Тнвд коммон рейл устройство: Система питания Common Rail дизельного двигателя.

Содержание

Система питания Common Rail дизельного двигателя.


Система впрыска Common Rail




Общие сведения о системе питания Common Rail

Система впрыска Common Rail (Common Rail в переводе с английского — «общий путь», «общая рампа») является современной системой впрыска топлива дизельных двигателей. Впрочем, аналог такой системы применяется и в бензиновых двигателях с принудительным впрыском топлива, т. е. инжекторных двигателях.
Разработчиками системы Common Rail являются специалисты известной германской фирмы Bosch. На серийных автомобилях с применением электронного управления такие системы появились в 1997 году.
В настоящее время работы по применению систем Common Rail ведутся практически во всех фирмах-производителях ТПА (R.Bosch, Lucas, Siemens, L’Orange).

Основное принципиальное отличие системы Common Rail от рассмотренной в предыдущей статье классической системы питания заключается в том, что топливо к форсункам подается не непосредственно от ТНВД, а от общего накопителя – топливной рампы.

Топливная рампа (аккумулятор топлива) представляет собой толстостенный цилиндрический сосуд, способный выдерживать высокое давление, развиваемое ТНВД. В рампе поддерживается постоянное давление топлива с помощью ТНВД и регулятора давления, и каждая форсунка соединена топливопроводом с рампой.
В нужный момент блок управления формирует управляющий сигнал на электромагнитный (или пьезоэлектрический) клапан форсунки, форсунка открывается и топливо впрыскивается в цилиндр.
Таким образом, главной отличительной особенностью системы Common Rail является разделение процессов создания давления и впрыска топлива, что позволяет получить ряд преимуществ в работе.

Применение данной системы позволяет снизить расход топлива, токсичность отработавших газов, уровень шума дизеля, а также значительно улучшить его динамические характеристики. По сравнению с обычным дизелем система

Common Rail позволяет снизить расход топлива до 40% при уменьшении токсичности отработавших газов и снижении шумности при работе на 10 %.
Главным преимуществом системы Common Rail является возможность управления подачей топлива посредством компьютера (электронного блока управления), что позволяет осуществлять широкий диапазон регулирования давления, количества и момента начала впрыска топлива.

Конструктивно система впрыска Common Rail составляет контур высокого давления топливной системы классического дизельного двигателя. В системе используется непосредственный впрыск топлива, т.е. дизельное топливо впрыскивается непосредственно в камеру сгорания.
Система Common Rail включает топливный насос высокого давления, клапан дозирования топлива, регулятор давления топлива (контрольный клапан), топливную рампу и форсунки. Все элементы объединяют топливопроводы.

Топливный насос высокого давления (ТНВД) служит для создания высокого давления топлива и его накопления в топливной рампе. На современных дизелях, оборудованных системой питания Common Rail применяют топливные насосы высокого давления радиально-плунжерного или плунжерного типа.
Более подробно о ТНВД радиально-плунжерного типа здесь.

Клапан дозирования топлива регулирует количество топлива, подаваемого к топливному насосу высокого давления в зависимости от потребности двигателя. Клапан конструктивно объединен с ТНВД.

Регулятор давления топлива предназначен для управления давлением топлива в системе, в зависимости от нагрузки на двигатель. Он устанавливается в топливной рампе.

Топливная рампа предназначена для выполнения нескольких функций: накопления топлива и содержание его под высоким давлением, смягчения колебаний давления, возникающих вследствие пульсации подачи от ТНВД, распределения топлива по форсункам.

Форсунка — важнейший элемент системы, непосредственно осуществляющий впрыск топлива в камеру сгорания двигателя. Форсунки связаны с топливной рампой топливопроводами высокого давления. В системе используются электрогидравлические форсунки или пьезофорсунки.
Впрыск топлива электрогидравлической форсункой осуществляется за счет управления электромагнитным клапаном. Активным элементом пьезофорсунки являются пьезокристаллы, значительно повышающие скорость работы форсунки.

Управление работой системы впрыска Common Rail обеспечивает система управления дизелем, которая объединяет датчики, блок управления двигателем и исполнительные механизмы систем двигателя. Основными исполнительными механизмами системы впрыска

Common Rail являются форсунки, клапан дозирования топлива, а также регулятор давления топлива.

***

Принцип действия системы впрыска Common Rail

Принцип работы системы питания Common Rail достаточно прост, и попытки ее применения известны достаточно давно – более полувека назад. Тем не менее, максимального эффекта от использования такой системы питания удается получить лишь с помощью компьютерного управления работой двигателя, поэтому широкое распространение подобные системы получили лишь недавно.
Рассмотрим подробнее работу Common Rail на приведенной ниже схеме (рис. 2).

С помощью топливоподкачивающего насоса (ТПН) топливо закачивается из топливного бака и через фильтр с влагоотделителем подается в радиально-плунжерный насос высокого давления (ТНВД) , который с помощью эксцентрикового вала приводит в движение три плунжера.

Топливный насос высокого давления напрямую связан с распределительным валом и подает порцию топлива в рампу при каждом обороте, а не так как в обычном двигателе один раз за два оборота.
От ТНВД топливо под большим давлением поступает в гидроаккумулятор (топливную рампу), откуда поступает на электро- или пьезогидравлические форсунки, управляемые компьютером.
Излишки топлива от форсунок и ТНВД сливаются в топливный бак через топливопроводы слива (магистраль обратного слива).

Схему можно увеличить в отдельном окне браузера, щелкнув по ней мышкой.

В нужный момент блок управления (ЭБУ) дает команду соответствующим форсункам на начало впрыска и обеспечивает определенную продолжительность открытия клапана форсунки. В зависимости от режимов работы двигателя блок управления двигателем корректирует параметры работы системы впрыска.

Начало впрыска и количество топлива, подаваемого в цилиндры двигателя через форсунки, зависит от начала и продолжительности сигнала электронного блока управления, формируемого на основании информации от датчиков. Этот сигнал зависит от нескольких параметров, в первую очередь — от режима работы двигателя.
Система управления дизелем включает датчики оборотов двигателя, положения коленчатого вала (датчик Холла), положения педали акселератора, расходомер воздуха, температуры охлаждающей жидкости, давления воздуха, температуры воздуха, давления топлива, кислородный датчик (лямбда-зонд) и некоторые другие.

Давление в системе регулируется по сигналу блока управления с помощью регулятора. На холостом ходу оно минимальное, что снижает шум работы форсунок и ТНВД, а при разгоне максимальное для обеспечения лучшей приемистости.



Многократный впрыск в системе Common Rail

Поскольку давление впрыска не зависит от оборотов двигателя и нагрузки, фактическое начало, давление и продолжительность впрыска могут быть свободно выбраны в широком диапазоне значений.


Кроме того, появляется возможность применения предварительного впрыска (или даже нескольких впрысков), регулируемого в зависимости от потребностей двигателя, что приводит к существенному сокращению шума двигателя наряду с улучшением процесса сгорания и сокращением выброса вредных веществ с отработавшими газами.

С целью повышения эффективной работы двигателя в системе Common Rail реализуется многократный впрыск топлива в течение одного цикла работы двигателя. При этом различают: предварительный впрыск, основной впрыск и дополнительный впрыск.

Предварительный впрыск небольшого количества топлива производится перед основным впрыском для повышения температуры и давления в камере сгорания, чем достигается ускорение самовоспламенения основного заряда, снижение шума и токсичности отработавших газов. В зависимости от режима работы двигателя производится:

  • два предварительных впрыска — на холостом ходу;
  • один предварительный впрыск — при повышении нагрузки;
  • предварительный впрыск не производится — при полной нагрузке;
  • основной впрыск обеспечивает работу двигателя в режиме частичных и номинальных нагрузок.

Дополнительный впрыск производится для повышения температуры отработавших газов и сгорания частиц сажи в сажевом фильтре (регенерация сажевого фильтра).

***

Достоинства и недостатки системы Common Rail

Как уже отмечалось выше, использование в дизелях системы питания Common Rail вместо классической системы питания дает ощутимый прирост мощности, экологичности и экономичности двигателю. Уменьшение расхода топлива, выброса вредных веществ, шума, наряду с повышением динамических показателей достигается возможностью компьютерного управления всеми процессами впрыска, что невозможно осуществить в традиционных системах питания, даже самых сложных и совершенных.

К существенным недостаткам системы Common Rail следует отнести сложность обслуживания, требующего от технического персонала высокой квалификации и необходимость применения специального оборудования для тестирования работы системы. Поэтому, если автомобиль эксплуатируется в условиях ограниченного технического сервиса невысокого уровня, надежнее использовать классическую систему питания.

Следует отметить, что система питания Common Rail подвергает моторное масло значительным тепловым нагрузкам. Из-за более интенсивного горения верхняя часть (головка) поршней нагревается гораздо сильнее, чем у классического дизельного двигателя. Если головка поршня у классического дизеля непосредственного впрыска нагревается до

320-350 °C, при работе с системой питания Common Rail — свыше 400 °С.
В результате моторное масло выгорает и окисляется значительно интенсивнее. По этой причине в смазочной системе дизелей с впрыском типа Common Rail необходимо использовать синтетические или полусинтетические моторные масла.

***

Перспективы развития системы питания Common Rail

Совершенствование системы питания Common Rail осуществляется по пути увеличения давления впрыска. Очевидно, что чем выше давление в системе в момент впрыска, тем больше топлива успевает попасть в цилиндр за равный промежуток времени и, соответственно, реализовать большую мощность двигателя. Кроме того, впрыск под большим давлением обеспечивает высокое качество распыливания топлива форсункой, что благотворно сказывается на процессах смесеобразования и горения.
В современных двигателях повышение давления впрыска ограничивается прочностью аккумулятора топлива (рампы) и топливопроводов высокого давления, которые подвержены пульсирующим и вибрационным нагрузкам при работе двигателя и способны разрушиться.
Тем не менее, за полтора десятка лет инженерными решениями удалось увеличить давление на впрыске более, чем в полтора раза – у современных дизелей с системой питания Common Rail оно достигает 220 МПа и даже более.

Высокое давление впрыска надежнее обеспечить, используя систему питания типа насос-форсунка, о которой пойдет рассказ в следующей статье.

***

Устройство и принцип работы ТНВД системы Common Rail


Главная страница


Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

Common Rail ТНВД | Diesel-Pro

СИСТЕМА ДИЗЕЛЬНОГО ВПРЫСКА COMMON RAIL

 Устройство и принцип действия

Система Common Rail – это система впрыска топлива под высоким давлением. Ее называют также аккумуляторной системой впрыска. Понятие «Common Rail» означает дословно «общая рейка» или «общая рампа», под которой подразумевается общий для всех форсунок топливный аккумулятор высокого давления. В этой системе разделены процессы подачи топлива под высоким давлением и процессы впрыска. Необходимая для впрыска подача топлива под высоким давлением производится специальным насосом высокого давления. Топливо накапливается в аккумуляторе высокого давления, из которого оно подводится через короткие трубопроводы к форсункам. К премуществам системы Common Rail относятся: практически свободный выбор давления впрыскивания для каждого режима работы двигателя,  возможность впрыска топлива под высоким давлением при низких частотах вращения вала двигателя и при частичных нагрузках, управляемое начало впрыска с подачей предварительной дозы, отделенной от основной порции топлива.

Устройство

Топливная система состоит из двух контуров: контура низкого давления, включающего электронасос в топливном баке, компенсационный бачок, топливный фильтр и шестеренный насос, и контура высокого давления, включающего насос высокого давления, аккумулятор (Rail), форсунки и предохранительный клапан.

Включенные в контур низкого давления электронасос и шестеренный насос обеспечивают подачу топлива из бака через компенсационный бачок и фильтр к насосу высокого давления. Этот насос подает топливо в аккумулятор (Rail) под высоким давлением, необходимым для впрыска топлива. Из аккумулятора высокого давления топливо поступает к форсункам, через которые оно впрыскивается в камеры сгорания двигателя.

 Дизельная форсунка с электронным управлением

Форсунки предназначены для впрыска топлива в камеры сгорания в нужном количестве и в нужный момент. Они управляются блоком управления топливной системой дизеля с непосредственным впрыском. В исходном состоянии форсунка закрыта. Ее электромагнитный клапан при этом обесточен. Якорь электромагнитного клапана прижимается пружиной к его седлу. Игла распылителя форсунки прижимается к ее седлу силой давления топлива, действующего на поршень мультипликатора сверху, и превышающей силу давления, действующую на значительно меньшую площадь иглы снизу.

 

Впрыск топлива производится по команде блока управления системой впрыска дизеля. При этом на электромагнитный клапан подается напряжение. Как только создаваемое электромагнитом усилие превышает силу затяжки пружины клапана, якорь электромагнита поднимается, открывая выпускной дроссель.

В результате топливо из камеры управления вытекает через дроссель в сливную магистраль. Впускной дроссель препятствует быстрому уравниванию давлений в топливоподводящем канале и в камере управления. При этом сила давления, действующая на поршень мультипликатора, снижается до уровня, при котором она преодолевается силой давления на иглу распылителя. В результате игла поднимается и начинается впрыск топлива. Впрыск топлива заканчивается, как только блок управления системой впрыска дизеля прекращает подавать напряжение на электромагнитный клапан форсунки. При этом электромагнитный клапан обесточивается. Пружина электромагнитного клапана вновь прижимает его якорь к седлу, перекрывая сливной дроссель. Давление топлива в камере управления повышается до его уровня в аккумуляторе. При этом давление в камере управления равно давлению, действующему на иглу распылителя.

Это означает восстановление равенства давлений топлива в камере управления и в контуре высокого давления. Ввиду большей площади поршня мультипликатора действующая на него сила вызывает посадку иглы распылителя на ее седло. Таким образом процесс впрыска заканчивается, после чего игла распылителя остается неподвижной.

Дизельный топливный насос высокого давления — ТНВД

Дизельный топливный насос высокого давления или сокращённо ТНВД необходим для создания высокого давления дизельного топлива до 1700 бар. На валу насоса высокого давления находится эксцентрик. Вращение эксцентрика преобразуется посредством установленной на нем шайбы в возвратно-поступательное движение плунжеров трех насосных элементов.

При движении плунжера в направлении к валу увеличивается объем надплунжерного пространства и соответственно уменьшается давление в нем. При этом топливо, подаваемое шестеренным насосом под давлением, поступает через впускной клапан в надплунжерное пространство.

С началом движения плунжера от эксцентрикового вала происходит повышение давления топлива в надплунжерном пространстве. В результате тарелка впускного клапана прижимается к его седлу, перекрывая выход топлива из надплунжерного пространства. Дальнейшее перемещение плунжера сопровождается нарастанием давления топлива. При повышении давления в надплунжерном пространстве до его величины в аккумуляторе открывается выпускной клапан, через который топливо поступает в контур высокого давления.

Принцип работы тнвд коммон рейл

Система впрыска Common Rail

Общие сведения о системе питания Common Rail

Система впрыска Common Rail (Common Rail в переводе с английского – «общий путь», «общая рампа») является современной системой впрыска топлива дизельных двигателей. Впрочем, аналог такой системы применяется и в бензиновых двигателях с принудительным впрыском топлива, т. е. инжекторных двигателях.
Разработчиками системы Common Rail являются специалисты известной германской фирмы Bosch. На серийных автомобилях с применением электронного управления такие системы появились в 1997 году.
В настоящее время работы по применению систем Common Rail ведутся практически во всех фирмах-производителях ТПА (R.Bosch, Lucas, Siemens, L’Orange).

Основное принципиальное отличие системы Common Rail от рассмотренной в предыдущей статье классической системы питания заключается в том, что топливо к форсункам подается не непосредственно от ТНВД, а от общего накопителя – топливной рампы. Топливная рампа (аккумулятор топлива) представляет собой толстостенный цилиндрический сосуд, способный выдерживать высокое давление, развиваемое ТНВД. В рампе поддерживается постоянное давление топлива с помощью ТНВД и регулятора давления, и каждая форсунка соединена топливопроводом с рампой.
В нужный момент блок управления формирует управляющий сигнал на электромагнитный (или пьезоэлектрический) клапан форсунки, форсунка открывается и топливо впрыскивается в цилиндр.
Таким образом, главной отличительной особенностью системы Common Rail является разделение процессов создания давления и впрыска топлива, что позволяет получить ряд преимуществ в работе.

Применение данной системы позволяет снизить расход топлива, токсичность отработавших газов, уровень шума дизеля, а также значительно улучшить его динамические характеристики. По сравнению с обычным дизелем система Common Rail позволяет снизить расход топлива до 40% при уменьшении токсичности отработавших газов и снижении шумности при работе на 10 %.
Главным преимуществом системы Common Rail является возможность управления подачей топлива посредством компьютера (электронного блока управления), что позволяет осуществлять широкий диапазон регулирования давления, количества и момента начала впрыска топлива.

Конструктивно система впрыска Common Rail составляет контур высокого давления топливной системы классического дизельного двигателя. В системе используется непосредственный впрыск топлива, т.е. дизельное топливо впрыскивается непосредственно в камеру сгорания.
Система Common Rail включает топливный насос высокого давления, клапан дозирования топлива, регулятор давления топлива (контрольный клапан), топливную рампу и форсунки. Все элементы объединяют топливопроводы.

Топливный насос высокого давления (ТНВД) служит для создания высокого давления топлива и его накопления в топливной рампе. На современных дизелях, оборудованных системой питания Common Rail применяют топливные насосы высокого давления радиально-плунжерного или плунжерного типа.

Клапан дозирования топлива регулирует количество топлива, подаваемого к топливному насосу высокого давления в зависимости от потребности двигателя. Клапан конструктивно объединен с ТНВД.

Регулятор давления топлива предназначен для управления давлением топлива в системе, в зависимости от нагрузки на двигатель. Он устанавливается в топливной рампе.

Топливная рампа предназначена для выполнения нескольких функций: накопления топлива и содержание его под высоким давлением, смягчения колебаний давления, возникающих вследствие пульсации подачи от ТНВД, распределения топлива по форсункам.

Форсунка – важнейший элемент системы, непосредственно осуществляющий впрыск топлива в камеру сгорания двигателя. Форсунки связаны с топливной рампой топливопроводами высокого давления. В системе используются электрогидравлические форсунки или пьезофорсунки.
Впрыск топлива электрогидравлической форсункой осуществляется за счет управления электромагнитным клапаном. Активным элементом пьезофорсунки являются пьезокристаллы, значительно повышающие скорость работы форсунки.

Управление работой системы впрыска Common Rail обеспечивает система управления дизелем, которая объединяет датчики, блок управления двигателем и исполнительные механизмы систем двигателя. Основными исполнительными механизмами системы впрыска Common Rail являются форсунки, клапан дозирования топлива, а также регулятор давления топлива.

Принцип действия системы впрыска Common Rail

Принцип работы системы питания Common Rail достаточно прост, и попытки ее применения известны достаточно давно – более полувека назад. Тем не менее, максимального эффекта от использования такой системы питания удается получить лишь с помощью компьютерного управления работой двигателя, поэтому широкое распространение подобные системы получили лишь недавно. Рассмотрим подробнее работу Common Rail.

С помощью топливоподкачивающего насоса 6 топливо прокачивается через фильтр 7 с влагоотделителем и подается в радиально-плунжерный насос высокого давления 3, который с помощью эксцентрикового вала приводит в движение три плунжера.
Топливный насос высокого давления напрямую связан с распределительным валом и подает порцию топлива в рампу при каждом обороте, а не так как в обычном двигателе один раз за два оборота.
От ТНВД топливо под большим давлением поступает в гидроаккумулятор 8, откуда под высоким давлением поступает на электро- или пьезогидравлические форсунки 11, управляемые компьютером. Излишки топлива от форсунок и ТНВД сливаются в топливный бак 1 через топливопроводы слива (обратный слив) 2.

В нужный момент блок управления 15 дает команду соответствующим форсункам на начало впрыска и обеспечивает определенную продолжительность открытия клапана форсунки. В зависимости от режимов работы двигателя блок управления двигателем корректирует параметры работы системы впрыска.

Начало впрыска и количество топлива, подаваемого в цилиндры двигателя через форсунки, зависит от начала и продолжительности сигнала электронного блока управления 15, формируемого на основании информации от датчиков. Этот сигнал зависит от нескольких параметров, в первую очередь – от режима работы двигателя.
Система управления дизелем включает датчики оборотов двигателя, положения коленчатого вала (датчик Холла), положения педали акселератора, расходомер воздуха, температуры охлаждающей жидкости, давления воздуха, температуры воздуха, давления топлива, кислородный датчик (лямбда-зонд) и некоторые другие.

Давление в системе регулируется по сигналу блока управления с помощью регулятора 4. На холостом ходу оно минимальное, что снижает шум работы форсунок и ТНВД, а при разгоне максимальное для обеспечения лучшей приемистости.

Многократный впрыск в системе Common Rail

Поскольку давление впрыска не зависит от оборотов двигателя и нагрузки, фактическое начало, давление и продолжительность впрыска могут быть свободно выбраны в широком диапазоне значений.
Кроме того, появляется возможность применения предварительного впрыска (или даже нескольких впрысков), регулируемого в зависимости от потребностей двигателя, что приводит к существенному сокращению шума двигателя наряду с улучшением процесса сгорания и сокращением выброса вредных веществ с отработавшими газами.

С целью повышения эффективной работы двигателя в системе Common Rail реализуется многократный впрыск топлива в течение одного цикла работы двигателя. При этом различают: предварительный впрыск, основной впрыск и дополнительный впрыск.

Предварительный впрыск небольшого количества топлива производится перед основным впрыском для повышения температуры и давления в камере сгорания, чем достигается ускорение самовоспламенения основного заряда, снижение шума и токсичности отработавших газов. В зависимости от режима работы двигателя производится:

  • два предварительных впрыска – на холостом ходу;
  • один предварительный впрыск – при повышении нагрузки;
  • предварительный впрыск не производится – при полной нагрузке;
  • основной впрыск обеспечивает работу двигателя в режиме частичных и номинальных нагрузок.

Дополнительный впрыск производится для повышения температуры отработавших газов и сгорания частиц сажи в сажевом фильтре (регенерация сажевого фильтра).

Достоинства и недостатки системы Common Rail

Как уже отмечалось выше, использование в дизелях системы питания Common Rail вместо классической системы питания дает ощутимый прирост мощности, экологичности и экономичности двигателю. Уменьшение расхода топлива, выброса вредных веществ, шума, наряду с повышением динамических показателей достигается возможностью компьютерного управления всеми процессами впрыска, что невозможно осуществить в традиционных системах питания, даже самых сложных и совершенных.

К существенным недостаткам системы Common Rail следует отнести сложность обслуживания, требующего от технического персонала высокой квалификации и необходимость применения специального оборудования для тестирования работы системы. Поэтому, если автомобиль эксплуатируется в условиях ограниченного технического сервиса невысокого уровня, надежнее использовать классическую систему питания.

Следует отметить, что система питания Common Rail подвергает моторное масло значительным тепловым нагрузкам. Из-за более интенсивного горения верхняя часть (головка) поршней нагревается гораздо сильнее, чем у классического дизельного двигателя. Если головка поршня у классического дизеля непосредственного впрыска нагревается до 320-350 °C, при работе с системой питания Common Rail – свыше 400 °С.
В результате моторное масло выгорает и окисляется значительно интенсивнее. По этой причине в смазочной системе дизелей с впрыском типа Common Rail необходимо использовать синтетические или полусинтетические моторные масла.

Перспективы развития системы питания Common Rail

Совершенствование системы питания Common Rail осуществляется по пути увеличения давления впрыска. Очевидно, что чем выше давление в системе в момент впрыска, тем больше топлива успевает попасть в цилиндр за равный промежуток времени и, соответственно, реализовать большую мощность двигателя. Кроме того, впрыск под большим давлением обеспечивает высокое качество распыливания топлива форсункой, что благотворно сказывается на процессах смесеобразования и горения.
В современных двигателях повышение давления впрыска ограничивается прочностью аккумулятора топлива (рампы) и топливопроводов высокого давления, которые подвержены пульсирующим и вибрационным нагрузкам при работе двигателя и способны разрушиться.
Тем не менее, за полтора десятка лет инженерными решениями удалось увеличить давление на впрыске более, чем в полтора раза – у современных дизелей с системой питания Common Rail оно достигает 220 МПа и даже более.

Высокое давление впрыска надежнее обеспечить, используя систему питания типа насос-форсунка, о которой пойдет рассказ в следующей статье.

В 1936 году на одном из парижских авиашоу был продемонстрирован дизельный двигатель L.Coatalen. Уникальность мотора заключалась в том, что вспрыскивание топливной смеси в цилиндры производилось не гидроспособом, а методом открытия дросселя форсунки с применением гидравлического аккумулятора. Нагнетание горючего в него происходило автономным от системы ТНВД способом. Это и был первообраз Common Rail. Его создатели на несколько десятилетий опередили свое время.

Что такое Common Rail?

Это система подачи топливной смеси, используемая в дизелях. Инжекция горючего происходит под повышенным давлением при помощи мощного насоса. Рабочее давление доходит до 300 МПа. Эта характеристика зависит от режима работы мотора. Впрыск горючего в цилиндры происходит при помощи гидравлических форсунок, которыми управляет электроника. За цикл может произойти вспрыскивание 9 порций горючего. Частота вспрыскиваний зависит от типа силового агрегата и конструкции форсунок.

Отличительная особенность Комон Рэйл – независимость процедуры вспрыскивания топлива от угла прокручивания коленвала и от режима работы силового агрегата. Достигается значительное давление впрыска в частичном режиме. Сейчас это важно ввиду повышенных требований экологического плана.

Как работает система Коммон Рейл

Принцип работы Common Rail такой: электронасос подает топливную смесь к ТНВД. Подача совершается под давлением 2,6-7 бар, и давление продолжает нагнетаться. Оно может достичь и 600 бар, если прокручивать двигатель стартером. А запуск мотора приведет к нагнетанию давления до 1500-2000 бар.

В рейке давление все время поддерживается на нужном уровне. Управляет уровнем специальный датчик. Излишки топливной смеси поступают в магистраль возвратного слива. Регулирующее устройство размещают как в корпусе ТНВД, так и в топливной рейке. В рейке может находиться дроссель быстрого сброса топлива, способный предотвратить образование трещин на стенках при возникновении нештатной ситуации.

На некоторых системах стоят температурные датчики для более точной работы. Иногда встречается отдельная форсунка, которая нужна для увеличения дозировки топливной смеси и прожигания отложений в сажевом фильтре. Есть системы, где прожиг сажевых отложений в фильтре осуществляется путем изменения подаваемой в цилиндры дизеля топливной массы или корректировки момента впрыска при помощи ЭБУ.

Устройство

Система Common Rail состоит из следующих компонентов:

  1. Насос для подкачивания топливной смеси. Производит подачу топливной смеси в трубопровод.
  2. Топливный и сетчатый фильтрующие механизмы. В конструкции первого предусмотрен клапан промежуточного нагрева. При пониженной температуре воздуха он препятствует засорению фильтра кристаллизированными частицами. Сетчатый фильтр защищает ТНВД от проникновения инородных частиц.
  3. Датчики температуры и давления. Первый служит для измерения настоящей температуры топливной смеси, а второй — для измерения давления в магистрали.
  4. ТНВД. Обеспечивает давление, при котором работает система впрыска.
  5. Дозировочный топливный и редукционный клапаны. Дозировочный клапан регулирует подачу горючего в топливную рампу, а топливный меняет магистральное давление.
  6. Регулятор давления горючего и форсунки.

Чем отличается от ТНВД

Основное отличие в том, что подача горючего производится от одной топливной рампы ко всем форсункам сразу. Нужно регулировать цикл подачи в зависимости от пропускной способности отдельной форсунки. Это требует настройки ЭБУ после смены форсунок.

Одно из главных преимуществ Commonrail – возможность поддерживать давление независимо от скорости оборотов коленвала. Давление всегда поддерживается на высоком уровне – это дает важность корректировать сгорание при работе мотора с неполной нагрузкой.

При использовании аккумуляторной системы инжекции горючего начало и окончание процесса полностью контролируются ЭБУ. Можно производить точную дозировку топливной смеси либо во время цикла осуществлять подачу горючего порционно – что важно для его полного выгорания. Механизм очень надёжен — при этом он гораздо проще, чем ТНВД, ремонтировать его легче.

Однако конструкция форсунок здесь более замысловатая, и менять их приходится чаще. Если одна из форсунок выйдет из строя, вся система утратит работоспособность. Поэтому Коммон Рейл важно использовать только с качественным горючим.

Типы впрыска

Всего есть 3 типа впрыска:

  1. Предварительный. Производится перед главным для повышения температурного режима в камере сгорания. Позволяет снизить шум при работе силового агрегата. Частота предварительного впрыска зависит от режима работы мотора. Например, на холостых оборотах он осуществляется 2 раза, на повышенных — 1 раз, а при полноценной нагрузке не производится вообще.
  2. Основной. Обеспечивает работу силового агрегата.
  3. Добавочный. Необходим для понижения токсичности выхлопа. Электронной системе приходит сигнал с датчика подачи кислорода, далее производится впрыск еще одной дозы горючего. Дожиг оставшихся вредных веществ происходит в сажевом фильтре.

Поколения Common Rail

Первое поколение увидело свет в 1999 году. Агрегаты выдавали давление 145 МПа. Через пару лет появилось еще одно поколение с давлением в 160 МПа. В 2005 году вышла третья серия устройств подачи топливной смеси. А сегодня есть уже и четвертое поколение с форсунками, работающими под давлением 220 МПа.

Заключение

У Common Rail очень большой потенциал. Горючее становится всё дороже, и экономичность двигателя выходит на первый план. Не так давно компания Bosch выпустила стомиллионный силовой агрегат со впрыском Commonrail для дизелей и легковых машин. Компания планирует дальше модернизировать систему и выпускать новые ее версии, которые будут отвечать возрастающим требованиям автолюбителей.

Рис.3 a-Регулирование на стороне высокого давления посредством клапана регулирования давления; b-Регулирование давления на стороне всасывания дозирующим устройством, закрепленном на фланце ТНВД; c-Регулирование давления на стороне всасывания дозирующим устройством и дополнительное управление клапаном регулирования давления;
1-ТНВД; 2-Впуск топлива; 3-Возврат топлива; 4-Клапан регулирования давления; 5-Аккумулятор топлива; 6-Датчик давления в аккумуляторе; 7-Штуцеры подсоединения форсунок; 8-Штуцер линии возврата топлива; 9-Предохранительный клапан; 10-Дозирущее устройство; 11-Клапан регулирования давления.

В топливной системе Common Rail функции создания давления и впрыска топлива разделены. Давление впрыска создается независимо от частоты вращения двигателя и количества впрыскиваемого топлива. Каждый из этих компонентов управляется системой электронного управления (EDC).

Создание давления

Функции создания давления и впрыска топлива разделяются посредством аккумулятора топлива. Топливо под давлением подаётся в полость аккумулятора и, таким образом, оказывается готовым к впрыску. Необходимое давление впрыска создается постоянно работающим ТНВД с приводом от двигателя. Давление топлива в аккумуляторе поддерживается независимо от частоты вращения двигателя и количества впрыскиваемого топлива. Благодаря почти равной подаче топлива размеры ТНВД и момент сопротивления привода могут быть значительно меньше, чем в обычных топливных системах. Это выражается в значительно меньшей нагрузке на привод ТНВД. ТНВД в системе Common Rail обычно имеет конструкцию радиально плунжерного типа. В двигателях коммерческих автомобилей иногда устанавливаются рядные многоплунжерные ТНВД.

Регулирование давления в аккумуляторе топлива

Применяемый метод регулирования давления определяется типом топливной системы.

Регулирование на стороне высокого давления ТНВД

В топливных системах легковых автомобилей требуемое давление в аккумуляторе топлива регулируется на стороне высокого давления клапаном регулирования давления (4 на рис. 3а). Топливо, которое не используется для впрыска, возвращается обратно в ступень низкого давления через этот клапан. Такой вид контура регулирования обеспечивает быструю реакцию давления в аккумуляторе для изменения рабочей точки (рабочего режима) (например, в случае изменения нагрузки).

Регулирование на стороне высокого давления применялось в первых поколениях системах Common Rail. Клапан регулирования давления устанавливается преимущественно на аккумуляторе топлива. В некоторых вариантах систем, клапан устанавливается непосредственно на корпусе ТНВД.

Регулирование на стороне всасывания

Другой способ управления давлением в аккумуляторе является регулирование подачи топлива на стороне всасывания ТНВД (рис. 3b).

Дозирующее устройство 10, закрепленное на фланце корпуса ТНВД, обеспечивает точно установленную величину подачи к аккумулятору топлива, для того чтобы поддерживать необходимое давление впрыска топлива в системе. В случае возникновения опасной ситуации предохранительный клапан 9 предотвращает дальнейшее повышение давления в аккумуляторе (выше максимально допустимого давления).

Регулирование подачи топлива на стороне всасывания предусматривает уменьшение величины подачи при повышении давления в аккумуляторе и снижение мощности на привод насоса. Это оказывает положительное влияние на расход топлива. Одновременно понижается температура топлива, которое отводит обратно в топливный бак, в отличии от способа регулирования на стороне высокого давления.

Регулирование давления на стороне всасывания дозирующим устройством и дополнительное управление клапаном регулирования давления (система с двумя управляющими устройствами)

В системе с двумя управляющими устройствами (рис. 3с) осуществляется комбинированное управление путём регулирования давления на стороне всасывания посредством дозирующего устройства и регулирования на стороне высокого давления через клапан регулирования давления (см. раздел «Топливная система Common Rail легковых автомобилей»).

Впрыск топлива

Форсунки впрыскивают топливо непосредственно в камеры сгорания двигателя. Подача топлива к форсункам происходит по коротким линиям высокого давления, подсоединенным к аккумулятору топлива. Электронный блок управления двигателя регулирует положение управляющего элемента (клапана, якоря), встроенного в форсунку, который управляет открытием и закрытием распылителя форсунки.

Количество впрыскиваемого топлива определяется временем открытия насос форсунки и давления в системе. При постоянном давлении количество впрыскиваемого топлива пропорционально времени открытия управляющего элемента и, следовательно, не зависит от частоты вращения двигателя или ТНВД (контролирующей по времени впрыск).

Потенциальная гидравлическая мощность

Разделение функций создания давления и впрыска топлива открывает в будущем возможность повышения степеней свободы в процессе сгорания по сравнению обычными топливными системами. Давление впрыска топлива более или мене свободно выбирается в пределах программы карты характеристик. В настоящее время максимальное давление впрыска, составляет 1600 бар с предполагаемым повышением в будущем до 1800 бар.

Топливная система Common Rail допускает дальнейшее снижение вредных выбросов с ОГ путём внедрения предварительных впрысков или многофазного впрыска топлива, а также значительное снижение шума сгорания. Многофазный впрыск топлива, до пяти в одном цикле, может быть генерирован управляющими сигналами, обеспечивающими очень быстрое многократное срабатывание управляющего элемента. Быстрое прекращение впрыска топлива обеспечивается также гидравлическим воздействием на иглу распылителя при её посадке на седло (закрытие распылителя форсунки).

Управление и регулирование

Принцип действия

Электронный блок управления двигателя определяет положение педали акселератора и текущий рабочий режим двигателя и автомобиля посредством датчиков (см. Раздел «Электронное управление дизелей»). Полученные блоком управления данные включают в себя:

  • Частоту вращения и угловое положение коленчатого вала;
  • Давление в аккумуляторе топлива;
  • Давление воздушного заряда;
  • Температуру воздуха на впуске, температуру охлаждающей жидкости и топлива;
  • Массовый расход воздуха;
  • Скорость автомобиля и т.д.

Электронный блок управления обрабатывает входные сигналы датчиков и в соответствии с процессом сгорания рассчитывает управляющие сигналы для клапана регулирования давления или дозирующего устройства, форсунок и других приводов (например, клапан рециркуляции ОГ – EGR, исполнительные устройства регулирования расхода ОГ в турбине турбокомпрессора и т.д.)

Время переключения форсунок, которое желательно получить наименьшим, достигается с использованием оптимизированных переключающих клапанов высокого давления и специальных управляющих систем.

Система «угол/время» сопоставляет угол опережения впрыска топлива, установленный на основе входных сигналов датчиков коленчатого и распределительных валов, с режимом работы двигателя (контроль времени). Электронная система управления дизеля (EDC) обеспечивает точное дозирование количества впрыскиваемого топлива. Кроме того, система EDC имеет потенциальные возможности применения дополнительных функций, которые могут улучшить реакцию и приспособляемость двигателя.

Основные функции

Основные функции предусматривают точное управление углом опережения впрыска и цикловой подачей топлива при заданных (контрольных) давлениях впрыска. Следовательно, эти функции обеспечивает низкий расход топлива и плавную работу дизеля.

Корректирующие функции для расчета впрыска топлива

Некоторое число корректирующих функций служит для компенсации расхождений между системой впрыска топлива и режимом работы двигателя (см. Раздел «Электронное управление дизелей»):

  • Компенсации величины подачи топлива форсункой;
  • Калибровка нулевой подачи;
  • Управление компенсацией подачи топлива;
  • Адаптация средней величины подачи.

Дополнительные функции

Дополнительные управляющие функции в разомкнутых и замкнутых системах управления выполняют задачи снижения эмиссии вредных веществ и расхода топлива или обеспечения дополнительной безопасности и приспособляемости двигателя. Вот некоторые примеры:

  • Управление рециркуляцией ОГ;
  • Регулирование давления наддува;
  • Управление системой поддержания скорости;
  • Электронный иммобилайзер и .т.д.

Внедрение EDC во все системы автомобиля открывает множество новых возможностей, например, обмен данными с системой управления трансмиссией или системой кондиционирования воздуха.

Диагностический интерфейс позволяет анализировать сохранённые данные систем при техническом обслуживании автомобиля.

Конфигурация электронного блока управления

Поскольку электронный блок управления двигателя обычно имеет максимально только восемь выходных каскадов для форсунок, двигатели с числом цилиндров больше восьми оснащаются двумя электронными блоками управления. Они связаны внутри сети как «masterslave» (главный/подчиненный) через внутренний высокоскоростной интерфейс шины CAN. В результате достигается высокая обрабатывающая способность микропроцессоров. Некоторые функции постоянно размещаются в специальных блоках управления (например, управление компенсацией подачи топлива). Другие функции могут динамически включаться в тот или другой блок управления в зависимости от ситуации (например, для определения сигналов датчиков).

Ремонт ТНВД Bosch common rail | Сервис Форсунок

Топливный насос высокого давления (ТНВД) – это сердце топливной системы Common rail. ТНВД системы Common rail намного проще по конструкции и функционалу, чем его предшественники. Основной его функцией является постоянная подача топлива в рампу под высоким давлением.

Насосы бывают разных типов. Основными отличительными характеристиками являются производительность и конструкция самих насосов, что определяет их возможности и применение.

В топливной системе Common rail подача топлива происходит по схеме топливный бак → подкачивающее устройство → создание высокого давления в ТНВД. Поэтому для нормальной работы топливной системы равноценно важны эффективная работа как подкачивающего насоса (насос подкачки) так и непосредственно ТНВД. Подкачивающий насос может быть как электрическим так и механическим. Некоторые устанавливаются внутри бака, некоторые на выходе из бака. В ТНВД типа CP-3 шестеренчатый насос подкачки интегрирован непосредственно в корпус ТНВД.


 

Схема устройства ТНВД

а) продольный разрез:

1 — вал привода; 2 — эксцентриковый кулачок; 3 — плунжер со втулкой; 4 — камера над плунжером; 5 — впускной клапан; 6 — электромагнитный клапан отключения плунжерной секции; 7 — выпускной клапан; 8 — уплотнение; 9 — штуцер магистрали, ведущей к аккумулятору высокого давления; 10 — клапан регулирования давления; 11 — шариковый клапан; 12 — магистраль обратного слива топлива; 13 — магистраль подачи топлива к ТНВД; 14 — защитный клапан с дроссельным отверстием; 15 — перепускной канал низкого давления.

б) поперечный разрез:

1 — вал привода; 2 — эксцентриковый кулачок; 3 — плунжер с втулкой; 4 — впускной клапан; 5 — выпускной клапан; 6 — подача топлива.


 

Принцип работы

Принцип работы ТНВД заключается в том, что подкачка подпитывает его необходимым низким давлением (в зависимости от типа системы это 4-7 Bar). После чего, солярка попадает в перепускной канал низкого давления. При опускании плунжера, в камере над ним происходит разрежение давления, и через впускной клапан втягивается топливо из канала низкого давления. При обратном ходе плунжера топливо нагнетается в выпускной клапан. Поскольку проходимость отверстия клапана намного меньше подаваемого потока топлива, на выходе из клапана создается очень высокое давление.

Давление которое выдает ТНВД в системе Common rail может достигать порядка 1200-1400 Bar, в некоторых автомобилях более 2000 Bar. Давление свыше 2000 Bar используют в основном в автомобилях нового поколения, где впрыск топлива происходит при помощи пьезоэлектрических форсунок. Их конструкция позволяет при таком давлении за очень короткий промежуток времени подавать мощную порцию топлива, при этом разделяя ее на 4-5 частей. Это способствует более тихой и чистой работе двигателя, и при этом двигатель стает более приемистым.


 

Топливная рампа

Поскольку давление в насосе увеличивается при помощи поочередной работы плунжерных пар, на выходе оно идет «скачками». Для гашения этих колебаний, в системе установлена топливная рампа (рейка). Рампа – это резервуар высокого давления в виде трубы, в которую подается топливо из насоса. Ее основные задачи: накопление топлива, удерживание его под высоким давлением, гашение колебаний давления и распределение топлива по форсункам.

На рампе находится датчик давления для мониторинга системы блоком управления. А для регулировки системы по высокому давлению, на рейку устанавливают электромагнитный редукционный клапан. В состоянии покоя он пропускает через себя топливо в сливную магистраль. При подаче сигнала от ЭБУ (блок управления) автомобиля, он начинает удерживать топливо в рампе, согласно заданного ему режима.

В других моделях авто роль регулятора давления выполняет интегрированный в ТНВД дозировочный блок (регулятор низкого давления), в некоторых системах сосуществуют оба вида регуляторов. В результате такого взаимодействия элементов топливной системы, солярка поступает на форсунки уже под необходимым давлением.


 

Поломки топливного насоса высокого давления

Основная причина выхода из строя ТНВД – это некачественное топливо, срок и условия эксплуатации. Насосы системы Common rail очень требовательны к чистоте и качеству топлива.

Рассмотрим часто встречающийся вариант ТНВД – СР1. Устанавливаются такие насосы на легковые автомобили и микроавтобусы Mercedes, BMW, Fiat, Peugeot, Citroen, Iveco. Конструкция такого насоса довольно проста: вал привода, эксцентриковый кулачок, 3 плунжера, 3 клапана. Все это монтируется в трехголовковый корпус. На одной из крышек головки насоса устанавливают электромагнитный клапан отключения плунжерной секции. Иногда насосы комплектуются регулятором давления.

Что же может произойти с таким простым и незатейливым насосом? И правда, каких-то сложностей от него можно не ждать. Основных проблем две – течь и низкая производительность.

Течь

Течет такой насос по причине выхода из строя уплотнительных сальников. Реже это происходит по причине микротрещин в крышке головки насоса. Вследствие этого ТНВД начинает «мокреть». Этот дефект сильнее проявляется на «холодную», зачастую после прогрева двигателя насос перестает течь. Это говорит о том, что пора менять эти самые уплотнительные сальники. При наличии микротрещин в крышке, ее необходимо заменить. Течь насоса неприятна тем, что солярка попадает на ремень, который постепенно размокает и в результате произойдет его обрыв.

Низкая производительность

Производительность ТНВД СР1 зависит от клапанов, плунжеров и состояния их прецизионных частей. При нарушении нормальной работы клапанов, они не могут нагнетать заданное давление за необходимый промежуток времени. В связи с этим, часто встречается такой дефект: машина при плавном наборе нормально работает, развивает обороты, а при резком наборе – входит в аварийный режим (падают обороты, в некоторых моделях и вовсе глохнет).

Происходит это при обгоне, что не только неприятно, но и очень рискованно, когда автомобиль на «встречке» вдруг отсекает и приходится отчаянно искать выход из сложившейся ситуации. Эта поломка сильнее ощущается на горячем двигателе и в жаркую погоду.


 

Алгоритм ремонта ТНВД

После очистки насос проверяется на наличие механических повреждений. Потом вскрываем фланец и производим оценку внутреннего состояния ТНВД (стружка, ржавчина, остатки грязи). Если с этим все в порядке ТНВД попадает на стендовую проверку. Тестируется насос на разных режимах при различных нагрузках. В результате проверки определяются его неисправности, после чего принимается решение о ремонте. Ремонт, как правило, бывает двух видов замена ремкомплекта (при обнаружении течи) или замена клапанов в случае низкой производительности ТНВД. Все комплектующие для ремонта производятся фирмой Bosch.

Гарантия на ремонт ТНВД

При комплексном ремонте ТНВД предоставляется гарантия. Подробнее об этом читаем здесь.

Что надо знать о дизелях Common Rail и когда их нужно бояться? Рассказывает специалист

Давно минули времена, когда некоторые белорусские дилеры опасались продавать на нашем рынке автомобили, оснащенные дизелями Common Rail, а для покупателя известие, что новая или подержанная машина, которую он собрался приобрести, оборудована таким дизелем, не предвещало ничего хорошего. Моторы Common Rail и впрямь перевернули с ног на голову представление о надежности и неприхотливости дизельной техники, готовой, как казалось до этого многим, безотказно ездить на всем, что горит.



По принципу работы Common Rail похож на старые системы питания: подкачивающий насос забирает топливо из бака, подает его к насосу высокого давления (ТНВД), а тот в свою очередь снабжает топливом форсунки, которые в нужные моменты времени распыляют топливо в цилиндры. Что же сделало эту систему гораздо более привередливой к топливу, чем были ее предшественники?

Чтобы выяснить, в чем заключались проблемы дизелей Common Rail и в чем они состоят сегодня, какие неприятные сюрпризы Common Rail преподносил и продолжает преподносить, каковы их причины, что должен знать и делать владелец, чтобы Common Rail прослужил как можно дольше, корреспондент abw.by беседует с Сергеем Поповичем, специалистом по топливным системам дизельного центра ООО «Автотехтрак»:

— Конструктивная особенность Common Rail — наличие аккумулятора топлива. В старых системах его не было. В Common Rail аккумулятор, или рейка, как его нередко называют, располагается между ТНВД и форсунками. Если раньше ТНВД распределял топливо по форсункам, то в Common Rail насос лишь закачивает топливо под высоким давлением в аккумулятор, а уже из него топливо распределяется по форсункам.

Второй момент — если управление старыми системами было механическим или электронно-механическим, то Common Rail управляется электроникой. Впрочем, про электронику сразу надо сказать, что, если не вдаваться в частности по отдельным производителям, она весьма надежна. Другое дело, что в наших условиях эксплуатации обычное явление, когда после определенного пробега удаляют сажевый фильтр, глушат клапан EGR, а чтобы после этого система работала корректно, перепрошивают блок управления. Заводскими применяемые прошивки быть не могут. В зависимости от качества прошивки есть вероятность нарушений в работе блока управления. Если же постороннего вмешательства не было, то относительно количества неисправностей в механической части число выходов электроники из строя — это мизер, на который можно не обращать внимания.

Электронное управление и наличие аккумулятора — это особенности, однако главное состоит в том, что отличается Common Rail от старых систем питания существенно более высоким давлением впрыска. Оно определяет качество распыливания топлива, а это и есть ключевой параметр, от которого зависит качество смесеобразования и последующего сгорания, или, другими словами, эффективность работы дизеля.

Детали топливной аппаратуры были прецизионными и раньше, но чтобы обеспечить более высокое давление впрыска, потребовалось еще сильнее ужесточить требования к размерам и допускам. А как все, наверное, знают, смазываются трущиеся детали в системе питания топливом. Говоря иначе, то, что для двигателя является топливом, для системы питания — смазка. Опять-таки это было на старых дизелях, это осталось в Common Rail, но в связи с ужесточением размерных параметров требовательность к качеству смазки повысилась значительно.

Когда Common Rail только появился и сразу шокировал владельцев своей якобы ненадежностью, именно то, что владельцы относились к эксплуатации и обслуживанию нового поколения топливной системы как к старому, и было основной причиной преждевременных неисправностей. Приведу пример из своей практики, который относится к тому времени. Одна транспортная организация закупила для пассажирских перевозок автобусы «Радзимич». Моторы Евро-3 были оснащены системой Denso. При обслуживании вместо топливных фильтров именно для Common Rail Denso начали устанавливать фильтры от дизелей ЯМЗ с обычной на тот момент системой питания — они были похожи внешне и подходили по монтажным размерам. Кроме того, нарушался регламент замены — фильтры менялись не вовремя, а при большем пробеге. В результате получили быстрый и массовый выход Denso из строя.

о же самое происходило и с частными автомобилями. Поясню на примере Ford Mondeo, который сейчас находится у нас в ремонте.

Здесь топливная система Delphi. Тонкость отсева, или, другими словами, размер пор в бумаге фильтра Delphi, — 5 микрон. По данным Delphi, после пробега 10 тысяч километров пропускная способность наружной части этого фильтра за счет износа кромок пор инородными частицами, когда они проходят через поры, увеличивается до 15 микрон. Соответственно увеличиваются размеры посторонних включений, которые свободно проходят через фильтр к узлам системы и вызывают их ускоренный износ. Такому фильтру уже не место на двигателе, тянуть с его заменой больше нельзя. А в некачественных топливных фильтрах встречается пропускная способность и вовсе до 50 микрон. То есть такие фильтры вообще нельзя применять в Common Rail.

Лет пять, наверное, понадобилось, чтобы люди на своих ошибках поняли, что Common Rail существенно более привередливы к чистоте топлива и не прощают того, что можно было без последствий делать со старыми топливными системами.

Поэтому если я скажу, что главное условие долговечности Common Rail — своевременная замена фильтров и использование рекомендованных фильтров, а в идеале — оригинальных фильтров Bosch, Delphi или Denso в зависимости от производителя системы питания, которой оборудован двигатель, то Америки не открою.

К сожалению, со временем обнаружилась еще одна проблема, которая влияет на надежность системы, — насосы и топливные аккумуляторы ржавеют изнутри.

В насосе могут заклинить плунжеры — продукты коррозии попадают в форсунки и выводят их из строя. Таким образом, к двум указанным выше причинам преждевременных неисправностей Common Rail — пригодности фильтра и периодичности его замены — добавилась еще одна. И она лишний раз подтверждает, насколько Common Rail критичен к качеству топлива.

Кроме воды в топливе к коррозии, скорее всего, было причастно и биотопливо. Во всяком случае на время, когда оно продавалось на АЗС, как раз пришелся пик обращений с проблемами, вызванными коррозией, да и сейчас, думаю, на многих машинах, где первопричиной выхода Common Rail из строя является коррозия, — это все еще последствия былых заправок биотопливом.

Однако если коррозии удастся благополучно избежать, если систему защищает качественный фильтр и он вовремя будет заменен на такой же фильтр, то прослужит Common Rail столько, сколько ему отмерено производителем, и станет неисправным лишь по естественной причине из-за износа при большом пробеге.

Возможны, конечно, случайности. К примеру, мы сталкивались, когда систему выводил из строя кусочек заводского герметика, но это единичный случай.

О массовости можно говорить только в отношении прогорающих уплотнительных шайб под форсунками. Вот это действительно беда. Сажа забивает колодец форсунки, корпус форсунки перегревается, при этом выходит из строя распылитель.

А дальше очень сложное извлечение форсунок, иногда и невозможное. Если владелец услышал свистящий звук, совпадающий с тактами работы двигателя, надо немедленно ехать на сервис, пока дело не зашло далеко.

Но если соблюдать указанные условия и обойдется без случайностей, на легковых автомобилях Common Rail держится без каких-либо проблем 10 лет и даже дольше. А на дизелях для грузовой техники Common Rail рассчитан на еще большие побеги. Видимо, при изготовлении компонентов используются другие материалы. Разница существует даже внутри топливных систем одной и той же марки. Похоже, у производителей есть свои соображения, сколько система питания должна служить на легковых моделях, а сколько на грузовых.

И из особенностей той или иной системы, наличия в ней слабых мест вытекают другие проблемы. Например, если продолжить о системе Delphi на моторе Mondeo, которой мы уже коснулись, то в ней главным пострадавшим от смазки некачественно очищенным топливом является подкачивающий насос. Он находится внутри насоса высокого давления.

Изнашиваются лопатки подкачивающего насоса, но фильтр-то стоит до него, поэтому после насоса защиты от продуктов износа лопаток нет. А дальше на прямой связи с насосом — топливный аккумулятор и форсунки.

Теперь от грязи в топливе страдают уже форсунки. Что стружка, или, вернее, металлическая пудра, в топливе есть, нередко можно увидеть, если заглянуть в бак, куда частички пудры попадают по «обратке».

На дне бака они блестят, как звездочки на ночном небе.

Сами по себе форсунки имеют большой ресурс, но когда в дело вмешивается стружка, которую гонит подкачивающий насос, и частички ржавчины, долго форсунки не выдерживают. От износа нарушается их гидроплотность, а вслед за неисправностью форсунок начинаются проблемы с запуском, неравномерной работой, дымлением.

В Delphi подкачивающий насос — слабое место всей системы. Оно определяет надежность системы, потому что продукты износа подкачивающего насоса выводят из строя все остальные части.

Однако что делает владелец? Он приносит в ремонт форсунки. Или как вариант — покупает другие форсунки. Отремонтировать форсунки можно, заменить можно, но ведь долго они не проработают, так как не устранена первопричина. Неважно, подкачивающий насос по-прежнему гонит стружку или виноват ржавый аккумулятор. Важно, что ремонт форсунок без устранения причины их выхода из строя — выброшенные деньги.

Диагностика неисправностей — другая серьезная проблема Common Rail, от которой зависит, в какие деньги обойдется ремонт и как долго после него система прослужит. Наши владельцы на диагностике часто стараются сэкономить, а поскольку они не специалисты, то начинают с чего-то легкого, и если результата нет, продолжают постепенно менять что-то еще, затем еще и так далее. А нынче диагностами и вовсе стали все, у кого есть смартфон, в который можно закачать соответствующую программу. Иногда такой подход прокатывает, но чаще бывает наоборот. Например, коррозию аккумулятора, которая привела к неисправности форсунки, с помощью компьютерной диагностики не определишь.

Наличие в смартфоне или ноутбуке диагностической программы не дает пользователю тех знаний о тонкостях и нюансах, которые свойственны системе в зависимости от ее марки, года выпуска. Диагностика ведь не заключается в считывании ошибок. Коды подразумевают определенную неисправность, но у нее может быть несколько разных источников. Специалист с помощью диагностического оборудования, которым он располагает помимо компьютера, и собственного опыта найдет конкретную деталь, которая требует замены. И это получится дешевле, чем менять поочередно все подряд.

Приведу простейший пример знаний о нюансах. Двухлитровые 8-клапанные моторы HDi идут с начала 2000-х годов. Понятно, что даже при правильной эксплуатации форсунки в них выходят из строя по естественным причинам. Новый распылитель для этой форсунки стоит 40 долларов, а на «разборках» можно найти целую форсунку за 20. Что сделает владелец? Поскольку ремонт своей форсунки экономически нецелесообразен, он купит «бэушную» форсунку. Но вот проблема, которая выявилась только в последние несколько лет, — со временем деформируется распылитель, его как бы раздувает в нижней части. Примечательно, что на самом деле происходит уменьшение диаметра в верхней части из-за то ли эрозии, то ли еще чего-то — неважно. Важно, что это хорошо видно. Тем не менее владелец такую форсунку покупает, несмотря на наличие даже внешне различимого признака, что она плохая.

Когда Bosch эту систему разрабатывал, его инженеры, наверное, даже не предполагали, что через 15 с лишним лет такое с распылителями начнет происходить. И подобную проблему мы теперь наблюдаем на дизелях Mercedes. Было бы полезно, чтобы эта информация дошла до читателей. Им не помешает знать, что покупать не надо, потому что сейчас все чаще к нам приносят с «разборок» такие форсунки для проверки.

Так вот, если правильное обслуживание и эксплуатация системы позволяют избежать преждевременных выходов ее узлов из строя, то диагностика в специализированной мастерской сохранит в кошельке владельца деньги, которые он в противном случае может потратить впустую…

Итак, подводим итог. Если правильно обслуживать Common Rail, то бояться его не надо. Понятно, что узлы системы не вечные, но при грамотном уходе выйдут они из строя по естественным причинам. А вот наличие у той или иной системы особенностей и слабых мест порождает новый вопрос: где слабых мест меньше, что надежнее и предпочтительнее для наших условий эксплуатации — Bosch, Siemens, Delphi или Denso? Вместе с дизельным центром ООО «Автотехтрак» мы постараемся на него ответить — следите за сайтом.

Источник материала — www.abw.by

Common Rail-что , зачем и почему

СИСТЕМА ДИЗЕЛЬНОГО ВПРЫСКА COMMON RAIL

Устройство и принцип действия

Система Common Rail – это система впрыска топлива под высоким давлением. Ее называют также аккумуляторной системой впрыска. Понятие «Common Rail» означает дословно «общая рейка» или «общая рампа», под которой подразумевается общий для всех форсунок топливный аккумулятор высокого давления. В этой системе разделены процессы подачи топлива под высоким давлением и процессы впрыска. Необходимая для впрыска подача топлива под высоким давлением производится специальным насосом высокого давления. Топливо накапливается в аккумуляторе высокого давления, из которого оно подводится через короткие трубопроводы к форсункам. К преимуществам системы Common Rail относятся: практически свободный выбор давления впрыскивания для каждого режима работы двигателя,  возможность впрыска топлива под высоким давлением при низких частотах вращения вала двигателя и при частичных нагрузках, управляемое начало впрыска с подачей предварительной дозы, отделенной от основной порции топлива.

Устройство

Топливная система состоит из двух контуров: контура низкого давления, включающего электронасос в топливном баке, компенсационный бачок, топливный фильтр и шестеренный насос, и контура высокого давления, включающего насос высокого давления, аккумулятор (Rail), форсунки и предохранительный клапан.

Включенные в контур низкого давления электронасос и шестеренный насос обеспечивают подачу топлива из бака через компенсационный бачок и фильтр к насосу высокого давления. Этот насос подает топливо в аккумулятор (Rail) под высоким давлением, необходимым для впрыска топлива. Из аккумулятора высокого давления топливо поступает к форсункам, через которые оно впрыскивается в камеры сгорания двигателя.

Дизельная форсунка с электронным управлением

Форсунки предназначены для впрыска топлива в камеры сгорания в нужном количестве и в нужный момент. Они управляются блоком управления топливной системой дизеля с непосредственным впрыском. В исходном состоянии форсунка закрыта. Ее электромагнитный клапан при этом обесточен. Якорь электромагнитного клапана прижимается пружиной к его седлу. Игла распылителя форсунки прижимается к ее седлу силой давления топлива, действующего на поршень мультипликатора сверху, и превышающей силу давления, действующую на значительно меньшую площадь иглы снизу.

Впрыск топлива производится по команде блока управления системой впрыска дизеля. При этом на электромагнитный клапан подается напряжение. Как только создаваемое электромагнитом усилие превышает силу затяжки пружины клапана, якорь электромагнита поднимается, открывая выпускной дроссель.

В результате топливо из камеры управления вытекает через дроссель в сливную магистраль. Впускной дроссель препятствует быстрому уравниванию давлений в топливоподводящем канале и в камере управления. При этом сила давления, действующая на поршень мультипликатора, снижается до уровня, при котором она преодолевается силой давления на иглу распылителя. В результате игла поднимается и начинается впрыск топлива. Впрыск топлива заканчивается, как только блок управления системой впрыска дизеля прекращает подавать напряжение на электромагнитный клапан форсунки. При этом электромагнитный клапан обесточивается. Пружина электромагнитного клапана вновь прижимает его якорь к седлу, перекрывая сливной дроссель. Давление топлива в камере управления повышается до его уровня в аккумуляторе. При этом давление в камере управления равно давлению, действующему на иглу распылителя.

Это означает восстановление равенства давлений топлива в камере управления и в контуре высокого давления. Ввиду большей площади поршня мультипликатора действующая на него сила вызывает посадку иглы распылителя на ее седло. Таким образом процесс впрыска заканчивается, после чего игла распылителя остается неподвижной.

Дизельный топливный насос высокого давления — ТНВД

Дизельный топливный насос высокого давления или сокращённо ТНВД необходим для создания высокого давления дизельного топлива до 1700 бар. На валу насоса высокого давления находится эксцентрик. Вращение эксцентрика преобразуется посредством установленной на нем шайбы в возвратно-поступательное движение плунжеров трех насосных элементов.

При движении плунжера в направлении к валу увеличивается объем надплунжерного пространства и соответственно уменьшается давление в нем. При этом топливо, подаваемое шестеренным насосом под давлением, поступает через впускной клапан в надплунжерное пространство.

С началом движения плунжера от эксцентрикового вала происходит повышение давления топлива в надплунжерном пространстве. В результате тарелка впускного клапана прижимается к его седлу, перекрывая выход топлива из надплунжерного пространства. Дальнейшее перемещение плунжера сопровождается нарастанием давления топлива. При повышении давления в надплунжерном пространстве до его величины в аккумуляторе открывается выпускной клапан, через который топливо поступает в контур высокого давления.

Причины неисправности форсунок Common Rail

Форсунки системы Common Rail относят к наиболее продвинутой системе подачи топлива для дизельных двигателей. Но периодически и им необходимо проводить плановый ремонт. Сбой в работе форсунок может произойти по следующим причинам:

  1. Износ детали. Срок работы форсунки Common Rail примерно 150 000-200 000 км.
  2. Качество топлива. Наличие в нём воды, присадок, а порой и бензина.
  3. Неправильная эксплуатация, замена и ремонт форсунок.

Наиболее часто у форсунок из строя выходят — клапан-мультипликатор и распылитель. Точную причину сбоя в работе форсунки помогут определить только в сервисном центре. Самостоятельно показания к ремонту можно понять по следующим факторам:

  • Двигатель долго заводится, особенно в прогретом состояние;
  • «Троит» двигатель;
  • Повышенная дымность выхлопа;
  • Повышенный расход топлива.
  • Уменьшение тяги дизельного двигателя.

Оборудование необходимое  для проведения ремонтных работ

Далеко не последнюю роль на обеспечение качества проводимого ремонта оказывают инструменты, применяемые при ремонте форсунок систем Common Rail, а так же специальные стенды для проведения диагностики форсунок Common Rail на основании тест-плана завода изготовителя. Для этих задач мы предлагаем безмензурочный стенд CR305, который позволяет произвести диагностику по всем возможным режимам работы форсунки на основании тест-плана завода изготовителя. Режимы: leak test — проверка герметичности форсунок, VL test — проверка открытия давления и объема топлива , LL test — проверка максимального давления и объема топлива, VE test — проверка  давления и объема топлива по параметрам. Стенд CR 305, укомплектован всем необходимы для работы с любым типом форсунок Bosch, Delphi, Siemens, Denso с верхним и боковым подводом топлива. Так же для проведения предварительной (первичной) диагностики форсунок существуют комплекты CRtest, которые позволяют определить состояние форсунки и возможность ее последующей диагностики на безмензурочном стенде и ее ремонтопригодности. Если у Вас есть стенд для ТНВД, можно приобрести специальную оснастку для систем Common Rail и проводит диагностику непосредственно на стенде для ТНВД.  После определения неисправности форсунок производится ремонт. На этапе ремонта понадобится специальные наборы инструментов для разборки/сборки форсунок, специальные индикаторные головки для измерения хода анкера. Стапель для удобства работы с форсункой. Все это оборудование представлено в разделе «Инструмент для Common Rail». Так же Вы можете увидеть варианты диагностики и способы применение оборудования в разделе «Видео».

Устройство рампы common rail

Система впрыска Common Rail является самой современной системой впрыска топлива дизельных двигателей. Работа системы Common Rail основана на подаче топлива к форсункам от общего аккумулятора высокого давления – топливной рампы, наподобие бензиновых ДВС (Common Rail в переводе означает общая рампа). Система впрыска разработана специалистами фирмы Bosch.

Наибольшее распространения получили четыре типа систем COMMON RAIL, названным по имени их производителя. BOSCH, DELPHI, DENSO и SIEMENS. Каждый автопроизводитель имеет собственную аббревиатуру, которая обозначает как систему, так и ее отдельные элементы :

BMW : D-двигатели (также используются Land Rover как TD4)
Cummins и Scania : XPI
Cummins : CCR
Daimler : CDI (для автомобилей Chrysler и Jeep — CRD)
Fiat : Fiat, Alfa Romeo и Lancia — JTD (MultiJet, JTDm, Ecotec CDTi, TiD, TTiD, DDiS, Quadra-Jet)
Ford Motor : TDCi Duratorq и Powerstroke
General Motors : Opel/Vauxhall — CDTi и DTi для Isuzu
General Motors : Daewoo/Chevrolet — VCDi (VM Motori — Ecotec CDTi)
Honda : i-CTDi
Hyundai и Kia : CRDi
Mahindra : CRDe
Maruti Suzuki : DDiS
Mazda : CiTD
Mitsubishi : DI-D (разработано новое поколение 4N1 с давлением в системе впрыска до 2000 bar)
Nissan : dCi
PSA Peugeot Citroen : HDI, HDi (Volvo S40/V50 использует двигатели PSA 1,6D & 2,0D, JTD)
Renault : dCi
SsangYong : XDi
Subaru : TD
Tata : DICOR
Toyota : D-4D
Volkswagen Audi Group (Skoda) : TDI. CR в 2005 году пришла на смену насос-форсункам.
Volvo : D3, D4 и D5

Применение данной системы позволяет достигнуть снижения расхода топлива, токсичности отработавших газов, уровня шума дизеля. Главным преимуществом системы Common Rail является широкий диапазон регулирования давления топлива и момента начала впрыска, которые достигнуты за счет разделения процессов создания давления и впрыска.

Конструктивно система впрыска Common Rail составляет контур высокого давления топливной системы дизельного двигателя. В системе используется непосредственный впрыск топлива, т.е. дизельное топливо впрыскивается непосредственно в камеру сгорания. Система Common Rail включает топливный насос высокого давления, клапан дозирования топлива, регулятор давления топлива (контрольный клапан), топливную рампу и форсунки. Все элементы объединяют топливопроводы.

1. топливный бак
2. топливный фильтр
3. топливный насос высокого давления
4. топливопроводы
5. датчик давления топлива
6. топливная рампа
7. регулятор давления топлива
8. форсунки
9. электронный блок управления
10. сигналы от датчиков
11. усилительный блок (на некоторых авто)

Топливный насос высокого давления (ТНВД) служит для создания высокого давления топлива и его накопления в топливной рампе. Современные топливные насосы высокого давления — плунжерного типа. Клапан дозирования топлива регулирует количество топлива, подаваемого к топливному насосу высокого давления в зависимости от потребности двигателя. Клапан конструктивно объединен с ТНВД.
Регулятор давления топлива предназначен для управления давлением топлива в системе, в зависимости от нагрузки на двигатель. Он устанавливается в топливной рампе. Топливная рампа предназначена для выполнения нескольких функций: накопления топлива и содержание его под высоким давлением, смягчения колебаний давления, возникающих вследствие пульсации подачи от ТНВД, распределения топлива по форсункам. Форсунка важнейший элемент системы, непосредственно осуществляющий впрыск топлива в камеру сгорания двигателя. Форсунки связаны с топливной рампой топливопроводами высокого давления. В системе используются электрогидравлические форсунки или пьезофорсунки. Впрыск топлива электрогидравлической форсункой осуществляется за счет управления электромагнитным клапаном. Активным элементом пьезофорсунки являются пьезокристаллы, значительно повышающие скорость работы форсунки.

Управление работой системой впрыска Common Rail обеспечивает система управления дизелем, которая объединяет датчики, блок управления двигателем и исполнительные механизмы систем двигателя. Система управления дизелем включает датчики оборотов двигателя, Холла, положения педали акселератора, расходомер воздуха, температуры охлаждающей жидкости, давления воздуха, температуры воздуха, давления топлива, кислородный датчик (лямбда-зонд) и другие. Основными исполнительными механизмами системы впрыска Common Rail являются форсунки, клапан дозирования топлива, а также регулятор давления топлива.

Принцип действия системы впрыска Common Rail

На основании сигналов, поступающих от датчиков, блок управления двигателем определяет необходимое количество топлива, которое топливный насос высокого давления подает через клапан дозирования топлива. Насос накачивает топливо в топливную рампу. Там оно находится под определенным давлением, обеспечиваемым регулятором давления топлива. В нужный момент блок управления двигателем дает команду соответствующим форсункам на начало впрыска и обеспечивает определенную продолжительность открытия клапана форсунки. В зависимости от режимов работы двигателя блок управления двигателем корректирует параметры работы системы впрыска.
С целью повышения эффективной работы двигателя в системе Common Rail реализуется многократный впрыск топлива в течение одного цикла работы двигателя. При этом различают: предварительный впрыск, основной впрыск и дополнительный впрыск.

Предварительный впрыск небольшого количества топлива производится перед основным впрыском для повышения температуры и давления в камере сгорания, чем достигается ускорение самовоспламенения основного заряда, снижение шума и токсичности отработавших газов. В зависимости от режима работы двигателя производится:

2 предварительных впрыска — на холостом ходу;
1 предварительный впрыск — при повышении нагрузки;
0(предварительный впрыск не производится) — при полной нагрузке.
Основной впрыск обеспечивает стабильную работу двигателя.

Дополнительный впрыск производится для повышения температуры отработавших газов и улучшения сгорания частиц сажи в сажевом фильтре (регенерация сажевого фильтра).

Развитие системы впрыска Common Rail осуществляется по пути увеличения давления впрыска:

1 поколение – 140 МПа, с 1999 года;
2 поколение – 160 МПа, с 2001 года;
3 поколение – 180 МПа, с 2005 года;
4 поколение – 220 МПа, с 2009 года.

Чем выше давление в системе впрыска, тем больше топлива можно впрыснуть в цилиндр за равный промежуток времени и, соответственно, реализовать большую мощность.

ТНВД является одним из основных ко элементов в конструкции системы впрыска двигателя. Он выполняет, как правило, две важнейшие функции: 1- нагнетание определенного количества топливной жидкости; 2- регулирование по времени начала впрыскивания. С момента появления аккумуляторных систем впрыска работа по регулированию времени начала впрыска была возложена на управляемые электроникой форсунки.
Основу ТНВД составляет плунжерная пара. Данный механизм составляет поршень (другое название- плунжер) и цилиндр (другое название — втулка) совсем небольшого размера. Плунжерную пару изготавливают из стали высокого качества и делают это с высочайшей точностью. Так, что между плунжером и втулкой имеется минимальный зазор (сопряжение прецизионное). В системе Common Rail используется Магистральный ТНВД.

С конструктивной точки зрения магистральный насос может иметь 1(один), 2(два) или 3(три) плунжера. Приводы плунжеров осуществляются с помощью использования кулачкового вала либо кулачковой шайбы.

При вращательном движении кулачкового вала (эксцентрика кулачковой шайбы) под действием возвратной пружинки плунжер двигается вниз. Увеличивается объем компрессионной камеры и уменьшается давление в ней. Под воздействием разряжения воздуха открывается клапан впуска, и топливная жидкость поступает в камеру. При движении плунжера вверх происходит возрастание давления в камере, клапан впуска закрывается. При создании определенного давления открывается клапан выпуска и топливная жидкость поступает в рампу. Управление подачей топливной жидкости производится в зависимости от потребностей двигателя и осуществляется с помощью клапана дозирования топливной жидкости. В исходном (обычном) положении этот клапан открыт. Но по сигналу электронного блока управления он закрывается на определенную ширину, тем самым регулируется количество затекающей в компрессионную камеру топливной жидкости.

Форсунка (инжектор), являясь элементом конструкции системы впрыскивания, предназначена для того, чтобы качественно дозировать подачу топливной жидкости, его распыление в камере сгорания (коллекторе впуска) и образование топливно-воздушной смеси. Форсунки используются в системах впрыска как бензиновых, так и дизельных двигателей. На современных вариантах двигателей устанавливаются форсунки с электронным управлением впрыскивания. В зависимости от того, каким способом осуществляется впрыскивание, различают нижеприведённые виды форсунок:

1. электромагнитные
2. электрогидравлические
3. пьезоэлектрическая

Устанавливается, как правило, на бензиновые двигатели, в том числе оборудованные системой непосредственного впрыска. Имеет достаточно простое и надежное устройство. Оно включает электромагнитный клапан с иголкой и сопло.

Работа электромагнитной форсунки осуществляется так: в соответствии с заложенным в него алгоритмом электронный блок управления точно обеспечивает подачу напряжения на обмотку возбуждения клапана в нужный момент. При всём этом создается электромагнитное поле, оно, преодолевая усилия пружинки, втягивает якорь с иголкой и освобождает сопло. В результате производится впрыск топливной жидкости. С исчезновением напряжения пружка возвращает иголку форсунки на седло.

Используется на дизельных двигателях, в том числе на оборудованных системой впрыскивания Common Rail. В конструкцию электрогидравлической форсунки входит электромагнитный клапан, камера управления, впускной и сливной дроссели.

Принцип работы этой форсунки основан на использовании давления топлива, как при впрыскивании, так и при его прекращении. В начальном положении электромагнитный клапан обесточен и закрыт, иголка форсунки прижата к седлу по средствам силы давления топливной жидкости на поршень в камере управления. Впрыскивание топливной жидкости не происходит. При этом давление топлива на иголку, ввиду разности площадей контакта, меньше давления на поршень. По точной команде электронного блока управления запускается работа электромагнитного клапана, открывая сливной дроссель. Топливная жидкость из камеры управления идёт через дроссель к сливной магистрали. Впускной дроссель при этом препятствует быстрому выравниванию давлений в камере управления и в магистрали впуска. Давление на поршень снижается, а давление топлива на иглу не претерпевает изменений. Игла поднимается, происходит впрыск топливной жидкости.

Пьезоэлектрическая форсунка (пьезофорсунка)

Это самое совершенное устройство, обеспечивающее впрыск топливной жидкости. Форсунка устанавливается на дизельных двигателях, оборудованных системой впрыска Common Rail.

К преимуществам пьезофорсунки относят: быстроту срабатывания (в 4 раза быстрее электромагнитного клапана), как следствие этого, возможность многократного впрыскивания топливной жидкости в течение одного цикла работы, точную дозировку впрыскиваемой топливной жидкости. Всё вышеперечисленное стало возможным благодаря использованию пьезоэффекта в управлении форсункой. Он основан на изменении длины пьезокристалла, которое происходит под действием напряжения. Конструкция самой пьезоэлектрической форсунки включает следующие элементы : пьезоэлемент, толкатель, клапан переключения и иголку. Все они помещены в корпус.

В работе форсунки данного вида, так же как и в электрогидравлическом аналоге, используют гидравлический принцип. В начальном положении иголка сидит на седле в результате высокого давления топливной жидкости. Во время подачи электрического сигнала на пьезоэлемент, увеличивается его длина. Передается усилие на поршень толкателя, открывается переключающий клапан и топливная жидкость поступает в сливную магистраль. Давление выше иглы снижается. Иголка за счет давления в нижней части поднимается, таким образом производится впрыск топливной жидкости.

Топливная система Common Rail применяется исключительно в дизельных двигателях и считается наиболее прогрессивной на текущий момент. В сравнении с другими схемами она обеспечивает более экономичный расход топлива, повышает экологическую безопасность автомобиля, отличается низким уровнем шума, но главное — создает более высокое давление подачи в камеру сгорания. О том, как устроена система впрыска Common Rail (Коммон Рейл) и каковы принципы ее работы, пойдет речь далее.

Что такое топливная система Common Rail

Дословно термин Common Rail переводится на русский как общая магистраль. Главной конструктивной особенностью этой системы является наличие топливной рампы, в которой происходит аккумуляция топлива до его дальнейшей подачи в форсунки дизельного двигателя. В силу этой особенности подобные системы также называют аккумуляторными. Впервые она была представлена компанией Bosch в 1996 году.

Устройство топливной системы Common Rail

Конструктивно система Коммон Рейл делится на контуры низкого и высокого давления и состоит из следующих элементов:

  • Подкачивающий топливный насос. Он подает дизельное топливо из бака в напорную магистраль.
  • Топливный фильтр, оснащенный клапаном для предварительного прогрева при низких температурах.
  • Вспомогательный топливный насос. Выполняет перекачку топлива от нагнетательной магистрали.
  • Сетчатый фильтр.
  • Температурный датчик. Фиксирует уровень прогрева топлива в системе.
  • ТНВД (топливный насос высокого давления) — чаще всего применяется насос распределительного типа.
  • Дозирующий клапан. Он регулирует количество топлива, попадающего в рампу.
  • Регулятор давления дизтоплива. Необходим для поддержания заданных показателей давления топлива в магистрали высокого давления.
  • Топливная рампа или аккумулятор. Фактически представляет собой трубку, по длине которой расположены штуцеры крепления форсунок.
  • Датчик давления. Расположен в магистрали высокого давления. Он фиксирует и передает соответствующие данные ЭБУ (электронный блок управления) двигателя.
  • Редукционный, или перепускной клапан. Позволяет поддерживать показатель давления в обратной магистрали на уровне 1 МПа, что обеспечивает правильную работу форсунок.
  • Топливные форсунки. Бывают двух типов: электрогидравлические или пьезоэлектрические. Первые управляются электромагнитным клапаном, а вторые оснащены пьезокристаллами, что позволяет существенно повысить скорость их работы.

Более 70% всех производимых сегодня дизельных двигателей оснащается топливными системами Common Rail.

Особенности и принцип работы

Принцип работы топливной системы этого типа основан на разделении процессов создания высокого давления и непосредственно впрыска дизеля. Из топливного бака горючее закачивается в систему насосом низкого давления. При этом оно проходит через фильтры, где очищается от примесей и различных загрязнений. По контуру низкого давления дизтопливо поступает в ТНВД, который имеет механический привод. Он, в свою очередь, выполняет закачку топлива в рампу, где оно аккумулируется до момента впрыска. Это позволяет постоянно поддерживать нужный уровень давления, независимо от текущего режима работы двигателя.

Получая данные от датчиков системы, ЭБУ двигателя определяет, какое количество топлива необходимо подать ТНВД на топливную рампу. После этого открывается клапан дозирования горючего, которое поступает в аккумулятор. Топливо при этом находится под заданным уровнем давления, поддерживаемым регулятором.

Схема форсунки системы коммон рейл в разрезе

Как только необходимый объем дизеля закачивается в рампу, ЭБУ посылает команду на открытие форсунок, соответствующих циклу работы двигателя. В течение одного цикла работы такой системы осуществляется многократный впрыск, состоящий из трех этапов:

  • Предварительный — необходим для повышения температуры и сжатия в камере сгорания, что позволяет ускорить процесс самовоспламенения. На холостом ходу может выполняться два предварительных впрыска, при увеличении оборотов — один, а на полной мощности предварительного впрыска нет.
  • Основной — непосредственно обеспечивающий работу мотора.
  • Дополнительный — необходим для увеличения температуры нагрева отработавших газов, что обеспечивает сгорание сажи и уменьшение объема вредных выбросов в атмосферу.

В современных дизельных двигателях может выполняться от 7 до 9 фаз впрыска.

Достоинства и недостатки системы Common rail

Изначально уровень давления, создаваемый на топливной рампе, составлял 140 МПа. Начиная с четвертого поколения, система позволила достигать показателей до 220 МПа. Такой прогресс позволил добиться увеличения объема топлива, впрыскиваемого в цилиндры мотора за один цикл, а следовательно, повысить мощность дизельных автомобилей.

Аккумуляторные топливные системы используют целый комплекс датчиков, позволяющих учитывать:

  • давление в магистральном трубопроводе;
  • скорость вращения коленчатого вала;
  • расход воздуха, положение педали газа;
  • температуру топлива и воздуха;
  • данные лямбда-зонда.

Сигналы, поступающие от этих датчиков, дают возможность ЭБУ максимально оптимизировать работу дизельного двигателя. В сравнении с системами ТНВД с насос-форсунками, ремонтопригодность Common Rail выше в силу более простого устройства.

Среди недостатков системы Коммон Рейл — необходимость использования топлива более высокого качества. Поскольку в таких двигателях используются конструктивно сложные форсунки, их ресурс ниже. Также очень важно обеспечение полной герметичности. Так, например, при поломке форсунки, ее клапан будет постоянно находиться в открытом положении, и топливная система перестанет работать.

Появление топливной системы Common Rail стало настоящим прорывом в производстве дизельных двигателей. Она обеспечила возможность применения для дизелей всех классов высоких экологических стандартов, активно внедряемых в развитых странах.

Схема и детали системы

Высокое давление 230-1800 бар.

Давление в обратной магистрали форсунок, 10 bar.

Давление в напорной магистрали, Давление в обратной магистрали.

1. Подкачивающий топливный насос.
Осуществляет постоянную подкачку топлива в напорную магистраль.

2. Топливный фильтр с клапаном предварительного подогрева.
Клапан предварительного подогрева препятствует при низких температурах окружающей среды засорению фильтра кристаллизующимися парафинами.

3. Дополнительный топливный насос.
Подаёт топливо из напорной магистрали к топливному насосу.

4. Сетчатый фильтр.
Предохраняет насос высокого давления от попадания инородных частиц.

5. Датчик температуры топлива.
Измеряет текущую температуру топлива.

6. Насос высокого давления (ТНВД).
Создаёт давление, необходимое для работы системы впрыска.

7. Клапан дозирования топлива.
Регулирует количество топлива, которое необходимо подать в аккумулятор высокого давления.

8. Регулятор давления топлива.
Регулирует давление топлива в магистрали высокого давления.

9. Аккумулятор давления (топливная рампа).
Накапливает под высоким давлением топливо,необходимое для впрыска во все цилиндры.

10. Датчик давления топлива.
Измеряет текущее давление топлива в магистрали высокого давления.

11. Редукционный клапан.
Поддерживает давление в обратной магистрали форсунок системы впрыска на уровне 10 бар. Такое давление необходимо для работы форсунок.

12. Форсунки.

Система впрыска Common Rail

Система впрыска Common Rail представляет систему впрыска топлива для дизельных двигателей с аккумулятором высокого давления. Термин «Common Rail» означает «общая балка или рампа» и служит для обозначения общей топливной рампы
(аккумулятора давления) для всех форсунок ряда цилиндров.

В данной системе процесс впрыска отделён от процесса создания высокого давления. Необходимое для системы впрыска высокое давление создаётся с помощью отдельного топливного насоса высокого давления (ТНВД).
Топливо, находящееся под высоким давлением, накапливается в аккумуляторе давления (топливной рампе)
и через короткие топливопроводы высокого давления подаётся к форсункам.
Управление системой впрыска Common Rail осуществляется системой управления двигателя Bosch EDC.

Система впрыска Common Rail располагает большими возможностями для регулирования давления и параметров впрыска в соответствии с режимом работы двигателя. Это создает хорошие предпосылки для удовлетворения постоянно растущих требований к системе впрыска в плане улучшения экономичности, снижения токсичности ОГ и шумности двигателя.

В данной системе впрыска Common Rail используются пьезоэлектрические форсунки.

Управление форсунками осуществляется исполнительным механизмом, основанном на использовании пьезоэлемента. Скорость переключения такого механизма во много раз выше, чем у форсунки с электромагнитным клапаном.

Кроме того, масса подвижной иглы у распылителя пьезоэлектрической форсунки примерно на 75 % меньше, чем у форсунки с электромагнитным приводом.

Это обеспечивает пьезоэлектрическим форсункам следующие преимущества:

* короткое время переключения
* возможность произвести несколько впрысков в течение рабочего такта
* точность дозировки впрыска

Работа пьезофорсунки Common Rail

И для интереса. Как изготавливается форсунка Common Rail Piezo на заводе.

Процесс впрыска

Высокая скорость переключения пьезоэлектрической форсунки позволяет гибко и с высокой точностью управлять фазами впрыска и дозировать подачу топлива. Благодаря этому управление процессом впрыска топлива может осуществляется в точном соответствии с потребностью двигателя в определённый момент времени. За время такта может быть произведено до пяти отдельных впрысков.

ТНВД

Насос высокого давления представляет собой одноплунжерный насос. Привод насоса осуществляется через зубчатый ремень коленвала с частотой, равной частоте оборотов двигателя. ТНВД предназначен для создания в топливной магистрали давления до 1800 бар, необходимого для работы системы впрыска. С помощью двух кулачков, развёрнутых на приводном вале на 180°, скачок давления формируется синхронно с впрыском во время рабочего такта конкретного цилиндра. Это обеспечивает равномерную нагрузку привода насоса и снижает колебания давления в области высокого давления.
Для снижения трения при передаче усилия от приводных кулачков к плунжеру насоса между ними установлен ролик.

Устройство насоса высокого давления

Схематическое представление насоса высокого давления.

Системы Common Rail

| Cummins Inc.

Cummins увеличивает время безотказной работы вашего автопарка при низких затратах на техническое обслуживание. Как единственная организация топливных систем, основанная на опыте глобального поставщика двигателей, Cummins предлагает ряд различных систем, соответствующих потребностям вашего автомобиля или автопарка.

Топливная система XPI среднего класса

Этот пакет топливной системы, воплощающий технологию сверхмощной топливной системы в двигателях среднего класса, обеспечивает идеальную работу насоса и форсунок.Предлагаемая как с масляной, так и с топливной смазкой, система обеспечивает лучшее в отрасли давление впрыска и, как специализированная система, обеспечивает оптимальные характеристики двигателя и улучшенную экономию топлива для двигателей среднего класса.

В системе может быть использован одноцилиндровый насос высокой производительности, способный удовлетворить потребности в лошадиных силах, при этом минимизируя занимаемое пространство и общую стоимость владения. Кроме того, модуль управления Cummins контролирует и регулирует параметры топливной форсунки и насоса, чтобы обеспечить стабильную производительность впрыска топлива в течение всего срока службы двигателя.Лучшая в отрасли конструкция форсунок обеспечивает общее повышение топливной экономичности двигателя.

Технология смазывания маслом

Модульная конструкция с масляной смазкой доступна для двигателей 5–12 л, обеспечивая максимальную устойчивость к топливу.

Оптимальная конструкция обеспечивает низкую передачу масла в топливо, максимизируя срок службы сажевого фильтра для повышения долговечности за счет уменьшения повреждения форсунок из-за высокого давления и утечки горячего топлива.

Технология смазки топливом

Модульная конструкция с топливной смазкой для двигателей 5L-12L позволяет создать компактный насос с высокой топливной экономичностью, который можно адаптировать к широкому спектру двигателей, обеспечивая при этом самые высокие в мире стандарты выбросов топлива.

Помимо уменьшения занимаемой площади, что обеспечивает большую гибкость, есть также минимальная утечка и отсутствие давления передачи масла в топливо, что приводит к уменьшению повреждения форсунок из-за высокого давления и утечки горячего топлива.

Топливная система XPI для тяжелых условий эксплуатации

Система Cummins HD XPI — это система Common Rail, обеспечивающая самое высокое давление впрыска по сравнению с любой другой системой Common Rail. Система XPI, в первую очередь предназначенная для средних и тяжелых условий эксплуатации, является результатом передовых технологий Cummins.XPI обеспечивает лучшее в отрасли давление впрыска и, как специализированную систему, обеспечивает оптимальную производительность двигателя и улучшенную топливную экономичность для приложений среднего класса.

Common Rail Преимущества:

  • Лучшее в отрасли давление впрыска с большим объемом топлива под давлением в форсунке для улучшения возможности многократного впрыска, оптимального сгорания и экономии топлива
  • Конструкция инжектора и насоса с малой утечкой для минимизации обратного потока нагретого топлива — для повышения экономии топлива и максимальной долговечности топливной системы
  • Конструкция топливного насоса с масляной смазкой и привода форсунок с повышенным давлением для дополнительной устойчивости к повреждениям от мусора и повышенной устойчивости к свойствам топлива
  • Насос доступен в двух- и трехцилиндровых моделях с множеством конфигураций, обеспечивающих гибкость применения и установки
  • Максимальное номинальное давление 2600 бар

Форсунки Common Rail

Cummins предлагает топливные форсунки мощностью от 1600 до 2600 бар.

Преимущества:

  • Конструкция, работающая под давлением, более устойчива к повреждениям от мусора, переносимого топливом, чем система со сбалансированным давлением. Чтобы избежать обратного потока нагретого топлива и необходимости в системе охлаждения топлива, топливные форсунки Cummins имеют полости под пружины под давлением, которые обеспечивают минимальную утечку или ее отсутствие, устраняют необходимость в дополнительном охлаждении и улучшают общую экономию топлива.
  • Cummins предлагает систему с герметичными форсунками, обеспечивающую надежность и долговечность продукта.
  • Форсунки
  • разработаны для соответствия рабочим циклам и обеспечивают лучшую в отрасли экономию топлива, обеспечивая повышение эффективности до 5% по сравнению с нашими конкурентами.
  • Форсунки без утечек способствуют снижению паразитного энергопотребления топливной системы более чем на 25% по сравнению с типичными форсунками среднего диапазона для общего повышения экономии топлива двигателем.
CRFI 5 CRFI 5
CRFI 4 CRFI 4


Форсунки Common Rail (CRFI)
Название платформы CRFI 2 CRFI 3 CRFI 4 CRFI 5 CRFI 8V
Максимальное рабочее давление (бар) 1600 1800 2200 2600 2200
Максимальное количество импульсов впрыска 6 6 6 5 5
Совместимость с адаптивными характеристиками форсунок (AIC) Есть Есть Есть Есть Есть

Топливные насосы Common Rail
Название платформы ФЛП 1 OLP 1 OLP 2 OLP 3
Количество цилиндров 2 1 2 2
Рабочий объем (куб. См / оборот) 1.2 1,8 3,6 2,4
Макс.давление в рампе (бар) 2000 1800 2200 2600
Макс.скорость (об / мин) 4500 1500 1500 2100
Смазка Топливо Масло Масло Масло
Тип подшипника Обычная Ролик Ролик Обычная
Тип подачи топлива Механическая передача Механическая передача Механическая передача Механическая передача
Применения двигателя MD / HD MD / HD MD / HD MD / HD

Чувствительность дизельных двигателей Системы впрыска Common Rail под высоким давлением

Двигатели, оснащенные HPCR, обеспечивают более чистый выхлоп, имеют большую мощность и более эффективны, чем предыдущие модели

Кейт Крамлих, национальный менеджер по продуктам и обучению, Takeuchi

Топливные системы Common Rail под высоким давлением (HPCR) сегодня входят в стандартную комплектацию почти всех дизельных двигателей, от тяжелого оборудования до грузовых автомобилей повышенной проходимости, легких грузовиков, больших генераторов и т. Д.Топливные системы HPCR имеют много преимуществ, но они также вызывают недоумение среди операторов. Операторы слишком часто заправляют свои машины загрязненным топливом, которое может разрушить топливную систему.

Чтобы двигатель продолжал гудеть в течение нескольких часов, важно понимать сами топливные системы, их преимущества и недостатки, их чувствительность, степень воздействия загрязненного топлива и предупреждающие знаки, на которые следует обращать внимание.

Преимущества и недостатки

Система HPCR состоит из топливной рампы высокого давления, общей для всех форсунок.Подача топлива в топливную рампу высокого давления осуществляется подающим насосом высокого давления. В зависимости от частоты вращения и нагрузки двигателя давление в рампе может превышать 30 000–40 000 фунтов на квадратный дюйм. Форсунки имеют электронное управление, и каждая имеет свой пусковой механизм или соленоид.

Takeuchi оснащает свои машины одним или двумя топливными фильтрами и водоотделителем для удаления загрязнений и воды, которые могут повредить чувствительные системы HPCR. Благодаря своей конструкции системы HPCR также обеспечивают лучшее распыление топлива при впрыске, обеспечивая более чистое и чистое топливо. более мощное и более полное сгорание.Двигатели, оснащенные HPCR, обеспечивают более чистый выхлоп, обеспечивают большую мощность и топливную экономичность на рабочий объем, чем предыдущие модели.

Кто-то может сказать, что основным недостатком систем HPCR является сложность электрических компонентов. Есть множество датчиков, жгутов проводов и электрических компонентов, которые необходимо добавить, чтобы двигатель работал должным образом. Другой воспринимаемый недостаток — насколько эти системы могут быть чувствительны к загрязненному топливу.

До требований Tier 4 по выбросам в дизельных двигателях внедорожной техники использовалась система механического впрыска.Эти системы не были столь чувствительны к загрязнению. Из-за этого многие операторы ошибочно полагают, что топливные системы HPCR также не слишком чувствительны. На самом деле, это далеко от истины. Грязное или неподходящее топливо, вода в топливе и воздух в системе могут вызвать повреждение новых дизельных двигателей.

Системы очень подвержены повреждению при несоблюдении надлежащего ухода. Это связано с тем, что чем выше давление впрыска, тем более жесткие допуски должны быть между сопрягаемыми деталями в компонентах, работающих с топливом, таких как насосы, клапаны и форсунки.Более жесткие допуски делают эти прецизионные поверхности чрезвычайно уязвимыми для повреждения почти всем, кроме топлива. Таким образом, хотя определенное количество загрязнения или воды не причинит вреда механическим форсункам старой конструкции, то же самое топливо нанесет ущерб топливной системе Common Rail.

Загрязнение водой наносит ущерб дизельным топливным системам

Воздействие загрязненного топлива

Наиболее частой причиной повреждения является вода в топливе, которая часто возникает из-за неправильно обслуживаемых перегрузочных баков.У этих резервуаров есть несколько проблем:

  • В некоторых случаях они редко сливаются.
  • В баке скапливается вода из-за конденсации.
  • Из-за расположения резервуаров и окружающей среды грузовики могут собирать тяжелый мусор. Поэтому перед заполнением перекачивающего бака важно очистить крышку топливного бака и прилегающую территорию.
  • Если бак не обслуживается, содержание воды будет продолжать увеличиваться, что может привести к появлению ржавчины внутри бака и трубопроводов.

Чтобы решить эту проблему, производители оборудования включают в свои машины водоотделитель. Однако само по себе это не полное решение. Его нужно проверять и сливать ежедневно. Если это не так, и уровень воды достигает верхней части сепаратора, вода будет продавливаться через сепаратор и обратно в топливную систему, достигая жизненно важных компонентов.

Вода в топливе может влиять на несколько различных аспектов машины:

  • Чаще всего она снижает смазывающую способность топлива.Это приводит к повреждению игольчатого клапана внутри форсунки, который становится липким, что приводит к большому обратному потоку или большой подаче топлива.
  • Игольчатый клапан также может быть поврежден до такой степени, что он больше не закрывается должным образом, что приведет к утечке наконечника инжектора.
  • Металл из-за повреждения игольчатого клапана или из-за повреждения других компонентов может засорить форсунки, что приведет к искажению формы распыления. Это приведет к разбрызгиванию топлива непосредственно на поверхность поршня или стенку цилиндра.
  • Топливо, впрыскиваемое непосредственно в стенку цилиндра, вызывает промывку цилиндра, когда топливо вымывает смазочное масло. В результате возникает плохая смазка между поршнем и стенкой цилиндра, что приводит к износу. Это неизбежно приводит к низкой компрессии, разбавлению масла и отказу двигателя.
  • В некоторых случаях в инжектор может попасть свободная вода. Избыточное нагревание инжектора приведет к тому, что эта вода превратится в пар и расширится, что приведет к поломке наконечника инжектора.
  • Избыточный нагрев форсунки приведет к тому, что вода превратится в пар и расширится, что приведет к поломке наконечника форсунки.
  • Повреждение игольчатого клапана может помешать правильному закрытию клапана. Это позволяет нераспыленному топливу вытекать на поверхность поршня, что приводит к расплавлению поршня.
  • Другие загрязнения, такие как частицы пыли и некачественное дизельное топливо с низкими смазывающими свойствами, также могут повредить топливную систему.

Обеспечение использования чистого топлива — самый простой и самый важный шаг в обслуживании HPCR.Это включает использование надежного источника, который обеспечивает чистое и отфильтрованное топливо.

По всем этим причинам очень важно поддерживать чистую топливную систему и часто менять топливные фильтры. В случае Takeuchi каждая машина имеет от одного до двух топливных фильтров и водоотделитель. Но хотя топливные фильтры очень эффективны для удаления вредных загрязнений и воды, они не могут работать эффективно, если их не обслуживать регулярно.

Обеспечение использования чистого топлива — самый простой и самый важный шаг.Это включает использование надежного источника с чистым и отфильтрованным топливом. Во время наполнения также необходимо установить сетку наливной горловины, чтобы предотвратить попадание крупного мусора в резервуар. Крупный мусор может ограничить поток топлива из бака или, в зависимости от материала, может сломаться и стать достаточно маленьким, чтобы вызвать проблемы с топливной системой.

Дизельное топливо Уборка сокращает простои строительного оборудования

Предупреждающие знаки

Чаще всего первым признаком отказа двигателя из-за загрязнения топлива является несколько неисправных форсунок.Хотя это одни и те же компоненты, они работают по отдельности и имеют только одно общее: источник топлива.

Если оператор начинает замечать плохую работу двигателя, чрезмерный дым, ненужные запросы на регенерацию или что-то еще ненормальное, лучше всего остановить двигатель до того, как произойдет катастрофическое повреждение. Владелец или оператор машины меньше всего хочет простоя из-за поломки. Некоторые вещи легко исправить, но двигатель — нет — неисправный двигатель будет стоить намного дороже, чем незначительное прерывание работы.

Использование чистого и отфильтрованного топлива высшего качества имеет первостепенное значение и может сэкономить владельцу тысячи на ремонтных расходах.

Сопутствующие материалы

Советы по приобретению и хранению DEF для сохранения качества

Выбор топливного бака для строительных площадок

Разница между Common Rail и насос-форсунками

Топливная форсунка — это топливная форсунка.Все они одинаковые, правда? Ну не очень. На самом деле существует множество различных методов, позволяющих осуществить процесс сгорания, но, пожалуй, наиболее популярными являются два: насос-форсунки и форсунки Common Rail.

Оба этих типа топливных систем в той или иной форме существуют уже много лет. В частности, насос-форсунки на протяжении десятилетий были популярным выбором для дизельных двигателей. Хотя ранние разработки систем впрыска Common Rail существуют почти столько же, их популярность только недавно начала расти.Частично это вызвано новыми стандартами выбросов, которым форсунки Common Rail могут соответствовать гораздо легче, чем форсунки других типов.

Хотите больше отличного контента? Загрузите эту бесплатную электронную книгу о топливных форсунках от HHP!

Скачать мою электронную книгу !!


Характеристики насос-форсунок и форсунок Common Rail

Хотя их основная функция одинакова — впрыск топлива в цилиндр во время процесса сгорания, эти типы систем работают совершенно по-разному, и точно так же сами форсунки состоят из разных частей.Ниже мы рассмотрим различные функции и проблемы обеих систем.

Насос-форсунка

В насос-форсунках (также обычно называемых «насос-форсунки») каждая форсунка работает независимо, полагаясь на распределительный вал для правильного выбора времени. Инжектор и насос представляют собой единый компонент, что позволяет поддерживать давление топлива внутри самого инжектора перед его впрыскиванием в цилиндр для сгорания.

Из-за того, что она полагается на распределительный вал, эта система не обладает таким же уровнем гибкости, как другие типы впрыска, при которых синхронизация управляется контроллером ЭСУД.Насос-форсунки бывают как электронными, так и механическими, в зависимости от типа двигателя. Поскольку форсунки представляют собой как инжектор, так и насос в одной части, отдельные компоненты сами по себе немного сложнее.

В системе насос-форсунок топливо не поддерживается под постоянным высоким давлением перед подачей в форсунки. Скорее, он находится под гораздо более низким давлением при движении через двигатель. Это сами форсунки, которые повышают давление топлива перед каждым впрыском из-за их двойной производительности как форсунок и насосов.

Насос-форсунки используют меньшее количество топлива в начале процесса, в результате чего получается высокоэффективный двигатель с более низким уровнем сажи и выбросов, чем мог бы быть достигнут с помощью других систем впрыска (за исключением, возможно, системы Common Rail). Но из-за растущей популярности системы Common Rail по какой-то причине маловероятно, что мы увидим много изменений или улучшений в конструкции и работе насос-форсунок в будущем.

Форсунка Common Rail

В форсунках

Common Rail используется топливная рампа высокого давления, которая подает топливо к отдельным форсункам.В отличие от насос-форсунок, топливная рампа поддерживает постоянное высокое давление, необходимое для впрыска. Форсунки сами по себе не изменяют давление топлива, так как оно готово к впрыску, когда втягивается в форсунку. Из-за этого насос представляет собой отдельный компонент, а не часть самого инжектора. Сам инжектор в этом случае имеет немного более простую конструкцию, чем насос-форсунка.

Форсунки в системе Common Rail являются, по большей части, электронными, в них используются соленоиды, и контроллер ЭСУД контролирует их синхронизацию.В этой системе небольшое количество топлива впрыскивается в цилиндр перед полным впрыском для оптимизации времени и количества топлива. Это помогает сделать двигатель более экономичным в целом. В результате вы также получите больше мощности, уменьшив при этом количество шума и вибраций, производимых двигателем.

Возможности более высокого давления также позволяют повысить эффективность и уменьшить выбросы. Некоторые даже указывают на то, что все возможности этой технологии еще не реализованы, что ведет к вероятности дальнейших улучшений общего дизайна и функций в будущем, особенно по мере того, как правила продолжают меняться.

Хотя система впрыска Common Rail находится в производстве гораздо меньше времени, чем другие типы впрыска, ее популярность выросла, и, похоже, это не замедляется. Однако он несет с собой свой уникальный набор проблем.

Это более сложная система в целом, что может привести к более высокой цене, когда дело доходит до замены компонентов. Поскольку он дольше поддерживает топливо под более высоким давлением, это давление влияет на большее количество компонентов. Это может привести к повышенному риску повреждения других компонентов.Он очень чувствителен к загрязнениям, в большей степени, чем другие типы инжекторов. Фактически, одной из основных причин отказа в системах Common Rail является загрязнение топлива, но это одна из наиболее часто игнорируемых. Если вы заметили снижение расхода топлива и думаете, что это может быть связано с проблемой с топливными форсунками Common Rail, вы можете проверить качество топлива.

В конце концов, ваш тип впрыска топлива определяется типом вашего двигателя, и вы ограничены модификациями, внесенными в этот двигатель и его компоненты.Тем не менее, хорошо знать, что это за топливная система, чтобы убедиться, что вы получаете для нее подходящие детали.

Если вы покупаете новый двигатель, это важное соображение, которое следует принять во внимание, потому что, хотя двигатель с насос-форсункой может быть дешевле изначально, он может в конечном итоге обойтись вам дороже, поскольку компоненты перестают развиваться и их становится труднее найти. С другой стороны, инжекторный двигатель Common Rail обойдется вам дороже, однако он сэкономит вам деньги на насосе, и все время разрабатываются усовершенствования.

Есть вопросы по форсункам? У нас есть ответы! Позвоните нам по телефону 844-304-7688, чтобы поговорить с одним из наших сертифицированных специалистов по продажам! Мало времени? Вы также можете запросить расценки онлайн.


Изменено 16 августа 2019 г.

Как Дизелю вернули себе канавку

Новый колесный погрузчик Komatsu WA470-8 может похвастаться 6-процентной экономией топлива по сравнению с его предшественником.

В то время как НАСА могло послать зонд полностью к Плутону, прямо здесь, на Земле, существует еще одно инженерное чудо, которое практически не замечено у всех под носом.

Речь идет о современных дизельных двигателях Tier 4 Final, в которых используются топливные системы Common Rail высокого давления и форсунки с электронным управлением, управляемые электронным модулем управления (ECM).

Эти системы могут подавать небольшие быстрые выбросы топлива в цилиндры со скоростью в некоторых случаях более 6000 раз в минуту. В результате современные большие дизельные двигатели могут производить больше мощности при меньшем расходе топлива, чем когда-либо прежде, при одновременном сокращении выбросов выхлопных газов более чем на 95 процентов.

Чтобы дать вам лучшее представление о том, как работают эти современные чудеса инженерной мысли, мы поговорили с Джимом Файером, вице-президентом по инжинирингу Cummins, и Илидио Серра, менеджером службы технической поддержки подразделения автозапчастей Роберта Боша.

Мы начнем с рассмотрения разницы между форсунками старого образца и современной новой технологией.

Механический впрыск

До современных норм по выбросам в большинстве дизельных двигателей использовался механический впрыск топлива — выступ распредвала, упирающийся в роликовый толкатель, приводил в движение поршень, который давил на топливо.В этих системах топливо под давлением проходит по трубопроводу, пока не наткнется на пружину форсунки и не заставит ее открыться, позволяя топливу течь в цилиндр. Давление до 15000 фунтов на квадратный дюйм было возможно, но только один впрыск за оборот кулачка и один впрыск топлива за цикл сгорания.

Механический впрыск топлива прост и надежен. Он по-прежнему используется на двигателях с меньшей мощностью, но не может обеспечить точный контроль, снижение выбросов и широкий диапазон мощности, необходимые для сегодняшних более крупных двигателей Tier 4 Final, в первую очередь двигателей мощностью 74 л.с. и выше.

По мере того, как нормы выбросов становились все более строгими, были внесены усовершенствования, в том числе распределительные насосы, линейные насосы и насос-форсунки, которые в конечном итоге позволили повысить давление до 23 000–26 000 фунтов на квадратный дюйм. Многие производители оригинального оборудования смогли выполнить требования уровня 3 по выбросам, используя эти более сложные системы. Но настоящее чудо не произошло до тех пор, пока не были внедрены топливные системы Common Rail высокого давления (HPCR), которые позволили создать давление впрыска до 36 000 фунтов на квадратный дюйм.

Система Common Rail

В системе HPCR форсунки забирают топливо из единой, подобной аккумулятору, рейки, которая обслуживает все форсунки с помощью общего источника топлива.Топливо, хранящееся в общей топливной рампе, находится под давлением до 30 000+ фунтов на квадратный дюйм в ожидании использования.

Преимущество здесь в том, что вы больше не зависите от кулачка или топливного насоса для повышения давления топлива в форсунке. Задачи наддува и впрыска, связанные в механических системах, становятся независимыми. И чем выше давление, тем лучше распыляется топливо после того, как оно попадает в цилиндр.

Вместо того, чтобы определять, когда форсунка открывается и закрывается, скорость кулачка или топливного насоса, система HPCR управляет форсункой с помощью небольшого быстродействующего исполнительного механизма, либо соленоида, либо пьезокристалла, встроенного в форсунку.А поскольку они управляются электроникой, они могут срабатывать так быстро, как вы можете включать и выключать электрический ток.

«Эти форсунки с электронным управлением обеспечивают гораздо лучший контроль времени и количества впрыска по сравнению с механическими системами», — говорит Фиери. «Это стало важным фактором в разработке более чистых и более экономичных дизельных двигателей», — говорит он.

События множественного впрыска

«Горение в дизельном двигателе очень похоже на рецепт выпечки торта», — говорит Серра.«Если вы правильно отмеряете ингредиенты, установите правильные настройки температуры и времени, вы всегда будете получать идеальный торт».

Проблема в том, что рецепт может меняться от одной секунды к другой. Каждый раз, когда вы переключаетесь на другую передачу, поднимаетесь на холм или нажимаете на педаль газа, чтобы максимизировать усилие отрыва, сочетание давления, температуры, времени впрыска и времени меняет рецепт.

Только системы Common Rail с блоком управления двигателем и сверхбыстрыми инжекторами с электронным управлением обладают скоростью и универсальностью, чтобы реагировать на эти изменения и при этом сохранять параметры выбросов, экономию топлива и выходную мощность.

Дизель Динамика

Цилиндр бензинового двигателя потребляет один впрыск топлива в пределах от 40 до 60 градусов вращения коленчатого вала. «Горение дизельного двигателя длится намного дольше, от 90 до 120 градусов», — говорит Серра. Этот медленный, расширяющийся взрыв — вот что дает дизельным двигателям невероятный крутящий момент. Формирование и максимизация эффективности этого факела горения имеет первостепенное значение.

Расположение клапана, форма чаши поршня и конструкция наконечника форсунки — все это влияет на то, как шлейф циркулирует в цилиндре, — говорит Серра.Но синхронизация и частота форсунок — это два элемента, которые могут изменяться по мере изменения требований к двигателю.

В типичном сценарии горения HPCR с низким энергопотреблением у вас может быть три события впрыска в следующей последовательности:

Все начинается с небольшого быстрого пилотного впрыска, чтобы все заработало. При легкой и средней нагрузке двигателя ранние предварительные впрыски также помогают контролировать образование NOx (загрязняющее вещество, регулируемое Tier 4 Final) и уменьшать шум — этот безошибочный звук «стука» дизельного двигателя на холостом ходу.

Далее идет полная нагрузка, главный впрыск мощности. Возможны от шести до восьми событий для изменения процесса сгорания или содействия последующей обработке выбросов.

Наконец, вы получаете небольшой дополнительный впрыск, чтобы сжечь все несгоревшее топливо, оставшееся в цилиндре. Дополнительный впрыск также снижает количество твердых частиц в выхлопе, обеспечивает дополнительную энергию для систем нейтрализации выхлопных газов и снижает задержку турбокомпрессора.

Когда приложение требует высокой мощности, ECM обычно заказывает один длительный впрыск.

Speed ​​Freaks

Инженеры измеряют скорость этих событий впрыска в микросекундах, что составляет 1/1000 секунды. Для всех инъекций существует окно примерно в 7000 микросекунд, в течение которого:

.

Соленоид форсунки или пьезокристаллический привод начинает открываться в течение 100–150 микросекунд после подачи питания.

При трех впрыскивании каждый впрыск обеспечивает подачу измеренного количества топлива приблизительно со скоростью 1225 раз в минуту на холостом ходу (750 об / мин) и до 3300 раз в минуту при номинальной скорости (2200 об / мин).

При шести впрыскивании каждая форсунка может подавать всплески топлива со скоростью до 6600 раз в минуту при 2200 об / мин.

После события впрыска требуется еще от 50 до 100 микросекунд, чтобы соленоид или пьезокристаллический привод вернулся в состояние покоя и рассеял любой электрический заряд.

Компьютерное управление

«Электронный блок управления на двигателе управляет всеми аспектами управления топливной системой», — говорит Фиери. «Контроллер ЭСУД не только содержит электронику, необходимую для приведения в действие регулирующих клапанов и форсунок, но также содержит калибровку и диагностику двигателя.По сути, это мозг двигателя », — говорит он.

И хотя аппаратное обеспечение в большинстве топливных систем HPCR может быть схожим, электронная логика, используемая для управления системой, может быть важным различием между характеристиками различных двигателей, говорит Файер. По его словам, калибровка двигателя и электронное управление стали более сложными и должны быть полностью интегрированы с системами обработки воздуха, топливных систем, дополнительной обработки и фильтрации.

Наконечники форсунок

Каждая форсунка имеет одну форсунку с множеством распылительных отверстий, оптимизированных для удовлетворения требований к мощности, а также показателей выбросов, — говорит Фиери.Сопла изготовлены из стали и используют различные методы термообработки, чтобы выдерживать высокие рабочие температуры.

По словам Фиера, по мере того, как требования к выбросам стали более жесткими, способность форсунок обеспечивать равномерную и конкретную струю топлива в цилиндр становится все более важной. Форсунка является неотъемлемой частью формирования факела в момент сгорания. По его словам, отверстия для распыления форсунок согласованы с корпусом цилиндра, чтобы обеспечить наилучшее распыление топлива и, следовательно, лучшую удельную мощность, низкие выбросы и снижение расхода топлива.

Чистое топливо

Хотя материалы, используемые для наконечников форсунок, не сильно изменились в процессе эволюции от механического к электронному впрыску, форсунки в системах HPCR по-прежнему уязвимы для загрязненного топлива, говорит Серра. «Грязь, особенно твердые частицы кварца, превращает топливную систему в очень эффективную гидро-измельчитель и сокращает срок службы топливной системы и двигателя», — говорит он.

Когда вы слышите, как люди проповедуют о достоинствах чистого дизельного топлива и хорошей фильтрации, вот почему.Даже вода в топливе при давлении от 30 до 36000 фунтов на квадратный дюйм и от 5000 до 6000 раз в минуту может значительно ускорить износ наконечника форсунки.

Безопасность

В то время как топливо в общей топливной рампе находится под экстремальным давлением, основной риск для механиков, работающих с системой, возникает при работающем двигателе, поскольку большинство двигателей сбрасывают давление в топливной системе в течение нескольких секунд после выключения. Тем не менее, вы всегда должны следовать процедурам, рекомендованным производителем, при удалении воздуха из топливных систем или работе с ними.

«Новые двигатели требуют от технических специалистов забыть свои старые диагностические привычки, такие как открытие топливных магистралей на работающем двигателе», — говорит Серра.«Старые системы перекачивали только 0,01 унции топлива за рабочий ход на цилиндр при полной нагрузке. Следовательно, максимальное количество топлива, которое вы могли бы получить из одной топливной магистрали, составляло примерно 10 унций топлива при минимальном давлении через минуту.

«С двигателем с общей топливораспределительной рампой, если сделать то же самое, при значительном распылении будет произведен почти один галлон топлива», — говорит Серра. «Скорость топлива в пределах нескольких дюймов от места утечки достаточно высока, чтобы пробить кожу или перчатки», — говорит он.

Диагностика

Некоторые современные двигатели могут иметь сотни различных кодов неисправностей для различных условий и симптомов, но коды неисправностей не всегда решают проблему.«Даже со всеми этими кодами неисправностей для диагностики по-прежнему требуется хорошо обученный техник, который использует систематический подход к диагностике системы двигателя», — говорит Серра. «Нет никакой замены опыту и пониманию причин и следствий в двигателе. Например, код ошибки пропуска зажигания может быть вызван не только неисправной форсункой, но и неисправной системой рециркуляции отработавших газов, регулировкой клапана или системой жгута проводов ».

По словам Серры, сложнее всего диагностировать проблемы, связанные с жалобами на отсутствие кода неисправности.«Если они не поймут, как должна вести себя вся система, как выглядят нормальные данные и как подойти к диагностике, они будут потеряны», — говорит Серра.

«В более старых двигателях с механическим впрыском 95 процентов топливной системы находилось между ТНВД и форсунками, поэтому диагностика была довольно простой», — говорит Серра. «В двигателе Common Rail топливный насос и форсунки составляют только 25 процентов топливной системы. «Я видел случаи, когда технический специалист тратил недели на современный двигатель, не следя за процессом диагностики, заменяя многие дорогие компоненты только для того, чтобы обнаружить, что он пропустил простую неисправность, такую ​​как засорение топливного фильтра.”

Прочность

По словам Фиера, недавний демонтаж и осмотр двигателя Cummins Tier 4 показали, что его инжекторы HPCR требуют 20 000 часов работы до капитального ремонта. Предостережение заключается в том, что это зависит от рабочего цикла, области применения, хорошего обслуживания фильтра и чистого топлива.

«Эти двигатели не требуют плановой замены топливных форсунок в середине срока службы и, как ожидается, будут иметь такой же срок службы, как и двигатель», — говорит Фиери. «Возможно, более важным, чем срок службы в часах, является общее количество инъекций за срок службы системы HPCR, типичное число — 1 миллиард инъекций.”

Впрыск дизельного топлива — журнал Diesel Power

Фото 2/12 | поломка Diesel Fuel Injection Tech

Ключевым ингредиентом для достижения максимальной максимальной производительности дизельного двигателя является увеличение количества сжигаемого дизельного топлива. На старых двигателях с механическим впрыском единственный способ сделать это — изменить форсунки и / или топливный насос. Новые системы электронного впрыска имеют несколько способов увеличить количество топлива, поступающего в цилиндры, но в конечном итоге пиковая выработка мощности все же сводится к механическим ограничениям компонентов впрыска, которые создают давление топлива и впрыскивают дизельное топливо в камеры сгорания.

Топливная система большинства дизельных двигателей состоит из трех основных частей: инжектора, топливного насоса высокого давления и, в некоторых случаях, блока управления двигателем (ЭБУ). В большинстве дизельных двигателей топливные форсунки установлены в головках цилиндров двигателя, а наконечник или сопло форсунки впрыскивает непосредственно в камеру сгорания. Во многих случаях инжектор устанавливается так же, как свеча зажигания в газовом двигателе. Но в отличие от газовых двигателей с впрыском топлива, которые впрыскивают топливо под давлением 10-60 фунтов на квадратный дюйм, системы впрыска дизельного топлива работают в диапазоне от 10 000 до 30 000 фунтов на квадратный дюйм.

Фото 3/12 | ТНВД для дизельного топлива Насос VE представляет собой аксиально-поршневой насос распределительного типа с механическим управлением. Его входной вал приводится в движение двигателем, а давление топлива осуществляется аксиальными поршнями. Топливо подается в форсунки через распределитель, управляемый портом; это механическое устройство контролирует время и количество топлива, поступающего в каждую форсунку. Фото 4/12 | Дизельный топливный инжекторный насос bosch Cp3 Common Rail

CP3 — это радиально-поршневой насос для систем впрыска Common Rail высокого давления.Производители, похоже, ориентируют все дизели на систему впрыска Common-Rail. С переходом нового 6,4-литрового двигателя Ford Power Stroke на систему Common Rail от Siemens все отечественные грузовики с дизельным двигателем 3/4 и 1 тонны теперь будут использовать технологию Common Rail. В системе Common-Rail используется (и) аккумуляторная рейка (и) для поддержания высокого давления топлива; эта рейка (и) подает топливо к форсункам. Насос CP3 функционирует аналогично VP44, но главное отличие состоит в том, что в CP3 нет соленоида для подачи топлива к форсункам.В системе Common-Rail используются либо электромагнитный клапан, либо пьезоэлектрические форсунки для управления количеством топлива и синхронизацией. CP3, используемые в двигателях Cummins и Duramax, очень похожи. Единственное отличие состоит в том, что Duramax CP3 использует разные фитинги для питания двух направляющих (по одной для каждого ряда цилиндров), тогда как Cummins CP3 питает только одну направляющую для всех шести цилиндров.

Модифицированные насосы CP3 доступны для увеличения расхода топлива на 30 процентов, и, в зависимости от других модификаций двигателя, это добавит 60-100 л.с.Также есть комплекты для работы с двумя CP3 на Duramax или Cummins. В этот комплект добавляется второй CP3, приводимый в движение ременным шкивом. Благодаря вдвое большей производительности насоса хорошее давление топлива может поддерживаться при использовании агрессивных форсунок и электроники.

Фото 5/12 | технология впрыска дизельного топлива bosch P7100

P7100, или P-насос, представляет собой встроенный впрыскивающий насос, в котором кулачок приводится в действие для приведения в действие плунжеров для повышения давления топлива. По мнению некоторых фанатиков дизельного топлива, это мать всех ТНВД из-за своих исключительных возможностей.Хотя на 24-клапанном Cummins он был заменен электронным насосом VP44, некоторые сильно модифицированные грузовики сделали шаг назад и заменили VP44 насосом P из-за его способности перекачивать большое количество топлива.

На вторичном рынке предлагаются десятки улучшений производительности для насоса P, что делает его дизельным двигателем Holley на 4 барреля. Только Industrial Injection имеет три уровня модифицированных P7100: Dragon Fly имеет небольшие модификации и использует стандартные 12-миллиметровые насосы, способные подавать 550 куб.см топлива, Dragon Flow использует 13-миллиметровые насосы для подачи 800 куб.см топлива, а Super Dragon Flow использует 14-миллиметровые насосы. за 1400 куб. см подачи топлива.Все эти насосы могут быть изменены по времени.

Фото 6/12 | Система впрыска дизельного топлива Tech cps Dual Feed Fuel Line

Эта деталь от Industrial Injection увеличивает объем топлива, подаваемого в топливную систему Common Rail, за счет добавления дополнительной линии подачи топлива между насосом и Common Rail. Недостаток системы common-rail заключается в том, что после полного открытия дроссельной заслонки рельс требует времени, чтобы восстановиться до максимального давления топлива. Линии двойной подачи спроектированы таким образом, чтобы вдвое сократить время восстановления рельсов.Также используются менее ограничительные фитинги для увеличения расхода топлива. Industrial Injection утверждает, что эта простая модификация может добавить до 50-70 л.с.

Фото 7/12 | Дизельное топливо Injection Tech 59l Cummins Injector

Этот инжектор Bosch использовался в 12-клапанных двигателях Cummins первого и второго поколения. Единственное отличие состоит в том, что размер впускного отверстия в двух моделях Cummins был немного изменен. Эти гидравлические форсунки срабатывают или лопаются, когда они получают от насоса необходимое количество и давление топлива.Самая распространенная и простая модификация любого инжектора — это удалить сопло и либо увеличить размер отверстий, либо добавить больше отверстий, либо сделать то и другое (в некоторых случаях). На вторичном рынке имеется ряд форсунок, отвечающих потребностям клиентов. Обычно форсунки высокой мощности имеют внутреннюю модификацию, поэтому форсунка и штифт питаются от второго впускного отверстия для топлива. Также могут быть внесены изменения в большинство внутренних компонентов инжектора.

Фото 8/12 | Diesel Fuel Injection Tech bosch Vp44 Впрыскивающий насос

VP44 — это радиально-поршневой насос распределительного типа с электромагнитным клапаном и электронным управлением.Bosch VP44 приводится в движение двигателем, а давление топлива осуществляется несколькими радиальными поршнями. Внутренний радиальный поршень нагнетает топливо, а электромагнитный клапан высокого давления открывает и закрывает выпускное отверстие камеры, которое распределяет определенное количество топлива на каждый из шести форсунок. VP44 имеет встроенный блок управления двигателем, который обменивается данными по шине CAN с главным блоком управления двигателем и требует электрического подъемного насоса для подачи дизельного топлива из топливного бака. Насосы VP44 с горячими стержнями могут добавлять до 100 л.с. благодаря другому программному обеспечению. на ЭБУ насоса, а также внутренние механические модификации для регулировки времени и производительности.

Фото 9/12 | Дизельное топливо Injection Tech 24 Valve Cummins Injector

24-клапанный инжектор очень похож на инжектор, используемый в более старых 12-клапанных двигателях. Он выглядит иначе, потому что в нем используется ступенчатый держатель сопла, но внутри он работает аналогичным образом. Форсунки инжектора модифицируются с использованием электроэрозионной машины (EDM) или процесса экструдирования-хонингования, а иногда и того и другого. В процессе электроэрозионной обработки используются электрод и раствор электролита, тогда как в процессе экструдирования-хонингования используется абразивная жидкость для увеличения размера отверстия.

Фото 10/12 | технология впрыска дизельного топлива heui

HEUI был разработан Caterpillar и используется в 7.3L Power Stroke V-8. Этот инжектор значительно отличается от инжекторов Bosch, потому что он использует масляный насос с приводом от двигателя для подачи масла под высоким давлением в инжектор для повышения давления топлива. Поскольку давление масла используется для повышения давления топлива внутри форсунки, топливный насос высокого давления не нужен. Топливо подается в инжектор под относительно низким давлением (50-70 фунтов на квадратный дюйм), и соленоид управляет потоком масла под высоким давлением, поступающим в плунжерный механизм, для увеличения давления впрыска до 21000 фунтов на квадратный дюйм.Чтобы увеличить поток форсунки, на вторичном рынке либо экструдируют, либо EDM форсунки форсунок, в зависимости от требований заказчика. Также внесены изменения во внутренний насосный механизм форсунки; используются плунжеры большего размера, а внутренние детали обрабатываются иначе. Когда используются сильно модифицированные форсунки, Industrial Injection рекомендует использовать сдвоенные масляные насосы высокого давления, чтобы форсунка не испытывала недостатка масла.

В двигателях Duramax и Cummins используется один и тот же насос Bosch CP3, поэтому логично, что форсунки также очень похожи.

Хотя внешний вид форсунок отличается, внутреннее устройство и функции этих форсунок очень похожи. Электромагнитный клапан в верхней части форсунки регулирует подачу топлива в форсунку из общей магистрали. Большинство доступных микросхем и загрузчиков изменяют время, в течение которого этот соленоид остается открытым, чтобы добавить топлива и, таким образом, увеличить мощность. Для увеличения впрыскиваемого топлива изменяются размер и форма отверстий в форсунках.

DENSO разрабатывает новую дизельную систему Common Rail с самым высоким в мире давлением впрыска | Новости

— Повышенная топливная эффективность и более чистые выбросы выхлопных газов —

КАРИЯ (Япония) — Глобальный поставщик автомобилей DENSO Corporation разработала новую систему впрыска дизельного топлива Common Rail (DCR) с самым высоким * в мире давлением впрыска 2500 бар.Согласно исследованиям DENSO, новая система может помогают повысить эффективность использования топлива до 3 процентов, а также снизить содержание твердых частиц (ТЧ) до 50 процентов и оксидов азота (NOx) до 8 процентов. Это сравнивается с системой DENSO предыдущего поколения. Новая система DCR выйдет на рынок позже в этом году на легковых, коммерческих, сельскохозяйственных и строительных машинах по всему миру.

* Для дизельных систем впрыска Common Rail, состоящих из инжектора, топливного насоса и Common Rail.

«Наша новая дизельная система Common Rail поможет повысить топливную эффективность и соответствовать стандартам выбросов выхлопных газов, которые становятся все более строгими во всем мире, особенно в Европе, Японии и США», — сказал Юкихиро Шинохара. исполнительный директор подразделения дизельных двигателей DENSO.

Улучшенная конструкция для снижения рабочей нагрузки топливного насоса:

  • В системе Common Rail часть топлива, подаваемого от топливного насоса к форсункам, используется для таких целей, как компоненты системы смазки.
  • Это топливо затем возвращается обратно в топливный бак, что создает дополнительную нагрузку на топливный насос, вместо того, чтобы впрыскиваться в камеры сгорания двигателя.
  • За счет улучшения конструкции форсунки, топливного насоса и системы Common Rail компания DENSO значительно снизила нагрузку на топливный насос, уменьшив количество топлива, которое отправляется обратно в топливный бак, примерно на 90 процентов.

Более высокое давление впрыска:

  • Для создания более высокого давления впрыска топлива компания DENSO переработала компоненты и использовала новые материалы.
  • Эти изменения позволили топливу распыляться на более мелкие капли, что улучшило воспламенение топлива и эффективность сгорания, что привело к увеличению экономии топлива и более чистым выбросам выхлопных газов.

Размер имеет значение:

  • Поскольку автопроизводители имеют ограниченное пространство для интеграции компонентов, DENSO смогла разработать и изготовить топливный насос, аналогичный по размеру, но более эффективный, чем предыдущая система.
  • DENSO удалось добиться этого за счет снижения нагрузки на топливный насос.

Первая коммерциализация дизельных систем Common Rail:

  • Компания DENSO первой в мире начала коммерциализацию дизельных систем Common Rail в 1995 году.
  • В 2002 году DENSO предложила систему Common Rail на 1800 бар, самую высокую в мире систему впрыска. давление в то время.
  • В 2008 году DENSO выпустила на рынок модель на 2000 бар.
  • В 2012 году DENSO выпустила на рынок первую в мире систему управления двигателем под названием Intelligent-Accuracy Refinement Technology (i-ART), в которой форсунки имеют встроенный датчик давления для измерения давления впрыска топлива в реальном времени и управления подачей топлива. количество и время впрыска каждой форсунки.

Будущее развитие:
DENSO работает над разработкой и коммерциализацией дизельной системы Common Rail на 3000 бар. Компания продолжит разработку продуктов и технологий, которые помогут улучшить характеристики автомобилей с дизельным двигателем, чтобы уменьшить их воздействие на окружающую среду.

О дизельных системах Common Rail:

  • Дизельная система Common Rail — это основная система впрыска топлива для дизельных двигателей.
  • Топливо, которое сильно сжимается топливным насосом, хранится в аккумуляторе, называемом Common Rail.
  • Затем он распыляется через форсунки с электрическим управлением в камеры сгорания.
  • Хранение сильно сжатого топлива в общей топливной рампе не только дополнительно увеличивает давление топлива, но также регулирует давление впрыска топлива и синхронизацию без влияния скорости вращения двигателя.

Корпорация DENSO со штаб-квартирой в Кария, префектура Айти, Япония, является ведущим мировым поставщиком передовых технологий, систем и компонентов для автомобильной промышленности в области охлаждения, управления трансмиссией, электроники, информации и безопасности.Его клиенты включают всех основных производителей автомобилей в мире. По всему миру компания имеет более 200 дочерних и зависимых компаний в 36 странах и регионах (включая Японию) и насчитывает более 130 000 сотрудников. Консолидированные мировые продажи за финансовый год, заканчивающийся в марте 31 августа 2013 г., составила 38,1 млрд долларов США. В прошлом финансовом году DENSO потратила 9,4% своих глобальных консолидированных продаж на исследования и разработки. Обыкновенные акции DENSO торгуются на фондовых биржах Токио и Нагоя. Для получения дополнительной информации перейдите на www.denso.com/global/en/, или посетите наш сайт для СМИ по адресу www.densomediacenter.com


Новая система Common Rail
(Слева: топливный насос, форсунка и Common Rail)

Применение системы впрыска Common Rail в дизельном двигателе для тяжелых условий эксплуатации на JSTOR

Abstract

В отрасли дизельных двигателей растут тенденции к более широкому использованию оборудования для впрыска топлива высокого давления с электронным управлением, чтобы обеспечить лучшие характеристики двигателя при соблюдении строгих стандартов по выбросам выхлопных газов.Несмотря на то, что в последнее время было сделано несколько анонсов дизельного двигателя, в котором применяется система впрыска топлива Common Rail с электронным управлением, опубликовано мало литературы о любых попытках снизить выбросы выхлопных газов и шум, а также улучшить характеристики двигателя путем изменения давления впрыска и момента впрыска. самостоятельно и вводя пилотный впрыск в комбинации. В этом документе описываются детали исследования параметров, связанных с синхронизацией впрыска, давлением впрыска и пилотного впрыска, а также процедуры их оптимизации с системой впрыска топлива с электронным управлением Common Rail, установленной в рядный 6-цилиндровый 6.9-литровый дизельный двигатель DI с турбонаддувом и промежуточным охлаждением. Исследование показало, что не только впрыск под высоким давлением, но и предварительный впрыск эффективны для уменьшения дыма при высокой нагрузке, особенно в диапазонах низких скоростей. Также стало ясно, что пилотный впрыск полезен для снижения выбросов NOx и HC при низкой нагрузке, а также для снижения шума во всех рабочих диапазонах двигателя. По результатам исследования параметры давления впрыска, момента впрыска, количества пилотного впрыска и момента пилотного впрыска были оптимизированы во всех рабочих диапазонах двигателя.Следовательно, крутящий момент на низких оборотах был увеличен, а количество твердых частиц уменьшилось вдвое по сравнению с обычным двигателем, при этом уменьшился дым и шум, без увеличения выбросов выхлопных газов. Кроме того, было обнаружено, что предварительный впрыск очень эффективен для улучшения пусковых характеристик двигателя и уменьшения белого дыма при низких температурах.

Информация для издателей

SAE International — это глобальная ассоциация, объединяющая более 128 000 инженеров и технических экспертов в аэрокосмической, автомобильной и коммерческой промышленности.Основные направления деятельности SAE International — обучение на протяжении всей жизни и разработка добровольных согласованных стандартов. Благотворительным подразделением SAE International является SAE Foundation, который поддерживает множество программ, включая A World In Motion® и Collegiate Design Series.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *