Турбина двс: Что такое турбонаддув — ДРАЙВ

Содержание

Что такое турбонаддув — ДРАЙВ

Несомненно, каждый из нас хоть раз в жизни замечал на обычном с виду автомобиле шильдик «turbo». Производители, как нарочно, делают эти шильдики небольшого размера и размещают в неприметных местах так, что непосвящённый прохожий не заметит и пройдёт мимо. А понимающий человек непременно остановится и заинтересуется автомобилем. Ниже приводится рассказ о причинах такого поведения.

Автомобильные конструкторы (с момента появления на свете этой профессии) постоянно озабочены проблемой повышения мощности моторов. Законы физики гласят, что мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива мы сжигаем, тем больше мощность. И, скажем, захотелось нам увеличить «поголовье лошадей» под капотом — как это сделать? Тут-то нас и поджидают проблемы.

Турбокомпрессор состоит из двух «улиток» — через одну проходят отработавшие газы, а вторая «качает» воздух в цилиндры.

Дело в том, что для горения топлива необходим кислород. Так что в цилиндрах сгорает не топливо, а топливно-воздушная смесь. Мешать топливо с воздухом нужно не на глазок, а в определённом соотношении. К примеру, для бензиновых двигателей на одну часть топлива полагается 14–15 частей воздуха — в зависимости от режима работы, состава горючего и прочих факторов.

Как мы видим, воздуха требуется весьма много. Если мы увеличим подачу топлива (это не проблема), нам также придётся значительно увеличить и подачу воздуха. Обычные двигатели засасывают его самостоятельно из-за разницы давлений в цилиндре и в атмосфере. Зависимость получается прямая — чем больше объём цилиндра, тем больше кислорода в него попадёт на каждом цикле. Так и поступали американцы, выпуская огромные двигатели с умопомрачительным расходом горючего. А есть ли способ загнать в тот же объём больше воздуха?

Выхлопные газы из двигателя вращают ротор турбины, тот, в свою очередь, приводит в движение компрессор, который нагнетает сжатый воздух в цилиндры. Перед тем как это произойдёт, воздух проходит через интеркулер и охлаждается — так можно повысить его плотность.

Есть, и впервые придумал его господин Готтлиб Вильгельм Даймлер (Gottlieb Wilhelm Daimler). Знакомая фамилия? Ещё бы, именно она используется в названии DaimlerChrysler. Так вот, этот немец весьма неплохо соображал в моторах и ещё в 1885 году придумал, как загнать в них больше воздуха. Он догадался закачивать воздух в цилиндры с помощью нагнетателя, представлявшего собой вентилятор (компрессор), который получал вращение непосредственно от вала двигателя и загонял в цилиндры сжатый воздух.

Швейцарский инженер-изобретатель Альфред Бюхи (Alfred J. Büchi) пошёл ещё дальше. Он заведовал разработкой дизельных двигателей в компании Sulzer Brothers, и ему категорически не нравилось, что моторы были большими и тяжёлыми, а мощности развивали мало. Отнимать энергию у «движка», чтобы вращать приводной компрессор, ему также не хотелось. Поэтому в 1905 году господин Бюхи запатентовал первое в мире устройство нагнетания, которое использовало в качестве движителя энергию выхлопных газов. Проще говоря, он придумал турбонаддув.

Идея умного швейцарца проста, как всё гениальное. Как ветра вращают крылья мельницы, также и отработавшие газы крутят колесо с лопатками. Разница только в том, что колесо это очень маленькое, а лопаток очень много. Колесо с лопатками называется ротором турбины и посажено на один вал с колесом компрессора. Так что условно турбонагнетатель можно разделить на две части — ротор и компрессор. Ротор получает вращение от выхлопных газов, а соединённый с ним компрессор, работая в качестве «вентилятора», нагнетает дополнительный воздух в цилиндры. Вся эта мудрёная конструкция и называется турбокомпрессор (от латинских слов turbo — вихрь и compressio — сжатие) или турбонагнетатель.

Аналог турбонаддува — приводной нагнетатель — жёстко связан с двигателем и тратит на свою работу часть его мощности.

В турбомоторе воздух, который попадает в цилиндры, часто приходится дополнительно охлаждать — тогда его давление можно будет сделать выше, загнав в цилиндр больше кислорода. Ведь сжать холодный воздух (уже в цилиндре ДВС) легче, чем горячий.

Воздух, проходящий через турбину, нагревается от сжатия, а также от деталей турбонаддува, разогретого выхлопными газами. Подаваемый в двигатель воздух охлаждают при помощи так называемого интеркулера (промежуточный охладитель). Это радиатор, установленный на пути воздуха от компрессора к цилиндрам мотора. Проходя через него, он отдаёт своё тепло атмосфере. А холодный воздух более плотный — значит, его можно загнать в цилиндр ещё больше.

А вот так выглядит интеркулер.

Чем больше выхлопных газов попадает в турбину, тем быстрее она вращается и тем больше дополнительного воздуха поступает в цилиндры, тем выше мощность. Эффективность этого решения по сравнению, например, с приводным нагнетателем в том, что на «самообслуживание» наддува тратится совсем немного энергии двигателя — всего 1,5%. Дело в том, что ротор турбины получает энергию от выхлопных газов не за счёт их замедления, а за счёт их охлаждения — после турбины выхлопные газы идут по-прежнему быстро, но более холодные. Кроме того, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объёма большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Всё это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными собратьями равной мощности. Казалось бы, вот оно, счастье. Ан нет, не всё так просто. Проблемы только начались.

У Mitsubishi Lancer Evolution интеркулер располагается в переднем бампере перед радиатором. А у Subaru Impreza WRX STI — над двигателем.

Во-первых, скорость вращения турбины может достигать 200 тысяч оборотов в минуту, во-вторых, температура раскалённых газов достигает, только попробуйте представить, 1000°C! Что всё это означает? То, что сделать турбонаддув, который сможет выдержать такие неслабые нагрузки длительное время, весьма дорого и непросто.

Выхлопные газы разогревают и выпускную систему, и турбонаддув до очень высоких температур.

По этим причинам турбонаддув получил широкое распространение только во время Второй мировой войны, да и то только в авиации. В 50-х годах американская компания Caterpillar сумела приспособить его к своим тракторам, а умельцы из Cummins сконструировали первые турбодизели для своих грузовиков. На серийных легковых машинах турбомоторы появились и того позже. Случилось это в 1962 году, когда почти одновременно увидели свет Oldsmobile Jetfire и Chevrolet Corvair Monza.

Но сложность и дороговизна конструкции — не единственные недостатки. Дело в том, что эффективность работы турбины сильно зависит от оборотов двигателя. На малых оборотах выхлопных газов немного, ротор раскрутился слабо, и компрессор почти не задувает в цилиндры дополнительный воздух. Поэтому бывает, что до трёх тысяч оборотов в минуту мотор совсем не тянет, и только потом, тысяч после четырёх-пяти, «выстреливает». Эта ложка дёгтя называется турбоямой. Причём чем больше турбина, тем она дольше будет раскручиваться. Поэтому моторы с очень высокой удельной мощностью и турбинами высокого давления, как правило, страдают турбоямой в первую очередь. А вот у турбин, создающих низкое давление, никаких провалов тяги почти нет, но и мощность они поднимают не очень сильно.

Почти избавиться от турбоямы помогает схема с последовательным наддувом, когда на малых оборотах двигателя работает небольшой малоинерционный турбокомпрессор, увеличивая тягу на «низах», а второй, побольше, включается на высоких оборотах с ростом давления на выпуске. В прошлом веке последовательный наддув использовался на суперкаре Porsche 959, а сегодня по такой схеме устроены, например, турбодизели фирм BMW и Land Rover. В бензиновых двигателях Volkswagen роль маленького «заводилы» играет приводной нагнетатель.

На рядных двигателях зачастую используется одиночный турбокомпрессор twin-scroll (пара «улиток») с двойным рабочим аппаратом. Каждая из «улиток» наполняется выхлопными газами от разных групп цилиндров. Но при этом обе подают газы на одну турбину, эффективно раскручивая её и на малых, и на больших оборотах

Но чаще по-прежнему встречается пара одинаковых турбокомпрессоров, параллельно обслуживающих отдельные группы цилиндров. Типичная схема для V-образных турбомоторов, где у каждого блока свой нагнетатель. Хотя двигатель V8 фирмы M GmbH, дебютировавший на автомобилях BMW X5 M и X6 M, оснащён перекрёстным выпускным коллектором, который позволяет компрессору twin-scroll получать выхлопные газы из цилиндров разных блоков, работающих в противофазе.

Турбина twin-scroll имеет двойную «улитку» турбины — одна эффективно работает на высоких оборотах двигателя, вторая — на низких

Заставить турбокомпрессор работать эффективнее во всём диапазоне оборотов, можно ещё изменяя геометрию рабочей части. В зависимости от оборотов внутри «улитки» поворачиваются специальные лопатки и варьируется форма сопла. В результате получается «супертурбина», хорошо работающая во всём диапазоне оборотов. Идеи эти витали в воздухе не один десяток лет, но реализовать их удалось относительно недавно. Причём сначала турбины с изменяемой геометрией появились на дизельных двигателях, благо, температура газов там значительно меньше. А из бензиновых автомобилей первый примерил такую турбину Porsche 911 Turbo.

Турбина с изменяемой геометрией.

Конструкцию турбомоторов довели до ума уже давно, а в последнее время их популярность резко возросла. Причём турбокомпрессоры оказалось перспективным не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа. Особенно актуально это для дизельных двигателей. Редкий дизель сегодня не несёт приставки «турбо». Ну а установка турбины на бензиновые моторы позволяет превратить обычный с виду автомобиль в настоящую «зажигалку». Ту самую, с маленьким, едва заметным шильдиком «turbo».

Принцип работы турбины. Как работает турбонаддув в автомобиле

Для более ясного представления о том, как работает турбина в автомобиле, прежде всего необходимо ознакомится с принципом работы двигателя внутреннего сгорания. Сегодня, основная масса грузовых и легковых автомобилей оснащаются 4-х тактными силовыми агрегатами, работа которых контролируется впускными и выпускными клапанами.

Каждый из рабочих циклов такого двигателя состоит из 4 тактов, при которых коленвал делает 2 полных оборота

 

Впуск — при этом такте осуществляется движение поршня вниз, при этом в камеру сгорания поступает смесь топлива и воздуха (если это бензиновый двигатель) или только воздуха в случае если это дизельный агрегат.

Компрессия — при этом такте происходит сжатие горючей смеси.

Расширение — на этом этапе происходит воспламенение горючей смеси при помощи искры, вырабатываемой свечами. В случае с дизельным двигателем, воспламенение осуществляется произвольно под действием высокого давления впрыска.

Выпуск — поршень двигается вверх, при этом освобождаются выхлопные газы.

Такой принцип работы двигателя определяет следующие способы повышения его эффективности:

— Установка турбонаддува
— Увеличение рабочего объёма двигателя
— Увеличение числа оборотов коленчатого вала двигателя

Как работает турбина в автомобиле?

 

 

 

Увеличение рабочего объёма двигателя

Увеличение объёма двигателя возможно двумя путями: либо увеличением объема камер сгорания, либо — увеличением количества цилиндров в силовом агрегате. Однако такой способ повышения мощности не совсем оправдан, так как имеет ряд недостатков, среди которых: повышенный расход топлива.

Увеличение числа оборотов коленчатого вала двигателя

Еще один возможный способ повышения производительности двигателя заключается в увеличении числа оборотов коленчатого вала. Это достигается путем увеличения количества ходов поршня за единицу времени. Но использование такого способа имеет жесткие ограничения, которые обусловлены техническими возможностями двигателя. Кроме этого, такая модернизация приводит к падению эффективности работы силового агрегата из-за потерь при впуске и других операциях.

Турбонаддув

В двух предыдущих способах двигатель использует воздух, который поступает благодаря собственному нагнетанию. При использовании турбокомпрессора в цилиндр поступает тот же объем воздуха но с предварительным его сжатием. Это дает возможность поступлению большего количества воздуха в цилиндр, благодаря чему появляется возможность сжигания большего объема топлива. При использовании такой технологии, мощность двигателя возрастает по отношению к количеству потребляемого топлива и объему двигателя.

Охлаждение воздуха

В процессе компрессии воздух может нагреваться вплоть до 180 С. Однако воздух имеет свойство увеличения плотности при охлаждении, что дает возможность значительно увеличить объем воздуха, попадающего в цилиндр. Кроме этого, увеличение плотности воздуха существенно снижает расход топлива и количество выбросов продуктов сгорания.

Также существует два разных типа турбонаддува: турбокомпрессор, основанный на использовании энергии выхлопных газов и турбонагнетатель с механическим приводом.

Турбонагнетатель с механическим приводом

В случае использования такого типа компрессии, воздух сжимается благодаря специальному компрессору, который работает от привода двигателя. Но такой метод имеет один большой недостаток. Все дело в том, что при использовании механического турбокомпрессора часть мощность двигателя уходит на обеспечение работы самого компрессора, по этому двигатель, оборудован таким нагнетателем, имеет больший расход топлива чем обычный двигатель такой же мощности.

Турбокомпрессор основанный на использовании энергии выхлопных газов

Такой метод основан на использовании энергии выхлопных газов, которая направлена на привод турбины. При использовании такого способа отсутствует механическое соединение с двигателем, благодаря чему потери мощности не происходит.

Основные преимущества двигателей с турбонаддувом

1) Турбодвигатель имеет меньшее показатели по расходу топлива нежели двигатель без турбины той же мощности и при прочих равных условиях.

2) Силовой агрегат с с турбонаддувом имеет заметно лучшие показатели соотношения веса двигателя к развиваемой им мощности.

3) Использование турбокомпрессора открывает новые возможности по оптимизации других параметров и характеристик двигателя, а также улучшения крутящего момента, что позволит избежать очень часто переключения передач при езде в пробках или гористой местности.

4) Турбодвигатели работают тише чем агрегаты такой же мощности без турбонаддува.

Газовые, паровые турбины и двигатели внутреннего сгорания

Описание программы:


13.03.03
Энергетическое машиностроение
Инженерное дело, технологии и технические науки
Уральский энергетический институт
Бакалавриат
2019-2021
Очная: 4 года
Заочная: 5 лет

Русский

Образовательная программа «Газовые, паровые турбины и двигатели внутреннего сгорания» включает две траектории: «Газотурбинные, паротурбинные установки и двигатели» и «Поршневые двигатели внутреннего сгорания». Выпускник по данному направлению и траекториям подготовки в соответствии с полученной квалификацией сможет осуществлять профессиональную деятельность в области конструирования и проектирования, исследования, монтажа, наладки, эксплуатации и ремонта энергетических машин, агрегатов, установок и систем их управления, в основу рабочих процессов которых положены различные формы преобразования энергии.

Профессиональную деятельность выпускник сможет выполнять в проектных и производственных организациях энергомашиностроительной отрасли, в ремонтных и эксплуатационных организациях энергетической отрасли, а также на газотранспортных предприятиях газовой промышленности.

Программа предполагает фундаментальную подготовку по естественнонаучным и общеинженерным дисциплинам, достаточную для продолжения обучения по программам магистратуры.

Обучение по образовательной программе осуществляет кафедра «Турбины и двигатели». Сайт кафедры: http://tid.enin.urfu.ru/

 

Контакты



Артемова Татьяна Георгиевна
Руководитель образовательной программы
Старший преподаватель, Заведующий учебной лабораторией
Аудитория: ул. Софьи Ковалевской, 5, Т-007
Телефон: +7 (343) 3754851
Электронная почта: [email protected]

Первый шаг к поступлению —
регистрация в
личном кабинете абитуриента

«Наддувательство»: опасен ли турбированный мотор современного автомобиля

«Низкие обороты турбонагнетателю не страшны, — считает Дмитрий Парбуков, шеф-тренер «Ауди Центр Варшавка». — Однако, несмотря на инновационные системы охлаждения современных двигателей, не стоит эксплуатировать автомобиль длительное время «под полным газом», это сказывается на ресурсе турбонагнетателя. Резкие ускорения и торможения турбине не навредят, так как современные узлы оснащены клапаном сброса давления для ограничения подачи воздуха и предотвращения детонации, а также перепускным клапаном, позволяющими поддерживать постоянное вращение компрессорного колеса для исключения эффекта турбоямы и последующего быстрого отклика».

По мнению Константина Калиничева, cервис-менеджера «Порше Центра Ясенево» компании «Рольф», чем современнее двигатель, тем эффект турбоямы менее заметен. Для его устранения автопроизводители используют как более современную электронную начинку управления двигателем, так и более сложные узлы, например турбины с переменной производительностью. Либо же ставят несколько турбин: высокого и низкого давления.

«Сразу после запуска любых двигателей внутреннего сгорания (ДВС) нежелательно давать нагрузку на мотор, пока он не прогрелся до 50-60 градусов по Цельсию. При достижении этой температуры все тепловые зазоры приходят в соответствие с заложенными параметрами, прогревается смазка и моторное масло», — добавляет Александр Копытов.

Дмитрий Парбуков утверждает, что если мотор только завелся, жать на газ для быстрого прогрева машины нежелательно. В этом случае горячий поток отработавших газов воздействует на турбинную часть вала, при этом непрогретое масло недостаточно прокачивается в системе, из-за чего возникают перегрев и повышенный износ турбонагнетателя.

Турботаймер

Не так давно владельцы турбированных автомобилей предпочитали комплектовать их так называемыми турботаймерами, которые позволяли двигателю работать на холостых оборотах несколько минут после того, как владелец уже вытащил ключ из замка зажигания и запер машину. По мнению экспертов, современным моделям это устройство больше не нужно.

Турбокомпрессор: сердце системы наддува воздуха

Турбокомпрессор: сердце системы наддува воздуха

Для повышения мощности двигателей внутреннего сгорания широкое применение находят специальные агрегаты — турбокомпрессоры. О том, что такое турбокомпрессор, каких типов бывают эти агрегаты, как они устроены и на каких принципах основана их работа, а также об их обслуживании и ремонте читайте в статье.


Что такое турбокомпрессор?

Турбокомпрессор — основной компонент системы агрегатного наддува двигателей внутреннего сгорания, агрегат для повышения давления во впускном тракте двигателя за счет энергии отработавших газов.

Турбокомпрессор применяется для повышения мощности двигателя внутреннего сгорания без коренного вмешательства в его конструкцию. Данный агрегат повышает давление во впускном тракте двигателя, обеспечивая подачу в камеры сгорания увеличенного количества топливно-воздушной смеси. В этом случае сгорание происходит при более высокой температуре с образованием большего объема газов, что приводит к повышению давления на поршень и, как следствие, к росту крутящего момента и мощностных характеристик двигателя.

Применение турбокомпрессора позволяет увеличить мощность двигателя на 20-50% с минимальным увеличением его стоимости (а при более значительных доработках рост мощности может достигать 100-120%). Благодаря своей простоте, надежности и эффективности системы наддува на основе турбокомпрессоров находят самое широкое применение на всех типах транспортных средств с ДВС.


Типы и характеристики турбокомпрессоров

Сегодня существует большое разнообразие турбокомпрессоров, но их можно разделить на группы по назначению и применимости, типу используемой турбины и дополнительному функционалу.

По назначению турбокомпрессоры можно разделить на несколько типов:

  • Для одноступенчатых систем наддува — один турбокомпрессор на двигатель, либо два и более агрегатов, работающих на несколько цилиндров;
  • Для последовательных и последовательно-параллельных систем надува (различные варианты Twin Turbo) — два одинаковых или разных по характеристикам агрегата, работающих на общую группу цилиндров;
  • Для двухступенчатых систем наддува — два турбокомпрессора с различными характеристиками, которые работают в паре (последовательно друг за другом) на одну группу цилиндров.

Наиболее широкое применение находят одноступенчатые системы наддува, построенные на основе одного турбокомпрессора. Однако такой системе может присутствовать два или четыре одинаковых агрегата — например, в V-образных двигателях используются отдельные турбокомпрессоры на каждый ряд цилиндров, в многоцилиндровых моторах (более 8) могут применяться четыре турбокомпрессора, каждый из которых работает на 2, 4 или более цилиндров. Меньшее распространение получили двухступенчатые системы наддува и различные вариации Twin-Turbo, в них используется два турбокомпрессора с различными характеристиками, которые могут работать только в паре.

По применимости турбокомпрессоры можно условно разделить на несколько групп:

  • По типу двигателя — для бензиновых, дизельных и газовых силовых агрегатов;
  • По объему и мощности двигателя — для силовых агрегатов малой, средней и большой мощности; для высокооборотистых двигателей, и т.д.

Турбокомпрессоры могут оснащаться турбиной одного из двух типов:

  • Радиальной (радиально-осевой, центростремительной) — поток отработавших газов подается на периферию крыльчатки турбины, движется к ее центру и выводится в осевом направлении;
  • Осевой — поток отработавших газов подается вдоль оси (к центру) крыльчатки турбины и выводится с ее периферии.

Сегодня применяются обе схемы, но на двигателях небольшого объема чаще можно встретить турбокомпрессоры с радиально-осевой турбиной, а на мощных силовых агрегатах предпочтение отдается осевым турбинам (хотя это и не является правилом). Независимо от типа турбины, все турбокомпрессоры оснащаются центробежным компрессором — в нем воздух подается к центру крыльчатки и отводится от ее периферии.

Современные турбокомпрессоры могут иметь различный функционал:

  • Двойной вход — турбина имеет два входа, на каждый из них поступают отработавшие газы от одной группы цилиндров, такое решение снижает перепады давления в системе и улучшает стабильность наддува;
  • Изменяемая геометрия — турбина имеет подвижные лопасти или скользящее кольцо, посредством которых можно изменять поток отработавших газов на рабочее колесо, это позволяет изменять характеристики турбокомпрессора в зависимости от режима работы двигателя.

Наконец, турбокомпрессоры отличаются основными эксплуатационными характеристиками и возможностями. Из основных характеристик этих агрегатов следует выделить:

  • Степень повышения давления — отношение давления воздуха на выходе компрессора к давлению воздуха на входе, лежит в пределах 1,5-3;
  • Подача компрессора (расход воздуха через компрессор) — масса воздуха, проходящая через компрессор за единицу времени (секунду), лежит в пределах 0,5-2 кг/с;
  • Рабочий диапазон оборотов — лежит в пределах от нескольких сотен (для мощных тепловозных, промышленных и иных дизелей) до десятков тысяч (для современных форсированных двигателей) оборотов в секунду. Максимальная скорость ограничена прочностью рабочих колес турбины и компрессора, при слишком высокой скорости вращения за счет центробежных сил колесо может разрушиться. В современных турбокомпрессорах периферийные точки колес могут вращаться со скоростями 500-600 и более м/с, то есть — в 1,5-2 раза быстрее скорости звука, это и обуславливает возникновение характерного свиста турбины;
  • Рабочая/максимальная температура отработавших газов на входе в турбину — лежит в пределах 650-700°С, в отдельных случаях достигает 1000°С;
  • КПД турбины/компрессора — обычно составляет 0,7-0,8, в одном агрегате КПД турбины обычно меньше КПД компрессора.

Типовая схема системы агрегатного наддува воздуха ДВС

Также агрегаты отличаются размерами, типом монтажа, необходимостью применять вспомогательные компоненты и т.д.


Конструкция турбокомпрессора

В общем случае турбокомпрессор состоит из трех основных узлов:

  1. Турбина;
  2. Компрессор;
  3. Корпус подшипников (центральный корпус).

Турбина — агрегат, преобразующий кинетическую энергию отработавших газов в механическую энергию (в крутящий момент колеса), которая обеспечивает работу компрессора. Компрессор — агрегат для нагнетания воздуха. Корпус подшипников связывает оба агрегата в единую конструкцию, а расположенный в нем вал ротора обеспечивает передачу крутящего момента от колеса турбины на колесо компрессора.


Разрез турбокомпрессора

Турбина и компрессор имеют схожую конструкцию. Основой каждого из этих агрегатов выступает корпус-улитка, в периферийной и центральной части которого расположены патрубки для соединения с системой наддува. У компрессора впускной патрубок всегда находится в центре, выпускной (нагнетательный) — на периферии. Такое же расположение патрубков у осевых турбин, у радиально-осевых турбин расположение патрубков обратное (на периферии — впускной, в центре — выпускной).

Внутри корпуса располагается колесо с лопатками специальной формы. Оба колеса — турбинное и компрессорное — удерживаются общим валом, который проходит через корпус подшипников. Колеса — цельнолитые или составные, форма лопаток турбинного колеса обеспечивает максимально эффективное использование энергии отработавших газов, форма лопаток компрессорного колеса обеспечивает максимальный центробежный эффект. В современных турбинах высокого класса могут использоваться составные колеса с керамическими лопатками, которые имеют низкую массу и обладают лучшими характеристиками. Размер колес турбокомпрессоров автомобильных двигателей — 50-180 мм, мощных тепловозных, промышленных и иных дизелей — 220-500 и более мм.

Оба корпуса монтируются на корпус подшипников с помощью болтов через уплотнения. Здесь располагаются подшипники скольжения (реже — подшипники качения специальной конструкции) и уплотнительные кольца. Также в центральном корпусе выполняются масляные каналы для смазки подшипников и вала, а в некоторых турбокомпрессорах и полости водяной рубашки охлаждения. При монтаже агрегат соединяется с системами смазки и охлаждения двигателя.

В конструкции турбокомпрессора могут быть предусмотрены и различные вспомогательные компоненты, в том числе детали системы рециркуляции отработавших газов, масляные клапаны, элементы для улучшения смазки деталей и их охлаждения, регулировочные клапаны и т.д.

Детали турбокомпрессора изготавливаются из специальных марок стали, для колеса турбины применяются жаропрочные стали. Материалы тщательно подбираются по коэффициенту температурного расширения, что обеспечивает надежность конструкции на различных режимах работы.

Турбокомпрессор включается в систему наддува воздуха, в которую также входят впускной и выпускной коллекторы, а в более сложных системах — интеркулер (радиатор охлаждения наддувного воздуха), различные клапаны, датчики, заслонки и трубопроводы.


Принцип работы турбокомпрессора


Принцип работы турбокомпрессора

Функционирование турбокомпрессора сводится к простым принципам. Турбина агрегата внедряется в выпускную систему двигателя, компрессор — во впускной тракт. Во время работы мотора выхлопные газы поступают в турбину, ударяются о лопатки колеса, отдавая ему часть своей кинетической энергии и заставляя ее вращаться. Крутящий момент от турбины посредством вала напрямую передается на колеса компрессора. При вращении колесо компрессора отбрасывает воздух на периферию, повышая его давление — этот воздух подается во впускной коллектор.

Одиночный турбокомпрессор имеет ряд недостатков, основной из которых — турбозадержка или турбояма. Колеса агрегата имеют массу и некоторую инерцию, поэтому не могут мгновенно раскручиваться при повышении оборотов силового агрегата. Поэтому при резком нажатии на педаль газа турбированный двигатель разгоняется не сразу — возникает короткая пауза, провал мощности. Решением этой проблемы служат специальные системы управления турбиной, турбокомпрессоры с изменяемой геометрией, последовательно-параллельные и двухступенчатые системы наддува, и другие.


Вопросы обслуживания и ремонта турбокомпрессоров

Турбокомпрессор нуждается в минимальном техническом обслуживании. Главное — вовремя производить замену масла и масляного фильтра двигателя. Если мотор еще может какое-то время работать на старом масле, то для турбокомпрессора оно может стать смертельно опасным — даже незначительное ухудшение качества смазочного материала на высоких нагрузках может привести к заклиниванию и разрушению агрегата. Также рекомендуется периодически очищать детали турбины от нагара, что требует ее разбора, однако эту работу следует выполнять только с применением специального инструмента и оборудования.

Неисправный турбокомпрессор в большинстве случаев проще заменить, чем ремонтировать. Для замены необходимо использовать агрегат того же типа и модели, что был установлен на двигателе ранее. Монтаж турбокомпрессора с иными характеристиками может нарушить работу силового агрегата. Подбор, монтаж и настройку агрегата лучше доверять специалистам — это гарантирует правильное выполнение работ и нормальную работу двигателя. При правильной замене турбокомпрессора двигатель снова обретет высокую мощность и сможет решать самые сложные задачи.

Другие статьи

#Палец штанги реактивной

Палец штанги реактивной: прочная основа шарниров штанг

23.06.2021 | Статьи о запасных частях

В подвесках грузовых автомобилей, автобусов и другой техники предусмотрены элементы, компенсирующие реактивный момент — реактивные штанги. Соединение штанг с балками мостов и рамой осуществляется с помощью пальцев — об этих деталях, их типах и конструкции, а также о замене пальцев читайте в статье.

#Клапан МАЗ включения привода сцепления

Клапан МАЗ включения привода сцепления

16.06.2021 | Статьи о запасных частях

Многие модели автомобилей МАЗ оснащаются приводом выключения сцепления с пневматическим усилителем, важную роль в работе которого играет клапан включения привода. Все о клапанах включения привода сцепления МАЗ, их типах и конструкции, а также о подборе, замене и ТО данной детали — узнайте из статьи.

Особенности двигателя TSI в автомобилях Volkswagen

Силовыми агрегатами TSI комплектуются все современные модели Volkswagen. Аббревиатура от Turbo Stratified Injection обозначает двигатель, в котором впрыск топлива происходит непосредственно в цилиндр, а воздух нагнетается двойным турбонаддувом.

В результате эксплуатационные характеристики мотора более высокие, чем у двигателя с обычной турбиной, но из-за этого ему требуется более качественное обслуживание, которое нереально осуществить в кустарных условиях.

Этот тип двигателя самый популярный среди автомобилей Volkswagen. На Passat В8, Passat СС, Tiguan устанавливают сейчас (2016 года) только двигатели типа TSI. На  Golf и Jetta кроме TSI устанавливают также MPI. Единственная модель, которая не комплектуется TSI — Туарег.

Каким образом работает двойной турбонаддув?

Для понимания принципа действия двойного турбонаддува стоит рассмотреть, как формируется воздушно-топливная смесь на разных оборотах:

  • до 2 400 об/мин работает исключительно механический компрессор, а турбокомпрессор простаивает, поскольку нет необходимости в дополнительной мощности и недостаточно давления выхлопных газов;
  • от 2 400 до 3 500 об/мин для нагнетания воздуха подключается турбокомпрессор, но только если электроника регистрирует очень динамичное увеличение потребности в мощности, к примеру, при резком старте с места;
  • от 3 500 об/мин и выше заслонка турбокомпрессора полностью открыта и он один работает на нагнетание воздуха.

В результате такого комплексного подхода становится возможным тонкое изменение мощности двигателя в большом диапазоне оборотов. Практически отсутствует «турбояма», которая характерна для силовых агрегатов с классической турбиной. В механическом нагнетателе используется редуктор, благодаря которому скорость вращения компрессора достигает 17 500 об/мин для наиболее эффективного давления в системе подачи воздуха.

Особенности охлаждения моторов TSI

Здесь применяется система охлаждения из двух контуров: один для головки блока цилиндров, а второй для самого блока. Количество охлаждающей жидкости в 2 раза больше в головке цилиндров, чтобы быстрее выполнялся прогрев и снижалась вероятность её перегрева, поскольку она изначально нагревается более интенсивно, чем блок цилиндров. Дополнительно система оснащена двумя термостатами, которые срабатывают при температуре в 80 и 95 °C.

Для охлаждения турбины используется еще более интересная схема. Дополнительный водяной насос с электроприводом охлаждает её в течение еще 15 мин. после остановки двигателя. В результате сложный механизм никогда не перегревается, что увеличивает его ресурс.

Недостатки технологии

Наибольшим минусом этих двигателей является их относительно плохой прогрев в холодное время года. Классическая схема разогрева на холостых оборотах в минусовую температуру малоэффективна — вам придётся долго ожидать тепла из дефлектора отопителя. В такую погоду на рабочую температуру мотор выходит достаточно долго даже при езде. К сожалению, такая плата за отменные рабочие параметры этих силовых агрегатов.

Рекомендации по эксплуатации

Любая вещь, созданная человеком, рано или поздно придёт в негодность и даже такие качественные двигатели не вечны. Однако если вы будете использовать качественные расходники и уделите пристальное внимание на состояние цепи ГРМ, то детище немецких инженеров не будет расстраивать вас форс-мажорными поломками в течение многих десятков тысяч километров.

Нюанс с долгим прогревом можно просто решить. Достаточно установить автономный предпусковой подогреватель мотора. Ведь такие приспособления уже не первое десятилетие используются в грузовиках и в нашем случае они помогут вам не мёрзнуть во время коротких зимних поездок.

описания и характеристики, фото и видеообзоры


В этой статье речь пойдет о плюсах, минусах и общем принципе работы газово-турбинного двигателя (ГТД), а также краткое сравнение с ДВС. Текст разбит на логические абзацы с подзаголовками и списками.

Из-за нестабильной экономической ситуации в мире приходится искать способы сэкономить. Владельцы и будущие покупатели автомобиля в первую очередь думают об экономичности своей машины. Большую популярность обрела установка газово-турбинного двигателя (ГТД).

Газовая установка (ГТД) – это тепловой двигатель, в котором энергия нагретого и сжатого газа преобразуется в механическую на валу турбины.
Га́зовая турби́на (фр. turbine от лат. turbo — вихрь, вращение) — лопаточная машина, в ступенях которой энергия сжатого и/или нагретого газа преобразуется в механическую работу на валу. (из Википедии)

Устройство

Существует всего два типа газовых установок, которые действительно имеют преимущество перед ДВС:

• С несколькими валами

Чаще всего в таком моторе работает 2 турбины (одна приводит в движение компрессор, а другая – автомобиль), которые не соединены между собой, что увеличивает КПД. Компрессор накачивает воздух в камеру сгорания, создавая давление одновременно с тем, как форсунка подает горючее. Из-за сильного сжатия газ воспламеняется и с высокой скоростью вылетает на тяговую и компрессорную турбину.

• Со свободно-поршневой системой

Оппозитно размещенные поршни под давлением воздуха сжимают горючую смесь, в результате чего она воспламеняется и раздвигает их обратно, а после выходит через отводы, вращая при этом турбину. Из-за особенностей конструкции такой двигатель можно сделать только двухтактным.

ДВС на типы не делят, ведь принцип работы у всех один: поршень, возвращаясь в низ, создает разрежение и в цилиндр засасывает горючую смесь (во многих машинах это делает нагнетатель). Далее он снова движется к верхней мертвой точке, после чего в камере сгорания происходит воспламенение, и давление газов обратно движет поршень вниз, вращая коленчатый вал.

Горючая смесь может образовываться внутренне (в цилиндре) и внешне (в карбюраторе). Воспламенение происходит либо за счет сильного давления, либо провоцируется искрой.

Плюсы и минусы

В этом разделе приведены преимущества и недостатки газовой установки относительно ДВС!

Газовые двигатели обрели свою популярность благодаря ряду преимуществ:

• Высокий КПД.

В продвинутых промышленных установках КПД может достигать даже 90%, но в автомобилях в среднем – 65%.

• Экономичность

Расход топлива несильно отличается, но цена на газ заметно ниже. Из-за того, что КПД выше, горючее расходуется эффективнее. В итоге общая экономия составляет около 60%!

• Теоретическая надежность

Подвижных частей в ГТД почти в 2 раза меньше. Более лояльные требования к системе смазки. Все это значительно уменьшает шанс серьезной поломки.

Многие люди недолюбливают газовую установку из-за одного серьезного недостатка:

нужно ежегодно проводить ТО (это очень часто), потому что ГТД в отличие от ДВЗ может взорваться, а это летальный исход.

На ТО происходит замена мелких деталей: фильтров, прокладок и прочего.

Стоит ли устанавливать ГТД?

Все зависит от финансов покупателя. Если есть деньги на новую машину, то не стоит. Для города лучше купить гибрид или электромобиль, а для дальних поездок – машину со стандартным ДВС. Если на покупку нового автомобиля средств нет, все зависит от расхода уже имеющегося. К примеру, на современных иномарках менять двигатель, скорее всего, не стоит, а на стареньком ВАЗ 2109 ГТД сэкономит немало денег.

При должном внимании и отношении газовая установка сэкономит значительную сумму и прослужит не менее 20 лет!

Как работают газотурбинные электростанции

Турбины внутреннего сгорания (газовые), устанавливаемые на многих современных электростанциях, работающих на природном газе, представляют собой сложные машины, но в основном они состоят из трех основных частей:

  • Компрессор , который втягивает воздух в двигатель, нагнетает давление его и подает в камеру сгорания со скоростью сотни миль в час.
  • Система сгорания , обычно состоящая из кольца топливных форсунок, которые впрыскивают постоянный поток топлива в камеры сгорания, где оно смешивается с воздухом.Смесь сжигается при температуре более 2000 градусов по Фаренгейту. При сгорании образуется высокотемпературный газовый поток под высоким давлением, который входит и расширяется через турбинную секцию.
  • Турбина представляет собой сложный набор чередующихся неподвижных и вращающихся лопастей с профилем крыла. Когда горячий газ сгорания расширяется через турбину, он раскручивает вращающиеся лопасти. Вращающиеся лопасти выполняют двойную функцию: они приводят в движение компрессор, чтобы втягивать больше сжатого воздуха в секцию сгорания, и вращают генератор для выработки электроэнергии.

Наземные газовые турбины бывают двух типов: (1) двигатели с тяжелой рамой и (2) авиационные двигатели. Двигатели с тяжелой рамой характеризуются более низким коэффициентом давления (обычно ниже 20) и имеют тенденцию быть физически большими. Степень давления — это отношение давления нагнетания компрессора к давлению воздуха на входе. Двигатели на базе авиационных двигателей являются производными от реактивных двигателей, как следует из названия, и работают при очень высоких степенях сжатия (обычно превышающих 30). Двигатели на базе авиационных двигателей имеют тенденцию быть очень компактными и полезны там, где требуется меньшая выходная мощность.Поскольку турбины с большой рамой имеют более высокую выходную мощность, они могут производить большее количество выбросов и должны быть спроектированы таким образом, чтобы обеспечивать низкие выбросы загрязняющих веществ, таких как NOx.

Одним из ключевых факторов удельного расхода топлива турбины является температура, при которой она работает. Более высокие температуры обычно означают более высокую эффективность, что, в свою очередь, может привести к более экономичной эксплуатации. Газ, протекающий через турбину типичной электростанции, может иметь температуру до 2300 градусов по Фаренгейту, но некоторые из критических металлов в турбине могут выдерживать температуры только от 1500 до 1700 градусов по Фаренгейту.Следовательно, воздух из компрессора может использоваться для охлаждения основных компонентов турбины, что снижает конечный тепловой КПД.

Одним из главных достижений программы передовых турбин Министерства энергетики было преодоление предыдущих ограничений по температурам турбин с использованием комбинации инновационных технологий охлаждения и современных материалов. Усовершенствованные турбины, появившиеся в результате исследовательской программы Департамента, смогли повысить температуру на входе турбины до 2600 градусов по Фаренгейту — почти на 300 градусов выше, чем в предыдущих турбинах, и достичь КПД до 60 процентов.

Еще одним способом повышения эффективности является установка рекуператора или парогенератора с рекуперацией тепла (HRSG) для рекуперации энергии из выхлопных газов турбины. Рекуператор улавливает отходящее тепло в выхлопной системе турбины, чтобы предварительно нагреть воздух на выходе компрессора перед его поступлением в камеру сгорания. ПГРТ вырабатывает пар за счет улавливания тепла из выхлопных газов турбины. Эти котлы также известны как парогенераторы-утилизаторы. Пар высокого давления из этих котлов можно использовать для выработки дополнительной электроэнергии с помощью паровых турбин, такая конфигурация называется комбинированным циклом.

Газовая турбина простого цикла может достигать КПД преобразования энергии в диапазоне от 20 до 35 процентов. С учетом более высоких температур, достигнутых в турбинной программе Министерства энергетики, будущие газотурбинные установки с комбинированным циклом, работающие на водороде и синтез-газе, вероятно, достигнут КПД 60 процентов или более. Когда отработанное тепло улавливается из этих систем для отопления или промышленных целей, общая эффективность энергетического цикла может приближаться к 80 процентам.

Газотурбинный двигатель | Британника

Полная статья

Газотурбинный двигатель , любой двигатель внутреннего сгорания, использующий газ в качестве рабочего тела, используемого для вращения турбины.Термин также обычно используется для описания полного двигателя внутреннего сгорания, состоящего, по меньшей мере, из компрессора, камеры сгорания и турбины.

Общие характеристики

Полезная работа или тяга может быть получена от газотурбинного двигателя. Он может приводить в действие генератор, насос или воздушный винт или, в случае чисто реактивного авиационного двигателя, развивать тягу, ускоряя поток выхлопных газов турбины через сопло. Такой двигатель, который при той же мощности намного меньше и легче поршневого двигателя внутреннего сгорания, может производить большую мощность.Поршневые двигатели зависят от движения поршня вверх и вниз, которое затем должно быть преобразовано во вращательное движение с помощью механизма коленчатого вала, в то время как газовая турбина передает мощность вращающегося вала напрямую. Хотя концептуально газотурбинный двигатель представляет собой простое устройство, компоненты для эффективного агрегата должны быть тщательно спроектированы и изготовлены из дорогостоящих материалов из-за высоких температур и напряжений, возникающих во время работы. Таким образом, установки газотурбинных двигателей обычно ограничиваются крупными установками, где они становятся рентабельными.

Циклы газотурбинного двигателя

Большинство газовых турбин работают в открытом цикле, в котором воздух забирается из атмосферы, сжимается в центробежном или осевом компрессоре, а затем подается в камеру сгорания. Здесь топливо добавляется и сжигается при практически постоянном давлении с частью воздуха. Дополнительный сжатый воздух, который обходится вокруг секции горения и затем смешивается с очень горячими газами сгорания, необходим для поддержания температуры на выходе из камеры сгорания (фактически, на входе в турбину) на достаточно низком уровне, чтобы турбина могла работать непрерывно.Если установка должна производить мощность на валу, продукты сгорания (в основном воздух) расширяются в турбине до атмосферного давления. Большая часть мощности турбины требуется для работы компрессора; только остальная часть доступна для обеспечения работы вала генератора, насоса или другого устройства. В реактивном двигателе турбина предназначена для обеспечения мощности, достаточной для привода компрессора и вспомогательных устройств. Затем поток газа выходит из турбины с промежуточным давлением (выше местного атмосферного давления) и проходит через сопло для создания тяги.

В первую очередь рассматривается идеализированный газотурбинный двигатель, работающий без потерь по этому простому циклу Брайтона. Если, например, воздух поступает в компрессор при 15 ° C и атмосферном давлении и сжимается до одного мегапаскаль, он затем поглощает тепло от топлива при постоянном давлении до тех пор, пока температура не достигнет 1100 ° C, прежде чем расширится через турбину обратно до атмосферного. давление. Этот идеализированный блок потребует выходной мощности турбины 1,68 киловатт на каждый киловатт полезной мощности с 0.68 киловатт потребляется для работы компрессора. Тепловой КПД установки (чистая произведенная работа, разделенная на энергию, добавленную через топливо) составит 48 процентов.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Фактическая простая производительность открытого цикла

Если для агрегата, работающего в пределах одного и того же давления и температуры, компрессор и турбина имеют КПД только на 80 процентов (, т.е. , работа идеального компрессора равна 0.В 8 раз больше фактической работы, в то время как фактическая мощность турбины в 0,8 раза больше идеальной мощности), ситуация кардинально меняется, даже если все остальные компоненты остаются идеальными. На каждый киловатт производимой полезной мощности турбина теперь должна производить 2,71 киловатт, а работа компрессора становится 1,71 киловатт. Тепловой КПД снижается до 25,9 процента. Это демонстрирует важность высокоэффективных компрессоров и турбин. Исторически сложность разработки эффективных компрессоров, даже больше, чем эффективных турбин, задерживала разработку газотурбинного двигателя.Современные агрегаты могут иметь КПД компрессора 86–88% и КПД турбины 88–90% при проектных условиях.

КПД и выходную мощность можно увеличить за счет повышения температуры на входе в турбину. Однако все материалы теряют прочность при очень высоких температурах, а поскольку лопатки турбины движутся с высокой скоростью и подвергаются серьезным центробежным напряжениям, температура на входе в турбину выше 1100 ° C требует специального охлаждения лопаток. Можно показать, что для каждой максимальной температуры на входе в турбину существует также оптимальное соотношение давлений.Современные авиационные газовые турбины с охлаждением лопаток работают при температурах на входе в турбину выше 1370 ° C и при соотношении давлений около 30: 1.

Промежуточное охлаждение, повторный нагрев и регенерация

В авиационных газотурбинных двигателях следует обращать внимание на вес и диаметр. Это не позволяет добавлять дополнительное оборудование для повышения производительности. Соответственно, двигатели коммерческих самолетов работают по простому циклу Брайтона, идеализированному выше. Эти ограничения не применяются к стационарным газовым турбинам, в которые могут быть добавлены компоненты для повышения эффективности.Усовершенствования могут включать (1) уменьшение работы сжатия за счет промежуточного охлаждения, (2) увеличение мощности турбины за счет повторного нагрева после частичного расширения или (3) уменьшение расхода топлива за счет регенерации.

Первое усовершенствование будет заключаться в сжатии воздуха почти постоянной температуры. Хотя это не может быть достигнуто на практике, это можно приблизить с помощью промежуточного охлаждения (, т. Е. путем сжатия воздуха в два или более этапов и его водяного охлаждения между этапами до его начальной температуры).Охлаждение уменьшает объем обрабатываемого воздуха и, соответственно, необходимую работу по сжатию.

Второе усовершенствование включает повторный нагрев воздуха после частичного расширения через турбину высокого давления во втором наборе камер сгорания перед подачей его в турбину низкого давления для окончательного расширения. Этот процесс аналогичен повторному нагреву, используемому в паровой турбине.

Оба подхода требуют значительного дополнительного оборудования и используются реже, чем третье улучшение.Здесь горячие выхлопные газы турбины проходят через теплообменник или регенератор для повышения температуры воздуха, выходящего из компрессора перед сгоранием. Это уменьшает количество топлива, необходимое для достижения желаемой температуры на входе в турбину. Однако повышение эффективности связано со значительным увеличением начальной стоимости и будет экономичным только для агрегатов, которые работают почти непрерывно.

Как работают 4 типа турбинных двигателей

Прямая трансляция из полетной палубы

Газотурбинные двигатели прошли долгий путь с 1903 года.Это был первый год, когда газовая турбина вырабатывала достаточно энергии, чтобы продолжать работать. Дизайн был разработан норвежским изобретателем Эгидусом Эллингом, и он выдал 11 лошадиных сил, что было огромным подвигом для того времени.

В наши дни газотурбинные двигатели бывают всех форм и размеров, и большинство из них вырабатывают , много , более 11 лошадиных сил. Вот 4 основных типа газотурбинных двигателей, а также их плюсы и минусы.

1) Турбореактивный двигатель

Heinkel He 178, первый в мире турбореактивный самолет

Турбореактивные двигатели были первым изобретенным типом газотурбинных двигателей.И хотя они выглядят совершенно иначе, чем поршневой двигатель в вашем автомобиле или самолете, они работают по той же теории: впуск , сжатие, мощность, выпуск .

Как работает турбореактивный двигатель?

Турбореактивные двигатели работают за счет пропускания воздуха через 5 основных секций двигателя:

Шаг 1: Воздухозаборник
Воздухозаборник представляет собой трубку перед двигателем. Забор воздуха может показаться простым, но это невероятно важно.Задача воздухозаборника — плавно направлять воздух в лопатки компрессора. На низких скоростях ему необходимо минимизировать потери воздушного потока в двигателе, а на сверхзвуковых скоростях он должен замедлять воздушный поток ниже 1 Маха (воздух, поступающий в турбореактивный двигатель, должен быть дозвуковым, независимо от того, насколько быстро летит самолет. ).

Шаг 2: Компрессор
Компрессор приводится в движение турбиной в задней части двигателя, и его работа заключается в сжатии поступающего воздуха, что значительно увеличивает давление воздуха.Компрессор представляет собой серию «вентиляторов», каждый с меньшими и меньшими лопастями. По мере того, как воздух проходит через каждую ступень компрессора, он становится более сжатым.
Шаг 3: Камера сгорания
Далее идет камера сгорания, где действительно начинается волшебство. Воздух под высоким давлением смешивается с топливом, и смесь воспламеняется. Когда горючая смесь сгорает, она продолжает двигаться через двигатель к турбине. Турбореактивные двигатели работают очень бедно, примерно 50 частей воздуха на каждую 1 часть топлива (большинство поршневых двигателей работают в диапазоне от 6: 1 до 18: 1).Одна из основных причин, по которой турбины работают на обедненной смеси, заключается в том, что для охлаждения турбореактивного двигателя требуется дополнительный поток воздуха.
Шаг 4: Турбина
Турбина — это еще одна серия «вентиляторов», которые работают как ветряная мельница, поглощая энергию проходящего через нее воздуха с высокой скоростью. Лопатки турбины соединены с валом и вращают его, который также соединен с лопатками компрессора в передней части двигателя. «Жизненный цикл» турбореактивного двигателя почти завершен.

Шаг 5: Выхлоп (он же «Я ухожу отсюда!»)
Сгоревшая на высокой скорости топливно-воздушная смесь выходит из двигателя через выхлопное сопло.Когда высокоскоростной воздух выходит из задней части двигателя, он создает тягу и толкает самолет (или то, к чему он прикреплен) вперед.

Турбореактивный на вынос:

  • Плюсы:
    • Относительно простая конструкция
    • Возможность очень высоких скоростей
    • Занимает мало места
  • Минусы:
    • Большой расход топлива
    • Громко
    • Низкая производительность на малых скоростях

2) Турбовинтовой двигатель

Прямая трансляция из полетной палубы

King Air с турбовинтовыми двигателями

Следующие три типа газотурбинных двигателей представляют собой турбореактивные двигатели, и мы начнем с турбовинтовых.Турбовинтовой — это турбореактивный двигатель, соединенный с воздушным винтом через систему зубчатых передач.

Как работает турбовинтовой двигатель?

Шаг 1 : Турбореактивный двигатель вращает вал, который соединен с коробкой передач.

Шаг 2 : Коробка передач замедляет вращение, и самая медленная шестерня соединяется с гребным винтом.

Шаг 3 : Воздушный винт вращается в воздухе, создавая тягу, как ваша Cessna 172

Турбовинтовой вынос:

  • Плюсы:
    • Очень экономичный
    • Наиболее эффективен при средней скорости 250-400 узлов
    • Наиболее эффективен на средних высотах от 18 000 до 30 000 футов
  • Минусы:
    • Ограниченная скорость полета вперед
    • Зубчатые передачи тяжелые и могут выйти из строя

3) Турбореактивный двухконтурный двигатель

Прямая трансляция из полетной палубы

Некоторые широкофюзеляжные турбовентиляторные двигатели могут развивать тягу более 100 000 фунтов

Турбореактивные двухконтурные двигатели сочетают в себе лучшее из двух миров — турбореактивных и турбовинтовых.И вы, вероятно, увидите эти двигатели, когда отправитесь в аэропорт на следующий рейс авиакомпании.

Как работает турбовентиляторный двигатель?

Турбореактивные двухконтурные двухконтурные двигатели присоединяются к передней части турбореактивного двигателя. Вентилятор создает дополнительную тягу, помогает охлаждать двигатель и снижает уровень шума двигателя.

Шаг 1 : Входящий воздух делится на два отдельных потока. Один поток обтекает двигатель (перепускной воздух), а другой проходит через сердечник двигателя.

Шаг 2 : Обводной воздух проходит вокруг двигателя и ускоряется канальным вентилятором, создавая дополнительную тягу.

Шаг 3 : Воздух проходит через турбореактивный двигатель, продолжая создавать тягу.

ТРДД на вынос:

  • Плюсы:
    • Экономия топлива
    • тише турбореактивных двигателей
    • Они потрясающе выглядят
  • Минусы:
    • Тяжелее турбореактивных двигателей
    • Большая площадь лобовой части, чем у турбореактивных двигателей
    • Неэффективен на очень большой высоте

ТРДД Pratt & Whitney F100 с форсажной камерой на F-16

4) Турбовальный двигатель

Вертолет Bell 206 с турбовальным двигателем

Турбовальные двигатели в основном используются на вертолетах.Самая большая разница между турбовальными двигателями и турбореактивными двигателями заключается в том, что турбовальные двигатели используют большую часть своей мощности для вращения турбины, а не для создания тяги, исходящей из задней части двигателя.

Как работает турбовальный вал?

Турбовалы — это, по сути, турбореактивный двигатель с большим валом, соединенным с его задней частью. А поскольку большинство этих двигателей используется на вертолетах, этот вал соединен с трансмиссией лопастей несущего винта.

Шаг 1 : Двигатель по большей части работает как турбореактивный.

Шаг 2 : Приводной вал, прикрепленный к турбине, приводит в действие трансмиссию.

Шаг 3 : Трансмиссия передает вращение от вала на лопасть ротора.

Шаг 4 : Вертолет, в основном неизвестными и волшебными способами, может летать по небу.

Отвод турбовального вала:

  • Плюсы:
    • Значительно более высокое отношение мощности к массе, чем у поршневых двигателей
    • Обычно меньше поршневых двигателей
  • Минусы:
    • Громко
    • Зубчатые передачи, соединенные с валом, могут быть сложными и выходить из строя

4 типа двигателей, основанных на одной базовой концепции

Газотурбинные двигатели прошли долгий путь за последние 100 лет.И хотя турбореактивные двигатели, турбовинтовые двигатели, турбовентиляторные двигатели и турбовальные двигатели имеют свои различия, их способ выработки мощности, по сути, одинаков: впуск, сжатие, мощность и выхлоп.


Станьте лучшим пилотом.
Подпишитесь, чтобы получать последние видео, статьи и викторины, которые сделают вас более умным и безопасным пилотом.


3 авиационных газотурбинных двигателя | Исследование силовых установок и энергетических систем коммерческих самолетов: сокращение глобальных выбросов углерода

будущее.Кроме того, общий коэффициент давлений 2 газовых турбин со временем увеличился, чтобы улучшить термодинамический КПД. Однако в то же время размер компрессора высокого давления, камеры сгорания и турбины уменьшился, что усугубило проблемы меньшего размера.

По мере повышения эффективности самолетов и двигателей для полета требуется меньше мощности, так что объем двигателя и мощность, требуемые при неизменных характеристиках самолета, в будущем будут уменьшаться.

Потенциал для улучшения

С тех пор, как в конце 1940-х годов были построены первые авиационные газовые турбины, общий КПД — от расхода топлива до движущей силы — повысился примерно с 10 процентов до текущего значения, приближаясь к 40 процентам (см. Рисунок 3.2). Вероятно, что скорость улучшения этих двигателей может продолжаться примерно на 7 процентов в десятилетие в течение следующих нескольких десятилетий при условии достаточных инвестиций в технологии. Потенциал общего улучшения лучше всего рассматривать с точки зрения составляющих КПД: термодинамической эффективности двигателя и тягового КПД движителя.

Как отмечалось выше, не ясно, насколько близко к теоретическим пределам может быть возможно создание газовой турбины для коммерческого самолета, учитывая важные ограничения авиации в отношении безопасности, веса, надежности и стоимости.Несколько авторов рассмотрели вопрос о практических пределах для газовых турбин простого цикла с учетом потенциала новых материалов, архитектур двигателей и технологий компонентов. Их оценки индивидуальных пределов термодинамического и пропульсивного КПД несколько различаются (и могут по-разному разделить потери между термодинамическим и пропульсивным КПД), но они согласны с тем, что улучшение общего КПД на 30-35 процентов по сравнению с лучшими двигателями сегодня может быть достигнуто.Как показано на Рисунке 3.7, термодинамический КПД двигателя может составлять 65-70 процентов, а тяговый КПД — 90-95 процентов.

Газотурбинные двигатели нуждаются в значительном улучшении, при этом общий КПД повышается на 30 или более процентов по сравнению с лучшими двигателями, находящимися в эксплуатации на сегодняшний день. Улучшения будут происходить за счет множества относительно небольших шагов, а не одной прорывной технологии.

Некоторые исследования показывают, что улучшение характеристик турбомашин и снижение потерь на охлаждение может улучшить термодинамический КПД на 19 процентов и 6 процентов соответственно. 3 Такой значительный выигрыш не достигается простым внедрением новой технологии в существующие двигатели. Скорее, это требует оптимизации цикла с учетом конкретных уровней рабочих характеристик компонентов, температурных возможностей и охлаждения. Практические циклы с промежуточным охлаждением или рекуперацией могут повысить эффективность еще на 4. 4 Усовершенствованные вентиляторы и гребные винты также могут повысить эффективность тяги на 10 процентов. 5 Конечно, практические ограничения тягового КПД не могут быть рассмотрены только на уровне двигателя без ссылки на конфигурацию самолета и интеграцию силовой установки, как обсуждалось в главе 2.

Подводя итог, можно сказать, что авиационные газотурбинные двигатели имеют значительные возможности для улучшения, с потенциалом повышения общего КПД на 30 или более процентов по сравнению с лучшими двигателями, находящимися в эксплуатации на сегодняшний день, с потенциалом улучшения пропульсивного КПД примерно в два раза выше термодинамического КПД. Этот уровень производительности потребует множества технологических усовершенствований и будет происходить в виде ряда относительно небольших приращений, несколько процентов или меньше, а не за счет одной прорывной технологии.В следующем разделе обсуждаются многие из этих технологий.

___________________

2 Общий коэффициент давлений — это отношение давления на выходе компрессора к давлению на входе компрессора.

3 D.K. Холл, 2011 г., «Пределы производительности осевых ступеней турбомашин», М.С. диссертация, Массачусетский технологический институт, Кембридж, Массачусетс

4 Дж. Уурр, 2013 г., «Будущие архитектуры и технологии гражданских авиадвигателей», представленный на 10-й Европейской конференции по турбомашинному оборудованию, http: // www.etc10.eu/mat/Whurr.pdf.

5 Д. Карлсон, 2009, «Возрождение двигателей: новые циклы, новые архитектуры и возможности для развития рабочей силы», представленный на 19-й конференции ISABE Международного общества дыхательных двигателей, Монреаль, Канада.

Реактивные двигатели

Базовый обзор


На изображении выше показано, как реактивный двигатель будет расположен в современном военный самолет.В базовом реактивном двигателе воздух поступает в передний воздухозаборник и сжат (посмотрим, как позже). Затем воздух нагнетается в камеры сгорания, в которые впрыскивается топливо, и воздушная смесь и топливо воспламеняется. Образующиеся газы быстро расширяются и истощаются через заднюю часть камер сгорания. Эти газы обладают одинаковой силой во всех направлениях, обеспечивая тягу вперед, когда они уходят в тыл. В качестве газы выходят из двигателя, они проходят через веерный набор лопаток (турбина), которая вращает вал, называемый валом турбины.Этот вал, в повернуть, вращает компрессор, обеспечивая приток свежего воздуха через впуск. Ниже представлена ​​анимация изолированного реактивного двигателя, который иллюстрирует процесс притока, сжатия, сгорания, истечения воздуха. и только что описанное вращение вала.

процесс можно описать следующей схемой, взятой с сайта Rolls Royce, популярного производителя реактивных двигателей.


Этот процесс является сутью того, как работают реактивные двигатели, но как именно что-то вроде сжатия (сдавливания) происходит? Чтобы узнать больше о каждом о четырех этапах создания тяги реактивным двигателем см. ниже.

SUCK

Двигатель всасывает большой объем воздуха через вентилятор и компрессор этапы. Типичный коммерческий реактивный двигатель потребляет 1,2 тонны воздуха в секунду. во время взлета — другими словами, он может выпустить воздух на корте для сквоша в меньше секунды. Механизм при котором реактивный двигатель всасывает воздух, в значительной степени является частью сжатия сцена. Во многих двигателях компрессор отвечает как за всасывание воздуха, так и за его сжатие.Некоторые двигатели имеют дополнительный вентилятор, который не является частью компрессора для втягивания дополнительного воздуха в систему. Вентилятор — это крайний левый компонент двигатель, показанный выше.


SQUEEZE

Помимо всасывания воздуха в двигатель, компрессор также создает давление в воздух и подает его в камеру сгорания. Компрессор показан на изображении выше слева от огонь в камере сгорания и справа от вентилятора.Компрессионные вентиляторы приводятся в действие турбина валом (турбина, в свою очередь, приводится в движение воздухом, оставив двигатель). Компрессоры могут достигать чрезмерных степеней сжатия 40: 1, что означает, что давление воздуха в конце компрессор более чем в 40 раз превышает объем воздуха, поступающего в компрессор. На полную мощность лопасти типового коммерческий струйный компрессор вращается со скоростью 1000 миль в час (1600 км / ч) и принимает 2600 фунтов (1200 кг) воздуха в секунду.

Сейчас мы обсудим, как компрессор на самом деле сжимает воздух.


Как видно на изображении выше, зеленые вееры, составляющие компрессор постепенно становится все меньше и меньше, как и полость, проходящая через который воздух должен путешествовать. Воздух должен продолжать движение вправо, к камерам сгорания двигатель, так как вентиляторы вращаются и выталкивают воздух в этом направлении. Результат — заданное количество воздуха. переходя от большего пространства к меньшему, и, таким образом, увеличивая давление.


BANG

В камере сгорания топливо смешивается с воздухом, чтобы произвести взрыв, который отвечает за расширение, которое заставляет воздух попадать в турбину.В типичном коммерческом реактивном двигателе топливо горит при сгорании. камера при температуре до 2000 градусов Цельсия. Температура, при которой металлы в эта часть двигателя начинает плавиться — 1300 градусов по Цельсию, поэтому продвинутая необходимо использовать методы охлаждения.

Горение камера имеет сложную задачу сжигания большого количества топлива, подается через форсунки топливного распылителя с большим объемом воздуха, подаваемый компрессором, и выделяя образующееся тепло таким образом что воздух расширяется и ускоряется, давая плавный поток равномерно нагретый газ.Эта задача должна быть выполнена с минимальными потерями. по давлению и с максимальным тепловыделением в ограниченном пространстве доступный.

Количество топлива добавление в воздух будет зависеть от требуемого повышения температуры. Тем не мение, максимальная температура ограничена определенным диапазоном, определяемым материалы, из которых изготовлены лопатки и сопла турбин. В воздухе есть уже были нагреты до температуры от 200 до 550 C в результате работы, проделанной в компрессор, требующий повышения температуры примерно от 650 до 1150 C от процесса сгорания.Поскольку температура газа определяет тягу двигателя, камера сгорания должна быть способна поддержание стабильного и эффективного сгорания в широком диапазоне двигателей условия эксплуатации.

Воздух, принесенный вентилятор, который не проходит через ядро ​​двигателя и, следовательно, не используется для сжигания, что составляет около 60 процентов от общего количества поток воздуха, постепенно вводится в жаровую трубу, чтобы снизить температура внутри камеры сгорания и охладите стенки жаровой трубы.


УДАР

Вынужденная реакция расширенного газа — смеси топлива и воздуха. через турбину, приводит в движение вентилятор и компрессор и выдувает из выхлопное сопло, обеспечивающее тягу.

Таким образом, турбина должна обеспечивать мощность для привода компрессор и аксессуары. Это делает это путем извлечения энергии из горячих газов, выделяемых из системы сгорания и расширения их до более низкого давления и температуры.Непрерывный поток газа, к которому открытая турбина может попасть в турбину при температуре от 850 до 1700 ° C, что снова намного выше точки плавления текущего материаловедение.

Для производства крутящего момента, турбина может состоять из нескольких ступеней, каждая из которых использует один ряд подвижных лопастей и один ряд неподвижных направляющих лопаток для направления воздух по желанию на лезвия. Количество ступеней зависит от соотношение между мощностью, требуемой от газового потока, вращательной скорость, с которой она должна производиться, и допустимый диаметр турбины.

Желание для обеспечения высокого КПД двигателя требуется высокая температура на входе в турбину, но это вызывает проблемы, поскольку лопатки турбины должны выполнять и выдерживают длительные периоды эксплуатации при температурах выше их плавления точка. Эти лезвия, хотя и раскаленные докрасна, должны быть достаточно прочными, чтобы нести центробежные нагрузки из-за вращения с высокой скоростью.

Для работы в этих условиях холодный воздух вытесняется из множества мелких отверстия в лезвии.Этот воздух остается близко к лезвию, предотвращая его плавятся, но не сильно ухудшают общий представление. Никелевые сплавы используются для изготовления лопаток турбин и направляющие лопатки сопла, поскольку эти материалы демонстрируют хорошие свойства при высокие температуры

Газотурбинные двигатели

— обзор

VI Турбовинтовые и турбовентиляторные самолеты

Турбовинтовые и турбовентиляторные двигатели являются газотурбинными двигателями, как и турбореактивный двигатель, и предназначены для сведения к минимуму недостатков и использования преимуществ, присущих поршневым и турбореактивным двигателям.Основное различие между этими тремя двигателями заключается в том, как они создают тягу. В турбореактивном двигателе это достигается за счет расширения горячих газов через сопло, в турбовинтовом двигателе используется пропеллер, а в турбореактивном двигателе используется многолопастной вентилятор, во многом связанный с пропеллером. Основным элементом газотурбинного двигателя является газогенератор, состоящий из компрессора (ов), горелок и турбин, приводящих в действие компрессор. Смесь воздуха и топлива, проходящая через газогенератор, является основным потоком.Газогенератор и первичный поток являются общими для всех трех двигателей и служат базой для сравнительной оценки.

В турбореактивном двигателе выхлопные газы из газогенератора расширяются через сопло, и единственным выходом является тяга. Это однопоточный двигатель, отличительными характеристиками которого являются легкий вес, небольшая площадь лобовой части, тяговая эффективность, увеличивающаяся с увеличением скорости полета, высокий удельный расход топлива (самый высокий из трех) и низкая тяга на малых скоростях полета.

В турбовинтовом двигателе есть два потока: первичный поток, который развивает реактивную тягу, и вторичный (гораздо больший) поток через винт, который создает тяговое усилие.Турбовинтовой двигатель — это в первую очередь производитель энергии и описывается так же, как и поршневой винт. Турбовинтовой двигатель является в первую очередь заменой поршневого винта, поскольку он способен развивать более высокие воздушные скорости и больший диапазон для данного веса самолета из-за гораздо меньшего веса двигателя и меньшего веса C D0 . Хотя он тяжелее ТРД или ТРДД из-за пропеллера и коробки передач, он примерно в четыре раза легче поршневого двигателя той же мощности. Кроме того, хотя лобовая часть несколько больше, чем у турбореактивного двигателя, она меньше, чем у поршневого винта, и когда двигатель работает, C D0 имеет порядок площади турбореактивного двигателя, что означает более высокие E м , чем поршневой винт.Наличие реактивной тяги, которая хотя и относительно мала, но по существу постоянна, имеет тенденцию сглаживать кривые тяги на более высоких скоростях и снижать скорость снижения эффективности движителя. Турбовинтовой двигатель имеет низкий удельный расход топлива, порядка, но несколько выше, чем у поршневого винта. Еще одно важное преимущество перед поршневой опорой — это гораздо более низкие затраты на техническое обслуживание. Хотя его первоначальная стоимость выше, это более простой двигатель с большей надежностью, особенно с учетом недавних улучшений в коробке передач.

Турбореактивный двигатель — это многопоточный двигатель, во многих отношениях похожий на турбовинтовой, за исключением того, что дополнительные турбины напрямую приводят в действие вентилятор, который напоминает компрессор с осевым потоком. Несмотря на то, что при очень высоких коэффициентах двухконтурности турбовентиляторный двигатель может производить больше мощности, чем тягу, и работать больше как турбовинтовой, чем трубореактивный, его принято описывать как турбореактивный двигатель.

Турбореактивный двухконтурный двигатель сочетает в себе хорошую тягу и высокую тягу на более низких скоростях движения поршень-винт с постоянной тягой и повышением тягового качества на более высоких скоростях движения турбореактивного двигателя.Поскольку сложность и вес редуктора и системы регулятора воздушного винта турбовинтового двигателя устранены, турбовентилятор стал еще проще и легче. Кроме того, воздушный поток, проходящий через канальный вентилятор, не сильно зависит от скорости полета, так что снижение пропульсивной эффективности на высоких скоростях не так значительно, как снижение, связанное с эффективностью пропеллера турбовинтового двигателя. Следовательно, ТРДД может использоваться на воздушных скоростях до низких сверхзвуковых скоростей включительно.Хотя лобовая часть больше, чем у турбореактивного двигателя, ТРДД значительно короче, и общее сопротивление не обязательно больше. Удельный расход топлива намного меньше, чем у турбореактивного двигателя, и, хотя он больше, чем у турбовинтового, он приближается к сопоставимым значениям. Турбореактивный двигатель также тише, чем турбореактивный, и намного тише, чем турбовинтовой, что является преимуществом в наши дни, когда все больше внимания уделяется шумовому загрязнению.

Поскольку и турбовинтовой, и двухконтурный двухконтурные двигатели являются многопоточными двигателями, эквивалентный удельный расход топлива представляет собой комбинацию значений hpsfc и tsfc и, таким образом, будет варьироваться в зависимости от скорости полета.Любое значение, указанное в литературе, относится к конкретной воздушной скорости, которая не всегда указывается. Разница в удельном расходе топлива в зависимости от скорости полета у турбореактивного двигателя больше, чем у турбовинтового.

Поскольку турбовинтовые двигатели и турбовентиляторные двигатели представляют собой разные комбинации поршневой винт и турбореактивный двигатель, их характеристики должны находиться где-то между характеристиками поршневого винта и чисто турбореактивного двигателя. Сравнивая турбовинтовые, двухконтурные и турбореактивные двигатели сопоставимой мощности (сопоставимые газогенераторы), можно сделать вывод, что турбовинтовой двигатель обеспечивает наибольшую тягу на более низких скоростях полета, включая самолет, стоящий неподвижно в начале разбега.Однако тяга будет уменьшаться с самой высокой скоростью из трех по мере увеличения воздушной скорости и при взлете, вероятно, будет меньше, чем у двух других. Турбореактивный двухконтурный двигатель будет производить меньшую тягу, чем турбовинтовой, на более низких скоростях, но большую, чем турбореактивный, что не только улучшает взлетные характеристики и характеристики на ранней стадии набора высоты, но также обеспечивает более высокую взлетную массу, чем турбореактивный двигатель. Тяга уменьшается с увеличением воздушной скорости, но медленнее, чем у турбовинтового двигателя, из-за различий между вентилятором и гребным винтом и из-за большей составляющей реактивной тяги.По мере увеличения степени двухконтурности характеристики турбовинтового двигателя приближаются к характеристикам турбовинтового двигателя на более низких скоростях, но сохраняются некоторые характеристики турбореактивного двигателя на более высоких скоростях. Турбореактивный двигатель имеет самую низкую начальную тягу из трех, но тяга по существу остается постоянной в зависимости от скорости полета.

Что касается других характеристик характеристик, турбовинтовой двигатель в достаточной степени похож на поршневой винт, что является разумным приближением, просто используя уравнения поршень-винт без изменений.Однако турбовентилятор не обязательно так прост или прямолинеен. Если коэффициент двухконтурности низкий, уравнения турбореактивного двигателя можно использовать без изменений. По мере увеличения степени двухконтурности и соотношения мощности к тяге турбовентиляторный двигатель приобретает больше характеристик турбовинтового и поршневого двигателя, особенно на более низких скоростях полета. По-прежнему можно использовать уравнения турбореактивного двигателя с осознанием того, что фактические значения для низких скоростей могут несколько отличаться. На более высоких скоростях турбовентилятор будет работать больше как турбореактивный, но с меньшим удельным расходом топлива.

Благодаря своей превосходной топливной экономичности турбовентиляторный двигатель быстро заменил турбореактивный двигатель для дозвуковых самолетов, а турбовинтовой двигатель заменил поршневой двигатель во многих приложениях (например, в пригородных самолетах) из-за его меньшего веса и более высокой скорости полета. Однако в последние годы меньший региональный самолет (RJ) с 30–100 креслами быстро заменяет турбовинтовой в качестве фидерного и ближнего коммерческого самолета (см. Рис. 8). Хотя топливная эффективность RJ ниже, чем у турбовинтового, RJ имеет преимущества более высоких крейсерских высот (выше турбулентности и погодных условий), более короткого времени полета, меньшего шума и, возможно, более высокого признания публики из-за его более современного внешнего вида.

РИСУНОК 8. Canadair Regional Jet, CRJ 200. Транспортное средство вместимостью 50 пассажиров, скорость 0,81 Маха, с двумя турбовентиляторными двигателями тягой 8700 фунтов, полная масса 53 000 фунтов, площадь крыла 520 футов 2 (Вт / ю) = 102 фунт / фут 2 ) и дальность действия 2300 миль. [Любезно предоставлено Bombardier Aerospace.]

Турбинные двигатели (часть первая)

Авиационный газотурбинный двигатель состоит из воздухозаборника, компрессора, камер сгорания, турбинной части и выхлопной системы. Тяга создается за счет увеличения скорости воздуха, проходящего через двигатель.Турбинные двигатели — очень востребованные силовые установки самолетов. Они отличаются плавностью работы и высокой удельной мощностью, и в них используется легкодоступное авиакеросин. До недавних достижений в материалах, конструкции двигателей и производственных процессах использование газотурбинных двигателей в малых / легких производственных самолетах было непомерно дорогостоящим.

Сегодня несколько производителей авиационной техники производят или планируют производить небольшие / легкие летательные аппараты с турбинными двигателями. Эти небольшие самолеты с турбинным двигателем обычно вмещают от трех до семи пассажиров и называются очень легкими реактивными самолетами (VLJ) или микроджетами.[Рисунок 7-22]

Рисунок 7-22. Затмение 500 VLJ.

Типы турбинных двигателей

Турбинные двигатели классифицируются в зависимости от типа используемых ими компрессоров. Есть три типа компрессоров: центробежный, осевой и центробежно-осевой. Сжатие входящего воздуха достигается в двигателе с центробежным потоком за счет ускорения воздуха наружу перпендикулярно продольной оси машины. Двигатель с осевым потоком сжимает воздух за счет ряда вращающихся и неподвижных крыльев, перемещающих воздух параллельно продольной оси.В конструкции с центробежно-осевым потоком используются оба типа компрессоров для достижения желаемого сжатия.

Путь, по которому воздух проходит через двигатель, и то, как вырабатывается мощность, определяет тип двигателя. Существует четыре типа авиационных газотурбинных двигателей: турбореактивный, турбовинтовой, двухконтурный и турбовальный.

Рекомендации по летной грамотности Справочник Рода Мачадо «Как управлять самолетом» — Изучите основные основы управления любым самолетом. Сделайте летную подготовку проще, дешевле и приятнее.Освойте все маневры чек-рейда. Изучите философию полета «клюшкой и рулем». Не допускайте случайной остановки или вращения самолета. Посадите самолет быстро и с удовольствием.

Турбореактивный

Турбореактивный двигатель состоит из четырех секций — компрессора, камеры сгорания, турбинной секции и выхлопной. Секция компрессора пропускает входящий воздух с высокой скоростью в камеру сгорания. Камера сгорания содержит впускное отверстие для топлива и воспламенитель для сгорания.Расширяющийся воздух приводит в движение турбину, которая соединена валом с компрессором, обеспечивая работу двигателя. Ускоренные выхлопные газы двигателя обеспечивают тягу. Это базовое применение сжатия воздуха, воспламенения топливно-воздушной смеси, выработки энергии для автономной работы двигателя и выхлопа для приведения в движение. [Рисунок 7-23]

Рисунок 7-23. Турбореактивный двигатель. [щелкните изображение, чтобы увеличить] Турбореактивные двигатели ограничены по дальности действия и выносливости. Они также медленно реагируют на дросселирование при низких скоростях компрессора.

Турбовинтовой

Турбовинтовой двигатель — это газотурбинный двигатель, приводящий в движение воздушный винт через редуктор. Выхлопные газы приводят в движение силовую турбину, соединенную валом, приводящим в действие редуктор в сборе. Понижающая передача необходима в турбовинтовых двигателях, потому что оптимальные характеристики воздушного винта достигаются при гораздо более низких скоростях, чем рабочие обороты двигателя. Турбовинтовые двигатели — это компромисс между турбореактивными двигателями и поршневыми силовыми установками.Турбовинтовые двигатели наиболее эффективны на скоростях от 250 до 400 миль в час и на высоте от 18 000 до 30 000 футов. Они также хорошо работают на малых скоростях, необходимых для взлета и посадки, и обладают топливной экономичностью. Минимальный удельный расход топлива турбовинтового двигателя обычно достигается в диапазоне высот от 25 000 футов до тропопаузы. [Рисунок 7-24]

Рисунок 7-24. Турбовинтовой двигатель. [щелкните изображение, чтобы увеличить] Турбореактивный двухконтурный двигатель

Турбореактивный двухконтурный двигатель был разработан, чтобы объединить некоторые из лучших характеристик турбореактивного двигателя и турбовинтового двигателя.Турбореактивные двухконтурные двигатели предназначены для создания дополнительной тяги за счет направления вторичного воздушного потока вокруг камеры сгорания. Обводной воздух турбовентиляторного двигателя создает повышенную тягу, охлаждает двигатель и способствует подавлению шума выхлопных газов. Это обеспечивает крейсерскую скорость турбореактивного типа и меньший расход топлива.

Входящий воздух, проходящий через турбовентиляторный двигатель, обычно делится на два отдельных потока воздуха. Один поток проходит через ядро ​​двигателя, а второй поток обходит ядро ​​двигателя.Именно этот байпасный поток воздуха отвечает за термин «байпасный двигатель». Коэффициент двухконтурности турбовентиляторного двигателя относится к соотношению массового расхода воздуха, проходящего через вентилятор, к массовому расходу воздуха, проходящего через сердечник двигателя. [Рисунок 7-25]

Рисунок 7-25. Турбореактивный двигатель. [щелкните изображение, чтобы увеличить] Турбовал

Четвертым распространенным типом реактивных двигателей является турбовальный. [Рис. 7-26] Он передает мощность на вал, приводящий в движение не винт, а нечто иное.Самая большая разница между турбореактивным двигателем и турбовальным двигателем заключается в том, что в турбореактивном двигателе большая часть энергии, производимой расширяющимися газами, используется для привода турбины, а не для создания тяги. На многих вертолетах используется турбовальный газотурбинный двигатель. Кроме того, турбовальные двигатели широко используются в качестве вспомогательных силовых агрегатов на больших самолетах.

Рисунок 7-26. Турбовальный двигатель. [щелкните изображение, чтобы увеличить]

Приборы для турбинного двигателя

Приборы для двигателя, которые показывают давление масла, температуру масла, частоту вращения двигателя, температуру выхлопных газов и расход топлива, являются общими как для турбинных, так и для поршневых двигателей.Однако есть некоторые инструменты, уникальные для газотурбинных двигателей. Эти приборы показывают степень давления в двигателе, давление на выходе турбины и крутящий момент. Кроме того, большинство газотурбинных двигателей имеют несколько приборов для измерения температуры, называемых термопарами, которые предоставляют пилотам показания температуры внутри и вокруг турбинной секции.

Коэффициент давления в двигателе (EPR)

Датчик степени давления в двигателе (EPR) используется для индикации выходной мощности турбореактивного / турбовентиляторного двигателя.EPR — это отношение давления на выходе турбины к давлению на входе в компрессор. Измерения давления регистрируются датчиками, установленными на входе и выходе двигателя. После сбора данные отправляются на датчик дифференциального давления, который отображается на датчике EPR в кабине экипажа.

Конструкция системы EPR автоматически компенсирует влияние воздушной скорости и высоты. Изменения температуры окружающей среды требуют корректировки показаний EPR для обеспечения точных настроек мощности двигателя.

Температура выхлопных газов (EGT)

Ограничивающим фактором в газотурбинном двигателе является температура секции турбины. Необходимо внимательно следить за температурой секции турбины, чтобы предотвратить перегрев лопаток турбины и других компонентов секции выхлопа. Одним из распространенных способов контроля температуры секции турбины является датчик EGT. EGT — это предел эксплуатации двигателя, используемый для контроля общих условий работы двигателя.

Варианты систем EGT носят разные названия в зависимости от расположения датчиков температуры.Обычные датчики температуры турбины включают датчик температуры на входе в турбину (TIT), датчик температуры на выходе из турбины (TOT), датчик температуры между ступенями турбины (ITT) и датчик температуры газа в турбине (TGT).

Измеритель крутящего момента

Выходная мощность турбовинтового / турбовального двигателя измеряется с помощью измерителя крутящего момента. Крутящий момент — это крутящая сила, приложенная к валу. Моментометр измеряет мощность, приложенную к валу. Турбовинтовые и турбовальные двигатели предназначены для создания крутящего момента для привода гребного винта.Моментометры калибруются в процентах, фунтах-футах или фунтах на квадратный дюйм.

N 1 Индикатор

N 1 представляет собой частоту вращения компрессора низкого давления и отображается на индикаторе в процентах от расчетных оборотов в минуту. После запуска скорость компрессора низкого давления регулируется турбинным колесом N 1 . Турбинное колесо N 1 соединено с компрессором низкого давления через концентрический вал.

N 2 Индикатор

N 2 представляет собой частоту вращения компрессора высокого давления и отображается на индикаторе в процентах от расчетных оборотов в минуту. Компрессор высокого давления управляется турбинным колесом N 2 . Турбинное колесо N 2 соединено с компрессором высокого давления через концентрический вал. [Рисунок 7-27]

Рисунок 7-27. Двухзолотный осевой компрессор.

Рекомендует летная грамотность

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *