Такт двигателя внутреннего сгорания: Такт двигателя внутреннего сгорания — 5 букв

Содержание

Как работает двигатель внутреннего сгорания, описание процессов

Цикл работы двигателя замкнутый. Возможна организация работы ДВС с кривошипно-шатунным механизмом по двух и четырехтактному циклу. Но подавляющее большинство автомобильных двигателей внутреннего сгорания работает по четырехтактному циклу. Рассмотрим, каким образом происходит эта работа.

Но для начала немного терминологии

Коленчатый вал вращается. Соединенный с ним поршень совершает в цилиндре движение вверх — вниз. Крайние положения поршня в цилиндре называют мёртвыми точками. Это верхняя мёртвая точка (сокращенно ВМТ) и нижняя мёртвая точка (НМТ).

Перемещение поршня от одного крайнего положения до другого называется тактом. Следовательно у четырехтактного двигателя цикл работы выполняется за четыре движения поршня вверх-вниз, что соответствует двум оборотам коленчатого вала.

Если умножить площадь торца (днища) поршня на расстояние между ВМТ и НМТ получим, так называемый, рабочий объем цилиндра, обозначаемый Vh.

Если умножить рабочий объем цилиндра на количество цилиндров в двигателе получается тот самый рабочий объем двигателя. Эта цифра в литрах всегда фигурирует среди технических параметров автомобиля. Многие автопроизводители гордо выносят эту цифру на шильдик, располагая его на задней части автомобиля (часто цифру привирают).

Цифра указывающая на рабочий объем двигателя

Объем над поршнем, когда он замер в ВМТ, называют объемом камеры сгорания (Vс). Именно в этом объеме начинается горение смеси паров топлива и воздуха. Сумма объема камеры сгорания и рабочего объема цилиндра называется полным объемом цилиндра :Va = Vh + Vс.

Следующий важный параметр двигателя, это геометрическая степень сжатия. Обозначается ε. Она показывает, во сколько раз изменяется объем над поршнем, когда он перемещается от НМТ к ВМТ, ε = Va/Vc. Чем больше ε, тем выше температура и давление в смеси газов над поршнем при приближении его к ВМТ. Повышение степени сжатия делает двигатель экономичнее и увеличивает его мощность.

Но величина ε зависит от топлива, на которое рассчитан двигатель. Для двигателя, работающего на бензине ε = 6 – 10, для газовых ε = 7 – 9, для дизельных ε = 15 – 20. Отсюда видно, почему бензиновый двигатель легко переоборудовать для работы на газе. У дизелей такое высокое значение ε необходимо для того, чтобы обеспечить самовоспламенение топлива.

Ну а теперь непосредственно о рабочем цикле

Первый такт цикла носит название «впуск». Поршень движется от ВМТ к НМТ. Впускной клапан открыт, и через него в цилиндр поступают пары бензина смешанные с воздухом, так называемая горючая смесь (у дизельного двигателя – чистый воздух).

Второй такт – сжатие. Клапаны закрыты. Поршень движется от НМТ к ВМТ, рабочая смесь (горючая смесь и остатки продуктов горения от предыдущего цикла) сжимается. Когда поршень приближается в ВМТ, у бензиновых двигателей между контактами свечи зажигания проскакивает электрическая искра для поджигания смеси.

Почему искра подается не в ВМТ, а раньше?

Дело в том, что перед началом горения должны пройти реакции, подготавливающие смесь к горению. Интенсивное горение смеси должно начаться только когда поршень достигнет ВМТ. Время на подготовительные реакции всегда одинаковое, а скорость перемещения поршня изменяется при изменении оборотов коленчатого вала. Поэтому приходиться изменять момент подачи искры, изменять, так называемый «угол опережения зажигания».

Меняется угол опережения зажигания

У дизельных двигателей при приближении поршня к ВМТ через специальную форсунку в надпоршневое пространство под высоким давлением впрыскивается топливо. Пока поршень дойдет до ВМТ, топливо должно испариться, перемешаться с воздухом, приготовиться к горению и начать гореть, когда поршень окажется в ВМТ.

Время на подготовку также постоянное, поэтому на высоких оборотах топливо впрыскивается раньше. Изменяется так называемый «угол опережения впрыска».

Третий такт – рабочий ход. Клапаны закрыты. Смесь интенсивно горит, её давление, и температура резко повышаются. Под действием давления поршень движется от ВМТ к НМТ и подталкивает коленчатый вал, подпитывая его энергией.

Четвертый такт – выпуск. Выпускной клапан открыт. Поршень движется от НМТ к ВМТ и отработанные газы выдавливаются из цилиндра.

Цикл закончился и начинается следующий. Следует заметить, что подпитка энергией коленчатого вала происходит только во время такта рабочего хода. Во время всех остальных тактов поршень перемещается (так называемые насосные ходы) за счет энергии, накопленной коленчатым валом от предыдущих рабочих циклов.

Как работает двигатель внутреннего сгорания — видео:

То есть в течение двух оборотов коленчатого вала подпитка его энергией происходит только пол-оборота. Это одна из причин невысокого коэффициента полезного действия четырехтактных двигателей.

Загрузка…

Двигатель внутреннего сгорания — Технарь

Двигатель внутреннего сгорания — распространенней вид теплового двигателя, в нем топливо сгорает прямо в цилиндре, внутри самого двигателя. Отсюда и происходит название этого двигателя.

Двигатели внутреннего сгорания работают на жидком топливе (бензин, керосин, нефть) или на горючем газе.

Такой тип теплового Двигателя обычно устанавливают на большинстве автомобилей. На рисунке 204 показан разрез простейшего двигателя внутреннего сгорания. Двигатель состоит из цилиндра, в котором перемещается поршень 3, соединенный при помощи шатуна 4 с коленчатым валом 5. На валу укреплен тяжелый маховик 6, предназначенный для уменьшения неравномерности вращения вала.

В верхней части цилиндра имеются два клапана 1 и 2, которые при работе, двигателя автоматически открываются и закрываются в нужные моменты. Через клапан 1 в цилиндр поступает горючая смесь, которая воспламеняется с помощью свечи 7, а через клапан 2 выпускаются отработавшие газы.

В цилиндре такого двигателя периодически происходит сгорание горючей смеси, состоящей из паров бензина и воздуха. Температура газообразных продуктов сгорания достигает 1600-1800°С. Давление на поршень при этом резко возрастает. Расширяясь, газы толкают поршень, а вместе с ним и коленчатый вал, совершая механическую работу. При этом они охлаждаются, так как часть их внутренней энергии превращается в механическую энергию.

Рассмотрим более подробно, схему работы такого двигателя. Крайние положения поршня в цилиндре называют мертвыми точками. Расстояние, проходимое поршнем от одной мертвой точки до другой, называют ходом поршня.

Один рабочий цикл в двигателе происходит за четыре хода поршня, или, как говорят, за четыре такта. Поэтому такие двигатели называют четырехтактными. Один ход поршня, или один такт двигателя, совершается за пол-оборота коленчатого вала.

При повороте вала двигателя в начале первого такта поршень движется вниз (рис. 205, а). Объем над поршнем увеличивается. Вследствие этого в цилиндре создается разрежение. В это время открывается клапан 1 ив цилиндр входит горючая смесь. К концу первого такта цилиндр заполняется горючей смесью, а клапан 1 закрывается.

При дальнейшем повороте вала поршень движется вверх (второй такт) и сжимает горючую смесь (рис. 205, б). В конце второго такта, когда поршень дойдет до крайнего верхнего положения, сжатая горючая смесь воспламеняется (от электрической искры) и быстро сгорает.

Образующиеся при сгорании газы давят на поршень и толкают его вниз (рис. 205, в). Под действием расширяющихся горячих газов (третий такт) двигатель совершает работу, поэтому этот такт называют рабочим ходом. Движение поршня передается шатуну, а через него коленчатому валу с маховиком. Получив сильный толчок, маховик затем продолжает вращаться по инерции и перемещает скрепленный с ним поршень при последующих тактах.

В конце третьего такта открывается клапан 2, и через него продукты сгорания выходят из цилиндра в, атмосферу. Выпуск продуктов сгорания продолжается и в течение четвертого такта, когда поршень движется вверх (рис. 205, г). В конце четвертого такта клапан 2 закрывается.

Затем циклы работы двигателя повторяются.

Итак, цикл двигателя состоит из следующих четырех процессов (тактов): впуска, сжатия, рабочего хода, выпуска. В автомобильных двигателях пуск двигателя обычно осуществляется вспомогательным электрическим двигателем — стартером.

В автомобилях используют чаще всего четырехцилиндровые двигатели внутреннего сгорания, На рисунке 206 изображен разрез такого двигателя. Работа цилиндров согласуется так, что в каждом из них поочередно происходит рабочий ход, и коленчатый вал все время получает энергию от одного из поршней.

Имеются и восьмицилиндровые автомобильные двигатели. Многоцилиндровые двигатели в лучшей степени обеспечивают равномерность вращения вала и имеют большую мощность.

Необходимой частью всякого двигателя внутреннего сгорания является система охлаждения, так как возможны и преждевременные вспышки горючей смеси и даже ее взрыв. Охлаждение цилиндров производится проточной водой или воздухом, поэтому двигатели внутреннего сгорания бывают с жидкостным или воздушным охлаждением.

Применение двигателей внутреннего сгорания чрезвычайно разнообразно. Они приводят в движение самолеты, теплоходы, автомобили, тракторы, тепловозы. Мощные двигатели внутреннего сгорания устанавливают на речных и морских судах.

Вопросы.

1. Какой двигатель называют двигателем внутреннего сгорания? 2. Из каких основных частей состоит простейший двигатель внутреннего сгорания? 3. Какие физические явления происходят при сгорании горючей смеси в двигателе внутреннего сгорания? 4. За сколько ходов, или тактов, происходит один рабочий цикл двигателя? Сколько оборотов делает при этом вал двигателя? 5. Какие процессы происходят в двигателе в течение каждого из четырех тактов? Как называют эти такты? 6. Какую роль играет маховик в двигателе внутреннего сгорания? 7. Какие двигатели внутреннего сгорания чаще всего применяют в автомобилях? 8. Где ещё, кроме автомобилей, применяют двигатели внутреннего сгорания?

Бензиновый двигатель внутреннего сгорания: принцип работы

В основе принципа работы любого двигателя внутреннего сгорания лежит воспламенение небольшого количества топлива, обязательно высокоэнергетического, в небольшом замкнутом пространстве. При этом выделяется большое количество энергии, в виде теплового расширения нагретых газов. Так как давление под поршнем равно нормальному атмосферному, а компрессия в цилиндре намного превышает его, то под действием разницы давлений поршень совершает движение.

Бензиновый двигатель внутреннего сгорания: принцип работы

Для того чтобы двигатель внутреннего сгорания постоянно производил полезную механическую энергию, камеру сгорания цилиндра необходимо циклично заполнять новыми дозами воздушно-топливной смеси. В результате, поршень приводит в действие коленчатый вал, который и придает движение колесам автомобиля.

Двигатели почти всех современных автомобилей являются четырёхтактными по своему циклу работы, и энергия, полученная от сжигания бензина, почти полностью преобразовывается в полезную. Цикл Отто, так называется подобный принцип, по имени Николауса Отто, изобретателя двигателя внутреннего сгорания (1867 год).

Схема работы бензинового двигателя внутреннего сгорания:

— такт впуска;

— такт сжатия;

— рабочий такт;

— такт выпуска.

Главным элементом двигателя внутреннего сгорания является поршень, который связан шатуном с коленчатым валом. Так называемый, кривошипно-шатунный механизм, преобразующий прямолинейное возвратно-поступательное движение поршня в радиальное движение коленвала.

Ниже более подробно расписан рабочий цикл бензинового двигателя:

1. Такт впуска

Поршень опускается из верхней крайней точки в нижнюю крайнюю точку, при этом кулачки распределительного вала открывают впускной клапан, и через него воздушно-топливная смесь поступает из карбюратора в камеру сгорания цилиндра. Когда поршень доходит до нижней мертвой точки, впускной клапан закрывается.

2. Такт сжатия

Поршень возвращается из нижней мертвой точки в верхнюю, сжимая топливную смесь. При этом существенно увеличивается температура смеси. Когда поршень доходит до верхней крайней точки, свеча зажигания воспламеняет сжатую рабочую смесь.

3. Рабочий такт

Воспламененная горючая смесь сгорает при высокой температуре, образовавшиеся газы моментально расширяются и толкают поршень вниз. Впускной и выпускной клапаны, во время этого такта, закрыты.

4. Такт выпуска

Коленвал продолжает вращаться по инерции, поршень идет в верхнюю мертвую точку. В то же время открывается клапан выпуска, и поршень вытесняет отработанные газы в выхлопную трубу. Когда он достигает верхней крайней точки, выпуск закрывается.

Следующий такт необязательно должен начинаться после окончания предыдущего. Такая ситуация, когда одновременно открыты оба клапана (впуска и выпуска), называется перекрытием клапанов. Это необходимо для эффективного наполнения цилиндра воздушно-топливным соединением, а также для более результативной очистки цилиндров от выхлопных газов. После этого рабочий цикл повторяется.

 

Отличительной особенностью двигателя внутреннего сгорания является то, что поршень двигается прямолинейно, а движение, осуществляющееся при сгорании топливной смеси, — вращательное. Линейный ход поршней преобразовывается в поворотное движение, необходимое для работы колес автомобиля, при помощи коленчатого вала.

Ниже рассмотрены основные элементы двигателя, которые принимают участие в преобразовании тепловой энергии в механическую.

1. Свеча зажигания

Искровая свеча вырабатывает электрическую искру, которая воспламеняет воздушно-топливную смесь. Для равномерной и бесперебойной работы поршня искра должна появляться в заданный момент времени.

2. Клапаны

Выпускные и впускные клапаны закрываются и открываются в заданный момент, впуская воздух в цилиндр и выпуская отработанные газы. Во время процесса горения топливной смеси оба клапана закрыты. Клапан выпуска открывается до достижения поршня крайней нижней точки и остается открытым до прохождения поршня к верхней крайней точке. К этому моменту впускной уже будет открыт.

3. Поршень

Образующиеся во время сгорания топливной смеси горячие газы выдавливают поршень, передавая энергию через шатун и палец коленвалу. Для сохранения компрессии в цилиндрах на поршень устанавливаются уплотняющие кольца, изготовленные из высокопрочного чугуна. Для повышения износостойкости поршневые кольца покрываются тонким слоем пористого хрома. К основным характеристикам колец относятся следующие показатели: высота, наружный диаметр, радиальная толщина, форма разреза в стыке и упругость. Внешний диаметр поршневого кольца должен соответствовать внутреннему диаметру цилиндра. В настоящее время применяются узкие кольца (высотой — 1,5-2 мм) и широкие (высотой — 2,5-3 мм). Первые более надежны при частом движении поршня.

Радиальная толщина увеличивается с возрастанием диаметра цилиндра. Износ поршневых колец происходит, в среднем, через каждые 3 тысячи километров пробега.

4. Шатун

Шатун соединяет коленчатый вал с поршнем. Вращение шатуна является двухсторонним, это нужно для того, чтобы его угол мог изменяться в зависимости от местоположения поршня, обеспечивая движение коленвала. Обычно шатуны бывают стальными, иногда — алюминиевыми.

5. Коленчатый вал

Поворот коленчатого вала осуществляется вследствие вертикального хода поршня. Коленвал приводит в движение колеса автомобиля.

 

Современные двигатели внутреннего сгорания делятся на два типа: карбюраторные и инжекторные.

В карбюраторном двигателе процесс приготовления воздушно-топливной смеси происходит в специальном устройстве — карбюраторе. В нем, используя аэродинамическую силу, горючее смешивается с воздушным потоком, засасываемым двигателем.

В инжекторном типе двигателя топливо впрыскивается под давлением в поток воздуха при помощи специальных форсунок. Дозировка горючего происходит при помощи электронного блока управления, который открывает форсунку электрическими импульсами. В двигателях устаревшей конструкции, этот процесс происходит с использованием специфической механической системы. Последний тип почти полностью вытеснил устаревшие карбюраторные силовые агрегаты. Это произошло из-за современных экологических стандартов, которые устанавливают высокие нормы чистоты выхлопных газов. Что повлекло за собой внедрение новых эффективных нейтрализаторов выхлопа (каталитических конвертеров или катализаторов). Такие системы нейтрализации требуют постоянного состава отработанных газов, который могут обеспечить только инжекторные системы впрыска топлива, контролируемые электронным блоком управления. Нормальная работа катализатора обеспечивается исключительно при соблюдении стабильного состава выхлопных газов. Необходимостью этого является то, что он требует содержания определенных пропорций кислорода в отработанных газах. Для соблюдения подобных условий в таких системах катализации обязательно устанавливается кислородный датчик (лямбда-зонд), который анализирует процент содержания кислорода в выхлопных газах и контролирует точность пропорций оксида азота, несгоревших остатков топлива и углеводородов.

 

Основными вспомогательными системами являются:

Система зажигания. Отвечает за поджигание топливной смеси в нужный момент. Она бывает контактной, бесконтактной и микропроцессорной. Система контактного типа состоит из распределителя-прерывателя, катушки, выключателя зажигания и свечей. Бесконтактная система аналогична предыдущей, только вместо прерывателя стоит индукционный датчик. Управление системой зажигания микропроцессорного типа осуществляется специальным компьютерным блоком, в ее состав входит датчик положения коленвала, коммутатор, блок управления зажиганием, катушки, датчик температуры двигателя и свечи. В двигателях с инжекторной системой к ней добавляется еще датчик положения дроссельной заслонки и термоанемометрический датчик массового расхода воздуха.

Система запуска двигателя. Состоит из специального электромотора (стартера), подключенного к аккумулятору, или механического стартера, использующего физические усилия человека. Применение этой системы объясняется тем, что для запуска рабочего цикла двигателя необходимо, чтобы коленчатый вал произвел хотя бы один оборот.

Система выпуска выхлопных газов. Обеспечивает своевременное удаление продуктов горения топливной смеси из цилиндров. Включает в себя выпускной коллектор, катализатор и глушитель.

Система приготовления воздушно-топливной смеси. Предназначена для приготовления и впрыска смеси горючего с воздухом, в камеру сгорания цилиндров двигателя. Может быть карбюраторной или инжекторной.

Система охлаждения. Современная система состоит из вентилятора, радиатора, термостата, расширительного бачка, жидкостного насоса, датчика температуры, рубашки и головки охлаждения блока цилиндров. Предназначена для создания и поддержания приемлемого температурного режима работы ДВС. Обеспечивает отвод тепла от цилиндров клапанной системы и поршневой группы. Может быть воздушной, жидкостной или гибридной.

Система смазки. Состоит из масляного фильтра, маслонасоса с маслоприемником, каналов в блоке и головках цилиндров для впрыска масла под высоким давлением, поддона картера. Предназначена для подачи автомобильного масла с целью уменьшения трения и охлаждения, к взаимодействующим деталям двигателя. Также циркуляция масла смывает нагар и продукты механического износа.

Источник: Авто Релиз.ру.

Шеститактный двигатель внутреннего сгорания

Изобретение относится к области машиностроения, в частности к области автомобилестроения, и может использоваться в других отраслях промышленности, где применяются двигатели внутреннего сгорания (ДВС) и предназначено существенно повысить их эффективность.

Поиск аналогов технических решений выполнен по источникам патентной и технической информации России (СССР), США, Германии, Франции, Великобритании, Японии, Европейского патентного ведомства за период с 1929 по 2014 год. Выявлены оригинальные технические решения по совершенствованию ДВС.

Наиболее близким техническим решением является четырехтактный двигатель внутреннего сгорания по заявке №2009123674/06, опубл. 27.12.2010, бюл. №36. Данный ДВС имеет спаренные цилиндры — основной и дополнительный, причем выходная труба основного цилиндра является одновременно входной трубой дополнительного цилиндра. Рабочий процесс этого ДВС организован таким образом: отработавшие продукты горения основного цилиндра не выпускаются в атмосферу, а поступают в дополнительный цилиндр и используются в качестве составной части рабочего тела вместе с парами воды, впрыскиваемой в дополнительный цилиндр. Впрыск воды в дополнительный цилиндр производят в конце такта сжатия в дополнительном цилиндре. В последнем реализуется четырехтактный цикл, как и в основном цилиндре за исключением того, что в основном цилиндре рабочий цикл осуществляется за счет сгорания бензино-воздушной смеси и образовавшегося при этом рабочего тела в виде продуктов горения, а в дополнительном — за счет рабочего тела, полученного как сумма продуктов горения и паров воды, впрыскиваемой в дополнительный цилиндр и испарившейся за счет высокого теплосодержания продуктов горения, поступивших из основного цилиндра. Дозирование массы впрыскиваемой воды осуществляется из расчета создания в дополнительном цилиндре давления, равного давлению в основном цилиндре при совершении в нем такта рабочего хода.

Таким образом, в известном ДВС, который является прототипом заявляемого, рабочий процесс организован с использованием дополнительного цилиндра. Несмотря на его положительные качества, в том числе: уменьшение удельного расхода горючего практически в два раза по сравнению с лучшими современными образцами ДВС; снижение токсичности продуктов горения; снижение тепловой нагрузки на двигатель; снижение шумности работы; повышение термодинамического КПД двигателя, он имеет недостаток, заключающийся в усложненной по сравнению с существующими двигателями конструкции.

Основной задачей заявляемого изобретения является упрощение конструкции ДВС при сохранении всех остальных качеств прототипа.

Данная задача решается изменением организации рабочего процесса в двигателе и конструктивными изменениями двигателя. Организация рабочего процесса состоит в том, что после завершения такта рабочего хода продукты горения не выпускаются в атмосферу, а претерпевают дополнительное сжатие и в зоне достижения поршнем верхней мертвой точки в камеру сгорания впрыскивают струю воды, которая за счет еще очень высокого теплосодержания продуктов горения испаряется, создавая дополнительное рабочее тело в виде парообразной воды. Суммарное рабочее тело (продукты горения и пары воды) совершают дополнительный рабочий ход и только потом последний такт — выпуск охлажденных продуктов сгорания с парами воды в атмосферу.

Рабочий процесс реализуется в шеститактном двигателе внутреннего сгорания, включающем, по меньшей мере, один цилиндр с поршнем и шатуном, скрепленным с коленчатым валом, головку блока цилиндров с газораспределительным механизмом и камерами сгорания, при этом каждая камера сгорания выполнена цилиндроконической и снабжена, по меньшей мере, одной свечой зажигания и, по меньшей мере, одной форсункой для впрыска в камеру сгорания воды, двигатель дополнительно снабжен емкостью с водой и импульсным насосом высокого давления для подачи воды через форсунку в продукты сгорания, сжатые после рабочего хода от горения бензовоздушной смеси для совершения дополнительного рабочего хода, причем свеча зажигания вмонтирована в цилиндрической части камеры сгорания, а форсунка вмонтирована в конической части камеры.

Таким образом, заявляемое техническое решение соответствует критерию изобретения «новизна».

Сущность изобретения иллюстрируется чертежом.

На фиг. 1 показана схема головки блока цилиндров (ГБЦ).

Позицией 1 обозначен корпус цилиндра, позицией 2 — камера сгорания, позицией 3 — шаровой клапан, позицией 4 — входная труба, позицией 5 — выходная труба, позицией 6 — форсунка, позицией 7 — свеча зажигания, позицией 8 — поршень, позицией 9 — выемка в шаровом клапане.

Последовательность работы элементов двигателя показана на фиг. 2.

При впуске бензино-воздушной смеси полость входной трубы через выемку в шаровом клапане соединяется с полостью цилиндра, который заполняется горючей смесью при движении поршня от верхней мертвой точки (ВМТ) к нижней мертвой точке (НМТ), при этом выпускная труба закрыта. При обратном движении поршня (от НМТ к ВМТ) происходит такт сжатия (Сж.-1).

В момент достижения поршнем зоны ВМТ происходит зажигание горючей смеси и поршень совершает такт рабочего хода (Рх. -1) за счет горения горючей смеси. После завершения Рх.-1 поршень поднимается к ВМТ и происходит второй такт сжатия (Сж.-2). В момент достижения поршнем зоны ВМТ (завершение такта Сж.-2) происходит впрыск воды в камеру сгорания, вода испаряется, создается смесь рабочего тела (продукты горения и водяной пар), который создает второй рабочий ход поршня (Рх.-2). При этом выпускная и впускная трубы закрыты. При обратном движении поршня (к ВМТ) выпускная труба открывается и продукты горения вместе с парами воды выпускаются в атмосферу — это шестой такт рабочего цикла двигателя по данному изобретению.

Термодинамическое обоснование работоспособности такого двигателя подобно обоснованию работоспособности ДВС прототипа [9].

Температура выхлопных газов по предлагаемому техническому решению существенно ниже, чем у существующих четырехтактных двигателей, а термодинамический КПД существенно выше и может превышать 70%. Снижение температуры выхлопных газов определяется расходом теплоты продуктов горения на парообразование впрыскиваемой воды для совершения второго полноценного рабочего хода (Рх. -2). Токсичность выхлопных газов снижается за счет разбавления их парами воды примерно в два раза. Шумность работы двигателя снижается за счет существенного снижения скорости истечения выхлопных газов по сравнению с современными четырехтактными ДВС. Тепловые нагрузки на двигатель снижаются также за счет расхода тепла на парообразование воды.

Сравнение заявляемого с другими техническими решениями не выявило в них признаки, отличающие заявляемое техническое решение от прототипа, что позволяет сделать вывод о соответствии критерию «изобретательский уровень»

На фиг. 3 приведена P, V — диаграмма шеститактного цикла ДВС по предлагаемому изобретению. Исходное состояние соответствует точке 0 на диаграмме. В этой точке P = 1 ат; V = Vкс (где Vкс — объем камеры сгорания). В такте «впуск» горючая смесь заполняет объем всего цилиндра Vц. На диаграмме это т. 1. Переход из состояния 0 в состояние 1 процесс изобарный (P = const). В т. 1 давление P = 1 ат; V = Vц (объем цилиндра включает объем рабочего хода цилиндра и объем камеры сгорания, т. е. Vц = Vр.х. + Vкс). Следующий такт «сжатие» (Сж-1) происходит в изотермических условиях (T = const) и система переходит в состояние, соответствующее т. 2 диаграммы (поршень достигает верхней мертвой точки). В этой точке происходит зажигание горючей смеси, давление возрастает при постоянном объеме (V = const-изохорный процесс) и система приобретает состояние, соответствующее точке 3 на диаграмме. Далее совершается такт «рабочий ход» за счет продуктов сгорания горючей смеси (Рх-1). При этом в цилиндре падает давление до некоторого остаточного, а объем, занимаемый продуктами горения, увеличивается до значения Vц. Система приобретает состояние, соответствующее точке 4 на диаграмме.

В современных четырехтактных двигателях точка 4 на диаграмме соответствует выпуску продуктов горения в атмосферу. Но согласно сформулированному нами способу организации рабочего процесса ДВС продукты горения после завершения рабочего хода (Рх.-1) не выбрасываются в атмосферу, а претерпевают дополнительное сжатие. Этот процесс описывается кривой 4-5 диаграммы (Сж.2). В т. 5 продукты горения сжимаются до объема камеры сгорания (V = Vкс) и в этот момент происходит впрыск воды, вода испаряется и за счет смешанного рабочего тела (продукты сгорания + пары воды) давление в камере сгорания повышается до уровня, необходимого для совершения полноценного рабочего хода, т.е. система принимает состояние, соответствующее т. 6 диаграммы, эквивалентное состоянию 4. Далее совершается такт второго рабочего хода (Рх.-2). По завершении Рх-2 система приходит в состояние, соответствующее т. 7 диаграммы. Здесь происходит истечение продуктов горения и паров воды, система приходит в исходное состояние.

Примечание

В описании изобретения использованы примеры ДВС с нетрадиционным газораспределительным механизмом (ДВС по патенту РФ №2333368 от 10.09.2008, в котором вместо тарельчатых клапанов использованы шаровые клапана). Однако предлагаемая организация рабочего процесса ДВС в равной мере применима для любого газораспределительного механизма, в том числе традиционного, используемого в современных ДВС.

Источники информации

1. Патент США №1719116 МПК F01L 7/10 от 2.07.1929.

2. Патент США №4513568 от 30.04.1985.

3. Патент США №4809511 от 7.03.1989.

4. Патент РФ №2333368 от 10.09.2008.

5. Двигатели внутреннего сгорания. В 3 кн. Кн. 1. Теория рабочих процессов: Учебник для вузов/под ред. В.Н. Луканина, — 2-е изд. — М.: Высшая школа, 2005.

6. Большая российская энциклопедия. Т. 8, М.: 2008.

7. Техническая термодинамика. Под ред. В.И. Крутова. М.: Высшая школа, 1991.

8. Блинов М.В., Блинов В.И. Четырехтактный двигатель внутреннего сгорания. Заявка №2009123674/06, публ. 27.12.2010, бюл. №36.

9. Блинов В.И., Блинов М.В. Организация технической системы с использованием энергии отработавших газов. Сб. научных трудов МАДИ. М., 2011.

Шеститактный двигатель внутреннего сгорания, включающий, по меньшей мере, один цилиндр с поршнем и шатуном, скрепленным с коленчатым валом, головку блока цилиндров с газораспределительным механизмом и камерами сгорания, отличающийся тем, что каждая камера сгорания выполнена цилиндроконической и снабжена, по меньшей мере, одной свечой зажигания и, по меньшей мере, одной форсункой для впрыска в камеру сгорания воды, двигатель дополнительно снабжен емкостью с водой и импульсным насосом высокого давления для подачи воды через форсунку в продукты сгорания, сжатые после рабочего хода от горения бензовоздушной смеси для совершения дополнительного рабочего хода, причем свеча зажигания вмонтирована в цилиндрической части камеры сгорания, а форсунка вмонтирована в конической части камеры.



Принцип действия четырехтактного двигателя внутреннего сгорания

Рабочий цикл четырехтактного бескомпрессорного дизеля совершается за четыре такта, последовательность которых показана на рис. 33.


Рис. 33. Принцип действия четырехтактного бескомпрессорного дизеля.

Первый такт — всасывание (зарядка). Поршень движется вниз от верхней мертвой точки (в.м.т.) к нижней мертвой точке (н.м.т.), создавая разрежение в рабочем цилиндре. Наружный воздух засасывается в цилиндр через открытый впускной клапан 1, в то время как выпускной клапан 3 закрыт. Клапаны 1 и 3 открываются с помощью кулачковых шайб, насаженных на распределительный вал двигателя, а закрываются под действием сильной пружины. Частота вращения распределительного вала в два раза меньше частоты вращения коленчатого вала, что позволяет совершать рабочий цикл за два его оборота. Кроме того, с целью максимального наполнения рабочего цилиндра свежим воздухом, кулачковые шайбы имеют соответствующую конфигурацию. Поэтому впускной клапан открывается до прихода кривошипа в крайнее верхнее положение (в.м.т.), т. е. при положении его в точке 5, что обеспечивает предварение начала впуска воздуха. Впускной клапан закрывается после того, как кривошип пройдет крайнее нижнее положение (н.м.т.), т. е. при положении его в точке 4, что обеспечивает запаздывание конца всасывания воздуха. Давление газов в цилиндре во время первого такта меньше атмосферного.

Второй такт — сжатие. Поршень движется вверх от н.м.т. до в.м.т., сжимая воздух и оставшиеся газы. Впускной и выпускной клапаны в это время закрыты, в результате чего давление воздуха повышается до 2800—4000 кн/м2 (20—40 кгс/см2), а его температура — до 600—700° С.

Третий такт — рабочий ход (горение и расширение). В конце такта сжатия, когда кривошип не дошел на 4—8° до в.м.т. и находится в точке 6, топливо под давлением впрыскивается в распыленном виде из форсунки 2 в камеру сжатия 7, где, воспламеняясь под действием высокой температуры, превращается в газ. . При этом за короткое время (доли секунды) давление в цилиндре возрастает до 5000—8000 кн/м2 (50—80 кгс/см2), а температура газа — до 1600—1800° С. Под воздействием расширяющихся газов поршень движется вниз от в. м. т. к н. м. т. В конце рабочего хода, когда кривошип занимает положение в точке 8, не доходя на 30—40° до н.м.т., открывается выпускной клапан и отработавшие газы начинают поступать в атмосферу.

Четвертый такт — выпуск (выхлоп). Поршень движется от н.м.т. к в.м.т., вытесняя из рабочего цилиндра отработавшие газы. В это время выпускной клапан полностью открыт, а впускной клапан закрыт. Давление в цилиндре снижается до 105—110 кн/м2 (1 —1,1 кгс/см2), а температура газов — до 350—400°С. Конец выхлопа, т. е. закрытие выпускного клапана, часто происходит после того, как кривошип пройдет в.м.т. (в точке 9). Это способствует лучшей очистке цилиндра от продуктов сгорания топлива.

Для осуществления тактов всасывания, сжатия и выпуска требуется затрата некоторой механической энергии двигателя. Эта энергия накапливается в период рабочего хода в маховике и во всех движущихся частях двигателя, а затем расходуется за счет инерции их движения в течение трех указанных тактов. Поэтому все ДВС имеют маховик, который является как бы аккумулятором кинетической энергии. У многоцилиндровых двигателей подготовительные такты в одном цилиндре осуществляются также за счет рабочих ходов в других цилиндрах.

Если изобразить зависимость между давлением газов от объема, занимаемого ими в цилиндре при различных положениях поршня, то получим диаграмму изменения давления газов в цилиндре, называемую индикаторной диаграммой (рис. 34). Такую диаграмму получают при стендовых испытаниях и прикладывают к паспорту двигателя как документ, определяющий его технические характеристики.


Рис. 34. Индикаторная диаграмма четырехтактного дизеля.


Рис. 35. Схема наддува: а — механического; б — газотурбинного.

Для повышения мощности современных судовых четырехтактных дизелей применяют наддув, при котором свежий воздух нагнетается в цилиндр двигателя при помощи специального наддувочного насоса (нагнетателя). Существуют два основных способа наддува: механический и газотурбинный, схемы которых представлены на рис. 35. Газотурбинный наддув получил в последнее время преимущественное распространение.

двигатель внутреннего сгорания. Презентация на тему двигатель внутреннего сгорания Презентация современные автомобили с двигателем внутреннего сгорания

История создания первого двигателя внутреннего сгорания Первый по настоящему
работоспособный Двигатель Внутреннего Сгорания (ДВС)
появился в Германии в 1878 году. Но история создания
ДВС уходит своими корнями во Францию.
В 1860 году французский изобретатель Этвен Ленуар
изобрёл
первый двигатель внутреннего сгорания. Но этот агрегат
был несовершенен, с низким КПД и не мог быть применён
на практике. На помощь пришёл другой французкий
изобретатель Бо де Роша, который в 1862 году предложил
использовать в этом двигателе четыре такта:
1. Впуск
2.Сжатие
3.Рабочий ход
4.Такт выпуска
Первым автомобилем с четырёхтактным ДВС был
трёхколёсный экипаж Карла Бенца, построенный в 1885
году.
Годом позже (1886 г) появился вариант Готлиба Даймера.
Оба изобретателя работали независимо друг от друга.
В 1926 году они объединились, создав фирму Deimler-Benz
AG.

Принцип работы двигателя внутреннего сгорания

Современный автомобиль, чаше всего,
приводится в движение двигателем внутреннего
сгорания. Таких двигателей существует огромное
множество. Различаются они объемом,
количеством цилиндров, мощностью, скоростью
вращения, используемым топливом (дизельные,
бензиновые и газовые двс). Но, принципиально,
устройство двигателя внутреннего сгорания,
похоже. Как же работает это устройство и почему
называется четырехтактным двигателем
внутреннего сгорания? Про внутреннее сгорание
понятно. Внутри двигателя сгорает топливо. А
почему 4 такта двигателя, что это такое?
Действительно, бывают и двухтактные
двигатели. Но на автомобилях они используются
крайне редко. Четырехтактным двигатель
называется из-за того, что его работу можно
разделить на четыре, равные по времени, части.
Поршень четыре раза пройдет по цилиндру – два
раза вверх и два раза вниз. Такт начинается при
нахождении поршня в крайней нижней или
верхней точке. У автомобилистов-механиков это
называется верхняя мертвая точка (ВМТ) и
нижняя мертвая точка (НМТ).

Первый такт — такт впуска

Первый такт, он же впускной,
начинается с ВМТ (верхней
мертвой точки). Двигаясь вниз,
поршень, всасывает в цилиндр
топливовоздушную смесь. Работа
этого такта происходит при
открытом клапане впуска. Кстати,
существует много двигателей с
несколькими впускными клапанами.
Их количество, размер, время
нахождения в открытом состоянии
может существенно повлиять на
мощность двигателя. Есть
двигатели, в которых, в
зависимости от нажатия на педаль
газа, происходит принудительное
увеличение времени нахождения
впускных клапанов в открытом
состоянии. Это сделано для
увеличения количества
всасываемого топлива, которое,
после возгорания, увеличивает
мощность двигателя. Автомобиль,
в этом случае, может гораздо
быстрее ускориться.

Второй такт — такт сжатия

Следующий такт работы двигателя –
такт сжатия. После того как поршень
достиг нижней точки, он начинает
подниматься вверх, тем самым, сжимая
смесь, которая попала в цилиндр в такт
впуска. Топливная смесь сжимается до
объемов камеры сгорания. Что это за
такая камера? Свободное пространство
между верхней частью поршня и
верхней частью цилиндра при
нахождении поршня в верхней мертвой
точке называется камерой сгорания.
Клапаны, в этот такт работы двигателя
закрыты полностью. Чем плотнее они
закрыты, тем сжатие происходит
качественнее. Большое значение
имеет, в данном случае, состояние
поршня, цилиндра, поршневых колец.
Если имеются большие зазоры, то
хорошего сжатия не получится, а
соответственно, мощность такого
двигателя будет гораздо ниже. Степень
сжатия – компрессию, можно проверить
специальным прибором. По величине
компрессии можно сделать вывод о
степени износа двигателя.

Третий такт — рабочий ход

Третий такт – рабочий, начинается с
ВМТ. Рабочим он называется
неслучайно. Ведь именно в этом
такте происходит действие,
заставляющее автомобиль
двигаться. В этом такте в работу
вступает система зажигания. Почему
эта система так называется? Да
потому, что она отвечает за
поджигание топливной смеси, сжатой
в цилиндре, в камере сгорания.
Работает это очень просто – свеча
системы дает искру. Справедливости
ради, стоит заметить, что искра
выдается на свече зажигания за
несколько градусов до достижения
поршнем верхней точки. Эти
градусы, в современном двигателе,
регулируются автоматически
«мозгами» автомобиля. После того
как топливо загорится, происходит
взрыв – оно резкое увеличивается в
объеме, заставляя поршень
двигаться вниз. Клапаны в этом такте
работы двигателя, как и в
предыдущем, находятся в закрытом
состоянии.

Четвертый такт — такт выпуска

Четвертый такт работы
двигателя, последний –
выпускной. Достигнув
нижней точки, после
рабочего такта, в двигателе
начинает открываться
выпускной клапан. Таких
клапанов, как и впускных,
может быть несколько.
Двигаясь вверх, поршень
через этот клапан удаляет
отработавшие газы из
цилиндра – вентилирует
его. Чем лучше сработает
выпускной клапан, тем
больше отработанных газов
удалится из цилиндра,
освободив, тем самым,
место для новой порции
топливно-воздушной смеси.

Разновидности двигателя внутреннего сгорания

Дизельный двигатель внутреннего сгорания

Ди́зельный дви́гатель — поршневой
двигатель внутреннего сгорания,
работающий по принципу воспламенения
распыленного топлива от
соприкосновения со сжатым разогретым
воздухом. Дизельные двигатели работают
на дизельном топливе (в просторечии —
«солярка»).
В 1890 году Рудольф Дизель развил теорию
«экономичного термического двигателя»,
который благодаря сильному сжатию в
цилиндрах значительно улучшает свою
эффективность. Он получил патент на свой
двигатель 23 февраля 1893. Первый
функционирующий образец, названый «Дизельмотором», был построен Дизелем к началу 1897
года, и 28 января того же года он был успешно
испытан.

Принцип работы инжекторного двигателя

В современных впрысковых
двигателях для каждого
цилиндра предусмотрена
индивидуальная форсунка.
Все форсунки соединяются с
топливной рампой, где
топливо находится под
давлением, которое создает
электробензонасос.
Количество впрыскиваемого
топлива зависит от
продолжительности открытия
форсунки. Момент открытия
регулирует электронный блок
управления (контроллер) на
основании обрабатываемых
им данных от различных
датчиков.

Двигатели внутреннего сгорания

Учебный центр «ОНикС»


Устройство двигателя внутреннего сгорания

1 — головка цилиндра;

2 — цилиндр;

3 — поршень;

4 — поршневые кольца;

5 — поршневой палец;

7 — коленчатый вал;

8 — маховик;

9 — кривошип;

10 — распределительный вал;

11 — кулачок распределительного вала;

12 — рычаг;

13 — клапан;

14 — свеча зажигания


Верхнее крайнее положение поршня в цилиндре называется верхней мертвой точкой (в. м. т.)


Параметры двигателей внутреннего сгорания

Нижнее крайнее положение поршня в цилиндре называется нижней мертвой точкой


Параметры двигателей внутреннего сгорания

Расстояние, проходимое поршнем от одной до другой мертвой точки, называется

ходом поршня S .


Параметры двигателей внутреннего сгорания

Объем V с над поршнем, находящимся в в. м. т., называется объемом камеры сгорания


Параметры двигателей внутреннего сгорания

Объем V п над поршнем, находящимся в н. м. т. называется

полным объемом цилиндра .


Параметры двигателей внутреннего сгорания

Объем Vр, освобождаемый поршнем при его перемещении от в. м. т. к н. м. т., называется рабочим объемом цилиндра .


Параметры двигателей внутреннего сгорания

Рабочий объем цилиндра

Где: D — диаметр цилиндра;

S — ход поршня.


Параметры двигателей внутреннего сгорания

Полный объем цилиндра

V c +V h = V n


Параметры двигателей внутреннего сгорания

Степень сжатия


Рабочие циклы двигателей внутреннего сгорания

4-х тактный

2-х тактный


двигателя .

Первый такт — впуск .

Поршень перемещается от в. м. т. к н. м. т., впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разрежение 0,7- 0,9 кгс/см и горючая смесь, состоящая из паров бензина и воздуха, поступает в цилиндр.

Температура смеси в конце впуска

75-125°С.


Рабочий цикл четырехтактного карбюраторного двигателя .

Второй такт- сжатие .

Поршень перемещается от н.м.т. к в.м.т., оба клапана закрыты. Давление и температура рабочей смеси повышаются, достигая к концу такта соответственно

9-15 кгс/см 2 и 35О-50О°С.


Рабочий цикл четырехтактного карбюраторного двигателя .

Третий такт — расширение, или рабочий ход .

В конце такта сжатия рабочая смесь воспламеняется электрической искрой, происходит быстрое сгорание смеси. Максимальное давление при сгорании достигает 30-50 кгс/см 2 , а температура 2100-2500°С.


Рабочий цикл четырехтактного карбюраторного двигателя .

Четвертый такт — в ы п у с к

Поршень перемещается от

н.м.т. к в.м.т., выпускной клапан открыт. Отработавшие газы выпускаются из цилиндра в атмосферу. Процесс выпуска протекает при давлении выше атмосферного. К концу такта давление в цилиндре снижается до 1,1-1,2 кгс/см 2 , а температура — до 70О-800°С.


Работа четырехтактного карбюраторного двигателя .


Разделенная вихрекамерная камера сгорания


Формы камер сгорания у дизелей

Разделенная форкамерная камера сгорания


Формы камер сгорания у дизелей

Полуразделенная камера сгорания


Формы камер сгорания у дизелей

Неразделенная камера сгорания


Установка на клапане ширмы

Тангенциальное расположение канала

Винтовой канал


Способы создания вихревого движения заряда во время впуска

Винтовой канал


Принцип работы дизельного двигателя .


двигателя .


Работа двухтактного карбюраторного двигателя .

Слайд 2

План

История создания ДВС Типы и принцип работы ДВС 2-х,4-х тактные ДВС Использование ДВС

Слайд 3

История создания ДВС

В 1799 году французский инженер Филипп Лебон открыл светильный газ. В 1799 году он получил патент на использование и способ получения светильного газа путём сухой перегонки древесины или угля. Это открытие имело огромное значение прежде всего для развития техники освещения. Очень скоро во Франции, а потом и в других странах Европы газовые лампы стали успешно конкурировать с дорогостоящими свечами. Однако светильный газ годился не только для освещения.

Слайд 4

Жан Этьен Ленуар

Двигатель Ленуара – двусторонний и двухтактный, т.е. полный цикл работы поршня длится в течение двух его ходов. Но этот двигатель оказался малоэффективен. Хотя в 1862 году Ленуар установил двигатель на карету, использовал рулевое колесо и даже совершал пробные поездки вблизи Парижа. В 1863 году уверял, что его двигатель начал работать на бензине

Слайд 5

Август Отто

В 1864 году Август Отто получил патент на свою модель газового двигателя и в том же году заключил договор с богатым инженером Лангеном для эксплуатации этого изобретения. Вскоре была создана фирма «Отто и Компания».

Слайд 6

Типы ДВС

Двигатель внутреннего сгорания (сокращённо ДВС) — это тип двигателя, тепловая машина, в которой химическая энергия топлива (обычно применяется жидкое или газообразное углеводородное топливо), сгорающего в рабочей зоне, преобразуется в механическую работу. Несмотря на то, что ДВС являются относительно несовершенным типом тепловых машин (сильный шум, токсичные выбросы, меньший ресурс), благодаря своей автономности (необходимое топливо содержит гораздо больше энергии, чем лучшие электрические аккумуляторы) ДВС очень широко распространены, например в транспорте.

Слайд 7

Поршневые двигатели

Поршневой двигатель — двигател внутреннего сгорания, в котором тепловая энергия, образовавшаяся в результате сгорания топлива в замкнутом объёме, преобразуется в механическую работу поступательного движения поршня за счёт расширения рабочего тела (газообразных продуктов сгорания топлива) в цилиндре, в который вставлен поршень.

Слайд 8

Бензиновый

Бензиновые — смесь топлива с воздухом готовится в карбюраторе и далее во впускном коллекторе, или во впускном коллекторе при помощи распыляющих форсунок (механических или электрических), далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи. Основная характерная особенность топливо-воздушно смеси в этом случае — её гомогенизированность.

Слайд 9

Дизельный

Дизельные — специальное дизельное топливо впрыскивается в цилиндр под высоким давлением. Горючая смесь образуется (и сразу же сгорает) непосредственно в цилиндре по мере впрыска порции топлива. Воспламенение смеси происходит под действием высокой температуры воздуха, подвергшегося сжатию в цилиндре.

Слайд 10

Газовый

Газовые — двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях.

Слайд 11

Газодизельный

Газодизельные — основная порция топлива приготавливается, как в одной из разновидностей газовых двигателей, но зажигается не электрической свечой, а запальной порцией дизтоплива, впрыскиваемого в цилиндр аналогично дизельному двигателю.

Слайд 12

2-х тактный

Двухтактный цикл.Такты:1. При движении поршня вверх — сжатие топливной смеси в текущем цикле и всасывание смеси для следующего цикла в полость под поршнем.2. При движеннии поршня вниз — Рабочий ход, выхлоп и вытеснение топливной смеси из-под поршня в рабочую зону цилиндра.

Слайд 13

4-х тактный

4-тактный цикл двигателя внутреннего сгоранияТакты:1.Всасывание горючей смеси.2.Сжатие.3.Рабочий ход.4.Выхлоп.

Слайд 14

Использование ДВС

ДВС часто используется в транспорте, и для каждого вида транспорта нужен свой тип ДВС. Так для общественного транспорта необходим ДВС имеющий хорошую тягу на низких оборотах, в общественном транспорте применяется ДВС большого объёма развивающий максимальную мощность на малых оборотах. В гоночных болидах формулы-1 используется ДВС,который достигает максимальной мощности на высоких оборотах, но он имеет относительно малый объём.

Посмотреть все слайды

Подготовил: Тарасов Максим Юрьевич

Руководитель: мастер производственного обучения

МАОУ ДО МУК «Эврика»

Баракаева Фатима Курбанбиевна



  • Двигатель внутреннего сгорания (ДВС) – одно из главных устройств в конструкции автомобиля, служащее для преобразования энергии топлива в механическую энергию, которая, в свою очередь, выполняет полезную работу. Принцип работы двигателя внутреннего сгорания построен на том, что топливо в соединении с воздухом образуют воздушную смесь. Циклически сгорая в камере сгорания, воздушно-топливная смесь обеспечивает высокое давление, направленное на поршень, а тот, в свою очередь, вращает коленчатый вал через кривошипно-шатунный механизм. Его энергия вращения передается трансмиссии автомобиля.
  • Для запуска двигателя внутреннего сгорания часто используется стартер – обычно электрический двигатель, проворачивающий коленвал. В более тяжелых дизельных двигателях в качестве стартера и для той же цели применяется вспомогательный ДВС («пускач»).

  • Существуют следующие типы двигателей (ДВС):
  • бензиновые
  • дизельные
  • газовые
  • газодизельные
  • роторно-поршневые

  • Бензиновые двигатели внутреннего сгорания – наиболее распространенные из автомобильных двигателей. Топливом для них служит бензин. Проходя через топливную систему, бензин попадает через распыляющие форсунки в карбюратор или впускной коллектор, а затем эта воздушно-топливная смесь подается в цилиндры, сжимается под воздействием поршневой группы, поджигается искрой от свечей зажигания.
  • Карбюраторная система считается устаревшей, поэтому сейчас повсеместно используется инжекторная система подачи топлива. Распыляющие топливо форсунки (инжекторы) осуществляют впрыск либо непосредственно в цилиндр, либо во впускной коллектор. Инжекторные системы делятся на механические и электронные. Во-первых для дозации топлива используются механические рычаговые механизмы плунжерного типа, с возможностью электронного контроля топливной смеси. Во вторых процесс составления и впрыска топлива полностью возложен на электронный блок управления (ЭБУ). Инжекторные системы необходимы для более тщательного сгорания топлива и минимизации вредных продуктов горения.
  • Дизельные ДВС используют специальное дизтопливо . Двигатели автомобиля подобного типа не имеют системы зажигания: топливная смесь, попадающая в цилиндры через форсунки, способна взрываться под действием высокого давления и температуры, которые обеспечивает поршневая группа.

Бензиновые и дизельные двигатели. Рабочие циклы бензинового и дизельного двигателя


  • используют газ в качестве топлива – сжиженный, генераторный, сжатый природный. Распространение таких двигателей было обусловлено растущими требованиями к экологической безопасности транспорта. Исходное топливо хранится в баллонах под большим давлением, откуда через испаритель попадает в газовый редуктор, теряя давление. Далее процесс аналогичен инжекторным бензиновым ДВС. В некоторых случаях газовые системы питания могут не использовать в своем составе испарители.

  • Современный автомобиль, чаще всего, приводится в движение двигателем внутреннего сгорания. Таких двигателей существует огромное множество. Различаются они объемом, количеством цилиндров, мощностью, скоростью вращения, используемым топливом (дизельные, бензиновые и газовые ДВС). Но, принципиально, устройство двигателя внутреннего сгорания, похоже.
  • Как работает двигатель и почему называется четырехтактным двигателем внутреннего сгорания? Про внутреннее сгорание понятно. Внутри двигателя сгорает топливо. А почему 4 такта двигателя, что это такое? Действительно, бывают и двухтактные двигатели. Но на автомобилях они используются крайне редко.
  • Четырехтактным двигатель называется из-за того, что его работу можно разделить на четыре, равные по времени, части. Поршень четыре раза пройдет по цилиндру – два раза вверх и два раза вниз. Такт начинается при нахождении поршня в крайней нижней или верхней точке. У автомобилистов-механиков это называется верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ).

  • Первый такт, он же впускной, начинается с ВМТ (верхней мертвой точки). Двигаясь вниз, поршень всасывает в цилиндр топливовоздушную смесь. Работа этого такта происходит при открытом клапане впуска. Кстати, существует много двигателей с несколькими впускными клапанами. Их количество, размер, время нахождения в открытом состоянии может существенно повлиять на мощность двигателя. Есть двигатели, в которых, в зависимости от нажатия на педаль газа, происходит принудительное увеличение времени нахождения впускных клапанов в открытом состоянии. Это сделано для увеличения количества всасываемого топлива, которое, после возгорания, увеличивает мощность двигателя. Автомобиль, в этом случае, может гораздо быстрее ускориться.

  • Следующий такт работы двигателя – такт сжатия. После того как поршень достиг нижней точки, он начинает подниматься вверх, тем самым, сжимая смесь, которая попала в цилиндр в такт впуска. Топливная смесь сжимается до объемов камеры сгорания. Что это за такая камера? Свободное пространство между верхней частью поршня и верхней частью цилиндра при нахождении поршня в верхней мертвой точке называется камерой сгорания. Клапаны, в этот такт работы двигателя закрыты полностью. Чем плотнее они закрыты, тем сжатие происходит качественнее. Большое значение имеет, в данном случае, состояние поршня, цилиндра, поршневых колец. Если имеются большие зазоры, то хорошего сжатия не получится, а соответственно, мощность такого двигателя будет гораздо ниже. Компрессию можно проверить специальным прибором. По величине компрессии можно сделать вывод о степени износа двигателя.

  • Третий такт – рабочий, начинается с ВМТ. Рабочим он называется неслучайно. Ведь именно в этом такте происходит действие, заставляющее автомобиль двигаться. В этом такте в работу вступает система зажигания. Почему эта система так называется? Да потому, что она отвечает за поджигание топливной смеси, сжатой в цилиндре, в камере сгорания. Работает это очень просто – свеча системы дает искру. Справедливости ради, стоит заметить, что искра выдается на свече зажигания за несколько градусов до достижения поршнем верхней точки. Эти градусы, в современном двигателе, регулируются автоматически «мозгами» автомобиля.
  • После того как топливо загорится, происходит взрыв – оно резко увеличивается в объеме, заставляя поршень двигаться вниз. Клапаны в этом такте работы двигателя, как и в предыдущем, находятся в закрытом состоянии.

Четвертый такт — такт выпуска

  • Четвертый такт работы двигателя, последний – выпускной. Достигнув нижней точки, после рабочего такта, в двигателе начинает открываться выпускной клапан. Таких клапанов, как и впускных, может быть несколько. Двигаясь вверх, поршень через этот клапан удаляет отработавшие газы из цилиндра – вентилирует его. От четкой работы клапанов зависит степень сжатия в цилиндрах, полное удаление отработанных газов и необходимое количество всасываемой топливно-воздушной смеси.
  • После четвертого такта наступает черед первого. Процесс повторяется циклически. А за счет чего происходит вращение – работа двигателя внутреннего сгорания все 4 такта, что заставляет поршень подниматься и опускаться в тактах сжатия, выпуска и впуска? Дело в том, что не вся энергия, получаемая в рабочем такте, направляется на движение автомобиля. Часть энергии идет на раскручивание маховика. А он, под действием инерции, крутит коленчатый вал двигателя, перемещая поршень в период «нерабочих» тактов.

Презентация подготовлена по материалам сайта http://autoustroistvo.ru

Презентация на тему современные двигатели. Двигатель внутреннего сгорания

История создания первого двигателя внутреннего сгорания Первый по настоящему
работоспособный Двигатель Внутреннего Сгорания (ДВС)
появился в Германии в 1878 году. Но история создания
ДВС уходит своими корнями во Францию.
В 1860 году французский изобретатель Этвен Ленуар
изобрёл
первый двигатель внутреннего сгорания. Но этот агрегат
был несовершенен, с низким КПД и не мог быть применён
на практике. На помощь пришёл другой французкий
изобретатель Бо де Роша, который в 1862 году предложил
использовать в этом двигателе четыре такта:
1.Впуск
2.Сжатие
3.Рабочий ход
4.Такт выпуска
Первым автомобилем с четырёхтактным ДВС был
трёхколёсный экипаж Карла Бенца, построенный в 1885
году.
Годом позже (1886 г) появился вариант Готлиба Даймера.
Оба изобретателя работали независимо друг от друга.
В 1926 году они объединились, создав фирму Deimler-Benz
AG.

Принцип работы двигателя внутреннего сгорания

Современный автомобиль, чаше всего,
приводится в движение двигателем внутреннего
сгорания. Таких двигателей существует огромное
множество. Различаются они объемом,
количеством цилиндров, мощностью, скоростью
вращения, используемым топливом (дизельные,
бензиновые и газовые двс). Но, принципиально,
устройство двигателя внутреннего сгорания,
похоже. Как же работает это устройство и почему
называется четырехтактным двигателем
внутреннего сгорания? Про внутреннее сгорание
понятно. Внутри двигателя сгорает топливо. А
почему 4 такта двигателя, что это такое?
Действительно, бывают и двухтактные
двигатели. Но на автомобилях они используются
крайне редко. Четырехтактным двигатель
называется из-за того, что его работу можно
разделить на четыре, равные по времени, части.
Поршень четыре раза пройдет по цилиндру – два
раза вверх и два раза вниз. Такт начинается при
нахождении поршня в крайней нижней или
верхней точке. У автомобилистов-механиков это
называется верхняя мертвая точка (ВМТ) и
нижняя мертвая точка (НМТ).

Первый такт — такт впуска

Первый такт, он же впускной,
начинается с ВМТ (верхней
мертвой точки). Двигаясь вниз,
поршень, всасывает в цилиндр
топливовоздушную смесь. Работа
этого такта происходит при
открытом клапане впуска. Кстати,
существует много двигателей с
несколькими впускными клапанами.
Их количество, размер, время
нахождения в открытом состоянии
может существенно повлиять на
мощность двигателя. Есть
двигатели, в которых, в
зависимости от нажатия на педаль
газа, происходит принудительное
увеличение времени нахождения
впускных клапанов в открытом
состоянии. Это сделано для
увеличения количества
всасываемого топлива, которое,
после возгорания, увеличивает
мощность двигателя. Автомобиль,
в этом случае, может гораздо
быстрее ускориться.

Второй такт — такт сжатия

Следующий такт работы двигателя –
такт сжатия. После того как поршень
достиг нижней точки, он начинает
подниматься вверх, тем самым, сжимая
смесь, которая попала в цилиндр в такт
впуска. Топливная смесь сжимается до
объемов камеры сгорания. Что это за
такая камера? Свободное пространство
между верхней частью поршня и
верхней частью цилиндра при
нахождении поршня в верхней мертвой
точке называется камерой сгорания.
Клапаны, в этот такт работы двигателя
закрыты полностью. Чем плотнее они
закрыты, тем сжатие происходит
качественнее. Большое значение
имеет, в данном случае, состояние
поршня, цилиндра, поршневых колец.
Если имеются большие зазоры, то
хорошего сжатия не получится, а
соответственно, мощность такого
двигателя будет гораздо ниже. Степень
сжатия – компрессию, можно проверить
специальным прибором. По величине
компрессии можно сделать вывод о
степени износа двигателя.

Третий такт — рабочий ход

Третий такт – рабочий, начинается с
ВМТ. Рабочим он называется
неслучайно. Ведь именно в этом
такте происходит действие,
заставляющее автомобиль
двигаться. В этом такте в работу
вступает система зажигания. Почему
эта система так называется? Да
потому, что она отвечает за
поджигание топливной смеси, сжатой
в цилиндре, в камере сгорания.
Работает это очень просто – свеча
системы дает искру. Справедливости
ради, стоит заметить, что искра
выдается на свече зажигания за
несколько градусов до достижения
поршнем верхней точки. Эти
градусы, в современном двигателе,
регулируются автоматически
«мозгами» автомобиля. После того
как топливо загорится, происходит
взрыв – оно резкое увеличивается в
объеме, заставляя поршень
двигаться вниз. Клапаны в этом такте
работы двигателя, как и в
предыдущем, находятся в закрытом
состоянии.

Четвертый такт — такт выпуска

Четвертый такт работы
двигателя, последний –
выпускной. Достигнув
нижней точки, после
рабочего такта, в двигателе
начинает открываться
выпускной клапан. Таких
клапанов, как и впускных,
может быть несколько.
Двигаясь вверх, поршень
через этот клапан удаляет
отработавшие газы из
цилиндра – вентилирует
его. Чем лучше сработает
выпускной клапан, тем
больше отработанных газов
удалится из цилиндра,
освободив, тем самым,
место для новой порции
топливно-воздушной смеси.

Разновидности двигателя внутреннего сгорания

Дизельный двигатель внутреннего сгорания

Ди́зельный дви́гатель — поршневой
двигатель внутреннего сгорания,
работающий по принципу воспламенения
распыленного топлива от
соприкосновения со сжатым разогретым
воздухом. Дизельные двигатели работают
на дизельном топливе (в просторечии —
«солярка»).
В 1890 году Рудольф Дизель развил теорию
«экономичного термического двигателя»,
который благодаря сильному сжатию в
цилиндрах значительно улучшает свою
эффективность. Он получил патент на свой
двигатель 23 февраля 1893. Первый
функционирующий образец, названый «Дизельмотором», был построен Дизелем к началу 1897
года, и 28 января того же года он был успешно
испытан.

Принцип работы инжекторного двигателя

В современных впрысковых
двигателях для каждого
цилиндра предусмотрена
индивидуальная форсунка.
Все форсунки соединяются с
топливной рампой, где
топливо находится под
давлением, которое создает
электробензонасос.
Количество впрыскиваемого
топлива зависит от
продолжительности открытия
форсунки. Момент открытия
регулирует электронный блок
управления (контроллер) на
основании обрабатываемых
им данных от различных
датчиков.

1 слайд

2 слайд

Двигатель внутреннего сгорания (сокращённо ДВС) – это устройство, в котором химическая энергия топлива превращается в полезную механическую работу. ДВС классифицируют: По назначению — делятся на транспортные, стационарные и специальные. По роду применяемого топлива — легкие жидкие (бензин, газ), тяжелые жидкие (дизельное топливо). По способу образования горючей смеси — внешнее (карбюратор) и внутреннее у дизельного ДВС. По способу воспламенения (искра или сжатие). По числу и расположению цилиндров разделяют рядные, вертикальные, оппозитные, V-образные, VR-образные и W-образные двигатели.

3 слайд

Элементы ДВС: Цилиндр Поршень — двигается внутри цилиндра Клапан впрыска топлива Свеча – производит зажигание топлива внутри цилиндра Клапан выпуска газа Коленчатый вал — раскручивается поршнем

4 слайд

Циклы работы поршневых ДВС Поршневые двигатели внутреннего сгорания классифицируются по количеству тактов в рабочем цикле на двухтактные и четырёхтактные. Рабочий цикл в поршневых двигателях внутреннего сгорания состоит из пяти процессов: впуска, сжатия, сгорания, расширения и выпуска.

5 слайд

6 слайд

1. В процессе впуска поршень перемещается от верхней мертвой точки (в. м.т.) к нижней мертвой точке (н.м.т.), а освобождающееся надпоршневое пространство цилиндра заполняется смесью воздуха с топливом. Из-за разности давлений во впускном коллекторе и внутри цилиндра двигателя при открытии впускного клапана смесь поступает (всасывается) в цилиндр

7 слайд

2. В процессе сжатия оба клапана закрыты и поршень, перемещаясь от н.м.т. к в.м.т. и уменьшая объём надпоршневой полости, сжимает рабочую смесь (в общем случае рабочее тело). Сжатие рабочего тела ускоряет процесс сгорания и этим предопределяет возможную полноту использования тепла, выделяющегося при сжигании топлива в цилиндре.

8 слайд

3. В процессе сгорания происходит окисление топлива кислородом воздуха, входящего в состав рабочей смеси, вследствие чего давление в надпоршневой полости резко возрастает.

9 слайд

4. В процессе расширения раскаленные газы, стремясь расшириться, перемещают поршень от в.м.т. к н.м.т. Совершается рабочий ход поршня, который через шатун передает давление на шатунную шейку коленчатого вала и проворачивает его.

10 слайд

5. В процессе выпуска поршень перемещается от н.м.т. к в.м.т. и через второй открывающийся к этому времени клапан, выталкивает отработавшие газы из цилиндра. Продукты сгорания остаются только в объёме камеры сгорания, откуда их нельзя вытеснить поршнем. Непрерывность работы двигателя обеспечивается последующим повторением рабочих циклов.

11 слайд

12 слайд

История автомобиля История автомобиля началась ещё в 1768 году вместе с созданием паросиловых машин, способных перевозить человека. В 1806 году появились первые машины, приводимые в движение двигателями внутреннего сгорания на англ. горючем газе, что привело к появлению в 1885 году повсеместно используемого сегодня газолинового или бензинового двигателя внутреннего сгорания.

13 слайд

Изобретатели-первопроходцы Немецкий инженер Карл Бенц, изобретатель множества авто- мобильных технологий, считается изобретателем и современного автомобиля.

14 слайд

Карл Бенц В 1871 году совместно с Августом Риттером организовал механическую мастерскую в Мангейме, получил патент на двухтактный бензиновый двигатель, вскоре им были запатентованы системы будущего автомобиля: акселератор, систему зажигания, карбюратор, сцепление, коробку передач и радиатор охлаждения.

Двигатель внутреннего сгорания (сокращённо ДВС) это тип двигателя, тепловая машина, в которой химическая энергия топлива (обычно применяется жидкое или газообразное углеводородное топливо), сгорающего в рабочей зоне, преобразуется в механическую работу. Несмотря на то, что ДВС являются относительно несовершенным типом тепловых машин (сильный шум, токсичные выбросы, меньший ресурс), благодаря своей автономности (необходимое топливо содержит гораздо больше энергии, чем лучшие электрические аккумуляторы) ДВС очень широко распространены, например в транспорте.

История создания двигателей внутреннего сгорания В 1799 году французский инженер Филипп Лебон открыл светильный газ. В 1799 году он получил патент на использование и способ получения светильного газа путём сухой перегонки древесины или угля. Это открытие имело огромное значение прежде всего для развития техники освещения. Очень скоро во Франции, а потом и в других странах Европы газовые лампы стали успешно конкурировать с дорогостоящими свечами. Однако светильный газ годился не только для освещения.

Патент на конструкцию газового двигателя. В 1801 году Лебон взял патент на конструкцию газового двигателя. Принцип действия этой машины основывался на известном свойстве открытого им газа: его смесь с воздухом взрывалась при воспламенении с выделением большого количества теплоты. Продукты горения стремительно расширялись, оказывая сильное давление на окружающую среду. Создав соответствующие условия, можно использовать выделяющуюся энергию в интересах человека. В двигателе Лебона были предусмотрены два компрессора и камера смешения. Один компрессор должен был накачивать в камеру сжатый воздух, а другой — сжатый светильный газ из газогенератора. Газовоздушная смесь поступала потом в рабочий цилиндр, где воспламенялась. Двигатель был двойного действия, то есть попеременно действовавшие рабочие камеры находились по обе стороны поршня. По существу, Лебон вынашивал мысль о двигателе внутреннего сгорания, однако в 1804 году он погиб, не успев воплотить в жизнь своё изобретение.

Жан Этьен Ленуар В последующие годы несколько изобретателей из разных стран пытались создать работоспособный двигатель на светильном газе. Однако все эти попытки не привели к появлению на рынке двигателей, которые могли бы успешно конкурировать с паровой машиной. Честь создания коммерчески успешного двигателя внутреннего сгорания принадлежит бельгийскому инженеру Жану Этьену Ленуару. Работая на гальваническом заводе, Ленуар пришёл к мысли, что топливовоздушную смесь в газовом двигателе можно воспламенять с помощью электрической искры, и решил построить двигатель на основе этой идеи. Ленуар не сразу добился успеха. После того как удалось изготовить все детали и собрать машину, она проработала совсем немного и остановилась, так как из-за нагрева поршень расширился и заклинил в цилиндре. Ленуар усовершенствовал свой двигатель, продумав систему водяного охлаждения. Однако вторая попытка запуска также закончилась неудачей из- за плохого хода поршня. Ленуар дополнил свою конструкцию системой смазки. Только тогда двигатель начал работать.

Август Отто В 1864 году было выпущено уже более 300 таких двигателей разной мощности. Разбогатев, Ленуар перестал работать над усовершенствованием своей машины, и это предопределило её судьбу- она была вытеснена с рынка более совершенным двигателем, созданным немецким изобретателем Августом Отто. В 1864 году тот получил патент на свою модель газового двигателя и в том же году заключил договор с богатым инженером Лангеном для эксплуатации этого изобретения. Вскоре была создана фирма «Отто и Компания». На первый взгляд, двигатель Отто представлял собой шаг назад по сравнению с двигателем Ленуара. Цилиндр был вертикальным. Вращаемый вал помещался над цилиндром сбоку. Вдоль оси поршня к нему была прикреплена рейка, связанная с валом. Двигатель работал следующим образом. Вращающийся вал поднимал поршень на 1/10 высоты цилиндра, в результате чего под поршнем образовывалось разряжённое пространство и происходило всасывание смеси воздуха и газа. Затем смесь воспламенялась. Ни Отто, ни Ланген не владели достаточными знаниями в области электротехники и отказались от электрического зажигания. Воспламенение они осуществляли открытым пламенем через трубку. При взрыве давление под поршнем возрастало примерно до 4 атм. Под действием этого давления поршень поднимался, объём газа увеличивался и давление падало. При подъёме поршня специальный механизм отсоединял рейку от вала. Поршень сначала под давлением газа, а потом по инерции поднимался до тех пор, пока под ним не создавалось разряжение. Таким образом, энергия сгоревшего топлива использовалась в двигателе с максимальной полнотой. В этом заключалась главная оригинальная находка Отто. Рабочий ход поршня вниз начинался под действием атмосферного давления, и после того, как давление в цилиндре достигало атмосферного, открывался выпускной вентиль, и поршень своей массой вытеснял отработанные газы. Из-за более полного расширения продуктов сгорания КПД этого двигателя был значительно выше, чем КПД двигателя Ленуара и достигал 15%, то есть превосходил КПД самых лучших паровых машин того времени.

Поскольку двигатели Отто были почти в пять раз экономичнее двигателей Ленуара, они сразу стали пользоваться большим спросом. В последующие годы их было выпущено около пяти тысяч штук. Отто упорно работал над усовершенствованием их конструкции. Вскоре зубчатую рейку заменила кривошипно-шатунная передача. Но самое существенное из его изобретений было сделано в 1877 году, когда Отто взял патент на новый двигатель с четырёхтактным циклом. Этот цикл по сей день лежит в основе работы большинства газовых и бензиновых двигателей. В следующем году новые двигатели уже были запущены в производство. Четырёхтактный цикл был самым большим техническим достижением Отто. Но вскоре обнаружилось, что за несколько лет до его изобретения точно такой же принцип работы двигателя был описан французским инженером Бо де Рошем. Группа французских промышленников оспорила в суде патент Отто. Суд счёл их доводы убедительными. Права Отто, вытекавшие из его патента, были значительно сокращены, в том числе было аннулировано его монопольное право на четырёхтактный цикл. Хотя конкуренты наладили выпуск четырёхтактных двигателей, отработанная многолетним производством модель Отто всё равно была лучшей, и спрос на неё не прекращался. К 1897 году было выпущено около 42 тысяч таких двигателей разной мощности. Однако то обстоятельство, что в качестве топлива использовался светильный газ, сильно суживало область применения первых двигателей внутреннего сгорания. Количество светильногазовых заводов было незначительно даже в Европе, а в России их вообще было только два- в Москве и Петербурге.

Поиски нового горючего Поэтому не прекращались поиски нового горючего для двигателя внутреннего сгорания. Некоторые изобретатели пытались применить в качестве газа пары жидкого топлива. Ещё в 1872 году американец Брайтон пытался использовать в этом качестве керосин. Однако керосин плохо испарялся, и Брайтон перешёл к более лёгкому нефтепродукту — бензину. Но для того, чтобы двигатель на жидком топливе мог успешно конкурировать с газовым, необходимо было создать специальное устройство для испарения бензина и получения горючей смеси его с воздухом. Брайтон в том же 1872 году придумал один из первых так называемых «испарительных» карбюраторов, но он действовал неудовлетворительно.

Бензиновый двигатель Работоспособный бензиновый двигатель появился только десятью годами позже. Изобретателем его был немецкий инженер Юлиус Даймлер. Много лёт он работал в фирме Отто и был членом её правления. В начале 80-х годов он предложил своему шефу проект компактного бензинового двигателя, который можно было бы использовать на транспорте. Отто отнёсся к предложению Даймлера холодно. Тогда Даймлер вместе со своим другом Вильгельмом Майбахом принял смелое решение в 1882 году они ушли из фирмы Отто, приобрели небольшую мастерскую близ Штутгарта и начали работать над своим проектом. Проблема, стоявшая перед Даймлером и Майбахом была не из лёгких: они решили создать двигатель, который не требовал бы газогенератора, был бы очень лёгким и компактным, но при этом достаточно мощным, чтобы двигать экипаж. Увеличение мощности Даймлер рассчитывал получить за счёт увеличения частоты вращения вала, но для этого необходимо было обеспечить требуемую частоту воспламенения смеси. В 1883 году был создан первый бензиновый двигатель с зажиганием от раскалённой полой трубочки, открытой в цилиндр. Первая модель бензинового двигателя предназначалась для промышленной стационарной установки.

Процесс испарения жидкого топлива в первых бензиновых двигателях заставлял желать лучшего. Поэтому настоящую революцию в двигателестроении произвело изобретение карбюратора. Создателем его считается венгерский инженер Донат Банки. В 1893 году взял патент на карбюратор с жиклёром, который был прообразом всех современных карбюраторов. В отличие от своих предшественников Банки предлагал не испарять бензин, а мелко распылять его в воздухе. Это обеспечивало его равномерное распределение по цилиндру, а само испарение происходило уже в цилиндре под действием тепла сжатия. Для обеспечения распыления всасывание бензина происходило потоком воздуха через дозирующий жиклёр, а постоянство состава смеси достигалась за счёт поддержания постоянного уровня бензина в карбюраторе. Жиклёр выполнялся в виде одного или нескольких отверстий в трубке, располагавшейся перпендикулярно потоку воздуха. Для поддержания напора был предусмотрен маленький бачок с поплавком, который поддерживал уровень на заданной высоте, так что количество всасываемого бензина было пропорционально количеству поступающего воздуха. Первые двигатели внутреннего сгорания были одноцилиндровыми, и, для того чтобы увеличить мощность двигателя, обычно увеличивали объём цилиндра. Потом этого стали добиваться увеличением числа цилиндров. В конце XIX века появились двухцилиндровые двигатели, а с начала XX столетия стали распространяться четырёхцилиндровые.

Состав Поршневые двигатели камерой сгорания является цилиндр, где химическая энергия топлива превращается в механическую энергию, которая из возвратно- поступательного движения поршня превращается во вращательную с помощью кривошипно-шатунного механизма. По типу используемого топлива делятся на: Бензиновые смесь топлива с воздухом готовится в карбюраторе и далее во впускном коллекторе, или во впускном коллекторе при помощи распыляющих форсунок (механических или электрических), или непосредственно в цилиндре при помощи распыляющих форсунок, далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи. Дизельные специальное дизельное топливо впрыскивается в цилиндр под высоким давлением. Горючая смесь образуется (и сразу же сгорает) непосредственно в цилиндре по мере впрыска порции топлива. Воспламенение смеси происходит под действием высокой температуры воздуха, подвергшегося сжатию в цилиндре.

Газовые двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях: Смеси сжиженных газов хранятся в баллоне под давлением насыщенных паров (до 16 атм). Испарённая в испарителе жидкая фаза или паровая фаза смеси ступенчато теряет давление в газовом редукторе до близкого атмосферному, и всасывается двигателем во впускной коллектор через воздушно-газовый смеситель или впрыскивается во впускной коллектор посредством электрических форсунок. Зажигание осуществляется при помощи искры, проскакивающей между электродами свечи. Сжатые природные газы хранятся в баллоне под давлением атм. Устройство систем питания аналогично системам питания сжиженным газом, отличие отсутствие испарителя. Генераторный газ газ, полученный превращением твёрдого топлива в газообразное. В качестве твёрдого топлива используются:

УгольТорфДревесина Газодизельные основная порция топлива приготавливается, как в одной из разновидностей газовых двигателей, но зажигается не электрической свечой, а запальной порцией дизтоплива, впрыскиваемого в цилиндр аналогично дизельному двигателю. Роторно-поршневой Комбинированный двигатель внутреннего сгорания двигатель внутреннего сгорания, представляющий собой комбинацию из поршневой (роторно- поршневой) и лопаточной машины (турбина, компрессор), в котором в осуществлении рабочего процесса участвуют обе машины. Примером комбинированного ДВС служит поршневой двигатель с газотурбинным наддувом (турбонаддув). RCV — двигатель внутреннего сгорания, система газораспределения которого реализована за счёт вращения цилиндра. Цилиндр совершает вращательное движение попеременно проходя впускной и выпускной патрубок, поршень при этом совершает возвратно-поступательные движения.

Дополнительные агрегаты, требующиеся для ДВС Недостатком ДВС является то, что он производит высокую мощность только в узком диапазоне оборотов. Поэтому неотъемлемыми атрибутами двигателя внутреннего сгорания являются трансмиссия и стартёр. Лишь в отдельных случаях (например, в самолётах) можно обойтись без сложной трансмиссии. Постепенно завоёвывает мир идея гибридного автомобиля, в котором мотор всегда работает в оптимальном режиме. Также ДВС нужны топливная система (для подачи топливной смеси) и выхлопная система (для отвода выхлопных газов).

создания..

История создания

Этьен Ленуар (1822-1900)

Этапы развития ДВС:

1860 г. Этьен Ленуар изобрел первый двигатель, работавший на светильном газе

1862 г. Альфонс Бо Де Роша предложил идею четырехтактного двигателя. Однако свою идею осуществить он не сумел.

1876 г. Николаус Август Отто создает четырехтактный двигатель по Роше.

1883 г. Даймлер предложил конструкцию двигателя, который мог работать как на газе, так и на бензине

Карл Бенц изобрел самоходную трехколесную коляску на основе технологий Даймлера.

К 1920 г. ДВС становятся лидирующими. экипажи на паровой и электрической тяге стали большой редкостью.

Август Отто (1832-1891)

Карл Бенц

История создания

Трехколесная коляска, изобретенная Карлом Бенцом

Принцип действия

Четырехтактный двигатель

Рабочий цикл четырехтактного карбюраторного двигателя внутреннего сгорания совершается за 4 хода поршня (такта), т. е. за 2 оборота коленчатого вала.

Различают 4 такта:

1 такт – впуск (горючая смесь из карбюратора поступает в цилиндр)

2 такт – сжатие (клапаны закрыты и смесь сжимается, в конце сжатия смесь воспламеняется электрической искрой и происходит сгорание топлива)

3 такт – рабочий ход (происходит преобразование тепла, полученного от сгорания топлива, в механическую работу)

4 такт – выпуск (отработавшие газы вытесняются поршнем)

Принцип действия

Двухтактный двигатель

Существует также двухтактный двигатель внутреннего сгорания. Рабочий цикл двухтактного карбюраторного двигателя внутреннего сгорания осуществляется за два хода поршня или за один оборот коленчатого вала.

1 такт 2 такт

На практике мощность двухтактного карбюраторного двигателя внутреннего сгорания часто не только не превышает мощность четырёхтактного, но оказывается даже ниже. Это обусловлено тем, что значительная часть хода (20-35%) поршень совершает при открытых клапанах

КПД двигателя

КПД двигателя внутреннего сгорания мал и примерно составляет 25% – 40% . Максимальный эффективный КПД наиболее совершенных ДВС около 44%. Поэтому многие ученые пытаются увеличить КПД, а также и при этом саму мощность двигателя.

Способы увеличения мощности двигателя:

Использование многоцилиндровых двигателей

Использование специального топлива (правильного соотношения смеси и рода смеси)

Замена частей двигателя (правильных размеров составных частей, зависящие от рода двигателя)

Устранение части потерь теплоты перенесением места сжигания топлива и нагревания рабочего тела внутрь цилиндра

КПД двигателя

Степень сжатия

Одной из важнейших характеристик двигателя является его степень сжатия, которая определяется следующее:

e V 2 V 1

где V2 и V1 — объемы в начале и в конце сжатия. С увеличением степени сжатия возрастает начальная температура горючей смеси в конце такта сжатия, что способствует более полному ее сгоранию.

Разновидности ДВС

Двигатели Внутренненго Сгорания

Основные компоненты двигателя

Строение яркого представителя ДВС – карбюраторного двигателя

Остов двигателя (блок-картер, головки цилиндров, крышки подшипников коленчатого вала, масляный поддон)

Механизм движения (поршни, шатуны, коленчатый вал, маховик)

Механизм газораспределения (кулачковый вал, толкатели, штанги, коромысла)

Система смазки (масло, фильтр грубой отчистки, поддон)

жидкостная (радиатор, жидкость, др.)

Система охлаждения

воздушная (обдув потоками воздуха)

Система питания (топливный бак, топливный фильтр, карбюратор, насосы)

Основные компоненты двигателя

Система зажигания (источник тока – генератор и аккумулятор, прерыватель + конденсатор)

Система пуска (электрический стартер, источник тока – аккумулятор, элементы дистанционного управления)

Система впуска и выпуска (трубопроводы, воздушный фильтр, глушитель)

Карбюратор двигателя

В 1799 году французский инженер Филипп Лебон открыл светильный газ и получил патент на использование и способ получения светильного газа путём сухой перегонки древесины или угля. Это открытие имело огромное значение, прежде всего для развития техники освещения. Очень скоро во Франции, а потом и в других странах Европы газовые лампы стали успешно конкурировать с дорогостоящими свечами. Однако светильный газ годился не только для освещения. Изобретатели взялись за конструирование двигателей, способных заменить паровую машину, при этом топливо сгорало бы не в топке, а непосредственно в цилиндре двигателя.1799 году Филипп Лебонсветильный газ ФранцииЕвропыпаровую машину топке цилиндре двигателя

В 1801 году Лебон взял патент на конструкцию газового двигателя. Принцип действия этой машины основывался на известном свойстве открытого им газа: его смесь с воздухом взрывалась при воспламенении с выделением большого количества теплоты. Продукты горения стремительно расширялись, оказывая сильное давление на окружающую среду. Создав соответствующие условия, можно использовать выделяющуюся энергию в интересах человека. В двигателе Лебона были предусмотрены два компрессора и камера смешивания. Один компрессор должен был накачивать в камеру сжатый воздух, а другой сжатый светильный газ из газогенератора. Газовоздушная смесь поступала потом в рабочий цилиндр, где воспламенялась. Двигатель был двойного действия, то есть попеременно действовавшие рабочие камеры находились по обе стороны поршня. По существу, Лебонвынашивал мысль о двигателе внутреннего сгорания, однако в 1804 году он погиб, не успев воплотить в жизнь своё изобретение.1801 году ЛебонкомпрессоргазогенераторацилиндрЛебон 1804 году

Жан Этьен Ленуар В последующие годы несколько изобретателей из разных стран пытались создать работоспособный двигатель на светильном газе. Однако все эти попытки не привели к появлению на рынке двигателей, которые могли бы успешно конкурировать с паровой машиной. Честь создания коммерчески успешного двигателя внутреннего сгорания принадлежит бельгийскому механику Жану Этьену Ленуару. Работая на гальваническом заводе, Ленуар пришёл к мысли, что топливовоздушную смесь в газовом двигателе можно воспламенять с помощью электрической искры, и решил построить двигатель на основе этой идеи. паровой машиной Жану Этьену Ленуарудвигатель на основе этой идеи Ленуар не сразу добился успеха. После того как удалось изготовить все детали и собрать машину, она проработала совсем немного и остановилась, так как из-за нагрева поршень расширился и заклинил в цилиндре. Ленуар усовершенствовал свой двигатель, продумав систему водяного охлаждения. Однако вторая попытка запуска также закончилась неудачей из-за плохого хода поршня. Ленуар дополнил свою конструкцию системой смазки. Только тогда двигатель начал работать.

Август Отто К 1864 году было выпущено уже более 300 таких двигателей разной мощности. Разбогатев, Ленуар перестал работать над усовершенствованием своей машины, и это предопределило её судьбу она была вытеснена с рынка более совершенным двигателем, созданным немецким изобретателем Августом Отто.1864 году Августом Отто В 1864 году тот получил патент на свою модель газового двигателя и в том же году заключил договор с богатым инженером Лангеном для эксплуатации этого изобретения. Вскоре была создана фирма «Отто и Компания».1864 году Лангеном

К 1864 году было выпущено уже более 300 таких двигателей разной мощности. Разбогатев, Ленуар перестал работать над усовершенствованием своей машины, и это предопределило её судьбу она была вытеснена с рынка более совершенным двигателем, созданным немецким изобретателем Августом Отто.1864 году Августом Отто В 1864 году тот получил патент на свою модель газового двигателя и в том же году заключил договор с богатым инженером Лангеном для эксплуатации этого изобретения. Вскоре была создана фирма «Отто и Компания».1864 году Лангеном На первый взгляд, двигатель Отто представлял собой шаг назад по сравнению с двигателем Ленуара. Цилиндр был вертикальным. Вращаемый вал помещался над цилиндром сбоку. Вдоль оси поршня к нему была прикреплена рейка, связанная с валом. Двигатель работал следующим образом. Вращающийся вал поднимал поршень на 1/10 высоты цилиндра, в результате чего под поршнем образовывалось разрежённое пространство и происходило всасывание смеси воздуха и газа. Затем смесь воспламенялась. Ни Отто, ни Ланген не владели достаточными знаниями в области электротехники и отказались от электрического зажигания. Воспламенение они осуществляли открытым пламенем через трубку. При взрыве давление под поршнем возрастало примерно до 4 атм. Под действием этого давления поршень поднимался, объём газа увеличивался и давление падало. При подъёме поршня специальный механизм отсоединял рейку от вала. Поршень сначала под давлением газа, а потом по инерции поднимался до тех пор, пока под ним не создавалось разрежение. Таким образом, энергия сгоревшего топлива использовалась в двигателе с максимальной полнотой. В этом заключалась главная оригинальная находка Отто. Рабочий ход поршня вниз начинался под действием атмосферного давления, и после того, как давление в цилиндре достигало атмосферного, открывался выпускной вентиль, и поршень своей массой вытеснял отработанные газы. Из-за более полного расширения продуктов сгорания КПД этого двигателя был значительно выше, чем КПД двигателя Ленуара и достигал 15 %, то есть превосходил КПД самых лучших паровых машин того времени. двигатель Отто

Поскольку двигатели Отто были почти в пять раз экономичнее двигателей Ленуара, они сразу стали пользоваться большим спросом. В последующие годы их было выпущено около пяти тысяч штук. Отто упорно работал над усовершенствованием их конструкции. Вскоре зубчатую рейку заменила кривошипно-шатунная передача. Но самое существенное из его изобретений было сделано в 1877 году, когда Отто взял патент на новый двигатель с четырёхтактным циклом. Этот цикл по сей день лежит в основе работы большинства газовых и бензиновых двигателей. В следующем году новые двигатели уже были запущены в производство.1877 году Четырёхтактный цикл был самым большим техническим достижением Отто. Но вскоре обнаружилось, что за несколько лет до его изобретения точно такой же принцип работы двигателя был описан французским инженером Бо де Роша. Группа французских промышленников оспорила в суде патент Отто. Суд счёл их доводы убедительными. Права Отто, вытекавшие из его патента, были значительно сокращены, в том числе было аннулировано его монопольное право на четырёхтактный цикл. Бо де Роша Хотя конкуренты наладили выпуск четырёхтактных двигателей, отработанная многолетним производством модель Отто всё равно была лучшей, и спрос на неё не прекращался. К 1897 году было выпущено около 42 тысяч таких двигателей разной мощности. Однако то обстоятельство, что в качестве топлива использовался светильный газ, сильно суживало область применения первых двигателей внутреннего сгорания. Количество светильногазовых заводов было незначительно даже в Европе, а в России их вообще было только два- в Москве и Петербурге.1897 году ЕвропеРоссии МосквеПетербурге

Поиски нового горючего Поэтому не прекращались поиски нового горючего для двигателя внутреннего сгорания. Некоторые изобретатели пытались применить в качестве газа пары жидкого топлива. Ещё в 1872 году американец Брайтон пытался использовать в этом качестве керосин. Однако керосин плохо испарялся, и Брайтон перешёл к более лёгкому нефтепродукту бензину. Но для того, чтобы двигатель на жидком топливе мог успешно конкурировать с газовым, необходимо было создать специальное устройство для испарения бензина и получения горючей смеси его с воздухом. 1872 году Брайтон Брайтон в том же 1872 году придумал один из первых так называемых «испарительных» карбюраторов, но он действовал неудовлетворительно. Брайтон 1872 году

Бензиновый двигатель Работоспособный бензиновый двигатель появился только десятью годами позже. Вероятно, первым его изобретателем можно назвать Костовича О.С., предоставившим работающий прототип бензинового двигателя в 1880 году. Однако его открытие до сих пор остается слабо освещенным. В Европе в создании бензиновых двигателей наибольший вклад внес немецкий инженер Готлиб Даймлер. Много лет он работал в фирме Отто и был членом её правления. В начале 80-х годов он предложил своему шефу проект компактного бензинового двигателя, который можно было бы использовать на транспорте. Отто отнёсся к предложению Даймлера холодно. Тогда Даймлервместе со своим другом Вильгельмом Майбахом принял смелое решение в 1882 году они ушли из фирмы Отто, приобрели небольшую мастерскую близ Штутгарта и начали работать над своим проектом. бензиновый двигатель Костовича О.С.Готлиб Даймлер ДаймлерВильгельмом Майбахом 1882 году

Проблема, стоявшая перед Даймлером и Майбахом была не из лёгких: они решили создать двигатель, который не требовал бы газогенератора, был бы очень лёгким и компактным, но при этом достаточно мощным, чтобы двигать экипаж. Увеличение мощности Даймлер рассчитывал получить за счёт увеличения частоты вращения вала, но для этого необходимо было обеспечить требуемую частоту воспламенения смеси. В 1883 году был создан первый калильный бензиновый двигатель с зажиганием от раскалённой трубочки, вставляемой в цилиндр.газогенератора 1883 году калильный бензиновый двигатель раскалённой трубочки цилиндр

Первая модель бензинового двигателя предназначалась для промышленной стационарной установки. Процесс испарения жидкого топлива в первых бензиновых двигателях оставлял желать лучшего. Поэтому настоящую революцию в двигателестроении произвело изобретение карбюратора. Создателем его считается венгерский инженер Донат Банки. В 1893 году он взял патент на карбюратор с жиклёром, который был прообразом всех современных карбюраторов. В отличие от своих предшественников Банки предлагал не испарять бензин, а мелко распылять его в воздухе. Это обеспечивало его равномерное распределение по цилиндру, а само испарение происходило уже в цилиндре под действием тепла сжатия. Для обеспечения распыления всасывание бензина происходило потоком воздуха через дозирующий жиклёр, а постоянство состава смеси достигалось за счёт поддержания постоянного уровня бензина в карбюраторе. Жиклёр выполнялся в виде одного или нескольких отверстий в трубке, располагавшейся перпендикулярно потоку воздуха. Для поддержания напора был предусмотрен маленький бачок с поплавком, который поддерживал уровень на заданной высоте, так что количество всасываемого бензина было пропорционально количеству поступающего воздуха.карбюратора Донат Банки 1893 годужиклёромбензинмелко распылять его в воздухе Первые двигатели внутреннего сгорания были одноцилиндровыми, и, для того чтобы увеличить мощность двигателя, обычно увеличивали объём цилиндра. Потом этого стали добиваться увеличением числа цилиндров.объём цилиндра В конце XIX века появились двухцилиндровые двигатели, а с начала XX столетия стали распространяться четырёхцилиндровые.XIX векаXX


Что такое четырехтактный двигатель?

Простейшее объяснение двигателя внутреннего сгорания

По эксперту по продукту | Размещено в Без рубрики в четверг, 26 января 2017 г., в 19:07

Что такое четырехтактный двигатель?

На протяжении всей истории было много попыток пассажирских перевозок, но ни одна из них не была столь успешной, как четырехтактный двигатель внутреннего сгорания. Электромобиль может быть будущим, но двигатель внутреннего сгорания — это наше прошлое. Мало того, что важно понимать, как ваша машина заставляет вас работать каждый день, это также наводит на размышления и просто потрясающе.

Время передачи
Если вы автомобильный энтузиаст любого рода, вы, возможно, слышали поговорку «соси, бей, дуй». Знаете ли вы, что это не просто уничижительный эвфемизм? Каждый цилиндр в любом четырехтактном двигателе внутреннего сгорания снова и снова проходит четыре ступени для выработки мощности. В профессиональном плане это называется впуском, сжатием, сгоранием и выпуском.

Впуск

Сначала двигатель всасывает воздух и топливо. При этом поршень отодвигается от свечи зажигания и отскакивает от другой стороны цилиндра.

Сжатие

На обратном пути к свече зажигания воздух и газ, всасываемые в цилиндр, сжимаются, создавая давление в ожидании химической реакции при воспламенении свечи зажигания.

Горение

Когда поршень ударяется о верхнюю часть цилиндра, свеча зажигания воспламеняется, создавая взрыв, который снесет вам голову, если вы не будете защищены блоком цилиндров.

Выхлоп

Взрыв на стадии сгорания толкает поршень обратно в цилиндр, одновременно начиная стадию впуска для следующего раунда.

Конечно, если это вас заинтересует, это только вызовет дополнительные вопросы. Не стесняйтесь спрашивать их в разделе комментариев ниже!

  • Facebook
  • Твиттер
  • Pinterest

Эта запись была опубликована в четверг, 26 января 2017 г., в 19:07 и находится в рубрике Без категории.Вы можете следить за любыми ответами на эту запись через канал RSS 2.0. И комментарии и запросы в настоящий момент закрыты.

Ход впуска — обзор

Основы дизельного двигателя

Дизельный двигатель — это тепловой двигатель, который использует свойства газа для преобразования тепловой энергии в механическую. Когда масса воздуха содержится в ограниченном объеме, таком как цилиндр двигателя, а затем к нему добавляется тепло, давление газа увеличивается.Это увеличение давления можно использовать для создания механической силы, мощности. Поперечное сечение цилиндра дизельного двигателя показано на рис. 5.1.

Рисунок 5.1. Поперечное сечение цилиндра дизельного двигателя.

Источник: Министерство энергетики США.

Большинство дизельных двигателей имеют четырехтактный двигатель, как и двигатель с искровым зажиганием. Для идеализированного двигателя эти четыре такта представляют собой такт впуска, когда воздух втягивается в цилиндр через клапан, когда поршень движется от верхней мертвой точки (ВМТ — см. Главу 4) к нижней мертвой точке (НМТ).Когда он достигает НМТ, клапан закрывается 1 , и поршень возвращается в ВМТ, при этом сжимая воздух внутри цилиндра. Когда он снова достигает ВМТ, дизельное топливо впрыскивается в сжатый газ, который теперь очень горячий в результате сжатия, и топливо сгорает, повышая температуру и, следовательно, давление внутри цилиндра. Это дополнительное давление на головку поршня вынуждает поршень вернуться в положение НМТ, обеспечивая рабочий ход двигателя, который можно использовать для обеспечения механического привода.Наконец, при НМТ поршень снова возвращается, на этот раз со вторым выпускным клапаном, открытым, когда воздух и продукты сгорания вытесняются из цилиндра.

Стадии цикла можно представить в виде диаграммы давление-объем, которая представляет газы внутри цилиндра двигателя. В идеализированном виде это показано на рис. 5.2. На этой диаграмме не учитывается первый ход цикла, в котором воздух втягивается в цилиндр, и последний ход, при котором удаляются газы сгорания, потому что эти два хода, в идеале, не предполагают обмена энергией.(На практике они действительно требуют энергии для завершения, но ее количество невелико по сравнению с обменом энергии, участвующим в двух других тактах.) В позиции 1 на диаграмме предполагается, что цилиндр заполнен воздухом, и этот воздух сжимается поршнем как он перемещается в положение 2. Этот ход сжатия уменьшает объем, увеличивает давление и повышает температуру воздуха. Топливо впрыскивается в положение 2 и воспламеняется, что приводит к дальнейшему резкому увеличению температуры и давления, поскольку поршень начинает двигаться от ВМТ и объем цилиндра увеличивается.Затем следует рабочий ход 3–4, когда объем внутри цилиндра увеличивается, а давление падает. Наконец, в конце рабочего хода 4 выпускной клапан открывается и избыточное давление сбрасывается, опять же мгновенно в этой идеальной версии. Затем следуют такт выпуска и такт впуска, оба из которых имеют место в позиции 1.

Рисунок 5.2. Идеализированная термодинамическая диаграмма давление – объем для дизельного двигателя.

Источник: Викимедиа.

Если Рис.5.2 сравнивается с рис. 4.2, на котором показан цикл двигателя с искровым зажиганием, единственная разница заключается в изменении, которое происходит при сгорании. В двигателе с искровым зажиганием предполагается, что это происходит мгновенно внутри цилиндра при постоянном объеме, поскольку поршень не успевает двигаться во время взрывного сгорания. В дизельном цикле сгорание длится дольше и предполагается, что оно происходит при постоянном давлении, когда поршень движется от ВМТ.

Такт сжатия 1-2 требует использования энергии для сжатия газа в цилиндре.С другой стороны, рабочий ход от 2 до 4 генерирует мощность. Чистое количество энергии, доступной для полезной работы, и есть разница между ними. Математически это представлено областью цикла на диаграмме.

Как Николаус Август Отто создал 4-тактный двигатель внутреннего сгорания

Как мы уже обсуждали ранее, Этьен Ленуар оказал огромное влияние на разработку двигателя внутреннего сгорания , и его работа напрямую повлияет на один Николаус Август Отто, молодой Немецкий продавец.Во время своих путешествий Отто познакомился с первым двигателем внутреннего сгорания, построенным Ленуаром, и то, что Отто разработал, по-прежнему актуально для современных двигателей внутреннего сгорания.

Отто и его брат построили копию газового двигателя Ленуара и в январе 1861 года подали заявку на патент на двигатель на жидком топливе в Министерстве торговли Пруссии. Но это было отклонено. Ленуар в то время уже предлагал идею карбюратора для жидкого топлива.

Говорят, что Отто уже знал об интересе к предварительному сжатию топливовоздушной смеси перед воспламенением. Взял ли он этот момент из термодинамики, или он был в контакте с самим Ленуаром, которого в этот момент консультировал Бо де Роша? Или он уже знал о Райтмане? Как бы то ни было, Отто начал испытания своего первого 4-тактного двигателя, основанного на двигателе Ленуара, в начале 1860-х годов. После нескольких минут работы двигатель сломался вместе с партнерскими отношениями между Отто и его братом.

Отто искал инвесторов для финансирования своего исследования и нашел Ойгена Лангена, отец которого был промышленником.

Ланген был молодым немецким предпринимателем, инженером и изобретателем. Его собственные научные знания позволили ему признать великие способности Отто, и он решил объединить усилия с ним для создания первого завода по производству двигателей в континентальной Европе, NA Otto & Cie. Помимо своего участия в разработке двигателя внутреннего сгорания, Ланген разработал метод для производил кубики сахара на компании своего отца (1857), а позже стал отцом знаменитой Вуппертальской подвесной железной дороги, называемой «Schwebebahn», в 1890-х годах.

Вместе Отто и Ланген построили свой первый атмосферный двигатель в 1864 году, который был очень похож на тот, который был построен и запатентован Эухенио Барсанти и Феличе Маттеуччи несколькими годами ранее. На Всемирной выставке в Париже в 1867 году двигатель Отто и Лангена получил предпочтение по сравнению с другими газовыми двигателями. После измерения расхода газа жюри присудило Гран-при немецкому двигателю, так как он потреблял меньше половины газа, чем другие двигатели.

N. A. Otto & Cie в конечном итоге обанкротилась, но Langen собрал достаточно капитала, чтобы воссоздать новую компанию в Дойце, недалеко от Кельна, которая занималась производством газовых двигателей.Эта компания, Gasmotorenfabrik Deutz, позже станет промышленной группой Klöckner-Humboldt-Deutz (KHD) и, наконец, Deutz AG. Ойген Ланген также нанял двух инженеров, чьи имена до сих пор можно встретить на автомобилях, Готлиба Даймлера и Вильгельма Майбаха, чтобы они позаботились о производстве и дали Отто достаточно времени, чтобы осуществить свою первоначальную мечту о создании надежного 4-тактного двигателя. Обратите внимание, что, помимо Лангена, Отто, Даймлера и Майбаха, некоторые другие очень известные люди позже будут работать на Deutz, в том числе Проспер Л’Оранж (с 1904 по октябрь 1908 года), Этторе Бугатти (в 1907 году) и Роберт Бош.

Развитие цикла Отто

В 1876 году Отто разработал 4-тактный цикл газообразного топлива со сжатым зарядом, который впоследствии стал известен как цикл Отто. Этот принцип до сих пор используется в большинстве автомобильных двигателей. Он основал двигатель на этом цикле после 14 лет усилий: это система, характеризующаяся четырьмя тактами поршня (впуск, сжатие, мощность расширения и выпуск) при двух оборотах двигателя.

Во Франции Этьен Ленуар также работал над 4-тактной версией газового двигателя во время своей пенсии, которую он запатентовал в начале 1880-х годов.Этот двигатель производился Mignon & Rouart и Compagnie Parisienne du Gaz с 1894 года. Ленуар признал работу Отто, но ему уже ранее советовал двигаться в этом направлении его партнер Бо де Роша (который никогда не строил двигатель самостоятельно).

Переход от внутреннего сгорания без предварительного сжатия к 4-тактному циклу с предварительным сжатием позволил повысить эффективность с чуть менее 5% до 15% в период с 1880 по 1890-е годы.

Однако не все шло гладко, и через некоторое время между Даймлером и Отто возникли серьезные личные разногласия.После нескольких патентных битв Daimler и Maybach начали разработку двигателей для автомобилей на основе 4-тактного двигателя Отто, одновременно увеличив рабочую скорость до 650 об / мин, что позволило достичь идеальной удельной мощности для таких приложений. Несколько автомобилей было построено в течение 1880 и 90-х годов.

В конце 1890-х годов дуэт разработал для австрийского бизнесмена Эмиля Еллинека автомобиль, кузов которого представлял собой значительный отход от прежнего принципа каретки, и чей 35-сильный двигатель приводил автомобиль в движение с максимальной скоростью почти 90 км / ч. часАвтомобиль был назван в честь дочери Еллинека по имени Мерседес. Но это уже другая история…

Двигатель внутреннего сгорания с переключением 2-х / 4-х тактный при работе

Резюме:
Двигатель внутреннего сгорания с 2/4-тактным (двух- и четырехтактным) переключением. Предлагаемые усовершенствования обычного четырехтактного двигателя внутреннего сгорания (ДВС) ускоряют его газообмен и позволяют переключать ДВС (особенно дизельный) с четырехтактного на двухтактный режим во время работы двигателя.Промывка в четырехтактном и двухтактном режимах работы осуществляется через одни и те же впускные и выпускные клапаны.

Полное описание:
Двигатель с предложенными улучшениями способен удвоить выходную мощность двигателя и поддерживать ее в течение определенного периода (время зависит от типа двигателя) без перегрева. Эта функция позволяет увеличивать удельную мощность автомобиля, когда это необходимо, в соответствии с изменяющимися режимами работы автомобиля и дорожными условиями.

Приемлемыми сферами деятельности для предлагаемых инноваций являются: (1) дизельные двигатели боевых танков, (2) дизельные двигатели боевых машин и тяжелых армейских грузовиков, (3) дизельные двигатели тяжелых грузовиков, (4) дизельные двигатели автомобилей специального назначения (аварийные автомобили, пожарные машины и др. ) и (5) двигатели в электрогенераторных установках.

Суть нововведения — улучшение газообмена при двухтактном режиме работы двигателя. Четырехтактный газообмен осуществляется как в обычном четырехтактном дизельном двигателе.Двухтактный газообмен осуществляется через впускной и выпускной клапаны, в отличие от продувочных каналов в обычном двухтактном дизельном двигателе.

Схема газообмена показана на файле 0. 2 + 4 Stroke Gas Exchange.jpg. Впускные клапаны 6 расположены по периферии головки блока цилиндров; выпускной клапан 4 расположен по оси цилиндра или с небольшим смещением. Свежий воздух, предварительно сжатый в турбонагнетателе двигателя и дополнительно сжатый и охлажденный в нагнетателе с промежуточным охладителем, подается в рабочий цилиндр 1 через тангенциальные впускные каналы 5, расположенные под определенным углом к ​​поверхности головки блока цилиндров.Затем свежий воздух плотным слоем закручивается вдоль стенок цилиндра, смещается к его центру и отжимает выхлопные газы от стенок цилиндра к его оси. Когда поток свежего воздуха достигает нижней части поршня 2, он поворачивается и выпускает выхлопные газы, сконцентрированные вдоль оси цилиндра, через выпускной клапан 4 в выпускной канал 3.

Для снижения доли остаточных газов и охлаждения горячих поверхностей, продувка цилиндра, сопровождается сбросом некоторого количества свежего воздушного заряда в выхлопную систему.Фазы газообмена типичны для двухтактных обычных двигателей внутреннего сгорания. Нагнетатель любого подходящего типа с промежуточным охладителем дополняется обычным двигателем внутреннего сгорания, расположение как впускных, так и выпускных клапанов на головке блока цилиндров, а также система управления клапанами изменяются, чтобы обеспечить четырехтактный и режим работы двухтактного двигателя. Топливный насос подбирается и настраивается на подачу топлива в соответствии с количеством рабочих ходов.
В отличие от обычного двухтактного двигателя внутреннего сгорания (особенно двухтактного дизельного двигателя), в предлагаемой конструкции отсутствуют продувочные отверстия и нет потерь сгоревшего масла через них. Он обеспечивает такие же вредные выбросы, как и выбросы в обычных дизельных двигателях.

Подробнее Сферы внедрения нововведения
Боевые танки
Средние характеристики современных боевых танков: машина массой ~ 60 тонн; максимальная скорость 72 км / ч; и разгон 0-36 км / ч за 6 сек. Такие параметры хода обеспечивает силовая установка мощностью 1500 л.с., которая представляет собой либо дизельный двигатель, либо газовую турбину. Несостоятельность танковой силовой установки состоит в том, что максимальная мощность требуется лишь на короткое время боевого жизненного цикла танка — в основном во время боя или изредка в других случаях, в то время как обычно танк использует только 700-800 л.с. для простого перемещения своего танка. вес при постоянной скорости и благоприятных условиях движения.Предлагаемое нововведение предусматривает:
— Использование в качестве прототипа силовой установки перспективного боевого танка подходящего дизельного двигателя мощностью 1000-1500 л. с. любого производителя дизельных двигателей. Опытный образец двигателя с предложенными доработками за короткое время развивает мощность 2000–3000 л.с. и удваивает его удельную мощность в боевой работе;
— отказ от разработки полностью нового двухтактного дизельного двигателя с нуля;
— спроектировать боевой танк с максимальной удельной мощностью и превосходной маневренностью;
— Возможность установки дополнительных топливных баков на борту для увеличения дальности полета машины без дозаправки

Боевые машины и армейские тяжеловозы
Основные боевые машины армии США IFV M2 A1 и A2 «Bradley» оснащены дизельными двигателями Cummins VTA903-T500 мощностью 500 л.с. и VTA903-T600 мощностью 600 л.с. соответственно.Внедрение предложенных усовершенствований в эти дизельные двигатели увеличивает маневренность М2А1 и М2А2 за счет удвоения удельной мощности. Более того, новые Cummins VTTA903-T750 и T800 также могут быть «усилены» предлагаемым нововведением.

Грузовые автомобили
Возможно использование предложенных доработок для дизельных двигателей гражданских грузовиков. Для грузовиков с «форсированными» дизельными двигателями существует большой рынок сбыта в странах Латинской Америки, Китая, Индии и Юго-Восточной Азии (кроме Японии).Грузовик с «форсированным» дизельным двигателем получает возможность развивать заданную скорость в 1,7 раза быстрее, чем с обычным. Эта функция в основном полезна, когда грузовик опережает впереди идущее транспортное средство на полосе встречного движения, а также преодолевает подъем без переключения передачи и снижения скорости транспортного средства.

Статус проекта

Мы разработали основные теоретические основы предлагаемого процесса продувки как для двухтактных, так и для четырехтактных операций через модифицированную клапанную систему данного четырехтактного двигателя.Некоторые результаты этой разработки находятся в следующих файлах:

1. 2 + 4-тактный FlowWorks Model.easm — Газообмен одной продувочной конструкции с помощью 4-клапанной системы в головке блока цилиндров. Для просмотра этого файла . EASM требуется eDrawings.

2. 2 + 4 продувочный поток Works.avi — газообмен одной продувочной конструкции через 4-клапанную систему в головке блока цилиндров. Это файл .AVI. Некоторые отдельные файлы .JPG, отражающие различные этапы процесса газообмена, находятся в файлах: 2_a.Сбор мусора 01.JPG, 2_b. Уборка 02.JPG,
2_c. Сбор мусора 03.JPG, 2_d. Сбор мусора 04.JPG.

3. 2 + 4 Solid Head Cylinder Head Model.sldprt — 3D-модель одной 4-клапанной головки блока цилиндров. eDrawings необходим для просмотра этого файла .SLDPRT.

4. 2 + 4 ГБЦ Design.sldasm — 3D-дизайн одной из многих возможных версий 4-клапанной ГБЦ. eDrawings необходим для просмотра этого файла .SLDASM.

5. 2 + 4 Stroke Combat Vehicle.pdf — Модификация конструкции дизельного двигателя для военной техники./ Отчет по инженерному предложению /

Технологический фон включает:
1. Готовые к подаче заявки на патенты (как PPA, так и FPA)
2. Система расчета основных характеристик целевого двигателя после его модификации
3. Различные модели конструкций SolidWorks, результаты SolidWorks COSMOSFIoWorks и т.д. вышесказанное.Компьютерное моделирование продувки одновременно для 4-тактного и 2-тактного режимов с учетом движения поршня и определение оптимальных фаз газообмена являются первоочередными задачами предлагаемого сотрудничества.

Файлы, перечисленные выше в разделах 1., 2., 3., 4. и 5., а также дополнительная информация и данные, разъясняющие технологию и подходы, доступны по запросу.

Проблема, с которой связана эта идея / изобретение:
Производство дизельных двигателей, Производство двухтактных дизельных двигателей, Двигатель с газовым зажиганием
Производство бензиновых двигателей, производство двухтактных двигателей внутреннего сгорания
Применение военных (боевых) дизельных двигателей

Прикрепленные файлы:





5.2 + 4 Stroke Combat Vehicle.pdf
3. 2 + 4 Solid Head Cylinder Head Model.SLDPRT

Запрашиваемая цена: [КОНТАКТЫ ПРОДАВЦА]
Доступны для консультации? Да

Изобретение № 11613
Дата публикации: 2010-02-18


«Больше изобретений в области транспорта
« Больше машиностроения — Изобретения в области машиностроения
«Больше изобретений в автомобильной промышленности

Глава 3d — Первый закон — Закрытые системы

Глава 3d — Первый закон — Закрытые системы — Двигатели с циклом Отто (обновлено 22 апреля 2012 г. )

Глава 3: Первый закон термодинамики для Закрытые системы

г) Цикл Отто стандарта воздуха (искровое зажигание) Двигатель

The Air Стандартный цикл Отто — идеальный цикл для Искрового зажигания (SI) двигатели внутреннего сгорания, впервые предложенные Николаус Отто более 130 лет назад, и который в настоящее время используется чаще всего автомобили.Следующая ссылка от Kruse Технологическое партнерство представляет описание четырехтактного Операция цикла Отто , включая короткую история Николауса Отто. И снова у нас отличная анимация производство Matt Keveney представляет как четырехтактный и двухтактный двигатель внутреннего сгорания с искровым зажиганием операция

Анализ цикла Отто очень похож на цикл дизельного двигателя, который мы анализировали в предыдущей версии . Раздел .Мы воспользуемся идеалом «стандартное» допущение в нашем анализе. Таким образом, рабочий жидкость — это фиксированная масса воздуха, совершающего полный цикл, который относился во всем как к идеальному газу. Все процессы идеальны, сгорание заменяется добавлением тепла к воздуху, а выхлоп — заменен процессом отвода тепла, который восстанавливает воздух в начальное состояние.

Самое существенное отличие идеального Цикл Отто и идеальный дизельный цикл — это метод зажигания топливно-воздушная смесь.Напомним, что в идеальном дизельном цикле чрезвычайно высокая степень сжатия (около 18: 1) позволяет воздуху достигать температура воспламенения топлива. Затем впрыскивается топливо так, чтобы процесс воспламенения происходит при постоянном давлении. В идеале Отто цикл: топливно-воздушная смесь вводится во время такта впуска и сжат до гораздо более низкой степени сжатия (около 8: 1) и является затем воспламеняется от искры. Возгорание приводит к внезапному скачку давление, в то время как объем остается практически постоянным.В продолжение цикла, включая расширение и выхлоп процессы практически идентичны идеальным дизельным двигателям. цикл. Считаем удобным разработать аналитический подход идеальный цикл Отто через следующую решенную задачу:

Решенная задача 3. 7 An идеальный двигатель с воздушным стандартным циклом Отто имеет степень сжатия 8. При начало процесса сжатия рабочая жидкость на 100 кПа, 27 ° C (300 K) и 800 кДж / кг тепла во время процесс добавления тепла с постоянным объемом.Аккуратно нарисуйте давление-объем [ P-v ] диаграмму для этого цикла, и используя значения удельной теплоемкости для воздуха при типичная средняя температура цикла 900K определяет:

  • а) температура и давление воздуха в конце каждого процесса

  • б) сеть производительность / цикл [кДж / кг], и

  • c) тепловой КПД [η th ] этого цикла двигателя.

Подход к решению:

Первым шагом является построение диаграммы P-v полный цикл, включая всю актуальную информацию.Мы замечаем что ни объем, ни масса не указаны, поэтому диаграмма и решение будет в конкретных количествах.

Мы предполагаем, что топливно-воздушная смесь представлена чистый воздух. Соответствующие уравнения состояния, внутренней энергии и адиабатический процесс для воздуха:

Напомним из предыдущего раздела, что номинальный Значения удельной теплоемкости, используемые для воздуха при 300K, составляют C v = 0,717 кДж / кг · K ,, и k = 1,4. Однако все они функции температуры, а также с чрезвычайно высокой температурой диапазон, испытанный в двигателях внутреннего сгорания, можно получить существенные ошибки.В этой задаче мы используем типичный средний цикл температура 900K взята из таблицы Specific Теплоемкости воздуха .

Теперь мы проходим все четыре процесса, чтобы определить температуру и давление в конце каждого процесса, как а также о проделанной работе и тепле, передаваемом во время каждого процесса.

Обратите внимание, что давление P 4 (а также P 2 выше) также можно оценить из уравнения адиабатического процесса. Мы делаем это ниже в качестве проверки действительности, однако мы находим это больше По возможности удобно использовать уравнение состояния идеального газа. Любой метод удовлетворителен.

Продолжаем последний процесс определения отклонено тепло:

Обратите внимание, что мы применили уравнение энергии к все четыре процесса позволяют нам два альтернативных способа оценки «чистая производительность за цикл» и термический КПД, следующим образом:

Обратите внимание, что при использовании постоянных значений удельной теплоемкости более цикла мы можем определить тепловой КПД непосредственно из коэффициент удельных теплоемкостей k по формуле:


где r — степень сжатия

Quick Quiz: Использование тепла и уравнения энергии работы, полученные выше, выводят это соотношение

Задача 3.8 Это является расширением Решенной задачи 3. 7, в котором мы хотим использовать во всех четырех процессах номинальная стандартная удельная теплоемкость значения емкости для воздуха при 300К. Используя значения C v = 0,717 кДж / кг · К и k = 1,4, определите:

  • а) температура и давление воздуха в конце каждого процесса [P 2 = 1838 кПа, Т 2 = 689К, Т 3 = 1805K, P 3 = 4815 кПа, P 4 = 262 кПа, Т 4 = 786 КБ]

  • б) сеть выход / цикл [451.5 кДж / кг], и

  • c) тепловой КПД этого цикла двигателя. [η th = 56%]

______________________________________________________________________________________


Инженерная термодинамика, Израиль Уриэли под лицензией Creative Commons Attribution-Noncommercial-Share Alike 3.0 США Лицензия

Четырехтактный двигатель — Двигатель внутреннего сгорания

Четыре такта четырехтактного двигателя относятся к впуску, сжатию, сгоранию и выпуску. Впервые он был предложен Николаусом Отто в 1876 году и известен также как цикл Отто.

Техническая терминология «4-тактный двигатель» означает «четырехтактный цикл». Четырехтактные двигатели широко используются в современных двигателях внутреннего сгорания из-за их высокой эффективности вентиляции. Большинство двигателей легковых и грузовых автомобилей используют 4-тактные двигатели.

Четырехтактный двигатель

Четыре цикла соответствуют полному циклу двигателя внутреннего сгорания. Стоит отметить, что двигатель внутреннего сгорания выводит энергию наружу только в третьем такте (ход поршня, перемещающегося в нижнюю мертвую точку во время сгорания), а энергия в других тактах обеспечивается энергией вращения маховика.

Четыре такта 4-тактного двигателя внутреннего сгорания следующие:

В четырех тактах направление движения поршня изменяется в двух соседних тактах. Двигатель внутреннего сгорания завершает полный цикл (4 такта), и коленчатый вал поворачивается на 720 °.

Ход всасывания

Когда впускной клапан открыт, а выпускной клапан закрыт, поршень перемещается из верхней мертвой точки в нижнюю мертвую точку.

Впускной ход

Объем цилиндра над поршнем увеличивается, и создается разрежение.Давление в цилиндре падает ниже давления всасывания, и вакуумное всасывание проходит.

Бензин, испаряемый карбюратором или устройством впрыска бензина, смешивается с воздухом с образованием горючей смеси, которая всасывается в цилиндр через впускной канал и впускной клапан.

Процесс впуска продолжается до тех пор, пока поршень не пройдет нижнюю мертвую точку и впускной клапан не закроется. Затем восходящий поршень начинает сжимать газ.

Ход сжатия

4-тактные бензиновые двигатели такт сжатия

Такт сжатия бензинового двигателя

Для 4-тактных бензиновых двигателей все впускные и выпускные клапаны закрыты.Поршень движется вверх в верхнюю мертвую точку, и горючая смесь в цилиндре сжимается.

Температура смеси повышается, а давление повышается.

Прежде чем поршень приблизится к верхней мертвой точке, давление горючей смеси повышается примерно до 0,6–1,2 МПа.

В конце такта сжатия температура может достигать 330-430 ° C.

Такт сжатия 4-тактного дизельного двигателя

Такт сжатия дизельного двигателя

Принцип работы четырехтактного дизельного двигателя такой же, как и у четырехтактного бензинового двигателя.

Он также состоит из четырех компонентов: впуска, сжатия, работы и выпуска.

Отличие в том, что такт впуска дизельного двигателя — чистый воздух. Когда такт сжатия приближается к верхней мертвой точке, дизельное топливо впрыскивается в камеру сгорания форсункой.

Поскольку в это время температура в цилиндре намного превышает температуру самовоспламенения дизеля, впрыскиваемое дизельное топливо сгорает само по себе после короткой задержки зажигания, и работа выполняется извне.

Ход горения

Ход горения

Когда такт сжатия приближается к верхней мертвой точке, свеча зажигания, установленная над головкой блока цилиндров, испускает электрическую искру для воспламенения сжатой горючей смеси.

Горючая смесь выделяет большое количество тепла после сгорания, и давление и температура газа в цилиндре быстро повышаются. Максимальное давление горения может достигать 3-6 МПа, а максимальная температура горения может достигать от 2 200 ° C до 2 500 ° C.

Газ с высокой температурой и высоким давлением подталкивает поршень к быстрому перемещению в нижнюю мертвую точку и действует извне через кривошипно-шатунный механизм.

В начале рабочего такта впускные и выпускные клапаны закрыты.

Ход выпуска

Когда рабочий ход приближается к концу, выпускной клапан открывается. Поскольку давление в цилиндре выше атмосферного, высокотемпературные выхлопные газы быстро выходят из цилиндра.

Выпускной ход

Эта ступень относится к ступени свободного выпуска, и высокотемпературный отработавший газ выпускается через выпускной клапан с местной скоростью звука.

По мере того, как процесс выпуска переходит в фазу принудительного выпуска, поршень движется мимо нижней мертвой точки к верхней мертвой точке, принудительно выпуская выхлопной газ в цилиндр, и процесс выпуска заканчивается, когда поршень достигает области верхней мертвой точки. центр.

В конце выхлопа давление газа в цилиндре немного выше атмосферного, около 0.От 105 до 0,115 МПа, а температура выхлопных газов составляет примерно от 600 ° C до 900 ° C.

Поскольку камера сгорания занимает определенный объем, невозможно полностью удалить выхлопной газ в конце выхлопа, а оставшаяся часть выхлопного газа называется остаточным выхлопным газом.

Сводка

Впуск и выпуск четырехтактного двигателя вместе составляют 360 ° угла поворота коленчатого вала.

Когда поршень истощен, поршень поднимается до верхней мертвой точки, и выхлопной газ принудительно выпускается.

Когда всасываемый воздух опускается в нижнюю мертвую точку, его преимуществом является «поступающая свежая смесь.

Почти весь газ участвует в сгорании, и в основном нет свежего газа, который тратится впустую, поэтому расход топлива низкий, и он подходит для использования на больших расстояниях ».

Существенным недостатком четырехтактных двигателей внутреннего сгорания перед двухтактными двигателями является их меньшая выходная мощность.

Четырехтактный двигатель внутреннего сгорания

18 Фев

Четырехтактный двигатель внутреннего сгорания

Опубликовано 18 февраля 2013 г. автором shaikmoin в Без рубрики.Tagged: Двигатель, четырехтактный двигатель. Оставить комментарий

Большинство современных двигателей внутреннего сгорания работают по четырехтактному циклу; то есть полный цикл цилиндра состоит из четырех дискретных ходов, как описано ниже. Другие типы двигателей могут иметь очень разные рабочие циклы.

Индукция / ход секции:

Такт впуска — это первый ход в цикле четырехтактного двигателя внутреннего сгорания. Он включает в себя движение поршня вниз, создавая частичный вакуум, который втягивает (позволяет атмосферному давлению толкать) топливно-воздушную смесь в камеру сгорания.

В поршневом двигателе — часть цикла, когда поршни перемещаются из ВМТ (верхней мертвой точки) в НМТ (нижней мертвой точки) и топливно-воздушная смесь втягивается в цилиндры.

Ход сжатия:

Такт сжатия является второй из четырех ступеней в двигателе внутреннего сгорания отто-цикла или дизельном цикле.

На этом этапе смесь (в случае двигателя Отто) или воздух (в случае дизельного двигателя) сжимается поршнем до верхней части цилиндра до тех пор, пока не воспламенится свечой зажигания в двигателе Отто. двигатель или, в случае дизельного двигателя, достигает точки, в которой впрыскиваемое топливо самопроизвольно воспламеняется, заставляя поршень опускаться обратно.

Рабочий ход / Ход расширения:

Рабочий ход — это, в общем, ход циклического двигателя, который генерирует силу.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *