Система холостого хода карбюратора: Назначение и принцип действия системы холостого хода карбюратора.

Содержание

Назначение и принцип действия системы холостого хода карбюратора.

Вспомогательные устройства карбюраторов

Системы холостого хода




При работе двигателя на малых частотах вращения без нагрузки дроссельная заслонка закрывается почти полностью. Разрежение в диффузоре, где расположен распылитель, в этом случае снижается настолько, что подача топлива из главной дозирующей системы прекращается.

Для приготовления горючей смеси необходимого состава (0,7 ≤ α ≤ 0,85) на холостом ходу используется пространство воздушного патрубка под дроссельной заслонкой (задроссельное пространство). При этом топливо в задроссельное пространство подается специальной системой, которая называется системой холостого хода.

Из-за создавшегося разрежения под прикрытой дроссельной заслонкой в зоне эмульсионных отверстий 2 и 3 (см. Рис. 1) топливо из поплавковой камеры через главный топливный жиклер 16 и жиклер 7 холостого хода поступает по каналам 8 и 9.

При этом к нему подмешивается воздух, который подсасывается через воздушный жиклер 10. Через отверстие 4, расположенное выше кромки прикрытой дроссельной заслонки, к топливу подмешивается дополнительное количество воздуха. В результате к выходным отверстиям 2 и 3 поступает топливовоздушная эмульсия требуемого состава.

Устойчивую работу двигателя с малой частотой вращения обеспечивают с помощью регулировочных винтов 5 и 17. Винтом 5 регулируют количество поступающей эмульсии, и, следовательно, состав смеси. Количество смеси и частоту вращения на режиме холостого хода регулируют винтом 17, который изменяет положение дроссельной заслонки 1 при полностью отпущенной педали акселератора.

После начала открытия дроссельной заслонки (при переходе с режима холостого хода на режим средних нагрузок) главная дозирующая система вступает в работу с небольшим запаздыванием, что может привести к кратковременному переобеднению смеси и «провалу» в работе двигателя.


Однако плавный переход к работе двигателя на малых и средних нагрузках обеспечивается тем, что уже в самом начале открытия дроссельной заслонки отверстие 4 попадает в зону сильного разрежения. Поэтому через него в смесительную камеру поступает дополнительное количество эмульсии.

При дальнейшем открытии дроссельной заслонки вступает в работу главная дозирующая система. Однако подача топлива через систему холостого хода продолжается до открывания дроссельной заслонки примерно на 40% от максимального открытия.

***



Экономайзер принудительного холостого хода

Системы холостого хода современных карбюраторов имеют дополнительное устройство – экономайзер принудительного холостого хода.
Данное устройство отключает подачу топлива через систему холостого хода при торможении автомобиля двигателем. При таком торможении дроссельная заслонка закрыта, а частота вращения коленчатого вала велика, так как он приводится во вращение через трансмиссию от колес автомобиля.


В результате под дроссельной заслонкой разрежение многократно возрастает, расход топливной эмульсии через отверстия 2 и 3 резко увеличивается, что приводит к усиленному недогоранию топлива и выбросу в окружающую среду токсичных веществ.

Экономайзер принудительного холостого хода (ЭПХХ) включает в себя электромагнитный клапан, который перекрывает подачу топливной эмульсии к выходным отверстиям системы холостого хода, датчик положения дроссельной заслонки и электронный блок управления. Электронный блок управления получает сигналы о положении дроссельной заслонки от датчика и о частоте вращения коленчатого вала от системы зажигания. При определенном соотношении этих сигналов блок управления выдает управляющий сигнал на закрытие или открытие электромагнитного клапана экономайзера принудительного холостого хода.

Исходными данными для срабатывания электромагнитного клапана ЭПХХ являются сигнал датчика о закрытой заслонке и повышенное число оборотов коленчатого вала.
Такой режим ЭПХХ поддерживает пока:

  • скорость движения при отпущенной дроссельной заслонке не уменьшится;
  • не будет выключена передача и автомобиль начнет двигаться в режиме обычного холостого хода;
  • водителем нажмет педаль акселератора и движение продолжится с повышенной скоростью, экономайзер выключится по положению заслонки.

Работа экономайзера в составе системы холостого хода карбюратора обеспечивает экономию топлива и лучшую эффективность торможения мотором в режиме принудительного холостого хода.

***

Экономайзеры и эконостаты мощностных режимов


Главная страница


Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

Система холостого хода карбюратора. Принцип работы

Схема системы холостого хода, в которую поступление топлива осуществляется из главного жиклёра (11) показана на [рис. 1, в)]. Дроссельная заслонка при малой частоте вращения коленчатого вала приоткрывается и за ней формируется значительное разрежение, вследствие чего топливо проходит через главный жиклёр (11) в горизонтальный канал (10) и через топливный жиклёр (3) холостого хода попадает в эмульсионный канал (4). Воздушный жиклёр (2), установленный в начале эмульсионного канала, предназначен для подачи через него воздуха в систему холостого хода. Пройдя через жиклёр (2), воздух смешивается с топливом, образуя эмульсию, которая подводится по эмульсионному каналу к отверстиям (5) и (7), расположенным в стенке смесительной камеры.

Рис. 1. Простейший карбюратор.

а) – Схема простейшего карбюратора:

1) – Поплавковая камера карбюратора;

2) – Поплавок;

3) – Игольчатый клапан;

4) – Штуцер подачи топлива;

5) – Отверстие, сообщающее с атмосферой полость поплавковой камеры;

6) – Входной воздушный патрубок;

7) – Распылитель;

8) – Диффузор;

9) – Смесительная камера;

10) – Жиклёр;

11) – Дроссельная заслонка;

12) – Выходной патрубок;

13) – Впускной клапан;

14) – Цилиндр двигателя;

15) – Поршень;

б) – Схема главного дозирующего устройства с пневматическим торможением топлива:

1) – Поплавковая камера;

2) – Воздушный жиклёр;

3) – Эмульсионный канал;

4) – Распылитель;

5) – Главный жиклёр;

в) – Схема системы холостого хода:

1) – Поплавковая камера;

2) – Воздушный жиклёр холостого хода;

3) – Топливный жиклёр холостого хода;

4) – Эмульсионный канал;

5) – Верхнее отверстие в стенке смесительной камеры;

6) – Винт регулировки качества смеси;

7) – Нижнее отверстие в стенке смесительной камеры;

8) – Дроссельная заслонка;

9) – Винт регулировки количества смеси;

10) – Горизонтальный канал системы холостого хода;

11) – Главный жиклёр;

г) – Характеристики карбюраторов:

1) – Характеристика простейшего карбюратора;

2) – Характеристика идеального карбюратора.

Точное расположение отверстий (5) и (7) относительно дроссельной заслонки требуется для образования горючей смеси. Отверстие (7) при полностью закрытой дроссельной заслонке располагается несколько ниже её края, тогда как отверстие (5) – несколько выше. Вследствие этого в процессе работы двигателя на холостом ходу поступление эмульсии будет осуществляться в зону максимального разрежения, то есть под дроссельную заслонку и через отверстие (7). Через отверстие (5) в эмульсионном канале происходит перемешивание воздуха, который уменьшает разрежение в системе холостого хода.

Как только приоткрывается дроссельная заслонка, эмульсия начинает поступать через отверстие (5) в смесительную камеру, препятствуя тем самым переобеднению смеси в первые моменты открытия дроссельной заслонки, за счёт чего достигается плавный переход работы двигателя с малой частоты вращения коленчатого вала (при холостом ходе) на режим средних нагрузок.

17*

Похожие материалы:

Системы холостого хода карбюратора

При работе двигателя на режимах холостого хода дроссельная заслонка полностью прикрыта, и разрежение из задроссельного пространства через выходное отверстие и каналы передается к топливному жиклеру дозирующей системы.

Под действием этого разрежения топливо через жиклер, канал и топливный жиклер холостого хода поступает в эмульсионный канал и через выходное отверстие в задроссельное пространство. Скорость движения воздуха в задрос-сельном пространстве невысокая, поэтому топливо здесь распыляется неэффективно и, следовательно, возможно неравномерное его распределение по цилиндрам двигателя. Это требует обогащения горючей смеси, сопровождающейся неизбежным увеличением содержания в отработавших газах окиси углерода (СО) и углеводородов (СН).

Рис. 1. Система холостого хода с задроссельным смесеобразованием

Ужесточение экономических требований привело к созданию элементов, препятствующих неквалифицированному вмешательству в работу системы холостого хода. В карбюраторах производства ДААЗ для этой цели на винт качества смеси устанавливают пластмассовую ограничительную втулку, которая позволяет вращать винт только в пределах одного оборота, а на карбюраторах производства С.-ПКарЗ в эмульсионные каналы системы холостого хода устанавливают винты токсичности.

Приведенная принципиальная схема системы питания холостого хода является наиболее распространенной и реализована в современных карбюраторах производства ДААЗ и АО „Пекар”.

Система холостого хода карбюратора ВАЗ-2101. Система холостого хода имеется только в первичной камере карбюратора. Она обеспечивает переход двигателя с режима холостого хода к работе его под нагрузкой.

Система содержит подстроечный регулировочный винт, топливный жиклер с винтом, сообщенный через топливный канал, и главный топливный жиклер с поплавковой камерой. Эмульсионный канал через нерегулируемое отверстие переходной системы и регулируемое выходное отверстие сообщен с задроссельным пространством. Регулировочный винт обеспечивает необходимый состав горючей смеси. Питание системы холостого хода осуществляется от главной дозирующей системы и выполнено после главного топливного жиклера.

В корпусе поплавковой камеры выполнено вентиляционное отверстие и размещен клапан, кинематически связанный через шток с дроссельной заслонкой. В случае прикрытия дроссельной заслонки клапан обеспечивает сообщение поплавковой камеры с атмосферой. С помощью винта производят дополнительную подачу воздуха в эмульсионный канал из главного воздушного канала в корпусе. Воздушный жиклер располагается в зоне устойчивого воздушного потока. В системе холостого хода карбюратора ВАЗ-2101 его питание осуществляется из надтопливного пространства поплавковой камеры.

Для улучшения испарения, смешивания и распределения топлива по цилиндрам двигателя корпус смесительной камеры в зоне регулируемого отверстия системы холостого хода обогревается теплом охлаждающей жидкости двигателя, поступающей через канал. Количество горючей смеси, поступающей в двигатель, регулируют с помощью винта.

Рис. 2. Система холостого хода карбюратора ВАЗ-2101 (а) и BA3-2103, -2106 (б)

Под действием разрежения, создаваемого работающим двигателем, топливо из поплавковой камеры через главный топливный жиклер, топливный канал и топливный жиклер поступает в эмульсионный канал, где смешивается с воздухом, проходящим через воздушный жиклер. Образовавшаяся горючая смесь поступает в задроссельное пространство карбюратора. При полном открытии дросселя система холостого хода работает, как дополнительный воздушный жиклер главной дозирующей системы.

Система холостого хода карбюратора BA3-2103 и ВАЗ-2106. Система этих карбюраторов отличается от аналогичной системы карбюратора ВАЗ-2101 наличием электромагнитного клапана. Клапан состоит из электромагнита с подвижным стержнем, нажимной пружины и корпуса. На работающем двигателе на клапан подается напряжение, и стержень перемещается, открывая клапан.

Клапан при выключенном зажигании перекрывает канал подачи топлива и его паров и тем самым исключает возможность самовоспламенения горючей смеси (калильного зажигания) в горячем двигателе после его остановки.

Рассмотренные системы холостого хода включены последовательно после топливного жиклера главной дозирующей системы. Такое включение обеспечивает плавный переход от режимов холостого хода к режимам с нагрузкой. Вместе с тем в подобных системах наблюдается неудовлетворительное перемешивание топлива с воздухом.

Рис. 3. Автономная система холостого хода

Рис. 4. Система холостого хода карбюратора ДААЗ-21081

Автономные системы холостого хода (АСХХ). АСХХ, представляющие по существу автономный карбюратор, реализованы в карбюраторах „Озон”, ДААЗ-2108, -2141, К-131, -151, -156 и др.

АСХХ содержит топливный жиклер, сообщенный через топливный канал, топливный жиклер главной дозирующей системы с поплавковой камерой, и эмульсионный канал с подстроечным винтом, обводной воздушный канал с размещенным в нем профильным дозирующим винтом и выходное регулируемое отверстие, сообщенное с задроссельным пространством. В эмульсионном канале размещены воздушный жиклер и регулировочные винты соответственно состава и количества горючей смеси.

Под действием разрежения, создаваемого в задроссельном пространстве работающим двигателем, топливо через канал поступает к жиклеру, смешивается с воздухом, поступающим через воздушный жиклер. При этом основная часть воздуха проходит через обводной канал и кольцевой распылитель со скоростями, близкими к звуковым. Одновременно с этим к кольцевому распылителю по эмульсионному каналу поступает горючая смесь, где она дополнительно испаряется и равномерно перемешивается с воздухом, а затем через регулируемое отверстие 9 поступает в задроссельное пространство. Конструкция профиля дозирующего винта в зоне кольцевого распылителя обеспечивает стабильный состав горючей смеси независимо от величины проходного сечения регулируемого отверстия.

Особенность смесеобразования АСХХ заключается в том, что в задроссельное пространство поступает хорошо испаренная и перемешанная горючая смесь. Равномерное ее распределение по цилиндрам двигателя позволяет снизить концентрации СО и СН, повысить топливную экономичность и устойчивость работы двигателя на режимах холостого хода.

В многокамерных карбюраторах система холостого хода предусмотрена только в первичной камере. Во вторичной камере вместо системы холостого хода предусмотрена переходная система, которая вступает в работу в момент открывания вторичной заслонки карбюратора.

Система холостого хода карбюратора ДААЗ-21081. Система содержит топливный жиклер с электромагнитным клапаном, сообщенный через канал с поплавковой камерой, воздушный жиклер, выходящий в главный воздушный канал, винты качества и количества соответственно и каналы выхода горючей смеси в главный воздушный канал. Главный топливный жиклер не связан с системой АСХХ.

Под воздействием разрежения в задроссельном пространстве топливо поступает по каналам, через топливный жиклер электромагнитного клапана и эмульсионный канал и каналы в главный воздушный канал.

Винт качества горючей смеси не подлежит регулировке в эксплуатации. Его регулируют на заводах-изготовителях или на

специализированных станциях, а затем пломбируют. В эксплуатации в таких карбюраторах регулируют только минимальную частоту вращения коленчатого вала с помощью винта упора дроссельной заслонки. Винт не позволяет обогащать горючую смесь, поступающую в цилиндры двигателя.

Система холостого хода карбюратора К-151. Система содержит блок с воздушным и эмульсионным жиклерами соответственно, эмульсионный канал, обводной канал, винты качества горючей смеси, диффузор П обводного канала и винт количества (эксплуатационной настройки).

Система холостого хода тесно взаимодействует с ЭПХХ, содержащим блок с винтом и выходным отверстием, запорный элемент. Пневмоклапан имеет мембрану, нагруженную пружиной, и отверстие. Электропневмоклапан через трубопровод сообщен с задроссельным пространством вторичной камеры и шланг и трубку с наддиафрагменной полостью пневмоклапана.

Под действием разрежения при закрытой дроссельной заслонке первичной камеры эмульсия поступает через обводной канал и его диффузор, отверстие и выходит в задроссельное пространство первичной камеры. При открывании дроссельной заслонки эмульсия из канала через переходные отверстия поступает в задроссельное пространство.

Рис. 5. Система холостого хода карбюратора К-151

Система холостого хода карбюратора К-156. Система снабжена дополнительной системой холостого хода в дополнительной секции. Обе системы соединены с эмульсионным колодцем главной дозирующей системы. Топливные жиклеры выполнены в блоке с воздушными и представляют собой трубки с калиброванными отверстиями.

Система холостого хода имеет двойное эмульсирование, обеспечивающее улучшение смесеобразования и обеднение горючей смеси.

Карбюраторы мотоциклетного типа. Система холостого хода / Хабр

Здравствуйте, уважаемые читатели. Возвращаемся к теории и практике по карбюраторам мотоциклетного типа.

Вспомним, что уже были рассмотрены особенности конструкций диффузора и дроссельной заслонки.

Сегодня речь пойдет о системе холостого хода и работе карбюратора в переходных режимах.



Устройство системы холостого хода

В конструкциях современных карбюраторов есть не только главная дозирующая система. Она одна не позволила бы получить необходимый состав смеси для поддержания нормальной работы двигателя в режиме без нагрузки, другими словами когда двигатель должен работает на холостом ходу. За нормальную работу в режиме холостого хода отвечает одноименная система. Рассмотрим один из вариантов ее конструкции.



Устройство системы холостого хода: 1 — переходное отверстие; 2 — воздушный канал; 3 — винт состава смеси на холостом ходу; 4 — отверстие малых оборотов холостого хода; 5 — топливный канал; 6 — топливный жиклер, совмещенный с эмульсионной трубкой

В состав системы холостого хода входит два топливоподающих отверстия. Они имеют специальные названия: переходное отверстие 1 и отверстие малых оборотов холостого хода 4 (варианты расположения на реальном карбюраторе представлены на рисунке ниже). Переходное отверстие располагается под дроссельной заслонкой, в непосредственной близости от ее задней кромки. Отверстие малых оборотов холостого хода находится за дроссельной заслонкой, на небольшом отдалении в точке, где при закрытой дроссельной заслонке разрежение наибольшее. Такое положение обусловлено стремлением к обеспечению наиболее легкого истечения топлива из отверстия малых оборотов холостого хода.


Варианты расположений топливоподающих отверстий: 1 — переходное отверстие; 2 — отверстие малых оборотов холостого хода

В топливоподающем канале 5 системы холостого хода находится жиклер 6, который ограничивает истечение топлива при работе на холостых оборотах. В этом же канале расположена эмульсионная трубка (часто совмещенная с жиклером), в которой топливо смешивается с воздухом, поступившим по воздушному каналу 2.

К элементам точной настройки относится винт 3, регулирующий сечение воздушного канала. В данной конструкции винт влияет на состав смеси. Ниже будет рассмотрена конструкция, в которой аналогичный винт регулирует количество смеси.

Принцип работы на малых оборотах холостого хода

При закрытой или почти закрытой дроссельной заслонке разрежение в зоне распылителя главной дозирующей системы недостаточно для истечения топлива из него. При таком положении дросселя зона наибольшего разрежения находится за дроссельной заслонкой. Именно в этом месте располагают отверстие малых оборотов холостого хода. Работа двигателя полностью обеспечивается топливом, поступающим из этого отверстия.

Эмульсирование топлива в системе холостого хода

В системе холостого хода топливо смешивается с небольшим количеством воздуха, который поступает по специальному воздушному каналу. Процесс эмульсирования топлива происходит следующим образом. Когда дроссельная заслонка закрыта и горючая смесь подается только через отверстие малых оборотов холостого хода, топливо смешивается с воздухом, поступающим не только по воздушному каналу, но и с воздухом из-под дроссельной заслонки, прошедшим через переходное отверстие. По мере подъема дросселя происходит перемещение зоны максимального разрежения в сторону распылителя главной дозирующей системы. В связи с этим количество поступающего в систему холостого хода воздуха через переходное отверстие уменьшается. В какой-то точке подъема дросселя воздух совсем перестает поступать из переходного отверстия, и под действием разрежения топливо начинает фонтанировать через него. В этот момент весь воздух начинает поступать только через специальный воздушный канал, пропускная способность которого регулируется винтом конической формы.

Винт регулировки смеси на холостом ходу

Окончательная (точная) настройка системы холостого хода производится с помощью специального винта с коническим кончиком, который регулирует пропускную способность воздушного канала системы холостого хода. Некоторые модели карбюраторов оснащены винтом, регулирующим количество топлива уже предварительно смешанного с воздухом, подаваемого системой холостого хода.


Винты регулировки смеси на холостом ходу. Два винта слева регулируют количество смеси, два справа — состав смеси.

Так как в одном случае винт регулирует состав смеси, а в другом — количество топливной смеси, применяются противоположные приемы регулировки. Если винт регулирует пропускную способность воздушного канала, то для обогащения смеси необходимо уменьшить количество воздуха путем закручивания винта. Для того чтобы сделать смесь беднее, винт необходимо выкручивать. Если винт регулирует количество подаваемого топлива, то, напротив, для обогащения его выкручивают, для обеднения, соответственно, закручивают.

Понять, по какому принципу осуществляется регулировка на том или ином карбюраторе, очень просто. Винт регулировки воздуха располагают ближе к входному устройству карбюратора, который подсоединяют к фильтру, в то время как винт регулировки топлива располагают ближе к фланцу крепления к двигателю.


Расположение винтов регулировки смеси на холостом ходу: a — винт регулировки состава смеси, b — винт регулировки количества смеси

Жиклер холостого хода

Если установлен жиклер слишком большой пропускной способности, двигатель начинает работать неустойчиво, медленно набирает обороты, звук выхлопа становится глухой и слабый. Если жиклер обладает недостаточной пропускной способностью, двигатель хорошо набирает обороты, но при резком закрытии дросселя обороты не снижаются столь же быстро. Снижение оборотов до холостого хода происходит с запаздыванием вплоть до нескольких секунд.

Слишком маленькая пропускная способность приводит к неустойчивой работе и частым остановкам двигателя, как в режиме малого холостого хода, так и при попытках поднять дроссель. Работа двигателя с установленным жиклером холостого хода недостаточной пропускной способности может привести к прихвату поршня к стенке цилиндра в момент закрытия дроссельной заслонки. Риск особенно велик, если до этого двигатель работал на полном газу в течение продолжительного времени. В таких условиях после закрытия дросселя двигатель по инерции сохраняет большие обороты. Если в этот момент система холостого хода приготавливает бедную смесь, тепловая нагрузка резко увеличивается из-за чрезмерного обедненного сгорания, что повышает риск перегрева и последующего заклинивания.

Работа системы холостого хода в переходном режиме

Когда водитель начинает приоткрывать дроссельную заслонку, разрежение в зоне отверстия малых оборотов холостого хода уменьшается. Это приводит к уменьшению подачи топлива через него, поэтому в работу необходимо включаться другой системе, обеспечивающей плавный переход в работе от системы холостого хода к главной дозирующей системе.

Когда дроссельная заслонка поднимается примерно до 1/4 всего хода, разрежение в зоне отверстия малого холостого хода падает настолько, что истечение топлива из него прекращается. Область максимального разряжения смещается ближе к распылителю главной дозирующей системы, но еще не достигает его. Как раз в этом месте расположено переходное отверстие. Из него начинает фонтанировать топливо в количестве, достаточном для обеспечения плавного перехода в работе двигателя от холостого хода к режиму частичных нагрузок, когда работает уже главная дозирующая система.

Отметим, что жиклер холостого хода важен не только для работы на малых оборотах холостого хода, но и для переходного режима, так как он также регулирует количество топлива, истекающего из переходного отверстия. Наряду с жиклером на работу в переходных режимах оказывают влияние угол среза дроссельной заслонки, специальный выступ на задней части дроссельной заслонки, форма насадки вокруг распылителя главной дозирующей системы, специальный паз на задней кромке дроссельной заслонки.


Элементы дроссельной заслонки, влияющие на переходной режим. Цветом обозначены выступ на задней части дроссельной заслонки (a) и специальный паз на задней кромке (b).

Продолжение следует…

Карбюратор Система холостого хода — Энциклопедия по машиностроению XXL

Системы ускорительного насоса и пуска холодного двигателя— общие на обе камеры карбюратора. Система холостого хода каждой камеры состоит из топливного жиклера 9, воздушного жиклера 5 и двух отверстий в смесительной камере карбюратора. Нижнее отверстие перекрыто винтом для регулирования состава горючей смеси.  [c.53]

Система пуска холодного двигателя и ускорительный насос — общие на обе камеры карбюратора. Система холостого хода, главная дозирующая система и система экономайзера имеются в каждой камере.  [c.68]


Практические занятия. Показ влияния типичных неисправностей двигателя на токсичность и расход топлива (производится на посту диагностики). Показ чувствительности регулировки системы холостого хода карбюратора и ее влияния на содержание СО в отработавших газах.  [c.113]

Простейший карбюратор может приготовлять смесь необходимого состава только для одного скоростного или нагрузочного режима работы двигателя. Карбюраторный двигатель, особенно транспортный, работает на самых различных скоростных и нагрузочных режимах при частой их смене. Чтобы карбюратор мог надежно устанавливать требуемое соотношение между топливом и воздухом в горючей смеси при работе на любом режиме двигателя, он снабжается рядом систем и устройств главной дозирующей системой с корректированием подачи топлива с целью обеспечения необходимого состава смеси при работе двигателя на всех основных эксплуатационных режимах системой холостого хода для обеспечения устойчивой работы двигателя при малой нагрузке и на режиме холостого хода системой для обогащения смеси при работе двигателя на режиме максимальной мощности и близких к нему режимах (для этой цели в карбюраторе устанавливается экономайзер) устройством для обеспечения хорошей приемистости двигателя (ускорительный насос для подачи дополнительного количества топлива с целью обогащения  [c. 227]

Для автомобильного карбюраторного двигателя характерны следующие основные режимы работы пуск двигателя, требующий вследствие плохого испарения топлива очень богатую смесь режим холостого хода и малых нагрузок, которому соответствует смесь с а = = 0,6…0,8 режим частичных нагрузок (а = 0,9…1,1) режим максимальной (полной) нагрузки (а=0,8…0,9) кроме того, резкое открытие дроссельной заслонки не должно сопровождаться ощутимым обеднением горючей смеси. Соответственна основным режимам работы двигателя в современном карбюраторе предусмотрены следующие системы и устройства пусковое устройство, система холостого хода, главное дозирующее устройство, экономайзер и ускорительный насос.  [c.51]


Система холостого хода служит для приготовления горючей смеси на режиме холостого хода, когда главная дозирующая система не работает, так как количество воздуха, проходящего через карбюратор, незначительно и разрежение в диффузоре настолько мало, что топливо через распылитель не поступает. Система холостого хода показана на рис. 15. Распылитель системы имеет два отверстия 2 и 4, выполненные в патрубке карбюратора. Когда дроссельная заслонка 1 прикрыта, отверстие 2 находится ниже заслонки, а отверстие 4 — выше ее кромки, в том месте, где разрежение очень мало. Степень закрытия дроссельной заслонки на режиме холостого хода изменяют регулировочным винтом 10. К системе холостого хода относятся также каналы 5 и 7, воздушный жиклер 6 и топливный жиклер 8. При работе двигателя на холостом ходу разрежение, возникающее за дроссельной заслонкой, передается через каналы 5 и 7 к топливному жиклеру 8. Вследствие этого в каналы 7 и 5 из поплавковой камеры 11 начинает поступать топливо через топливные жиклеры 9 п 8 главной дозирующей системы и холостого хода. В канале 5 топливо смешивается с воздухом, проходящим через воздушный жиклер 6. В зоне отверстия 4 к образующейся эмульсии до-  [c.52]

В карбюраторе имеется еще коническая дозирующая игла 12, закрепленная на дроссельном золотнике 2. При его перемещении игла изменяет проходное сечение сопла И распылителя. Это механическая система торможения. Она тоже влияет на состав смеси. Чем ниже игла войдет в сопло распылителя, тем меньшая кольцевая щель останется между иглой и стенками сопла, а следовательно, меньшее количество топлива поступит в смесительную камеру. Профиль дозирующей иглы выбирают таким, чтобы обеспечивалась работа на обедненных смесях при частичных нагрузках, а переход к полной нагрузке получался быстрым и плавным. При опускании дроссельного золотника в пределах от Д полного открытия до полного закрытия разрежение над соплом 11 распылителя уменьшается и смесь обедняется. При полностью закрытом дроссельном золотнике разрежения над соплом нет и главная дозирующая система не действует. Чтобы двигатель и в таких условиях мог работать нормально, в конструкции карбюратора предусмотрена система холостого хода. Она состоит из жиклера 17 (рис. 20), воздушного канала 16 с регулировочным винтом 15 качества смеси, каналов-распылителей 13 н 14 я регулировочного винта количества смеси, расположенного сбоку. Когда дроссельный золотник полностью закрыт, разрежение за ним достигает максимума, а над каналом 13 оно почти отсут-  [c.57]

При работе на малых оборотах холостого хода в цилиндрах двигателя остается много остаточных газов. Кроме того, из-за сравнительно невысокой температуры деталей испарение бензина недостаточное. Поэтому, чтобы получить устойчивое горение, следует подавать в цилиндры богатую смесь — с соотношением топлива и воздуха 1 8— 1 10. Смесь такого состава приготовляется системой холостого хода карбюратора,  [c.51]

Перегрев двигателя, вызывающи й сильное испарение топлива в поплавковой камере карбюратора образующиеся пары забивают трубопроводы Неисправен карбюратор неправильная регулировка системы холостого хода  [c.77]

Рнс. 277. Карбюратор автомобиля ВАЗ-2103 (схема системы холостого хода)  [c.318]

Система холостого хода служит для приготовления горючей смеси на режиме холостого хода, когда главная дозирующая система не работает, так как количество воздуха, проходящего через карбюратор, незначительно и разрежение в диффузоре настолько мало, что топливо через распылитель не вытекает. В то же время за прикрытой дроссельной заслонкой создается значительное разрежение, достигающее 5000 мм вод. ст.  [c.68]


Распространенная схема системы холостого хода показана на рис. 45,0. Распылитель системы имеет два отверстия 2 vi4, выполненные в трубе карбюратора. Когда дроссельная заслонка 1 прикрыта,  [c.68]

Первичная камера работает так же, как камеры рассмотренных выше карбюраторов. Дроссельная заслонка вторичной камеры начинает открываться после того, как дроссельная заслонка первичной камеры откроется на угол 40—45°. После открытия дроссельной заслонки 38 на угол 14°, когда распылитель 39 окажется за заслонкой, вступает в действие вспомогательная дозирующая система вторичной камеры, работа которой аналогична работе системы холостого хода. При дальнейшем открытии дроссельной заслонки 38 вступает в работу главная дозирующая система вторичной камеры, работающая так же, как система в первичной камере. Когда угловая скорость коленчатого  [c.80]

Топливо в поплавковую камеру 2 (рис. 48) поступает через игольчатый клапан I. К главной дозирующей системе первичной камеры относятся главный топливный жиклер 23, воздушный жиклер 18, эмульсионная трубка 19 и распылитель 15, выведенный в горловину малого диффузора 14. Система холостого хода карбюратора выполнена в первичной камере. Она включает в себя топливный 21 и воздушный  [c.61]

Автономная система холостого хода карбюратора 2107 снабжена устройством, выключающим подачу в цилиндры двигателя топливовоздушной смеси на режиме так называемого принудительного холостого хода (при торможении двигателем), что повышает экономичность в условиях интенсивного движения в городе, а также уменьшает выброс токсичных веществ в атмосферу. Устройство состоит из мембранного пневмопривода 29 и электропневмоклапана 33. Управление электропневмоклапаном осуществляется электронным блоком 34, реагирующим на частоту вращения коленчатого вала, и датчиком 35 положения дроссельной заслонки 36.[c.63]

Нарушена регулировка системы холостого хода карбюратора  [c.296]

Цель регулировки системы холостого хода карбюратора — обеспечить устойчивую работу двигателя на холостом ходу при наименьшем расходе горючего. Регулировка производится на работающем двигателе, прогретом до нормальной температуры (температура охлаждающей жидкости 80—90°С), при исправных приборах зажигания, нормальных зазорах между клапанами и толкателями и полностью открытой воздушной заслонке.  [c.81]

Карбюратор К-88А двигателя ЗИЛ-130 имеет пусковое устройство, систему холостого хода, главную дозирующую систему, ускорительный насос и экономайзер с механическим приводом. Благодаря тому, что карбюратор двухкамерный, т. е. имеет две смесительные камеры, в нем создаются лучшие, чем в однокамерных карбюраторах, условия образования горючей смеси и наполнения цилиндров двигателя, а также более равномерное распределение смеси по цилиндрам. Б каждой из камер, работающих одновременно и параллельно на всех режимах, происходит приготовление смеси для четырех (из восьми) цилиндров двигателя. Б обеих камерах имеются свои диффузоры, система холостого хода, главная дозирующая система, распылитель ускорительного насоса и дроссель (дроссели обеих смесительных камер жестко закреплены на одном общем валике).  [c.41]

На малых оборотах холостого хода при прогретом двигателе, когда дроссель закрыт до упора его рычага в регулировочный винт, в задроссельном пространстве карбюратора создается сильное разрежение, передающееся по каналам системы холостого хода на жиклер 2, через который топливо, поступающее из главного жиклера, проходит в канал 29 системы холостого хода. В этот же канал поступает воздух через воздушное отвер-  [c.43]

Для обеспечения нормальной работы двигателя на всех режимах карбюратор имеет следующие дозирующие устройства главное дозирующее устройство, экономайзер, ускорительный насос, системы холостого хода и пуска холодного двигателя. Главное дозирующее устройство и система холостого хода имеются в каждой камере, а экономайзер, ускорительный насос и устройство для пуска холодного двигателя общие для двух камер карбюратора. Распылители экономайзера выведены в каждую камеру.  [c.115]

НИИ к полной нагрузке автоматически обогащает смесь до мощ-ностного состава (кривая бв), принято называть желательным карбюратором. Первая задача выполняется главной дозирующей системой совместно с системой холостого хода, вторая задача — системой экономайзера.  [c.63]

Система холостого хода. Система холостого хода обеспечивает работу двигателя без нагрузки, особенно при малой частоте вращения коленчатого вала. У большинства современных карбюраторов система холостого хода выполняет одновременно функции комненсационной системы на режимах дросселирования. При отсутствии внешней нагрузки па режиме холостого хода двигатель потребляет небольшое количество смеси, поэтому дроссельную заслонку прикрывают почти полностью. Прикрытие ее ограничивается уиорныл винтом 7 (рис. 159). Разрежение в диффузоре при малых расходах воздуха незначительно и недостаточно для того, чтобы топливо поднялось от уровня в поплавковой камере до выходного  [c. 255]

Наибольшее разнообразие в схемах и решениях имеют системы холостого хода карбюратора, имеющие большие резервы совершенствования. Недостаток обычных карбюраторов заключается во взаимном влиянии друг на друга системы холостого хода и главной дозирующей системы. Более полно современным требованиям к топливной экономичности и токсичности отвечают автономные системы холостого хода (АСХХ) с количественным регулированием смеси постоянного состава, совмещенным с ЭПХХ.  [c.43]


Стабильность регулировки системы холостого хода сохраняется при пробеге 8—9 тыс. км. Время контроля одного автомобиля — 2 мин. Для сокращения количества контрольных проверок на средних и небольших АТП, для которых приобретение нескольких комплектов аппаратуры нецелесообразно, достаточно в определенный день растянуть по времени выпуск автомобилей в рейсе, чтобы охватить все их проверкой. Тогда периодичность проверок составит 20. .. 40 рабочих дней при условии непрерывной эксплуатации автомобилей. В таком случае достаточно иметь один комплект газоаналитической аппаратуры, сконцентрированный в зоне ТО и ТР, эпизодически используя ее на постах ЭД. ЭД желательно проводить при возвращении автомобилей с линии. Это улучшает условия проверки (прогретый двигатель) и позволяет с учетом большего запаса времени тут же проводить регулирование карбюраторов, разгрузив при этом производственные участки.  [c.88]

Практические занятия. Контрольная диагностика двигателя. Моделирование возможных неисправностей двигателя, определение их влияния на показатели токсичности и расхода топлива. Упражнения в определении неисправностей по показанию газоанализатора и мотортестера. Определение корреляции токсичности и расхода топлива при регулировании системы холостого хода карбюратора.  [c.114]

Причинами неустойчивой работы двигателя на холостом ходу являются неправильная установка зажигания, образование нагара на электродах свечей зажигания или увеличение зазора между электродами, нарушение регулировки топли вных зазоров в клапанах механизма газораспределения, снижение компрессии, подсос воздуха через прокладки между головкой и блоком или между головкой и впускным трубопроводом, заедание дроссельных заслонок карбюратора или их привода, нарушение регулировки системы холостого хода или повышенный уровень топлива в поплавковой камере карбюратора.[c.63]

Неисправности свечей зажигания заброс юбочки изолятора маслом или черным влажным нагаром — поставлены слишком холодные для данного двигателя свечи юбочка покрыта сухим черным нагаром — переобогаще-ние рабочей смеси, нарушена регулировка системы холостого хода карбюратора перебои в работе двигателя на низких частотах вращения вала — увеличенный, зазор меясду электродами изолятор перегрет, конус сухой, белого цвета — слишком горячая свеча, неправильно установлено зажигание.  [c.78]

Карбюратор К-22Г (рис. 9) трехдиффузионный, с падающим потоком, состоит из трех частей. В верхней части закреплены воздушная заслонка 34, балансирная трубка 1 и поплавок 10 с запорной иглой бензин подается насосом к отверстию 8. В средней части — поплавковая камера 11, диффузоры, верхняя часть смесительной камеры, главное дозирующее устройство, экономайзер с насосом-ускорителем, жиклеры и каналы холостого хода. В нижней части находятся дроссельная заслонка 23, ограничитель максимальной частоты вращений коленчатого вала 24, нижняя часть смесительной камеры, выходные отверстия системы холостого хода и регулировочный винт холостого хода 25. Между нижней и средней частями установлена теплоизоляционная прокладка 27, затрудняющая передачу тепла от впускного трубопровода к поплавковой камере, что уменьшает испарение топлива. Нижним фланцем карбю ратор крепится на впускном трубопроводе. Между верхней и средней частями карбюратора находится уплотняющая прокладка 9. Главное дозирующее устройство с регулированием разрежения в диффузоре состоит из блока жиклеров 21, блока распылителей 3, дозирующей иглы 18 и блока диффузоров. Система холостого хода включает топливный жиклер 29, два воздушных жиклера 33, эмульсионный жикле р 32, регулировочный винт 25 и каналы.  [c.20]

Для получения смеси почти постоянного состава простейший карбюратор дополнен компенсационной системой, состоящей из компенсационногв колодца 9, соединенного в верхней части с воздушной полостью карбюратора, и из каналов, связывающих колодец с поплавковой камерой и форсункой 10. При малых открытиях дроссельной заслонки 1 топливо поступает в диффузор через главный жиклер И, главную форсунку 12 и компенсационную форсунку 10. При дальнейшем открытии заслонки компенсационный колодец опоражнивается, и через форсунку 10 в диффузор поступает воздух, подсасываемый через колодец из воздушной полости, и то количество топлива, которое может пропустить жиклер. В итоге состав смеси поддерживается почти постоянным. При работе на малых нагрузках (холостой ход), когда дроссельная заслонка почти полностью закрыта, разрежение в диффузоре очень мало и топливо через форсунки 10 и 12 поступать почти не будет. Поэтому карбюратор дополняется системой холостого хода.  [c.295]

У карбюраторов типов К-88 и К-89 двигателей ЗИЛ-130 и ЗИЛ-375 (рис. 44) каждая смесительная камера приготовляет смесь для четырех цилиндров. Пуск холодного двигателя обеспечивается прикрытием воздушной заслонки 12 и обогащением смеси с помощью ускорительного насоса 23. Дроссельные заслонки при пуске слегка приоткрыты, поэтому в смесительных камерах создается большое разрежение, под действием которого топлива вьиекает из кольцевых щелей малых диффузоров 7, а эмульсия — из отверстий 26 системы холостого хода.[c.55]

Двухкамерный карбюратор с падающим потоком, с устройством подогрева каналов системы холостого хода, с пневматическим экономайзером, диафрагменным ускорительным насосом обеспечивает высокую приемистость, экономичность, уверенный пуск и равномерную работу холодного двигателя сразу после пуска. Карбюратор снабжен высокоэффективным воздушным фильтром сухого типа, который имеет бумажный фильтрующий элемент с предочистителем из нетканого синтетического волокна.  [c.15]

ВИНТ регулировки состава смеси 2 — корпус жиклера холостого хода 5 — главные воз-душные жиклеры 4 — гробка клапана насоса-ускорителя 5 — главные жиклеры б — клапан распылителя насоса-ускорителя 7 — воздушные жиклеры системы холостого хода б — вид на крышрсу корпуса карбюратора  [c.64]

Устройство первичной камеры аналогично устройству камер карбюратора К-126Б. Она имеет малый 14 и большой 5 диффузоры, а также дроссельную заслонку 4. К главной дозирующей системе первичной камеры относятся топливный жиклер 7, воздушный жиклер 12, эмульсионная трубка 11, установленная в колодце 6, и распылитель 13, выведенный в самое узкое сечение малого диффузора 14. Распылитель 17 экономайзера и распылитель 15 ускорительного насоса помещены в горловине патрубка первичной камеры. Экономайзер и ускорительный насос приводятся в действие общей планкой 27, установленной на подвижной стойке 33. Система холостого хода карбюратора выполнена в первичной камере. Она включает топливный 18 и воздушный 16 жиклеры, эмульсионный канал 3, а также верхнее 2 и нижнее 1 отверстия распылителя.  [c.80]

Распространенная схема системы холостого хода показана на рис. 43, а. Распылитель системы имеет два отверстия 2 и 4, выполненные в трубе карбюратора. Когда дроссельная заслонка 1 прикрыта, отверстие 2 находится ниже заслонки, а отверстие 4 — выше ее кромки, в месте, где разрежение мало. Степень закрьпия дроссельной заслонки на режиме холостого хода изменяют регулировочным винтом 10. К системе холостого хода относятся также каналы  [c.53]


Когда распылитель 32 окажется за дроссельной заслонкой, вступает в действие переходная дозирующая система вторичной камеры, работа которой аналогична работе системы холостого хода. При дальнейшем открытии дроссельной зас юнки 37 вступает в работу главная дозирующая система вторичной камеры, работающая так же, как аналогичная система первичной камеры. При открытии заслонки, близком к максимальному, и соответствующем разрежении горючая смесь обогащается эконо-статом, выполненным в карбюраторе по принципу дозирующей системы с понижением разрежения у жиклера 9. При совместной работе обеих камер в случае полного открытия дроссельных заслонок карбюратор приготовляет горючую смесь мощностного состава.  [c.63]

В качестве резервной системы используют питание двигателей бензовоздушной смесью. Для этого имеется бензобак 12, топливный насос 14 и карбюратор 11, состоящий из главной дозирующей системы и системы холостого хода. Работа двигателя с одновременным использованием-обеих систем запрещена.  [c.72]


Карбюраторы среднетоннажных грузовиковСхемы, регулировочные параметры и рекомендации по обслуживанию

А. Дмитриевский, к.т.н.

Мы рассказали о карбюраторах грузовых автомобилей легкого класса, дали их схемы, регулировочные параметры и рекомендации по обслуживанию. Карбюраторные двигатели на грузовиках среднего класса многие полагают анахронизмом, но огромное количество такой техники по-прежнему находится в эксплуатации.

Двухкамерные карбюраторы восьмицилиндровых V-образных двигателей ЗИЛ (К-88, К-89, К-90) и ГАЗ (К-135) и их модификации (рис. 1 и 2) имеют ряд принципиальных отличий от ранее рассмотренных систем. Главные из них — это параллельное открытие дроссельных заслонок и наличие ограничителя числа оборотов коленчатого вала.

Каждая камера карбюратора питает 4 цилиндра. Данное обстоятельстро определяет повышенные требования к точности регулировок, необходимых для обеспечения одинакового состав смеси в каждой группе. Система холостого хода подает струю эмульсии в задроссельное пространство, в зону, где воздух движется с небольшими скоростями и поэтому, в отличие от автономной системы карбюраторов К-131 и К-151, не может обеспечить хорошего распыления топлива. Часть топлива идет в виде пленки по стенкам впускного трубопровода, из-за чего состав смеси в различных цидиндрах сильно варьируется, а следовательно, двигатель имеет повышенные выбросы СО и СН с отработавшими газами.

Для выполнения норм по СО (1,5%) приходится так обеднять смесь, что в некоторых цилиндрах происходит неполное сгорание и увеличиваются выбросы СН. Именно из-за восьмицилиндровых двигателей ЗИЛ и ГАЗ допустимые нормы на СН пришлось увеличить увеличить при минимальной частоте вращения до 3000 частей на миллион и до 1000 – при повышенной.

Почему же на этих карбюраторах не применить автономную систему холостого хода, обеспечивающую идеальное распыление топлива? Мешает ограничитель числа оборотов, требующий установки обеих дроссельных заслонок на одной оси. В массовом производстве невозможно обеспечить плотное и равномерное прилегание заслонок к стенкам воздушного канала. Кроме того, на холостом ходу ось дроссельных заслонок прогибается и, как следствие, пришлось увеличить зазор между осью и перемычкой между камерами. В него также проходит воздух. В результате при закрытых заслонках основная часть воздуха поступает через них, и организовать распыливание топлива оставшейся частью воздуха не удается. Все это сильно затрудняет настройку карбюраторов в процессе эксплуатации.

Перед регулировкой карбюраторов необходимо проверить систему зажигания: угол опережения зажигания, состояние контактов и угол их замкнутого состояния, состояние низко- и высоковольтной проводки, а также и свечей зажигания. Затем проверяют уровень топлива в поплавковой камере и и состояние иглоьчатого клапана. При нарушении его герметичности необходимо заменить уплотнительную шайбу на игле.

В карбюраторах с параллельным открытием дроссельных заслонок равномерное распределение смеси по цилиндрам очень важно на нагрузочных режимах, поскольку именно они определяют минимальные эксплуатационные расходы. А потому именно для них необходимо в первую очередь обеспечить одинаковую регулировку обеих камер. Для этого нужно определить пропускную способность топливных и воздушных жиклеров главной дозирующей системы на специальном пневматическом или жидкостном стенде. При его отсутствии косвенным показателем пропускной способности жиклера может служить диаметр его отверстия (см. таблицу 1).

Зазоры между кромками дроссельных заслонок и стенками смесительной камеры должны быть одинаковыми. Если этого нет, следует, ослабив винты крепления дроссельных заслонок к оси примерно на один оборот, отвернуть упорный винт («винт количества»), закрыть заслонки до упора в стенки смесительной камеры, после чего затянуть крепежные винты. В результате произойдет самоустановка заслонок.

Хорошая динамика разгона обеспечивается насосом-ускорителем. При этом важна не только его производительность, но и равномерной подачи топлива в каждую из камер. Для проверки этого параметра карбюратор устанавливают на подставку с отверстиями так, чтобы под каждой смесительной камерой расположить мензурку. Далее производят 10 циклов: резкое открытие дроссельных заслонок до упора, а после прекращения подачи топлива их медленное закрытие для заполнения полости под плунжером. Результаты замера производительности ускорительного насоса сравнивают с табличными данными. При большой разнице в количестве впрыскиваемого топлива между камерами следует прочистить отверстия распылителей, а если этого недостаточно, то уточнить их проходные сечения разверткой.

Таблица 1. Соотношение условного диаметра отверстий жиклеров и пропускной способности
Условный диаметр отверстия, ммПропускная способность, см3/мин Условный диаметр отверстия, ммПропускная способность, см3/мин Условный диаметр отверстия, ммПропускная способность, см3/мин
0,4535 1,00180 1,55444
0,5044 1,05202 1,60472
0,5553 1,10225 1,65500
0,6063 1,15245 1,70530
0,6573 1,20267 1,75562
0,7084 1,25290 1,80594
0,7596 1,30315 1,85627
0,80110 1,35340 1,90660
0,85126 1,40365 1,95695
0,90143 1,45390 2,00730
0,95161 1,50417 

Проверку и регулировку системы холостого хода на СО и СН следует начинать с режима повышенных оборотов nпов. При избыточной концентрации СО (более 2%) следует прежде всего прочистить воздушные жиклеры главной дозирующей системы и системы холостого хода. Если это не помогает, нужно или уменьшить топливные, или увеличить воздушные жиклеры холостого хода (см. рис. 1). Учитывая, что топливные жиклеры и так имеют очень малые проходные сечения во избежание их засорения у карбюраторов К-88, К-89, К-90 и их модификаций предпочтительно увеличить пропускную способность воздушных жиклеров холостого хода на 10-15%. После этого проверку концентрацию СО и СН при nпов повторяют. В случае необходимости — дополнительно увеличивают воздушные жиклеры.

И только добившись выполнения норм на СО и СН при nпов начинают регулировку при минимальной частоте вращения коленчатого вала на холостом ходу. Вращением «винта качества» одной из камер добиваются минимальной концентрации СН. Затем «винтом качества» второй камеры снова добиваются минимальной концентрации СН. После этого проверяют концентрацию СО. Как правило, она несколько превышает допустимую (1,5%). В этом случае следует, последовательно поворачивая винты качества на одинаковый угол, добиться снижения СО до нормы. При этом для восьмицилиндровых двигателей ЗИЛ и ГАЗ концентрация СН обычно несколько увеличивается. Поэтому после регулировки на СО необходимо проверить концентрацию СН, которая не должна превышать 3000 частей на миллион.

Причиной повышенной концентрации СН может быть износ двигателя и, соответственно, высокий угар масла.

Карбюраторы К-90 оборудованы экономайзерами принудительного холостого хода (ЭПХХ). В отличие от клапанов ЭПХХ рассмотренных ранее карбюраторов К-131 и К-151, перекрывающих при торможении двигателем подачу топливовоздушной смеси, в карбюраторах К-90 применен электромагнитный клапан, перекрывающий подачу топливной эмульсии в канал перед переходной системой, и потому его проходные сечения значительно меньше.

Таблица 2. Технические характеристики и регулировочные данные карбюраторов
МодельК-88 АМК-89 АЕК-90К-135
Тип двигателяЗИЛ 508,
ЗИЛ 130
ЗИЛ 375ЗИЛ 508ЗМЗ 53-11,
ЗМЗ 66-06,
ЗМЗ 672-11
Диаметр, мм:
  • – смесительной камеры
    • – узкого сечения диффузора:
    • – большого
    • – малого

36

28
8,5


36

30
8,5


36

28
8,5


34

27
11

Калиброванных отверстий жиклеров:
  • – главного топливного
  • – полной мощности
  • – воздушных главной дозирующей системы
  • – воздушных системы холостого хода
  • – форсунки ускорительного насоса
  • – жиклера экономайзера


2,5
2,2
1,6х1,8



2,5
2,2
1,6х1,8



2,5
2,2
1,6х1,8


1,3

0,85
1,8
0,6
1,6
Расстояние до уровня топлива от верхней плоскости корпуса19±0,519±0,519±0,520±0,5
Пропускная способность жиклеров, см3/мин:
  • – главного топливного
  • – топливного холостого хода
  • – механического экономайзера

280
68
205

350
72
320

295
68
215

310
90
Подача топлива ускорительным насосом за 10 ходов15–2015–2015–2016±4

Схема подключения клапана также имеет принципиальные отличия от рассмотренных ранее карбюраторов: на режиме ПХХ блок управления включает обмотку клапана ЭПХХ к электроцепи и клапан перекрывает подачу эмульсии. Вместо микровыключателя карбюратор имеет контактную пластину на нижнем фланце и контакт на рычаге дроссельных заслонок. Благодаря такой конструкции при каких-либо нарушениях в системе управления клапаном ЭПХХ (обрыве цепи, окислении контактов и др.) двигатель на холостом ходу продолжает работать, и водитель не замечает неисправности, поскольку расход топлива увеличивается всего на 2-4%, а на шоссе практически не меняется.

Клапан ЭПХХ начинает работать только после прогрева системы охлаждения двигателя свыше 60 °С. На режиме свыше 1000 об/мин электронный блок включает цепь питания клапанов ЭПХХ. Однако если дроссельные заслонки приоткрыты, то контакты на упорном винте разомкнуты, электроцепь питания отключена и клапана ЭПХХ остаются открытыми. При частоте вращения свыше 1000 об/мин, когда водитель отпускает педаль «газа», электромагнитные клапаны перекрывают подачу эмульсии через систему холостого хода. При снижении частоты вращения до 1000 об/мин блок управления отключает цепь питания, клапаны открываются, и двигатель начинает работать на режиме холостого хода.

Проверку системы ЭПХХ можно произвести на прогретом двигателе при помощи лампы 12 Вольт мощностью не более 3 Вт, подключаемой вместо клапана. При повышении частоты вращения (свыше 1500 об/мин) лампа должна гореть. Если лампа не горит, следует убедиться, что проводка не нарушена и очистить контакты на карбюраторе и у датчиков. После резкого закрытия дроссельных заслонок и снижения частоты вращения меньше 1000 об/мин лампа должна гаснуть. Работу клапанов проверяют также по характерным щелчкам при их посадке во время резкого закрытия дроссельных заслонок после работы при повышенной частоте вращения (2000-2500 об/мин). Отдельно проверяется герметичность посадки каждого из клапанов, для чего их необходимо вывернуть и подключить к сети 12 вольт. На клапан одевается шланг, в который подается воздух или вода под небольшим давлением (например резиновой грушей).

Своевременный и грамотный уход за карбюраторами позволяет не только избежать пробле с экологической полицией, но и заметно снизить эксплуатационные расходы.

Впрочем, карбюратор — далеко не единственный виновник перерасхода топлива и повышенного содержания СО и СН в отработавшихъ газах. Большое значение имеет состояние системы питания двигателя воздухом.

В автомобилях ЗИЛ-431410, ЗИЛ-130К и ЗИЛ-131М воздух к воздушному фильтру подается по каналу, расположенному в усилителе капота двигателя. Это позволяет повысить мощностные показатели двигателя за счет подачи более холодного, чем в подкапотном пространстве, воздуха. Кроме того, наружный воздух, как правило, более чистый, что уменьшает засорение фильтра, увеличивает ресурс двигателя, способствует стабилизации его экологических и энергетических показателей. При этом необходимо следить за наличием заглушки в дополнительных отверстиях канала, чтобы предотвратить попадание воздуха из подкапотного пространства

В настоящее время главным образом применяются воздушные фильтры трех типов: масляно-инерционные, сухие с пористым сменным элементом и сухие инерционные (циклоны).

Достоинством масляно-инерционных фильтров является возможность их длительного использования без замены фильтрующего элемента. При засорении сопротивление меняется незначительно. Основной недостаток – относительно невысокая степень очистки воздуха: 95-97% при минимальном и 98,5-99% при максимальном расходе воздуха.

Наилучшая очистка воздуха обеспечивается пористым материалом (бумагой, картоном или синтетическим). Эффективность очистки доходит до 99,5%. Недостатком таких фильтров является меньшая пылеемкость и заметное повышение сопротивления при засорении. Поэтому чаще приходится проверять степень их засоренности и своевременно заменять или очищать фильтрующий элемент.

Установить связь между пробегом автомобиля и повышением сопротивления воздушного фильтра довольно трудно. При езде в городе, по асфальтированному шоссе, в зимних условиях допустимый пробег часто превышает 15 тысяч километров. В то же время несколько десятков километров в условиях сильной запыленности могут довести сопротивление фильтра до предела.

Увеличение сопротивления ведет к ухудшению наполнения цилиндров двигателя, нарушению регулировок карбюратора, увеличению выброса СО и СН. При больших нагрузках и сопротивлении фильтра 5 кПа (около 40 мм рт.ст.) снижение максимальной мощности доходит до 5-8%, а максимального крутящего момента – до 3-5%. Увеличивается расход топлива. Оценка сопротивления воздушного фильтра производится при испытании двигателя на моторном стенде или автомобиля на роликовом стенде, а также при проверке фильтра на вакуумной установке. На некоторых автомобилях устанавливаются индикаторы вакуума, отрегулированные на заданную допустимую степень засорения фильтра (обычно 3.3-7,5 кПа). Индикаторы вакуума выпускаются для тяжелых грузовиков, но часто их устанавливают на автомобили среднего и малого тоннажа.

Элемент картонного фильтра, достигший предельной запыленности, должен быть заменен на новый. При этом следует обратить внимание на плотность прилегания уплотняющих поясков к корпусу фильтра по всему периметру и герметичность заделки торцов картонного или синтетического элемента. При отсутствии сменного элемента он может быть частично восстановлен путем продувки его сжатым воздухом со стороны внутренней полости (при наличии предочистителя продувка производится отдельно). В отдельных случаях элемент фильтра промывается беспенным моющим раствором и тщательно просушивается.

После продувки пылеемкость в среднем восстанавливается наполовину, а после промывки -на 60%, поэтому срок службы после регенерации соответственно сокращается. Элементы фильтра из синтетического материала допускают многократную промывку — до 10 раз.

В связи с невысокой пылеемкостью фильтров из пористого материала для автомобилей, работающих в условиях высокой запыленности воздуха, существуют двух- и трехступенчатые фильтры. Как правило, первая ступень – это циклон или масляно-инерционный фильтр, вторая и третья ступени это сухие пористые фильтры.

Необходимо периодически проверять герметичность соединения воздушных каналов, шлангов системы вентиляции картера, установки фильтрующих элементов, уплотнений фланцев карбюратора и впускного трубопровода. При смене фильтра на изношенном двигателе требуется проверить, нет ли течи масла через сальники на повышенных оборотах коленчатого вала: давление в картере увеличилось, и появилась вероятность течи масла через изношенные сальники и неплотные соединения.

В системе топливоподачи необходимо периодически проверять степень засоренности топливных фильтров. При их засорении особенно в жаркое время возникают паровые пробки, приводящие к нарушению топливоподачи.

Система холостого хода карбюратора


Устройство автомобилей



При работе двигателя на малых частотах вращения без нагрузки дроссельная заслонка закрывается почти полностью. Разрежение в диффузоре, где расположен распылитель, в этом случае снижается настолько, что подача топлива из главной дозирующей системы прекращается.

Для приготовления горючей смеси необходимого состава (0,7 ≤ α ≤ 0,85) на холостом ходу используется пространство воздушного патрубка под дроссельной заслонкой (задроссельное пространство). При этом топливо в задроссельное пространство подается специальной системой, которая называется системой холостого хода.

Из-за создавшегося разрежения под прикрытой дроссельной заслонкой в зоне эмульсионных отверстий 2 и 3 (см. Рис. 1) топливо из поплавковой камеры через главный топливный жиклер 16 и жиклер 7 холостого хода поступает по каналам 8 и 9. При этом к нему подмешивается воздух, который подсасывается через воздушный жиклер 10. Через отверстие 4, расположенное выше кромки прикрытой дроссельной заслонки, к топливу подмешивается дополнительное количество воздуха. В результате к выходным отверстиям 2 и 3 поступает топливовоздушная эмульсия требуемого состава.

Устойчивую работу двигателя с малой частотой вращения обеспечивают с помощью регулировочных винтов 5 и 17. Винтом 5 регулируют количество поступающей эмульсии, и, следовательно, состав смеси. Количество смеси и частоту вращения на режиме холостого хода регулируют винтом 17, который изменяет положение дроссельной заслонки 1 при полностью отпущенной педали акселератора.

После начала открытия дроссельной заслонки (при переходе с режима холостого хода на режим средних нагрузок) главная дозирующая система вступает в работу с небольшим запаздыванием, что может привести к кратковременному переобеднению смеси и «провалу» в работе двигателя. Однако плавный переход к работе двигателя на малых и средних нагрузках обеспечивается тем, что уже в самом начале открытия дроссельной заслонки отверстие 4 попадает в зону сильного разрежения. Поэтому через него в смесительную камеру поступает дополнительное количество эмульсии.

При дальнейшем открытии дроссельной заслонки вступает в работу главная дозирующая система. Однако подача топлива через систему холостого хода продолжается до открывания дроссельной заслонки примерно на 40% от максимального открытия.

***



Системы холостого хода современных карбюраторов имеют дополнительное устройство – экономайзер принудительного холостого хода. Данное устройство отключает подачу топлива через систему холостого хода при торможении автомобиля двигателем. При таком торможении дроссельная заслонка закрыта, а частота вращения коленчатого вала велика, так как он приводится во вращение через трансмиссию от колес автомобиля.

В результате под дроссельной заслонкой разрежение многократно возрастает, расход топливной эмульсии через отверстия 2 и 3 резко увеличивается, что приводит к усиленному недогоранию топлива и выбросу в окружающую среду токсичных веществ.

Экономайзер принудительного холостого хода (ЭПХХ) включает в себя электромагнитный клапан, который перекрывает подачу топливной эмульсии к выходным отверстиям системы холостого хода, датчик положения дроссельной заслонки и электронный блок управления. Электронный блок управления получает сигналы о положении дроссельной заслонки от датчика и о частоте вращения коленчатого вала от системы зажигания. При определенном соотношении этих сигналов блок управления выдает управляющий сигнал на закрытие или открытие электромагнитного клапана экономайзера принудительного холостого хода. Исходными данными для срабатывания электромагнитного клапана ЭПХХ являются сигнал датчика о закрытой заслонке и повышенное число оборотов коленчатого вала. Такой режим ЭПХХ поддерживает пока:

  • скорость движения при отпущенной дроссельной заслонке не уменьшится;
  • не будет выключена передача и автомобиль начнет двигаться в режиме обычного холостого хода;
  • водителем нажмет педаль акселератора и движение продолжится с повышенной скоростью, экономайзер выключится по положению заслонки.

Работа экономайзера в составе системы холостого хода карбюратора обеспечивает экономию топлива и лучшую эффективность торможения мотором в режиме принудительного холостого хода.

***

Экономайзеры и эконостаты мощностных режимов


Главная страница
Специальности
Учебные дисциплины
Олимпиады и тесты

Системы холостого хода карбюратора

Для питания двигателя горючей смесью в случае прикрытой дроссельной заслонки в современных карбюраторах предусмотрена система холостого хода. Различают две системы холостого хода: с задроссельным смесеобразованием и автономную.

Система холостого хода с задроссельным смесеобразованием. Она содержит топливный жиклер, сообщенный через канал с топливным жиклером главной дозирующей системы, воздушный жиклер и эмульсионный канал с размещенными в нем подстроечным винтом и винтом регулировки качества (состава) горючей смеси.

Подстроечный винт (получил распространение в карбюраторах семейства ДААЗ) предназначен для уменьшения разброса характеристик холостого хода карбюратора в условиях массового производства. Он позволяет компенсировать производственные неточности расположения переходных отверстий по высоте относительно верхней кромки дроссельной заслонки. С помощью винта регулируют подачу воздуха из диффузорного пространства в эмульсионный канал. Такую операцию выполняют при настройке карбюратора на заводе-изготовителе. В дальнейшем винт пломбируют и вскрывать его в дальнейшем нельзя, так как на регулировку системы холостого хода в эксплуатации он не влияет. Количество горючей смеси, подаваемой в двигатель, регулируют с помощью регулировочного (упорного) винта, размещенного на корпусе карбюратора. Наличие средств регулирования состава и количества горючей смеси обусловлено тем, что различные двигатели имеют неодинаковые механические потери, на преодоление которых затрачивается и различное количество топлива на режимах холостого хода.

Рекламные предложения на основе ваших интересов:

При работе двигателя на режимах холостого хода дроссельная заслонка полностью прикрыта, и разрежение из задроссельного пространства через выходное отверстие и каналы передается к топливному жиклеру дозирующей системы. Под действием этого разрежения топливо через жиклер, канал и топливный жиклер холостого хода поступает в эмульсионный канал и через выходное отверстие в задроссельное пространство. Скорость движения воздуха в задрос-сельном пространстве невысокая, поэтому топливо здесь распыляется неэффективно и, следовательно, возможно неравномерное его распределение по цилиндрам двигателя. Это требует обогащения горючей смеси, сопровождающейся неизбежным увеличением содержания в отработавших газах окиси углерода (СО) и углеводородов (СН).

Рис. 1. Система холостого хода с задроссельным смесеобразованием

Ужесточение экономических требований привело к созданию элементов, препятствующих неквалифицированному вмешательству в работу системы холостого хода. В карбюраторах производства ДААЗ для этой цели на винт качества смеси устанавливают пластмассовую ограничительную втулку, которая позволяет вращать винт только в пределах одного оборота, а на карбюраторах производства С.-ПКарЗ в эмульсионные каналы системы холостого хода устанавливают винты токсичности.

Приведенная принципиальная схема системы питания холостого хода является наиболее распространенной и реализована в современных карбюраторах производства ДААЗ и АО „Пекар”.

Система холостого хода карбюратора ВАЗ-2101. Система холостого хода имеется только в первичной камере карбюратора. Она обеспечивает переход двигателя с режима холостого хода к работе его под нагрузкой.

Система содержит подстроечный регулировочный винт, топливный жиклер с винтом, сообщенный через топливный канал, и главный топливный жиклер с поплавковой камерой. Эмульсионный канал через нерегулируемое отверстие переходной системы и регулируемое выходное отверстие сообщен с задроссельным пространством. Регулировочный винт обеспечивает необходимый состав горючей смеси. Питание системы холостого хода осуществляется от главной дозирующей системы и выполнено после главного топливного жиклера.

В корпусе поплавковой камеры выполнено вентиляционное отверстие и размещен клапан, кинематически связанный через шток с дроссельной заслонкой. В случае прикрытия дроссельной заслонки клапан обеспечивает сообщение поплавковой камеры с атмосферой. С помощью винта производят дополнительную подачу воздуха в эмульсионный канал из главного воздушного канала в корпусе. Воздушный жиклер располагается в зоне устойчивого воздушного потока. В системе холостого хода карбюратора ВАЗ-2101 его питание осуществляется из надтопливного пространства поплавковой камеры.

Для улучшения испарения, смешивания и распределения топлива по цилиндрам двигателя корпус смесительной камеры в зоне регулируемого отверстия системы холостого хода обогревается теплом охлаждающей жидкости двигателя, поступающей через канал. Количество горючей смеси, поступающей в двигатель, регулируют с помощью винта.

Рис. 2. Система холостого хода карбюратора ВАЗ-2101 (а) и BA3-2103, -2106 (б)

Под действием разрежения, создаваемого работающим двигателем, топливо из поплавковой камеры через главный топливный жиклер, топливный канал и топливный жиклер поступает в эмульсионный канал, где смешивается с воздухом, проходящим через воздушный жиклер. Образовавшаяся горючая смесь поступает в задроссельное пространство карбюратора. При полном открытии дросселя система холостого хода работает, как дополнительный воздушный жиклер главной дозирующей системы.

Система холостого хода карбюратора BA3-2103 и ВАЗ-2106. Система этих карбюраторов отличается от аналогичной системы карбюратора ВАЗ-2101 наличием электромагнитного клапана. Клапан состоит из электромагнита с подвижным стержнем, нажимной пружины и корпуса. На работающем двигателе на клапан подается напряжение, и стержень перемещается, открывая клапан.

Клапан при выключенном зажигании перекрывает канал подачи топлива и его паров и тем самым исключает возможность самовоспламенения горючей смеси (калильного зажигания) в горячем двигателе после его остановки.

Рассмотренные системы холостого хода включены последовательно после топливного жиклера главной дозирующей системы. Такое включение обеспечивает плавный переход от режимов холостого хода к режимам с нагрузкой. Вместе с тем в подобных системах наблюдается неудовлетворительное перемешивание топлива с воздухом.

Рис. 3. Автономная система холостого хода

Рис. 4. Система холостого хода карбюратора ДААЗ-21081

Автономные системы холостого хода (АСХХ). АСХХ, представляющие по существу автономный карбюратор, реализованы в карбюраторах „Озон”, ДААЗ-2108, -2141, К-131, -151, -156 и др.

АСХХ содержит топливный жиклер, сообщенный через топливный канал, топливный жиклер главной дозирующей системы с поплавковой камерой, и эмульсионный канал с подстроечным винтом, обводной воздушный канал с размещенным в нем профильным дозирующим винтом и выходное регулируемое отверстие, сообщенное с задроссельным пространством. В эмульсионном канале размещены воздушный жиклер и регулировочные винты соответственно состава и количества горючей смеси.

Под действием разрежения, создаваемого в задроссельном пространстве работающим двигателем, топливо через канал поступает к жиклеру, смешивается с воздухом, поступающим через воздушный жиклер. При этом основная часть воздуха проходит через обводной канал и кольцевой распылитель со скоростями, близкими к звуковым. Одновременно с этим к кольцевому распылителю по эмульсионному каналу поступает горючая смесь, где она дополнительно испаряется и равномерно перемешивается с воздухом, а затем через регулируемое отверстие 9 поступает в задроссельное пространство. Конструкция профиля дозирующего винта в зоне кольцевого распылителя обеспечивает стабильный состав горючей смеси независимо от величины проходного сечения регулируемого отверстия.

Особенность смесеобразования АСХХ заключается в том, что в задроссельное пространство поступает хорошо испаренная и перемешанная горючая смесь. Равномерное ее распределение по цилиндрам двигателя позволяет снизить концентрации СО и СН, повысить топливную экономичность и устойчивость работы двигателя на режимах холостого хода.

В многокамерных карбюраторах система холостого хода предусмотрена только в первичной камере. Во вторичной камере вместо системы холостого хода предусмотрена переходная система, которая вступает в работу в момент открывания вторичной заслонки карбюратора.

Система холостого хода карбюратора ДААЗ-21081. Система содержит топливный жиклер с электромагнитным клапаном, сообщенный через канал с поплавковой камерой, воздушный жиклер, выходящий в главный воздушный канал, винты качества и количества соответственно и каналы выхода горючей смеси в главный воздушный канал. Главный топливный жиклер не связан с системой АСХХ.

Под воздействием разрежения в задроссельном пространстве топливо поступает по каналам, через топливный жиклер электромагнитного клапана и эмульсионный канал и каналы в главный воздушный канал.

Винт качества горючей смеси не подлежит регулировке в эксплуатации. Его регулируют на заводах-изготовителях или на

специализированных станциях, а затем пломбируют. В эксплуатации в таких карбюраторах регулируют только минимальную частоту вращения коленчатого вала с помощью винта упора дроссельной заслонки. Винт не позволяет обогащать горючую смесь, поступающую в цилиндры двигателя.

Система холостого хода карбюратора К-151. Система содержит блок с воздушным и эмульсионным жиклерами соответственно, эмульсионный канал, обводной канал, винты качества горючей смеси, диффузор П обводного канала и винт количества (эксплуатационной настройки).

Система холостого хода тесно взаимодействует с ЭПХХ, содержащим блок с винтом и выходным отверстием, запорный элемент. Пневмоклапан имеет мембрану, нагруженную пружиной, и отверстие. Электропневмоклапан через трубопровод сообщен с задроссельным пространством вторичной камеры и шланг и трубку с наддиафрагменной полостью пневмоклапана.

Под действием разрежения при закрытой дроссельной заслонке первичной камеры эмульсия поступает через обводной канал и его диффузор, отверстие и выходит в задроссельное пространство первичной камеры. При открывании дроссельной заслонки эмульсия из канала через переходные отверстия поступает в задроссельное пространство.

Рис. 5. Система холостого хода карбюратора К-151

Система холостого хода карбюратора К-156. Система снабжена дополнительной системой холостого хода в дополнительной секции. Обе системы соединены с эмульсионным колодцем главной дозирующей системы. Топливные жиклеры выполнены в блоке с воздушными и представляют собой трубки с калиброванными отверстиями.

Система холостого хода имеет двойное эмульсирование, обеспечивающее улучшение смесеобразования и обеднение горючей смеси.

Рекламные предложения:
Читать далее: Эконостат и экономайзер карбюратора

Категория: — Карбюратор автомобиля

Главная → Справочник → Статьи → Форум

Система холостого хода карбюратора 2105, 2107 Озон

Назначение системы холостого хода карбюраторов 2105, 2107 Озон

Система холостого хода карбюратора 2105, 2107 «Озон» и его модификаций предназначена для обеспечения работы двигателя автомобиля без нагрузки с закрытыми дроссельными заслонками обеих камер. Устройство системы холостого хода карбюратора 2105, 2107 Озон

На изображении система холостого хода карбюратора 2105 – 1107010 Озон с вынесенным на брызговик двигателя электропневмоклапаном. Устройство других модификаций карбюраторов 2105 — 2107 Озон аналогично. Единственными отличиями могут быть отсутствие электропневмоклапана или электромагнитный клапан будет ввернут вместо держателя топливного жиклера системы холостого хода. Сами держатели могут быть разного диаметра, например, для карбюраторов 2105 — меньшего, а 2107 — большего. Также, вместо мембранного (диафрагменного) механизма ЭПХХ (как на изображении), может быть установлен обычный винт регулировки «количества» топливной смеси.

схема СХХ карбюратора 2105, 2107 Озон с экономайзером принудительного холостого хода и выносным электропневмоклапаном

Принцип действия

При работе двигателя на холостом ходу дроссельные заслонки обеих камер карбюратора закрыты. Под ними возникает большое разрежение. Под его воздействием, через расположенное ниже кромки дроссельной заслонки первой камеры, отверстие и далее через топливные каналы топливо засасывается из эмульсионного колодца первой камеры в систему холостого хода.

Из эмульсионного колодца топливо проходит через топливный жиклер системы холостого хода. Здесь оно смешивается с воздухом поступающим сверху через воздушный жиклер системы холостого хода. Образуется топливная эмульсия (смесь топлива и воздуха), которая по топливному каналу опускается вниз к выходному отверстию и далее попадает в цилиндры двигателя.

По пути поток эмульсии разбавляется дополнительным воздухом. На некоторых модификациях карбюратора (например, 2105-1107010, 2107-1107010 Озон), воздух поступает из отверстия в стенке горловины первой камеры, перед диффузором и регулируется подстроечным винтом, положение которого устанавливается на заводе. Винт закрыт металлической заглушкой.

дополнительный подстроечный винт СХХ карбюраторов Озон

Поток эмульсии регулируется винтом «качества» топливной смеси. Он перекрывает сечение топливного канала системы холостого хода и его вращением можно либо уменьшить, либо увеличить поток топливной эмульсии. Для улучшения плавности регулировки в обход канала с винтом «качества» имеется еще один топливный канал с топливным жиклером. Поэтому карбюратор Озон должен работать на холостом ходу даже с полностью завернутым винтом «качества».

Далее топливная эмульсия попадает в кольцевую полость вокруг конуса запирающей иглы винта «количества», где смешивается с воздухом, поступающим туда же по воздушному каналу и через выходное отверстие поступает в смесительную камеру и цилиндры двигателя.

Заворачивая этот винт, мы перекрываем и уменьшаем сечение выходного отверстия и соответственно уменьшаем объем топливной смеси идущей в цилиндры двигателя. Отворачиваем винт, наоборот увеличиваем ее поток.

На карбюраторах с ЭПХХ и вынесенным электропневмоклапаном винт «количества» ввинчен в корпус диафрагменного механизма. Запирающая игла перемещается взад-вперед под воздействием разрежения, поступающего или не поступающего в корпус механизма. Винт «количества» регулирует в этом случае величину перемещения запорной иглы.

диафрагменный механизм АСХХ и игла винта регулировки «количества» топливной смеси

Ремонт СХХ Озон

Ремонт системы холостого хода заключается в прочистке ее каналов, жиклеров, проверке соответствия маркировки топливного жиклера, наличия и состояния резинового уплотнительного кольца на винте «качества».

«Прочистка системы холостого хода карбюратора 2108, 21081, 21083 Солекс»

При возникновении неполадок в системе холостого хода возможен полный или частичный отказ в работе двигателя на холостом ходу.

Примечания и дополнения

— В ряде случаев имеет смысл провести доработку системы холостого хода карбюратора. См. «Доработка системы холостого хода карбюраторов Солекс и Озон».

Еще пять статей на сайте по карбюраторам Озон

— Разборка карбюратора 2105, 2107 Озон

— Схемы карбюратора 2105, 2107 Озон

— Пневмопривод дроссельной заслонки второй камеры карбюратора 2105, 2107 Озон

— Прочистка системы холостого хода карбюраторов 2105, 2107 Озон

— Ускорительный насос карбюратора 2105, 2107 Озон

Система холостого хода карбюратора 2108, 21081, 21083 Солекс

Назначение системы холостого хода карбюратора Солекс

Система холостого хода карбюратора 2108, 21081, 21083 «Солекс» и его модификаций предназначена для обеспечения работы двигателя автомобиля без нагрузки с минимальными оборотами коленчатого вала (750-800 об/мин). Устройство системы холостого хода карбюратора 2108, 21081, 21083 Солекс

схема системы холостого хода карбюратора Солекс 2108, 21081, 21083

Дополнительно: «Схема системы холостого хода и переходных систем карбюратора 21073 Солекс».

Видимые элементы системы холостого хода карбюратора Солекс (2108, 21081, 21083).

видимые элементы СХХ карбюратора 2108, 21081, 21083 Солекс

Видимые элементы системы холостого хода карбюратора Солекс при снятой верхней части (крышки).

видимые элементы СХХ карбюратора 2108, 21081, 21083 Солекс при снятой крышке

Электромагнитный клапан (ЭМК) карбюратора Солекс (2108, 21081, 21083) с запорной иглой и топливным жиклером системы холостого хода.

электромагнитный клапан ЭПХХ карбюратора Солекс с топливным жиклером СХХ

Принцип действия

Выходное отверстие системы холостого хода находится ниже кромки дроссельной заслонки первой камеры в ее закрытом положении. Под действием разрежения, поступающего в это отверстие, топливо из поплавковой камеры затягивается в эмульсионный канал системы холостого хода.

Туда же поступает воздух через воздушный жиклер и воздушный канал системы. В эмульсионном канале топливо и воздух смешиваются, образуя эмульсию, которая попадает под дроссельную заслонку и выходит из отверстия системы холостого хода.

Далее, выходящая эмульсия смешивается с некоторым количеством воздуха, поступающем из зазора между кромкой дроссельной заслонки и стенкой первой камеры карбюратора. Образуется топливная смесь, которая попадает в цилиндры двигателя и обеспечивает его работу на холостом ходу.

Качество топливной смеси регулируется винтом, установленным в отверстии выхода эмульсии. Заворачивая его мы уменьшаем просвет отверстия и объем топлива, попадающего в топливную смесь, уменьшается.

Количество топливной смеси регулируется винтом, приоткрывающем дроссельную заслонку первой камеры. Заворачивая винт мы мы приоткрываем заслонку на больший угол, обеспечивая тем самым приток дополнительного воздуха под нее и соответственно объем топливной смеси, попадающей в цилиндры двигателя увеличивается (обороты холостого хода растут).

винт регулировки «количества» топливной смеси карбюратора 2108, 21081, 21083 Солекс

Примечания и дополнения

— В ряде случаев имеет смысл провести доработку системы холостого хода карбюратора. См. «Доработка системы холостого хода карбюраторов Солекс и Озон».

Еще пять статей по карбюраторам Солекс

— Ускорительный насос карбюратора 2108, 21081, 21083 Солекс

— Эконостат карбюратора 2108, 21081, 21083 Солекс

— Схемы карбюраторов 2108, 21081, 21083 Солекс

— Разборка карбюратора 2108, 21081, 21083 Солекс

— Прочистка системы холостого хода карбюратора 2108, 21081, 21083 Солекс

Система питания карбюратора

5.  Назначение, устройство и работа системы холостого хода карбюратора

Система холостого хода (СХХ) карбюратора обеспечивает работу двигателя в режиме холостого хода и малых нагрузок. Из поплавковой камеры 1 топливо через жиклер 3 СХХ по каналам системы холостого хода поступает к воздушному жиклеру 5, смешивается с воздухом и далее в виде топливной эмульсии поступает через нижнее отверстие СХХ под дроссельную заслонку 9. За счет разности давлений  в зонах верхнего I  и нижнего  II   отверстий СХХ,  через   отверстие    I  дополнительно поступает воздух, что позволяет получить мелко дисперсную эмульсию с удельной массой в 300…400 меньшей, чем у топлива и улучшить смесеобразование.

Предварительная подготовка топлива к процессу смесеобразования, обеспечивает качественное перемешивание топлива и воздуха. Горючая смесь становится однородной по составу, жидкая фракция топлива к окончанию хода сжатия практически отсутствует.

СХХ обеспечивает плавный переход работы двигателя с режима холостого хода на режим средних нагрузок. По мере открытия дроссельной заслонки уменьшается разность давлений в зонах отверстий I и II. В определенный момент начинается фонтанирование топлива из отверстия I, обеспечивающее постепенное изменение состава горючей смеси. С увеличением угла поворота дроссельной заслонки разрежение в зоне отверстий I и II падает настолько, что фонтанирование топлива прекращается, но в этот момент уже работает ГДС.

     

Система холостого хода карбюратора. Принцип работы

Схема системы холостого хода, в которую поступление топлива осуществляется из главного жиклёра (11) показана на [рис. 1, в)]. Дроссельная заслонка при малой частоте вращения коленчатого вала приоткрывается и за ней формируется значительное разрежение, вследствие чего топливо проходит через главный жиклёр (11) в горизонтальный канал (10) и через топливный жиклёр (3) холостого хода попадает в эмульсионный канал (4). Воздушный жиклёр (2), установленный в начале эмульсионного канала, предназначен для подачи через него воздуха в систему холостого хода. Пройдя через жиклёр (2), воздух смешивается с топливом, образуя эмульсию, которая подводится по эмульсионному каналу к отверстиям (5) и (7), расположенным в стенке смесительной камеры.

Рис. 1. Простейший карбюратор.

а) – Схема простейшего карбюратора:

1) – Поплавковая камера карбюратора;

2) – Поплавок;

3) – Игольчатый клапан;

4) – Штуцер подачи топлива;

5) – Отверстие, сообщающее с атмосферой полость поплавковой камеры;

6) – Входной воздушный патрубок;

7) – Распылитель;

8) – Диффузор;

9) – Смесительная камера;

10) – Жиклёр;

11) – Дроссельная заслонка;

12) – Выходной патрубок;

13) – Впускной клапан;

14) – Цилиндр двигателя;

15) – Поршень;

б) – Схема главного дозирующего устройства с пневматическим торможением топлива:

1) – Поплавковая камера;

2) – Воздушный жиклёр;

3) – Эмульсионный канал;

4) – Распылитель;

5) – Главный жиклёр;

в) – Схема системы холостого хода:

1) – Поплавковая камера;

2) – Воздушный жиклёр холостого хода;

3) – Топливный жиклёр холостого хода;

4) – Эмульсионный канал;

5) – Верхнее отверстие в стенке смесительной камеры;

6) – Винт регулировки качества смеси;

7) – Нижнее отверстие в стенке смесительной камеры;

8) – Дроссельная заслонка;

9) – Винт регулировки количества смеси;

10) – Горизонтальный канал системы холостого хода;

11) – Главный жиклёр;

г) – Характеристики карбюраторов:

1) – Характеристика простейшего карбюратора;

2) – Характеристика идеального карбюратора.

Точное расположение отверстий (5) и (7) относительно дроссельной заслонки требуется для образования горючей смеси. Отверстие (7) при полностью закрытой дроссельной заслонке располагается несколько ниже её края, тогда как отверстие (5) – несколько выше. Вследствие этого в процессе работы двигателя на холостом ходу поступление эмульсии будет осуществляться в зону максимального разрежения, то есть под дроссельную заслонку и через отверстие (7). Через отверстие (5) в эмульсионном канале происходит перемешивание воздуха, который уменьшает разрежение в системе холостого хода.

Как только приоткрывается дроссельная заслонка, эмульсия начинает поступать через отверстие (5) в смесительную камеру, препятствуя тем самым переобеднению смеси в первые моменты открытия дроссельной заслонки, за счёт чего достигается плавный переход работы двигателя с малой частоты вращения коленчатого вала (при холостом ходе) на режим средних нагрузок.

17*

Режим холостого хода (ХХ) карбюраторного двигателя автомобиля

Для точной диагностики неисправностей, приводящих к нестабильной работе двигателя автомобиля на холостом ходу необходимо иметь представление о том, как работает карбюраторный двигатель на этом режиме.

На стабильные обороты холостого хода влияют несколько систем двигателя. Это – топливная включающая карбюратор и бензонасос, система зажигания, система ГРМ (газораспределительного механизма). При этом так же стоит учитывать состояние самого двигателя. Его цилиндро-поршневой группы.

Что такое холостой ход карбюраторного двигателя?

Это работа двигателя без нагрузки с минимальными оборотами коленчатого вала при закрытых дроссельных заслонках обеих камер карбюратора.

Частота вращения коленчатого вала на ХХ (минимальные обороты)

Для карбюраторных двигателей 2108, 21081, 21083 – 750-800 об/мин, для двигателей 2101, 2103, 2105, 2107 – 850-900 об/мин. Частота вращения задается заранее выставленным определенным углом опережения зажигания и определенным объемом топливной смеси, приготовляемой карбюратором.

Работа системы зажигания на холостом ходу

В первую очередь это угол опережения зажигания, необходимый для обеспечения холостого хода двигателя.

На режиме холостого хода для двигателей 2108, 21081, 21083 требуется угол опережения зажигания – 0 — 5º , для 2101, 2103, 2105, 2107 — 5º. См. «Установка угла 2108, 2109, 21099», «Установка угла 2105, 2107».

Регулируется угол опережения зажигания вращением трамблера.

корректировка угла трамблером, автомобиль ВАЗ 2108

Помимо угла опережения на стабильность оборотов ХХ влияют: исправность свечей зажигания, центробежного регулятора опережения зажигания, высоковольтных проводов, катушки зажигания, датчика Холла и т.д. См. «Неустойчивый ХХ, причины связанные с системой зажигания».

Работа карбюратора на холостом ходу

Для обеспечения работы двигателя автомобиля на холостом ходу в карбюраторе (Солекс, Озон) имеется встроенная в первую камеру система холостого хода. Она состоит из воздушного, топливного и эмульсионного каналов, выходных отверстий за дроссельной заслонкой и регулировочных винтов «количества» и «качества» топливной смеси. Воздух и топливо из поплавковой камеры, за счет разрежения создаваемого движущимися поршнями в цилиндрах, поступают в эмульсионный канал, где смешиваются, образуя топливно-воздушную смесь (эмульсию), попадающую через выходные отверстия под дроссельной заслонкой во впускной коллектор и далее в цилиндры. Количество топливной смеси регулируется винтом «количества», качество (объем бензина в смеси) — винтом «качества». См. «Регулировка оборотов ХХ Солекс», «Регулировка оборотов Озон».

Схема работы карбюратора Солекс на холостом ходу

схема системы холостого хода карбюратора Солекс 2108, 21081, 21083

Схема работы карбюратора Озон на холостом ходу

система холостого хода карбюратора 2105, 2107 Озон

Помимо карбюратора на холостой ход двигателя влияют: исправность бензонасоса, топливных магистралей и фильтров. Подробнее «Неустойчивый ХХ, причины, связанные с карбюратором».

Примечания и дополнения

— Изношенная цилиндро-поршневая группа, прогоревший клапан, неправильные зазоры в клапанном механизме, перескочивший на зуб-другой ремень ГРМ или вытянувшаяся цепь – дополнительные факторы влияющие на холостой ход карбюраторного двигателя автомобиля, которые следует учитывать при диагностике неисправностей влияющих на ХХ.

Еще статьи по холостому ходу двигателя

— «Троит» двигатель, причины

— «Плавают» обороты холостого хода, причины

— Невозможно отрегулировать обороты ХХ, причины

Карбюраторная система (автомобиль)

9. 13.

Карбюраторная система

Для смешивания топлива и регулирования скорости карбюратор имеет ряд фиксированных и регулируемых каналов, жиклеров, каналов и насосов, которые составляют системы или контуры дозирования топлива. Существует шесть основных систем, общих для всех карбюраторов:
(i) Поплавковая система
(ii) Система холостого хода и низкой скорости
(Hi) Высокая скорость или основная система дозирования
(iv) Система питания
(v) Система ускорительного насоса
(vi) Дроссельная система
9.13.1.

Поплавковая система

Бензин из топливного бака топливным насосом подается в топливный бак карбюратора (основной колодец), где он хранится. Бензин должен поддерживаться в топливном баке на точном, почти постоянном уровне. Этот уровень имеет решающее значение, поскольку он устанавливает уровень топлива во всех каналах и контурах карбюратора. Высокий уровень топлива приводит к получению богатой топливной смеси, что приводит к высокому расходу топлива и высокому уровню выбросов. Низкий уровень топлива приводит к обеднению смеси, что приводит к помпажу двигателя и пропускам зажигания.Из-за этих проблем уровень топлива — одна из наиболее важных регулировок, необходимых для карбюратора.
Основная форсунка для выпуска топлива высокоскоростной системы подсоединяется непосредственно к дну топливного бака. Уровень топлива в чаше и форсунке одинаковый. Поплавок в сборе (рис. 9.42) имеет легкий полый понтон из латуни или пенопласта с петлей и хвостовиком. По мере повышения уровня топлива в чаше понтон поднимается выше. Он поворачивается на шарнире, чтобы переместить выступ к игольчатому клапану.Игольчатый клапан прижимается к седлу выступом узла поплавка, чтобы остановить поступающее топливо в бачок, когда поплавок достигает установленного уровня топлива. Поплавок опускается по мере того, как уровень топлива падает из-за использования, позволяя игольчатому клапану покинуть седло, чтобы заполнить резервуар топливом, подаваемым топливным насосом. Во время работы при выполнении многих рабочих условий
расход топлива в топливный бак и из него практически одинаков. Игольчатый клапан остается в частично открытом положении для поддержания требуемого расхода.Уровень топлива контролируется и поддерживается почти постоянным с помощью поплавка и впускного игольчатого клапана. Над топливным баком предусмотрено воздушное пространство. Давление в бачке атмосферное из-за отвода воздуха из рожка карбюратора. Атмосферное давление топлива в резервуаре обеспечивает перепад давления, необходимый для точной дозировки топлива в зону вакуума Вентури цилиндра карбюратора.

Рис. 9.46. Конструкция с поплавковым и игольчатым клапаном.
Конструкция и расположение поплавкового и игольчатого клапана в топливном баке различаются в зависимости от конструкции карбюратора (рис.9,46). К некоторым поплавкам прикреплены небольшие пружины, чтобы они не подпрыгивали вверх и вниз при движении автомобиля по неровной дороге. Многие топливные баки имеют перегородки, предотвращающие расплескивание топлива на неровных дорогах и крутых поворотах. Иглы и седла в большинстве карбюраторов сделаны из латуни, и иглы часто имеют пластиковые наконечники, которые соответствуют любым неровностям на седле и по-прежнему обеспечивают хорошее уплотнение, когда клапан закрыт.
Когда двигатель выключен, тепло двигателя испаряет топливо в резервуаре.Количество испарения из системы с большим резервуаром может легко перегрузить канистру, используемую для контроля выбросов. Поэтому современные карбюраторы включают в себя небольшую поплавковую чашу из формованного пластика. Другие устанавливают изолятор между карбюратором и впускным коллектором для уменьшения нагрева.
9.13.2.


Система холостого хода и низкой скорости

Данная система полностью контролирует подачу бензина на холостом ходу и на скоростях малой нагрузки до 32 км / ч. На низких скоростях очень небольшое количество воздуха проходит через трубку Вентури, вызывая небольшой эффект Вентури, и, следовательно, дроссельная заслонка почти закрыта.Этого недостаточно для создания потока топлива в основной дозирующей струйной системе. Поэтому карбюраторы оснащены системой холостого хода, показанной на рис. 9.47, которая забирает топливо из основного колодца и переносит его через ограничения на высоту выше уровня топлива, где воздух попадает в топливную систему через воздуховыпускные отверстия холостого хода, образуя смесь топливо и воздух. Эта смесь следует через другой канал к отверстию чуть ниже дроссельной заслонки, где смесь проходит через регулируемое вручную отверстие холостого хода и выпускается в воздушный поток.Смесь холостого хода, обеспечивающая плавность холостого хода, регулируется поворотом регулируемого вручную игольчатого винта, называемого винтом регулятора смеси холостого хода.
Обычно используется один регулировочный винт для каждого первичного цилиндра. Наконечники винта выступают в каналы холостого хода и поворачиваются внутрь (по часовой стрелке) для получения обедненной смеси или наружу (против часовой стрелки) для получения более богатой смеси. Некоторые винты смеси карбюратора имеют пластиковые ограничительные колпачки (рис. 9.48). Эти колпачки ограничивают объем регулировки, чтобы предотвратить чрезмерно богатую смесь холостого хода.Скорость холостого хода — это результат количества воздуха, проходящего через карбюратор, который регулируется положением дроссельной заслонки. Положение дроссельной заслонки устанавливается винтом регулировки холостого хода (рис. 9.49).
Дополнительные небольшие отверстия, называемые переходными портами (рис. 9.47), расположены чуть выше закрытой дроссельной заслонки в цилиндре карбюратора. На холостом ходу каналы передачи всасывают воздух из ствола, который находится под атмосферным давлением
, в поток топлива в системе холостого хода. Когда двигатель находится в состоянии небольшого ускорения, ему требуется больше топлива, чем может обеспечить только порт холостого хода, и, следовательно, порт передачи вступает в действие как низкоскоростная система (рис.9,50). Когда горловина открывается, передаточный порт подвергается всасывающему вакууму, и поток в передаточном отверстии меняется на противоположный. Из передаточного отверстия вытекает дополнительное топливо для удовлетворения потребностей двигателя во время переключения с холостого хода на работу с низкой скоростью. Топливо продолжает поступать из порта холостого хода, но с меньшей скоростью. Это позволяет получить почти постоянную топливно-воздушную смесь в течение этого переходного периода.

Рис. 9.47. Типовая схема холостого хода.

Рис. 9.48. Крышки ограничителя холостого хода.
Самая распространенная проблема в системе холостого хода — закупорка ограничителей холостого хода и воздуховыпускные отверстия, требующие очистки.Это замечается, когда изменение регулировки винта смеси не влияет на холостой ход двигателя.

Рис. 9.49. Винт регулировки холостого хода.

Рис. 9.50. Низкоскоростной режим.

9.13.3.

Основная система дозирования или высокоскоростная система

Когда скорость транспортного средства достигает более 32 км / ч, дроссельная заслонка открывается достаточно широко, чтобы обеспечить достаточный воздушный поток для создания давления немного ниже атмосферного на конце главного нагнетательного сопла.В то же время зона частичного вакуума впускного коллектора перемещается вверх в цилиндре карбюратора. Воздушный поток и изменение давления усиливают эффект Вентури, заставляя бензин вытекать из главного нагнетательного сопла (рис. 9.51). При дальнейшем увеличении скорости основная система дозирования продолжает отключаться до тех пор, пока не принимает на себя всю нагрузку, в то время как система холостого хода выключается. Основная система дозирования обеспечивает подачу бензина в количестве, достаточном для работы двигателя на холостом ходу с максимальной скоростью, когда дроссельная заслонка почти полностью открыта.

Рис. 9.51. Высокоскоростная или основная система дозирования.

Рис. 9.52. Система с несколькими трубками Вентури.
Для лучшего смешивания топлива и воздуха в большинстве карбюраторов имеется несколько или наддувных вентиляционных отверстий, расположенных друг внутри друга (рис. 9.52). Основное напорное сопло расположено в самой маленькой трубке Вентури для увеличения воздействия частичного вакуума на сопло. Топливо поступает из бачка через главный жиклер и главный канал в выпускное сопло. Высокоскоростной отвод воздуха (рис.9.52) смешивает воздух с топливом перед его выпуском из форсунки. Первичная или верхняя трубка Вентури создает разрежение, которое заставляет основную форсунку распылять топливо. Вторичная трубка Вентури создает воздушный поток, который удерживает топливо от стенок ствола, где оно может замедлиться и конденсироваться. Это приводит к турбулентности воздуха, что приводит к лучшему перемешиванию и более тонкому распылению топлива.
9.13.4.

Энергетическая система

Высокоскоростная система подает обедненную топливовоздушную смесь на все карбюраторные системы.Когда нагрузка на двигатель увеличивается во время работы на высоких оборотах, эта смесь слишком бедная для обеспечения необходимой мощности двигателя. Необходимое дополнительное топливо вместо этого обеспечивается другой системой, называемой системой питания или силовым клапаном. Дополняет подачу топлива основного дозатора. Система питания или клапан могут управляться вакуумом или механической связью. Тип силового клапана зависит от конструкции карбюратора, но все они обеспечивают более богатую топливно-воздушную смесь.
Один тип силового клапана (рис.9.53) расположен в днище топливного бака с отверстием для основной нагнетательной трубки. Пружина удерживает маленький тарельчатый клапан в закрытом состоянии, а вакуумный поршень удерживает поршень над клапаном. Поскольку вакуум в коллекторе уменьшается по мере увеличения нагрузки на двигатель, большая пружина перемещает плунжер вниз. Это открывает клапан и позволяет большему количеству топлива поступать в главный нагнетательный патрубок.
В другом типе силового клапана с вакуумным приводом используется диафрагма (рис. 9.54). Вакуум в коллекторе управляет диафрагмой, которая удерживает клапан в закрытом состоянии.По мере того, как вакуум уменьшается при увеличении нагрузки, пружина открывает клапан, который направляет больше топлива через систему питания к главному нагнетательному соплу.
Дозирующие стержни также могут использоваться в качестве силовой системы (рис. 9.55), которая управляется вакуумными поршнями и пружинами или механической связью, связанной с дроссельной заслонкой. Концы стержней сужаются или ступенчатые для постепенного увеличения дополнительного расхода топлива и устанавливаются в отверстии главного жиклера. Стержни ограничивают площадь основного жиклера и уменьшают количество топлива, которое проходит через них
во время работы основной системы дозирования с небольшой нагрузкой.Дополнительное топливо для полной мощности дроссельной заслонки обеспечивается перемещением штоков из форсунок для увеличения потока через форсунки.


Рис. 9.53. Система питания с вакуумным поршнем

Рис. 9.54. Система питания, управляемая диафрагмой с вакуумным регулированием.
Дозирующие стержни с вакуумным управлением, также называемые повышающими стержнями, удерживаются в форсунках за счет разрежения в коллекторе, прикладываемого к поршням, прикрепленным к стержням. Когда вакуум падает под большой нагрузкой, пружины, работая против поршней, выталкивают штоки из жиклеров.Дозирующие стержни с механическим приводом управляются напрямую механической тягой, соединенной с тягой дроссельной заслонки.
9.13.5.

Система ускорительного насоса

Система обеспечивает дополнительное топливо для некоторых условий работы двигателя. Если дроссельная заслонка открывается внезапно из закрытого или почти закрытого положения, поток воздуха увеличивается быстрее, чем поток топлива из главного нагнетательного сопла. Этот сброс воздуха во впускной коллектор внезапно снижает вакуум в коллекторе и приводит к обеднению топливной смеси.Эта чрезмерно бедная смесь приводит к спотыканию, которое иногда называют плоским пятном. Для достаточного обогащения смеси топливо подает ускорительный насос.
Ускорительный насос (рис. 9.56) представляет собой плунжер или диафрагму в отдельной камере в корпусе карбюратора. Он приводится в действие тягой, соединенной с тягой дроссельной заслонки карбюратора (рис. 9.57). Когда дроссельная заслонка закрывается; насос

Рис. 9.55. Энергосистема на основе дозирующих стержней, управляемая механической или вакуумной связью.
всасывает топливо в камеру через впускной обратный клапан, показанный на рис. 9.58A, а выпускной обратный клапан закрывается, так что воздух не проходит через сопло насоса. Насос движется вниз или внутрь, когда дроссельная заслонка быстро открывается, чтобы подавать топливо к форсунке в цилиндре (рис. 9.58B) через выпускной обратный клапан. Во время подачи топлива обратный клапан закрывается. Выходной обратный клапан насоса может быть стальным шаром или плунжером, а входной обратный клапан — стальным шаром, резиновой диафрагмой или частью плунжера насоса.

Рис. 9.56. Типовой ускорительный насос плунжерного типа.

Рис. 9.57. Тяга ускорительного насоса.
Большинство плунжеров или диафрагм насосов приводится в действие пружиной регулирования. Дроссельная заслонка удерживает насос в возвращенном положении. Когда дроссельная заслонка открывается, рычажный механизм освобождает насос, а пружина перемещает плунжер для равномерной и равномерной подачи топлива. Ускорительный насос работает в течение первой половины хода дроссельной заслонки из закрытого в полностью открытое положение.
Во время работы на высоких оборотах разрежение на сопле насоса в цилиндре карбюратора может быть достаточно сильным, чтобы смещать выходную заслонку и откачивать топливо из насоса. Это называется «пуловер с помпой» или «сифонирование». В большинстве карбюраторов воздуховыпускные отверстия расположены в выпускных каналах насоса, чтобы предотвратить сифонирование. В некоторых карбюраторах к выходному отверстию добавляется дополнительный вес, чтобы противодействовать сифонированию. Плунжеры насосов некоторых карбюраторов имеют антисифонные обратные клапаны.
Проблемы с системой ускорения вызывают спотыкание или колебания двигателя, вызванные повреждением поршня из синтетического каучука или

Рис.9,58. Работа ускорительного насоса. A. Ход всасывания насоса B. Ход нагнетания насоса
Требуется замена диафрагмы. Иногда грязь попадает на седло обратного клапана или погружает напорный патрубок, требуя очистки или замены.
9.13.6.

Дроссель или пусковая система

При холодном пуске испаряется только легкая летучая часть топлива при низкой температуре. Холодные стенки коллектора вызывают конденсацию бензина из топливовоздушной смеси, и менее испаренное топливо достигает камер сгорания.Система воздушной заслонки используется при холодном пуске для подачи большого количества топлива в цилиндр карбюратора. Дроссельная заслонка (клапан) расположена в воздушном рупоре над основным напорным патрубком и трубкой Вентури, как показано на рис. 9.59. Дроссельную заслонку можно наклонять под разными углами, чтобы ограничить поток воздуха. Проворачивание двигателя при закрытой заслонке воздушной заслонки создает частичный вакуум во всем цилиндре карбюратора под пластиной. Это уменьшение воздушного потока и область частичного вакуума работают вместе, позволяя втягивать больше топлива в смесь.

Рис. 9.59. Дроссельная система.

Рис. 9.60. Автоматическая система дросселирования. A. Встроенный дроссель. Б. Дистанционный дроссель.
Дроссельная заслонка может приводиться в действие вручную с помощью кабеля, идущего к кабине водителя, или автоматически с помощью термостатической пружины. Вал дроссельной заслонки соединен с пружиной посредством рычажного механизма. Биметаллическая термостатическая пружина обычно располагается в одном из двух мест. В одном варианте он размещается в круглом корпусе на воздушном рупоре карбюратора (рис.9.60A). Это называется цельным или поршневым дросселем. У другого типа он расположен вне карбюратора в углублении на впускном коллекторе (рис. 9.60B). Это называется дистанционным, колодезным или вакуумным тормозным дросселем.
Независимо от типа и расположения, термостатическая пружина закрывает воздушную заслонку при холодном двигателе. При запуске холодного двигателя воздушная заслонка полностью закрывается. Как только двигатель запускается, воздушная заслонка приоткрывается для достаточного притока воздуха. Вакуум в коллекторе тянет за собой диафрагму или поршень, что немного открывает воздушную заслонку. Когда двигатель нагревается, термостатическая пружина воздушной заслонки постепенно ослабляет свое натяжение, позволяя вакууму медленно открывать воздушную заслонку, а также медленно отпускать кулачок быстрого холостого хода. Когда двигатель прогрет, воздушная заслонка полностью отпускается. Вал дроссельной заслонки смещен, чтобы получить другое открывающее усилие. Если дроссельная заслонка внезапно открывается на холодном двигателе, кончик дроссельной заслонки открывается, позволяя большему количеству воздуха попасть в карбюратор. Термостатическая пружина для удаленной воздушной заслонки расположена либо на выпускном переходнике впускного коллектора, либо на выпускном коллекторе, где она быстро улавливает тепло.В случае встроенного дросселя тепло передается от коллекторной печи через изолированную трубку для нагрева термостатической пружины.
Липкий вал дроссельной заслонки, застрявший вакуумный поршень, изогнутые рычаги, неправильная регулировка, а также засоренная или сгоревшая тепловая трубка дроссельной заслонки обычно вызывают проблемы в системе дроссельной заслонки, требующие замены поврежденных деталей, очистки вала и втулок и правильной регулировки.

Проблемы с холостым ходом карбюратора: сначала проверьте смесь

Заметили ли вы, что карбюраторные двигатели ведут себя по-разному при различных температурах? У нас есть, и это довольно хороший аргумент в пользу простоты впрыска топлива.

Но если вы застряли в возрасте карбюратора, настройка смеси холостого хода (возможно, часто) для предполагаемого рабочего климата может быть неизбежным злом для ее правильного поддержания. Если вы не являетесь специалистом по обслуживанию и ремонту, регулировка карбюраторов может не входить в число утвержденных задач, выполняемых владельцем. Но вы можете помочь своим технологиям сделать все по своему вкусу, зная основы. Вот букварь.

По книге, по тахометру

Признайтесь, с фундаментальной точки зрения карбюратор на вашей Cessna мало чем отличается от того, который у вас был на вашем малоблочном двигателе Chevy.Работа с его обслуживанием — это знакомая неприятность, связанная с устранением застревания поплавковых чаш, поиском утечек топлива и выполнением профилактических ремонтов.

По крайней мере, если вы хотите, чтобы ваш двигатель работал хорошо на холостом ходу и на холостом ходу, регулярно проводите регулировку. Лайкоминг даже предлагает заменять смесь холостого хода на сезонной основе, если вы живете в районе с большими перепадами высоты над уровнем моря. Но мы говорим, только если есть проблема. Что касается привередливых углеводов, мы давно придерживаемся теории «если что-то не сломалось, ничего не исправляйте».И мы не стали бы пытаться регулировать без актуального руководства по обслуживанию, а также сервисных данных для любых модификаций, внесенных в топливную систему.

Если вы все еще пользуетесь аналоговым тахометром, не заходите дальше, не зная, когда он был откалиброван в последний раз. Если есть сомнения, отправьте его в магазин инструментов для лабораторной калибровки.

Что касается симптомов, указывающих на то, что настало время для регулировки смеси на холостом ходу, вы можете наблюдать, как двигатель работает на разогретой смеси летом и на обедненной смеси зимой.

Некоторые двигатели подвержены большему воздействию, чем другие, из-за расположения карбюратора, впускного трубопровода, перегородок и т. Д.В теплую погоду подсказкой является, во-первых, заметный прирост оборотов при переводе регулятора смеси в положение отсечки холостого хода — может быть, на 100 об / мин или больше. Когда холодно, может быть и обратное. Вы также можете обнаружить, что свечи зажигания легко загрязняются даже при использовании обедненной смеси для руления.

Pull It Back

Ничего не регулируйте, если вы не уверены в исправности синхронизации магнето, состоянии свечей зажигания и, очевидно, самого карбюратора, хотя попытка регулировки является первым шагом.Отправляйтесь в зону разбега (или летите первым), чтобы прогреть двигатель. С выключенным подогревом карбюратора и установленным чистым воздушным фильтром разверните самолет под углом 90 градусов к ветру и отрегулируйте дроссель, чтобы установить минимальные обороты. Обычно это около 650 об / мин. Зафиксируйте фрикционный фиксатор дроссельной заслонки, чтобы он не соскользнул. Переместите регулятор смеси в сторону отсечки холостого хода и проследите за показаниями тахометра.

Когда вы подойдете к последнему или двум дюйму хода смеси, вы должны заметить повышение скорости двигателя на 25–50 об / мин, прежде чем двигатель откажется от пропуска зажигания на обедненной смеси.Держите его включенным и записывайте фактический рост оборотов, каким бы он ни был. Если ваша обедненная смесь увеличилась более чем на 50 об / мин, ваш карбюратор (или впрыск топлива — применяется тот же тест) установлен слишком богатым и требует компенсации в направлении обеднения.

И наоборот, если вы заметили небольшое повышение оборотов или его отсутствие, значит, ваша смесь холостого хода установлена ​​слишком бедной. Регулировка смеси холостого хода на карбюраторе Marvel-Schebler осуществляется в виде большого винта с накатанной головкой (или маленькой ручки с прорезью) на отливке дроссельной заслонки высоко над карбюратором. На карбюраторах серий MA-3 и MA-4, например, найдите сливную пробку стакана, затем проведите пальцем (или глазами) прямо вверх по стороне карбюратора, пока не дойдете до ручки с прорезью, на которой стрелки указывают на «R». »(Богатый) и« L »(постный).Это регулировка смеси холостого хода. Поверните этот винт в нужном направлении, затем повторите описанную выше процедуру разгрузки.

Конечно, изменение смеси холостого хода сказывается и на холостом ходу. Если ваш двигатель был настроен на слишком богатую мощность (например, рост на 150 об / мин при выключении), и вы исправили это, повернув винт смеси холостого хода по мере необходимости, чтобы получить желаемое повышение на 50 об / мин, ваш двигатель теперь, вероятно, будет работать на холостом ходу примерно на 100 об / мин быстрее, чем раньше. . Соответственно, вам нужно отрегулировать холостой ход, чтобы вернуть его обратно в диапазон 650-750 об / мин.Любые изменения требуют надзора со стороны A&P.

На карбюраторе Marvel-Schebler, как и на автомобильном карбюраторе, регулировка холостого хода выполняется с помощью установочного винта на ограничителе низких оборотов на рычаге дроссельной заслонки на карбюраторе. При необходимости отрегулируйте обороты холостого хода до 650-750. Повторить проверку обедненной смеси холостого хода. Вы хотите не более чем на 50 оборотов в минуту на выносе.

Очевидно, что может потребоваться несколько итераций базовой процедуры для правильной настройки карбюратора как для смеси холостого хода, так и для холостого хода, поскольку одно влияет на другое.Однако старайтесь не оставлять двигатель на холостом ходу на земле так долго, чтобы CHT доходил до показаний в полете.

И имейте в виду, что при продолжительной работе на земле на полностью обогащенной смеси и низких оборотах, загрязнение свечей зажигания поощряется, даже при идеально отрегулированной смеси холостого хода. Это потому, что в диапазоне 700 об / мин свечи работают слишком холодно, чтобы их можно было полностью сжечь. Это действительно помогает иметь даже самый простой монитор графического движка для обслуживания и нормальной работы.

После того, как вы его настроите, записывайте рост оборотов при каждом отключении. Это может помочь вам определить насыщение поплавка и внутреннюю утечку. И пока вы это делаете, записывайте дату и температуру наружного воздуха. Через некоторое время календарь скажет вам, что пора сделать все это снова.

Карбюраторные системы поршневых двигателей самолетов


Чтобы обеспечить работу двигателя при различных нагрузках и на разных оборотах двигателя, каждый карбюратор имеет шесть систем:
  1. Главный дозатор
  2. Холостой ход
  3. Ускорение
  4. Контроль смеси
  5. Отсечка холостого хода
  6. Обогащение мощности или экономайзер

Каждая из них системы имеет определенную функцию.Он может действовать самостоятельно или с одним или несколькими другими.

Основная система дозирования подает топливо в двигатель на всех оборотах выше холостого хода. Топливо, выпускаемое этой системой, определяется падением давления в горловине Вентури.

Для холостого хода необходима отдельная система, поскольку основная система дозирования может работать нестабильно при очень низких оборотах двигателя. На малых оборотах дроссельная заслонка почти закрыта. В результате скорость воздуха, проходящего через трубку Вентури, мала, и давление незначительно падает.Следовательно, перепада давления недостаточно для работы основной системы дозирования, и топливо из этой системы не выгружается. Поэтому большинство карбюраторов имеют систему холостого хода для подачи топлива в двигатель на низких оборотах.

Система ускорения подает дополнительное топливо при резком увеличении мощности двигателя. Когда дроссельная заслонка открыта, воздушный поток через карбюратор увеличивается, чтобы получить больше мощности от двигателя. Затем основная дозирующая система увеличивает расход топлива.Однако во время внезапного ускорения увеличение воздушного потока происходит настолько быстро, что существует небольшая задержка по времени, прежде чем увеличение расхода топлива станет достаточным для обеспечения правильного соотношения компонентов смеси с новым воздушным потоком. За счет дополнительной подачи топлива в этот период система ускорения предотвращает временное отклонение смеси от нормы и обеспечивает плавное ускорение.


Система контроля смеси определяет соотношение топлива и воздуха в смеси. С помощью пульта управления из кабины, ручное управление смесью может выбрать соотношение смеси в соответствии с рабочими условиями.В дополнение к этим ручным настройкам многие карбюраторы имеют автоматические регуляторы смеси, так что соотношение топливо / воздух, когда оно выбрано, не изменяется при изменении плотности воздуха. Это необходимо, потому что, когда самолет набирает высоту и атмосферное давление уменьшается, происходит соответствующее уменьшение веса воздуха, проходящего через систему впуска. Объем, однако, остается постоянным. Поскольку именно объем воздушного потока определяет перепад давления в горловине трубки Вентури, карбюратор стремится дозировать такое же количество топлива в этот разреженный воздух, что и в плотный воздух на уровне моря.Таким образом, естественная тенденция состоит в том, что смесь становится богаче по мере набора высоты самолетом. Автоматический контроль смеси предотвращает это, уменьшая скорость слива топлива, чтобы компенсировать уменьшение плотности воздуха.

Карбюратор имеет систему отключения холостого хода, чтобы можно было отключить подачу топлива для остановки двигателя. Эта система, входящая в состав ручного управления смесью, полностью останавливает выпуск топлива из карбюратора, когда рычаг управления смесью установлен в положение «отсечки холостого хода».Двигатель самолета останавливается путем отключения топлива, а не путем выключения зажигания. Если зажигание выключается, а карбюратор продолжает подавать топливо, свежая топливно-воздушная смесь продолжает поступать через систему впуска в цилиндры. Поскольку двигатель останавливается по инерции и если он слишком горячий, эта горючая смесь может воспламениться из-за локальных горячих точек в камерах сгорания. Это может привести к тому, что двигатель продолжит работу или откатится назад. Также смесь может пройти через цилиндры несгоревшей, но воспламениться в горячем выпускном коллекторе.Или двигатель останавливается, по-видимому, нормально, но горючая смесь остается во впускных каналах, цилиндрах и выхлопной системе. Это небезопасное состояние, поскольку двигатель может перевернуться после остановки и серьезно травмировать всех, кто находится рядом с гребным винтом. Когда двигатель останавливается с помощью системы отключения холостого хода, свечи зажигания продолжают воспламенять топливно-воздушную смесь до тех пор, пока не прекратится выход топлива из карбюратора. Уже одно это должно предотвратить остановку двигателя с горючей смесью в цилиндрах.Некоторые производители двигателей предлагают, чтобы непосредственно перед тем, как пропеллер перестал вращаться, широко открывать дроссельную заслонку, чтобы поршни могли перекачивать свежий воздух через впускную систему, цилиндры и выхлопную систему в качестве дополнительной меры предосторожности против случайного опрокидывания. После полной остановки двигателя ключ зажигания переводится в положение «выключено».

Система энергетического обогащения автоматически увеличивает насыщенность смеси во время работы на большой мощности. Это делает возможным изменение соотношения топливо / воздух, необходимое для различных условий эксплуатации. Помните, что на крейсерских скоростях обедненная смесь желательна из соображений экономии, тогда как при высокой выходной мощности смесь должна быть богатой, чтобы получить максимальную мощность и помочь в охлаждении цилиндров двигателя. Система обогащения энергии автоматически вызывает необходимое изменение соотношения топливо / воздух. По сути, это клапан, который закрывается на крейсерских скоростях и открывается для подачи дополнительного топлива в смесь во время работы на большой мощности. Хотя она увеличивает расход топлива при высокой мощности, система обогащения энергии фактически является устройством для экономии топлива.Без этой системы пришлось бы эксплуатировать двигатель на богатой смеси во всем диапазоне мощностей. Тогда смесь будет богаче, чем необходимо на крейсерской скорости, чтобы обеспечить безопасную работу на максимальной мощности. Систему обогащения мощности иногда называют экономайзером или компенсатором мощности.

Хотя различные системы обсуждались отдельно, карбюратор функционирует как единое целое. Тот факт, что одна система работает, не обязательно препятствует работе другой.В то время как основная система дозирования выпускает топливо пропорционально воздушному потоку, система контроля смеси определяет, является ли полученная смесь богатой или бедной. Если дроссельная заслонка внезапно открывается широко, системы ускорения и обогащения мощности действуют, чтобы добавить топлива к тому, которое уже выгружается основной системой дозирования.

СВЯЗАННЫЕ ЗАПИСИ

Карбюраторы поплавкового типа (системы дозирования топлива поршневых двигателей)

Карбюратор поплавкового типа состоит по существу из шести подсистем, которые регулируют количество выгружаемого топлива в зависимости от потока воздуха, подаваемого в цилиндры двигателя.Эти системы работают вместе, чтобы обеспечить двигатель правильным потоком топлива во всех рабочих диапазонах двигателя.

Основные подсистемы поплавкового карбюратора показаны на рисунке 1. Этими системами являются:

  1. Система механизма поплавковой камеры
  2. Основная система дозирования
  3. Система холостого хода
  4. Система контроля смеси
  5. Система ускорения
  6. Система экономайзера
Рисунок 1. Карбюратор поплавкового типа

Между подачей топлива и основной дозирующей системой карбюратора предусмотрена поплавковая камера. Поплавковая камера или чаша служит резервуаром для топлива в карбюраторе. [Рис. 2] Эта камера обеспечивает почти постоянный уровень топлива в основном выпускном сопле, который обычно находится примерно на 1/8 дюйма ниже отверстий в основном выпускном сопле. Уровень топлива должен поддерживаться немного ниже выпускных отверстий выпускного сопла, чтобы обеспечить правильный расход топлива и предотвращение утечки топлива из форсунки при неработающем двигателе.

Рисунок 2. Поплавковая камера (чаша) со снятым поплавком

Уровень топлива в поплавковой камере поддерживается почти постоянным с помощью поплавкового игольчатого клапана и место. Седло иглы обычно изготавливается из бронзы. Игольчатый клапан изготовлен из закаленной стали или может иметь секцию из синтетического каучука, которая подходит к седлу. При отсутствии топлива в поплавковой камере поплавок опускается к дну камеры и позволяет игольчатому клапану широко открываться.Когда топливо поступает из линии подачи, поплавок поднимается (плавает в топливе) и закрывает игольчатый клапан, когда топливо достигает заданного уровня. Когда двигатель работает и топливо всасывается из поплавковой камеры, клапан принимает промежуточное положение, так что открытия клапана достаточно для подачи необходимого количества топлива и поддержания постоянного уровня. [Рис. 1]


Когда топливо находится на правильном уровне (поплавковая камера), скорость нагнетания точно контролируется скоростью воздуха через трубку Вентури карбюратора, где падение давления на выпускном сопле заставляет топливо течь во всасываемый воздушный поток.Атмосферное давление над топливом в поплавковой камере вытесняет топливо из выпускного сопла. Вентиляционное отверстие или небольшое отверстие в верхней части поплавковой камеры позволяет воздуху входить или выходить из камеры при повышении или понижении уровня топлива.

Основная дозирующая система подает топливо в двигатель на всех оборотах выше холостого хода и состоит из:

  1. Вентури
  2. Главный дозирующий жиклер
  3. Главный напорный патрубок
  4. Канал, ведущий в систему холостого хода
  5. Дроссельный клапан

Так как дроссельная заслонка регулирует массовый расход воздуха через трубку Вентури карбюратора, она должна считаться основным узлом в основной системе дозирования, а также в других системах карбюратора.Типичная основная система дозирования проиллюстрирована на рисунке 3. Вентури выполняет три функции:

  1. Пропорции топливно-воздушной смеси
  2. Уменьшает давление на выпускном патрубке
  3. Ограничивает воздушный поток при полном открытии дроссельной заслонки
Рисунок 3. Основная дозирующая система

Сопло для выпуска топлива расположено в цилиндре карбюратора так, что его открытый конец находится в горловине или в самой узкой части трубки Вентури.Основное дозирующее отверстие или жиклер помещается в топливный канал между поплавковой камерой и выпускным соплом, чтобы ограничить поток топлива, когда дроссельная заслонка широко открыта.

Когда коленчатый вал двигателя вращается при открытой дроссельной заслонке карбюратора, низкое давление, создаваемое во впускном коллекторе, воздействует на воздух, проходящий через цилиндр карбюратора. Из-за разницы давлений между атмосферой и впускным коллектором воздух поступает из воздухозаборника через цилиндр карбюратора во впускной коллектор.Объем воздушного потока зависит от степени открытия дроссельной заслонки. Когда воздух проходит через трубку Вентури, его скорость увеличивается. Это увеличение скорости создает зону низкого давления в горловине Вентури. Сопло подачи топлива находится под действием этого низкого давления. Поскольку давление в поплавковой камере снижается до атмосферного, на выпускном сопле создается перепад давления. Именно эта разница давлений или дозирующая сила заставляет топливо течь из выпускного сопла. Топливо выходит из сопла мелкой струей, а мельчайшие частицы топлива в этой струе быстро испаряются в воздухе.

Дозирующее усилие (перепад давления) в большинстве карбюраторов увеличивается с увеличением открытия дроссельной заслонки. Топливо необходимо поднять в напорном сопле до уровня, при котором оно выходит в воздушный поток. Для этого требуется перепад давления 0,5 дюйма рт. Уменьшение расхода топлива по отношению к воздушному потоку связано с двумя факторами:

  1. Топливо имеет тенденцию прилипать к стенкам выпускного сопла и периодически отламываться большими каплями вместо образования тонкой струи, и
  2. Часть дозирующее усилие требуется для поднятия уровня топлива от уровня поплавковой камеры до выходного отверстия напорного сопла.

Основной принцип стравливания воздуха можно пояснить с помощью простых схем, как показано на рисунке 4. В каждом случае одинаковая степень всасывания применяется к вертикальной трубке, помещенной в контейнер с жидкостью. Как показано на A, всасывания, приложенной к верхнему концу трубки, достаточно для подъема жидкости на расстояние около 1 дюйма над поверхностью. Если сделать небольшое отверстие на стороне трубки над поверхностью жидкости, как в случае B, и применить всасывание, пузырьки воздуха попадают в трубку, и жидкость втягивается непрерывной серией небольших пробок или капель.Таким образом, воздух «просачивается» в трубку и частично снижает силы, замедляющие прохождение жидкости через трубку. Однако большое отверстие в нижней части трубки эффективно предотвращает сильное всасывание воздуха через отверстие для стравливания воздуха или вентиляционное отверстие. Точно так же отверстие для выпуска воздуха, которое является слишком большим по сравнению с размером трубки, уменьшит всасывание, доступное для подъема жидкости. Если система модифицируется путем размещения дозирующего отверстия в нижней части трубы, и воздух забирается ниже уровня топлива с помощью воздуховыпускной трубы, в трубе образуется мелкодисперсная смесь воздуха и жидкости, как показано на С.

Рисунок 4. Принцип стравливания воздуха

В карбюраторе небольшой воздухозаборник попадает в топливную форсунку немного ниже уровня топлива. Открытый конец воздуховода находится в пространстве за стенкой Вентури, где воздух относительно неподвижен и находится под приблизительно атмосферным давлением. Низкое давление на конце сопла не только всасывает топливо из поплавковой камеры, но также всасывает воздух из-за трубки Вентури.Воздух, попадающий в основную дозирующую топливную систему, снижает плотность топлива и разрушает поверхностное натяжение. Это приводит к лучшему испарению и контролю над сливом топлива, особенно при более низких оборотах двигателя. Дроссельная заслонка или дроссельная заслонка расположена в цилиндре карбюратора рядом с одним концом трубки Вентури. Он обеспечивает средства управления частотой вращения двигателя или выходной мощностью путем регулирования потока воздуха, подаваемого к двигателю. Этот клапан представляет собой диск, который может вращаться вокруг оси, так что его можно повернуть, чтобы открыть или закрыть воздушный канал карбюратора.

Когда дроссельная заслонка закрыта на холостых оборотах, скорость воздуха через трубку Вентури настолько мала, что она не может всасывать достаточно топлива из главного нагнетательного сопла; на самом деле разбрызгивание топлива может вообще прекратиться. Однако на дроссельной заслонке со стороны двигателя существует низкое давление (всасывание поршня). Чтобы двигатель работал на холостом ходу, предусмотрен топливный канал для выпуска топлива из отверстия в зоне низкого давления рядом с краем дроссельной заслонки. [Рисунок 5] Это отверстие называется жиклером холостого хода.При достаточно открытом дросселе для работы главного нагнетательного сопла топливо не вытекает из жиклера холостого хода. Как только дроссельная заслонка закрывается достаточно далеко, чтобы остановить разбрызгивание из главного нагнетательного сопла, топливо вытекает из жиклера холостого хода. Отдельный отвод воздуха, известный как отвод воздуха на холостом ходу, является частью системы холостого хода. Он работает так же, как и главный воздухозаборник. Также имеется устройство для регулирования смеси холостого хода. Типичная система холостого хода показана на рисунке 6.

Рис. 5. Действие дроссельной заслонки в положении холостого хода
Рис. 6. Система холостого хода
926 становится менее плотным. На высоте 18 000 футов воздух вдвое меньше плотности воздуха на уровне моря. Это означает, что в кубическом футе космоса на высоте 18 000 футов содержится только половина от количества воздуха, чем на уровне моря.Цилиндр двигателя, наполненный воздухом на высоте 18 000 футов, содержит вдвое меньше кислорода, чем цилиндр, полный воздуха на уровне моря.

Область низкого давления, создаваемая трубкой Вентури, зависит от скорости воздуха, а не от плотности воздуха. Воздействие трубки Вентури втягивает такой же объем топлива через выпускное сопло на большой высоте, как и на небольшой высоте. Следовательно, с увеличением высоты топливная смесь становится богаче. Это можно преодолеть ручным или автоматическим контролем смеси.

В карбюраторах поплавкового типа для управления топливно-воздушными смесями обычно используются два типа устройств с чисто ручным управлением или с пультом управления: игольчатый тип и тип с обратным всасыванием. [Рисунки 7 и 8]

Рисунок 7. Игольчатая система регулирования смеси
Рисунок 8. Система обратного всасывания

В игольчатой ​​системе ручное управление обеспечивается игольчатым клапаном в основании поплавковой камеры. [Рис. 7] Его можно поднять или опустить с помощью регулятора в кабине. При переводе регулятора в положение «богатая» игольчатый клапан широко открывается, что позволяет топливу беспрепятственно течь к форсунке. Перемещение регулятора в положение «бедная» частично закрывает клапан и ограничивает поток топлива к форсунке.

Наиболее широко используется система контроля смеси с обратным всасыванием. [Рис. 8] В этой системе определенное количество низкого давления Вентури воздействует на топливо в поплавковой камере, так что оно противодействует низкому давлению, существующему в главном выпускном сопле.Атмосферный трубопровод с регулируемым клапаном открывается в поплавковую камеру. Когда клапан полностью закрыт, давления топлива в поплавковой камере и на выпускном сопле практически равны, а расход топлива снижается до максимальной бедной. При полностью открытом клапане давление топлива в поплавковой камере наибольшее, а топливная смесь наиболее насыщенная. Установка клапана в положение между этими двумя крайними значениями позволяет контролировать смесь. Квадрант в кабине обычно обозначается как «наклонный» в задней части и «богатый» в передней части.Крайнее заднее положение обозначается как «отключение холостого хода» и используется при остановке двигателя.

На поплавковых карбюраторах, оборудованных игольчатым регулятором смеси, регулятор смеси помещается в седла отсечки холостого хода игольчатого клапана, таким образом полностью перекрывая поток топлива. В карбюраторах, оборудованных регуляторами обратного всасывания смеси, предусмотрена отдельная линия отсечки холостого хода, приводящая к очень низкому давлению дроссельной заслонки со стороны двигателя. (См. Пунктирную линию на рисунке 8.) Регулировка смеси так связана, что, когда она находится в положении «отсечки холостого хода», она открывает другой канал, ведущий к всасыванию поршня.В других положениях клапан открывает канал, ведущий в атмосферу. Чтобы остановить двигатель с такой системой, закройте дроссельную заслонку и установите смесь в положение «выключение холостого хода». Оставьте дроссельную заслонку до тех пор, пока двигатель не остановится, а затем полностью откройте дроссельную заслонку.


Когда дроссельная заслонка открывается быстро, большой объем воздуха устремляется через воздушный канал карбюратора; количество топлива, которое смешивается с воздухом, меньше обычного из-за медленной скорости реакции основной системы дозирования.В результате после быстрого открытия дроссельной заслонки топливно-воздушная смесь на мгновение выходит наружу. Это может привести к медленному ускорению двигателя или его спотыканию при попытке ускориться.

Чтобы преодолеть эту тенденцию, карбюратор оснащен небольшим топливным насосом, который называется ускорительным насосом. Обычный тип системы ускорения, используемой в поплавковых карбюраторах, показан на рисунке 9. Она состоит из простого поршневого насоса, приводимого в действие рычагом управления дроссельной заслонкой, и прохода, открывающегося в основную дозирующую систему или цилиндр карбюратора рядом с трубкой Вентури.Когда дроссельная заслонка закрыта, поршень движется назад, и топливо заполняет цилиндр. Если поршень продвигается медленно, топливо просачивается мимо него обратно в поплавковую камеру; при быстром толкании он распыляет топливо в трубку Вентури и обогащает смесь. Пример ускорительного насоса в разрезе показан на рисунке 10.

Рисунок 9. Система ускорения
.Ускоряющий насос показан в разрезе

Чтобы двигатель развивал максимальную мощность при полном открытии дроссельной заслонки, топливная смесь должна быть богаче, чем для крейсерского режима. Дополнительное топливо используется для охлаждения камер сгорания двигателя для предотвращения детонации. Экономайзер — это, по сути, клапан, который закрывается при настройке дроссельной заслонки ниже примерно 60–70 процентов номинальной мощности. Эта система, как и система ускорения, управляется дроссельной заслонкой.

Типичная система экономайзера состоит из игольчатого клапана, который начинает открываться, когда дроссельная заслонка достигает заданной точки рядом с полностью открытым положением.[Рис. 11] По мере того, как дроссельная заслонка продолжает открываться, игольчатый клапан открывается дальше, и через него проходит дополнительное топливо. Это дополнительное топливо дополняет поток от основного дозирующего жиклера непосредственно к основному напорному соплу.

Рис. 11. Система экономайзера игольчатого типа

Экономайзер, управляемый давлением, показан на Рис. 12. Этот тип имеет герметичный сильфон, расположенный в закрытом отсеке. .Отсек вентилируется до давления в коллекторе двигателя. Когда давление в коллекторе достигает определенного значения, сильфон сжимается и открывает клапан в топливном канале карбюратора, пополняя нормальное количество топлива, выпускаемого через главное сопло.

Рис. 12. Система экономайзера, работающего под давлением

Другой тип экономайзера — это система с обратным всасыванием. [Рис. 13] Экономия топлива в крейсерском режиме обеспечивается за счет снижения эффективного давления, действующего на уровень топлива в поплавковом отсеке.Когда дроссельная заслонка находится в крейсерском положении, всасывание применяется к поплавковой камере через отверстие экономайзера, канал экономайзера обратного всасывания и жиклер. Всасывание, прикладываемое к поплавковой камере, противоположно всасыванию сопла, создаваемому трубкой Вентури. Расход топлива уменьшен, смесь обеднена для крейсерской экономии.

Рис. 13. Карбюратор напорного типа

Другой тип системы контроля смеси использует дозирующий клапан, который может свободно вращаться в неподвижной дозирующей втулке.Топливо поступает в основную систему и систему холостого хода через прорезь в смесительном рукаве. Дозирование топлива осуществляется за счет относительного положения между одним краем прорези полого дозирующего клапана и одним краем прорези в дозирующей втулке. Перемещение регулятора смеси для уменьшения размера прорези обеспечивает более бедную смесь для компенсации высоты.

Карбюратор — вспомогательная система прогрессии

проф. Эдуардо Дж. Стефанелли

Эта анимация была сделана максимально реалистичной, чтобы продемонстрировать роль вспомогательной подсистемы прогрессивного карбюратора.

Карбюратор — вспомогательная система холостого хода и прогрессия — подсистема прогрессии

Функция вспомогательной системы холостого хода и прогрессии заключается в питании двигателя на более низких оборотах, когда дроссельная заслонка закрыта или слегка приоткрыта.

Анимация подсистемы Вспомогательный карбюратор хода

Вспомогательная подсистема холостого хода обеспечивает топливовоздушную смесь для поддержания работы двигателя на холостом ходу. Необходимость увеличения оборотов двигателя кайфует во вспомогательной системе прогрессии карбюратора.

При открытии дроссельной заслонки, управляемой педалью акселератора, воздух начинает всасываться непосредственно корпусом карбюратора, обедняя смесь, обеспечиваемую вспомогательной системой холостого хода.

В этом случае, чтобы сгладить переход холостого хода на более высокую скорость, есть так называемые «прогрессивные отверстия», через которые смесь впрыскивается в основной воздушный поток, поскольку дроссельная заслонка бабочки открывается и обнаруживает эти отверстия , добавление этой особо богатой смеси компенсирует входящий воздушный поток.

Диаметр верхней части корпуса карбюратора больше нижней части. Это означает, что районы разные. Поскольку скорость потока практически постоянна во всех сечениях — масса тела — уменьшение диаметра в нижней части компенсируется увеличением скорости потока в этой области. Давление жидкости на поверхность обратно пропорционально ее скорости — принцип Бернулли — таким образом, давление в нижней части науглероженной жидкости, рядом с отверстиями вспомогательной выхлопной системы и холостой ход меньше, чем давление в верхней части карбюратора, затем к вентиляционному отверстию.Таким образом, поток воздуха нагнетается через канал, пытаясь уравновесить эту разницу, он увлекает топливо, которое также подвергается повышенному давлению, поскольку его выходное отверстие находится в верхней части карбюратора. Додес через отверстие, смесь вводится в основной поток.

Обратите внимание, что я использовал слово «впрыскивается», а не «пылесосит», потому что действие находится в смешении.

Советы:

— Изменение цвета стрелки показывает соотношение топливовоздушной смеси;
— Более холодные цвета представляют более бедные смеси
— Более теплые цвета представляют более богатые смеси
— Размер стрелок представляет объем воздуха или смеси, допускаемый в единицу времени (расход)

карбюратор | механика | Британника

карбюратор , также пишется карбюратор , устройство для питания искрового двигателя смесью топлива и воздуха.Компоненты карбюраторов обычно включают камеру хранения жидкого топлива, дроссель, жиклер холостого хода (или медленно работающий), главный жиклер, ограничитель воздушного потока в форме Вентури и ускорительный насос. Количество топлива в камере хранения регулируется клапаном с поплавком. Дроссельная заслонка, дроссельная заслонка, уменьшает поступление воздуха и позволяет втягивать богатый топливом заряд в цилиндры при запуске холодного двигателя. По мере прогрева двигателя воздушная заслонка постепенно открывается вручную или автоматически с помощью контроллеров, реагирующих на тепло и частоту вращения двигателя.Топливо вытекает из жиклера холостого хода во всасываемый воздух в результате пониженного давления возле частично закрытой дроссельной заслонки. Главный топливный жиклер вступает в действие при дальнейшем открытии дроссельной заслонки. Затем ограничение воздушного потока в форме Вентури создает пониженное давление для всасывания топлива из основного жиклера в воздушный поток со скоростью, зависящей от воздушного потока, так что получается почти постоянное соотношение топливо-воздух. Ускорительный насос впрыскивает топливо во входящий воздух, когда дроссельная заслонка резко открывается.

В 1970-х годах новое законодательство и предпочтения потребителей побудили производителей автомобилей повысить эффективность использования топлива и снизить выбросы загрязняющих веществ. Для достижения этих целей инженеры разработали системы управления впрыском топлива на основе новых компьютерных технологий. Вскоре системы впрыска топлива заменили карбюраторные топливные системы практически во всех бензиновых двигателях, за исключением двухтактных и небольших четырехтактных бензиновых двигателей, таких как те, которые используются в газонокосилках.

Подробнее по этой теме

Бензиновый двигатель

: Карбюратор

Бензиновый карбюратор представляет собой устройство, которое подает топливо в воздушный поток по мере его поступления в двигатель.Бензин эксплуатируется …

Эту статью совсем недавно отредактировала и обновила Эми Тикканен.

Performance Oriented

Overview

Performance Tuning состоит из проведения тестов для определения пригодности трех систем подачи топлива вашего карбюраторного двигателя и их корректировки с помощью серии методических процедур для адаптации требований подачи топлива вашего двигателя для всех рабочих сценариев. К трем системам подачи топлива относятся:

  • Контур холостого хода и хода
  • Главный контур
  • Контур ускорения

Эти три контура должны работать согласованно как для установившихся открытий дроссельной заслонки, так и для тех ситуаций, когда дроссели открываются постепенно. .

Настройка производительности начинается с базового тестирования цепи холостого хода и прогрессивной цепи, когда автомобиль припаркована, и продолжается процедурами дорожного тестирования для главной цепи и цепи ускорения. (Если установка представляет собой совершенно новую настройку и базовая операция до 4000 об / мин является удовлетворительной, тогда может быть проще сначала отсортировать главную цепь, а затем выполнить настройку последовательности, перехода и схемы акселератора.) Предполагается, что основы были выполнены. например:

  • Двигатель в хорошем состоянии
  • Система зажигания в хорошем состоянии и соответствует характеристикам двигателя
  • Карбюраторы в хорошем состоянии и имеют форсунки, соответствующие двигателю
  • У вас есть выбор форсунок для тестирования

Настройка цепи холостого хода и прогрессирования

Первоначальное тестирование цепей холостого хода и последовательности выполняется, когда автомобиль припаркован.Даже если у тюнера есть доступ к динометру шасси или двигателя для тестирования полностью открытой дроссельной заслонки, схема холостого хода и прогрессии потребует настройки для частичной работы дроссельной заслонки. Двигатели для уличных применений тратят 90% своего времени на работу при частичном открытии дроссельной заслонки, поэтому очень важно уделять внимание этой области работы.

Примечание. Изменения в впрыскивании или работе любого из трех контуров подачи топлива БУДУТ влиять на характеристики подачи топлива двух других контуров, иногда эти эффекты могут быть драматичными и противоречащими интуиции.

Жиклер холостого хода и жиклер коррекции воздуха холостого хода вместе с прогрессивными отверстиями в стенке корпуса дроссельной заслонки (включая резьбовое отверстие для смеси холостого хода) регулируют концентрацию и подачу смеси во время работы на низких оборотах (фаза прогрессирования), а затем начинают уменьшаться в своих эффективность во время переходной фазы, когда запускается работа главной цепи. Количество, расстояние и размер переходных отверстий фиксированы, но жиклер холостого хода, жиклер коррекции холостого хода и настройка винта смеси холостого хода являются переменными, подлежащими настройке.(Жиклер коррекции воздуха на холостом ходу имеет фиксированный размер, который обычно не регулируется, но может быть изменен, чтобы обеспечить регулировку размера.)

Примечание. Тестирование проезжей части предъявляет требования к вашему двигателю, которые могут привести к его нагреву до уровней, превышающих те, которые реализуются во время типичного холостого хода. операция. Хотя ОЧЕНЬ важно, чтобы завершение испытаний проводилось после того, как двигатель полностью прогрет (от 190 до 210 градусов по Фаренгейту), также важно контролировать температуру двигателя во время испытаний на подъездной дорожке, чтобы избежать чрезмерно высоких температур.

Первоначальная регулировка карбюратора

Первым шагом является выполнение регулировки Lean Best, как описано на веб-странице периодического обслуживания. Снимите карбюраторы и наблюдайте за положением дроссельной заслонки относительно первого порта прогрессии. Если первый переходной порт надежно закрыт краем дроссельной заслонки, то все в порядке; в противном случае внесите корректирующие изменения в соответствии с информацией, представленной на веб-странице расширенных процедур. Переустановите карбюраторы и повторите процедуру регулировки Lean Best и холостого хода, а также дважды проверьте, что дроссельные заслонки надежно закрывают первые отверстия прогрессии во время работы на холостом ходу.

Настройка на стоянке

Две процедуры представлены для тестирования с неподвижным автомобилем и идеально выполняются в указанной последовательности. Поскольку наши Webers не имеют регулируемых форсунок для коррекции холостого хода (также называемых форсунками для удаления воздуха из холостого хода), второй тест является в некоторой степени академическим, если только модификации не выполняются, как описано в разделе «Изменения характеристик» (настраиваемые форсунки для коррекции холостого хода). Две процедуры настройки на стоянке:

  1. Выбор топливного жиклера на холостом ходу
  2. Выбор воздушной жиклера на холостом ходу

Эти процедуры проверенные временем, но утомительные и точные до определенного момента; Тестирование припаркованного автомобиля приведет к небольшому выбору жиклеров холостого хода, который легко отсортировать во время дорожных испытаний.Цель этих упражнений по настройке — определить, соответствует ли концентрация смеси требованиям двигателя при медленном открытии дроссельной заслонки. Использование инструмента Colortune или измерителя AFR подтвердит реакцию двигателя, отмеченную во время процедур, но основные процедуры представлены как «автономные», поэтому тюнер может достичь приемлемых результатов без приобретения специализированного оборудования для настройки.

Регулировка воздушного жиклера холостого хода необходима для обеспечения того, чтобы концентрация смеси во время движения была сбалансирована с потребностями двигателя.Слишком просто установить все более крупный топливный жиклер холостого хода, чтобы попытаться исправить прогрессирование обедненной смеси или переход на главный контур. Наградой за такой подход является медленный отклик дроссельной заслонки и пониженная экономия топлива. Отвод воздуха на холостом ходу работает аналогично воздушным форсункам главного контура; они вводят отмеренное количество воздуха в топливо, подаваемое в двигатель, и тем самым регулируют крепость смеси. Топливные жиклеры холостого хода влияют на насыщенность всего диапазона подачи топлива для контура прогрессии, в то время как стравливания воздуха имеют больший эффект в области средних и верхних оборотов в минуту работы контура прогрессии.Воздух холостого хода отбирает приточный воздух для эмульгирования топливной смеси по мере ее поступления в контур нагнетания; более крупные воздушные форсунки задерживают активацию эффективности схемы прогрессии и сокращают ее продолжительность для данного выбора форсунки холостого хода и наоборот. Регулируя выпуск воздуха на холостом ходу, можно настроить концентрацию смеси и продолжительность переходного контура через переход к главному контуру.

1. Процедура выбора топливного жиклера на холостом ходу:

Эта процедура обеспечивает основной выбор топливного жиклера холостого хода:

Процедура тестирования:

  • Отрегулируйте карбюраторы для настройки смеси «Lean Best» и баланса потока воздуха при 950 об / мин
  • При прогретом двигателе отсоедините отводные тяги и отрегулируйте скорость холостого хода до 1400 об / мин с помощью стопорных винтов холостого хода и поддерживая баланс потока воздуха
  • Откройте все винты смеси на 1/2 оборота (против часовой стрелки) и обратите внимание на изменение частота вращения двигателя
  • Верните винты смеси в исходное положение и продолжайте закручивать их на 1/2 оборота и обратите внимание на изменение скорости двигателя

Выбор жиклера холостого хода:

  • Если открытие винтов смеси привело к увеличению мощности двигателя Число оборотов, то жиклеры холостого хода маленькие
  • Если закрытие винтов смеси привело к увеличению оборотов двигателя, то жиклеры холостого хода большие
  • Измените жиклер холостого хода размер так, что регулировочные винты смеси открываются или закрываются на 1/2 оборота от настройки «Lean Best», что приводит к снижению оборотов двигателя

Примечание: Любое изменение размера жиклера холостого хода потребует регулировки винтов смеси холостого хода для достижения » Смесь холостого хода Lean Best

2.Процедура выбора воздушной форсунки на холостом ходу:

Эта процедура оценивает цепь изменения концентрации топливной смеси. Предполагается, что выбор топливного жиклера на холостом ходу был выполнен в соответствии с предыдущей процедурой и что регулировка Lean Best была удовлетворена при номинальном открытии винтов смеси на 1 3/4 оборота.

Начальный тест:

  • Отрегулируйте винты смеси холостого хода для работы «Lean Best», как описано в Стандартных процедурах.
  • При прогретом двигателе отсоедините отводные тяги и установите минимальную скорость холостого хода (750 об / мин) с помощью стопорных винтов холостого хода и поддерживая баланс воздушного потока
  • Отрегулируйте стопорные винты холостого хода с шагом 1/8 оборота, чтобы увеличить мощность двигателя скорость.Обратите внимание, что для каждой регулировки этих винтов требуется поддержание поперечного баланса воздушного потока карбюраторов.
  • Дайте двигателю отстояться в течение 5 секунд после завершения каждой регулировки.
  • Обратите внимание на плавность хода двигателя после регулировки. Когда все в порядке, не должно быть никаких изменений в реакции двигателя на повышенные обороты.
  • Если есть изменение плавности двигателя или отсутствие увеличения числа оборотов при регулировке винтом, отметьте реакцию и соответствующее число оборотов двигателя.
  • Продолжайте регулировку на 1/8 оборота, поддерживая баланс поперечного воздушного потока и наблюдая за плавностью двигателя, пока частота вращения двигателя не достигнет 3000 об / мин или пока не станет активна главная цепь. Вы можете увидеть, когда главный контур становится активным, наблюдая, как топливо выходит из центра вспомогательной трубки Вентури с помощью механического зеркала.

Второй тест:

  • Если в результате «Первоначального теста» двигатель спотыкался или «чихал» через воздухозаборники (что указывает на бедную смесь), откройте все винты смеси на 1/2 оборота и повторите вышеописанную процедуру, как описано в «Начальном тесте».
  • Если двигатель продолжает спотыкаться или «нюхать», уменьшите размер жиклера холостого хода на один размер (размер жиклера 110 будет заменен на размер 100) и повторите «Начальное испытание» с винтами смеси, установленными на «Lean». Лучшее »состояние.

Продолжайте процесс до тех пор, пока не будет исправлена ​​реакция бережливого производства. Конечно, если прогрессия является богатой, размер жиклера коррекции холостого хода следует увеличивать до тех пор, пока он не сгенерирует реакцию на обедненную смесь, где он затем будет заменен предыдущим, меньшим размером жиклера коррекции холостого хода.

Обратите внимание, что изменение жиклера для отбора воздуха на холостом ходу требует переоценки выбора жиклера холостого хода и настройки винта для смеси холостого хода «Lean Best».

Примечания:

  • Во время этих испытаний можно смоделировать более реалистичную нагрузку двигателя, регулируя только один ряд цилиндров и позволяя другому блоку действовать как тормозное усилие. Таким образом, промывка на холостом ходу будет более точно имитировать нагрузку на двигатель при движении по дороге.
  • Если у вас возникли трудности с отделением топливной составляющей контура прогрессии от основного контура, то можно отключить подачу основного контура, удалив форсунки главного воздушного корректора с верхних частей колодцев эмульсионных трубок или закрыв или заблокировав верхние части вспомогательные Вентури.Использование измерителя AFR будет показывать концентрацию смеси в зависимости от увеличения оборотов двигателя, так что при повторном включении главной цепи можно будет узнать, какой вклад обеспечивает главная цепь.
  • Бедную смесь легко определить, но богатая смесь менее очевидна. Если двигатель чихает или колеблется при открытии дроссельной заслонки, значит, он бедный, но богатая смесь и оптимизированная смесь будут реагировать аналогичным образом. Это хорошая процедура для получения обедненной смеси, а затем ее обогащения ровно настолько, чтобы устранить симптомы постной смеси.

После того, как выбранные форсунки холостого хода и форсунки холостого воздуха были определены с помощью описанных выше процедур, пора пройти дорожное испытание. Жиклер холостого хода, скорее всего, будет слишком маленьким, поэтому необходимо увеличить его размер, и лучший способ определить это — подняться на 4-й передаче и медленно разогнаться с холостых оборотов до 3000 об / мин. Нерешительность при нажатии на педаль газа, срыгивание через воздухозаборники или выхлоп из выхлопной трубы указывает на бедную смесь. Увеличивайте размер жиклера холостого хода с шагом «5» до достижения хорошей управляемости.Если испытание проезжей части проводилось с использованием одного ряда цилиндров в качестве сопротивления для других, то выбор жиклера холостого хода должен быть достаточно близким.

На этом завершается раздел «Настройка на стоянке». Для настройки производительности главной цепи и цепи ускорения требуется, чтобы двигатель работал при нагрузках и скоростях двигателя, превышающих те, которые могут быть выполнены на стоянке. Динометры шасси и двигателя предоставляют большую часть данных, необходимых для выбора компонентов главной цепи, но цепь ускорения должна быть настроена в соответствии с требованиями к характеристикам на дороге.Кроме того, компоненты главной цепи, разработанные во время динамометрических испытаний, обычно нуждаются в небольших настройках, чтобы адаптировать двигатель к реальным условиям вождения.

Тюнинг на открытых дорогах

Испытания на открытых дорогах, как бы это ни звучало, вы будете использовать дороги общего пользования для выполнения рабочих пробегов, чтобы оптимизировать время и подачу струи для вашего двигателя; ваш двигатель отличается от всех других, даже если он построен с аналогичными характеристиками другого двигателя. Даже если ваш двигатель, выхлоп и зажигание в точности соответствуют спецификациям OEM, вы получите выгоду, выполнив оптимизацию струи, поскольку настройки OEM были разработаны так, чтобы быть «наилучшим образом подходящими» для всех возможных конечных пользователей и, следовательно, являются компромиссным параметром с производительностью. доработки ждут своей реализации.Поскольку эти испытания проводятся на общедоступных дорогах, НАСТОЯТЕЛЬНО рекомендуется выбрать диапазон скоростей, позволяющий проводить испытания без превышения установленных ограничений скорости и без нарушения транспортного потока, что могло бы привлечь внимание к вашей деятельности. Ровные (а еще лучше, слегка наклонные для длительного пробега) дороги с открытыми участками и хорошей видимостью — хорошие ставки, чем меньше трафика, тем лучше. Кроме того, не помешало бы разместить на заднем стекле большую табличку с надписью «ИСПЫТАНИЯ НА ВЫБРОСЫ», чтобы придать правдоподобную ценность вашим усилиям; в противном случае вам следует иметь записную книжку с открытыми данными тестирования и доступными для просмотра, если доказательства ваших усилий заслуживают доверия.

Тестирование контура прогрессии

Для проверки работы контура прогрессии (выбор топливного жиклера холостого хода и отбора воздуха на холостом ходу) проехать на более высокой передаче (четвертая передача) по слегка наклонной дороге и очень медленно разгоняться с 1200 до 3200 об / мин; требуется около 60 секунд, чтобы сделать этот разгонный пробег. (Предполагается, что винты смеси холостого хода были отрегулированы для обеспечения «наилучшей обедненной смеси» перед проведением дорожных испытаний. Также предполагается, что топливные жиклеры холостого хода и воздуховыпускные жиклеры холостого хода были выбраны в соответствии с параметром «Настройка во время стоянки» «процедура; эти подготовительные шаги должны помочь минимизировать величину переменных, которые могут быть изменены.)

Этот разгонный пробег используется для проверки колебаний обедненной смеси при малых открытиях дроссельной заслонки; поэтому это тест на низкой скорости , в котором вы пытаетесь отрегулировать размер жиклера холостого хода, не активируя главную цепь или не нарушая результатов быстрым открытием дроссельной заслонки, которое активирует ускорительный насос. Примечание. Насосы ускорителя легко отключить, сняв приводную тягу; это, очевидно, повлияет на способность двигателя ускоряться. Если холостые форсунки были выбраны с помощью предыдущего метода «Настройка на стоянке», то они, скорее всего, немного скудны для использования в дороге, что является хорошей отправной точкой для этой процедуры.Слегка откройте дроссельную заслонку после установления постоянной скорости, а затем отметьте обороты и реакцию дроссельной заслонки. Выполните этот тест для шагов 200 об / мин и запишите реакцию дроссельной заслонки для каждого. (Предварительно составьте таблицу данных с указанием каждого числа оборотов в минуту, указанного в столбце с тремя столбцами рядом с ним; каждый столбец представляет «Lean», «Good» и Rich »для легкой проверки во время пробного запуска.) Если двигатель реагирует незначительно или нет увеличения скорости из-за большего открытия дроссельной заслонки, или «нюхает через воздухозаборники», тогда эта контрольная точка является бедным результатом.Храните подробные записи о каждой конфигурации теста и сравнивайте ответы на внесенные изменения, чтобы указать четкий путь для корректирующих действий. Каждая смена жиклера (топливный жиклер холостого хода или стравливание воздуха) требует восстановления смеси холостого хода и регулировки воздушного потока для достижения наилучшей производительности на холостом ходу, прежде чем можно будет проводить новое испытание. Если у вас есть регулируемые отводы воздуха на холостом ходу, вы можете использовать воздушные экраны над воздушными рожками, чтобы получить доступ к выпускам воздуха на холостом ходу, не беспокоясь о снятии узла воздушного фильтра.Нейлоновые чулки — хороший выбор для этой цели, и их поиск также может быть приятным занятием.

Обратите внимание на реакцию двигателя при достижении 2500–2800 об / мин, когда схема прогрессии теряет эффективность, но не до такой степени, что главная цепь слишком сильно срабатывает. (Если вы откроете дроссельную заслонку слишком быстро, вы активируете главную цепь или ускорительный насос и прервете выполнение теста.)

Состояние обедненной смеси демонстрируется реакциями двигателя:

  • Заикание / спотыкание / раскачивание
  • Чихание / срыгивание воздухозаборники
  • Пульсация при движении на частичном открытии дроссельной заслонки
  • Возгорание через глушитель выхлопа
  • Сопротивление ускорению при открытии дроссельных заслонок

Состояние богатой смеси демонстрируется реакциями двигателя:

  • Звук двигателя глухой
  • Вялый отклик дроссельной заслонки
  • Снижается частота вращения двигателя при постоянном положении дроссельной заслонки
  • Черный дым из выхлопных газов

Коррекция обедненной смеси состоит в установке большего жиклера холостого хода или уменьшении размера стравливания воздуха на холостом ходу, в то время как реакция на насыщенную смесь противоположна.Имейте в виду, что двигатель пропускает в 12–14 раз больше воздуха, чем топливо, поэтому изменение размера жиклера для отвода воздуха происходит более быстрыми шагами, чем изменение размера топливного жиклера при аналогичном изменении AFR. Изменение ЛЮБОГО из жиклеров потребует перенастройки винта смеси холостого хода и баланса воздушного потока на холостом ходу, чтобы восстановить режим холостого хода «Lean Best».

Примечание. Во время испытания на малой скорости легко изолировать контур холостого хода: снимите основные форсунки для коррекции воздуха из колодцев эмульсионных трубок или закройте верхние части вспомогательных трубок Вентури.Обороты, при которых цепь прогрессии начинает ослабевать, — это точка, при которой главная цепь должна начать добавлять топливо, чтобы избежать перехода на обедненную смесь. Зная, где цепь холостого хода начинает выходить наружу, вы можете затем переустановить эмульсионные трубки или разблокировать вспомогательные трубки Вентури, а затем контролировать концентрацию смеси во время начальной переходной операции. Если главная цепь отключена таким образом, и транспортное средство движется по открытым дорогам, водитель должен ОЧЕНЬ осознавать, что транспортное средство отключено от работы главной цепи и, таким образом, его производительность ограничена.

Настройка главной цепи

it

Настройка главной цепи вашего Weber подразумевает тестирование и настройку различных компонентов главной цепи для обеспечения оптимального профиля подачи топлива для всех рабочих условий. К сожалению, карбюраторы не имеют почти бесконечных параметров настройки управляемых компьютером систем подачи топлива и зажигания, поэтому результаты будут максимально достижимыми, и водителю остается настраивать свой стиль вождения в соответствии с тем, что могут обеспечить карбюраторы.

Испытания главной цепи во время эксплуатации на дорогах проводятся с учетом требований безопасности и законности превышения установленных скоростей.

Перед началом испытаний рекомендуется ознакомиться с характеристиками вашего двигателя в отношении струи, указанной в листе данных «Happy Jetting», приведенном ниже:

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *