Как должен работать дизельный двигатель: Подержанный дизель: как проверить перед покупкой

Содержание

Подержанный дизель: как проверить перед покупкой

Ещё совсем недавно автопроизводители поражали мир выпуском дизельных версий спортивных автомобилей.  „Audi TT“, „Škoda Octavia RS“ или „Peugeot 406 Coupe”, казалось, покушаются на основные ценности спортивности: механическую коробку передач, задние ведущие колёса и бензиновый двигатель. Наверное, по-другому и быть не могло – возможность ехать стильно и экономично представлялась слишком заманчивой.

Дизельная “Audi TT”

В последнее десятилетие дизельные модели стали популярными среди большинства классов автомобилей, начиная с маленьких городских машинок и заканчивая большими вездеходами, а также уже упомянутыми спортивными автомобилями.  Подержанные дизельные модели люди выбирают даже невзирая на несколько большие эксплуатационные затраты – всё затмевает низкий расход топлива.

Ниже мы приведём несколько советов, как самим проверить дизельный автомобиль при его покупке. Выполнив уже упомянутые действия, вы уменьшите возможность приобретения скверного транспортного средства:

  1. Открутите крышку отверстия для заправки маслом, но не снимайте её. Попросите, чтобы хозяин машины или сопровождающее Вас лицо немного подержали нажатой педаль акселератора авто. Проверьте крышку: если двигатель её втягивает – всё хорошо, если выталкивает – вероятно, компрессия двигателя уже слишком мала.
  2. Осмотрите саму крышку – на ней не должно быть никаких осадков пастообразной консистенции. Если они всё-таки есть, это может свидетельствовать о перегретом двигателе или несвоевременно смененном масле.
  3. Пока хозяин автомобиля или Ваш приятель не выбрался из машины, попросите у него нажать на педаль акселератора посильнее. Следите за выхлопной  трубой: если то, что Вы увидите, будет напоминать лёгкий чёрный дымок – ничего страшного, однако если повалит густой синеватый дым, в ближайшее время, возможно, придётся менять турбину.
  4. Выберите так называемый масляный щуп и обратите внимание, не поднимается ли из отверстия пар либо дым. Их быть не должно. Правда, на новые автомобили этот совет не распространяется.
  5. Не спешите глушить автомобильный двигатель. Пусть он нагреется до рабочей температуры. Затем заглушите, подожите 5 минут и пробуйте снова. Мотор должен начать работать мгновенно. Если это не так ( т. е.  двигатель начинает работать только после 2-3 вращений коленчатого вала), в ближайшее время Вам наверняка придётся посетить автосервис.
  6. Избегайте двигателя V-образной формы 2,5 TDI, который монтировался в автомобили „Volkswagen”, „Audi”, „Škoda”. В силу своей дефектной конструкции он требует больше ухода и не всегда может ответить своей долговечностью.
  7. Имейте в виду, что дажев новом автомобиле двигатель может быть нечистым и, опытные люди говорят, в этом нет ничего страшного. Главное, чтобы на нём не было следов подтёков масла, свидетельствующих о более серьёзных проблемах. Поэтому внимательно изучите автомобиль десятилетней давности, двигатель которого отличается чистотой.  Мыли его, наверное, не зря. И лучше пусть Вас обвинят в болезненной подозрительности, чем вы купите плохой автомобиль.

Удачи при выборе!

Выбор и приобретение автомобиля с дизельным двигателем

{5979}}

Решив купить машину, перед каждым потенциальным автовладельцем во весь рост встает проблема выбора двигателя. Каждый тип двигателя имеет свои преимущества, есть они и у дизельного перед бензиновым. Тем не менее, чтобы вы действительно получили максимальное наслаждение от всех плюсов дизеля, вы должны еще перед покупкой чётко знать, какие требования вы предъявляете к своему новому автомобилю. В противном случае вместо моря положительных эмоций от дизеля вы «проклянете тот день, когда сели на баранку этого солярного чудовища»!

Есть два подхода при выборе автомобиля:

  1. Приобрести машину как можно дешевле, рассчитывая затем самостоятельно или в автосервисе довести ее «до кондиции», вкладывая средства в этот процесс постепенно. В этом есть свой резон, особенно если у вас есть опыт авторемонта автомобилей и «руки растут из нужного места». Вполне вероятно, что в итоге за меньшие деньги вы получите вполне приличную машину. Но если в внутреннем устройстве вы разбираетесь слабо, вышеописанный способ – не лучший вариант. Слишком высок риск, что ваши ожидания не оправдаются, а деньги будут потрачены впустую. Довольно часто бывают ситуации, когда, например, за элементарной (по словам продавца) неисправностью стартера и, как следствие, возможностью завести движок только с толкача, скрывается отсутствие компрессии, полный износ двигателя и топливной аппаратуры. Поэтому прежде чем покупать автомобиль с неисправностями – хорошенько подумайте.
  2. Второй вариант приобретения авто – купить максимально «свежий» и исправный автомобиль. Хотя и тут стопроцентной гарантии нет – скрытый дефект может присутствовать в любой машине. В данном материале я постараемся рассказать вам, на что обращать внимание при покупке автомобиля с дизельным двигателем, дабы свести до минимума покупку неисправного автомобиля.

Сначала решите для себя, что вы ждете от своего будущего автомобиля – максимальную мощность, экономичность, ремонтопригодность, надежность и т.п. В большинстве случаев все эти условия взаимоисключающие, поэтому вам надо будет найти некий компромисс на основании расставленных вами приоритетов. Так, маленькие автомобили гораздо экономичнее своих «больших братьев», однако они менее надежны и долговечны, да и мощность их значительно ниже.

Если главное для вас надежность, то берите машину с максимально большим объемом двигателя. Разумеется, это не гарантирует, что эта машина проработает дольше всех, но по статистике чем больше объем двигателя, там значительнее его моторесурс. Помимо этого, выбирая между одним и тем же турбированным и нетурбированным двигателем, целесообразнее отдать предпочтение нетурбованному как более надежному и долговечному. Да к тому же еще и более экономичному.

Однако если в душе вы Шумахер и главное для вас скорость, то ваш двигатель – только турбо. Только заранее смиритесь с тем, что денег на солярку вы будите тратить больше, а ремонтировать движок возможно чаще.

Итак, мысленно вы решили, что ждете от своего будущего автомобиля. Теперь настройтесь на то, что вы будете выбирать машину с максимально «свежим» и исправным дизельным двигателем. Запомните, дизель – не карбюраторный двигатель, он требует к себе более квалифицированного отношения и не прощает ошибок, которые допускают неопытные мотористы или просто любители поковыряться в железках. Не думайте, что вам удастся поднять компрессию у дизеля простой заменой поршневых колец как в бензиновом двигателе, или отремонтировать топливную аппаратуру заменой плунжерной пары!

Очень часто именно такой дилетантский подход к решению проблем дизельных двигателей и преобладает. И зачастую именно это и дискредитирует дизель в глазах автолюбителей. Прочитав пару книжек типа «Дизель для чайников» и статей в интернете, люди мнят себя великими дизелистами, способными устранить любую неисправность, и смело лезут в движок. Причем лезут все - и просто дилетанты, и обычные слесаря, которые не имели опыта работы с дизелями и ТНВД, но думающие, что уж если они ремонтировали обычные двигатели, то с дизелями тоже справятся. Это заблуждение приводит к тому, что в лучшем случае двигатель и ТНВД будут отрегулированы некачественно, а в итоге получим плохой запуск, повышенную дымность, низкую мощность и экономичность. И все будут думать, что дизельный двигатель именно так и должен работать.

Как вы поняли, более высокая сложность и большие трудозатраты на ремонт – один из основных недостатков дизеля. Хотя в последнее время этот недостаток сводит на нет усложнение конструкций бензиновых двигателей. Последние разработки в бензиновых и дизельных двигателях по уровню сложности очень близки, а отдельные технические решения часто просто заимствуются друг у друга.

Итак, теперь поговорим о том, как правильно провести внешний осмотр дизельного двигателя в выключенном состоянии.

Разумеется, дизельный двигатель не должен иметь явных подтеков масла, остатков от выброшенной охлаждающей жидкости (это может свидетельствовать о том, что двигатель перегревался). Небольших масляных следов отпотевания на некоторых сопряжениях бояться не стоит, но если они присутствуют на сальниках – стоит насторожиться. Возможно, скоро они потекут еще сильнее.

Теперь снимите патрубок, соединяющий воздушный фильтр и турбину (для турбованных двигателей), или воздушный фильтр и впускной коллектор (для нетурбованных).Почти у всех двигателей туда подводится трубка отсоса картерных газов от крышки головки блока. Если в патрубке присутствует большое количество масла – будьте настороже, так как это может быть следствием сильного износа цилиндро-поршневой группы, в результате чего масло под давлением картерных газов попадает во впускной коллектор. Но однозначного вывода делать не стоит, так как это также может быть следствием сильной загрязненности воздушного фильтра или системы отсоса картерных газов (маслоотделителя)

После внешнего осмотра надо проверить, как запускается дизельный двигатель «на горячую». Дизель - это не бензиновый двигатель, он должен стартовать мгновенно, практически на половине оборота коленвала. Все отмазки вроде того, что двигатель должен сначала закачать топливо, а уж потом завестись, или что-либо подобное - несостоятельны. Если дизель не завелся с пол-оборота – у него есть какой-то скрытый дефект. При этом обратите внимание, что при заводке «на горячую» не позволяйте никому нажимать на педаль газа при запуске и дожидаться прогрева свечей. Если вам говорят, что для запуска горячего дизеля нажимать педаль газа необходимо, знайте - это сознательный обман. Так зачастую пытаются скрыть износ плунжерных пар или другой дефект. На исправном дизельном двигателе это не требуется, так как регулятор ТНВД не нуждается в дополнительных воздействиях, а сам определяет дозу впрыска.

Итак, тестирование горячего запуска прошло успешно. Не поленитесь, проверьте это несколько раз, изменяя интервалы между запусками. Ничего меняться не должно, двигатель должен во всех случаях прекрасно заводиться.

Теперь посмотрите на выхлоп при запуске. Допускается наличие небольшого клубка черного дыма. Как правило, его наличие сигнализирует о хорошей пусковой подаче (при условии, что запуск произошел мгновенно, и после этого дыма практически нет). Выброс черного дыма также может происходить из-за слабых форсунок или других дефектов, но это легко проверить, резко «газанув» - в случае неисправности дымность сильно увеличится.

На холостых оборотах на горячем двигателе дизель практически не дымит (если, конечно, на улице не мороз). При этом на холостом ходу можно услышать небольшое постукивание, что характерно при работе дизеля. Но вот никаких выделяющихся стуков слышно быть не должно. Обычно при повышении оборотов двигателя простукивания должны прекратиться, но если этого не произошло - ничего страшного нет. Чуть более жесткая работа на холостых оборотах возможна вследствие немного раннего впрыска топлива или льющих распылителей.

Плавно увеличивайте обороты двигателя с холостых до 3500-4000 оборотов в минуту и внимательно следите за двигателем - не должен трястись или дергаться. Повторите эту процедуру, но теперь обратите внимание на цвет выхлопа. По мере роста оборотов двигателя не должно быть появления синего рваного дыма (т.е. в терминологии дизелистов двигатель не должен «дристать»). Как правило, вместе с дымом появляются еще и звуки вроде «Бых! Бых». Обычно эти признаки сигнализируют о позднем зажигании, но иногда это возможно и при других дефектах.

Также никакого дыма и «дристания» не должно быть и при резком нажатии на педаль газа. Черного дыма или стуков при резком нажатии на газ также быть не должно. Допускается лишь небольшой выброс совсем маленького облачка дыма при резком нажатии на педаль. Кстати, по черноте этого выхлопа можно представить, как будет дымить двигатель при движении при полном нажатии на педаль и полной загрузке. Только в этом случае это будет не разовый клубок дыма, а постоянное дымление из выхлопной трубы.

Некоторая «жесткость» в работе дизеля приемлема только в режиме холостых оборотов. На любых других режимах стуков быть не должно. Особенно прислушайтесь к дизелю при резком нажатии на газ – стуков не должно быть ни при наборе оборотов, ни при их сбросе.

Если все предыдущие испытания были пройдены успешно и никаких отклонений от нормы вы не заметили, переходим к следующему этапу.

Запустите дизель, оставьте его работающим на холостых оборотах. Теперь осторожно открутите маслозаливную горловину. Допускается незначительный выход из-под крышки небольшого потока газа. Но если вы не можете свободно положить крышку на отверстие, так как её постоянно отбрасывает потоком газов - дела плохи. Следует обязательно перепроверить компрессию в двигателе. Однако и отсутствие сильного потока картерных газов не гарантирует вас от плохой компрессии, так как она определяется и другими факторами. Поэтому не поленитесь и не пожалейте денег - съездите в нормальный сервис и проверьте компрессию там. Нормальная компрессия составляет 36 атмосфер (минимум 31-32). Разброс значений компрессии по цилиндрам должен быть не более 2 атмосфер. А заодно измерьте давление масла в масляной магистрали на горячем двигателе на холостых оборотах. Здесь можно привести общие требования практически для любого дизельного двигателя: давление масла в этом режиме должно быть для турбованного двигателя не менее 1,5 атмосферы, а нетурбиованного - не менее 1,0. Но проверку надо проводить не по показаниям датчика на приборной панели машины, а механическим манометром, который вворачивается вместо электрического датчика. Чем ниже показания манометра от вышеуказанных значений, тем раньше «стуканет» этот двигатель и его турбина.

Теперь стоит проверить систему охлаждения. Чтобы не купить машину с дефектной прокладкой или головкой блока, проверьте, нет ли пузырения в радиаторе. Для этого остудите двигатель минимум до 50 градусов, откройте пробку радиатора и долейте охлаждающей жидкости до краев, затем закройте пробку. Заведите двигатель, доведите температуру до открытия термостата и посмотрите, нет ли пузырения из радиатора при работающем двигателе. Если из радиатора выходят пузырьки воздуха, можно утверждать, что негерметична головка блока или ее прокладка, в редких случаях сам блок.

Теперь пришла пора проверить запуск холодного двигателя. Причем очень желательно не просто остывшего, а при той температуре, при которой он будет эксплуатироваться зимой. Быстрый запуск холодного двигателя при очень низких температурах свидетельствует не только о хорошем состоянии компрессии, но и исправности системы холодного запуска, свечей накаливания, установочного угла опережения впрыска топлива (по меньшей мере для низких температур), аккумулятора и стартера. Понятно, что летом этот режим не позволит вам в полной мере выявить недостатки, которые могут быть скрыты.

Запуск дизельного двигателя на холодную должен происходить так же мгновенно, как и «на горячую». Возможна только немного более жесткая работа двигателя «на холодную», что объясняется с одной стороны более худшими условиями распыления и сгорания топлива, а с другой - наличием специальных систем холодного запуска на некоторых ТНВД, которые специально сдвигают угол опережения впрыска топлива при низких температурах в область более раннего впрыска. Это способствует улучшению запуска дизельного двигателя при очень низких температурах.

Разумеется, без поездки в реальных дорожных условиях говорить об исправности двигателя нельзя, так как ряд дефектов могут проявиться лишь в этом режиме.

Во время езды старайтесь создать различные режимы движения автомобиля - начиная от медленной езды без нагрузки до максимальных оборотов с максимальной нагрузкой.

Не должно быть:

  • посторонних стуков;
  • повышения температуры выше нормы;
  • сильного дымления;
  • снижения мощности

Изменение мощности и ускорение машины должны быть адекватны нажатию на педаль газа, то есть не должно быть эффекта, когда при отпускании педали газа двигатель начинает лучше ускоряться.

После резкого нажатия и отпускания педали газа обороты двигателя должны быстро вернуться на холостые. Если дизель медленно сбрасывает обороты - это дефект, свидетельствующий о неисправности регулятора ТНВД (если нет дымления из выхлопной трубы на режиме снижения оборотов), неисправности турбины или двигателя (если в режиме снижения оборотов двигатель продолжает дымить синим дымом).

Общий внешний подкапотный вид. Определите незамятость гаек форсунок, блока цилиндров, следы белого или красного герметика - значит, в движок здесь лазили. Должны быть на месте все болты крепления вспомогательных устройств. Только в нашем сервисе могут запросто не поставить труднодоступный болт. Состояние вкладышей можно оценить, прогрев машину, заглушить и сразу включить зажигание: лампочка давления масла должна загореться через пару-тройку секунд. Если раньше - либо масло жидкое, либо не в порядке вкладыши. Второе скорее

И в заключение – по возможности, не полагайтесь только на свой опыт и знания. При покупке машины постарайтесь взять собой специалиста в этой области. А еще лучше проведите диагностику автомобиля в автосервисе.

Более сложные процедуры:

Если Вы выполнили все вышеперечисленные действия и после этого не разочаровались в жизни, то это уже хорошо. Еще лучше, если Вы по-прежнему хотите купить эту же машину. Тогда, если у вас будет возможность, то настоятельно рекомендуется выполнить следующие действия, которые говорят о многом (на станции или, если есть возможность, лучше у знакомых).

А. Замерьте компрессию. Правильно ее замеряют так :

  • Выкручивают все форсунки. Стартером "пропшикивают" пару раз цилиндры во избежание попадания масла или топлива в цилиндры, что может повлиять на значение компрессии.
  • Вкручивают компрессометр на место форсунки и стартером несколько раз прокручивают движок до остановки стрелки.Все повторяется и на других цилиндрах.
  • Компрессия должна быть, во-первых, не ниже 25, хотя, может, для каждого объема - разная. Чем меньше разброс значений по цилиндрам - тем лучше. Стандарт на новую машину - 0.5, не больше.

Для старой машины это, конечно, невыполнимо, но если будут значения типа 18-25-30-22 при норме 25, это указывает на возможность скорого капремонта.

Если компрессия низкая - это еще не конец света. Для начала можете выяснить, что является причиной - и, соответственно, сколько будет стоить ремонт. Низкая компрессия бывает по двум причинам:

  • Износ поршневой (идет прорыв газов через зазоры между гильзой и поршнем)
  • Износ клапанов (прорыв газов через клапана и сёдла клапанов).

Для проверки возьмите немного масла в шприц, впрысните в форсуночное отверстие, снова вкрутите компрессометр и снова измерьте компрессию. Идея проста: если изношены кольца, масло затекает в зазоры и не дает газам прорваться, и компрессия должна повыситься. Ежели же она как была, так и осталась - то изношены клапаны, что в ремонте и дешевле, и проще. Да, и не сообщайте продавцу о своем намерении заранее - а то еще гадость какую-нибудь вольет для повышения компрессии, потом проблем не оберетесь.

Б. Проверьте форсунки. Нормальная форсунка при подаче в нее топлива под давлением должна издавать очень характерное "бук-бук-бук" и распылять "в туман": Всякие там дождики и струйки не приветствуются. Повышенный черный дым может быть еще, если не работает отсечка в форсунках. Распылители нужно снимать и смотреть. Категорически не рекомендуется распыление в виде капель и струек - можно прожечь поршни или головку, смотря куда брызгает. Определите состояние шлангов подачи топлива и обратки. Если герметичность нарушена, то будут проблемы с пуском.

В. Свечи накала/подогрев камеры сгорания . Включение реле подогрева проверяется на слух и по лампочкам на приборной панели. По скорости отключения реле можно определить неработающие свечи. Пользуясь вольтметром, сначала можно проследить, что на свечи подается 12В. После пуска или секунд через 5-10 снижается до 6В, а после прогрева двигателя - до 0. Но на разных машинах по разному. Если свечи, рассчитанные на 8 сек. прогрева поставить на машину с реле, которое выдает 13 сек, есть большая вероятность, что они сгорят. И скорость отключения реле совершенно ни о чем не говорит - оно выдало 10 сек. и отключилось, а свечи могут быть и неисправные. Тем более, на слух у нас ничего не определишь.

Г. Цвет масла . Цвет масла - черный, без посторонних включений. Быстрое, где-то километров через 500, потемнение масла после его замены (не из-за смеси со старым) - косвенный признак износа колец. Если масло имеет характерный серебристо-серый оттенок, то существует достаточно большая вероятность того, что двигатель "лечили" какой-нибудь молибденовой присадкой.

Д. Система охлаждения . В системе охлаждения не должно быть пузырения, проверяется это на средних и больших оборотах на прогревающемся двигателе. Если пузырьки есть - прогорела прокладка, или повело головку блока цилиндров. Прикиньте время срабатывания термостата, двигатель на холостых может и не прогреться выше 40-60 градусов, но после 5 минут езды стрелка на шкале, показывающей температуру охлаждающей жидкости, должна показывать рабочую температуру. На железных трубках системы охлаждения возле блока не должно быть ржавчины и характерного налета красного цвета, как у выхлопного коллектора - подозрение на то, что его перегревали.

Е. Замерьте давление картерных газов . Высокое давление говорит, опять же, об износе поршневой или клапанов.

Сразу после покупки

Если Вы не испугались всего вышесказанного, и все-таки купили машину-то сразу выполните следующие магические действия:

  • Меняйте сразу же после ремень газораспределительного механизма, что бы Вам там ни говорил продавец. Ремень берите фирменный, дешевый не покупайте. Если, не дай Бог, порвется - клапанам крышка как минимум. Меняйте ремень у специалистов. Я видел Audi с сорванной и развороченной в хлам головкой блока только из-за того, что хозяин поскупился купить хороший ремень.
  • После покупки наблюдайте за уровнем масла. Если уровень уменьшается без видимых течей масла - явный признак изношенных маслосъемных колец. Поменяйте масляный и топливный фильтр вне зависимости, когда, по словам продавца, он их менял. Особенно, если Вы купили машину накануне зимы .
  • Естественно, при совершении вышеперечисленных действий желательно поменять и масло. Рекомендую: Shell Helix Ultra Plus 5W-40 синтетика. Заводился при -33° даже при совсем плохой компрессии. П/синтетика Chevron Diesel SAE 10W40 API CF/SE плюс молибденовая присадка REDEX. Кстати, масло лучше всего брать с классификацией по API CF или СЕ. CF самое лучшее. СС и CD рассчитано на дизельные двигатели, работающие на средних нагрузках, что для нашего топлива не очень подходит. За границей для старых дизелей оно - в самый раз, но у нас надо все условия считать самыми тяжелыми и неблагоприятными, и масло брать соответственно им.
  • Кроме того, изучите циферки на аккумуляторе, который Вам достался вместе с машиной. Дизелю, особенно если у него не очень хорошая компрессия, для пуска двигателя нужен хороший аккумулятор (ток отдачи чем больше, тем лучше), масло пожиже и рабочая система подогрева. У меня, к примеру, 100Ah/450A при - 18.
  • Также, как первостепенное мероприятие после покупки, советуем провести диагностику на СТО (стоит от 30 до 60 долларов), которая может многое рассказать об автомобиле. Хотя станции тоже бывают разные и наговорить могут разное. Поэтому не сильно пугайтесь. Лучше всего спросить мнение нескольких специалистов (они, как правило, бывают весьма разноречивыми).

Прошло некоторое время после покупки

Итак, Вы катаетесь на новоприобретенном дизельном автомобиле, и, надеемся, получаете от этого большой кайф. Но где-то в глубине души терзает мысль: "Вот сейчас хорошо, а пройдет некоторое время и...." Что делать, чтобы этого "и...." не случилось? Тут трудно советовать на все случаи жизни, но несколько общих советов можно дать:

  • Не заправляйтесь на случайных АЗС. Если цвет солярки Вас смутил - лучше поищите другую заправку. Всегда имейте под рукой лейку с сеточкой (лучше с двойной) во избежание попадания грязи в бак.
  • Избегайте вариантов "по дешевке" неизвестно откуда (тракторная, корабельная, тепловозная солярка). Здесь очень тяжело угадать. Мы брали когда-то шикарную тепловозную солярку, но наш знакомый, вернее, его машина, очень пострадали от корабельной солярки. Заправляйтесь только в том случае, если на этой солярке уже кто-то ездит и доволен ею.
  • Меняйте топливный фильтр чаще, чем положено по сервисной книжке. При качестве нашего топлива - это решающий фактор для нормальной работы машины, особенно в холодное время года. Можете поставить дополнительный фильтр очистки топлива.
  • Не жалейте денег на масло, особенно для зимы.

Какие обороты должны быть на дизельном двигателе

Категория: Полезная информация.

Есть три группы водителей. Одни стараются ездить на максимально низких оборотах и «внатяг». Другие периодически крутят мотор до повышенных оборотов, считая это полезным. Третьи ездят в режиме «стрелка тахометра на пределе». Кто же прав?

Низкие обороты

Начнем с тех, кто предпочитает рано переключать передачи и держит обороты коленвала в пределах 2500 тыс. об/мин. на бензиновых двигателях и порядка 1100-1200 тыс. об/мин. на дизеле. Причем многие привыкают ездить так с самого начала, когда инструктор автошколы или родственник учит, что это помогает экономить топливо и не перегружать мотор.

Но все не так просто. Представим: автомобиль едет примерно 55 км/ч, на четвертой передаче по асфальту, обороты – в пределах 2000. Затем рельеф дороги меняется, допустим, предстоит спуск или подъем, и водитель не переключает передачу, а просто добавляет или убирает газ. Это ведет к детонации мотора, он просто разрушается изнутри. Расход топлива тоже не снижается, даже наоборот, нажатие газа на повышенной передаче под нагрузкой – чрезмерно обогащенная топливная смесь.

Кроме того, езда «внатяг» повышает износ двигателя из-за недостаточной смазки трущихся деталей мотора. Дело в том, что подшипники скольжения эффективно работают только в условиях, когда масло подается под высоким давлением в зазоры между валом и вкладышами. Чем больше оборотов коленвала, тем больше давление масла и, соответственно, меньше износ сопряженных элементов.
И самое вредное последствие езды на низких оборотах – коксование двигателя, когда температура в цилиндрах просто не успевает повыситься на низких оборотах до той степени, чтобы убрать образующийся нагар на стенках.

Высокие обороты

Любителей раскручивать моторы легко понять: авто уверенно откликается на газование, совершать маневры даже в условиях резко ограниченного времени легко и приятно. Да и расход топлива возрастает не критически. Но есть свои нюансы.

Во-первых, что именно считать высокими оборотами. Точных цифр тут нет, ориентироваться нужно на рекомендации производителя. Например, для бензиновых моторов высокими считаются обороты превышающие 70% общедоступных. Для дизельного, из-за особенностей конструкции, высокие обороты те, что превышают крутящий момент.

Постоянная езда на высоких оборотах увеличивает нагрузку на детали двигателя и на систему охлаждения, из-за роста температуры. Как результат – повышенный износ мотора и риск его перегрева.

Идеально для дизельного ДВС

Как всегда, золотая середина – сохранить ресурс двигателя по максимуму поможет езда на средних оборотах и чуть выше среднего. Среднее определяется как 30-70% от максимума, который развивает двигатель. При этом важно учитывать тип и особенности ДВС.

Так, для малолитражного дизельного двигателя легковушки уверенную тягу создают обороты в пределах 2200 – 2500 тыс. Из-за того, что у дизельных двигателей крутящий момент выше на низких оборотах, чем у бензиновых, даже современный дизель системы Common Rail можно раскрутить максимум до 4500 – 4800 тыс. об./мин. При этом мощность дизельного двс резко падает уже при выходе на 3800 – 4000 тыс. об./мин. И получается, что для бензинового мотора – езда «внатяг», до для дизельного – обороты максимального крутящего момента.

Поэтому нет необходимости "раскручивать" дизельный мотор, это не даст прирост тяги, а вызовет только перерасход топлива и масла и износ элементов ЦПГ. Рабочие обороты дизельного двигателя в среднем составляют 1800 – 2800 об./мин. Этих показателей и стоит придерживаться и с их учетом корректировать свой стиль вождения.

 

  • О том, как определить проблему с двигателем по цвету выхлопа, читайте здесь.
  • Узнайте о том, как продлить ресурс жизни вашего дизельного двигателя, здесь.

Если вы в поиске качественных запчастей для своего дизельного двигателя, проверьте наш каталог

ПЕРЕЙТИ В КАТАЛОГ

Как проверить дизель перед покупкой. Пошаговая инструкция

Следующим шагом следует осмотреть болты крепления клапанной крышки на предмет следов от инструмента (чаще всего накидных головок ключей). Если вы видите на болтах крепления четкие цилиндрические очертания, то можете быть уверены, что крышка демонтировалась.

Это пока не означает, что с двигателем проделывались какие-то серьезные ремонтные работы, но сам факт дает повод принять его во внимание при последующих шагах осмотра машины. Если же никаких следов нет — то это отличная новость и вступительно можно быть спокойным, что сверху в двигатель никто до вас не лазил.

Если на предыдущем шаге вы обнаружили, что крышка откручивалась, то обратите пристальное внимание на место соединения клапанной крышки с головкой блока цилиндров. Не берусь говорить за все двигатели в Мире, но на абсолютном большинстве машин с завода клапанная крышка ставится на прокладку и лишь некоторые места соединений и выемок промазываются герметиком. Если же вы видите обильные сопли герметика, свисающие то там, то здесь по периметру всей клапанной крышки, то знайте, что данный ремонт проводился непрофессионалами, пытающимися сэкономить на покупке новой прокладки. И это хорошо, если ремонт касался только устранения запотевание крышки, а не системы распредвалов или самой головки блока цилиндров.

Исключением из правила может быть только ситуация, когда механик нанес герметик вместе с установкой новой прокладки, так сказать, для дополнительной уверенности. Но если такое и произошло, то герметик будет положен ровно и аккуратно, выступая за пределы соединения на небольшое расстояние.

Если вам позволяет место и условия — обязательно осмотрите поддон двигателя. При осмотре обратите внимание так же на следы откручивая болтов его крепления и на прокладку/герметик между поддоном и картером двигателя. Подозрительными могут быть свежие следы недавнего откручивания, то есть следы на болтах, а так же голый блестящий металл поддона вокруг болтов по причине их небольшого смещения от первоначального (заводского) положения. Данный факт усугубляется наличием явно незаводского, криво положенного герметика между поддоном и картером.

Несмотря на то, что поддон склонен к запотеванию едва ли не сильнее, чем клапанная крышка, причины его снятия и установки на герметик накануне продажи автомобиля могут быть куда более серьезными. Дело в том, что после снятия поддона механик получает доступ к шатунам и коленвалу. А одной из самых серьезных поломок двигателя является проворот шатунных или коренных вкладышей. При таких поломках двигатель подлежит полной разборке, а коленвал и все шатуны — дефектовке и, при необходимости, расточке и шлифовке. То есть, двигатель должен пройти капитальный ремонт.

Я знаю реальную историю, когда перед продажей у машины произошел проворот вкладышей, а недобросовестный продавец вместо полноценного ремонта двигателя — снял поддон, и получив таким образом доступ ко всем вкладышам, поменял их. После чего выставил машину на продажу. И получилось так, что новые вкладыши, которые рассчитаны на весь срок эксплуатации автомобиля, истирались с огромной скоростью об исцарапанный коленвал. При диагностике такого автомобиля невозможно выявить столь серьезный дефект. На момент осмотра автомобиль не подавал характерных признаков и стуков.

Но, вот только вкладыши, которые были рассчитаны на работу в нормальных условиях, успели истереться до критических значений толщины уже через 3000 км пробега, после чего в двигателе появился стук, а неопытный водитель вовремя не среагировав, довел стук до разлома шатуна, который в буквальном смысле уничтожил двигатель — шатун раскололся, после чего своими остатками пробил блок цилиндров двигателя.

Поэтому, если вы видите свежие следы демонтажа поддона двигателя и, уж тем более, неаккуратно абы-как положенный герметик, то обязательно расспросите продавца о причинах залаза в то место двигателя и будьте особо осторожны с таким вариантом машины.

Когда дизель работает слишком громко

Качество дизельного топлива на российских заправках оставляет желать лучшего. Особенно на частных мелкосетевых заправках у трассы где-нибудь в глубинке. Если у вас машина с дизельным мотором, запомните термин «цетановое число». Это один из главных показателей качества солярки. Если цетановое число равно 50 или больше, значит, с топливом все в порядке. Если менее 48 – заправляться такой соляркой не стоит.

Вот только специальной лаборатории и приборов для измерения цетанового числа у вас в дороге нет.

Зато последствия заправки некачественным топливом вы точно почувствуете. Звук работы мотора и отклик машины на газ изменятся, станут грубее и жестче. Кроме того, вырастет расход топлива. Иногда может поменяться цвет и запах выхлопа. Когда за окном минус, машина может вообще не завестись.

Но это цветочки. Главное происходит внутри мотора. В современных дизельных двигателях с системой Common Rail или с насос-форсунками за один такт происходит до 5 впрысков топлива. Так сделано для того, чтобы топливо равномернее и полнее сгорало и чтобы получить больше отдачи от сгорания. При нормальном качестве топлива воспламеняется первая же его порция, поданная в цилиндр. Далее все последующие порции воспламеняются и сгорают в положенное им время. Таким образом, все попавшее в цилиндр топливо полностью сгорает, и выделившаяся энергия относительно плавно передается поршню. Топливо с низким цетановым числом самовоспламеняется позже, чем нужно (например, при впрыске только третьей порции), и поэтому в цилиндре одновременно воспламеняется большее количество топлива, чем рассчитано. Одномоментно выделяется большое количество энергии, которая не может быть переработана в механическую энергию движения поршня. Происходит так называемое жесткое сгорание. Такой эффект равнозначен детонации в бензиновом двигателе и тоже приводит к ускоренному износу и разрушению деталей цилиндропоршневой группы.

Также, поскольку топливо не сгорает полностью, образуется большое количество сажи, что резко сокращает срок службы моторного масла и приводит к дополнительному засорению катализатора и сажевого фильтра.

Самый лучший совет – не заправляться на сомнительных заправках. Но что делать, если выбора в дальней поездке нет и вы почувствовали, что двигатель работает жестко и хуже «тянет»? На этот случай есть специальный препарат – «Цетан-корректор» от американского бренда Hi-Gear. Его лучше всегда возить с собой. Он повышает цетановое число дизельного топлива, устраняет жесткое сгорание и избавляет от последствий заправки некачественным топливом.

Когда пробег вашего авто перевалит за 150 тысяч километров, выбирайте «Цетан-корректор с кондиционером металла SMT2» Hi-Gear. За счет содержания кондиционера металла SMT2, помимо увеличения цетанового числа, он снижает трение и тем самым продлевает срок службы топливной аппаратуры и цилиндропоршневой группы. А «Очиститель-антинагар и тюнинг для дизеля» Hi-Gear дополнительно убирает нагар из камеры сгорания и загрязнения с форсунок, возвращая мотору динамику, как у нового.

Подытожив, дадим такой совет: собираетесь в путешествие или рабочую поездку на дизельном автомобиле, положите в багажник «Цетан-корректор» Hi-Gear. Может быть, он и не пригодится на этот раз, но спокойствие в дороге важнее!

Сколько должен работать дизельный двигатель после остановки

Правда ли, что турбированный двигатель нельзя глушить сразу после остановки?

Среди автомобилистов бытует такое мнение, что турбированные двигатели нельзя глушить сразу после остановки авто: иначе выйдет из строя турбина. Давайте разберемся, насколько справедливо такое утверждение.

Для этой цели на некоторые авто устанавливались даже специальные «турботаймеры» — таймеры отключения двигателя. То есть при включении этого таймера двигатель работал еще какое-то время на холостых оборотах (как правило, полторы — две минуты), а потом самостоятельно глох. Если даже ставили такие приборы, значит, смысл какой-то в этом все же есть, однако, забегая вперед, скажу, что для современных моторов данная процедура не обязательна.

Из-за большой скорости вращения турбины производится огромное количество тепла, которое надо как-то отводить. Достаточно только сказать, что в процессе работы турбина может разогреться до 800 градусов. Турбина охлаждается в основном за счет моторного масла, реже с помощью охлаждающей жидкости. И если заглушить двигатель, когда турбина будет еще очень горячая, то подача масла к ней сразу прекратится, а находившееся на ней масло под воздействием крайне высокой температуры просто сгорит.

Продукты, образовавшиеся после перегорания масла, при следующем пуске двигателя смоются новым маслом, но будут воздействовать на все трущиеся пары двигателя как абразив, что повлечет уменьшение ресурса как самой турбины, так и всего двигателя. Именно поэтому на относительно старых турбированных двигателях лучше не пренебрегать данным правилом и подождать лишние пару минут, прежде чем глушить двигатель. Ремонт турбины — штука недешевая! Кроме того, из-за прекращения подачи масла к турбине, какое-то время этому узлу придется работать в режиме масляного голодания. А скорости вращения там немаленькие — до 200-250 тыс. об/мин. Это также не способствует увеличению срока службы турбины.

Но вот на современных моторах выполнение данного правила носит скорее рекомендательный характер, ведь особого вреда, даже если заглушить мотор сразу после остановки, не будет. Почему? Во-первых, в современных моторах существенно уменьшена инерционность турбин, то есть время их самостоятельного вращения до полной остановки значительно меньше, чем у их предшественников. Следовательно, и время, когда турбина испытывает масляное голодание, сокращено до минимума. А во-вторых , в современных турбомоторах улучшена система смазки: она попросту более мощная, нежели у атмосферных двигателей. Таким образом отвод тепла производится намного быстрее, что сокращает вероятность сгорания масла на турбине. Однако лишним дать поработать даже современному турбомотору на холостых оборотах перед глушением точно не будет: турбина скажет «спасибо» долгой и беспроблемной эксплуатацией!

Если статья оказалась полезной, подпишитесь на канал и ставьте «палец вверх».

Источник

Можно ли глушить современный турбодвигатель сразу после остановки?

Есть среди автолюбителей такое правило: “турбированный двигатель нельзя глушить сразу после остановки, нужно дать время турбине остыть”. С чем это связано? Давайте разберемся с технической точки зрения.

Турбина использует давление выхлопных газов, которые раскручивают крыльчатку так называемой горячей части (часть называется горячей, потому что выхлопные газы горячие, абсурдно, но просто).

Крыльчатка горячей части соединена с крыльчаткой в холодной части, у которой другая задача – создавать избыточное давление на впуске двигателя и это уже холодная часть.

Чем больше давление на впуске, тем больше воздуха попадет в цилиндры, а, следовательно, больше кислорода. Если просто, то это примерно, как подуть на тлеющие угли, они начнут разгораться – выделять больше энергии.

Турбина во время работы может разогреваться до 800 градусов, именно поэтому воздух, который она нагнетает на впуск проходит также через контур охлаждения “интеркулер”.

Чтобы при такой температуре механизм мог работать его нужно смазывать = охлаждать, в картридж турбины подается масло, которое смазывает и охлаждает ротор и его составные части.

Что происходит если нагреть турбину и не остудить её (даже на холостом ходу её температура достигает 100 градусов)? Масло, которое в ней осталось подгорает и оставляет на стенках кокс и нагар, который в последствии работает как абразив.

Но всё это имеет отношение по больше степени к старым автомобилям, а как дела сейчас?

Просто представьте, что в германии производители напишут, что нужно постоять на холостом после поездки? Да их сразу оштрафуют экологи, там строго всё, места мало, воздуха тоже. С другой стороны, как им быть, если клиенты толпами поедут на гарантию для замены турбины? Им и так хватает негативной славы.

К современным турбинам подводится не только масло, а также контур с антифризом. Таким образом, турбина изначально лучше охлаждается и пиковое значение нагрева у неё значительно меньше. Но суть даже не в этом, в системе охлаждения стоит отдельная электропомпа, которая даже после остановки двигателя какое-то время продолжает “гонять антифриз”.

Также в некоторых турбо моторах отдельный контур охлаждения проходит через выпускной коллектор (который отлит одним элементом с головкой блока цилиндров), такой подход применяется для быстрого прогрева антифриза, а также для дополнительно охлаждения выпускного коллектора в режимах «тапок в пол».

О чем это говорит? О том, что жить без турбо таймера можно, глушить сразу можно, но всё-таки думайте, как вы ехали, даже минуты хватит, чтобы масло с антифризом быстро сделали свою работу. Если время позволяет хуже от недолгой работы на холостом не будет. Но если вы ехали умеренно, то ничего критичного не произойдет.

Всем спасибо за внимание! Если статья вам понравилась, то поддержите нас большим пальцем вверх, а также подписывайтесь на канал, так вы не пропустите новые публикации!

Источник

Моторист рассказал, сколько нужно ждать перед тем, как заглушить двигатель после остановки

Все водители хорошо знают, что двигатель — основная часть автомобиля. Это выражено не только в его задачах, но в и стоимости. Ремонт или замена двигателя могут обойтись в шестизначную сумму, поэтому подходить к эксплуатации и обслуживанию узла следует грамотно. В Сети давно ходят споры о том, как правильно глушить силовой агрегат. Одни водители делают это сразу после остановки, другие дают ему немного поработать на холостом ходу. Я разобрался, какой подход наиболее правильный, а помог мне в этом знакомый моторист.

Статья будет полезной? Не забудьте поставить «палец вверх» и подписаться на канал !

Оказалось, что глушить двигатель сразу после остановки стоит не всегда . Даже у этой простой и банальной процедуры есть свои нюансы, о которых следует знать бережным автовладельцам. Существует несколько случаев, когда рекомендуется немного подождать, и после этого глушить силовой агрегат. Давайте поговорим о них подробнее.

При разговоре на эту тему моторист сразу рассказал мне о простых турбированных двигателях. В ходе активной эксплуатации турбина достаточно сильно нагревается . Выключение двигателя влечёт за собой прекращение циркуляции охлаждающей жидкости, что негативно сказывается на состоянии горячего узла. На некоторых автомобилях предусмотрена система, благодаря которой помпа продолжает работать 1-2 минуты после того, как силовой агрегат заглушили. Её хорошо слышно даже снаружи.

Многие автовладельцы ставят на свои автомобили турботаймеры. Устройство работает схожим образом — водитель глушит двигатель, но он продолжает недолго работать, пока турбина не остынет. Если ни одного из перечисленных вариантов нет, то рекомендуется подождать хотя бы минуту после остановки . Благодаря такому подходу дорогостоящая турбина будет служить намного дольше. Особенно это касается любителей «жарить» на своём автомобиле.

Ещё один типовой случай — срабатывание вентилятора охлаждения двигателя . Если после остановки мы слышим, как он функционирует, глушить силовой агрегат не стоит. Лучше дать несколько секунд на то, чтобы охлаждающая жидкость остыла и циркулировала по системе. На многих автомобилях вентилятор продолжает работать при заглушённом двигателе, однако, циркуляции антифриза не происходит. В долгосрочной перспективе такие действия водителя повысят ресурс силового агрегата.

Источник

Почему нельзя глушить — не только дизельные двигатели, но и бензиновые, сразу же после остановки?

На сегодняшний день, большинство мировых автомобильных брендов, устанавливает на свои модели, турбированные двигатели. И речь идет не только о дизельных двигателях, но и о бензиновых тоже, так как прослеживается тенденция, по замене атмосферной технологии — на турбированную. Другими словами, простых атмосферников становится, все меньше и меньше.

В руководствах по эксплуатации современных автомобилей, сказано, что двигатель должен поработать на холостом ходу, в течение не большого промежутка времени после остановки, так как турбокомпрессоры требуют времени, для охлаждения после интенсивного движения. И, это касается, как дизельных, так и бензиновых двигателей.

Это условие, необходимо, чтобы двигатель продолжал работать на холостом ходу и поддерживать циркуляцию масла, а так же удалять излишки тепла из турбонагнетателя. А, охлаждающая жидкость двигателя, также продолжала циркулировать.

Если же двигатель глушится сразу после остановки, турбина продолжает ещё некоторое время вращаться по инерции. При этом масло, находящееся в турбинных подшипниках, может перегреться и начать коксоваться. А, в свою очередь кокс, не допускает смазку к подшипникам при последующих запусках, и крошась превращается в абразив. Что может привести к ремонту, или даже полной замене, турбокомпрессора.

Дизельные двигатели достаточно эффективны на холостом ходу, а расход топлива на удивление низкий. В отличие от бензинового двигателя, который всегда требует стехиометрического соотношения топливовоздушной смеси 14,7: 1, дизельный двигатель может работать на холостом ходу с коэффициентом воздушного топлива до 100: 1, поэтому не беспокойтесь, по поводу излишнего расхода топлива.

Похожий процесс, происходит и в бензиновых двигателях с турбонаддувом. Обычно после стандартной поездки требуется всего несколько минут холостого хода, и все будет в порядке. Турбины бензинового двигателя, оснащены водяной системой охлаждения, и поэтому требуется работа помпы при включенном двигателе.

Руководство по эксплуатации, должно остаться для вас единственным и окончательным источником информации.

Любые другие советы, являются субъективными, и могут быть неточными.

Уважаемые гости — переходите на мой канал, кликнув — Pit Stop , ставьте лайки и не забывайте подписываться (это Вас ни к чему не обяжет, а Вы будете чаще встречать мои статьи в ленте Дзен), впереди ещё много нового и интересного!

Источник

Как правильно заглушить двигатель автомобиля и почему нельзя сразу глушить турбированный двигатель

Начнем с того, что резкая остановка разогретого двигателя после активной езды на высоких оборотах или эксплуатации мотора в нагруженном режиме может стать причиной серьезных поломок силового агрегата. Глушить двигатель сразу в подобной ситуации не рекомендуется как в случае с атмосферными ДВС, так и в случае необходимости быстрой остановки бензинового или дизельного двигателя с турбонаддувом.

Дело в том, что если резко заглушить горячий двигатель, значительно возрастает риск локального перегрева силовой установки. Давайте рассмотрим, как правильно заглушить двигатель с турбиной и атмосферный вариант, а также ответим на вопрос, можно ли глушить двигатель при работающем вентиляторе.

Почему нельзя сразу глушить мотор

Давайте представим стандартную ситуацию, когда поездка завершилась и водитель принял решение заглушить двигатель автомобиля. Общий алгоритм действий прост и понятен: после снижения скорости выжать сцепление на МКПП, перевести рычаг выбора передачи в нейтраль, нажать на педаль тормоза, дернуть «ручник». Все, теперь можно глушить двигатель. В случае с коробкой «автомат» достаточно нажать на тормоз и остановить машину, после чего перевести рычаг КПП в положение «P» и поставить авто на стояночный тормоз. Мотор теперь может быть остановлен. Данные действия у многих водителей доведены до автоматизма, на их выполнение требуется всего несколько секунд.

Достаточно вспомнить принцип работы системы охлаждения: ОЖ в каналах циркулирует тогда, когда мотор работает. Охлаждающая жидкость перемещается по каналам рубашки охлаждения благодаря работе водяного насоса (помпы), который, в свою очередь, приводится в действие от двигателя. По этой причине следует глушить атмосферный двигатель не ранее, чем через 10-30 секунд после работы на холостых.

Как правильно глушить дизельный двигатель с турбиной и бензиновый турбомотор

Если силовой агрегат оснащен системой турбонаддува, тогда глушить такой двигатель сразу крайне нежелательно. Данное требование справедливо как для дизелей, так и для бензиновых авто. Более того, режим нагрузок на ДВС не имеет большого значения.

Игнорирование данного правила приводит не только к локальным перегревам мотора, но и добавляются возможные поломки турбокомпрессора, значительное сокращение его ресурса и т.д. Проблема заключается в том, что турбина работает за счет потока выхлопных газов и сильно разогревается от контакта с ними. Если резко заглушить двигатель, произойдет остановка горячего турбокомпрессора. В результате подача моторного масла, которое смазывает и охлаждает подшипники турбины, полностью прекращается. Инерционного вращения турбокомпрессора после остановки мотора достаточно для работы практически «на сухую». Получается, температура турбины сильно повышается, смазка подшипников турбины происходит только за счет остаточного масла в самом турбокомпрессоре. Под воздействием высоких температур и нагрузок остаточное масло коксуется, страдают от износа механические элементы турбонагнетателя.

С учетом вышесказанного турбомоторы нужно глушить только после того, как двигатель поработает в режиме холостого хода от 60 секунд до 2-3 минут. За это время температура турбины снижается, так как интенсивность и температура потока выхлопных газов на холостом ходу минимальна. Любой автомобиль рекомендуют глушить не ранее десяти секунд после полной остановки транспортного средства, это относится к любым типам двигателей и автомобилям.

Защита двигателя и турбины от перегрева после остановки

На профильных автофорумах многие интересуются, почему на заглушенном двигателе работает вентилятор. Также новоиспеченные обладатели турбомоторов часто поднимают тему: «не могу заглушить двигатель ключом». Чтобы было понятно, большинство современных авто имеют штатную защиту. Например, если сразу остановить горячий двигатель, тогда:

  • после остановки ДВС возрастает риск локального перегрева ЦПГ и других элементов двигателя;
  • если на улице температура воздуха отрицательная, тогда на горячий двигатель будет воздействовать резкий температурный перепад;

Как перегрев, так и быстрое неравномерное охлаждение может привести к повреждениям различных деталей агрегата (поршни, кольца, ГБЦ и т.д.). По этой причине вентилятор системы охлаждения двигателя может работать некоторое время после остановки мотора, питаясь от АКБ. Данное решение позволяет охладить двигатель, минимизируя возможные последствия.

Если иначе, мотор будет остановлен не сразу после того, как ключ был вынут из замка зажигания. Такое решение является «страховкой» на тот случай, если водитель после езды забыл дать поработать дизельному мотору или бензиновому агрегату на холостых. Также установка турботаймера позволяет водителю сразу выйти из автомобиля и поставить его в режим охраны, не дожидаясь определенного времени, чтобы охладить турбину. Главным недостатком можно считать необходимость ставить автомобиль на «ручник» на авто с МКПП, что может привести к подмерзанию задних тормозных колодок в зимний период после длительной стоянки.

Полезные советы и рекомендации

Хотелось бы отметить, что различные производители могут усложнять описанные выше системы защиты, комбинируя тот или иной способ, дорабатывая охлаждение двигателя и турбокомпрессора. При этом нужно всегда помнить, что опасность после резкой остановки мотора присутствует всегда. По этой причине целесообразно не глушить агрегат сразу после остановки при такой возможности. Особенно это актуально для всех ДВС применительно к зимнему периоду эксплуатации, а также для агрегатов с турбиной без турботаймера. Также не рекомендуется глушить двигатель при работающем вентиляторе, так как это указывает на значительный нагрев и стремление системы охлаждения снизить температуру.Еще одним нюансом является аварийная остановка мотора в случае перегрева. Нельзя сразу глушить такой агрегат, так как это может привести к заклиниванию, деформации ГБЦ и т.д.

Если этого не сделать, тогда возможными последствиями может стать ситуация, когда водитель остановил машину, заглушил двигатель, завелся и мотор заклинило. Еще одним вариантом является такой, когда после немедленной остановки перегретого двигателя мотор стартером больше не проворачивается.

Обороты и мотресурс двигателя. Недостатки езды на низких и высоких оборотах. На каком количестве оборотов мотора ездить лучше всего. Советы и рекомендации.

Для чего охлаждать турбину перед остановкой двигателя. Особенности работы турбокомпрессора, температура выхлопных газов, охлаждение моторным маслом.

Что представляет собой двигатель с наддувом и чем отличается от атмосферного. Основные преимущества и недостатки турбированных ДВС. Какой мотор выбрать.

От чего зависит срок службы турбонагнетателя дизельного ДВС. Особенности и рекомендации касательно эксплуатации и ремонта турбин с изменяемой геометрией.

Особенности установки ГБО на мотор с турбонаддувом. Какое газобалонное оборудование лучше ставить на двигатели с турбиной. Советы и рекомендации.

Возможность установки турбокомпрессора на двигатель с карбюратором. Основные преимущества и недостатки турбонаддува на карбюраторном авто.

Источник

Диагностика дизельных моторов — обзор — журнал За рулем

Дизель не экономит деньги, он просто дает взаймы — так говорят многие сервисмены, поскольку стоимость ремонта дизельных двигателей вызывает шок. Чтобы не быть обманутым, важно знать тонкости их диагностики.

Материалы по теме

Диагностика современного дизеля в целом и его отдельных систем занимает обычно гораздо больше времени, чем в случае с бензиновыми агрегатами. Для определения неисправности необходимо сочетание профессионального оборудования и высокой квалификации мастера. Но и при наличии такой базы приходится прибегать к специфическим приемам диагностики.

Основная сложность диагностики дизеля по сравнению с бензиновым мотором состоит в том, что у него меньше системных параметров, оценка которых позволяет сразу выйти на неисправность. Один из таких параметров — состав топливовоздушной смеси. У дизеля его диапазон шире по сравнению с бензиновым мотором, вследствие чего сложно однозначно судить, бедна или богата смесь для определенного режима. Поэтому диагносту приходится сопоставлять много косвенных показателей. Это напоминает детективное расследование с отсеиванием подозреваемых и постепенным выходом на истинного виновника.

Дедуктивный метод

Пример проведения косвенных замеров на дизеле в обход рискованных мероприятий — сравнение компрессии в цилиндрах по датчику тока. Со стороны процесс похож на диагностику электрики, а на самом деле это действенная проверка механической части двигателя.

Пример проведения косвенных замеров на дизеле в обход рискованных мероприятий — сравнение компрессии в цилиндрах по датчику тока. Со стороны процесс похож на диагностику электрики, а на самом деле это действенная проверка механической части двигателя.

Самая трудная задача — выявить плавающие неисправности, почти не оставляющие улик и обнаруживающие себя только в определенных режимах работы мотора. С ней справится только опытный диагност-детектив, вооруженный хорошим сканером. Повезет, если за несколько поездок, сравнивая ключевые рабочие параметры основных систем двигателя, он сможет отловить виновника. Но часто диагносту приходится использовать обходные приемы, дабы сузить круг подозреваемых.

Материалы по теме

Чтобы описать ход расследования, рассмотрим самые распространенные случаи, когда в сервис приезжает машина с явными и постоянными неисправностями.

В затрудненном пуске двигателя и нестабильности его работы в различных режимах чаще всего виновата топливная аппаратура. Но важно гарантированно исключить и другие причины — например, проблемы с цилиндропоршневой группой, а именно снижение компрессии. На дизельном моторе ее просто так не замеришь, придется демонтировать топливные форсунки или свечи предпускового подогрева, что чревато их повреждением. Вот здесь и приходят на помощь специфические методы диагностики.

Сперва с помощью сканера проверяют коррекцию топливоподачи по цилиндрам и динамику изменения давления топлива в рампе. Контроль этих параметров включен в бортовую систему диагностики автомобиля. Если давление в рампе нагнетается медленнее, чем положено, проводят проверку с помощью внешних измерителей. Сначала отсекают линию низкого давления до ТНВД, подключая манометр или вакуумметр (в зависимости от типа подающего контура). Далее проверяют насос. К нему подсоединяют тестер давления так, что ТНВД качает топливо «в стенку»: в режиме прокрутки стартером он развивает максимальное давление, которое сравнивают с требуемым. По разнице показателей оценивают состояние насоса и его дозирующего клапана.

Сканер G‑scan 2 — лишь один из десятка приборов, имеющихся на серьезной мультибрендовой СТО. У этого сканера хорошая графика и высокая скорость обмена данными с блоком управления двигателем. Это позволяет с высокой дискретностью записывать ключевые параметры работы двигателя при диагностике непосредственно во время движения автомобиля в реальных условиях.

Сканер G‑scan 2 — лишь один из десятка приборов, имеющихся на серьезной мультибрендовой СТО. У этого сканера хорошая графика и высокая скорость обмена данными с блоком управления двигателем. Это позволяет с высокой дискретностью записывать ключевые параметры работы двигателя при диагностике непосредственно во время движения автомобиля в реальных условиях.

С помощью этого тестера проверяют и правильность показаний датчика давления топлива в рампе. В этом случае устройство подключают к рампе вместо одной из топливных форсунок (ничего страшного, что мотор временно поработает без одного цилиндра). Показания тестера и сканера сравнивают и отсекают врущий сенсор на рампе.

Материалы по теме

Анализируя значения коррекции топливо­подачи, достоверно выявляют проблемные цилиндры. Если одна из форсунок недоливает или характер сгорания топливовоздушной смеси нарушен из-за снижения компрессии, блок управления двигателем попытается исправить ситуацию, увеличивая длительность впрыска. При этом значения коррекции будут заметно различаться по цилиндрам.

Далее диагност вычисляет виновника: форсунка это или снижение компрессии в цилиндре? Второй параметр часто оценивают косвенными методами, чтобы не выкручивать форсунки или свечи накаливания для подключения компрессометра: их легко повредить, особенно у моторов с большим пробегом.

Первый способ включен в функции бортовой диагностики у автомобилей некоторых марок. По неравномерности вращения коленвала в момент его прокрутки без пуска мотора «мозги» сами определяют разброс компрессии по цилиндрам. Это экспресс-метод с невысокой точностью и повторяемостью результатов. Он способен вычислить только сильно сдавшие цилиндры и не заметит менее явных отклонений, которые могут сказываться на работе двигателя.

Датчик тока — универсальный диагностический прибор. Он используется для сравнительного замера компрессии в цилиндрах, для проверки цепи свечей предпускового подогрева. С помощью этого прибора опытный диагност всегда определит, кто виновник — неисправные свечи или отказавший блок управления ими.

Датчик тока — универсальный диагностический прибор. Он используется для сравнительного замера компрессии в цилиндрах, для проверки цепи свечей предпускового подогрева. С помощью этого прибора опытный диагност всегда определит, кто виновник — неисправные свечи или отказавший блок управления ими.

Один из профессиональных наборов для диагностики топливной системы. Представляет собой датчик для проверки максимального давления, развиваемого ТНВД, и колбы для оценки производительности системы обратного слива форсунок.

Один из профессиональных наборов для диагностики топливной системы. Представляет собой датчик для проверки максимального давления, развиваемого ТНВД, и колбы для оценки производительности системы обратного слива форсунок.

При проверке обратного слива современных дизельных форсунок разных типов необходимо наличие переходников и адаптеров. ­­ Это обеспечивает полную герметичность соединений и исключает риск повреждения уплотнителей и контактных поверхностей.

При проверке обратного слива современных дизельных форсунок разных типов необходимо наличие переходников и адаптеров. ­­ Это обеспечивает полную герметичность соединений и исключает риск повреждения уплотнителей и контактных поверхностей.

Второй косвенный метод замера компрессии более универсален. На один из проводов аккумулятора вешают датчик, регистриру­ющий пики потребляемого стартером тока при прокрутке коленвала. Чем выше компрессия в цилиндре, тем больше потребление в такте сжатия. Датчик — это преобразователь тока в напряжение. Его подключают к осциллографу, и уже на его экране сравнивают значения пиков напряжений по цилиндрам. Если они одинаковы, то компрессия в цилиндрах считается оптимальной. В противном случае с помощью синхронизации с другими сигналами можно «привязать» к пикам тока конкретные цилиндры. Или пойти дальше — провести реальный замер, одновременно задействовав компрессометр и датчик тока. Тогда для двигателя конкретного типа получаем коррелированные (взаимосвязанные) значения (амперы и бары), которые пригодятся в будущем.

Если компрессия во всех цилиндрах нормальная, всё внимание направляем на топливные форсунки. Электрическую часть форсунок проверяют тестером, который замеряет их сопротивление и индуктивность, а также проверяет сопротивление изоляции. Гидравлическую часть (как и ТНВД) можно полноценно проверить лишь на дорогих стендах, которыми располагают в основном профильные предприятия по ремонту топливной аппаратуры. В арсенале обычных СТО есть лишь привычный набор для проверки так называемой обратки (магистраль для слива топлива из форсунок в бак). К форсункам подключают мерные колбы и смотрят, как они наполняются. При этом совсем не обязательно, что, к примеру, инжектор, прилично недоливающий топливо в цилиндр, будет сливать в обратку гораздо бóльшие объемы по сравнению с другими. Этот тест проводят в дополнение к остальным мероприятиям. Если делать однозначные выводы только на основе его результатов, можно безос­новательно приговорить работоспособные элементы.

ОРЕЛ И РЕШКА

В арсенале мультимарочных СТО есть набор для проверки электрической части топливных форсунок. Он помогает при их диагностике на автомобиле и позволяет еще до установки на двигатель отбраковать неисправные детали из числа бывших в употреблении — их частенько приносят клиенты, которые желают сэкономить.

В арсенале мультимарочных СТО есть набор для проверки электрической части топливных форсунок. Он помогает при их диагностике на автомобиле и позволяет еще до установки на двигатель отбраковать неисправные детали из числа бывших в употреблении — их частенько приносят клиенты, которые желают сэкономить.

Фирменные дизельные техцентры (например, Делфи-Сервис или Бош-Сервис) есть далеко не во всех городах. Автовладельцам остается обращаться в обычные моно- или мультибрендовые автосервисы.

Монобрендовые сервисы, специализирующиеся на одной марке или на нескольких, но принадлежащих одному концерну, имеют, как правило, большой, но узкий опыт. За многие годы они набили много шишек на некоторых ­моделях и зачастую даже без диагностического оборудования могут с ходу поставить диагноз по симптомам неисправностей. И обычно у них есть возможность временно поставить заведомо исправные элементы, чтобы точно установить виновника.

Но и такие СТО иногда дают сбой. В этой сфере всегда была существенная текучка кадров. Рано или поздно матерый специалист уходит в другой техцентр, а его место занимает менее опытный мастер. Вдобавок, если какой-то сложный дефект диагностам сервиса доселе не встречался, их системных знаний, как правило, не хватает для вынесения точного вердикта.

Сотрудники мультимарочных сервисов обычно более подкованы в фундаментальных вопросах: обязывает поток проходящих через их руки разнообразных машин и систем. Речь не о «временщиках», у которых на все случаи жизни есть один универсальный китайский сканер, а о серьезных СТО. Профессионалы используют широкую гамму диагно­стического оборудования и проверяют множество параметров. Однако порой на постановку правильного диагноза у них уходит гораздо больше времени, чем у коллег из монобрендового сервиса. А неко­торые сложные процедуры они не смогут выполнить из-за отсутствия узкопрофильного оборудования или оснастки.

Стандартная схема

Диагностика остальных систем дизеля проще, но без специального оборудования всё равно не обойтись. Прежде чем извлекать для осмотра свечи предпускового подогрева, замеряют их напряжение и сопротивление. Оптимальный тест — подключение датчика тока, использу­емого для замера компрессии. Обычно свечами управляет отдельный блок. Датчик вешают на его питающий провод и фиксируют общее потребление тока: по его значительному падению можно сразу определить, что не работает одна свеча или две. Далее переходят к проверке конкретных свечей.

У дизельных моторов вакуумная система обычно более сложная, чем у бензиновых, поэтому для проверки герметичности ее магистралей часто задействуют вспомогательное оборудование — дым-машину. Просочившийся дым однозначно укажет на прохудившееся место. Этот аппарат используют и для проверки герметичности впускного тракта системы наддува. А вот ее управляющую часть (если она вакуумного типа) тестируют комбинированным способом. Показания вакуумметра, подключа­емого в различные точки системы, сопоставляют с получаемыми со сканера данными об управляющем воздействии на соленоид и давлении наддува.

Дым-машина — ценнейший помощник для проверки герметичности впускного тракта и вакуумной системы дизеля.

Дым-машина — ценнейший помощник для проверки герметичности впускного тракта и вакуумной системы дизеля.

Так выглядит процесс проверки так называемой обратки. Хорошо видно, что третья форсунка отправляет на слив гораздо больше солярки, чем все остальные. Однако это не повод сразу ее приговаривать — нужны дополнительные тесты.

Так выглядит процесс проверки так называемой обратки. Хорошо видно, что третья форсунка отправляет на слив гораздо больше солярки, чем все остальные. Однако это не повод сразу ее приговаривать — нужны дополнительные тесты.

Материалы по теме

Состояние сажевого фильтра можно точно определить по показаниям датчика дифференциального давления. У любого дизельного автомобиля бортовая диагностика этого узла очень развита, и ее вполне достаточно для получения точных данных. На то, что фильтр забит выше допустимого уровня, укажет повышенное противодавление перед ним.

Относительно просто проверяется и работа клапана системы рециркуляции отработавших газов (EGR). Электрические клапаны обычно снабжены датчиком положения с обратной связью. В расчет берется и расход воздуха двигателем. Диагност с помощью сканера способен определить состояние клапана и его некорректную работу.

Посторонние шумы при работе дизеля — отдельная тема. На фоне общей громогласности мотора сложно определить их истинный источник. Основной шум дизеля связан с особенностями сгорания топливовоздушной смеси в цилиндре. Если оно принимает аномальный характер, к примеру, из-за неисправной форсунки, звук усиливается. В этом случае отключают по одной форсунке, чтобы определить «громкий» цилиндр. Как только будет деактивирован нужный, посторонний шум сойдет на нет. Правда, такой маневр не пройдет, если шумят два или более цилиндра.

НЕ ПАНАЦЕЯ

Полноценную диагностику дизельной топливной аппаратуры можно провести только в фирменных техцентрах производителей этих систем. В их арсенале есть многофункци­ональные стенды для проверки форсунок и ТНВД в различных режимах и оборудование для ремонта. Но даже такая техническая база не всегда дает стопроцентный результат.

Известны случаи, когда на автомобиль устанавливают проверенные форсунки, с успехом прошедшие все испытания на стенде, - а неисправность не уходит. И причина не в негодном оборудовании или низкой ­квалификации сотрудников, а в специфических режимах работы топливной аппаратуры в реальных условиях — их не в состоянии ­воссоздать даже самые навороченные стенды.

Часто встречаются проблемы и с отремонтированными деталями и узлами. Безукоризненно провести такие работы по плечу далеко не каждой СТО, и даже при грамотном подходе неизбежны осечки. В одних случаях восстановленная форсунка, прошедшая все проверки, вообще отказывается адекватно работать, а в других она капризничает только в некоторых режимах работы двигателя, хотя стенд прогнал ее по всем контрольным точкам и присвоил правильный код коррекции ­топливоподачи. В итоге приходится менять дорогущую форсунку, при том что владелец машины и так уже потратил массу времени и денег.

Благодарим за помощь в подготовке материала учебно-практический центр компании Интерлакен-Рус.

Зачем нужно дизельное топливо? Достоинства и преимущества

Как работает дизельный двигатель? В современном мире, где цены на топливо растут в результате стремительного роста спроса и сокращения предложения, вам необходимо выбрать экономичное топливо, отвечающее вашим потребностям. Благодаря изобретению Рудольфа Дизеля дизельный двигатель оказался чрезвычайно эффективным и экономичным.

Цена на дизельное топливо умеренно выше, чем на бензин, но дизельное топливо имеет более высокую удельную энергию, т.е.е. Из дизельного топлива можно извлечь больше энергии по сравнению с тем же объемом бензина. Таким образом, дизельные двигатели в автомобилях обеспечивают больший пробег, что делает их очевидным выбором для перевозки тяжелых грузов и оборудования. Дизель тяжелее и жирнее бензина, а его температура кипения выше, чем у воды. А дизельные двигатели привлекают все большее внимание из-за более высокого КПД и экономической эффективности.

Различие заключается в типе зажигания. В то время как бензиновые двигатели работают с искровым зажиганием, дизельные двигатели используют воспламенение от сжатия для воспламенения топлива.В последнем случае воздух втягивается в двигатель и подвергается сильному сжатию, которое нагревает его.

Это приводит к очень высокой температуре в двигателе, намного превышающей температуру, достигаемую в бензиновом двигателе. При пиковой температуре и давлении дизельное топливо, попадающее в двигатель, воспламеняется из-за экстремальной температуры.

В дизельном двигателе воздух и топливо вводятся в двигатель на разных стадиях, в отличие от газового двигателя, где вводится смесь воздуха и газа.Топливо впрыскивается в дизельный двигатель с помощью инжектора, тогда как в бензиновом двигателе для этой цели используется карбюратор. В бензиновом двигателе топливо и воздух вместе направляются в двигатель, а затем сжимаются. Воздушно-топливная смесь ограничивает сжатие топлива и, следовательно, общую эффективность.

Дизельный двигатель сжимает только воздух, и коэффициент может быть намного выше. В дизельном двигателе степень сжатия составляет от 14: 1 до 25: 1, тогда как в бензиновом двигателе степень сжатия составляет от 8: 1 до 12: 1.После сгорания побочные продукты сгорания удаляются из двигателя через выхлоп.

Для запуска в холодное время года дополнительное тепло обеспечивается «свечами накаливания». Дизельные двигатели могут быть двухтактными или четырехтактными и выбираются в зависимости от режима работы. Двигатели с воздушным и жидкостным охлаждением - это варианты, которые следует выбирать соответственно. Предпочтительно использовать генератор с жидкостным охлаждением, так как он тих в работе и имеет равномерно регулируемую температуру.

Преимущества дизельного двигателя Дизельный двигатель намного эффективнее и предпочтительнее бензинового по следующим причинам:
  • В современных дизельных двигателях устранены недостатки более ранних моделей - более высокий уровень шума и затраты на техническое обслуживание.Теперь они работают тихо и требуют меньшего обслуживания по сравнению с газовыми двигателями аналогичного размера
  • .
  • Они более прочные и надежные
  • Нет искры, так как топливо самовоспламеняется. Отсутствие свечей зажигания или искровых проводов снижает затраты на техническое обслуживание.
  • Стоимость топлива на произведенный киловатт на 30-50% ниже, чем у газовых двигателей
  • Дизельный агрегат с водяным охлаждением со скоростью 1800 об / мин проработает от 12 000 до 30 000 часов, прежде чем потребуется какое-либо капитальное обслуживание.Газовая установка с водяным охлаждением на 1800 об / мин обычно работает в течение 6000-10 000 часов, прежде чем потребуется обслуживание
  • Газовые агрегаты горят сильнее, чем дизельные агрегаты, и, следовательно, они имеют значительно более короткий срок службы по сравнению с дизельными агрегатами

Области применения и использование дизельных двигателей Дизельные двигатели обычно используются в качестве механических двигателей, генераторов энергии и в мобильных приводах. Они находят широкое применение в локомотивах, строительном оборудовании, автомобилях и в бесчисленных промышленных применениях.Их сфера распространяется практически на все отрасли, и их можно наблюдать ежедневно, если вы загляните под капот всего, что вы проходите мимо.

Промышленные дизельные двигатели и дизельные генераторы используются в строительстве, судостроении, горнодобывающей промышленности, больницах, лесном хозяйстве, телекоммуникациях, под землей и в сельском хозяйстве, и это лишь некоторые из них. Производство электроэнергии для основного или резервного резервного питания является основным применением сегодняшних дизельных генераторов. Ознакомьтесь с нашей статьей о различных типах двигателей и генераторов и их общих применениях, чтобы увидеть больше примеров.

Электрогенераторы Дизельные генераторы или электрические генераторные установки используются в бесчисленном количестве промышленных и коммерческих предприятий. Генераторы могут использоваться для небольших нагрузок, например, в домах, а также для больших нагрузок, например, на промышленных предприятиях, больницах и коммерческих зданиях. Они могут быть либо основными источниками питания, либо резервными / резервными источниками питания.

Доступны в различных спецификациях и размерах. Дизель-генераторные установки мощностью 5–30 кВт обычно используются в простых домашних и личных применениях, например, в транспортных средствах для отдыха.Промышленные приложения охватывают более широкий спектр номинальной мощности (от 30 кВт до 6 МВт) и используются во многих отраслях промышленности по всему миру. Для домашнего использования достаточно однофазных электрогенераторов. Трехфазные генераторы энергии в основном используются в промышленных целях.

>> Вернуться к статьям и информации << Дизельные двигатели

- обзор

3.1.9 Оптимизация конструкции для достижения цели, конструкции для вариативности и конструкции для обеспечения надежности

Конструкция системы дизельного двигателя требует оптимизированной спецификации как номинального целевого значения, так и допуска.Оптимизация двигателя в установившемся состоянии с большим количеством факторов обычно требует техники DoE. На рисунке 3.9 показаны процессы оптимизации конструкции системы дизельного двигателя. Процессы состоят из трех уровней работы:

3.9. Процесс оптимизации DoE для разработки системы стационарного дизельного двигателя.

детерминированный процесс «проектирование для цели» для предварительного отбора субоптимальных значений номинального значения проектной спецификации

недетерминированный процесс «проектирования с учетом вариабельности» для достижения оптимального дизайна - оба номинальное значение и допуск проектной спецификации с учетом изменчивости

недетерминированный процесс «проектирование для обеспечения надежности» для достижения оптимальной конструкции - как номинальное значение, так и допуск проектной спецификации, при условии надежности.

Разница между изменчивостью и надежностью состоит в том, что анализ надежности включает влияние зависящих от времени шумовых факторов (например, ухудшение качества). Проект для изменчивости использует вероятностные целевые функции для управления как номинальным значением, так и диапазоном допусков, чтобы сделать проект нечувствительным к факторам шума.

Содержание этапов 1.1–1.5, описанных на рис. 3.9 для уровня дизайна для цели, подробно объясняется в разделе 3.2. Модель RSM-1, упомянутая в шаге 1.3 относится к модели эмулятора подгонки поверхности, которая связывает номинальное значение отклика с факторами. На этом слое нет модели эмулятора для допуска.

Оптимизация дизайна с учетом изменчивости проиллюстрирована шагами 2.4–2.5 на рис. 3.9. Соответствующее моделирование методом Монте-Карло показано на рис. 3.10. По сути, моделирование методом Монте-Карло представляет собой расчет вероятности с использованием случайных комбинаций случайных выборок, выбранных из вероятностных распределений нескольких входных факторов.Вероятностное распределение выходного отклика можно спрогнозировать вместе с оценкой интенсивности отказов или надежности. Чтобы оценка была точной, количество случайных выборок должно быть очень большим. Детали моделирования Монте-Карло представлены в разделе 3.4.

3.10. Распространение статистической неопределенности и расчет изменчивости.

Коэффициенты шума, упомянутые в шаге 2.1 на рис. 3.9, относятся ко всем факторам шума, охватываемым анализом изменчивости.Шаги 2.1–2.3 составляют DoE-1, и по своей сути они аналогичны шагам 1.1–1.3. Установка уровня коэффициентов шума на шаге 2.1 выполняется так же, как и на шаге 1.1 (то есть только для уровней средних значений). Модели подгонки поверхности эмулятора DoE-1 RSM-1 часто требуются в качестве суррогатных моделей для замены имитационных моделей цикла двигателя, требующих больших вычислительных ресурсов, поскольку моделирование Монте-Карло на шаге 2.5 требует тысяч прогонов. Тысячи прогонов Монте-Карло необходимо повторить для каждого случая в DoE-2.Следует отметить, что установка уровня коэффициентов шума в DoE-2 на шаге 2.4 отличается от такового на шаге 2.1 (или шаге 1.1). Факторы шума на этапе 2.4 должны быть описаны несколькими факторами распределения (например, средним значением, стандартным отклонением; параметром масштаба и параметром формы), чтобы отразить его конкретную форму вероятностного распределения. Эти факторы называются факторами распределения вероятностей. Каждый фактор распределения вероятностей является фактором в DoE-2. Каждый коэффициент шума на этапе 2.4 должен иметь несколько уровней коэффициента для каждого коэффициента распределения вероятностей в разумном диапазоне для формы данного типа функции вероятности.Например, для коэффициента шума КПД турбины его коэффициент «среднего значения» должен иметь пять уровней настройки, чтобы охватить диапазон возможных средних значений вероятностного распределения КПД турбины, например при 58%, 59%, 60%, 61% и 62%. Его коэффициент «стандартного отклонения» также должен иметь пять уровней настройки, чтобы охватить диапазон возможных различных форм вероятностного распределения КПД турбины, например 0,3%, 0,6%, 0,9%, 1,2% и 1,5%. Очевидно, размер DoE на шаге 2.4 обычно больше, чем на шаге 2.1. Например, предполагая, что DoE-2 на шаге 2.4 имеет 10 факторов (т. Е. 4 фактора управления и 3 фактора шума, которые дают 6 факторов распределения вероятности шума) и 210 случаев (прогонов), для каждого случая необходимо выполнить моделирование Монте-Карло. выполнено 1000 раз, взяв 1000 случайных комбинаций вероятностных выборок. Такой огромный объем вычислений обычно не может быть выполнен с использованием исходных подробных системных моделей. Поэтому модель RSM-1, описанная на шаге 2.3 здесь нужен как быстрая суррогатная модель.

Результат шага 2.5 на рис. 3.9 включает все отклики двигателя в виде форм вероятностного распределения, их статистические свойства для выбранного соответствия функции распределения вероятностей и статистику вероятностей (т. Е. Интенсивность отказов для изменчивости). Статистические свойства ответов могут включать в себя следующее: минимум, максимум, среднее значение, стандартное отклонение, асимметрия, избыточный эксцесс и режим. (Определение этих параметров распределения вероятностей см. В таблицах A.1 и A.2 в Приложении.) Подозреваемые выбросы в распределении вероятностей смоделированных ответов не редкость. Выбросы не обязательно являются плохими точками данных. С ними следует обращаться осторожно, а не просто удалять автоматически. Модели эмулятора RSM-2 описаны в шаге 2.6 путем связывания факторов DoE-2 с ответами распределения вероятностей и статистикой вероятностей. Модели эмуляторов позволяют оценить чувствительность распределений вероятностей выходных данных ко всем входным факторам с использованием ранее представленных методов анализа (например,g., параметрическая развертка, двумерная оптимизация с контурными картами).

Шаг 2.7 имеет решающее значение для надежной оптимизации. В традиционной теории надежного проектирования доктор Тагучи использовал подход «двухэтапной оптимизации» (Fowlkes and Creveling, 1995a). При таком подходе допуск продукта сначала снижается до желаемой формы распределения вероятностей, а затем вся кривая распределения вероятностей смещается к желаемой цели путем корректировки номинального расчетного значения. Такой двухэтапный подход имеет определенные недостатки.Например, номинальная целевая конструкция и проект допусков разделены, и их взаимодействие сложно эффективно обрабатывать. В этой теории робастной оптимизации для проектирования системы дизельного двигателя эти недостатки преодолеваются за счет использования одновременной одностадийной оптимизации как номинальной конструкции, так и конструкции допусков. Математическая формулировка оптимизации с использованием моделей эмулятора DoE-2 RSM-2 на шаге 2.7 обеспечивает такую ​​одновременную оптимизацию, поскольку модели включают в себя все статистические свойства (номинальные или средние, допуск или отклонение) для оптимизации с ограничениями (например,g., при условии ограничения количества отказов на уровне или ниже определенного заданного целевого значения). Следует отметить, что такое преимущество предлагаемого подхода «дизайн с учетом вариативности» над традиционным подходом «двухэтапной оптимизации» может быть достигнуто только путем внедрения RSM в область надежного проектирования.

Последний уровень оптимизации системы - это надежность. Он похож на дизайн для изменчивости (рис. 3.9), но все же отличается. На шаге 3 следует использовать связанные с надежностью системные модели, распределения вероятностей и выходную статистику.2, 3.4 и 3.5, показанные на рис. 3.9 соответственно. Для сравнения, элементы, связанные с изменчивостью, следует использовать на этапах 2.2, 2.4 и 2.5.

Дизельные двигатели - Система внутреннего сгорания - Журнал Diesel Power

Расход воздуха и топлива в четырехтактном дизельном двигателе
Воздух, поступающий в четырехтактный дизельный двигатель, очищается при прохождении через воздушный фильтр. Затем он течет по трубопроводу, пока не сжимается вращающимися лопастями турбонагнетателя. В результате воздух становится плотнее и горячее, поэтому он охлаждается в промежуточном охладителе.Интеркулер соединен шлангами с воздухозаборником двигателя. Когда поршень скользит в нижнюю часть своего хода, камера сгорания заполняется воздухом из-за открытого впускного клапана. Это называется тактом впуска. Впускной клапан (-ы) закрывается, и поршень выталкивает воздух вверх к головке цилиндров. Во время этой фазы, известной как такт сжатия, воздух занимает примерно 1/16 места, которое он занимал раньше.

Насос (электрический или механический, расположенный в баке или на балке) подает топливо под низким давлением к насосу впрыска.ТНВД значительно повышает давление до 17 000–30 000 фунтов на квадратный дюйм. Затем топливо впрыскивается в камеру сгорания (заполненную перегретым воздухом) под огромным давлением непосредственно перед верхней мертвой точкой. Возникающее сгорание толкает поршень обратно вниз. Это называется силовым ходом. Последний цикл происходит, когда выпускной клапан (ы) открывается, и поршень выталкивает выхлоп. У отработанного воздуха еще достаточно энергии, чтобы толкнуть выхлопную сторону турбонагнетателя. Затем воздух попадает в выхлопную трубу и выходит из выхлопной трубы.

Зажигание сгорания
Зажигание от сгорания - ключевая характеристика дизельного двигателя, и проще всего объяснить это с помощью пожарного поршня. Эти древние устройства для зажигания огня состояли из поршня с утопленным концом и герметичного цилиндра. Когда они быстро сдвигаются, температура воздуха в цилиндре поднимается достаточно высоко, чтобы сгорел кусок трута, нанесенный на конец поршня. Дизельный двигатель использует тот же принцип, что и пожарный поршень, только в гораздо большем и более сложном масштабе.

Если вы любите цифры, уравнение PV = nRT очень полезно. Это уравнение определяет соотношение между давлением (P), объемом (V), количеством присутствующего газа, измеренным в молях (n), универсальной газовой постоянной (R) и температурой (T). По мере увеличения давления в цилиндре увеличивается и температура. Таким образом, когда поршень сжимает воздух внутри цилиндра до 1/16 его первоначального объема, температура внутри цилиндра превышает 400 градусов. Этого тепла и давления достаточно для воспламенения дизельного топлива без использования свечей зажигания.

Более пристальный взгляд на дизельное сгорание
Одно из основных различий между бензиновым двигателем и дизельным двигателем - это тип сгорания. Горение дизельного топлива очень сложное и использует тот же принцип, что и свеча, где топливо и воздух смешиваются в результате сгорания. Конвекционные токи и турбулентность играют большую роль в том, как сгорает несмешанное (гетерогенное) топливо. Бензиновый двигатель, с другой стороны, смешивает топливо и воздух полностью (гомогенно) задолго до его сравнительно простого сгорания.Одним из недостатков бензиновых двигателей с впрыском является то, что когда поршень сжимает топливно-воздушную смесь, часть ее застревает в дефектах стенок цилиндра. Вот почему бензиновые двигатели имеют более высокие выбросы окиси углерода (CO) и углеводородов по сравнению с дизельными двигателями.

Просмотреть все 5 фото

Почему дизельный двигатель так громко звучит?
Помните, как мы только что сказали, что у дизелей нет смеси топливо-воздух? Это не совсем так. Часть топлива смешивается с кислородом на атомарном уровне.Эти маленькие карманы похожи на маленькие бомбы и воспламеняются первыми. Эти предварительно смешанные (дефлаграционные) волны известны как детонация. Это мощный сверхзвуковой фронт пламени, который движется быстрее звука. Вследствие этого высвобождения энергии подавляющее большинство несмешанного топлива сгорает как диффузионное (не предварительно смешанное) пламя. Таким образом, количество смешанного топлива в цилиндре в начале сгорания определяет, сколько шума вы услышите. Турбокомпрессоры и системы рециркуляции выхлопных газов (EGR) делают дизель тише.

Зачем включать дизель?
Блочные обогреватели используют 110 вольт для нагрева охлаждающей жидкости и моторного масла, поэтому двигатель, подключенный к сети холодной зимней ночью, запустится намного легче, чем если его оставить отключенным. В дизельном двигателе содержится большое количество густого масла. В сочетании с высокой степенью сжатия дизельного двигателя эти два условия создают большую нагрузку на аккумуляторные батареи (мощность которых снижается из-за холода). В этом случае наличие горячего резервуара с маслом в поддоне обеспечит немедленную доступность смазки для уменьшения трения и облегчения запуска.

Почему они служат дольше?
Дизельные двигатели служат дольше, потому что у них есть наследие тяжелой промышленности. Из этого следует, что их поршни с масляным охлаждением, механический привод всех жизненно важных компонентов, коленчатые валы из кованой стали и усиленная арматура в местах с высоким напряжением, таких как крышки подшипников. Еще одна причина, по которой они служат дольше, заключается в том, что в цилиндрах дизельного двигателя сжимается только воздух, а не такой растворитель, как бензин. Кроме того, дизельное топливо действует как смазка и хорошо влияет на стенки цилиндров и поршневые кольца.Дизели работают на более низких оборотах из-за их механической конструкции и скорости сгорания в камере сгорания. Скорость сгорания зависит от времени, необходимого для сжигания топлива. Форма распыления, размер капель, перепады давления на форсунке, температура и конструкция камеры - все это влияет на скорость вращения дизельного двигателя. Поскольку дизельный двигатель работает с высокой степенью сжатия, ему необходимы прочный блок и вращающийся узел, способные выдерживать мощные нагрузки.

Как дизели развивают такой высокий крутящий момент и при этом обеспечивают отличную экономию топлива?
Дизельный двигатель развивает крутящий момент благодаря высокой степени сжатия. В тепловых двигателях увеличение разницы давлений от сжатого поршня к несжатому поршню равняется увеличению его эффективности и выходного крутящего момента. Еще одна причина мощности дизеля - это само дизельное топливо. Он содержит на 15% больше энергии на галлон, чем бензин. Кроме того, дизельный двигатель может работать на очень бедной смеси и без насосных потерь, связанных с дроссельной заслонкой.В бензиновом двигателе богатая топливно-воздушная смесь используется для охлаждения сгорания и исправной работы каталитических нейтрализаторов. Дизель может работать на очень бедной смеси и при этом иметь низкие температуры выхлопных газов.

В чем разница между свечами накаливания и свечами зажигания?
Практически все дизели используют свечи накаливания или подогреватели воздуха. Эти устройства используют электричество для создания тепла внутри цилиндра, когда он холодный во время запуска. После достижения рабочей температуры двигателю они больше не нужны.С другой стороны, свечи зажигания всегда необходимы в бензиновом двигателе, чтобы начать сгорание.

Интересные факты о дизельных двигателях
* У них нет дроссельной заслонки; крутящий момент создается за счет добавления большего количества топлива в двигатель. Топливо дозируется, и воздух следует.

* Дизели выделяют меньше окиси углерода (CO) и углеводородов, чем бензиновые двигатели, поскольку топливо не застревает в стенках цилиндров во время такта сжатия, поскольку сжимается только воздух.

* НАСА провело эксперименты с диффузионным пламенем в условиях невесомости.Они обнаружили, что из-за отсутствия конвекционных токов пламя светилось синим цветом в идеальном круге.

Посмотреть все 5 фото Используется с двигателями GM 6,2 л и 6,5 л, Ford 6,9 л и 7,3 л (pre-Power Stroke).

Непрямый впрыск (IDI)
Непрямой впрыск (IDI) состоит из предкамеры или вихревой камеры, соединенной с главной камерой цилиндра узким проходом. Топливная форсунка распыляется в меньшую камеру, в которой также находится свеча накаливания. Здесь начинается горение.Разница давлений в двух камерах вызывает сильную турбулентность, поскольку обе стороны стремятся к равновесию. Двигатели IDI имеют более низкий тепловой КПД, чем двигатели с прямым зажиганием (DI). Это потому, что две камеры сгорания имеют большую площадь поверхности, чем одна. Потери тепла в этой области плохо сказываются на тепловом КПД - они могли привести к опусканию поршня. Энергия, необходимая для создания турбулентности в камере сгорания, учитывается в насосных потерях. Положительной особенностью двигателя IDI является то, что насосу высокого давления не требуется создавать высокое давление для распыления топлива.

Посмотреть все 5 фотографий Используется с двигателями Cummins 5,9 л и 6,7 л, Duramax 6,6 л, а также 6,0 л, 6,4 и 7,3 л двигателей Power Stroke.

Прямой впрыск (DI)
Прямой впрыск происходит, когда топливная форсунка распыляется непосредственно в камеру сгорания. Поршни этих двигателей имеют куполообразную форму, чтобы создать приют для пламени. Одна из целей распыления топлива в камеру сгорания - не задевать верхнюю часть поршня или стенки цилиндра, потому что падение температуры не позволяет топливу сгорать.Дизели с прямым впрыском более эффективны, но для поддержания горения требуется высокое давление впрыска. DP

5 Дизельные двигатели с воспламенением от сжатия | Оценка технологий экономии топлива для легковых автомобилей

лазание и буксировка. Этот атрибут дизельных двигателей CI является преимуществом по сравнению с другими вариантами технологий, которые выгодны только для части рабочего диапазона транспортного средства (например, гибридные силовые агрегаты снижают расход топлива в основном при движении по городу / городу).

Вывод 5.4: Ожидается, что выявленные усовершенствованные технологические усовершенствования для дизельных двигателей CI выйдут на рынок в период 2011–2014 годов, когда на рынок также выйдут передовые технологические дополнения к бензиновым двигателям SI. Таким образом, между этими двумя системами силовой передачи будет продолжаться конкуренция по расходу топлива и стоимости. В период 2014-2020 гг. Дальнейшее возможное снижение расхода топлива для дизельных двигателей CI может быть компенсировано увеличением расхода топлива из-за изменений двигателя и системы выбросов, необходимых для соответствия более строгим стандартам выбросов (например,г., LEV III).

Вывод 5.5: Проникновение дизельных двигателей CI на рынок будет во многом зависеть как от увеличения стоимости дизельных силовых агрегатов CI по сравнению со стоимостью бензиновых силовых агрегатов SI, так и из-за разницы в ценах на дизельное топливо по сравнению с бензином. Предполагаемая разница в дополнительных затратах для дизельных двигателей I4 CI базового и улучшенного уровня для замены бензиновых двигателей SI для седанов среднего размера 2007 модельного года колеблется от 2400 долларов (базовый уровень) до 2900 долларов (продвинутый уровень).Для двигателей I4 базового уровня в сочетании с DCT стоимость замены силовой передачи оценивается в 2550–2800 долларов, а для силовых передач I4 повышенного уровня оценивается в 3050–3300 долларов (оба округлены до ближайших 50 долларов). Для среднеразмерных внедорожников 2007 модельного года ориентировочная стоимость замены бензиновых двигателей SI на дизельные двигатели V6 CI базового и расширенного уровня колеблется от 3150 долларов (базовый уровень) до 4050 долларов (расширенный уровень) (оба округляются до ближайших 50 долларов). . Для двигателей V6 CI в сочетании с DCT предполагаемое увеличение стоимости замены силовой передачи V6 CI по сравнению с силовыми передачами SI 2007 модельного года составляет от 3300 до 3550 долларов (базовый уровень), а дополнительные затраты на силовую передачу расширенного уровня составляют от 4200 до 4500 долларов (оба округлены). до ближайших 50 долларов).Эти затраты не включают фактор эквивалента розничной цены.

ССЫЛКИ

Брессион, Г., Д. Солери, С. Сави, С. Деу, Д. Азулай, H.B-H. Хамуда, Л. Дораду, Н. Геррасси и Н. Лоуренс. 2008. Исследование методов снижения выбросов HC и CO в дизельных HCCI. Документ SAE 2008-01-0034. SAE International, Warrendale, Pa.

Дизель Форум. 2008. Доступно по адресу http://www.dieselforum.org/DTF/news-center/pdfs/Diesel%20Fuel%20Update%20-%20Oct%202008.pdf.

DieselNet. 2008. 22 февраля. Доступно по адресу http://www.dieselnet.com/news/2008/02acea.php.

DOT / NHTSA (Министерство транспорта / Национальное управление безопасности дорожного движения). 2009. Стандарты средней экономии топлива Легковые и легкие грузовики - модельный год 2011. Номер дела NHTSA-2009-0062, RIN 2127-AK29, 23 марта. Вашингтон, округ Колумбия,

Доу. 2009. Доступно по адресу http://www.dow.com/PublishedLiterature/dh_02df/0901b803802df0d2.pdf?filepath=automotive/pdfs/noreg/299-51508.pdf & fromPage = GetDoc.

Duleep, K.G. 2008/2009. Анализ затрат на дизельное и гибридное топливо: EEA в сравнении с Martec, презентация для комитета NRC, 25 февраля 2008 г., обновлено 3 июня 2009 г.

EIA (Управление энергетической информации). 2009a. Легковые дизельные автомобили: характеристики эффективности и выбросов, а также вопросы рынка. Февраль. Доступно по адресу http://www.eia.doe.gov/oiaf/servicerpt/lightduty/execsummary.html.

EIA. 2009b. Цены на дизельное топливо. Доступно по адресу http: // tonto.eia.doe.gov/oog/info/gdu/gasdiesel.asp. По состоянию на 9 мая 2009 г. и 5 июня 2009 г.

EPA (Агентство по охране окружающей среды США). 2005. Документ 420-F-05-001. Доступно на http://www.epa.gov/otaq/climate/420f05001.htm.

EPA. 2008. Исследование потенциальной эффективности транспортных средств, снижающих выбросы углекислого газа. Отчет 420р80040а. Пересмотрено в июне.

EPA. 2009. Обновленная смета расходов на основе данных Агентства по охране окружающей среды США, 2008 г. Электронная переписка комитета с Агентством по охране окружающей среды 27 и 28 мая.

Hadler, J., F. Rudolph, R. Dorenkamp, ​​H. Stehr, T. Düsterdiek, J. Hilzendeger, D. Mannigel, S. Kranzusch, B. Veldten, M. Kösters, and A. Specht. 2008. Новый двигатель Volkswagen 2,0 л TDI соответствует самым строгим стандартам выбросов, 29-й Венский автомобильный симпозиум.

Ивабути Ю., К. Каваи, Т. Сёдзи и Ю. Такеда. 1999. Испытания новой концепции дизельной системы сгорания - горение с воспламенением от сжатия с предварительным смешиванием. Документ SAE 1999-01-0185. SAE International, Warrendale, Pa.

Joergl, Volker, P.Келлер, О. Вебер, К. Мюллер-Хаас и Р. Конечны. 2008. Влияние конструкции пред-турбокатализатора на характеристики дизельного двигателя, выбросы и экономию топлива. Документ SAE 2008-01-0071. SAE International, Warrendale, Pa.

Канда, Т., Т. Хакодзаки, Т. Учимото, Дж. Хатано, Н. Китайма и Х. Соно. 2005 г. Эксплуатация PCCI с ранним впрыском обычного дизельного топлива. Документ SAE 2005-01-0378. SAE International, Warrendale, Pa.

Келлер П.С., В. Йоргл, О. Вебер и Р. Чарновски.2008. Компоненты, способствующие созданию экологически чистых дизельных двигателей будущего. Документ SAE 2008-01-1530. SAE International, Warrendale, Pa.

Martec Group, Inc. 2008. Переменная стоимость технологий экономии топлива. Подготовлено к альянсу автопроизводителей, 1 июня; с изменениями, внесенными 26 сентября и 10 декабря.

Маттес, Вольфганг, Петер Рашль и Николай Шуберт. 2008. Специально разработанные концепции DeNO x для высокопроизводительных дизельных двигателей. Вторая конференция MinNO x , 19-20 июня, Берлин.

Müller, W., et al. 2003. Селективное каталитическое восстановление - европейская технология восстановления NO x . SAE 2003-01-2304. SAE International, Warrendale, Pa. Myoshi, N., et al. 1995. Разработка новой концепции трехкомпонентного катализатора для автомобильных двигателей на обедненной смеси. Документ SAE 95809. SAE International, Warrendale, PA

NRC (Национальный исследовательский совет). 2002. Эффективность и влияние корпоративных стандартов средней экономии топлива (CAFE). Национальная академия прессы, Вашингтон, Д.С.

Пекхэм, Джон. 2003. Как JD Power / LMC рассчитывает 16% долю продаж легких дизельных двигателей в Северной Америке. Новости дизельного топлива, 13 октября.

Пикетт, Л.М. и Д.Л. Зиберс. 2004. Сгорание дизельного дизельного топлива DI без образования сажи, низкая температура пламени, контролируемое перемешиванием. Документ SAE 2004-01-1399. SAE International, Warrendale, Pa.

Райан Т.В. и Т.Дж. Каллахан. 1996. Воспламенение дизельного топлива от сжатия однородного заряда. Документ SAE 961160. SAE International, Warrendale, PA.

Стили, Д., Дж. Джулиано, Дж. Хоард, С. Слудер, Дж. Стори, С. Льюис и М. Ланс. 2008. Выявление и контроль факторов, влияющих на загрязнение охладителя EGR. 14-я конференция по исследованию эффективности дизельных двигателей и выбросов, Дирборн, штат Мичиган,

Tilgner, Ingo-C., T. Boger, C. Jaskula, Z.G. Pamio, H. Lörch и S. Gomm. 2008. Новый материал для сажевых фильтров для легковых автомобилей: сажевые фильтры Cordierite для нового Audi A4 V6 TDI, 17. Aachener Kolloquium Fahrzeug- und Motorentechnik, p.325.

Газовые и дизельные двигатели: в чем разница?

Когда мы подъезжаем к насосу, большинство из нас автоматически знает, выбирать ли ему бензин или дизельное топливо. В конце концов, это решение, которое принимает ваш автомобиль. Но задумывались ли вы, в чем разница между работой бензиновых и дизельных двигателей?

Понимание того, что происходит под капотом, является ключевой частью ухода за вашим автомобилем. Чтобы помочь вам обрести уверенность в себе как владельцу транспортного средства, вот наиболее важные сходства и различия между бензиновыми и дизельными двигателями.

Как работают бензиновые и дизельные двигатели
По своей сути бензиновые и дизельные двигатели работают по одним и тем же принципам. Оба преобразуют химическую энергию топлива в механическую энергию для создания движения. В каждом типе двигателя это преобразование происходит посредством процесса, называемого внутренним сгоранием, когда смесь топлива и воздуха сжимается внутри цилиндров двигателя для создания небольших взрывов, называемых сгоранием, которые производят энергию.

Вне зависимости от того, водите ли вы автомобиль с бензиновым или дизельным двигателем, общий процесс создания мощности одинаков.В обоих типах двигателей действие можно разделить на четыре этапа: впуск, сжатие, зажигание и выпуск. Однако разница между бензиновыми и дизельными двигателями заключается в том, как каждый двигатель выполняет эти шаги.

  • Впуск: Это первый шаг в процессе сгорания. На этом этапе содержимое попадает в цилиндры двигателя. В газовом двигателе это содержимое включает смесь воздуха и топлива. Однако дизельный двигатель только на этом этапе пропускает воздух в цилиндры и подмешивает топливо позже.
  • Сжатие: Прежде чем произойдет возгорание, содержимое цилиндров необходимо сначала нагреть, сжав их до небольшого пространства. Поскольку бензиновый двигатель с самого начала содержит в цилиндрах как воздух, так и топливо, компрессия должна быть ниже, иначе температура внутри цилиндров может слишком сильно подняться и вызвать самовоспламенение топлива, что приведет к серьезному повреждению двигателя. Но поскольку в этот момент в цилиндрах дизельного двигателя находится только воздух, он может создавать гораздо более высокую степень сжатия и, фактически, зависит от того, достигают ли цилиндры температуры самовоспламенения на этом этапе.
  • Зажигание: Способы зажигания каждого двигателя - одно из самых больших различий между бензиновыми и дизельными автомобилями. В газовом двигателе свеча зажигания создает электрический разряд, воспламеняющий топливно-воздушную смесь внутри цилиндра. Однако у дизельного двигателя нет свечи зажигания. Поскольку цилиндры в дизельном двигателе сжимают воздух выше температуры самовоспламенения, топливо воспламеняется от сочетания тепла и давления при впрыске.
  • Выхлоп: Этот последний шаг одинаков как для бензиновых, так и для дизельных двигателей.После того, как топливо сгорит для выработки энергии, образующиеся пары выпускаются через клапан, и весь процесс начинается снова, повторяя несколько раз каждую секунду.

Под кожей: почему дизельные двигатели всегда будут эффективнее бензиновых

Дизельные двигатели

более экономичны, чем бензиновые, которые до сих пор не догнали, несмотря на такие достижения, как прямой впрыск. Так в чем же разница между бензиновыми и дизельными двигателями и как работают дизели?

Во-первых, дизельное топливо и бензин поступают из одного источника - сырой нефти.Оба они представляют собой жидкое углеводородное топливо, но дизельное топливо по своим свойствам отличается от бензина. Дизель более плотный, чем бензин, и содержит примерно на 15% больше энергии по объему. Это означает, что литр за литром, вы буквально получаете больше отдачи от затраченных средств.

Но это еще не все. Дизельные двигатели по-прежнему намного эффективнее бензиновых в преобразовании топлива в механическую энергию. Фактически, с учетом энергетического преимущества самого топлива, дизели делают это на 40% эффективнее.Оба типа двигателей классифицируются как «тепловые», поскольку они преобразуют тепловую энергию топлива в механическую. Но дизели имеют лучший тепловой КПД, чем бензиновые двигатели, что означает, что они преобразуют больше тепла в механическую энергию и меньше выбрасывают в окружающую среду.

Дизельные двигатели

работают за счет настолько сильного сжатия воздуха в небольшом пространстве сгорания, что он становится достаточно горячим для самопроизвольного воспламенения дизельного топлива при впрыске. Бензиновый двигатель полагается на искру для воспламенения при более низкой степени сжатия.Более высокая степень сжатия дизельного двигателя означает, что у него высокая степень расширения - разница между сжатым пространством и пространством, открывающимся, когда поршень достигает нижней точки своего хода. Это означает более высокую эффективность.

Дизельные двигатели также не дросселируются. Большинство бензиновых двигателей ограничивают количество воздуха, поступающего в двигатель, потому что соотношение воздух-топливо должно оставаться на оптимальном уровне 14,7: 1, поэтому количество топлива и воздуха, поступающего в двигатель, регулируется.Дизельный двигатель работает на очень бедной смеси (гораздо больше воздуха) и может всасывать столько воздуха, сколько хочет, управляя мощностью только путем впрыска большего или меньшего количества топлива. Бензиновый двигатель пытается всасывать такое же количество воздуха при малых открытиях дроссельной заслонки, но не может, что приводит к «насосным потерям». Это как сосать раздавленную соломинку: двигатель не может победить, но пытается тратить энергию. У дизельного двигателя без дроссельной заслонки нет этой проблемы, что также увеличивает эффективность.

Что касается острого и противоречивого вопроса о выбросах, дизельное топливо производит меньше CO2, потому что оно более эффективно и сжигает меньше топлива.Он действительно создает больше оксидов азота (NOx) внутри камеры сгорания, но это не имеет ничего общего с составом дизельного топлива. NOx образуется в любом процессе высокотемпературного горения, потому что азот в воздухе соединяется с кислородом (он окисляется).

Постоянно повышающаяся эффективность дизельного двигателя

Рудольф Дизель в 1880-х сказал: «Автомобильный двигатель придет, и тогда я буду считать дело своей жизни завершенным». Он ясно знал, насколько важным было его изобретение.Но какое бы суждение ни было о делах всей жизни Дизеля, сам дизель был далек от завершения. Во-первых, его самые ранние двигатели были эффективны только на 26%. Но это было очень-очень давно.

Потенциальный КПД дизельного двигателя стал горячей темой в 2015 году, более века спустя. Это связано с тем, что Агентство по охране окружающей среды США и НАБДД оценивают потенциальную строгость новых нормативов эффективности для дизельных двигателей в рамках предложения «Фаза 2» для тяжелых транспортных средств.Федеральные агентства имеют право регулировать двигатели тяжелых транспортных средств для достижения максимально возможных улучшений и принимать технологические стандарты, уделяя должное внимание стоимости соблюдения требований, срокам разработки технологий и другим соображениям.

Современные дизельные двигатели с воспламенением от сжатия доминируют в сфере коммерческих грузовых перевозок с эффективными двигателями, которые преобразуют около 43–44% топливной энергии в работу двигателя, основываясь на двигателях, сертифицированных на 2013–2014 годы. Чтобы соответствовать существующим нормам эффективности и выбросов углерода, тракторные двигатели, вероятно, сократят потребление топлива и выбросы CO2 на 6% с 2010 по 2017 год, или примерно на 1% в год.Сейчас вопрос заключается в том, насколько более эффективные дизельные двигатели получат на следующем этапе регулирования, с 2017 по 2024–2027 годы.

В июньском предложении EPA / NHTSA дизельные двигатели сократят потребление топлива и выбросы CO2 на единицу работы на 4,2% с 2017 по 2027 год. Окончательные стандарты, вероятно, будут действовать еще три года, поэтому стандарты будут применяться до 2029 года. или к 2030 году. Это будет означать, что выбросы CO2 двигателями сократятся в среднем на 0.От 3% до 0,4% в год до 2030 года. Как это соотносится с другими цифрами?

Невозможно не задаться вопросом, что бы подумал Рудольф Дизель, узнав, что последние дизельные инновации могут удвоить эффективность его первых дизельных конструкций?

На приведенном ниже рисунке показаны существующие стандарты на 2014–2018 годы, предлагаемые стандарты на 2017–2027 годы и технологический потенциал от расширенного внедрения технологий на основе вышеупомянутого исследования WVU в граммах CO2 на тормозную мощность в час.Технологический потенциал на рисунке предполагает, что тракторные двигатели могут достичь улучшения до 7% за счет технологии повышения эффективности с использованием пакета двигателей «2020+» исследований WVU (т. Е. За счет улучшений за счет снижения трения, паразитных воздействий, турбонаддува, последующей обработки и т. Д. оптимизация горения и расширенные средства управления). Этот потенциал от этих дополнительных технологий примерно вдвое больше, чем агентства включили в предложенное правило на 2027 год.

Кроме того, мы рассматриваем рост проникновения передовых технологий в двигатели в анализе на рисунке.С более широким распространением дополнительных технологий 2020+ и 15% проникновением системы рекуперации отходящего тепла (WHR) органического цикла Ренкина (как предполагают агентства), сокращение выбросов CO2 в масштабах всего парка до 10% в 2027 году станет возможным. С более широким проникновением технологий WHR и US DOE SuperTruck технологический потенциал еще выше. Результаты показывают, что существенно более низкие выбросы CO2, чем предлагаемые стандартные уровни EPA-NHTSA, технически достижимы в период до 2025 года. Максимальный технологический потенциал всего парка мог бы разумно соответствовать эффективности демонстраций SuperTruck Министерства энергетики США в 2014–2016 годах в период до 2030 года.

США Фаза 1 (2014–2017 гг.) И предлагаемые нормативные стандарты фазы 2 (2018–2030 гг.), Технологический потенциал, технологический потенциал с увеличенной рекуперацией отходящего тепла (WHR) и демонстрации SuperTruck Министерства энергетики США.

Ожидаемое решение США по стандартам двигателей может стать единственной реальной мерой по значительному повышению эффективности дизельных двигателей в течение следующих 10–15 лет. По этой причине можно привести веские доводы в пользу того, что они должны продвигать технологические рамки настолько сильно, насколько это возможно на основе новых технологий повышения эффективности.И это решение имеет более широкие последствия для глобальных инноваций, поскольку одни и те же компании продают одни и те же двигатели повсюду. Индия также рассматривает стандарты эффективности двигателей для своих двигателей большой мощности. Те же высокоэффективные двигатели могут использоваться для дизельных грузовиков в Китае, Европе, Мексике и других странах, если в этих регионах будут действовать аналогичные, все более строгие правила.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *