Регулятор холостого хода принцип работы: Принцип работы, устройство и проверка регулятора холостого хода

Содержание

Принцип работы, устройство и проверка регулятора холостого хода

Так называемые холостые обороты двигателя, при которых коленвал вращается настолько медленно, насколько это возможно, — головная боль инженеров-конструкторов. Они, как ни странно, дают двигателю наибольшую нагрузку. Причина в том, что при низком давлении процесс сгорания топливно-воздушной смеси нестабилен; кроме того, сама смесь не может быть отрегулирована по пропорциям.

В эпоху карбюраторных двигателей эта проблема решалась с помощью газоанализатора, тахометра и отвёртки. Сейчас же инженеры построили цепь из трёх элементов: сам двигатель, вычисляющий блок и регулятор холостого хода. Вычисляющий блок (контроллер) проверяет обороты двигателя, в случае необходимости даёт ему команду, и он через механизм регулятора меняет обороты.

Принцип работы регулятора холостого хода

Регулятор холостого хода — это механическое устройство с электромотором и конусной иглой, на которую намотана пружина.

По сути, единственная движущаяся часть РХХ и выполняет его основную функцию: изменяет геометрию канала подачи воздуха в обход заслонки дросселя.

Как работает устройство

Когда контроллер по показателям датчика положения коленчатого вала даёт команду регулятору, тот включает электромотор, изменяет длину иглы и тем самым открывает обходной канал. Вот как это работает: воздух, поступивший в результате через этот канал во впускной коллектор, обогащает смесь, её сгорание становится более стабильным, что, соответственно, стабилизирует обороты двигателя, оптимизирует давление и устраняет перепады оборотов.

Таким образом, благодаря бесперебойной работе этого устройства в современном автомобиле двигатель работает в обычно режиме даже без предварительного прогрева.

Где находится регулятор

Регулятор холостого хода крепится к корпусу дроссельной заслонки. Как правило, для крепления используется два винта. То, где находится РХХ в конкретной машине, определяется местоположением обходного воздушного канала.

Открывая и закрывая этот канал, регулятор обеспечивает подачу воздуха за счёт изменения сечения этого канала и его геометрии.

Когда стоит беспокоиться

Симптомы неисправности

Зная, как работает устройство, можно без труда понять симптомы его поломки. Если РХХ не в порядке, мотор не будет «держать холостые», будет глохнуть при выключении передачи. Также возможно, что обороты будут сами по себе снижаться и повышаться. Все это, конечно, применительно к холодному двигателю. Кроме того, если обороты начинают «скакать» при включении дополнительного оборудования (кондиционера, прикуривателя, подсветки и т. п.), то с высокой долей вероятности причина именно в регуляторе холостого хода.

Возможно, у читателя возникнет вопрос: для чего мне это знать? Причина проста: регулятор холостого хода — исполнительное устройство, так что его не затрагивает процедура самодиагностики автомобиля.

Симптомы его неисправности немного напоминают признаки поломки датчика положения дроссельной заслонки. Но в этом случае диагностика как раз работает, и такая неисправность зажжёт на приборной панели соответствующий индикатор. При этом РХХ в инжекторном двигателе — необходимая деталь; именно поэтому важно знать, как проверить регулятор холостого хода, не заезжая на компьютерную диагностику.

Следующий шаг

Итак, у вас появились описанные симптомы, и при этом не зажглась лампочка «Проверьте двигатель». Как заменить сломавший регулятор холостого хода? Он прикреплён к корпусу дроссельной заслонки; нюанс в том, что некоторые производители рассверливают или заливают лаком головки винтов, которыми крепится устройство. В таком случае, конечно, придётся снимать дроссельную заслонку полностью. Впрочем, это маловероятно.

Как правило, с крепёжными винтами все в порядке, и нужно только открутив их, отключить разъем с четырьмя контактами, посредством которого РХХ получает сигналы от управляющего контроллера.

Важно заметить, что описанные ваши симптомы необязательно автоматически означают замену регулятора холостого хода; часто достаточно просто очистить обходной воздушный канал.

В зависимости от модели автомобиля может быть установлен РХХ одного из трёх типов. Сути работы устройства это не меняет, и, по большому счету, вам необязательно знать, какой именно тип используется в вашей машине. Однако, если для ремонта вы будете использовать не «родные» запчасти, то этот момент становится важным. Итак, регулятор холостого хода может быть соленоидным, роторным или шаговым. В зависимости от типа, разнится и способ подачи управляющего сигнала от контроллера, так что эти регуляторы не являются обратно совместимыми!

После демонтажа РХХ и его замены/проверки, в обратном порядке производится его установка. Главное, нужно следить за тем, чтобы расстояние между корпусом устройства и крайней точкой его конусной иглы было равно 23 миллиметрам, иначе такой регулятор неисправен, и его нужно заменить.

Вывод

Холостой ход — весьма важный и сложный момент в работе двигателя. Нагрузка, как бы ни парадоксально это звучало, будет наибольшей именно на малых оборотах.

Как проверить работу регулятора холостого хода:

  • падение/повышение оборотов двигателя, даже когда вы не трогаете педаль газа;
  • мотор глохнет, когда вы включаете «нейтралку»;
  • обороты меняются при включении фар.

Если ваша машина начинает так себя вести, не зажигая индикатора проверки двигателя — значит, пора проверить РХХ и заменить его. Или при необходимости просто прочистить байпасный канал дроссельной заслонки.

Датчик холостого хода Хендай Акцент: как работает, проверка, замена

Датчик холостого хода Хендай Акцент предназначен для пропорциональной подачи воздуха в топливную систему двигателя. По сути, этот узел не является датчиком, так как он не рассчитывает параметры, а регулирует количество подаваемого воздуха. Поэтому это устройство является регулятором. Статья описывает принцип действия, неисправности, способы проверки и замены регулятора холостого хода автомобиля Хендай Акцент.

Принцип работы

После старта двигателя, он нуждается в прогреве. Прогрев осуществляется на малых оборотах, при полном закрытии дроссельной заслонки. РХХ предназначен для подачи объема воздуха в топливную систему, в обход дроссельной заслонки. Датчик холостого хода на Акцент работает в паре с датчиком расхода воздуха. Именно этот датчик посылает на блок управления информацию о воздушном объеме, а ЭБУ рассчитывает необходимое количество. Произведя расчет, ЭБУ посылает импульс на РХХ. Электрический двигатель датчика холостого хода сдвигает иглу в положение увеличения или уменьшения прохода воздуха в систему. Самым правильным параметром является пропорциональное соотношение воздуха и топлива в пропорции 1 к 14.

Симптомы неисправности

Регулятор малых оборотов является важным узлом для обеспечения работы двигателя при прогреве либо во время остановки. На неисправность этого элемента указывает следующее:

  1. Тяжелый запуск холодного двигателя.
  2. Плавающие обороты двигателя.
  3. Двигатель перестает работать при резком нажатии на педаль газа.
  4. Двигатель глохнет или работает с перебоями во время остановки.

На выход из строя РХХ также указывают следующие коды ошибок, выдаваемые блоком управления:

  • Р0505 — полный выход из строя РХХ;
  • Р0506 — заниженное число оборотов при работе на холостом ходу;
  • Р0507 — высокие обороты холостого хода;
  • Р1509 — перегрузка электрической цепи РХХ;
  • Р1510 — не закрыт клапан регулятора;
  • Р1513 — РХХ замыкает на массу;
  • Р1514 — нет напряжения в цепи.

Для выявления этих неисправностей потребуется проверка работоспособности датчика холостого хода.

Проверка

Регулятор холостого хода работает от электрической 3 контактной цепи. Для проверки работоспособности необходимо:

  1. При помощи омметра замерить сопротивление на клемме 1–3. Оно должно составлять 50 Ом. Эта проверка определяет рабочее сопротивление шагового двигателя РХХ.
  2. Проверка при помощи тестера проводится замером напряжения с клеммы 2 и массы. Напряжение должно равняться напряжению аккумулятора.

Также проверить можно отдельно парные контакты. Сопротивление контактов 1–2 должно равняться 18 Ом, а с контактов 2–3 варьироваться от 15 до 20 Ом.

РХХ может выйти из строя по причине загрязнения. Для того чтобы почистить устройство, необходимо:

  1. Вынуть штекер из гнезда РХХ.
  2. Выкрутить 2 крепежных болта.
  3. Вынуть из корпуса металлическую втулку, соединяющую 2 половины корпуса.
  4. Отсоединить друг от друга две половины корпуса.

Очистку можно проводить с использованием мягкой щетки или ветоши. Для работы можно использовать бензин или растворитель.

Замена

Датчик холостого хода Хендай Акцент расположен на корпусе блока дроссельной заслонки. Для его замены необходимо:

  1. Отсоединить клемму массы от аккумулятора.
  2. Вынуть штекер из гнезда РХХ.
  3. Открутить 2 крепежных болта.
  4. Вынуть датчик из отверстия на корпусе блока регулятора дроссельной заслонки.

Замена устройства проводится в обратном порядке. После установки новой детали требуется подключить «-» клемму к аккумулятору и включить зажигание. Блок электронного управления проведет диагностику узлов и считает новый регулятор холостого хода. Только после этого можно произвести запуск двигателя.

Видео по теме

Хорошая реклама

 

Назначение и проверка регулятора ХХ на Ланосе

Одним из важных составляющих элементов системы двигателя является регулятор холостого хода. Механизм устанавливается на всех двигателях инжекторного типа, в том числе и на автомобилях Ланос, Сенс и Шанс. Эту деталь еще называют датчиком холостого хода, но это неправильно, так как он не регистрирует показания, а совершает соответствующие действия — регулирует подачу воздуха на холостых оборотах двигателя. В материале используется слово «датчик», но правильное название устройства — регулятор или клапан. С его назначением, принципом работы, а также ремонтом и заменой разберемся в материале.

Содержание материала

Назначение элемента

Датчик холостого хода или регулятор добавочного воздуха РДВ (его так называли раньше) отвечает за нормализацию работы ДВС в режиме холостого хода. С его помощью осуществляется подача недостающего объема воздуха в топливную смесь, что позволяет функционировать ДВС. Этот элемент устанавливается только на автомобилях, которые имеют электронную систему зажигания.

Неисправность датчика приведет к тому, что двигатель не будет нормально работать на холостом ходу. Ведь при запуске мотора дроссельная заслонка закрыта, и воздух не поступает в двигатель. При неисправности двигатель будет сразу же глохнуть из-за отсутствия всасывания воздуха, а он как известно, работает на смеси бензина с кислородом. ДХХ через специальный канал пропускает воздух в коллектор, откуда и происходит его подача в цилиндры. Датчик имеет игольчатый клапан, который отвечает за перекрытие канала подачи воздуха на ХХ. От величины его открытия происходит регулировка оборотов коленвала двигателя на холостом ходу.

Конструкция и принцип работы регулятора холостого хода на Ланосе

Рассматриваемый элемент играет очень важную роль в работе двигателей внутреннего сгорания. Чтобы понять, какие виды неисправностей возникают, рассмотрим принцип его работы и конструкцию. Первоначально выясним конструкцию этого элемента, который представляет собой микродвигатель с червячным редуктором. Ротор двигателя движется в двух направлениях, что позволяет открывать и закрывать канал холостого хода для всасывания воздуха в коллектор. Ниже представлена схема устройства регулятора холостого хода.

На схеме обозначены все основные конструктивные элементы регулятора. В разобранном

Как проверить регулятор холостого хода. Признаки поломки и типичные неисправности

Регулятор холостого хода является одним из основных механизмов в системе управления любым инжекторным двигателем. От того, насколько корректно он работает, зависит стабильность работы двигателя на холостом ходу. Также от РХХ зависит расход топлива и внезапные остановки ДВС. Давайте посмотрим, как устроен и работает данный датчик-регулятор, как проверить регулятор холостого хода, если он неисправен. Поломки его случаются достаточно часто. А ресурс его невелик ввиду того, что он находится в работе постоянно.

Где находится РХХ, его функции

Данное устройство необходимо для решения четырех основных функций. Первостепенная задача – это поддержка определенного количества оборотов холостого хода. Также регулятор обеспечивает запуск двигателя в мороз. Устройство умеет повышать обороты для ускоренного прогрева. По мере того как антифриз в двигателе нагревается, прогревочные обороты постепенно падают. Если этого не произошло, то это говорит о поломке датчика. Нужно понимать, как проверить регулятор холостого хода.

РХХ также поддерживает минимально допустимые обороты холостого хода, когда педаль газа отпущена. РХХ отвечает за создание смеси топлива с воздухом с правильной стехиометрией. За счет этого обеспечивается оптимальный расход топлива и стабильная работа мотора. Найти регулятор холостого хода можно на дроссельном узле. На большинстве бензиновых моторов он находится вблизи датчика положения дроссельной заслонки.

Устройство и принцип действия

Перед тем как проверить регулятор холостого хода, нужно хотя бы приблизительно узнать, как устроено и по какому принципу работает данное устройство.

Можно выделить две схемы, по которым работает данное устройство. Первая схема – это непосредственная регулировка дроссельной заслонки. Вторая – это регулирование пропускной способности обходного канала холостого хода дроссельной заслонки.

На большинстве двигателей в качестве исполнительного устройства РХХ применяют шаговые двигатели. Они имеют массу преимуществ в сравнении с другими типами приводов. Это повышенная точность, малый ток потребления, возможность управления работой в импульсном режиме.

Когда дроссельная заслонка полностью закрыта, двигатель может поддерживать обороты холостого хода за счет частичной подачи топлива через обходной канал ХХ. РХХ оснащен запорной иглой, которая двигается по командам от ЭБУ. Двигаясь, игла регулирует ширину канала для поступления воздуха, от количества которого и зависит холостой ход.

Для каждого типа ДВС производителем устанавливается оптимальная частота оборотов на ХХ. Диапазон составляет от 600 до 1000 об./мин.

РХХ, которые непосредственно регулируют дроссельную заслонку, оставляют небольшую щель для доступа минимального количества воздуха во впускной коллектор двигателя. За счет этого обеспечивается поддержание холостых оборотов. При нажатии на педаль газа РХХ отключается и остается в том положении, в котором был до нажатия на педаль. Таким образом снижается нагрузка на привод механизма.

Признаки неисправности

Первый признак – это неустойчивая работа двигателя в режиме холостого хода. Это можно легко услышать. Перепады оборотов будут отчетливо слышны. Кроме того, двигатель при такой работе обязательно будет вибрировать.

Когда водитель переходит в нейтральную передачу, двигатель тут же глохнет. Это часто можно наблюдать перед светофорами. Также о неисправности РХХ можно судить по нестабильным оборотам.

Как еще проверяют регулятор холостого хода 2110? Бывает и так, что непосредственно после запуска двигателя он не работает на повышенных оборотах. При нажатии на педаль акселератора реакции двигателя нет. Задуматься о замене регулятора можно и тогда, когда при включении электрических приборов падают обороты двигателя.

Такие неисправности могут быть по отдельности или в комплексе. Но когда они появляются все сразу, это говорит о запущенной ситуации. Владелец автомобиля должен знать, как проверить регулятор холостого хода, потому что устройство может подвести в любой момент.

Причины неисправностей РХХ

Вне зависимости от того, что стало поводом для выхода датчика из строя, затягивать время диагностики и замены не стоит. Поломка РХХ сильно влияет на работу мотора. Среди причин можно выделить износ направляющих иглы, а также обрыв внутри датчика.

Типичные поломки

Чтобы знать, как проверить регулятор холостого хода ВАЗа, нужно ориентироваться в типичных для данного устройства неисправностях.

Среди частых проблем можно выделить проблемы с проводкой – например, часто случается обрыв питания. В разъемах датчика могут окислиться электрические контакты. Проблема усугубляется и тем, что трудно проводить диагностику из-за ненадежных соединений. Неисправность может проявляться лишь иногда.

Еще одна типичная поломка для данного устройства – это шаговый электромоторчик. Причина неисправностей — его загрязнение. В основном страдает шток, порой разрушается уплотнительное кольцо. Иногда в ходе диагностики выявляется износ самого штока. Загрязнение видно визуально – достаточно снять и осмотреть устройство.

Как быстро выявить поломку?

Работа РХХ напрямую не связана с электронным блоком управления в автомобиле. ЭБУ двигателя устанавливает только вылет штока РХХ. На шаговый двигатель подается определенный ток. Но электроника не может определить, в каком положении находится шток – значения не фиксируются. Если имеются проблемы с РХХ, загорится лампа “Проверьте двигатель”.

Как проверить регулятор холостого хода ВАЗ-2114 с помощью диагностического сканера? Подключив его, нужно считать ошибки. Среди типичных можно выделить:

  • P0505 – неисправность в цепи управления.
  • P0506 – блокировка датчика.
  • P1509 – перегрузка цепи.
  • P1513 – КЗ в управляющей цепи.
  • P1514 – обрыв.

Проверка РХХ с мультиметром

В отличие от сканера, мультиметр в данном случае гораздо эффективнее. В данном способе подразумевается измерения тока на разъеме датчика. Если питания нет при включенном зажигании, то можно констатировать обрыв. Также проверяют напряжения на обмотке статора. Давайте посмотрим, как проверить регулятор холостого хода мультиметром, так как шаговый двигатель имеет две обмотки и легко ошибиться.

Первым делом проверяют, если напряжение на датчике. Щупами касаются контактов «А» и «B», а затем «C» и «D» в режиме сопротивления – тестер должен показать примерно 53 ОМ. Далее то же самое проделывают с парами «B» и «D» и «A» и «C». Здесь сопротивление должно двигаться к бесконечности. В противном случае датчик неисправен и требует замены.

Регулятор холостого хода автомобиля

Регулятор холостого хода шаговый — электродвигатель якорного типа, снабженный конической подпружиненной иглой. Он расположен на дроссельной ветви с двумя обмотками. Игла, когда вы подаете импульс к одному из них, делает шаг вперед и назад — когда вы подаете к другому. Принцип работы в управлении двигателем на холостых оборотах выполнен, за счет изменения поперечного сечения в проходном канале, по которому подается воздух. Без обхода закрытой заслонки дроссельной заслонки, в двигателе это необходимое количество воздуха для стабильной работы. В свою очередь, этот объем контролируется датчиком потока. Контроллер в зависимости от количества воздуха обеспечивает подачу топливной смеси через форсунки. Через червячную передачу поступательное движение штока преобразуется во вращение шагового двигателя. Коническая часть расположена в канале подачи воздуха для регулирования холостого хода. Шток регулятора втягивается или выдвигается, в зависимости от сигнала контроллера, который поддерживает работу двигателя на холостом ходу на холостом ходу, независимо от нагрузки и состояния двигателя.

Регулятор и двигатель

Благодаря датчику коленчатого вала, отслеживающему частоту вращения двигателя в соответствии с рабочим режимом, будь то добавление или уменьшение количества поступающего воздуха. Прогретый до рабочей температуры двигатель с помощью контроллера поддерживает постоянные обороты холостого хода. Если он недостаточно теплый, то регулятор холостого хода способен увеличивать обороты и обеспечивать необходимую температуру. В этом режиме работы двигателя можно запустить автомобиль без предварительного прогрева двигателя.

Как определить проблемы

Регулятор холостого хода — это исполнительный механизм, который не может самостоятельно диагностировать неисправности. О проблемах РХХ свидетельствуют:

— самопроизвольное снижение или увеличение оборотов двигателя;

— нестабильная частота вращения холостого хода;

— двигатель «глохнет» при выключении трансмиссии;

— при добавлении дополнительной нагрузки в виде печки или фар наблюдается уменьшение холостых оборотов.

Тестирование

Необходимо выключить зажигание и отсоединить от регулятора разъем жгута проводов.С помощью мультиметра проверьте сопротивление обмоток. Система сопротивления между контактами должна быть 40-80 Ом. В случае других значений следует заменить регулятор холостого хода. Если все в порядке, то стоит проверить сопротивление контактов A и D, B и C. Схема должна показывать обрыв (бесконечность).

Разборка

Для ремонта регулятора необходимо открутить два болта крепления, отсоединив четырехконтактный разъем при выключенном зажигании.Регулятор холостого хода ВАЗ устанавливается в обратной последовательности, только перед этим нужно убедиться, что расстояние между фланцем и острием конической иглы составляет 23 мм. Также желательно смазать уплотнительные кольца моторным маслом.

p >>

Принцип работы регулятора генератора Cummins

Принцип работы двухполюсного регулятора / регулятора скорости PTG генератора Cummins

1. Состояние холостого хода

На холостом ходу дроссельная заслонка находится в закрытом положении, и топливо поступает только через дроссельную заслонку холостого хода к форсунке.Если по какой-либо причине скорость вращения уменьшается и центробежная сила летающего блока уменьшается, пружина холостого хода толкает плунжер регулятора влево, чтобы увеличить поперечное сечение отверстия, ведущего к холостому каналу для масла, и подачу масла. сумма увеличивается. При увеличении скорости плунжер регулятора PTG перемещается вправо, поперечное сечение потока уменьшается, а подача масла уменьшается, тем самым поддерживая стабильность холостого хода. Винт регулировки холостого хода используется для изменения постоянной скорости холостого хода.

2. Состояние высокой скорости

Когда скорость дизельного двигателя увеличивается, плунжер и пружина холостого хода регулятора PTG сжимаются, на что в основном действует пружина высокой скорости. Левая выемка плунжерной канавки регулятора ПТГ постепенно переместилась в отверстие, ведущее к дроссельной заслонке посередине. Когда скорость соответствует указанной скорости, разрез находится на левой стороне отверстия. В это время, если частота вращения дизельного двигателя увеличивается, плунжер будет продолжать двигаться вправо, а проточное сечение отверстия будет уменьшено, так что количество масла, поступающего в инжектор, будет уменьшено.Когда нагрузка дизельного двигателя полностью снята, поперечное сечение отверстия очень мало, и крестообразное радиальное отверстие на правом конце плунжера было удалено из регулирующей втулки, чтобы сообщаться с соседним масляным каналом. Дизельный двигатель работает на максимальных оборотах холостого хода, что ограничивает увеличение скорости.

3. Коррекция крутящего момента высокой скорости

Когда дизельный двигатель работает на низкой скорости, пружина коррекции крутящего момента высокой скорости на правом конце подвижного блока находится в свободном состоянии.Если частота вращения двигателя увеличивается, центробежная сила летающего блока увеличивается, в результате чего плунжер регулятора перемещается вправо. Когда скорость вращения превышает максимальную скорость вращения крутящего момента, пружина начинает сжиматься, так что осевое усилие летающего блока на плунжер регулятора уменьшается, и, таким образом, давление топлива также уменьшается, а крутящий момент уменьшается. Чем выше скорость, тем больше уменьшается крутящий момент, что улучшает адаптируемость крутящего момента дизельного двигателя на высоких оборотах.

4. Коррекция крутящего момента на низкой скорости

Когда частота вращения дизельного двигателя ниже максимальной скорости точки крутящего момента, плунжер регулятора PTG перемещается влево, сжимает пружину коррекции крутящего момента на низкой скорости, а плунжер регулятора увеличивается тяга вправо, так что давление топлива соответственно увеличивается, подача топлива увеличивается, крутящий момент дизельного двигателя увеличивается, что замедляет тенденцию крутящего момента к снижению на низких оборотах дизельного двигателя и улучшает адаптивность крутящего момента на низкой скорости.

Принцип работы регулятора MVS генератора Cummins

На дизельном двигателе Cummins генераторной установки насос PT топливной системы PT оснащен регулятором полной скорости MVS в дополнение к двухполюсному регулятору PTG. Он может обеспечить стабильную работу дизельного двигателя на любой скорости, выбранной пользователем в соответствии с потребностями строительной техники.

Структура регулятора MVS показана на рисунке ниже. Левая сторона плунжера подвергается давлению от топливного насоса и дизельного топлива через топливный фильтр.Давление масла меняется с изменением оборотов дизельного двигателя. Правая сторона плунжера контактирует с плунжером пружины регулятора, чтобы выдерживать усилие пружины регулирующей скорости (включая пружину холостого хода и пружину регулятора).

Когда ручка регулировки скорости насоса PT находится в определенном положении, двойной рычаг под ней заставляет MVS уравновешивать упругую силу пружины с давлением масла на левой стороне плунжера, чтобы дизельный двигатель мог работать стабильно на такой скорости. Когда нагрузка дизельного двигателя уменьшается, а скорость вращения увеличивается, давление масла на левой стороне плунжера увеличивается, поэтому плунжер перемещается вправо, канал дизельного топлива от дроссельной заслонки уменьшается, и давление масла на выходе РТ-насоса падает, и количество циркулирующего топливного насоса для впрыска топлива также соответственно уменьшается, чтобы ограничить увеличение скорости дизельного двигателя; Напротив, когда нагрузка дизельного двигателя увеличивается, а скорость вращения уменьшается, сила пружины регулирующей скорости пружины больше, чем давление масла на левой стороне плунжера, плунжер перемещается влево, а дизель канал от дроссельной заслонки открывается для повышения давления масла на выходе насоса PT, количество циркулирующего топлива, впрыскиваемого насосом впрыска топлива, также увеличивается, чтобы ограничить снижение скорости вращения дизельного двигателя.Путем изменения положения ручки регулировки скорости изменяется сила предварительного натяжения пружины регулировки скорости, и дизельный двигатель стабильно работает на другой скорости. На холостом ходу пружина регулирования скорости находится в свободном состоянии и не работает, и только пружина холостого хода поддерживает стабильную работу на холостом ходу. Регулятор MVS оснащен винтами ограничения высокой и низкой скорости, чтобы ограничить крайнее положение ручки регулировки скорости.

После присоединения насоса PT с регулятором MVS дроссельная заслонка фиксируется винтами во время нормальной работы.Если требуется регулировка, дроссельная заслонка поворачивается для изменения давления масла, проходящего через дроссельную заслонку к регулятору MVS, так что количество циркулирующего впрыска топлива изменяется.

Вышеупомянутый принцип работы регулятора генератора Cummins разделяется компанией Jiangsu Starlight Power Equipments Co., Ltd., как OEM-производителем генераторов Cummins, Starlight может предоставить клиентам дизельные генераторные установки Cummins мощностью от 20 до 2500 кВт. Свяжитесь с нами: [email protected].

Может быть, вам также понравится:

Устранение неисправностей регулятора Cummins EFC

Регулятор управления для дизельного двигателя Cummins плавно поднимается

Симптомы клапана регулировки холостого хода — Полное техническое руководство

]]]]>]]>

С режимом холостого хода автомобиля знаком любой водитель. Но когда обороты холостого хода не кажутся правильными, есть множество причин, по которым вызывает симптомы клапана регулировки холостого хода . Неправильный уход и пропуск ремонта — важные причины простоя автомобиля.

Давайте поговорим о симптомах плохого клапана управления воздухом холостого хода , задав вопрос: Что происходит, когда клапан управления воздухом холостого хода выходит из строя?

Но сначала, чтобы понять симптомы, нам нужно разобраться с пациентом, верно? В этом случае нам нужно понять клапан управления холостым воздухом, прежде чем копаться в симптомах клапана управления холостым воздухом .

Что такое регулирующий клапан холостого хода (клапан IAC)?

В любом автомобиле воздушный регулирующий клапан i dle или более известный как привод управления воздушным потоком холостого хода представляет собой небольшое устройство, которое регулирует частоту вращения двигателя на холостом ходу. Скорость вращения двигателя на холостом ходу — это скорость, с которой двигатель работает, когда автомобиль стоит на месте. Единица измерения — обороты в минуту / обороты в минуту / об / мин.

Клапан регулировки холостого хода (IAC) для Cadillac Oldsmobile Deville Eldorado Aurora 4.6L

Почему этот клапан управляет воздухом? Потому что он точно регулирует количество воздуха, попадающего во впускное отверстие на холостом ходу, чтобы регулировать скорость двигателя. Упомянутый здесь воздухозаборник — это просто отверстие для поступления воздуха в двигатель.

Клапан IAC представляет собой устройство с электрическим управлением, которое, в свою очередь, управляется компьютером двигателя, точное имя компьютера — блок управления двигателем (ECU). Клапан установлен где-нибудь в двигателе, чтобы либо обойти дроссельную заслонку, либо управлять дроссельной заслонкой.Дроссельная заслонка здесь — это просто механизм для управления воздушным потоком за счет сужения или препятствия.

Что касается конструкции, клапан IAC включает в себя линейный сервопривод, а именно серводвигатель, задачей которого является управление плунжером для изменения потока воздуха через дроссель. Этот серводвигатель представляет собой комбинацию цифрового оптического кодировщика, ходового винта и двигателя постоянного тока. Что действительно контролирует воздушный поток, так это положение серводвигателя. Этой позицией точно управляет компьютер двигателя.

Мы рассмотрели природу клапана IAC, включая определение, назначение, структуру и общий принцип работы. В следующей части мы подробно расскажем, как это работает.

Как работает клапан IAC?

Пожалуйста, обратите внимание, что каждый производитель разрабатывает разные типы клапанов IAC, но у них одинаковые принципы работы. Принцип работы МАК делится на 4 этапа.

Шаг 1: Клапан РХХ в большинстве случаев устанавливается на отверстие дроссельной заслонки для регулирования поступления воздуха в двигатель на холостом ходу.Модуль управления мощностью получил данные обратной связи от датчиков, чтобы дать команду открывать или закрывать воздушный канал. Помните, что клапан не будет использоваться и не будет иметь ничего общего с двигателем на оборотах выше режима холостого хода. Скорость холостого хода двигателя должна быть постоянной и фиксированной.

Шаг 2: Когда воздушный поток проходит через клапан IAC, объем воздуха регулируется открытыми / закрытыми портами внутри клапана. Эти порты закрыты прокладкой для предотвращения утечки воздуха. Некоторые клапаны имеют часть, в которой используется охлаждающая жидкость для охлаждения воздуха до 85 градусов Цельсия для увеличения объема всасываемого воздуха.

Шаг 3: Когда клапан IAC работает, воздушный поток обходит клапан через проход перед дроссельной заслонкой. Затем он попадает в отверстие дроссельной заслонки через проход рядом с ним, в это время бабочка полностью закрывается.

Шаг 4: Из-за того, что через клапан регулярно проходит большой объем воздуха, состояние, называемое закоксовыванием, увеличивает и затрудняет работу клапана. Следовательно, необходимо периодически очищать клапан, чтобы избежать симптомов клапана управления воздухом холостого хода .

Признаки неисправного или неисправного клапана IAC

Поняв, как работает клапан IAC, нам было бы намного легче узнать природу некоторых симптомов, которые требуют наличия клапана регулировки холостого хода, а именно:

1 # Плавающая скорость

Воздушный регулирующий клапан регулирует обороты двигателя автомобиля на холостом ходу. Поврежденный воздушный клапан нарушит мощность, что приведет к колебаниям холостого хода. Возможно, больше нельзя будет контролировать скорость.Когда мощность начинает колебаться, оставаться на одной постоянной скорости становится более чем сложно. Изменение скорости является одним из обязательных признаков клапана регулировки холостого хода.

Обратите внимание на нестабильные холостые обороты

2 # Двигатель зависает

Заглох или замерзание двигателя — еще один из симптомов клапана регулировки холостого хода, приводящий к тому, что автомобиль «не движется». Вы можете задаться вопросом, что происходит, когда выходит из строя регулирующий клапан холостого хода. Автомобиль не может двигаться в этой ситуации, но двигатель работает.Если произойдет заглох, вы не сможете управлять автомобилем. Это потому, что вся клапанная система выйдет из строя сразу после запуска зажигания. Однако советы экспертов по уходу могут помочь в лечении этих симптомов.

3 # Более глубокий шаг на педаль тормоза

На холостом ходу, когда педаль акселератора не действует, мы все знаем, что торможение очень тонкое, чтобы предотвратить движение вперед. Любое чрезмерное усилие на тормозе, чтобы автомобиль не двигался на красный свет, может быть симптомом неисправности клапана IAC .Это происходит из-за того, что двигатель работает на холостом ходу быстрее, чем обычно, и поэтому автомобиль работает на более высоких оборотах холостого хода. В качестве дополнительного признака в симптомах клапана управления воздушным клапаном холостого хода водитель может также попытаться прислушаться к звуку двигателя на холостом ходу, чтобы увидеть, не вращается ли он странно быстро и резко, что также является хорошим способом помочь прояснить ощущения от двигателя. тормозная ножка.

4 # Поврежденный клапан

Исправный или исправный клапан смягчает езду. Но поврежденный клапан может привести к колебаниям и вибрациям, вызывающим немедленную остановку автомобиля. Это связано с тем, что через клапан будет проходить меньше воздуха, и двигатель начнет сильно трястись. Вот и все, что происходит, когда выходит из строя регулирующий клапан холостого хода. Надеюсь, у вас есть ответ на некоторые симптомы клапана регулировки холостого хода до сих пор.

Клапан может быть поврежден по некоторым причинам

СМОТРЕТЬ БОЛЬШЕ:

5 # Перегрузка двигателя, вызывающая зависание

Есть еще одна причина остановки двигателя. Когда клапан IAC уже вышел из строя, двигатель все еще может работать, но будет выдерживать увеличение нагрузки.Тогда, если водитель включит обогреватель или кондиционер, двигатель может перегружаться и сразу же остановиться. Еще один знак, на который стоит обратить внимание, — это отодвинутое в сторону рулевое колесо.

Чтобы снова отправиться в путь, необходимо сначала выключить обогреватель или кондиционер, подождать несколько минут, а затем снова включить охлажденный двигатель. Однако на этот раз, пожалуйста, держитесь подальше от обогревателя и кондиционера с точки зрения симптомов клапана регулировки холостого хода Dodge .

6 # Сигнальная лампа для проверки двигателя

Центральный компьютер включает контрольную лампу «проверьте двигатель» на приборной панели всякий раз, когда что-то не так, связанное с двигателем, включая отказавший клапан управления воздухом холостого хода. Для объяснения: в случае, если блок управления двигателем обнаруживает различное количество оборотов в минуту, он отправит команды на приборную панель, чтобы включить сигнальную лампу. Хотя симптомы клапана регулировки холостого хода не всегда связаны с неисправностью клапана , вам лучше поехать в ближайший автомагазин для обслуживания.

Управление сигнальной лампой неисправности двигателя на приборной панели автомобиля.

>> Ищете подержанный автомобиль из Японии? Нажмите здесь <<

Три способа проверки клапана управления воздухом холостого хода после выявления симптомов

Этот раздел предназначен только для справки по механике, мы советуем вам сдать свой автомобиль в профессиональный гараж для качественного технического осмотра. Однако для тех, кто достаточно уверен в себе, чтобы экспериментировать со своими автомобилями, и для любых учеников механиков, мы надеемся, что эти три способа окажут большую помощь.

1 # Проверьте, может ли клапан IAC работать

После подтверждения симптомов клапана регулировки холостого хода, подключил сканер кода к порту под приборной панелью, чтобы вывести коды ошибок, которые заставляют загораться сигнальная лампа двигателя. Посмотрите описание кода, чтобы узнать причину.

Как выглядит сканер кода

Затем вы запускаете двигатель и записываете установившиеся обороты холостого хода. Заглушите автомобиль, выньте ключ автомобиля, откройте капот, найдите в клапане электродвигатель управления холостым ходом и отсоедините его.Следуйте инструкциям по отключению двигателя согласно руководству по обслуживанию автомобиля.

Теперь запустите двигатель снова и на этот раз запишите установившиеся обороты холостого хода. Отсутствие разницы между двумя оборотами холостого хода означает, что двигатель управления холостым ходом не работает.

Этот метод для симптомов клапана управления холостым ходом подтверждает наличие проблемы с электродвигателем управления холостым ходом, а не саму проблему.

2 # Определение того, что не так с клапаном IAC

Двигатель с плохой работой на холостом ходу может работать слишком быстро или слишком медленно или заглохнуть.Запустите двигатель и посмотрите на тахометр на приборной панели.

1000 об / мин — это нормальный предел для холостого хода. Сравните текущую скорость холостого хода вашего автомобиля с 1000 об / мин. Если оно выше 1000 об / мин, это слишком много. Если вам известны нормальные обороты холостого хода автомобиля, сравните их с текущими оборотами холостого хода, и тогда они должны быть ниже.

  • Низкая работа двигателя на холостом ходу или остановка двигателя:

Холостой ход на тахометре ниже и нестабильнее, чем вы обычно чувствуете и помните? Автомобиль периодически глохнет? Если да, это может быть следствием неисправного клапана IAC.

Следите за тахометром при проверке холостого хода. Пришло время диагностировать любые утечки на вакуумных линиях в моторном отсеке на предмет трещин или изношенных участков, подключив линию к вакуумметру, чтобы измерить уровень и постоянство вакуума, или распылить смесь мыла и воды на линии, чтобы посмотреть для пузырей в месте утечки. Если есть утечки, в то же время проверьте контрольную лампу «проверьте двигатель», чтобы подтвердить проблему клапана IAC.

3 # Обнаружение проблем для определенных марок

и.Дженерал Мотор

Подсоедините отрицательный провод контрольной лампы к кузову автомобиля и вставьте контрольную лампу в каждую из четырех цепей на электродвигателе управления холостым ходом GM. Контрольная лампа должна мигать или переходить от яркого к тусклому в каждой цепи при работающем двигателе.

  • Если нет вспышки, это означает, что у ЭБУ проблемы вместо двигателя управления холостым ходом.
  • Если есть мигания, необходимо заменить электродвигатель управления холостым ходом в клапане.
Контрольная лампа для проверки клапана IAC

ii.Ford

Найдите два электрических контакта на соленоиде в электродвигателе управления холостым ходом и подключите омметр, чтобы измерить сопротивление между ними. Сопротивление должно составлять от 7,0 до 13,0 Ом, в противном случае необходимо заменить двигатель управления холостым ходом.

iii. Крайслер

Подключите двунаправленный диагностический прибор к тому же порту OBD, который вы используете для подключения сканера кода. Увеличьте холостой ход с помощью диагностического прибора. Если увеличения нет, значит, у электродвигателя управления холостым ходом определенно возникла проблема в цепи, не позволяющая сигналу изменить холостой ход.

iv. Прочие популярные марки

Другие популярные модели автомобилей, в том числе Ford Ranger, Honda Civic, Chevrolet, BMW, особенно Nissan Maxima, также подвержены этой проблеме в вышеупомянутом содержании. После подтверждения симптомов клапана регулировки холостого хода, общих рекомендаций по проверке будут состоять в том, чтобы очистить клапан, иначе это может быть ошибка компьютера, неисправная электрическая проводка или цепи, утечка воздуха или вакуум. Перед заменой клапана проверьте проблему утечки.Хотя замена клапана стоит дорого, но оно того стоит.

Примечание

Наконец, в случае некоторых симптомов клапана регулировки холостого хода, ваш любимый автомобиль нуждается в соответствующем уходе в нужное время. Опять же, знайте все это для быстрого обнаружения и временного исправления, прежде чем выбирать профессиональное обслуживание и ремонт в данный момент, чтобы долго наслаждаться этими долгими поездками.

Правильная установка смеси на холостом ходу

1/13

13.02

13/3

13.04

13.05

13. 06

13.07

13.08

13.09

13.10

13.11

13. 12

13/13

«Эй, как это может быть сложно? Просто поверните винт и готово, верно?»

О настройке смеси на холостом ходу можно узнать гораздо больше, чем просто повернуть пару винтов и захлопнуть капот.Вы можете быть удивлены тем, насколько лучше ваш уличный двигатель будет работать с правильно отрегулированной смесью холостого хода. Контур холостого хода является важным компонентом общей работы уличного двигателя, и правильная регулировка смеси холостого хода имеет большое значение для улучшения реакции дроссельной заслонки, расхода топлива и выбросов.

Теперь, когда мы убедили вас в важности настройки смеси холостого хода, найдите время, чтобы прочитать врезку («Circuit City»), чтобы вы лучше понимали, как работает контур холостого хода.Прежде чем мы начнем, лучше всего провести настройку снаружи, потому что двигатель будет работать на холостом ходу в течение длительного периода времени. Никогда не работайте с работающим двигателем в закрытом гараже, если выхлоп не выведен наружу с помощью выхлопных шлангов. Вам также понадобится пара маленьких прямых отверток; низкооборотный тахометр; и вакуумметр. Убедитесь, что коробка передач находится в положении «Парковка», если она автоматическая, или нейтральная, если она механическая. Заблокируйте одну шину или включите стояночный тормоз, чтобы машина не катилась.

Для начала убедитесь, что двигатель прогрет до рабочей температуры, а воздушная заслонка полностью отключена. Холодный двигатель требует больше топлива, чем полностью прогретый двигатель, даже если воздушная заслонка выключена. Снимаем воздухоочиститель и подсоединяем тахометр к двигателю. Обычно один вывод подключается к отрицательной стороне катушки, а другой — к подходящему заземлению. Подключите вакуумметр, чтобы он считывал вакуум в коллекторе.

Помните, что работа рядом с двигателем очень опасна и может привести к обгрызанию пальцев, зацеплению шнуров тахометра или индикатора времени и, как правило, вызвать хаос, если вы не будете осторожны.При настройке работающего двигателя всегда работайте медленно и вдумчиво. Спешка в больницу наложить швы лишает вас удовольствия от работы с автомобилями.

Перед тем, как запустить двигатель, медленно закрутите каждый винт смеси холостого хода, пока он не достигнет нижнего предела, и посчитайте количество оборотов, которое он сделает. Сделайте это для каждого винта смеси холостого хода, а затем верните их в исходное положение. Если все винты холостого хода не отрегулированы одинаково, сделайте это сейчас. Не забывайте всегда регулировать оба винта на одинаковую величину.Это поможет сбалансировать смесь на холостом ходу и позволит двигателю работать максимально плавно. Если карбюратор является новым для двигателя, начните с 1 оборота (против часовой стрелки) от полного.

Теперь запустите двигатель и установите частоту вращения холостого хода около 850 об / мин с помощью винта холостого хода. Если у вашего двигателя большой кулачок и он должен работать на холостом ходу на более высоких оборотах, это нормально. Обратите внимание на показания вакуумметра. Затем поверните один винт смеси холостого хода и отметьте изменение на вакуумметре. Если показания вакуума увеличиваются — скажем, с 14 дюймов до 14 дюймов — переместитесь на другую сторону карбюратора и также поверните винт подачи смеси.Снова обратите внимание на показания вакуумметра; если указатель продолжает подниматься, отрегулируйте каждый винт смеси холостого хода другим поворотом. На большинстве карбюраторов поворот винта смеси (по часовой стрелке) обедняет смесь, а против часовой стрелки (наружу) обогащает смесь.

Первоначально, если двигатель спотыкается или вакуум падает при заворачивании смесительного винта, поверните оба винта примерно на один оборот и оцените результаты. Целью регулировки винтов смеси холостого хода является достижение максимально возможного вакуума холостого хода при заданных оборотах холостого хода.Если частота вращения холостого хода увеличивается после регулировки винтов смеси холостого хода (что вполне вероятно), обязательно верните скорость холостого хода к базовой. Это важно, потому что более высокая частота вращения холостого хода увеличит показания вакуума. Поддержание стандартных оборотов холостого хода упростит оценку изменений винтов смеси холостого хода.

Наилучший способ точно установить смесь холостого хода — использовать машину для испытания на выбросы для считывания уровней углеводородов (HC) и окиси углерода (CO). Когда вы перемещаете винты смеси холостого хода, вы увидите очень резкие изменения в показаниях HC и CO.Идеальная настройка смеси на холостом ходу сводит к минимуму как HC, так и CO. Показания HC выражаются в частях на миллион (ppm), в то время как CO указывается в процентах. Один факт, который обычно упускается из виду, заключается в том, что CO можно приравнять к соотношению воздух / топливо. Например, 0,01 процента CO эквивалентно соотношению воздух / топливо 14,7: 1, а 0,38 процента эквивалентно соотношению воздух / топливо 13: 1.

Большинство карбюраторов с четырьмя цилиндрами используют два винта для установки смеси холостого хода. В некоторых последних карбюраторах Holley и всех Demon используются четыре точки регулировки смеси холостого хода.Процедура смешивания на холостом ходу точно такая же для этих карбюраторов, за исключением того, что теперь вы балансируете четыре точки регулировки вместо двух. Опять же, важным ключом к созданию идеальной смеси холостого хода является точный баланс всех четырех этих регулировок смеси.

Эта процедура также работает для двигателей с неровными распредвалами. Одна из потенциальных ловушек заключается в том, что большие кулачки часто простаивают при уровне вакуума ниже 8 дюймов. Эти двигатели также требуют больших отверстий дроссельной заслонки, чтобы пропускать воздух для двигателя на холостом ходу.Это обнаруживает незанятый слот передачи, который может вызвать проблемы со спотыканием в нерабочем состоянии. Единственный способ обнаружить эту проблему — снять карбюратор и посмотреть, закрывают ли лопасти дроссельной заслонки более 0,040 дюйма щели передачи холостого хода (для измерения этого показателя можно использовать щуп для зазора свечи зажигания). Если слишком большая часть паза открыта, лучшим решением будет просверлить отверстие 1/16 дюйма на передней кромке лопасти дроссельной заслонки и, при необходимости, увеличить размер с шагом 1/32 дюйма. Это позволит большему количеству воздуха пройти через дроссельные заслонки, что позволит слегка закрыть дроссельную заслонку, так что прорезь для переноса будет едва открыта для дроссельной заслонки.Будьте осторожны, чтобы не просверлить эти отверстия слишком большими, иначе необходимо будет полностью закрыть дроссельные заслонки для обеспечения надлежащей скорости холостого хода. К сожалению, это также может создать плоское пятно в нерабочем состоянии.

Точная настройка карбюратора таким образом улучшит работу с частичным дросселем и устранит раздражающее спотыкание на холостом ходу. Как видите, для правильной настройки смеси на холостом ходу нужно гораздо больше, чем просто повернуть пару винтов. Потратив немного больше времени на правильную настройку смеси холостого хода, вы получите превосходные характеристики при частичном открытии дроссельной заслонки.Такой простой шаг может существенно повлиять на то, насколько весело вы будете за рулем.

Работа

, типы, преимущества и применение

Как следует из названия, эта статья даст точное представление о структуре и работе ПИД-регулятора. Однако, вдаваясь в подробности, давайте познакомимся с ПИД-регуляторами. ПИД-регуляторы находят широкое применение в управлении производственными процессами. Примерно 95% операций с обратной связью в секторе промышленной автоматизации используют контроллеры PID.PID означает пропорционально-интегрально-производная. Эти три контроллера объединены таким образом, что вырабатывает управляющий сигнал. В качестве контроллера обратной связи он обеспечивает управляющий выход на желаемых уровнях. До изобретения микропроцессоров ПИД-регулирование осуществлялось с помощью аналоговых электронных компонентов. Но сегодня все ПИД-регуляторы обрабатываются микропроцессорами. Программируемые логические контроллеры также имеют встроенные инструкции ПИД-регулятора. Из-за гибкости и надежности ПИД-регуляторов они традиционно используются в приложениях управления технологическими процессами.

Что такое ПИД-регулятор?

Термин PID обозначает пропорциональную интегральную производную и представляет собой один из видов устройств, используемых для управления различными параметрами процесса, такими как давление, расход, температура и скорость в промышленных приложениях. В этом контроллере устройство обратной связи контура управления используется для регулирования всех переменных процесса.

Этот тип управления используется для управления системой в направлении целевого местоположения, в противном случае на уровне. Он почти везде используется для контроля температуры и используется в научных процессах, автоматизации и бесчисленном количестве химических веществ.В этом контроллере обратная связь с обратной связью используется для поддержания реального выхода метода, близкого к цели, в противном случае — в фиксированной точке, если это возможно. В этой статье обсуждается конструкция ПИД-регулятора с используемыми в них режимами управления, такими как P, I и D.

История

История ПИД-регулятора такова: в 1911 году Элмер Сперри разработал первый ПИД-регулятор. После этого компания TIC (Taylor Instrumental Company) внедрила бывший пневматический контроллер с полной настройкой в ​​1933 году.Спустя несколько лет инженеры по управлению устранили ошибку установившегося состояния, которая встречается в пропорциональных контроллерах, путем перенастройки конца на какое-то ложное значение до тех пор, пока ошибка не станет нулевой.

Эта перенастройка включала ошибку, известную как пропорционально-интегральный контроллер. После этого, в 1940 году, был разработан первый пневматический ПИД-регулятор посредством производного действия для уменьшения проблем с перерегулированием.

В 1942 году Ziegler & Nichols ввели правила настройки, чтобы инженеры обнаруживали и устанавливали подходящие параметры ПИД-регуляторов.Наконец, в середине 1950-х годов автоматические ПИД-регуляторы широко использовались в промышленности.


Блок-схема ПИД-регулятора

Система с обратной связью, такая как ПИД-регулятор, включает в себя систему управления с обратной связью. Эта система оценивает переменную обратной связи, используя фиксированную точку, чтобы генерировать сигнал ошибки. Исходя из этого, он изменяет вывод системы. Эта процедура будет продолжаться до тех пор, пока ошибка не достигнет нуля, в противном случае значение переменной обратной связи станет эквивалентным фиксированной точке.

Этот контроллер дает хорошие результаты по сравнению с контроллером типа ВКЛ / ВЫКЛ. В контроллере типа ВКЛ / ВЫКЛ для управления системой доступны всего два условия. Как только значение процесса ниже фиксированной точки, оно включается. Точно так же он выключится, когда значение будет выше фиксированного значения. Выходной сигнал не является стабильным в контроллерах такого типа и часто будет колебаться в районе фиксированной точки. Однако этот контроллер более устойчив и точен по сравнению с контроллером типа ВКЛ / ВЫКЛ.

Работа ПИД-регулятора

Работа ПИД-регулятора

При использовании недорогого простого двухпозиционного регулятора возможны только два состояния управления, например, полностью ВКЛ или полностью ВЫКЛ. Он используется для приложения с ограниченным управлением, где этих двух состояний управления достаточно для цели управления. Однако колебательный характер этого управления ограничивает его использование, и поэтому он заменяется ПИД-регуляторами.

ПИД-регулятор поддерживает выходной сигнал таким образом, чтобы при операциях с обратной связью между переменной процесса и заданным значением / желаемым выходом не было ошибки.PID использует три основных режима управления, которые описаны ниже.

P-Controller

Пропорциональный или P-контроллер выдает выходной сигнал, пропорциональный текущей ошибке e (t). Он сравнивает желаемое или заданное значение с фактическим значением или значением процесса обратной связи. Результирующая ошибка умножается на пропорциональную константу, чтобы получить результат. Если значение ошибки равно нулю, то этот выход контроллера равен нулю.

P-controller

Этот контроллер требует смещения или ручного сброса при использовании отдельно.Это потому, что он никогда не достигает установившегося состояния. Он обеспечивает стабильную работу, но всегда поддерживает установившуюся ошибку. Скорость отклика увеличивается при увеличении пропорциональной постоянной Kc.

Ответ P-контроллера

I-Controller

Из-за ограничений p-контроллера, где всегда существует смещение между переменной процесса и уставкой, необходим I-контроллер, который обеспечивает необходимые действия для устранения установившегося состояния ошибка.Он интегрирует ошибку за период времени, пока значение ошибки не достигнет нуля. Он содержит значение для конечного устройства управления, при котором ошибка становится равной нулю.

ПИ-регулятор

Интегральное управление снижает выходную мощность при отрицательной ошибке. Это ограничивает скорость ответа и влияет на стабильность системы. Скорость отклика увеличивается за счет уменьшения интегрального усиления Ki.

Реакция ПИ-регулятора

На приведенном выше рисунке, когда коэффициент усиления I-регулятора уменьшается, установившаяся ошибка также продолжает уменьшаться.В большинстве случаев используется ПИ-регулятор, особенно там, где не требуется высокая скорость реакции.

При использовании ПИ-регулятора выход I-регулятора ограничен некоторым диапазоном, чтобы преодолеть условия интегральной намотки, когда интегральный выход продолжает увеличиваться даже в состоянии нулевой ошибки из-за нелинейностей в установке.

D-Controller

I-контроллер не может предсказать будущее поведение ошибки. Таким образом, он нормально реагирует на изменение уставки.D-контроллер преодолевает эту проблему, предвидя будущее поведение ошибки. Его выход зависит от скорости изменения ошибки во времени, умноженной на производную константу. Это дает толчок для выхода, тем самым увеличивая отклик системы.

ПИД-регулятор

На приведенном выше рисунке реакция D контроллера больше по сравнению с ПИ-регулятором, а также время установления выхода уменьшено. Это улучшает стабильность системы за счет компенсации фазовой задержки, вызванной I-контроллером.Увеличение производного усиления увеличивает скорость отклика.

Отклик ПИД-регулятора

Наконец, мы заметили, что, комбинируя эти три контроллера, мы можем получить желаемый отклик для системы. Разные производители разрабатывают разные алгоритмы ПИД-регулирования.

Типы ПИД-регуляторов

ПИД-регуляторы подразделяются на три типа, например, двухпозиционные, пропорциональные и стандартные. Эти контроллеры используются на основе системы управления, пользователь может использовать контроллер для регулирования метода.

Двухпозиционное регулирование

Двухпозиционное регулирование — это самый простой тип устройства, используемого для контроля температуры. Выход устройства может быть включен / выключен без центрального состояния. Этот контроллер включит выход сразу после того, как температура пересечет фиксированную точку. Контроллер предельного значения — это один из видов контроллеров ВКЛ / ВЫКЛ, который использует реле с фиксацией. Это реле сбрасывается вручную и используется для отключения метода при достижении определенной температуры.

Пропорциональное управление

Контроллер этого типа предназначен для устранения цикличности, связанной с управлением ВКЛ / ВЫКЛ.Этот ПИД-регулятор снижает нормальную мощность, подаваемую на нагреватель, когда температура достигает фиксированной точки.

Этот контроллер имеет одну функцию для управления нагревателем, чтобы он не превышал фиксированную точку, но достигал фиксированной точки для поддержания постоянной температуры.
Это пропорциональное действие может быть достигнуто путем включения и выключения выхода на короткие периоды времени. На этот раз при дозировании изменится соотношение времени включения и выключения для регулирования температуры.

ПИД-регулятор стандартного типа

Этот тип ПИД-регулятора объединяет пропорциональное управление через интегральное и производное управление, чтобы автоматически помогать устройству компенсировать изменения в системе. Эти модификации, интеграл и производная выражаются в единицах измерения, основанных на времени.

Эти контроллеры также обозначаются своими обратными значениями RATE & RESET соответственно. Условия PID должны быть настроены отдельно, в противном случае они должны быть настроены для конкретной системы методом проб и ошибок.Эти контроллеры обеспечивают наиболее точное и устойчивое управление 3 типами контроллеров.

ПИД-регуляторы реального времени

В настоящее время на рынке доступны различные типы ПИД-регуляторов. Эти контроллеры используются для промышленных требований управления, таких как давление, температура, уровень и расход. После того, как эти параметры управляются с помощью ПИД-регулятора, можно выбрать использование отдельного ПИД-регулятора или любого ПЛК.
Эти отдельные контроллеры используются везде, где требуется проверка одного или двух контуров, а также управления иным образом в условиях, когда это сложно справа от входа в более крупные системы.

Эти устройства управления предоставляют различные варианты для одиночного и двойного управления. ПИД-контроллеры автономного типа обеспечивают несколько конфигураций с фиксированной точкой для создания нескольких автономных сигналов тревоги.
Эти автономные контроллеры в основном включают ПИД-контроллеры от Honeywell, контроллеры температуры от Yokogawa, контроллеры автонастройки от OMEGA, Siemens и контроллеры ABB.

ПЛК используются как ПИД-контроллеры в большинстве приложений промышленного управления. Расположение блоков ПИД может быть выполнено внутри PAC или PLC, чтобы предоставить лучший выбор для точного управления PLC.Эти контроллеры умнее и мощнее по сравнению с отдельными контроллерами. Каждый ПЛК включает блок ПИД в программном обеспечении.

Методы настройки

Перед началом работы ПИД-регулятора он должен быть настроен в соответствии с динамикой контролируемого процесса. Разработчики предоставляют значения по умолчанию для терминов P, I и D, и эти значения не могут дать желаемой производительности и иногда приводят к нестабильности и снижению производительности управления. Для настройки ПИД-регуляторов разработаны различные типы методов настройки, которые требуют от оператора большого внимания для выбора наилучших значений пропорционального, интегрального и производного коэффициентов усиления.Некоторые из них приведены ниже.

ПИД-регуляторы

используются в большинстве промышленных приложений, но необходимо знать настройки этого регулятора, чтобы правильно настроить его для генерации предпочтительного выхода. Здесь настройка — это не что иное, как процедура получения идеального ответа от контроллера путем установки наилучшего пропорционального усиления, интегральных и производных коэффициентов.

Требуемый выходной сигнал ПИД-регулятора может быть получен путем настройки регулятора. Существуют различные методы получения требуемого выходного сигнала от контроллера, такие как метод проб и ошибок, метод Цейглера-Николса и кривая реакции процесса.Наиболее часто используемые методы — это метод проб и ошибок, метод Zeigler-Nichols и т. Д.

Метод проб и ошибок: Это простой метод настройки ПИД-регулятора. Пока система или контроллер работают, мы можем настроить контроллер. В этом методе, во-первых, мы должны установить значения Ki и Kd равными нулю и увеличивать пропорциональный член (Kp), пока система не достигнет колебательного поведения. Как только он начнет колебаться, отрегулируйте Ki (интегральный член), чтобы колебания прекратились, и, наконец, отрегулируйте D, чтобы получить быстрый отклик.

Метод кривой реакции процесса: Это метод настройки без обратной связи. Он дает ответ, когда к системе применяется пошаговый ввод. Первоначально мы должны применить некоторые управляющие выходные данные к системе вручную и записать кривую отклика.

После этого нам нужно рассчитать крутизну, мертвое время, время нарастания кривой и, наконец, подставить эти значения в уравнения P, I и D, чтобы получить значения усиления членов ПИД.

Кривая реакции процесса

Метод Цейглера-Николса: Цейглер-Николс предложил методы с обратной связью для настройки ПИД-регулятора.Это метод непрерывного цикла и метод затухающих колебаний. Процедуры для обоих методов одинаковы, но поведение колебаний отличается. При этом, во-первых, мы должны установить константу p-регулятора Kp на конкретное значение, в то время как значения Ki и Kd равны нулю. Пропорциональное усиление увеличивается до тех пор, пока система не будет колебаться с постоянной амплитудой.

Коэффициент усиления, при котором система производит постоянные колебания, называется конечным усилением (Ku), а период колебаний называется конечным периодом (Pc).Как только он будет достигнут, мы можем ввести значения P, I и D в ПИД-регулятор по таблице Зиглера-Николса в зависимости от используемого регулятора, например, P, PI или PID, как показано ниже.

Таблица Цейглера-Николса

Структура ПИД-регулятора

ПИД-регулятор

состоит из трех частей, а именно пропорционального, интегрального и производного управления. Комбинированная работа этих трех контроллеров дает стратегию управления процессом. ПИД-регулятор управляет переменными процесса, такими как давление, скорость, температура, расход и т. Д.Некоторые приложения используют ПИД-регуляторы в каскадных сетях, где два или более ПИД-регулятора используются для управления.

Структура ПИД-регулятора

На рисунке выше показана структура ПИД-регулятора. Он состоит из блока PID, который передает свой вывод блоку процесса. Процесс / завод состоит из устройств конечного управления, таких как приводы, регулирующие клапаны и другие устройства управления, для управления различными процессами на производстве / заводе.

Сигнал обратной связи от технологической установки сравнивается с заданным значением или опорным сигналом u (t), и соответствующий сигнал ошибки e (t) подается в алгоритм ПИД.В соответствии с вычислениями пропорционального, интегрального и производного управления в алгоритме, контроллер выдает комбинированный ответ или управляемый выходной сигнал, который применяется к устройствам управления установкой.

Всем приложениям управления не требуются все три элемента управления. Комбинации, такие как элементы управления PI и PD, очень часто используются в практических приложениях.

Приложения

Приложения ПИД-регулятора включают следующее.

Лучшее применение ПИД-регулятора — регулирование температуры, при котором регулятор использует вход датчика температуры, а его выход может быть связан с элементом управления, таким как вентилятор или нагреватель.Как правило, этот контроллер представляет собой просто один элемент в системе контроля температуры. Вся система должна быть исследована, а также рассмотрена при выборе подходящего контроллера.

Контроль температуры печи

Как правило, печи используются для обогрева, а также для хранения огромного количества сырья при очень высоких температурах. Обычно занимаемый материал имеет огромную массу. Следовательно, требуется большое количество инерции, и температура материала не меняется быстро, даже когда применяется большое количество тепла.Эта функция приводит к умеренно стабильному фотоэлектрическому сигналу и позволяет производному периоду эффективно корректировать неисправность без значительных изменений в FCE или CO. температура, а также освещенность. В зависимости от погодных условий ток и рабочее напряжение будут постоянно меняться. Таким образом, чрезвычайно важно отслеживать самые высокие показатели PowerPoint эффективной фотоэлектрической системы.ПИД-регулятор используется для определения точки MPPT, давая ПИД-регулятору фиксированные значения напряжения и тока. После изменения погодных условий трекер поддерживает стабильные ток и напряжение.

Преобразователь силовой электроники

Мы знаем, что преобразователь — это приложение силовой электроники, поэтому ПИД-регулятор в основном используется в преобразователях. Когда преобразователь подключается к системе на основе изменения нагрузки, выходной сигнал преобразователя будет изменен.Например, инвертор связан с нагрузкой; при увеличении нагрузки подается огромный ток. Таким образом, параметр напряжения, а также сила тока нестабильны, но могут изменяться в зависимости от требований.

В этом состоянии этот контроллер будет генерировать сигналы ШИМ для активации IGBT инвертора. В зависимости от изменения нагрузки на ПИД-регулятор подается ответный сигнал, поэтому он выдаст ошибку n. Эти сигналы генерируются на основе сигнала неисправности.В этом состоянии мы можем получить переменный ввод и вывод через аналогичный инвертор.

Применение ПИД-регулятора: управление с обратной связью для бесщеточного двигателя постоянного тока

Интерфейс ПИД-регулятора

Конструкция и интерфейс ПИД-регулятора могут быть выполнены с помощью микроконтроллера Arduino. В лаборатории ПИД-контроллер на базе Arduino разрабатывается с использованием платы Arduino UNO, электронных компонентов, термоэлектрического охладителя, а языки программирования, используемые в этой системе, — C или C ++.Эта система используется для контроля температуры в лаборатории.

Параметры PID для конкретного регулятора находятся физически. Функция различных параметров ПИД может быть реализована за счет последующего контраста между различными формами контроллеров.
Эта система сопряжения может эффективно рассчитывать температуру с погрешностью ± 0,6 ℃, в то время как постоянная температура регулируется путем простого небольшого отклонения от предпочтительного значения. Концепции, используемые в этой системе, обеспечат недорогие, а также точные методы управления физическими параметрами в предпочтительном диапазоне в лаборатории.

Таким образом, в этой статье обсуждается обзор ПИД-регулятора, который включает в себя историю, блок-схему, структуру, типы, работу, методы настройки, интерфейс, преимущества и приложения. Мы надеемся, что смогли предоставить базовые, но точные знания о ПИД-регуляторах. Вот простой вопрос для всех вас. Среди различных методов настройки, какой метод лучше всего использовать для достижения оптимальной работы ПИД-регулятора и почему?

Просим вас дать свои ответы в разделе комментариев ниже.

Photo Credits

Блок-схема ПИД-регулятора от wikimedia
Структура ПИД-регулятора, П-регулятор, П — ответ контроллера и ПИД-регулятор от blog.opticontrols
P — ответ контроллера от controls.engin.umich
Ответ PI-контроллера by m.eet
Ответ ПИД-регулятора wikimedia
Таблица Zeigler-Nichols by controls.engin

5 Симптомы неисправного клапана регулировки холостого хода (и стоимость замены в 2021 году)

Когда двигатель работает, но транспортное средство не движется , это означает, что двигатель работает на холостом ходу.За это время количество оборотов в минуту (RPM) внутри двигателя изменится.

Клапан регулировки холостого хода отвечает за управление частотой вращения двигателя на холостом ходу. Клапан является основным элементом управления двигателем, который либо уменьшает, либо увеличивает количество оборотов в минуту, в зависимости от того, что требуют текущие условия эксплуатации.

Клапан соединен с корпусом дроссельной заслонки рядом с впускным коллектором. Блок управления двигателем — это то, что управляет работой клапана.Основываясь на информации, которую он получает, например, о нагрузке на двигатель и температуре, он соответствующим образом изменит скорость холостого хода.

Как работает регулирующий клапан холостого хода

Скорость двигателя — это количество оборотов, которые он делает в минуту. Обычно это называется RPM. Текущие условия эксплуатации вашего автомобиля заставят клапан регулировки холостого хода увеличивать или уменьшать частоту вращения вашего двигателя.

Например, если ваш автомобиль имеет большую нагрузку или он слишком быстро нагревается, то клапан управления воздухом холостого хода будет регулировать число оборотов, увеличивая или уменьшая его; соответственно.Это позволит двигателю выдерживать более тяжелую нагрузку или в каждом случае остыть.

Блок управления двигателем отвечает за управление воздушным клапаном холостого хода. Когда этот центральный компьютер получает информацию о температуре и нагрузке двигателя, он использует эту информацию для правильной регулировки клапана управления воздухом холостого хода.

Таким образом, клапан будет правильно регулировать частоту вращения двигателя на основе информации, передаваемой с компьютера.

Связано: Как проверить и очистить клапан регулирования холостого хода

Признаки неисправности клапана регулирования холостого хода

Если в вашем автомобиле неисправен клапан регулирования холостого хода, возникает несколько проблем и симптомов, которые могут проявиться сами собой.Если вы не замените клапан немедленно, ваш автомобиль выйдет из строя.

Ниже приведены 5 основных симптомов неисправности клапана регулирования холостого хода, которые вы легко заметите.

1) Прерывистая частота вращения на холостом ходу

Поскольку регулирующий воздушный клапан холостого хода должен управлять частотой вращения двигателя на холостом ходу, неисправный клапан наверняка выбьет его из строя. Это приведет к тому, что скорость холостого хода будет случайным образом колебаться в сторону разных скоростей, а не оставаться на одной постоянной скорости.

Скорость холостого хода может быть слишком высокой в ​​один момент, а затем слишком низкой в ​​другие моменты. Вы четко заметите это изменение холостого хода, просто взглянув на тахометр на приборной панели.

2) Контрольная лампа проверки двигателя

Всякий раз, когда возникает малейшая проблема или проблема с чем-либо, связанным с двигателем, центральный компьютер включает контрольную лампу проверки двигателя на приборной панели. Одной из причин этого, безусловно, может быть неисправный регулирующий клапан холостого хода.

Если количество оборотов в минуту покажется блоку управления двигателем необычным, он сообщит вам об этом, включив контрольную лампу.

Конечно, может быть целый список других причин, по которым сигнальная лампа загорается. В любом случае вам следует отнести свой автомобиль в автомагазин, чтобы сразу сдать его на проверку.

3) Неровная работа на холостом ходу

Нормальный регулирующий воздушный клапан на холостом ходу обеспечит плавную работу автомобиля на холостом ходу. Но если клапан выходит из строя по какой-либо причине, холостой ход будет переходить от плавного к грубому.

Неровный холостой ход приведет к возникновению сильных вибраций, возникающих всякий раз, когда ваш автомобиль останавливается при работающем двигателе. Поскольку во время холостого хода в двигатель будет поступать меньше воздуха, автомобиль будет сильно трястись.

4) Остановка двигателя

Если вы столкнетесь с остановкой двигателя из-за плохого клапана регулировки холостого хода, то вы вообще не сможете управлять автомобилем. Как только вы заведите автомобиль, сразу же выйдет из строя регулирующий клапан холостого хода.

Если вы оказались вдали от дома и это случается, то вначале задержка будет происходить каждые пару минут. Вы должны успеть добраться до ближайшего механика до того, как двигатель полностью заглохнет.

См. Также: Причины, по которым автомобиль заводится, а затем сразу умирает

5) Нагрузка вызывает остановку

Иногда заглох двигателя происходит сам по себе, а в других случаях увеличение нагрузки на двигатель приводит к его остановке. стойло.

Например, если вы включите обогреватель или кондиционер, когда у вас плохой клапан регулировки холостого хода, ваш двигатель, вероятно, сразу же заглохнет. Рулевое колесо тоже может ощущаться, как будто его тянут в сторону.

Чтобы временно решить эту проблему, просто выключите обогреватель или кондиционер, чтобы уменьшить нагрузку. Затем дайте двигателю остыть в течение нескольких минут.

Стоимость замены регулирующего клапана холостого хода

Если вольтметр показывает показания за пределами нормального диапазона, то вам необходимо приобрести новый регулирующий клапан холостого хода.Если вы не разбираетесь в ремонте автомобилей, вам придется заплатить механику, чтобы он выполнил замену. Это означает, что вам придется оплачивать как детали, так и рабочую силу.

Средняя стоимость замены регулирующего клапана холостого хода составляет от 120 до 500 долларов. Детали могут стоить от 45 до более чем 400 долларов, в то время как стоимость рабочей силы составляет всего около 70 долларов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *