Широкополосный лямбда зонд проверка работоспособности – Диагностика по широкополосным лямбда-зондам

Содержание

Диагностика по широкополосным лямбда-зондам

В предыдущих статьях мы рассмотрели назначение, принципы работы и способы проверки «скачковых» датчиков кислорода (лямбда-зондов). Также были рассмотрены те возможности в поиске дефектов (диагностике) топливной системы автомобиля, которые открывает правильный анализ показаний этих датчиков.

Но все мировые автопроизводители постепенно отказываются от них и переходят на так называемые «широкополосные» лямбда-зонды. Почему так происходит? И чем плохи датчики, которые верой и правдой служили на протяжении многих лет? Чтобы ответить на данный вопрос, нам необходимо вернуться в прошлое и посмотреть, как развивалась борьба за экологию.

До 60-х годов прошлого века об экологии никто не думал. Автомобилей было мало, их «вклад» в загрязнение атмосферы был незначительным. Все изменилось во время автомобильного бума начала 60-х. Первым от «чуда» современной цивилизации под названием «автомобиль» пострадал американский штат Калифорния. Не очень удачное географическое положение и крайне неблагоприятная «роза ветров» — он очень плохо продувается, и людям от выхлопных газов просто стало нечем дышать. Был принят ряд законов, обязывающих автопроизводителей повышать качество выпускаемых автомобилей по экологическим параметрам. До недавнего времени это был громадный рынок сбыта автомобилей.

На нем торговали все мировые производители. А законы рынка очень жестоки – хочешь торговать на моем рынке, выполняй поставленные условия. Таким образом, требования законодательства Калифорнии распространились на весь мир. Отдельно хочется отметить рынок Европы. Тут «роза ветров» более благоприятная, экологические требования к автомобилям более мягкие. И стандарты по экологии сразу разделились на «американские» — более жесткие и «европейские» — чуть более мягкие. На данное время автомобильные рынки Старого и Нового Света практически заполнены. По расчетам аналитиков, свободные ниши имеются пока в России и Китае. Поэтому к рынкам этих стран приковано пристальное внимание всех автопроизводителей мира. До недавнего времени экологии на этих рынках придавалось незначительное значение. Но вступление России в ВТО потребовало ужесточения экологических норм для выпускаемых в стране автомобилей. Как же выполнить все более ужесточающиеся международные экологические требования?

Вредные выбросы — это несгоревшее топливо. При полном сгорании углеводородов всего топлива образуется только СО2 (углекислый газ) и Н2О (вода). Если топливо сгорает не полностью, в выхлопе образуются продукты неполного сгорания. Пресловутые СО и СН. Ну, а если топливо полностью не сгорает, что происходит с крутящим моментом? Правильно – он падает! Что происходит с расходом топлива (если вы просто выливаете его в выхлопную трубу)? Правильно – он растет! И вот здесь полностью пересеклись интересы экологов, производителей автомобилей и специалистов автосервисов. Исправный автомобиль имеет прекрасную динамику, низкий расход топлива и еще атмосферу не загрязняет! От чего зависит крутящий момент, расход топлива и вредные выбросы? Основное требование – система управления двигателем должна поддерживать стехиометрический состав смеси. По современным стандартам отклонение не должно превышать 2%. Для контроля над этим параметром как раз и служат датчики кислорода в выхлопе.

Начало широкого применения лямбда-зондов в автомобилестроении было положено еще в конце 70-х годов прошлого столетия. Появление «скачковых» датчиков кислорода позволило на тот момент решить эту задачу. Но для выполнения норм Евро-4 и Евро-5 точность этих датчиков перестала удовлетворять производителей. Их недостатком явилось то, что состав смеси они определяют только по наличию кислорода в выхлопе. Нет кислорода – либо стехиометрия, либо богатая смесь. Есть кислород – бедная смесь. Работают по принципу «да–нет». Системе лямбда — регулирования постоянно приходится чуть добавлять и убавлять топливо, чтобы понять, находится ли система в зоне стехиометрии. Это приводит к некоторой задержке реакции системы при возникновении неизбежных отклонений и имеет определенную погрешность при измерении их величин. Для увеличения точности потребовались датчики, которые могут определить избыток или нехватку кислорода в процентах. Так появились широкополосные датчики кислорода. При возникновении малейшего отклонения от правильного состава смеси они моментально дают блоку управления двигателя указание внести поправки и указывают их величину с достаточно большой точностью. На данный момент широкополосные датчики занимают лидирующее положение в автомобилестроении.

Для рассмотрения принципов работы широкополосных датчиков кислорода обратимся к ставшему уже классическим описанию, данному фирмой Bosch в конце прошлого столетия и вошедшему практически во все учебные пособия и публикации в СМИ и в Интернете. К сожалению, данное описание не дает понимания алгоритмов их работы и (судя по вопросам на форумах) не всегда понятно специалистам автосервисов. Попробуем исправить эту ситуацию.

Условно систему лямбда — регулирования с широполосным датчиком кислорода можно разделить на 4 зоны (см. рис.1). Зона А – ионный насос, зона В – «скачковый» лямбда – зонд (элемент Нернста), зона С – разъем и проводка, зона D – блок управления двигателем (ЭБУ) 4.

               

                                                                                   Рисунок 1

Выхлопные газы 1 из выхлопной трубы 2 через канал поступают в диффузионную щель 6. Здесь они подвергаются каталитическому дожиганию (как в обычном катализаторе), и здесь же (в зависимости от первоначального состава смеси в двигателе) образуется либо избыток, либо недостаток кислорода. Поскольку толщина щели невелика – около 50 мкм, процесс происходит очень быстро. Но для протекания реакции каталитического дожигания нужна температура (в зависимости от конструкции – от 200 до 300 градусов Цельсия). Учитывая тот факт, что температура отработавших газов (ОГ) на холостом ходу может и не достигать указанных значений, необходимым элементом является нагреватель 3. Непрогретый лямбда-зонд не работоспособен.

Далее в работу вступает элемент Нернста 7 (зона В). Сравнивая состав контрольного воздуха в камере 5 с составом газов в щели 6, он дает информацию ЭБУ о наличии или отсутствии кислорода в ней. Только «да — нет». На основании этих показаний ЭБУ 4 дает команду ионному насосу 8 (зона А):

1. Откачать лишний кислород из щели в выхлопные газы, если избыточный кислород там присутствует. Бедная смесь. Ток положительный.

2. Закачать недостающий кислород в щель, если его там нехватка. Богатая смесь. Ионный насос «отнимает» кислород у продуктов выхлопа и перекачивает его в щель. Ток отрицательный.

3. Ничего не делать, если смесь стехиометрическая. Ток нулевой.

Ток ионного насоса прямо пропорционален разности концентраций кислорода на разных его сторонах. Таким образом, по полярности и величине тока этого элемента сразу же определяется состав смеси. Получив указание от ЭБУ, ионный насос пытается привести состав ОГ в щели, соответствующий стехиометрии. По его току ЭБУ понимает, куда и насколько отклонилась смесь, и сразу принимает меры по корректировке времени впрыска в ту или иную сторону. Колебания смеси ему не нужны – ЭБУ сразу видит абсолютные величины отклонений и выводит стехиометрию в идеал.

С началом применения широкополосных лямбда– зондов работа диагностов значительно облегчилась. Такой прибор, как газоанализатор, стал попросту ненужным. Если ЭБУ выводит показания в виде тока, то «нулевой» ток говорит о том, что системе лямбда-регулирования удалось вывести стехиометрию. По показанию коррекции смотрим, какой ценой и в какую сторону ему это удалось (см. рис. 2).

                       

                                                                                            Рисунок 2

Если ток не нулевой, это означает, что системе вывести стехиометрию не удалось. Причин тут две:

1. Неисправен сам лямбда-зонд. Как показывает практика, код ошибки в этом случае возникает крайне редко. Причина проста – чтобы проверить исправность датчика, ЭБУ обязан включить систему мониторинга, т.е. принудительно обогатить или обеднить смесь. А это приводит к нарушению экологии! Поэтому мониторинг зонда проводится нечасто. Например, два автомобиля Opel Vectra, оборудованные системой впрыска Bosch и принимавшие участие в съемках фильма ОРТ «Левый автосервис», обнаружили отказ этого датчика только через несколько часов после его возникновения.

2.Дефект критичен. Система корректировки по лямбда-зонду уже дошла до пределов своей регулировки, но смесь по-прежнему отклоняется от стехиометрии. В этом случае возможен код «Превышение пределов топливной коррекции».

Действия диагноста в этих случаях таковы:

1. Проверка самого лямбда-зонда.

2. Если зонд исправен, определяем состав смеси. Стандарт OBD2 гласит однозначно: положительный ток – бедная смесь. Отрицательный ток – смесь богатая. График зависимости тока от состава смеси приведен на рис.3. Ну а причины и способы устранения отклонения состава смеси достаточно подробно описаны в учебных пособиях. Не будем повторяться.

                            

                                                                                              Рисунок 3

Так выглядит идеальная картинка. Реалии куда более сложнее. Итак, давайте рассмотрим те «подводные камни», которые нас ждут при анализе показаний широкополосного лямбда-зонда.

Первый «подводный камень»: не все производители придерживаются стандарта. Очень часто ко мне приезжали автомобили, на которых стандарт был нарушен — положительный ток соответствовал богатой смеси, отрицательный – бедной. Но не стоит сразу винить производителей этих датчиков. Полярность тока зависит только от схемотехники и программного обеспечения ЭБУ.

ПРОВЕРКА: Необходимо в воздухозаборник работающего автомобиля добавить немного горючего вещества (принудительно обогатить смесь). На нашем автотехцентре мы используем обычный очиститель карбюратора. При наличии изменений показаний датчика однозначно говорим о его исправности и определяем, в какой полярности выводятся его показания на экран сканера.

Самый сложный случай, когда при этой проверке реакции широкополосного лямбда-зонда нет. Однозначного ответа – где дефект, дать невозможно. Вернемся опять к рис.1 .

Дефект возможен в зонах А и В (сам датчик), зоне С (проводка) либо в самом ЭБУ – зона D. В большинстве сервисов предлагают замену датчика, как наиболее вероятную причину. Но учитывая его стоимость, есть смысл обратиться к зоне С (проводке и разъему) для более глубокого поиска дефекта.

Pin 1. Ток ионного насоса. Проводится миллиамперметром на 10 mA и в большинстве случаев этот замер затруднителен.

Pin 2. Масса. Отклонение от «массы» двигателя не более 100 mV. Если «масса» идет с ЭБУ, возможно наличие смещения, заложенного производите- лем. Необходимо свериться с мануалами.

Pin 3. Сигнал элемента Нернста. При отключенном разъеме должен составлять 450 mV. При подключенном разъеме – напряжение должно находиться в пределах 0…1v. Но некоторые производители могут отклоняться от этого правила. Принудительное обогащение смеси позволяет определить исправность этой цепи.

Pin 4 и 5. Напряжение подогревателя. На современных автомобилях управляется с помощью Широтно-Импульсной Модуляции (ШИМ). Проверка необязательна, ибо в случае ее отказа код ошибки с Р0036 по Р0064 (Heater Control HO2S) пробивается практически моментально.

Второй «подводный камень»: ЭБУ не может «понимать» ток. Его входные цепи способны оцифровывать только напряжения. И блоки управления начинают выводить на сканер не ток, а падение напряжения на каком-то нагрузочном сопротивлении в ЭБУ. В зависимости от схемотехники блока оно в норме может иметь абсолютно разное значение. В потоке данных выводится не ток, а какое-то абстрактное напряжение. Мануалы на конкретный автомобиль его указывают.

Но способы проверки точно такие же. Принудительное обогащение смеси позволяет определить исправность датчика, а просмотр топливной коррекции позволяет понять, в каком состоянии находится система топливоподачи автомобиля.

Третий «подводный камень»: большинство широкополосных датчиков не взаимозаменяемы. Реклама настойчиво предлагает разнообразный выбор. На форумах часто звучат вопросы: «Какой датчик лучше поставить?». Как быть рядовому потребителю? Что выбрать?

Ответ дают сами производители автомобилей. Ставить нужно только те датчики, которые рекомендовал завод-изготовитель. В противном случае, производитель не в состоянии гарантировать правильную работу системы.

«Компания NGK Spark Plug Co., Ltd стала одним из пионеров в области лямбда-регулирования в начале 1980-х годов, когда на рынке был представлен регулируемый катализатор. Сегодня ассортимент продукции, выпускаемой под маркой NTK, включает цирконий-оксидные, титановые, широкополосные лямбда-зонды и покрывает порядка 7600 модификаций автомобилей. Все лямбда-зонды соответствуют спецификации оригинальной комплектации (в том числе по длине проводов, штекерам и электрическим параметрам), что гарантирует простоту установки и безупречную эксплуатацию. Каждый лямбда-зонд NTK обеспечивает оптимальные рабочие условия для функционирования катализатора, идеальное образование смеси, а также способствует сокращению выброса вредных веществ и поддержанию расхода топлива на минимальном уровне. Любой автомобиль, оснащённый регулируемым катализатором, имеет, как минимум, один кислородный датчик. Современным же автомобилям требуется не менее двух датчиков. Широкополосные датчики могут регулировать соотношение воздуха и топлива в топливно-воздушной смеси в широком диапазоне, что особенно важно для современных двигателей, работающих на обеднённых смесях, при значениях лямбда гораздо больше чем 1».

Автор: Федор Рязанов
15.05.2014 г.

injectorcar.ru

Проверяем лямбда-зонд | CHIPTUNER.RU

Проверяем лямбда-зонд

©А. Пахомов 2007 (aka IS_18, Ижевск)

На написание этого материала натолкнуло обилие вопросов на нашем форуме, связанных с непониманием (или недопониманием) принципа работы датчика кислорода, или лямбда-зонда.

Прежде всего, нужно идти от общего к частному и понимать работу системы в целом. Только тогда сложится правильное понимание работы этого весьма важного элемента ЭСУД и станут понятны методы диагностики.

Чтоб не углубляться в дебри и не перегружать читателя информацией, я поведу речь о циркониевом лямбда-зонде, используемом на автомобилях ВАЗ. Желающие разобраться более глубоко могут самостоятельно найти и прочитать материалы про титановые датчики, про широкополосные датчики кислорода (ШДК) и придумать методы их проверки. Мы же поговорим о самом распространенном датчике, знакомом большинству диагностов.

Итак, датчик кислорода. Когда-то очень давно он представлял собой только лишь чувствительный элемент, без какого-либо подогревателя. Нагрев датчика осуществлялся выхлопными газами и занимал весьма продолжительное время. Жесткие нормы токсичности требовали быстрого вступления датчика в полноценную работу, вследствие чего лямбда-зонд обзавелся встроенным подогревателем. Поэтому датчик кислорода ВАЗ имеет 4 вывода: два из них – подогреватель, один – масса, еще один – сигнал.

Из всех этих выводов нас интересует только сигнальный. Форму напряжения на нем можно увидеть двумя способами:
 
а) сканером
б) мотортестером, подключив щупы и запустив самописец.

Второй вариант, вообще говоря, предпочтительнее. Почему? Потому, что мотортестер дает возможность оценить не только текущие и пиковые значения, но и форму сигнала, и скорость его изменения. Скорость изменения – это как раз характеристика исправности датчика.

Итак, главное: датчик кислорода реагирует на кислород. Не на состав смеси. Не на угол опережения зажигания. Не на что-либо еще. Только на кислород. Это нужно осознать обязательно. Как именно это происходит, в подробностях описано здесь.

На сигнальный вывод датчика с ЭБУ подается опорное напряжение 0.45 В. Чтоб быть полностью уверенным, можно отключить разъем датчика и проверить это напряжение мультиметром или сканером. Все в порядке? Тогда подключаем датчик обратно.

К слову, на старых иномарках опорное напряжение «уплывает», и в итоге нормальная работа зонда и всей системы нарушается. Чаще всего опорное напряжение при отключенном датчике бывает выше необходимых 0.45 В. Проблема решается путем подбора и установки резистора, подтягивающего напряжение к «массе», тем самым возвращая опорное напряжение на необходимый уровень.

Дальше схема работы датчика проста. Если кислорода в газах, омывающих датчик, много, то напряжение на нем упадет ниже опорного 0.45 В, примерно до 0.1В. Если кислорода мало, напряжение станет выше, около 0.8–0.9 В. Прелесть циркониевого датчика в том, что он «перепрыгивает» с низкого на высокое напряжение при таком содержании кислорода в отработанных газах, которое соответствует стехиометрической смеси. Это замечательное его свойство используется для поддержания состава смеси на стехиометрическом уровне.

Поняв, как работает датчик, легко осознать методику его проверки. Предположим, ЭБУ выдает ошибку, связанную с этим датчиком. Например, Р0131 «Низкий уровень сигнала датчика кислорода 1».

chiptuner.ru

Как проверить лямбда зонд? (решено) — 2 ответа

Перво-наперво при выходе из строя и неисправности лябды в поведении авто появляются несколько ощутимых последствий:

Затем, чтобы проверить лямбда-зонд, для начала можно выкрутить и провести визуальную проверку (так же как и визуальная проверка свечей может о многом рассказать).

На автомобилях устанавливается несколько видов лямбд, датчики могут быть с одним, 2-мя, 3-мя, 4-мя даже пятью проводами, но стоит запомнить что в любом из вариантов один из них является сигнальным (зачастую чёрный), а остальные предназначены для подогревателя (как правило они белого цвета).

Чем и как можно проверить лямбду

Для проверки потребуется цифровой вольтметр (лучше аналоговый вольтметром, поскольку у него время «дискретизации» значительно меньше чем у цифрового) и осциллограф если есть возможность, измерения будут более точнее. Перед проверкой следует прогреть авто поскольку лямбда правильно работать при температуре более 300C°.

Сначала ищем провод обогрева:

Заводим двигатель, разъем лямбды не разъединяем. Минусовой щуп вольтметра (обычная цешка) соединяем с кузовом автомобиля. Плюсовым щупом цешки “тыкаем” на каждый контакт провода и наблюдаем за показанием вольтметра. При обнаружении плюсового провода обогревателя, вольтметр должен показывать постоянные 12 В. Далее минусовым щупом вольтметра пытаемся найти минусовой провод подогревателя. Включаемся в оставшиеся контакты разъема датчика. При обнаружении минусового контакта, опять же вольтметр покажет 12 В. Оставшиеся провод, провода сигнальные.

Проверка лямбда-зонда тестером

Берём электронный милливольтметр постоянного напряжения и подсоединяем его параллельно ЛЗ («+» «-» к ЛЗ, — к массе), причём лямбда зонд должен быть подключен к контроллеру.

Когда двигатель прогреется (5-10 мин) затем нужно смотреть на стрелку вольтметра. Она должна периодически ходить между 0,2 и 0,8 В (т.е. 200 и 800 мВ, причём, если за 10 секунд произойдёт менее 8-и циклов — ЛЗ пора менять. Также к замене если напряжение «стоит» на 0,45 В.

Когда же напряжение всё время 0,2 или 0,9 В — то что-то со впрыском — смесь слишком бедная или слишком богатая. Поскольку напряжение датчика кислорода все время должно изменятся и скакать от ≈0,2 до 0,9V.

Имеется еще один быстрый способ проверки лямбда зонда. Следует сделать так:

Аккуратно прокалывается плюсовым контактом тестера (чёрный провод лямбды), другой контакт — на массу. На работающем моторе показания должны колебаться от 0,1 до 0,9V. Постоянные показания (к примеру, всё время 0,2) или показания, выходящие за эти рамки, или колебания с меньшей амплитудой говорят о неисправности зонда.

Исключения:

  • всё время 0,1 — мало кислорода
  • всё время 0,9 — много кислорода
  • Зонд исправен, проблема в чём-то другом.  

Если есть время и желание позаморачиватся можно провести несколько тестов на богатую и бедную смесь и дополнительно проверить датчик лямбда зонд.

  1. Отключите кислородный датчик от колодки и подключите его цифровому вольтметру. Заведите автомобиль, и, нажав педаль газа, увеличьте обороты двигателя до отметки 2500 оборотов в минуту. Используя устройство для обогащения топливной смеси, устройте снижение оборотов до 200 в минуту.
  2. При условии, что ваш автомобиль оборудован топливной системой с электронным управлением, выньте вакуумную трубку из регулятора давления топлива. Посмотрите на показания вольтметра. Если стрелка прибора приблизится к отметке 0.9 В, значит, лямбда зонд находится в рабочем состоянии. О неисправности датчика свидетельствует отсутствие реакции вольтметра, и показания его в пределах меньших отметки 0.8 В.
  3. Сделайте тест на бедную смесь. Для этого возьмите вакуумную трубку и спровоцируйте подсос воздуха. Если кислородный датчик исправен, показания цифрового вольтметра будут на уровне 0.2 В и ниже.
  4. Проверьте работу лямбда зонда в динамике. Для этого подключите датчик к разъему системы подачи топлива, и установите параллельно ему вольтметр. Увеличьте обороты двигателя до 1500 оборотов в минуту. Показатели вольтметр при исправном датчике должны быть на уровне 0,5 В. Другое значение свидетельствует о выходе из строя лямбда зонда.

Проверка напряжения в цепи подогрева

Для проверки наличия напряжения в цепи нужен вольтметр. Включаем зажигание и подсоединяем его щупами к проводам нагревателя (отсоединять разъем не можно, лучше проткнуть острыми иголками). Их напряжение должны быть равно тому, что выдает аккум на не запущенном двигателе (около 12В).

Если нет плюса нужно пройти цепь АКБ-предохранитель-датчик, поскольку он всегда идет напрямую, а вот минус поступает с ЭБУ, так что если нет минуса смотрим цепь до блока.

Проверка нагревателя лямбда зонда

Кроме как померить напряжения мультиметром, можно замерить еще и сопротивления для проверки исправности нагревателя (двух белых проводов), но нужно будет тестер переключить на Омы. В документации к определенному датчику обязательно указывается номинальное сопротивление (обычно оно около 2-10 Ом), ваша задача только проверить его и сделать вывод. На видео показан данный способ:

Как проверить лямбда зонда

Проверка опорного напряжения датчика кислорода

Тестер переключаем на режим вольтметра, затем включив зажигание измеряем напряжение между сигнальным и проводом массы. В большинстве случаев опорное напряжение лямбда-зонда должно быть 0,45В.

Как проверить лямбда зонда

etlib.ru

Как проверить лямбда зонд: мультиметром, тестером

Лямбда-зонд – это кислородный датчик, интегрированный в автомобиль для проверки объема несгоревшего воздуха в структуре отработанных газов. Информация, считанная устройством, передается в бортовой компьютер. Он, опираясь на считанные показатели, автоматически настраивает пропорции воздуха и топлива, заставляя смесь интенсивнее сгорать. Визуально деталь не кажется важной, но это не так. Если работоспособность устройства нарушена, расход топлива начнет увеличиваться.

Что такое лямбда зонд

Лямбда-зонд – это кислородный датчик, прикрученный к выпускному коллектору, реже – к корпусу двигателя. Путем проверки объема неотработанного кислорода он посылает сигнал ЭБУ автомобиля. Датчик остаточного кислорода заставляет блок управления изменить параметры смешивания кислорода с топливом.

В конструкции предусмотрено определенное число проводов. По этому фактору изделия бывают:

  • однопроводными;
  • двухпроводными;
  • трехпроводными;
  • четырехпроводными.

Как проверить лямбда зонд на работоспособность своими руками

Чтобы проверить датчик своими руками, подойдут такие способы:

  • внешний осмотр;
  • с применением мультиметра;
  • с помощью осциллографа;
  • метод прогрева зонда;
  • через бортовую систему.

Рассмотрим варианты поподробнее.

Внешний осмотр

Сначала надо проверить исправность каждого провода, ведущего к устройству. Проверка выполняется путем легкого расшатывания проводников в разные стороны. При повреждении слоя защитной изоляции выходной сигнал исказится, поступит с перебоями.

Далее обратите внимание на корпус. Оцените состояние контактов. Датчик ничем не прикрыт, поэтому на него постоянно попадает вода, окисляющая контакты. Для получения достоверных результатов рекомендуем открутить изделие и посмотреть на внешний вид защитной трубки.

Мультиметр

Чтобы проверить сигнал, который передает лямбда зонд автомобиля, мастера обычно пользуются омметром и вольтметром. Но есть универсальный тестер, не требующий использования двух устройств одновременно – мультиметр. Для диагностики состояния накальной спирали нужно отключить разъемы 3 и 4 (обычно это белый и коричневый провода), а затем подсоединить их концы к зажимам. Деталь считается исправной, если спираль выдает сопротивление минимум 5 Ом.

При полном отсутствии напряжения выполните прозвон всех проводов, идущих к реле от выключателя системы зажигания.

Осциллограф

Осциллограф позволяет определить параметры чувствительности датчика путем демонстрации графика изменений. Для проверки работы нужно прогреть двигатель, а затем посмотреть на вольтаж сигналов. Нормальный диапазон – от 0.1 до 0.9 В. Количество изменений, зарегистрированных осциллографом, не должно превышать 8-9. Меньшее количество свидетельствует о медленном отклике датчика, из-за чего его надо заменить.

Прогрев зонда

Еще один интересный способ – запускаем двигатель, делаем ему подогрев 5-10 минут, а затем жмем педаль газа и удерживаем обороты на уровне трех тысяч в минуту. Удерживать газ в таком положении надо три минуты. За это время он нагреется. Проверяем напряжение. Допуск – 0.2-1 В. Интенсивность включения датчика – 1 раз в секунду. Если включение отсутствует, а на тестере показано напряжение 0.4-0.5 В, зонд подлежит замене.

Бортовая система

К сервисному порту автомобиля подключаем диагностический сканер. Проверяем количество ошибок, сохраненных в интегрированной памяти. У каждого производителя есть свой список обозначений кодов ошибок, поэтому выведенный список неисправностей сверяем с сервисной таблицей вашей марки. Простой и быстрый способ оценки состояния датчика кислорода.

Как проверить широкополосный лямбда зонд

В широкополосном датчике предусмотрена другая распиновка, а диапазон измерений выходит за штатные значения. В широкополосных устройствах обязательной проверке подлежит как датчик, так и проводка, ведущая к нему. Для диагностики используем тестер, либо считываем коды ошибок с электронного блока управления. Сигнал элемента Нернста должен выдавать от 0 до 1 В. Исправность цепи проверяется по работе принудительного обогащения.

Рекомендуем ознакомиться с полезным видео по диагностике лямбда-зондов.

nahybride.ru

Контроль работы лямбда-зондов | Диагностирование автомобиля

Лямбда-зонды — важнейшие датчики, контролирующие точный состав смеси. Сигналы лямбда-зонда используются также для косвенного контроля других систем, уменьшающих выбросы. Таким образом, работоспособность зондов имеет большое значение для всей системы. Контроль лямбда-зондов и контура регулирования обеспечивается путем постоянных проверок правдоподобности сигналов напряжения зонда, измерения тока и напряжения на нагревательном резисторном элементе зонда, измерения регулирующей частоты (динамический анализ) и распознавания изменений характеристики зонда, обусловленных его старением. При изменении характеристики особо анализируются амплитуда регулирования, параметры реагирования и длительность регулирования.

Контроль управляющего зонда

Контроль управляющего зонда осуществляется путем анализа смещения характеристической кривой напряжения зонда. К смещению кривых приводит старение или «отравление» зонда. Смещение распознается блоком управления и согласуется в заданных пределах. При превышении предела согласования регистрируется неисправность и загорается индикатор MIL.

Проверка зондов выполняется при как можно более постоянных условиях эксплуатации (около 20 секунд движения с постоянной скоростью). В ЭБУ записаны предельные значения для времени включения лямбда-зонда и времени ожидания сигналов в диапазонах богатой и бедной смеси. При превышении предельных значений регистрируется неисправность в регистраторе событий и загорается индикатор MIL.

Контроль диагностического зонда

Для полного контроля контура регулирования и функции катализатора необходимо использовать и диагностический зонд. Работоспособность зонда можно проверить через диагностику пределов регулирования или диагностику движения.

Диагностика пределов регулирования

При этой диагностике управляющая электроника следит за параметрами регулирования диагностического зонда путем длительного, целенаправленного изменения состава смеси. При превышении заданных пределов регулирования регистрируется неисправность. Если состав смеси оптимальный, то напряжение диагностического зонда колеблется в диапазоне лямбда = 1. Если диагностический зонд выдает более высокое или более низкое напряжение (отличное от среднего значения), значит состав смеси неправильный или неисправен катализатор. ЭБУ изменяет регулирующее значение лямбда до тех пор, пока зонд снова не отправит значение лямбда = 1. Это регулирующее значение имеет определенные пределы. При превышении этих пределов система OBD исходит из неисправности контролирующего зонда или системы выпуска ОГ (например, вторичный воздух).

Контроль выполняется по следующему образцу: при падении напряжения зонд сообщает блоку управления двигателем об увеличении концентрации кислорода в ОГ. ЭБУ повышает регулирующее значение лямбда, и смесь обогащается. Напряжение зонда увеличивается, и ЭБУ снова понижает регулирующее значение. Это регулирование выполняется в течение длительного времени. По достижении предела регулирования зонд продолжает сообщать о падении напряжения из-за слишком высокой концентрации кислорода в ОГ. ЭБУ повышает регулирующее значение для обогащения смеси. Однако, несмотря на обогащение смеси, напряжение зонда остается низким, что обусловлено неисправностью, и ЭБУ повышает регулирующее значение до запрограммированного предела регулирования. ЭБУ распознает неправдоподобное состояние эксплуатации; регистрируется неисправность и загорается индикатор MIL.

Характеристика сигнала при диагностике пределов регулирования

Рис. Характеристика сигнала при диагностике пределов регулирования

Диагностика движения

Работоспособность диагностического зонда также можно контролировать — для этого ЭБУ проверяет и анализирует сигналы зонда в режимах ускорения и принудительного холостого хода. В фазе разгона смесь обогащается, и концентрация кислорода в ОГ уменьшается. Напряжение зонда должно увеличиться. В режиме принудительного холостого хода картина прямо противоположная. Подача топлива прерывается, и концентрация кислорода в ОГ увеличивается. Напряжение зонда должно уменьшиться. Если реакция системы при нескольких этих режимах отличается от предусмотренной, то блок управления двигателем распознает зонд как неисправный и регистрируется неисправность.

Диагностика обогрева лямбда-зонда

Наряду с описанными выше видами диагностики при проверке лямбда-зонда можно проводить расширенные проверки функционирования и правдоподобности. При этом электрические неисправности распознаются по КЗ или обрыву проводов. Функции контролируются спорадически. Важнейшая дополнительная диагностика — это проверка обогрева лямбда-зонда. Обогрев лямбда-зонда можно контролировать, к примеру, по времени. Так, регулирующая электроника не позднее чем через 10 секунд после запуска двигателя ожидает адекватный сигнал напряжения зонда. Если сигнал поступает позже либо вообще не поступает, то нужно исходить из неисправности обогрева лямбда-зонда.

Еще один метод проверки мощности обогрева зонда состоит в измерении сопротивления нагревательного элемента зонда и сравнении его с заданным. Кроме того, можно анализировать регулирование обогрева через сравнение температуры, измеренной внутренним датчиком температуры лямбда-зонда, и сохраненной температуры нормального режима (например, 720°С). Если отклонение температуры от нормы слишком велико, то ЭБУ регистрирует неисправность системы выпуска и загорается индикатор MIL.

Диагностика широкополосного лямбда-зонда

Контроль широкополосного лямбда-зонда несколько отличается от контроля зондов с релейной характеристикой. Выходной сигнал зонда представляет собой величину тока, которая должна в точности соответствовать запрограммированным номинальным значениям при колебаниях смеси. Этот ток пересчитывается блоком управления в напряжение и выдается для системы диагностики.

Контроль широкополосного лямбда-зонда

Рис. Контроль широкополосного лямбда-зонда

На рисунке показаны кривые пересчитанного напряжения у исправного и неисправного широкополосных зондов. Колебания смеси, необходимые для диагностики зонда, инициируются блоком управления через определенные промежутки времени и анализируется характеристика сигналов зонда. При недостижении или превышении номинальных значений в пределах заданного диапазона загорается индикатор MIL и регистрируется неисправность.

ustroistvo-avtomobilya.ru

Как проверить лямбда зонд на работоспособность: диагностика мультиметром и тестером

«Начинка» современных автомобилей содержит множество датчиков, которые призваны контролировать исправность различных систем и агрегатов. Одним из главных помощников водителя является лямбда-зонд. Но иногда он тоже способен выходить из строя. Не все автолюбители знают, как проверить лямбда-зонд своими руками и серьёзно сэкономить на походах в автосервис.

Лямбда зонд: что такое и где находится

Лямбда зонд (ƛ зонд) – датчик, который замеряет объём кислорода в выхлопных газах и сравнивает со стандартом. Иными словами, это кислородный датчик. Если показатели его не устраивают, он подаёт сигнал в блок управления.

Место нахождения зависит от числа датчиков в машине. Так, в ТС, выпущенных до 2000 года, чаще всего стоит один. В более поздних моделях — от 2 датчиков. Первый всегда находится под капотом, второй (если он есть) – под днищем машины.

Схема устройства лямбда зонда (кислородного датчика)

Как работает датчик

Выхлопные газы проходят сквозь датчик, а внутрь него поступает чистый воздух из атмосферы. Из-за разной окислительной способности чистого воздуха и отработавших газов появляется разность потенциалов. Эти показания и отправляются в ЭБУ.

Внутри датчика спрятаны токопроводящий элемент, электроды, сигнальный контакт и заземление. Вся эта система начинает работать только после прогрева до 300–400 oC. Только при такой температуре твёрдый электролит способен проводить электричество.

Схема работы лямбда зонда

Схема работы

Виды кислородных датчиков

Современные ТС оснащаются тремя видами датчиков.

Циркониевый. Одна из самых популярных моделей, основной элемент в составе — диоксид циркония. Наконечник керамический, начинает работать только при нагреве до 350 oC. Быстро разогревается за счёт вмонтированной нагревательной детали с керамическим изолятором.

Такие датчики делятся на 1, 2, 3 и 4 проводные.

Титановый. Наконечник устройства изготовлен из диоксида титана. Внешне датчик мало отличается от циркониевого, но работать начинает только при температуре от 700 oC. Из-за сложной конструкции, высокой стоимости и излишней чувствительности к температурным перепадам такие датчики редко используются.

Широкополосный. В отличие от предыдущих моделей, у этого датчика имеются две ячейки:

  1. Измерительная. Благодаря электронной схеме модуляции, в составе газов внутри ячейки сохраняется показатель ƛ =1.
  2. Насосная. Если смесь богатая, дополняет состав ионами кислорода из атмосферы, если обеднённая — выводит лишние молекулы кислорода из диффузионного отверстия во внешнюю среду.

Виды современных кислородных датчиков (лямбда зондов)

Признаки и причины неисправности ƛ-зонда

Лямбда-зонд в процессе эксплуатации авто может выйти из строя. Чаще всего датчик ломается из-за некачественного топлива, попадания топлива или масла внутрь, или неполадок в системе подачи горючего.

О неисправности лямбда-зонда могут говорить следующие признаки:

  • обороты растут до максимума, после чего резко выключается мотор;
  • обороты на холостом ходу становятся нестабильными;
  • мощность существенно падает при повышении оборотов;
  • электронный блок выдаёт ошибку из-за поздней подачи сигнала с ƛ-датчика;
  • машина едет рывками.

Чтобы вернуть датчику работоспособность, его необходимо вынуть и правильно очистить. Для этого снимают керамическую головку и убирают загрязнения тряпкой с химическим средством. Если и это не помогает, датчик придётся менять.

Лямбда зонд

Как проверить лямбда-зонд на работоспособность

Существует несколько способов проверить лямбда-зонд на исправность. Самый простой и поверхностный — тщательный осмотр устройства, самый сложный — диагностика при помощи специального оборудования.

Внешний осмотр датчика

Итак, внешнее изучение кислородного датчика будет состоять из нескольких шагов:

  1. Проверить внешнюю часть, которая находится вне катализатора. Не должно быть оплавленных участков, обрывов или замкнутых контактов.
  2. Выкрутить датчик из катализатора и изучить нижнюю часть, обычно спрятанную в катализаторе. Пятна сажи на ней говорят о том, что топливо слишком концентрировано, двигатель и клапаны близки к износу или в выхлопной системе произошла утечка. Отложения серого цвета сигнализируют о высоком содержании свинца в топливе.

Визуальная диагностика неисправностей лямбда зонда

Проверка лямбда-зонда мультиметром (тестером)

Потребуется вольтметр, омметр или мультиметр, в котором объединяются оба эти устройства. Если используется последний, его нужно перевести в режим замера сопротивления. Чтобы испытать нагреватель датчика, необходимо:

  1. Вывести из колодки датчика контакты 3 и 4 разъёма (стандартно это белый и коричневый провода).
  2. Подсоединить контакты к выходам тестера и измерить сопротивление.

Показатели могут быть разными, обычно они варьируются в пределах 2–10 Ом. Цифра более 5 Ом говорит об отличной работоспособности датчика. Если сопротивление вообще не выводится на дисплей, это говорит о том, что в нагревателе лямбда-зонда порвался провод и требуется немедленная замена.

Проверка лямбда зонда мультиметром

Прогрев зонда

Кроме того, мультиметром можно проверить восприимчивость наконечника кислородного датчика. Для этого нужно завести машину и прогреть мотор до 70–80oC. Последующий алгоритм будет таким:

  1. Довести мотор до 3000 оборотов в минуту и зафиксировать этот показатель на 2–3 минуты, пока датчик не прогреется.
  2. Минусовой щуп мультиметра подсоединить к массе машины, другой состыковать с выходом датчика.
  3. Изучить данные на тестере: они должны варьироваться от 0,2 до 1 В и меняться 10 раз в секунду.
  4. Надавить педаль газа в пол и резко отпустить её. Исправный датчик выдаст значение в 1 В, после чего резко упадёт до ноля. Если цифры на дисплее не меняются при действиях с педалью и показывают 0,4–0,5 В, датчик требует замены.

Если напряжения нет вовсе, стоит проверить проводку. Для этого нужно «прощупать» мультиметром все провода, соединяющие реле с выключателем зажигания.

Проверка лямбда зонда мультиметром на прогретой машине

Проверка осциллографом

Диагностика осциллографом будет более продуктивной, поскольку в этом случае можно зафиксировать промежуток времени, за которое меняется выходное напряжение. Нормальными считаются показатели ниже 120 мСек.

Итак, алгоритм проверки будет таким:

  1. Найти сигнальный провод датчика и подключить к нему осциллограф. Затем нужно завести мотор и разогреть его до 60–70oC. Это нужно, чтобы прогреть датчик воздуха и дождаться от него обратной связи. В процессе подготовки на осциллографе уже появится сигнал о генерации небольшого тока (до 1 В).Проверка лямда зонда с помощью осциллографа
  2. Когда начнёт прогреваться лямбда-датчик, напряжение ещё немного вырастет. По мере прогрева до 300–400oC диаграмма приобретёт динамику.Диаграмма на осциллографе при проверке лямбда зонда
  3. Если на прогретом двигателе дойти до 2500–3000 оборотов, исправный датчик должен показать такую картину:Диаграмма исправного лябда зонда на осциллографе
  4. Если резко отпустить газ, смесь переходит в режим обогащения, а лямбда откликается таким образом:Отклик датчкика на снижение оборотов на осциллографе

В процессе проверки важно засечь, через какое время датчик переходит в рабочий режим, то есть когда на диаграмме появляется динамика. Также анализируется реакция на работу двигателя на 2000–3000 оборотов в минуту. Если после прогрева сигнал стабильно находится только в нижнем или только в верхнем положении, датчик придётся менять. Если сигнал напоминает плавную извилистую линию, как на картинке ниже, датчик сгорел или вышел из строя.

Отказ перегретого датчика кислорода

Проверка бортовой системой

Если в машине имеется ЭБУ, поиск неполадок можно существенно облегчить. Стоит обратить внимание на индикатор «Check Engine», который нередко предупреждает о проблемах с лямбда-зондом. Чтобы уточнить причину сигнала, достаточно подключить к бортовому компьютеру автосканер.

К кислородному датчику будут относиться ошибки:

  • P0130: датчик отправляет неверные данные;
  • P0131: сигнал слишком слабый;
  • P0132: сигнал слишком сильный;
  • P0133: КД медленно реагирует;
  • P0134: датчик вообще не даёт сигнала;
  • P0135: нагреватель первого датчика не функционирует;
  • P0136: произошло замыкание второго датчика;
  • P0137: КД2 медленно реагирует;
  • P0138: КД2 слишком быстро реагирует;
  • P0140: разрыв в цепи КД2;
  • P0141: нагреватель второго датчика неисправен;
  • P1102: слабое сопротивление нагревателя КД;
  • P1115: цепь повреждена, считать данные невозможно.

Видео: как проверить работоспособность лямбда-зонда

Проверять исправность лямбда-зонда нужно регулярно, особенно если пробег машины перевалил за 50 000 км. Очень часто признаки выхода датчика из строя схожи с более серьёзными поломками. Вместо того, чтобы выискивать проблему в двигателе или электронике, порой достаточно поверхностно осмотреть лямбда-датчик.

dispetcher-gruzoperevozok.biz

Как проверить лямбда-зонд на работоспособность

Инжекторные двигатели экономичны и дружелюбны к экологии в отличии от карбюраторных моторов. Высоких показателей инженеры добились благодаря датчикам в системе питания. Один из датчиков, который непосредственно влияет на смесеобразование – это лямбда-зонд или кислородный датчик.

Содержание статьи:

Если он выходит из строя, можно наблюдать потерю мощности, большой расход топлива, нестабильную работу мотора.

Зачем в автомобиле нужен лямбда-зонда, место расположения

Лямбда-зонд необходим для измерения коэффициента содержания кислорода в горючей смеси. Он устанавливается всегда в районе приемной трубы до катализатора и измеряет объем несгоревшего кислорода в продуктах сгорания. Эта информация позволит ЭБУ готовить оптимальную смесь.

Наиболее эффективно сгорает смесь, в которой содержится 14,7 частей воздуха и одна часть топлива. Это оптимальные показатели, если кислород присутствует в больших количествах, то смесь бедная, если воздуха меньше, то богатая.

Читайте также: Почему горит ЧЕК в машине, что делать, можно ли ехать и как его потушить

Сгорание богатой смеси менее эффективно – можно наблюдать снижение мощности, повышенный расход топлива.

Так как моторы в автомобилях функционируют на совершенно разных режимах, то оптимальное соотношения воздуха и топлива может не соблюдаться. Для контроля качества смеси в системах питания применяют кислородные датчики.

На основе сигналов от лямбды ЭБУ может оценить качество смеси. Если обнаружены показатели, которые не соответствуют нормам, смесь корректируется.

Принцип работы кислородного датчика

Принцип действия кислородного датчика достаточно простой. Лямбда-зонд должен сравнивать показания с какими-то идеальными результатами, чтобы понимать, как меняется процент кислорода в смеси, поэтому замеры проводятся в двух местах – измеряется атмосферный воздух и продукты сгорания.

Такой подход позволяет датчику чувствовать разницу, если соотношения топливной смеси меняется.

ЭБУ должен получать от лямбда-зонда электрический импульс. Для этого датчик должен уметь преобразовывать замеры в электрические сигналы. Для измерения применяются специальные электроды, которые могут вступать с кислородом в реакцию.

В работе лямбды используется принцип гальванических элементов – смена условий химических реакций приводит к изменению напряжения между двумя электродами. Когда смесь богатая, а содержание кислорода за нижним порогом, тогда напряжение растет. Если смесь обедненная, напряжение будет падать.

Далее импульс, который возникает на этапе химических реакций, отправляется на ЭБУ, где параметры сравниваются с записанными в памяти топливными картами. В результате корректируется работа системы питания.

Статья по теме: Как сделать пеногенератор для автомойки из подручных вещей своими руками

Датчик кислорода работает на химических реакциях, но при этом конструкция его относительно простая. Главный элемент – специальный наконечник из керамических материалов. В качестве сырья используется диоксид циркония, а реже – диоксид титана.

Наконечник покрыт напылением из платины – именно этот слой и вступает в реакцию с кислородом. Одной стороной этот наконечник контактирует с выхлопными газами, другой стороной – с воздухом в атмосфере.

Электроды лямбда-зонда имеют одну особенность. Так, чтобы реакция проходила эффективнее и показатели были точными, замеры содержания кислорода в выхлопе производятся при условии определенных температур.

Для того, чтобы наконечник вышел на рабочие характеристики и нужную электропроводимость, температура среды должна составлять 300-400 градусов.

Для обеспечения нужного режима температур изначально лямбда-зонд устанавливался в непосредственной близости к выпускному коллектору. Это обеспечивало нужную температуру после прогрева ДВС. В работу датчик вступал не сразу. До того, как лямбда достаточно нагреется и начнет выдавать точные параметры, ЭБУ использовало сигналы других датчиков. Оптимальная смесь в процессе прогрева не приготавливалась.

Некоторые модели кислородных датчиков оснащены электрическими нагревателями. Благодаря им лямбда может быстрее выходить на рабочие температурные режимы. Подогрев использует энергию бортовой сети автомобиля.

Признаки и причины неисправности датчика

При неисправном лямбда-зонде выхлопные газы становятся более токсичными. Определить это можно при помощи специального диагностического оборудования. При этом никаких внешних признаков не будет, также, как и не будет никакого особенного запаха.

Вырастает расход топлива. Водители, как правило следят за тем, насколько наполнен топливный бак, стараются определить скорость, при которой расход минимален. Повышенный расход будет сразу же заметен. В зависимости от серьезности поломки датчика кислорода, расход вырастет в пределах от 1 л до 4 л.

Перегрев каталитического нейтрализатора. Если лямбда неисправна, то в ЭБУ подается неверный сигнал. Это может приводить к неправильной работе катализатора. Он перегревается вплоть до красного цвета и выходит из строя.

Это интересно: Как восстановить кожу на руле автомобиля методом покраски

Автомобиль будет дергаться, и водитель сможет услышать хлопки. Лямбда перестает формировать правильные сигналы, в результате – нестабильный ХХ. Обороты могут колебаться в очень широких диапазонах.

Снижаются динамические характеристики. Автомобиль теряет мощность. Эти признаки можно наблюдать в сильно запущенных случаях. Датчик не работает на холодном моторе, а автомобиль всячески сигнализирует о неисправности.

Среди причин поломок можно выделить:

  • Повреждения, вызванные сильными ударами, ДТП, наездами на бордюр;
  • Некорректную работу ДВС и проблемы в работе системы зажигания, когда элемент перегревается и выходит из строя;
  • Засор системы и некачественное топливо. Чем больше в бензине тяжелых металлов, тем быстрее лямбда выйдет из строя;
  • Поршневая группа – часто из-за изношенной ЦПГ в выпускной коллектор попадает масло, а продукты его сгорания забивают зонд;
  • Замыкания в электропроводке;
  • Бедная или слишком богатая смесь;
  • Попадание лишнего воздуха в выхлопную систему;
  • Пропуски зажигания;
  • Топливные присадки.

Как проверить лямбда-зонд мультиметром

Когда наблюдаются рывки при движении, повышенный расход горючего, и горящий “чек”, то стоит провести диагностику. Эти признаки могут говорить и о других неисправностях, но если есть мультиметр, то можно проверить кислородный датчик своими руками. Специалисты рекомендуют проверять лямбду через измерение напряжений.

К сведению: Стук в Двигателе все причины появления странных звуков при работе мотора

Но прежде любых измерений нужно прогреть ДВС. Если лямбда холодная, она не будет работать. Также рекомендуется по возможности снять датчик и осмотреть его и проводку на предмет грязи и повреждений. Если датчик деформирован, электрод поцарапан или покрыт сажей, нагаром, то лучше его заменить.

Измерения напряжения в цепи подогрева

Включают зажигание, щупами протыкают провода, которые идут к нагревателю. Можно также втыкать щупы мультиметра в разъем. Напряжение будет примерно равно напряжению в бортовой сети. Если двигатель не запущен, то напряжения может и не быть.

Обычно плюс приходит к нагревателю напрямую. Минус подает блок управления. Если отсутствует плюс, следует проверить цепи от аккумулятора до датчика. Если отсутствует минус, тогда нужно проверить цепь от ЭБУ до датчика.

Проверка нагревателя

Можно проверить работоспособность кислородного датчика при помощи омметра. Очень часто поломка связана со спиралью подогрева или проводкой к ней.

Для проверки омметр присоединяют между контактами нагревателя. Если нагреватель исправен, то омметр покажет сопротивление от 2 до 10 ОМ. В цепи подогрева сопротивление будет от 1 кОм до 10 мОм. Если сопротивления нет, то стоит поискать обрыв в проводке.

Опорное напряжение

Имея под рукой мультиметр, можно проверить опорное напряжения. Для этого включают зажигание, затем измеряют напряжение между проводом сигнала и массой.

В правильно работающей лямбде напряжение будет в пределах 0,45 В. Если имеются отличия хотя-бы на 0,2 В, то проблемы с сигнальной цепи или плохая масса.

Проверка сигнала с датчика осциллографом

Двигатель необходимо прогреть. Осциллограф подключают между сигналом и массой. Затем поднимают обороты до 3000 и наблюдают за изменениями показаний. Сигнал должен меняться в пределах от 0,1 В до 0,9 В. Если осциллограф точный и видно, что изменения в более узком диапазоне, то лямбда неисправна.

По теме: Как нумеруются цилиндры, виды их расположения в двигателе

Также стоит засечь время, в течении которого показания опускаются от большего уровня к меньшему. За 10 секунд показания должны меняться 10 раз. Если смены происходят реже, тогда может появиться ошибка под датчику.

Ошибки лямбда-зонд в бортовой системе автомобиля

В большинстве случае ДВС сам подсказывает есть ли неисправности в работе датчиков. Достаточно подключить диагностическое оборудование и считать коды неисправностей.

Если все плохо, то в ЭБУ будет выдавать следующие ошибки – это P0131, P0134, P0171. Более подробно о них в видео ниже.

Также будет загораться лампочка «проверьте двигатель», но здесь точно установить причину можно только при помощи диагностики. Чек загорается и в случае других проблем.

autovogdenie.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о