают усилители постоянного тока, логические схемы переключения, регулятор напряжения а также триггер Шмитта. В самом простом переключающем датчике Холла все это выглядит примерно вот так:

где

Supply Voltage – напряжение питания датчика

Ground – земля

Voltage Regulator – регулятор напряжения

А – операционный усилитель

Hall Sensor – собственно сама пластинка Холла

Output transisitor Switch – выходной переключающий транзистор (транзисторный ключ)

Линейные (аналоговые) датчики Холла

В линейных датчиках напряжение Холла (напряжение на гранях А и С) будет зависеть от напряженности магнитного поля. Или простыми словами, чем ближе мы поднесем магнит к датчику, тем больше будет напряжение Холла. Это и есть прямолинейная зависимость.

В линейных датчиках Холла выходное напряжение берется сразу с операционного усилителя. То есть в линейных датчиках вы не увидите триггер Шмитта, а также выходного переключающего транзистора. То есть все это будет выглядеть примерно вот так:

О чего же зависит напряжение на гранях А и С? В основном от магнитного поля, создаваемым либо постоянным магнитом, либо электромагнитом; толщиной пластинки, а также силой тока, протекающего через саму пластинку.

Теоретически, если подавать ну очень сильный магнитный поток на датчик Холла, то напряжение Холла будет бесконечно большим? Как бы не так). Выходное напряжение будет лимитировано напряжением питания. То есть график будет выглядеть примерно вот так:

Как вы видите, до какого-то момента у нас идет линейная зависимость выходного напряжения датчика от плотности магнитного потока. Дальнейшее увеличение магнитного потока бесполезно, так как оно достигло напряжения насыщения, которое ограничено напряжением питанием самого датчика Холла.

Благодаря этим параметрам с помощью датчика Холла были построены приборы, позволяющие замерять силу тока в проводнике, не касаясь самого провода, например, токовые клещи.

Существуют также приборы, с помощью которых можно замерять напряженность магнитного поля. Датчики Холла, используемые в этих приборах, называют линейными, так как напряжение на датчике Холла прямо пропорционально плотности магнитного потока.

Линейные датчики, как я уже сказал, могут быть использованы в токовых клещах. Они позволяют измерять силу тока, начиная от 250 мА и до нескольких тысяч Ампер. Самым большим преимуществом в таких токовых клещах является отсутствие механического контакта с измеряемой цепью. Иными словами, токовые измерители на эффекте Холла намного безопаснее, чем измерители на основе шунта и амперметра, особенно при большой силе тока в цепи, которую нередко можно встретить в промышленных установках.

Цифровые датчики Холла

Как только наступила  эра цифровой элек троники, в один корпус вместе с датчиком Холла стали помещать различные логические элементы. Самый простой датчик Холла на триггере Шмитта мы уже рассмотрели выше и он выглядит вот так:

По сути такой датчик имеет только два состояние на выходе. Либо сигнал есть (логическая единица), либо его нет (логический ноль). Гистерезис на триггере Шмитта просто устраняет частые переключения, поэтому в цифровых датчиках Холла он используется всегда.

В результате промышленность стала выпускать датчики Холла для цифровой электроники. В основном такие датчики делятся на три вида:

Униполярные

Реагируют только на один магнитный полюс. На противоположный магнитный полюс не обращают никакого внимания. К примеру, подносим южный полюс магнита и датчик сработает. На северный магнитный полюс он реагировать не будет.

Биполярные

Подносим магнит одним полюсом – датчик сработает и будет продолжать работать даже тогда, когда мы уберем магнит от датчика. Для того, чтобы его выключить, нам надо подать на него другую полярность магнита.

Как проверить датчик Холла

Давайте рассмотрим работу цифрового биполярного датчика Холла марки SS41. Выглядит наш подопечный вот так:

Судя по даташиту, на первую ножку подаем плюс питания, на вторую – минус, а с третьей ножки уже снимаем сигнал логической единицы или нуля.

[quads id=1]

Для этого соберем простейшую схему: светодиод на 3 Вольта, токоограничительный резистор на 1КилоОм и сам датчик Холла.

Теперь цепляемся к нашей схеме от блока питания, выставив на нем 5 Вольт. Минус на средний вывод, а плюс питания – на первый.

У меня под рукой оказался вот такой магнитик:

Чтобы не перепутать полюса, я пометил красным бумажным ценником один из полюсов магнита. Какой именно – я не знаю, так как не имею компаса, с помощью которого можно было бы узнать, где северный полюс, а где южный.

Как только я поднес магнит “красным” полюсом к датчику холла, то у меня светодиод сразу потух.

Переворачиваю магнит другим полюсом, подношу его к датчику Холла и вуаля!

Если магнит не переворачивать, то есть не менять полюса, то светодиод также останется потухшим, потому что датчик биполярный.

А вот и видео работы

Как вы видите на видео, мы с помощью магнита управляем датчиком Холла. Датчик Холла выдает нам два состояния сигнала: сигнал есть – единичка, сигнала нет – ноль. То есть светодиод горит – единичка, светодиод потух – ноль.

Применение датчиков Холла

В настоящее время область применения датчиков Холла очень обширна и с каждым годом становится все шире и шире. Вот основные применения:

Применение линейных датчиков


  • датчики тока
  • тахометры
  • датчики вибрации
  • детекторы ферромагнетиков
  • датчики угла поворота
  • бесконтактные потенциометры
  • бесколлекторные двигатели постоянного тока
  • датчики расхода
  • датчики положения

Применение цифровых датчиков


  • датчики частоты вращения
  • устройства синхронизации
  • датчики систем зажигания автомобилей
  • датчики положения
  • счетчики импульсов
  • датчики положения клапанов
  • блокировка дверей
  • измерители расхода
  • бесконтактные реле
  • детекторы приближения
  • датчики бумаги (в принтерах)

Заключение

Чем же так хороши датчики Холла? Если соблюдать нормальные рабочие значения напряжения и тока, то теоретически датчика хватит на бесконечное число включений-выключений. Они не имеют электромеханического контакта, который бы изнашивался, в отличие от геркона  и электромагнитного реле. В настоящее время они уже почти полностью заменили герконы.

Приобрести датчик эффектов Холла тут.

Датчик Холла — принцип работы


В системах и устройствах каждого автомобиля есть масса приборов, которые несут только функцию информирования о том или ином процессе. На основе информации, которые эти устройства предоставляют, высшие по иерархии системы принимают решения о том или действии. Эти шпионы называются датчиками и собирают информацию о работе деталей и узлов, а после передают ее водителю. На современных автомобилях водитель избавлен от принятия большинства решений, поэтому всю работу делают за него электронные системы. Бесконтактная система зажигания и датчик Хoлла — яркий тому пример.

Содержание:

  1. Датчик Холла, что это такое
  2. Применение датчика в автомобиле
  3. Преимущества автомобильного датчика Холла
  4. Зажигание с датчиком Холла
  5. Подключение и проверка датчика Холла

Датчик Холла, что это такое

Все автомобильные датчики классифицируются по параметру, который они определяют. Это может быть датчик температуры, датчик массового расхода воздуха, датчик движения или датчик положения. Датчик на эффекте Холла как раз применяется для того, чтобы определять положение коленчатого или распределительного вала.

Вкратце разберемся с этим эффектом, тогда станет понятнее, что представляет собой это устройство. Гальваномагнитное явление было открыто в 1879 году Эдвином Холлом, а суть этого открытия в том, что при установке проводника с постоянным потенциалом в магнитное поле, появляется разность потенциалов, то есть электрический импульс. На основе этого являения работает не только часть системы зажигания автомобиля, но и ионные ракетные двигатели, приборы, которые измеряют напряженность магнитного поля, и даже во многих мобильных устройствах в виде основы для работы электронного компаса.

Применение датчика в автомобиле

Холловское напряжение давно применяется в машиностроении и конструкции серводвигателей. Он идеально подходит для того, чтобы определять углы положения валов, а на машинах архаичной конструкции, датчик применялся для определения момента возникновения искры. Схема датчика проста и мы ее помещаем ниже.

Суть работы устройства в том, что когда подают ток на две клеммы участка полупроводникового материала (на чертеже — клеммы «а») и помещают его в магнитное поле, на двух других клеммах возникает импульсное напряжение, а оно может восприниматься устройством-приемником, как сигнал к определенным действиям.

Автомобильный датчик Холла принцип работы которого показан на схеме ниже, но буквально ее воспринимать было бы ошибкой. Дело в том, что современные датчики Холла представляют собой все элементы начерченного датчика в одном крошечном корпусе. Это стало возможным тогда, когда появились миниатюрные полупроводниковые  приборы.

Преимущества автомобильного датчика Холла

Микроэлектроника позволила добиться от устройства очень маленьких размеров, при этом, сохранив полную функциональность. Основные преимущества устройства современного датчика Холла в следующем:

  • компактность;
  • возможность разместить в любой точке двигателя или любого другого механизма;
  • стабильность работы, то есть при любых оборотах вала, датчик будет корректно реагировать на его вращение;
  • стабильность не только в работе, но и стабильность характеристики сигнала.

Наряду с бесспорными достоинствами и функциональностью устройства, оно имеет некоторые проблемы:

  1.  Помехи — главный враг любого электромагнитного устройства. А помех в электрической цепи автомобиля более, чем достаточно.
  2.  Цена. Датчик, основанный на эффекте Холла дороже обычного магнитоэлектрического датчика.
  3.  Работоспособность датчика Холла сильно зависит от электронной схемы.
  4. Микросхемы могут иметь нестабильные характеристики, что может повлиять на корректность показаний.

Зажигание с датчиком Холла

Теперь попробуем применить датчик на практике, а, точнее, интегрировать его в систему зажигания. А установим мы его в прямо в трамблер для того, чтобы руководить процессом искрообразования в бесконтактной системе. Схема установки датчика Холла показана на рисунке. Он установлен возле вала прерывателя-распределителя, на котором установлена магнитопроводящая пластина. Пластина-ротор имеет столько вращающихся сердечников, сколько цилиндров у двигателя.

Поэтому при прохождении пластины ротора возле датчика с поданным на него напряжением, возникает эффект Холла, с выводов датчика снимается импульс и подается на коммутатор, а оттуда на катушку зажигания. Она преобразует слабый импульс в высоковольтный и передает его по высоковольтному проводу на свечу зажигания.

Подключение и проверка датчика Холла

Подключить любой датчик Холла довольно просто, поскольку он имеет всего три вывода, один из которых минусовой и идет на массу, второй — питание, третий — сигнальный, с него и поступает импульс на коммутатор. Проверить, работает ли датчик довольно просто. Если автомобиль подает признаки неисправности системы зажигания, которые выражаются в плохом пуске или нестабильности работы, первое, что нужно проверить — именно этот датчик.

Для этого не нужно никаких сложных осциллографов, хотя по науке ДХ проверяют именно при помощи осциллографа. Для проверки работоспособности устройства, достаточно просто закоротить 3-й и 6-й вывод на колодке трамблёра. При включенном зажигании закороченные выводы приведут к образованию искры, что говорит о том, что датчик свое отжил.

Замена датчика — занятие на 10 минут, но чтобы не покупать новый, лучше проверить установленный, вполне возможно, что зажигание работает некорректно по другой причине. Таким образом, можно обнаружить поломку, сэкономить время и не покупать лишние детали. Следите за простейшими приборами, и неприятные сюрпризы будут обходить автомобиль стороной. Плотной всем искры и удачи в дороге!

Читайте также:


Датчик Холла - описание, схема, как проверить и заменить

Датчик Холла – это один из важнейших элементов бесконтактной системы зажигания бензиновых двигателей. Малейшая неисправность этой детали приводит к серьезным неполадкам в работе мотора. Поэтому, чтобы не допустить ошибки при диагностике, важно знать, как проверить датчик Холла, и при необходимости – уметь его заменить.

Этот материал мы разделили на две части: теоретическую (назначение, устройство и принцип работы датчика Холла) и практическую – признаки неисправности, методы проверки и способы замены.

В конце статьи смотрите видео-инструкцию по самостоятельной замене Датчика Холла.

А перед тем, как проверять датчик Холла на наличие неисправностей, давайте разберемся с его назначением и принципом работы.

Что такое датчик Холла и как он работает

Датчик Холла (он же датчик положения распредвала) является одним из главных элементов трамблера (прерывателя-распределителя). Он находится рядом с валом трамблера, на котором крепится магнитопроводящая пластина, похожая на корону. В пластине столько же прорезей, сколько цилиндров в двигателе. Также внутри датчика находится постоянный магнит.

Принцип работы датчика Холла следующий: когда вал вращается, металлические лопасти поочередно проходят через прорезь в датчике. В результате этого вырабатывается импульсное напряжение, которое через коммутатор попадает в катушку зажигания и, преобразуясь в высокое напряжение, подается на свечи зажигания.

Датчик Холла имеет три клеммы:

  • одна соединяется с "массой",
  • ко второй подходит плюс с напряжением около 6 В,
  • с третьей клеммы уходит преобразованный импульсный сигнал на коммутатор.

Признаки неисправности датчика Холла

Неисправности у датчика Холла проявляются по-разному. Даже опытный мастер не всегда сразу выявит причину неполадок двигателя.

Вот несколько самых распространенных симптомов:

  1. Мотор плохо заводится или не запускается вообще.
  2. На холостом ходу в работе двигателя появляются перебои и рывки.
  3. Машина может дергаться при движении на повышенных оборотах.
  4. Силовой агрегат глохнет во время движения.

При появлении одного из этих признаков, необходимо в первую очередь проверить исправность датчика Холла.

Также не стоит исключать из вида и другие неисправности системы зажигания, встречающиеся в автомобилях.

Как проверить датчик Холла

Простой способ проверки датчика положения распредвала (Холла) показан на следующем видео.

Существует несколько способов, позволяющих проверить исправность датчика Холла. Каждый автомобилист может выбрать для себя наиболее подходящий вариант:

  1. Взять для проверки рабочий датчик у соседа или на автомобильной разборке и установить его вместо "родного". Если проблемы двигателя исчезнут, значит, придется покупать новую деталь.
  2. При помощи тестера можно измерить напряжение на выходе датчика. В исправном устройстве напряжение будет изменяться от 0,4 В до 11 В.
  3. Можно создать имитацию датчика Холла. Для этого с трамблера снимают трехштекерную колодку. Затем включают зажигание и отрезком провода соединяют выходы 3 и 6 коммутатора. Появление искры свидетельствует о выходе датчика из строя.

Если в результате проверки обнаружится, что датчик Холла неисправен, тогда его необходимо заменить на новый.

Замена датчика Холла

Заменить датчик Холла не составит особых затруднений. С этой работой под силу справится своими руками даже начинающему автолюбителю.

Чуть ниже на видео достаточно подробно показан процесс замены датчика в трамблере автомобиля УАЗ.

Обычно замена датчика Холла состоит из нескольких этапов:

  • Прежде всего, трамблер снимается с машины.
  • Далее снимается крышка трамблера и совмещается метка механизма газораспределения с меткой коленвала.
  • Запомнив положение трамблера, нужно открутить крепежные элементы гаечным ключом.
  • При наличии фиксаторов и стопоров, их также следует извлечь.
  • Вал вытаскивают из трамблера.
  • Осталось отсоединить клеммы датчика Холла и открутить его.
  • Оттянув регулятор, неисправная деталь осторожно вынимается через образованную щель.
  • Новый датчик Холла устанавливается в обратной последовательности.

Проверка работоспособности датчика Холла позволяет не только точно определить причину отказа двигателя. Благодаря простым приемам автомобилист сэкономит свое время на ремонт, а также исключит ненужную трату денег.

Видео, как заменить датчик Холла своими руками

Датчик Холла принцип работы | КакУстроен.ру

Датчик Холла своим появлением обязан американскому учёному-физику Эдвину Холлу, который в 1879 году совершил важное открытие гальваномагнитного явления. Практическая ценность эффекта Холла такова, что датчик, изготовленный на его основе, применяется в самых разных приборах и поныне. Сложное на первый взгляд устройство датчика не является таковым, если детально в нём разобраться. Итак, как же работает датчик Холла?

Датчик Холла: на самом деле – всё просто

Прибор основан на эффекте Холла, который заключается в следующем: если на любой полупроводник, вдоль которого протекает электрический ток, оказать воздействие пересекающим поперёк магнитным полем, то возникнет поле электрическое, называемое электродвижущей силой (ЭДС) Холла. При этом показатель напряжения изменится на величину от 0,4 В до 3 В.

Таким образом, датчик Холла имеет не слишком сложный для понимания принцип работы. Для большей ясности стоит привести наглядный пример. Для создания эффекта Холла понадобятся тонкая пластинка-полупроводник, источник электрического тока, постоянный магнит, провода. Ток пропускается между двумя сторонами пластинки, параллельными друг другу. К двум другим сторонам крепятся провода. Одновременно с этим к полупроводнику подносится постоянный магнит. Это и есть генератор Холла.

Можно сделать его импульсным. Для этого достаточно разместить между пластинкой и магнитом движущийся экран с щелями в нём. Такая щелевая конструкция и принцип работы характерны для всех датчиков Холла.

От теории – к практике. Датчик холла: принцип работы и назначение современных генераторов

Практическое применение ЭДС Холла началось далеко не сразу после её открытия, так как полупроводники с нужными свойствами научились изготавливать промышленным способом лишь через несколько десятков лет.

Первые приборы получались довольно громоздкими и не очень эргономичными. Новую жизнь в судьбу датчика Холла привнесло развитие микроэлектроники, когда были придуманы микросхемы. Их стали активно использовать в генераторах Холла. Благодаря этому был налажен выпуск миниатюрных датчиков, которые могут быть линейными (датчики тока, вибрации, положения, расхода и т.п.) и логическими (датчики приближения, частоты вращения, импульсов и т.д.), цифровыми и аналоговыми.

С помощью датчика Холла стали успешно измерять ток, мощность, скорость, расстояние. Даже в CD-приводе любого персонального компьютера используется ЭДС Холла. Но наибольшее применение генератор Холла получил в автомобильной промышленности – для измерения положения распределительного и коленчатого валов, в качестве бесконтактного электронного зажигания и в других целях. Датчик Холла полезен тем, что он считывает и предоставляет электронному блоку управления информацию, нужную для нормальной работы автомобиля.




Несомненные преимущества датчика Холла – его дешевизна, неприхотливость, долговечность и бесконтактность. Надёжность прибора обусловлена тем, что в нём отсутствуют физически взаимодействующие (трущиеся друг о друга) детали.

Схема датчика холла и принцип работы

Физик Холл открыл принцип, который впоследствии позволил создать датчик его имени. Этот прибор относится к категории магнитоэлектрических устройств и, фактически, является датчиком магнитного поля. Устройство датчика Холла имеет два основных конструктивных варианта. По принципу действия, эти приборы могут быть цифровыми и аналоговыми.

С помощью цифровых датчиков производится определение поля, то есть, его наличие или отсутствие. При достижении индукцией определенного значения, датчик выдает результат. Однако, слабая индукция не позволяет зафиксировать наличие поля, что является минусом этого прибора.

Конструкции аналоговых датчиков Холла позволяют преобразовывать индукцию в напряжение. Полученная величина будет зависеть от силы поля и его полярности.

Принцип работы датчика Холла

Датчики Холла являются составной частью различных приборов. В большинстве случаев, они используются для измерения напряженности магнитного поля. Широкое применение эти устройства нашли в системах зажигания автомобилей, благодаря возможностям бесконтактного действия.

Бесконтактное воздействие объясняется следующими факторами. Было замечено, что при помещении пластины, находящейся под напряжением, в магнитное поле, электроны, находящиеся в этой пластине будут отклоняться в перпендикулярном направлении с магнитным потоком. В данном случае, полярность магнитного поля оказывает непосредственное влияние на направление этого отклонения. Таким образом, будет наблюдаться разница плотности электронов на противоположных концах пластины. Это приводит к созданию разности потенциалов, улавливаемой датчиками Холла.

Проверка работоспособности датчика Холла

Чаще всего, с проблемой работоспособности датчика сталкиваются автомобилисты. Наиболее легким способом считается замена прибора на исправный. Во многих случаях, это помогает полностью решить проблему.

Если же невозможно установить исправный датчик, можно воспользоваться несложным устройством, которое будет дублировать его работу. Для изготовления этого устройства, необходимо взять колодку распределителя зажигания с тремя штекерами и небольшой кусок провода.

Чтобы произвести диагностику, можно использовать обычный тестер. При неисправности датчика, тестер будет показывать менее 0,4 вольта. Проверка наличия искры осуществляется при включенном зажигании. В этом случае, концы провода соединяются с определенными выходами в коммутаторе. Однако, как уже говорилось, наиболее оптимальным вариантом является замена неисправного прибора.

Широкое применение датчик Холла имеет в транспортных системах. Также Датчик Холла применяется для контроля положения узлов различных механизмов: перемещение деталей механизмов до концевых положений, построение энкодеров. Используется для измерения больших токов. Проводятся эксперименты по использованию датчика Холла в качестве чувствительного элемента магнитного компаса. Основу датчика составляет элемент Холла, соединенный с электрической схемой. Современный датчик Холла представляет собой микросхему, к которой подводится питание, а на выходе микросхемы формируется информационный сигнал. Принцип работы датчика Холла состоит в фиксировании магнитного поля. Для измерения скорости перемещения датчика Холла закрепляется на неподвижном элементе конструкции, а в движущейся части устанавливаются магниты. Применяют и более простое решение, намагничивают подвижные элементы не внося изменений в конструкцию механизма. Для измерения скорости вращения применяется пара постоянный магнит и датчик Холла. Между ними свободно перемещается пластина, экранирующая магнитное поле. При каждом обороте с выхода датчика Холла поступает электрический импульс в схему электронного тахометра. Для увеличения точности измерения устанавливают две и более пар магнит + датчик Холла.

Принцип работы датчика Холла позволяет создать регистрирующее устройство не имеющее механического контакта с подвижной частью контролируемого механизма, что позволяет многократно увеличить ресурс работы по сравнению с герконами или механическими переключателями, кнопками. На рисунке показан узел из бесконтактной системы зажигания автомобильной схемы, с использование датчика Холла.

1 – аккумулятор;
2 – замок зажигания;
3 – свечи зажигания;
4 – двухвыводная катушка зажигания;
5 – вольтметр;
6 – коммутатор;
7 – датчик Холла.

Проверить датчик Холла можно по такой технологии. С выхода датчика снимается напряжение, если в его зазоре находится стальной экран. Если экрана в зазоре нет, то напряжение на выходе датчика близко к нулю. На снятом с двигателя датчике-распределителе зажигания датчик можно проверить по схеме, приведенной на рисунке ниже, при напряжении питания 8-14 В. Медленно вращая валик датчика-распределителя зажигания, измерьте вольтметром напряжение на выходе датчика. Оно должно резко меняться от минимального (не более 0,4 В) до максимального (не более, чем на 3 В меньше напряжения питания).

Использование совместно с датчиком Холла постоянного магнита повышает надежность по сравнению с оптопарами, требующими источника света. Постоянный магнит "не погаснет”, а источник света требует подключения к питанию, постоянно потребляет ток. Обрыв питания источника света приведет к ложному сигналу с выхода оптопары, что не может произойти с датчиком Холла. Автор статьи – Сергей Куприянов.

Датчики, иное название сенсоры, служат для регистрирования изменения различных физических величин и передачи полученной информации обрабатывающим устройствам. Если к проводнику подвести постоянный заряд и поместить его в магнитное поле, то возникнет разность потенциалов. Этот эффект был обнаружен в 1897 году учёным Эдвином Холлом. Основываясь, на этом эффекте был создан датчик, названный в честь изобретателя датчиком Холла.

Принцип работы прибора

Это устройство, регистрирующее напряжённость магнитного потока. Фактически это сенсор наличия магнитного поля. Датчики выпускаются как цифрового, так и аналогового типа. Первый тип основан на измерении индукции поля и формирования соответствующего напряжения, а второй тип реагирует на изменение полярности магнитного потока.

Принцип действия датчика Холла построен на гальваномагнитном явлении. Это явление представляет собой результат взаимодействия магнитного поля с полупроводником, который подключён к электрической энергии, и при этом изменяются его электрические свойства. Эффект Холла проявляется, если в полупроводнике, расположенном в магнитном потоке, при протекании по нему тока образуется поперечное напряжение. При этом направление заряда перпендикулярно вектору направления поля. Возникающее явление объясняется тем, что на подвижные электроны или дырки в магнитном потоке воздействует сила Лоренца, приводящая к их отклонению.

В простом примере эффект Холла представляется в следующем виде. В полупроводнике под влиянием силы Лоренца носители заряда перемещаются в разные стороны, соответствующие своему знаку. На одной стороне полупроводника скапливаются электроны, отрицательный заряд, а на другой откуда переместились электроны — положительный заряд. Между этими сторонами из-за разности зарядов образуется электрический поток, который препятствует перемещению зарядов под влиянием силы Лоренца. Когда наступает момент равенства сил Лоренца и магнитного поля, полупроводник переходит в состояние равновесия.

По своему виду датчики могут выпускаться с разным числом контактных выводов и бывают:

Так как уровень сигнала на выходах сенсора низкий, к его выходам подключается операционный усилитель. При добавлении триггера получается простое устройство, срабатывающее при определённом значении магнитного поля и вида проводимости. В цифровой электронике датчики, дополняющиеся логическими элементами, разделяются на три группы:

  1. Униполярные. Прибор регистрирует только изменение одной величины носителей заряда, дырочной или электронной проводимости.
  2. Биполярные. Сенсор реагирует на оба вида носителей заряда, но выполняет по отношению к ним противоположные действия. Например, при регистрации электронной проводимости подключённый к нему прибор начинает работать, а при регистрации дырочной проводимости отключается.
  3. Однополярные. Регистрируют просто появление проводимости и не зависят от её типа.

Датчик, использующий три вывода, в своём корпусе содержит транзистор с открытым коллектором, так как ток прибора малый с ним применяется в паре усилитель сигнала.

Применение эффекта Холла

Существует линейная зависимость между возникающей разностью потенциалов и магнитной индукцией, приводящей к её появлению. На этом и построены устройства с датчиком Холла, измеряющие магнитную индукцию.

Приборы, использующие в работе преобразователи Холла, применяются для проведения всевозможных измерений. Используя явление, при котором магнитное поле появляется под воздействием электрического тока, индукция магнитной силы соотносится с ним, и создаются бесконтактные измерители силы тока. Такой прибор выгоден при вычислении величин больших постоянных токов в проводах, которые при измерении обычным амперметром пришлось бы разрывать. Кроме этого, широкое применение получили приборы с сенсорами Холла для измерения электрической мощности, фиксирования линейных и угловых перемещений, плотности носителей заряда в полупроводнике.

Главным параметром прибора, построенным на эффекте Холла, является магнитная чувствительность. Она характеризуется соотношением появляющегося напряжения к значению магнитной индукции, то есть напряжением, при индукции равным единице.

Особое применение сенсоры получили в электродвигателях. В них датчики располагают таким образом, что устанавливаясь на статоре, отслеживают положение ротора. Установив магнит постоянного поля, получается счётчик оборотов. Величина магнитного поля, обеспечивающая срабатывание датчика, находится в пределах 150 Гауссов.

Использование в автомобилях

В машине датчик применяется в системе зажигания. Без его участия правильная работа мотора в автомобиле невозможна. Располагается он на трамблере и определяет момент появления искры, заменяя собой контактор. Здесь может использоваться как биполярный, так и униполярный вид сенсора.

Проводя измерения количества возникающих импульсов, сенсор сообщает блоку электроники информацию о необходимости создания искры. В состав прибора входят: постоянный магнит, металлический экран с отверстиями, полупроводниковая пластина. Схема работы основывается на том, что через устроенные отверстия в полупроводник проникает магнитный поток, в результате чего появляется разность потенциалов. Когда прорези закрыты экраном, поток не проходит, и напряжение не возникает. Таки образом, открывая и закрывая прорези экраном, создаётся импульсный сигнал на выходе устройства.

Датчик содержит три вывода, согласно его распиновке слева направо:

  • первый подключается к корпусу автомобиля;
  • на второй подводится напряжение равное шести вольтам;
  • третий используется как информационный.

Кроме этого, датчик используется для контроля токовой перегрузки. При появлении перегрузки происходит нагрев сенсора и срабатывание температурной защиты.

Из-за нарушений, возникающих в работе сенсора, возникают различные неисправности, что сказывается на запуске двигателя, появления рывков при работе, или просто его остановки. Проверить работоспособность датчика в автомобиле проще всего вращением коленчатого и распределительного вала. При нормальной работе светодиод, расположенный на контрольной панели, должен мигать.

При отсутствии бортового светодиода возможно выполнить приспособление самостоятельно. Для этого понадобится резистор на один килоом, светодиод и провода. Резистор последовательно соединяется со светодиодом, и от конструкции делаются отводы на проводах. Трамблер отключается и проводится подключение проводов от светодиода и резистора, после чего проворачивается распределительный вал. В результате светодиод должен мигнуть.

Для получения точных результатов лучше провести проверку датчика холла мультиметром. Потребуется любой тестер с возможностью измерения напряжения. При рабочем датчике напряжение на его выводах составит до 11 вольт. Сначала измеряется присутствие необходимых напряжений на контактной колодке трамблера. Обычно присутствуют три напряжения, равные 12 вольтам, и на одном контакте напряжение должно отсутствовать.

Включается зажигание. Положительный щуп устанавливается на выход клеммы датчика, а минусовой на провод с нулевым значением напряжения. Величина напряжения составляет около 11 вольт. При провороте коленвала напряжение должно изменяться, при этом наибольшее значение не должно опускаться ниже девяти вольт, а наименьшее быть не более 0,5 В.

Преобразователь Холла в смартфоне

Имея небольшие размеры, сенсоры Холла нашли своё применение и в электронных гаджетах. Используя его свойства в смартфонах, улучшается позиционирование, быстрее происходит запуск GPS поиска, увеличивается срок службы в автономном режиме. Применяя способность сенсора реагировать на магнитное поле, преобразователь используется также в телефонах вида «раскладушка» и ноутбуках. Месторасположение датчик занимает на лицевой стороне устройства, что увеличивает его реакцию на изменение магнитного поля.

Из-за присутствия датчика происходит автоматическое включение экрана ноутбука при его открытии или выключение при закрытии. Также и с телефоном — «раскладушкой». В смартфонах такая функция реализуется с применением чехла книжки. Датчик регистрирует величину магнитного поля, исходящего от миниатюрного магнита, вмонтированного в середину чехла. При открытии чехла, сила действия магнитного потока ослабевает, и устройство включает подсветку экрана.

Важно отметить, что использование магнита не оказывает никакого негативного влияния на гаджет, а сам датчик Холла в принципе работы применяет регистрацию магнитного потока. Он регистрирует силу магнитного поля, а не сравнивает его напряжённость. Преобразователь Холла в мобильных устройствах также имеет следующий функции:

  • помогает в ориентирование по горизонту земли;
  • обеспечивает работу компаса устройства;
  • включает и отключает экран при совместном использовании с магнитом.

Ориентирование экрана — это функция, используемая в любом современном телефоне. При разном положении гаджета в пространстве изображение на экране всегда будет правильным, а не перевёрнутым. Такую функцию можно и отключить, для этого в настройках смартфона выбирается последовательно: настройки, экран блокировки, расширенные возможности, режим смарта. Если в настройках пункта нет, придётся выпаять преобразователь из схемы.

Кроме этого, специальная микросхема, получая сигнал от преобразователя Холла, приводит к коррекции изображения. Это проявляется при фотографировании или при смене времени суток. Участвуя в работе GPS навигации, устройство помогает увеличить точность позиционирования.

Чтобы знать, как проверить датчик Холла в телефоне, особых умений не понадобится. Для этого нужно поднести любой магнит к корпусу или экрану устройства. При его работоспособности экран погаснет, если магнит убрать — загорится.

Устройство в бытовой технике

Очень часто в бытовой технике, использующей мотор (например, стиральная машинка) для подсчёта количества оборотов стоит сенсор Холла. Он имеет вид кольца с двумя проводами и крепится к ротору электродвигателя. Его работа устроена следующим образом: за счёт вращения вала на сенсор поступает напряжение, сила которого зависит от скорости вращения ротора. Чем обороты больше, тем больше и разность потенциалов. Электронный узел анализирует величину напряжения и выставляет требуемую скорость вращения.

Чтобы проверить преобразователь, потребуется взять мультиметр и прозвонить сопротивление сенсора. Нормальная величина рабочего прибора составляет около 60 Ом. Если мультиметра нет, можно взять простой вольтметр и измерить напряжение на том месте, где подключается сам датчик.

Схема для практического повторения

Несложная схема с применением датчика Холла, применяемая для регистрации открытия двери, не представляет сложности для самостоятельной сборки. Достоинство использования сенсора в том, что его работе не требуется механический контакт, как, например, геркону. Датчик размещается на дверной коробке, а магнит на двери. В основе схемы используется датчик MH 183 и микросхема CD 4093. За питание отвечает источник напряжения на девять вольт.

При воздействии магнитного потока транзисторный ключ находится в активном состоянии. Сигнал с сенсора поступает на вход микросхемы и запрещает работу её генератора. Светодиод LED1 горит. Если дверь открывается, магнитная сила, воздействующая на датчик, ослабевает или пропадает, а в микросхеме запускается генератор и светодиод гаснет. Резистор R1 предназначен для защиты преобразователя Холла от обратного пробоя напряжения. Датчик Холла нашел свое применение во многих областях и является незаменимым помощником для человека в быту. Именно благодаря ему существуют так называемые «умные» устройства.

устройство, принцип работы, виды и области применения преобразователя

Датчик Холла — прибор, предназначенный для измерения напряженности магнитного поля. Его работа основана на эффекте Холла, который представляет собой явление возникновения разности потенциалов в магнитном поле при помещении в него проводника с постоянным током. Это устройство нашло широкое применение в различных приборах и механизмах.

История создания прибора

В конце XIX века американский ученый из Балтимора Эдвин Герберт Холл поместил полупроводниковую пластину в магнитное поле и подключил к ней электрический ток. Такое действие привело к появлению напряжения на широких сторонах пластины.

Это явление получило название эффекта Холла и привлекло внимание общественности. Спустя 75 лет, когда промышленность начала выпускать полупроводниковые пленки, это открытие нашло широкое применение в области техники. Сегодня датчики используются:

  1. В электронном зажигании на автомобилях.
  2. В двигателях компьютерного дисковода и вентилятора.
  3. Как основа электронного компаса в смартфонах.
  4. В бесконтактных электрических приборах для измерения силы тока и напряжения.
  5. В некоторых моделях ионных реактивных двигателей.

Первые разновидности датчиков стали выпускаться в середине XX века. В 1965 году американские специалисты создали твердотельный прибор, который значительно улучшил работу оборудования. Датчики считаются практически вечными, так как не имеют взаимодействующих и трущихся элементов.

Конструктивные особенности

Наиболее эффективными материалами для изготовления датчика считаются полупроводники арсениды галлия и индия. Чаще прибор представляет собой пленку, толщина которой не превышает 10 мкм. Датчик имеет три клеммы:

  • питающая с входным напряжением 6В;
  • нулевой контакт;
  • выходная, с которой сигнал поступает на коммутатор.

Клемма, к которой подходит питание, широкая и занимает всю сторону прямоугольника. Выходная клемма обладает точечным электродом. В качестве нулевого контакта выступает общая точка. Так как при отсутствии магнитного поля на контактах остается небольшой сигнал, то для коррекции выходных данных применяется дифференциальный усилитель.

Микросхема наносится на подложку методом литографии, что позволяет повысить точность показаний. Обычно в различных приборах это применяется для проверки положения элементов механизма.

Принцип действия

Принцип работы датчика Холла основан на гальваномагнитном явлении, которое показывает результат взаимодействия магнитного поля с полупроводником. Полупроводник подключен к электрической цепи, которая меняет его свойства.

Как только появляется поперечное напряжение, то сразу возникает эффект Холла. В этот момент заряд направлен перпендикулярно вектору поля. Такое явление объясняется воздействием на электроны или дырки силы Лоренца, которая и приводит к их отклонению.

Под воздействием этой силы частицы в полупроводнике двигаются в разные стороны, в соответствии со своим знаком. На одной стороне пластины собираются электроны (отрицательный заряд), а на другой частицы с положительным знаком.

По мере накопления зарядов между ними возникает электрический поток, который препятствует их перемещению под воздействием силы Лоренца. При достижении равенства этой силы и магнитного поля полупроводник вступает в фазу равновесия. Именно так и работает датчик Холла.

Виды устройств

Основной задачей этого прибора считается определение напряженности магнитного потока. Практически это сенсор определения значений магнитного поля. Существуют датчики двух видов:

  • цифровые;
  • аналоговые.

Цифровые приборы бывают биполярными и униполярными. Биполярные элементы работают в зависимости от полярности магнитного поля, то есть одна включает датчик, а вторая отключает.

Униполярные приборы включаются при появлении любой полярности и отключаются по мере ее уменьшения. Цифровые сенсоры измеряют индукцию и появление соответствующего напряжения, то есть наличие или отсутствие магнитного поля.

Прибор показывает единицу, когда индукция поля достигает пороговое значение. До этого момента сенсор будет показывать ноль. Такой датчик не сможет определить наличие магнитного поля со слабой индукцией. Кроме того, на точность показаний будет влиять дистанция до измеряемого объекта.

Применение датчика

Широко применяются преобразователи Холла в современной бытовой технике. С их помощью происходит взвешивание белья в стиральных машинах. При запуске агрегата вещи сначала намокают, а потом начинает вращаться барабан. По его скорости вращения определяется общий вес и происходит программирование машины на расход порошка, воды и ополаскивателя.

В серийном производстве впервые датчики стали использоваться в компьютерных клавиатурах. Здесь происходит взаимодействие чувствительного элемента на плате и магнита на клавишах. Упругость осуществляется за счет полимерного материала, который обладает большим сроком службы.

Единственным элементом, который может сломаться в клавиатуре является контроллер. Электрики очень часто пользуются датчиком Холла, когда замеряют бесконтактными клещами силу тока в проводах. Измерительный прибор реагирует на изменение электромагнитного поля вокруг кабелей и проводов.

Благодаря индуктивности из медной проволоки, находящейся в клещах, создается возбуждение и образуется электромагнитная волна. Часть ее значения оценивается сенсором, который передает данные в контроллер. По заложенным в нем формулам производится расчет, и результат выводится на дисплей.

Применяются датчики в сотовых телефонах для слежения за зарядом аккумулятора и его расходом. Но очень важным такой момент считается в эксплуатации электромобилей, так как наличие энергии в них занимает особое место. Используются преобразователи Холла в электронных компасах и в качестве стабилизатора изображений в мобильных камерах.

Но особенно широко эти приборы применяются в автомобильной промышленности. В автомобилях с их помощью происходит определение частоты вращения коленвала двигателя, положение дроссельной заслонки, скорости движения автомобиля и так далее. Применяется датчик в электронной системе зажигания. Находится он в трамблере и заменяет контакты для образования искры.

Использование сенсоров в смартфонах

Благодаря небольшим размерам датчики Холла нашли широкое применение в современных электронных гаджетах. В смартфонах они помогают возвращать экран в исходное положение, обеспечивают быстрый запуск GPS поиска, увеличивают срок службы аккумуляторной батареи и так далее.

Способность реагировать на магнитное поле используется в раскладывающихся телефонах и ноутбуках. Благодаря наличию датчика, происходит включение устройств при открытии и отключение при закрытии экрана. В смартфонах такую же функцию выполняет датчик, который взаимодействует с магнитом, встроенным в чехол книжку. Когда чехол открывается, то воздействие поля ослабевает и сенсор включает подсветку экрана. Преобразователь Холла в гаджетах выполняет следующие полезные функции:

  • обеспечивает ориентирование по отношению к горизонту земли;
  • работает в качестве компаса мобильного устройства;
  • совершает ориентирование экрана.

Немаловажное значение датчик имеет в устройстве видеокамеры. Вкупе со специальной микросхемой он позволяет корректировать качество изображения. Особенно это проявляется при съемках в вечернее время.

Датчик эффекта Холла и принцип работы магнитов

Магнитные датчики преобразуют магнитную или закодированную в магнитную кодировку информацию в электрические сигналы для обработки электронными схемами, а в обучающих материалах по датчикам и преобразователям мы рассмотрели индуктивные датчики приближения и LDVT, а также исполнительные механизмы с электромагнитными и релейными выходами.

Магнитные датчики - это твердотельные устройства, которые становятся все более популярными, поскольку их можно использовать во многих различных областях, таких как определение положения, скорости или направленного движения.Они также являются популярным выбором датчиков для разработчиков электроники из-за их бесконтактной работы без износа, низких эксплуатационных расходов, прочной конструкции и того, что герметичные устройства на эффекте Холла невосприимчивы к вибрации, пыли и воде.

Одно из основных применений магнитных датчиков - в автомобильных системах для определения положения, расстояния и скорости. Например, угловое положение коленчатого вала для угла зажигания свечей зажигания, положение автомобильных сидений и ремней безопасности для управления подушками безопасности или определение скорости вращения колес для антиблокировочной тормозной системы (ABS).

Магнитные датчики

предназначены для реагирования на широкий диапазон положительных и отрицательных магнитных полей в самых разных приложениях, и один тип магнитного датчика, выходной сигнал которого является функцией плотности магнитного поля вокруг него, называется датчиком эффекта Холла.

Датчики на эффекте Холла - это устройства, которые активируются внешним магнитным полем. Мы знаем, что магнитное поле имеет две важные характеристики: плотность потока (B) и полярность (северный и южный полюса).Выходной сигнал датчика Холла является функцией плотности магнитного поля вокруг устройства. Когда плотность магнитного потока вокруг датчика превышает определенный предварительно установленный порог, датчик обнаруживает это и генерирует выходное напряжение, называемое напряжением Холла , В H . Рассмотрим схему ниже.

Принципы работы датчика Холла

Датчики на эффекте Холла состоят в основном из тонкого куска прямоугольного полупроводникового материала p-типа, такого как арсенид галлия (GaAs), антимонид индия (InSb) или арсенид индия (InAs), пропускающий через себя непрерывный ток.Когда устройство помещается в магнитное поле, силовые линии магнитного потока оказывают на полупроводниковый материал силу, которая отклоняет носители заряда, электроны и дырки в обе стороны от полупроводниковой пластины. Это движение носителей заряда является результатом магнитной силы, которую они испытывают, проходя через полупроводниковый материал.

Когда эти электроны и дырки перемещаются в сторону, между двумя сторонами полупроводникового материала создается разность потенциалов за счет накопления этих носителей заряда.Затем на движение электронов через полупроводниковый материал влияет присутствие внешнего магнитного поля, расположенного под прямым углом к ​​нему, и этот эффект сильнее в плоском материале прямоугольной формы.

Эффект создания измеримого напряжения с помощью магнитного поля называется эффектом Холла в честь Эдвина Холла, который открыл его еще в 1870-х годах, причем основным физическим принципом, лежащим в основе эффекта Холла, является сила Лоренца. Чтобы создать разность потенциалов на устройстве, линии магнитного потока должны быть перпендикулярны (90 o ) потоку тока и иметь правильную полярность, как правило, южный полюс.

Эффект Холла дает информацию о типе магнитного полюса и величине магнитного поля. Например, южный полюс заставит устройство производить выходное напряжение, в то время как северный полюс не будет иметь никакого эффекта. Как правило, датчики и переключатели на эффекте Холла предназначены для выключения (состояние разомкнутой цепи) при отсутствии магнитного поля. Они включаются только при воздействии магнитного поля достаточной силы и полярности (состояние замкнутой цепи).

Магнитный датчик на эффекте Холла

Выходное напряжение, называемое напряжением Холла (В H ) основного элемента Холла, прямо пропорционально силе магнитного поля, проходящего через полупроводниковый материал (выходное напряжение H). Это выходное напряжение может быть довольно небольшим, всего несколько микровольт, даже при воздействии сильных магнитных полей, поэтому большинство имеющихся в продаже устройств на эффекте Холла производятся со встроенными усилителями постоянного тока, схемами логической коммутации и регуляторами напряжения для улучшения чувствительности датчиков, гистерезиса и выходной мощности. Напряжение.Это также позволяет датчику на эффекте Холла работать в более широком диапазоне источников питания и условий магнитного поля.

Датчик эффекта Холла

Датчики на эффекте Холла доступны с линейными или цифровыми выходами. Выходной сигнал для линейных (аналоговых) датчиков снимается непосредственно с выхода операционного усилителя, при этом выходное напряжение прямо пропорционально магнитному полю, проходящему через датчик Холла. Это выходное напряжение Холла определяется как:

.
  • Где:
  • V H - напряжение Холла в вольтах
  • R H - коэффициент Холла
  • I - ток, протекающий через датчик в амперах
  • t - толщина датчика в мм
  • B - плотность магнитного потока в теслах
  • .

Линейные или аналоговые датчики выдают постоянное выходное напряжение, которое увеличивается при сильном магнитном поле и уменьшается при слабом магнитном поле.В датчиках с линейным выходом на эффекте Холла по мере увеличения напряженности магнитного поля выходной сигнал усилителя также будет увеличиваться до тех пор, пока он не начнет насыщаться пределами, налагаемыми на него источником питания. Любое дополнительное увеличение магнитного поля не повлияет на выходной сигнал, а приведет его к еще большему насыщению.

С другой стороны, датчики с цифровым выходом

имеют триггер Шмитта со встроенным гистерезисом, подключенный к операционному усилителю. Когда магнитный поток, проходящий через датчик Холла, превышает предварительно установленное значение, выходной сигнал устройства быстро переключается из состояния «ВЫКЛ» в состояние «ВКЛ» без какого-либо дребезга контактов.Этот встроенный гистерезис устраняет любые колебания выходного сигнала, когда датчик входит и выходит из магнитного поля. Тогда датчики цифрового выхода имеют всего два состояния: «ВКЛ» и «ВЫКЛ».

Существует два основных типа цифровых датчиков Холла: биполярный и униполярный . Биполярным датчикам требуется положительное магнитное поле (южный полюс) для работы с ними и отрицательное поле (северный полюс) для их освобождения, в то время как униполярным датчикам требуется только один магнитный южный полюс, чтобы они работали и отпускали их, когда они входят и выходят из магнитного поля. поле.

Большинство устройств с эффектом Холла не могут напрямую переключать большие электрические нагрузки, так как их выходная мощность очень мала, от 10 до 20 мА. Для больших токовых нагрузок к выходу добавляется NPN-транзистор с открытым коллектором (стоком тока).

Этот транзистор работает в своей области насыщения как переключатель приемника NPN, замыкающий выходную клемму на землю всякий раз, когда приложенная плотность потока выше, чем предустановленное значение «ВКЛ».

Выходной переключающий транзистор может быть либо транзистором с открытым эмиттером, либо конфигурацией транзистора с открытым коллектором, либо и тем, и другим, обеспечивая конфигурацию двухтактного типа выхода, которая может потреблять достаточно тока для непосредственного управления многими нагрузками, включая реле, двигатели, светодиоды и лампы.

Применение эффекта Холла

Датчики

на эффекте Холла активируются магнитным полем, и во многих приложениях устройством можно управлять с помощью одного постоянного магнита, прикрепленного к движущемуся валу или устройству. Существует много различных типов движений магнита, таких как «лобовое», «вбок», «толкающее-толкающее» или «толкающее-толкающее» и т.д. Какой бы тип конфигурации ни использовался, для обеспечения максимальной чувствительности магнитные линии потока всегда должны быть перпендикулярны чувствительной области устройства и должны иметь правильную полярность.

Также для обеспечения линейности требуются магниты с высокой напряженностью поля, которые создают большое изменение напряженности поля для требуемого движения. Существует несколько возможных путей движения для обнаружения магнитного поля, и ниже приведены две наиболее распространенные конфигурации обнаружения с использованием одного магнита: Обнаружение лобового столкновения и Обнаружение сбоку .

Обнаружение лобового столкновения

Как следует из названия, «лобовое обнаружение» требует, чтобы магнитное поле было перпендикулярно датчику Холла, а для обнаружения оно приближалось к датчику прямо по направлению к активному лицу.Этакий «лобовой» подход.

Этот прямой подход генерирует выходной сигнал V H , который в линейных устройствах представляет силу магнитного поля, плотность магнитного потока как функцию расстояния от датчика Холла. Чем ближе и, следовательно, сильнее магнитное поле, тем больше выходное напряжение и наоборот.

Линейные устройства также могут различать положительные и отрицательные магнитные поля. Можно сделать так, чтобы нелинейные устройства запускали выход «ВКЛ» на предварительно установленном расстоянии воздушного зазора от магнита для индикации определения положения.

Обнаружение сбоку

Вторая конфигурация обнаружения - «обнаружение сбоку». Для этого необходимо перемещать магнит поперек поверхности элемента с эффектом Холла в боковом движении.

Обнаружение сбоку или скольжения полезно для обнаружения наличия магнитного поля, когда оно движется по лицевой стороне элемента Холла в пределах фиксированного расстояния воздушного зазора, например, для подсчета количества вращающихся магнитов или скорости вращения двигателей.

В зависимости от положения магнитного поля, когда оно проходит через центральную линию нулевого поля датчика, может создаваться линейное выходное напряжение, представляющее как положительный, так и отрицательный выходной сигнал.Это позволяет обнаруживать направленное движение, которое может быть как вертикальным, так и горизонтальным.

Датчики на эффекте Холла находят множество различных применений, особенно в качестве датчиков приближения. Их можно использовать вместо оптических и световых датчиков, если условия окружающей среды включают воду, вибрацию, грязь или масло, например, в автомобилях. Устройства на эффекте Холла также могут использоваться для измерения тока.

Из предыдущих уроков мы знаем, что когда ток проходит через проводник, вокруг него создается круговое электромагнитное поле.Поместив датчик Холла рядом с проводником, можно измерить электрические токи от нескольких миллиампер до тысяч ампер на основе генерируемого магнитного поля без необходимости использования больших или дорогих трансформаторов и катушек.

Помимо обнаружения наличия или отсутствия магнитов и магнитных полей, датчики на эффекте Холла также могут использоваться для обнаружения ферромагнитных материалов, таких как железо и сталь, путем размещения небольшого постоянного «смещающего» магнита позади активной области устройства. Теперь датчик находится в постоянном и статическом магнитном поле, и любое изменение или нарушение этого магнитного поля из-за введения железосодержащего материала будет обнаруживаться с минимально возможной чувствительностью мВ / G.

Существует множество различных способов подключения датчиков на эффекте Холла к электрическим и электронным схемам в зависимости от типа устройства, будь то цифровое или линейное. Один очень простой и легкий в изготовлении пример - использование светоизлучающего диода, как показано ниже.

Датчик положения

Этот лобовой датчик положения будет выключен при отсутствии магнитного поля (0 гаусс). Когда южный полюс постоянных магнитов (положительный гаусс) перемещается перпендикулярно активной области датчика Холла, устройство включается и загорается светодиод.После включения датчик на эффекте Холла остается включенным.

Чтобы выключить устройство и, следовательно, светодиод «ВЫКЛ», магнитное поле должно быть уменьшено до уровня ниже точки срабатывания для униполярных датчиков или подвергаться воздействию северного магнитного полюса (отрицательный гаусс) для биполярных датчиков. Светодиод может быть заменен на более мощный силовой транзистор, если выход датчика Холла требуется для переключения более мощных токовых нагрузок.

Как работают датчики на эффекте Холла

Как работают датчики на эффекте Холла. Реклама

Измерить электричество очень просто - мы все знакомы с электрическими единицами, такими как вольт, ампер и ватт (и большинство из нас видели счетчики с подвижной катушкой в той или иной форме). Немного сложнее измерить магнетизм. Спросите больше всего люди, как измерить силу магнитного поля (невидимое область магнетизма, простирающаяся вокруг магнита) или единицы в какая напряженность поля измеряется (Вебер или тесла, в зависимости от того, как вы измеряете), и они не будут иметь ни малейшего понятия.

Но есть простой способ измерить магнетизм прибором. называется датчиком или зондом на эффекте Холла, который использует хитроумный элемент наука, открытая в 1879 году американским физиком Эдвин Х. Холл (1855–1938). Работа Холла была гениальной и на много лет опередила свое время - на 20 лет до открытия электрона - и никто не знал, что с ним делать, пока спустя десятилетия не стали лучше разбираться в полупроводниках, таких как кремний. В наши дни Эдвин Холл был бы в восторге найти датчики, названные в его честь, используются во всех виды интересных способов.Давайте посмотрим внимательнее!

Фото: Магнитное испытательное оборудование, используемое для изучения эффекта Холла. Фото любезно предоставлено Брукхейвенской национальной лабораторией и Министерством энергетики США.

Что такое эффект Холла?

Работая вместе, электричество и магнетизм могут заставить вещи двигаться: электродвигатели, громкоговорители и наушники - лишь некоторые из незаменимых современные гаджеты, которые так работают. Отправить колеблющийся электрический ток через катушку из медного провода и (хотя вы этого не видите происходит) вы создадите временное магнитное поле вокруг катушки слишком.Поместите катушку рядом с большим постоянным магнитом и временным магнитное поле, создаваемое катушкой, будет либо притягивать, либо отталкивать магнитное поле от постоянного магнита. Если катушка свободна двигаться, он будет двигаться - либо к постоянному магниту, либо от него. В электродвигатель, катушка настроена так, что может вращаться на месте и поверните колесо; в громкоговорителях и наушники, катушка приклеена на кусок бумага, пластик или ткань, которая движется вперед и назад, чтобы выкачать звук.

Фото: вы не видите магнитное поле, но можете измерить его с помощью эффекта Холла.фото любезно предоставлено Wikimedia Commons.

Если электрический ток в фиксированном проводе сам притягивается магнитом, ток должен отводиться на одну сторону провода ...

Эдвин Холл , 1879

Что, если поместить кусок токоведущего провода в магнитное поле, а провод? не может двигаться? То, что мы называем электричеством, обычно представляет собой поток заряженные частицы через кристаллические (обычные, твердые) материалы (либо отрицательно заряженные электроны изнутри атомов, либо иногда положительно заряженные «дыры» - зазоры там, где должны находиться электроны).Вообще говоря, если подцепить пластину из проводящего материала к батарее, электроны будут проходить через пластину по прямой линии. Как движущиеся электрические заряды, они также будут производить магнитное поле. Если вы поместите плиту между полюса постоянного магнита, электроны отклонятся в изогнутый путь, когда они движутся через материал, потому что их собственная магнитное поле будет взаимодействовать с полем постоянного магнита. (Для справки, то, что заставляет их отклоняться, называется Сила Лоренца, но нам не нужно здесь вдаваться во все детали.) Это означает, что одна сторона материала будет видеть больше электронов, чем другой, так что разность потенциалов (напряжение) появится на материал под прямым углом к ​​магнитному полю от постоянный магнит и ток. Это то, что физики называют эффектом Холла. Чем больше магнитное поле, тем больше отклоняются электроны; чем больше ток, тем больше электронов нужно отклонить. В любом случае, чем больше разность потенциалов (известная как напряжение Холла) будет.В другом словами, напряжение Холла пропорционально величине как электрического ток и магнитное поле. Все это имеет больше смысла в наша небольшая анимация ниже.

Как работает эффект Холла?

  1. Когда электрический ток протекает через материал, электроны (показаны здесь синими пятнами) движутся через него практически по прямой линии.
  2. Поместите материал в магнитное поле, и электроны внутри него тоже будут в этом поле. На них действует сила (сила Лоренца) и заставляет отклоняться от их прямолинейного пути.
  3. Теперь, глядя сверху, электроны в этом примере будут изгибаться, как показано: с их точки зрения слева направо. Если на правой стороне материала (внизу на этом рисунке) больше электронов, чем на левой (вверху на этом рисунке), между двумя сторонами будет разница в потенциале (напряжении), как показано зеленым линия со стрелками. Величина этого напряжения прямо пропорциональна величине электрического тока и напряженности магнитного поля.

Куда они идут?

Как определить, в каком направлении будут двигаться электроны? Вы можете определить направление силы Лоренца с помощью правила левой руки Флеминга (если вы сделаете поправку на обычный ток) или его правила правой руки (если вы этого не сделаете).

Иллюстрация: заряженные частицы, движущиеся в магнитном поле, испытывают силу (сила Лоренца), которая меняет свое направление, вызывая эффект Холла. Вы можете использовать правило левой руки Флеминга (правило двигателя), чтобы определить направление силы, если вы помните, что правило применяется к обычному току (поток положительных зарядов), а поле течет с севера на юг. В этом примере, если у нас есть поток электронов на страницу, обычный ток вытекает из страницы (так что это направление, в котором должен указывать ваш второй палец).Если поле течет слева направо (указательный палец), наш большой палец говорит нам, что электроны будут двигаться вверх.

Использование эффекта Холла

Вы можете обнаруживать и измерять все виды вещей с помощью эффекта Холла, используя то, что известно. как датчик или зонд на эффекте Холла. Эти термины иногда используются взаимозаменяемо, но, строго говоря, относятся к разным вещам:

  • Датчики на эффекте Холла простые, недорогие, электронные чипы, которые используются во всевозможных широко доступных гаджетах и ​​товарах.
  • Зонды
  • на эффекте Холла - более дорогие и сложные инструменты. в научных лабораториях для таких вещей, как измерение напряженности магнитного поля с очень высокой точностью.


Фото: 1) Типичный кремниевый датчик Холла. Это выглядит очень похоже на транзистор - что неудивительно, поскольку он сделан аналогичным образом. Автор фото: Expainthatstuff.com. 2) Зонд на эффекте Холла, использовавшийся НАСА в середине 1960-х годов. Фото любезно предоставлено Исследовательский центр НАСА Гленна (NASA-GRC).

Обычно изготавливается из полупроводников (таких материалов, как кремний и германий), эффект Холла датчики работают, измеряя напряжение Холла на двух поверхностях когда вы помещаете их в магнитное поле. Некоторые датчики Холла упакованы в удобные микросхемы со схемой управления и могут быть подключается непосредственно к более крупным электронным схемам. Самый простой способ использование одного из этих устройств позволяет определить положение чего-либо. Для Например, вы можете разместить датчик Холла на дверной коробке и магнит на двери, поэтому датчик определяет, открыта дверь или закрыта от наличия магнитного поля.Такое устройство называется датчик приближения. Конечно, вы можете выполнять ту же работу так же легко с магнитным герконом (нет общего правила относительно того, герконовые переключатели старого образца или современные датчики на эффекте Холла лучше - это зависит от приложения). В отличие от герконов, которые являются механическими и полагаются на контакты движущиеся в магнитном поле датчики Холла полностью электронные и не имеют движущихся частей, поэтому (по крайней мере теоретически) они должны быть надежнее. Одна вещь, которую вы не можете сделать с герконом, - это определить степень «включения» - силу магнетизма, - потому что геркон либо включен, либо выключен.Вот что делает датчик на эффекте Холла таким полезным.

Рекламные ссылки

Для чего используются датчики на эффекте Холла?

Фото: Этот небольшой бесщеточный двигатель постоянного тока из старого дисковода для гибких дисков имеет три датчика Холла. (обозначены красными кружками), расположенные по его краю, которые обнаруживают движение ротора двигателя (вращающегося постоянного магнита) над ними (не показано на этой фотографии). На датчики особо не на что смотреть, как вы можете видеть на фото крупным планом справа!

Датчики

на эффекте Холла дешевы, прочные и надежные, крошечные и простые в использовании. так что вы найдете их во множестве разных машин и повседневных устройств, от автомобильных зажиганий до компьютерных клавиатур и заводских роботов до велотренажеров

Вот один очень распространенный пример, который вы сейчас можете использовать на своем компьютере.В бесщеточный двигатель постоянного тока (используется в таких устройствах, как жесткие и гибкие диски), вам необходимо в любой момент точно определить, где находится двигатель. Датчик Холла расположенный рядом с ротором (вращающаяся часть двигателя) сможет очень точно определить его ориентацию, измеряя вариации магнитное поле. Подобные датчики также можно использовать для измерения скорости. (например, чтобы посчитать, насколько быстро колесо или двигатель автомобиля кулачок или коленчатый вал вращается). Вы часто найдете их в электронных спидометрах и анемометры (измерители скорости ветра), где они могут быть использованы аналогично герконовым переключателям.

Революционное открытие Эдвина Холла прижилось за несколько десятилетий, но теперь оно используется в самых разных местах - даже в электромагнитных космических ракетных двигателях. Без преувеличения можно сказать, что новаторская работа Холла произвела на меня большое впечатление!

Изображение: Как упакован типичный датчик Холла. Магнитные поля могут быть очень маленькими, поэтому нам нужно, чтобы наши детекторы были как можно более чувствительными, и вот один из способов добиться этого. Сам чип Холла (зеленый, 17) установлен на железной несущей пластине (серый, 16), зажатой внутри двух формованных пластиковых секций (серый, 11, 12).Микросхема подключена выводами (19) к контактам (синим), с помощью которых ее можно подключить в цепь. Но действительно важными частями являются два «концентратора потока» из мягкого железа (оранжевый, 15, 21), которые делают устройство намного более чувствительным. Когда вы помещаете магнит (22) рядом с датчиком, эти концентраторы позволяют магнитному потоку («плотность» магнетизма, создаваемого магнитным полем) течь по непрерывной петле через кристалл Холла, создавая либо положительное, либо отрицательное напряжение. Если магнит переместится на другую сторону датчика, он создаст противоположное напряжение.Иллюстрация из патента США № 3 845 445: Модульное устройство на эффекте Холла Роланда Брауна и др., Корпорация IBM, 29 октября 1974 г., любезно предоставлено Управлением по патентам и товарным знакам США.

Рекламные ссылки

Узнать больше

На этом сайте

Статьи

История
  • [PDF] Открытие эффекта Холла Г.С. Лидстоуном, Physics Education, Volume 14, 1979. Как Холл открыл свой эффект и выяснил, что он означает, бросив вызов некоторым из более ранних работ Джеймса Клерка Максвелла.
Статьи Эдвина Холла
  • О новом действии магнита на электрические токи. Эдвин Х. Холл, Американский журнал математики, Vol. 2, No. 3 (сентябрь 1879 г.), стр. 287–292. Оригинальная статья Холла.
  • Объяснение феномена Холла Эдвином Х. Холлом, Наука, Vol. 3, № 60 (28 марта 1884 г.), стр. 386–387. Собственное описание и объяснение Холла своего первоначального эксперимента.
  • Теория эффекта Холла и связанного с ним эффекта для нескольких металлов Эдвина Х.Холл, PNAS США, Vol. 9, No. 2 (15 февраля 1923 г.), стр. 41–46. Одна из более поздних работ Холла.

Книги

  • Датчики на эффекте Холла: теория и применение Эдварда Рамсдена. Newnes, 2006. Охватывает физику, лежащую в основе датчиков Холла, и способы их включения в практические схемы. Включает в себя датчики приближения, датчики тока и датчики скорости и времени. Также есть удобный глоссарий и список поставщиков.
  • Устройства на эффекте Холла Р. С. Поповича. Институт физики, 2004.Несколько более крупная и подробная книга, но охватывающая схожую тему с смесью теории, практических схем и повседневных приложений.
  • Эффект Холла в металлах и сплавах Колина Херда. Springer 1972/2012. Современное переиздание вступления 1970-х годов.

Практические проекты

Видео

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:

Цитируйте эту страницу

Вудфорд, Крис. (2009/2020) Датчики на эффекте Холла. Получено с https://www.explainthatstuff.com/hall-effect-sensors.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте ...

Принцип Холла #Melexis

Принцип эффекта Холла назван в честь физика Эдвина Холла. В 1879 году он обнаружил, что когда проводник или полупроводник с током, текущим в одном направлении, вводится перпендикулярно магнитному полю, напряжение может быть измерено под прямым углом к ​​пути тока. Распространенная аналогия, популярная во время открытия Холла, заключалась в том, что электрический ток в проводе соединяется с жидкостью, текущей в трубе.Теория Холла приравняла силу магнитного поля к току, в результате чего на одной стороне «трубы» или провода скапливалось скопление. Теория электромагнитного поля позволила более тонко интерпретировать физику, ответственную за эффект Холла.

Хорошо известно, что эффект Холла возникает в результате взаимодействия заряженных частиц, таких как электроны, в ответ на электрические и магнитные поля. Прекрасное, подробное, но хорошо читаемое объяснение можно найти в книге Эда Рамсдена «Датчики эффекта Холла; теория и приложения».А также в Википедии.

Первоначально это открытие использовалось для классификации химических образцов. Разработка полупроводниковых соединений арсенида индия в 1950-х годах привела к появлению первых полезных магнитных инструментов на эффекте Холла. Датчики на эффекте Холла позволяют измерять постоянное или статическое магнитное поле, не требуя движения датчика. В 1960-х годах популяризация кремниевых полупроводников привела к появлению первых комбинаций элементов Холла и интегральных усилителей.Это привело к созданию теперь уже классического переключателя Холла с цифровым выходом.

Продолжающаяся эволюция технологии датчиков Холла привела к прогрессу от одноэлементных устройств к двойным ортогонально расположенным элементам. Это было сделано для минимизации смещений на зажимах напряжения Холла.

Следующим шагом вперед стали квадратные или четырехэлементные преобразователи. В них использовались четыре элемента, ортогонально расположенных в виде моста. Все кремниевые сенсоры того времени были построены на основе процессов биполярного перехода в полупроводниках.

Переход на КМОП-процессы позволил реализовать стабилизацию прерывателя в усилительной части схемы. Это помогло уменьшить ошибки за счет уменьшения ошибок смещения входного сигнала на операционном усилителе. Все ошибки в цепи стабилизации без прерывателя приводят к ошибкам порога точки переключения для датчиков цифрового типа или ошибкам смещения и усиления в датчиках с линейным выходом.

Текущее поколение КМОП-датчиков Холла также включает схему, которая активно переключает направление тока через элементы Холла.Эта схема исключает ошибки смещения, характерные для полупроводниковых элементов Холла. Он также активно компенсирует ошибки смещения, вызванные температурой и деформацией. Общий эффект переключения активной пластины и стабилизации прерывателя дает датчики на эффекте Холла с улучшением на порядок дрейфа точек переключения или ошибок усиления и смещения.

Melexis использует исключительно процесс CMOS для достижения наилучшей производительности и наименьшего размера микросхемы. Текущие разработки в технологии датчиков на эффекте Холла можно объяснить, главным образом, интеграцией сложных схем формирования сигналов в ИС Холла.

Melexis представила первую в мире программируемую линейную ИС Холла. Он обеспечивает программируемые функциональные характеристики, такие как усиление, смещение, температурный коэффициент усиления (для компенсации тепловых зависимостей различных магнитных материалов). В новейшие ИС Холла встроены ядра микроконтроллеров, чтобы сделать датчик еще более «умным» с программируемыми алгоритмами ПЗУ для сложной обработки сигналов в реальном времени.


Пример того, как Melexis использует эффект Холла
Продукция Melexis с эффектом Холла

Что такое эффект Холла и как работают датчики на эффекте Холла

В этом уроке мы узнаем, что такое эффект Холла и как работают датчики на эффекте Холла.Вы можете посмотреть следующее видео или прочитать письменное руководство ниже.

РЕКОМЕНДУЕТСЯ Обзор

Эффект Холла - наиболее распространенный метод измерения магнитного поля, а датчики на эффекте Холла очень популярны и находят множество современных применений. Например, их можно найти в транспортных средствах в качестве датчиков скорости вращения колес, а также датчиков положения коленчатого или распределительного вала. Также они часто используются как переключатели, компасы MEMS, датчики приближения и так далее.Теперь мы рассмотрим некоторые из этих датчиков и посмотрим, как они работают, но сначала давайте объясним, что такое эффект Холла.

Что такое эффект Холла?


Вот эксперимент, объясняющий эффект Холла: если у нас есть тонкая проводящая пластина, как показано на рисунке, и мы настроим ток, протекающий через нее, носители заряда будут течь по прямой линии от одной стороны пластины к другой.

Теперь, если мы поднесем некоторое магнитное поле к пластине, мы нарушим прямой поток носителей заряда из-за силы, называемой Сила Лоренца (Википедия).В таком случае электроны отклонятся на одну сторону пластины, а положительные отверстия - на другую сторону пластины. Это означает, что если мы теперь поместим измеритель между двумя другими сторонами, мы получим некоторое напряжение, которое можно измерить.

Таким образом, эффект получения измеримого напряжения, как мы объясняли выше, называется эффектом Холла в честь Эдвина Холла, который открыл его в 1879 году.

Датчики на эффекте Холла

Базовый элемент Холла магнитных датчиков на эффекте Холла в основном обеспечивает очень небольшое напряжение, всего несколько микровольт на гаусс, поэтому эти устройства обычно производятся со встроенными усилителями с высоким коэффициентом усиления.

Существует два типа датчиков Холла: один с аналоговым, а другой с цифровым выходом. Аналоговый датчик состоит из регулятора напряжения, элемента Холла и усилителя. Из принципиальной схемы видно, что выходной сигнал датчика является аналоговым и пропорционален выходному сигналу элемента Холла или напряженности магнитного поля. Датчики этого типа подходят и используются для измерения близости из-за их непрерывного линейного выхода.

С другой стороны, цифровые выходные датчики обеспечивают только два состояния выхода: «ВКЛ» или «ВЫКЛ».Датчики этого типа имеют дополнительный элемент, как показано на принципиальных схемах. Это триггер Шмитта, который обеспечивает гистерезис или два разных пороговых уровня, поэтому выходной сигнал может быть высоким или низким. Для получения более подробной информации о том, как работает триггер Шмитта, вы можете проверить это в моем конкретном руководстве.

Примером датчика этого типа является переключатель на эффекте Холла. Они часто используются в качестве концевых выключателей, например, в 3D-принтерах и станках с ЧПУ, а также для обнаружения и позиционирования в системах промышленной автоматизации.

Другие современные применения датчиков Холла - измерение скорости вращения колеса / ротора или числа оборотов в минуту, а также определение положения коленчатого или распределительного вала в системах двигателя. Эти датчики состоят из элемента Холла и постоянного магнита, которые расположены рядом с зубчатым диском, прикрепленным к вращающемуся валу.

Зазор между датчиком и зубьями диска очень мал, поэтому каждый раз, когда зуб проходит рядом с датчиком, изменяется окружающее магнитное поле, в результате чего выходной сигнал датчика становится высоким или низким.Таким образом, выходной сигнал датчика представляет собой прямоугольный сигнал, который можно легко использовать для расчета числа оборотов вращающегося вала.

Что такое датчик Холла?

Датчик на эффекте Холла - это электронное устройство, предназначенное для обнаружения эффекта Холла и преобразования его результатов в электронные данные, для включения и выключения цепи, для измерения переменного магнитного поля или обработки с помощью встроенного компьютера. или отображается в интерфейсе. В 1879 году ученый Эдвин Холл обнаружил, что если магнит помещается перпендикулярно проводнику с постоянным током, электроны, протекающие внутри проводника, притягиваются в одну сторону, создавая разность потенциалов в заряде (т.е. Напряжение). Таким образом, эффект Холла указывает на наличие и величину магнитного поля вблизи проводника.

Используя магнитные поля, датчики на эффекте Холла используются для обнаружения таких переменных, как близость, скорость или смещение механической системы. Датчики на эффекте Холла являются бесконтактными, что означает, что они не должны контактировать с физическим элементом. Они могут генерировать цифровой (включенный и выключенный) или аналоговый (непрерывный) сигнал в зависимости от их конструкции и предполагаемой функции.

Переключатели и защелки на эффекте Холла включены или выключены. Переключатель на эффекте Холла включается при наличии магнитного поля и выключается при удалении магнита. Защелка на эффекте Холла включается (закрывается) при приложении положительного магнитного поля и остается включенной даже при удалении магнита. При наложении отрицательного магнитного поля защелка на эффекте Холла отключается (открывается) и остается выключенной даже после удаления магнита.

Линейные датчики Холла (аналоговые) обеспечивают точные и непрерывные измерения на основе напряженности магнитного поля; они не включаются и не выключаются.В датчике на эффекте Холла элемент Холла передает разность электрических потенциалов (напряжение, вызванное магнитными помехами) в усилитель, чтобы сделать изменение напряжения достаточно большим, чтобы оно было воспринято встроенной системой.

Датчики

на эффекте Холла используются в сотовых телефонах и GPS, сборочных линиях, автомобилях, медицинских устройствах и многих устройствах Интернета вещей. Ожидается, что рынок датчиков на эффекте Холла будет расти более чем на 10% в год и к 2026 году достигнет 7,55 млрд долларов.

Определение, принцип работы, применение и примеры датчика Холла

Напряжение Холла было обнаружено Эдвином Холлом в 1879 году. Эффект Холла возникает из-за природы тока в проводнике. Многие изобретения использовали эту теорию эффекта Холла. Эта теория также используется в датчиках тока, датчиках давления, датчиках потока жидкости и т. Д. Одним из таких изобретений, которые могут измерять магнитное поле, является датчик на эффекте Холла.


Определение датчика эффекта Холла

Датчики эффекта Холла - это линейные преобразователи, которые используются для измерения величины магнитного поля.Работая по принципу эффекта Холла, эти датчики генерируют напряжение Холла при обнаружении магнитного поля, которое используется для измерения плотности магнитного потока.

Линейные датчики могут измерять широкий диапазон магнитных полей. Помимо магнитных полей, эти датчики также используются для определения близости, положения, скорости. Для этих датчиков выходное напряжение прямо пропорционально величине магнитного поля.


Принцип работы датчика Холла

В качестве принципа работы датчика Холла используется принцип напряжения Холла.По тонкой полоске проводника при подаче электричества электроны движутся по прямой линии. Когда этот заряженный проводник входит в контакт с магнитным полем, которое направлено перпендикулярно движению электронов, электроны отклоняются.

Часть электронов собирается с одной стороны, а часть - с другой. Из-за этого одна из плоскостей проводника ведет себя как отрицательно заряженная, а другая - как положительно заряженная. Это создает разность потенциалов и напряжение.Это напряжение называется напряжением Холла.

Электроны продолжают перемещаться с одной стороны плоскости на другую, пока не будет достигнут баланс между силой, приложенной к заряженным частицам из-за электрического поля, и силой, вызвавшей магнитный поток, вызвавший это изменение. Когда это разделение прекращается, значение напряжения Холла в этот момент дает меру плотности магнитного потока.


Датчик Холла Схема

В зависимости от соотношения между напряжением Холла и плотностью магнитного потока датчики Холла бывают двух типов.В линейном датчике выходное напряжение линейно связано с плотностью магнитного потока. В пороговом датчике при каждой плотности магнитного потока выходное напряжение будет резко падать.

Датчики на эффекте Холла можно рассматривать как линейные преобразователи. Для обработки выходного сигнала датчика требуется линейная схема, которая может обеспечивать постоянный ток возбуждения для датчиков, а также усиливает выходной сигнал.

Применение датчика Холла

Датчики Холла применяются следующим образом:

  • В сочетании с обнаружением порога они действуют как переключатель.
  • Они используются в приложениях со сверхвысокой надежностью, таких как клавиатуры.
  • Датчики на эффекте Холла используются для измерения скорости вращения колес и валов.
  • Они используются для определения положения постоянного магнита в бесщеточных электродвигателях постоянного тока.
  • Датчики на эффекте Холла встраиваются в цифровые электронные устройства вместе с линейными преобразователями.
  • Определение наличия магнитного поля в промышленных приложениях.
  • Используется в смартфоне для проверки, закрыта ли откидная крышка.
  • Для бесконтактного измерения постоянного тока в трансформаторах тока используется датчик Холла.
  • Используется в качестве датчика для определения уровня топлива в автомобилях.

Примеры

Некоторыми примерами применения датчиков Холла являются трансформаторы тока, определение положения, аксессуары Galaxy S4, переключатель клавиатуры, компьютеры, датчик приближения, определение скорости, приложения измерения тока, тахометры, анти- замковые тормозные системы, магнитометры, двигатели постоянного тока, дисковые накопители и т. д.…

Датчики на эффекте Холла доступны в виде различных ИС.Многие из имеющихся на рынке датчиков на эффекте Холла содержат сенсорный элемент вместе с усилителем IC с высоким коэффициентом усиления. Они защищены от изменений окружающей среды благодаря своей защитной упаковке. Какую микросхему датчика Холла вы использовали?

Что такое датчик Холла? - Аналоговый - Технические статьи

Датчик Холла, также известный как датчик Холла, отслеживает магнитные поля с высокой точностью, постоянством и надежностью. Почему это важно? Потому что это позволяет вам определять положение и движение объектов в системе.В этой статье я объясню, что такое датчик на эффекте Холла, его основные строительные блоки и функции, а также распространенные варианты использования датчиков Холла.

Датчик на эффекте Холла не является типичной интегральной схемой (ИС), потому что, в отличие от большинства ИС, он косвенно взаимодействует со своей ключевой «схемой» - магнитом! Как показано на рисунке 1, элементарный датчик на эффекте Холла состоит из элемента Холла, который превращает магнитное поле в напряжение, и схемы обработки, такой как операционный усилитель.Схема как аналоговой, так и цифровой обработки имеет решающее значение для работы датчика Холла, потому что выходное напряжение элемента Холла крошечное - иногда в диапазоне микровольт. Один из простейших датчиков на эффекте Холла использует только трехконтактные корпуса, транзистор с малым контуром (SOT) -23 или контур транзистора (TO) -92, для источника питания, заземления и вывода.

Рисунок 1: Базовый датчик Холла

Магнитные поля никогда не бывают прямыми линиями, поскольку они простираются от одного полюса к другому, но на Рисунке 1 для простоты показаны прямые линии, падающие на датчик.Точное знание того, как эти векторы поля ведут себя в космосе, позволяет вам делать с ними много творческих работ. Ознакомьтесь с примечаниями по применению на странице поддержки и обучения магнитных датчиков TI, где можно найти некоторые основные идеи.

Вы когда-нибудь задумывались о том, как работают датчики на эффекте Холла? Простой ответ заключается в том, что небольшое напряжение возникает на куске проводящего материала, вытесняя электроны с одной стороны, поскольку ток проталкивается через проводник и магнитное поле прикладывается в ортогональном направлении (см. Рисунок 2).Этот потенциал напряжения приписывается силе Лоренца, открытой Эдвином Холлом в 1879 году.

Рисунок 2: Эффект Холла

Обратите внимание на направление магнитного поля относительно элемента Холла? Это ключевой аспект датчика Холла, который необходимо учитывать при проектировании механической части. В большинстве таблиц данных датчиков Холла указывается ожидаемое направление магнитного поля относительно поверхности упаковки. Компания TI предлагает несколько вариантов в своем портфеле датчиков на эффекте Холла.

Это фундаментальное понимание того, как работают датчики на эффекте Холла, необходимо для того, чтобы вы знали, как их эффективно использовать при правильном расположении относительно магнита. Но вам также необходимо знать, как магнитные поля, создаваемые магнитом, влияют на расстояние. На рисунке 3 показан простой график того, как магнитное поле затухает на расстоянии от магнита.

Рисунок 3: Распад магнитного поля на расстоянии

Чтобы максимизировать разрешение измерения, вам необходимо убедиться, что минимальные и максимальные значения расстояния системы находятся в пределах области с наибольшим изменением магнитного поля.

На сегодняшний день доступны три типа датчиков положения на эффекте Холла:

  • Переключатель на эффекте Холла - это цифровое выходное устройство, которое переключает состояния в зависимости от магнитного поля, которое он воспринимает. По мере приближения магнита к датчику магнитное поле, которое он воспринимает, становится сильнее и переключается в активное состояние, называемое B OP . Когда магнитное поле, которое оно ощущает, ослабевает (по мере того, как магнит отодвигается дальше), устройство переключается обратно в неактивное состояние на пороге, называемом B RP .
  • Защелка на эффекте Холла практически идентична переключателю, за исключением того, что она имеет точку B RP , противоположную по магнитной полярности. Другими словами, для переключения состояния выходного напряжения требуется переменная полярность магнитного поля.
  • Линейный датчик на эффекте Холла, также известный как линейный датчик, представляет собой аналоговое устройство, которое изменяет свое выходное напряжение пропорционально магнитному полю, которое он обнаруживает. В отсутствие магнитного поля устройство будет производить выходное напряжение, равное половине напряжения источника питания (V Q ).По мере усиления магнитного поля выходное напряжение будет либо приближать его к земле (магнитный север), либо приближаться к напряжению источника питания (магнитный юг), пока не достигнет точки насыщения. Датчик не будет измерять магнитные поля более сильные, чем те, которые достигаются при насыщении, из-за неизменного выходного напряжения. Коммутаторы и линейные устройства бывают однополярных версий (которые могут распознавать только северное или южное поля) или многополярных переключателей и биполярных линейных устройств (которые распознают как северные, так и южные поля).

На рис. 4 показаны соответствующие передаточные функции трех типов датчиков Холла.

Рисунок 4: Передаточные функции переключателя, защелки и линейного датчика

Магнитные точки B OP и B RP в переключателях и защелках определяют значение гистерезиса (B HYS = B OP - B RP ). Использование гистерезиса в вашей системе предотвратит переключение между выходными состояниями.

Общие приложения датчиков Холла

Переключатели

широко используются в портативных компьютерах, дверцах холодильников и оконечных переключателях для обнаружения приближения магнита к датчику. Защелки популярны в приложениях для кодирования вращения и коммутации двигателей, где вращательный аспект приложения созрел для непрерывного мониторинга положения вращающегося вала. Линейные датчики могут точно измерять смещение объекта, поэтому они подходят для линейных приводов, триггеров переменной скорости и педалей ускорения.

Датчики

на эффекте Холла обеспечивают экономичный способ наблюдения за движущимися объектами. В зависимости от области применения вы можете использовать переключатель, защелку или линейный датчик. Если вы хотите продолжить изучение датчиков на эффекте Холла, я рекомендую вам ознакомиться с нашей серией тренингов TI Precision Labs по магнитным датчикам.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *