Как работает дифференциал: поколения, устройства и принцип работы

Содержание

поколения, устройства и принцип работы

Дифференциал Торсен (Torsen) – это разновидность самоблокирующегося червячного дифференциала повышенного трения. Как и любой другой дифференциал, он предназначен для распределения крутящего момента между ведущими колесами либо между ведущими мостами. Название механизма происходит от словосочетания Torque Sensing, что переводится как «чувствительный к крутящему моменту». Рассмотрим принцип работы, основные компоненты, а также плюсы и минусы данного устройства трансмиссии разных поколений.

Принцип работы

Общий вид дифференциала Torsen

Торсен является червячным самоблокирующимся дифференциалом. Это означает, что автоматическая блокировка дифференциала происходит при разности крутящих моментов на корпусе механического устройства и его на приводном вале. Сам дифференциал состоит из ведомых и ведущих червячных шестерен, которые называют “полуосевыми” и “сателлитами” соответственно. Червячная шестерня имеет одну особенность: она не вращается от других шестерен, однако сама может приводить во вращение другие шестерни.

Это свойство (расклинивание) позволяет частично блокировать дифференциал.

Рассмотрим, как работает межосевой червячный дифференциал.

Если колеса автомобиля имеют хорошее сцепление с дорожным покрытием и движутся плавно, то крутящий момент между осями распределяется в равных отношениях. При резком увеличении крутящего момента ведущие червячные шестерни пытаются начать движение в противоположную сторону. Ведомые шестерни перегружаются, блокируются выходные валы, а лишний крутящий момент от двигателя машины передается на другую ось.

Межколесный самоблокирующийся червячный дифференциал включается в работу при проскальзывании одного из колес. При пробуксовке падает крутящий момент на одном колесе, Торсен блокируется и передает крутящий момент от двигателя машины на другое колесо. Блокировка буксующего колеса при этом является частичной, а степень блокировки зависит от того, насколько сильно уменьшилась величина крутящего момента.

Самоблокирующийся дифференциал Torsen может максимально перераспределить крутящий момент до соотношения 7:1 (86%:14%).

Устройство и основные компоненты

Рассмотрим, из каких основных элементов состоит Торсен:

  • Корпус (другое название: “чашка дифференциала”). Он передает крутящий момент от главной передачи на полуосевые шестерни через сателлиты. На нем крепится ведомая шестерня главной передачи. Внутри чашки дифференциала имеются оси, на которых установлены сателлиты.
  • Правая и левая полуосевые шестерни (другое название: “солнечные шестерни”). Они передают крутящий момент на оси/полуоси через шлицевое соединение.
  • Сателлиты правой и левой полуосевых шестерен. Соединяют чашку дифференциала и полуосевые шестерни. Торсен имеет в своей конструкции четыре сателлита.
  • Выходные валы.
Схема дифференциала Torsen в трансмиссии автомобиля Audi Quattro

Отметим, что данная разновидность самоблокирующегося дифференциала обладает наиболее совершенной конструкцией.

Поколения дифференциала Torsen

Самоблокирующийся дифференциал Torsen имеет три поколения:

  • T-1 – первое поколение самоблокирующегося устройства распределения крутящего момента. В нем в качестве червячных пар выступают сателлиты и шестерни ведущих полуосей. Сателлиты полуосей связаны прямозубым зацеплением. Оси сателлитов перпендикулярны полуосям. Межколесный дифференциал Торсен первого поколения позволяет колесам автомобиля вращаться с различной скоростью. При проскальзывании колеса механизм пытается передать большую часть мощности двигателя автомобиля на другую полуось, после чего червячная пара этой полуоси расклинивается. При этом сила трения, которая возникает в червячном зацеплении из-за разности величин крутящих моментов на колесах, блокирует дифференциал. Первое поколение дифференциала Torsen самое мощное из всех конструкций в своем классе.
  • T-2 – второе поколение устройства. Главные отличия от первого поколения: оси сателлитов здесь расположены вдоль полуосей; сами сателлиты расположены в специальных карманах корпуса дифференциала; участвующие в процессе блокировки механизма при расклинивании шестерни парных сателлитов – косозубые.
  • T-3 – третье поколение дифференциала. Имеет планетарную конструкцию. Третье поколение Торсен используется, в основном, в качестве межосевого дифференциала на автомобилях, имеющих полный привод. Механизм имеет компактные габариты в связи с тем, что ведущая шестерня и оси сателлитов расположены в конструкции параллельно.

Как работает дифференциал. » Хабстаб

Дифференциал выполняет две функции:
  •  передача энергии двигателя колёсам, позволяя им вращаться с разной скоростью;
  •  уменьшение передаточного числа от двигателя к колёсам;

Для чего нужен дифференциал.
Когда Вы поворачиваете, колёса автомобиля вращаются с разной скоростью. Вы, можете убедиться в этом посмотрев анимацию, там же, видно, что колёса проходят разный путь, колесо, которое движется по меньшему радиусу проходит меньший путь. Это также можно видеть из формулы, которая описывает длину окружности L=2*pi*r, меньше радиус — меньше путь. Заметим также, что траектория передних и задних колёс отличается.
 
Для переднеприводного автомобиля ведущие колёса передние, для заднеприводного соответственно задние. Ведущие колёса соединены друг с другом таким образом, что двигатель или трансмиссия могут вращать сразу оба колёса. Другая пара колёс, назовём их ведомыми, не связаны жёстко между собой и могут вращаться независимо друг от друга. Если бы на вашем автомобиле не было дифференциала, колёса вращались бы с одинаковой скоростью и поворачивать на таком авто было бы непросто. Одному колесу пришлось бы в таком случае скользить. При качестве современных дорог и шин, чтобы сделать это придётся приложить много усилий.
Как работает дифференциал.
Дифференциал — это устройство, которое разделяет вращающий момент двигателя, позволяя каждому колесу вращаться с разной скоростью. Дифференциал применяется во всех современных машинах и грузовиках, а также во многих полноприводных машинах. В полноприводных автомобилях дифференциал ставится на переднюю и заднюю пару колёс, так как каждая пара является ведущей. Некоторое время полноприводные системы не имели дифференциала между передними и задними колёсами. 



Открытый дифференциал.
Мы начнём с самого простого типа дифференциала название которого — открытый дифференциал.
Когда машина движется прямо по дороге, оба ведущих колеса вращаются с одинаковой скоростью. Ведущая шестерня вращает ведомое зубчатое колесо, на котором закреплены сателлиты. При движении автомобиля прямо ни один из сателлитов не вращается вокруг своей оси.
Заметим что количество зубцов на ведущем валу меньше чем на зубчатом колесе. Возможно, Вы слышали такой термин, как передаточное число заднего моста. Если передаточное число равно 4 к 10, это значит что число зубцов на ведущей шестерне относится к числу зубцов на зубчатом колесе как 4 к 10. 
Когда автомобиль заворачивает колёса вращаются с разной скоростью. 
На анимации выше можно видеть что при повороте сателлиты начинают вращаться, позволяя колёсам двигаться с разной скоростью.

Дифференциал и сцепление с дорогой.
Открытый дифференциал всегда создает одинаковый крутящий момент на каждое колесо.
Существует два фактора, которые определяют какой крутящий момент будет приложен к колесу:
  • сцепление колеса с дорогой;
  • мощность двигателя;


Когда дорога сухая и сцепление колеса с дорогой хорошее, вращающий момент, который будет приложен к колесу определяет двигатель и коробка передач. Если же сцепление колеса с дорогой плохое, предположим на льду, величина крутящего момента ограничится таким числом при котором колеса не будут проскальзывать. Таким образом, даже при достаточном вращающем моменте от двигателя, необходимо обеспечить хорошее сцепление с дорогой.

На тонком льду.
При управлении машиной на льду для того, чтобы колеса при старте не пробуксовывали, нужно трогаться со второй или даже с третьей передачи. При этом передается меньший вращающий момент на колеса.
А что будет если одно ведущее колесо будет на земле, а второе на льду? Возникает проблема на машине с открытым дифференциалом.
Надо помнить, открытый дифференциал передает одинаковый крутящий момент к обоим колесам. Максимальная величина крутящего момента будет ограничиваться моментом, который можно приложить к колесу, находящемуся на льду, а этот момент очень мал и колесо, имеющее хорошее сцепление с дорогой, получит такой же момент. В итоге автомобиль будет двигаться очень медленно.
Внедорожник.
Открытый дифференциал может создать много неудобств при движении по пересеченной местности. Если даже у машины все ведущие и установлен открытый дифференциал, она все равно может застрять. Если одно из передних или задних колес оторвется от земли и будет вращаться в воздухе и двигаться будет невозможно.
Решение этой проблемы — это дифференциал повышенного трения. Дифференциал повышенного трения используют различные механизмы для обеспечения нормальной разности скоростей. Когда одно из колес скользит этот крутящий момент передается другому колесу.
Вискомуфта.
Вискомуфта часто находит применение в полноприводных автомобилях. Она обычно применяется для соединения передней и задней пары колёс, при этом если передние начинают проскальзывать крутящий момент передаётся на задние колёса и наоборот.
Вискомуфта имеет два набора пластин внутри герметичного кожуха, который заполнен жидкостью, как показано выше. Каждый набор пластин соединён с валом. При нормальных условиях оба набора пластин в жидкости вращаются с одинаковой скоростью.
Когда одна пара колёс начинает вращаться быстрее, это свидетельствует о том, что колёса проскальзывают. Набор пластин соответствующих этому колесу начинает вращаться быстрее, но за счёт свойств жидкости скорости пластин задних и передних колёс выравниваются. Прикладывается более высокий крутящий момент на колёса, которые не скользят.

К примеру, когда у автомобиля происходит пробуксовка передних колёс, вискомуфта замыкается и передаёт момент на задний мост.  Когда машина поворачивает разница скоростей меньше чем когда одно колесо проскальзывает. Чем быстрее вращаются диски относительно друг друга, тем больший крутящий момент передаёт вискомуфта. Муфта не мешает на поворотах, потому что величина крутящего момента во время поворота очень мала. Передача крутящего момента не будет происходить до тех пор, пока не начнётся скольжение. Простой опыт с яйцом поможет понять как работает вискомуфта. Если поставить яйцо на кухонный стол, скорлупа и желток будут неподвижны. Теперь если раскрутить яйцо, то желток будет стараться догнать скорлупу.
Чтобы доказать что желток вращается, остановим быстро яйцо, а затем снова отпустим — яйцо будет вращаться(если, конечно, оно не вкрутую). В этом эксперименте мы используем силу трения между скорлупой и желтком. В вискомуфте усилие прикладывается между жидкостью и набором пластин аналогично яйцу.
Самоблокирующийся дифференциал.
Самоблокирующийся дифференциал состоит из тех же частей что и открытый, плюс к нему добавляется электрический, пневматический или гидравлический механизм для блокировки двух выходных шестерёнок вместе. Этот механизм обычно активируется вручную с помощью переключателя, после активации оба колеса будут вращаться с одинаковой скоростью. Если одно колесо оторвётся от земли второе будет продолжать вращаться, как будто ничего не изменилось.
Дифференциал Torsen — чисто механическое устройство и не содержит электроники или вязких жидкостей. Как только одно колесо теряет сцепление с дорогой, система связывает колёса вместе. Например, если дифференциал Torsen разработан с отношением 5: 1, это позволяет в пять раз больше нагружать колесо, которое имеет хорошее сцепление. Torsen не уравнивает крутящий момент на колёсах, а направляет его на более ”загруженную” ось. 

что это и как работает?

Дифференциал Торсен считается одной из разновидностей самоблокирующегося червячного дифференциала повышенного трения. Предназначение его, как и любого другого дифференциала заключается в распределении крутящего момента между ведущими мостами или колесами. Само название данного механизма в переводе с английского означает механизм, который чувствителен к крутящему моменту. Поскольку Торсен относится к самоблокирующим дифференциалам, то автоматическая блокировка его происходит при разном значении крутящих моментов на приводном вале или корпусе механического устройства. Состоит такой дифференциал из ведущих и ведомых червячных шестерен. Их еще называют саттелитами или полуосевыми. Среди особенностей червячных шестерен можно выделить то, что она не вращается за счет других шестерен. Она способна сама приводит в движение другие шестерни. Это дает возможность частично блокировать дифференциал.

Из чего состоит дифференциал Торсен?

Состоит дифференциал Торсен из корпуса, который непосредственно и осуществляет передачу крутящего момента на полуосевые шестерни через саттелиты от главной передачи. На корпусе закреплена ведомая шестерня, а внутри его чаши имеют оси с саттелитами.  Также в устройстве есть левая и правая полуосевые шестерни, которые передают крутящий момент на оси и полуоси через специальное шлицевое соединение. Есть в конструкции также саттелиты правой и левой полуосевых шестерен. Они соединяют корпус дифференциала с полуосевыми шестернями. Таких саттелитов в конструкции Торсен четыре. Вдобавок ко всему в конструкции предусмотрены и входные валы. Весь этот список входных элементов делает дифференциал Торсен наиболее совершенной конструкцией.

В чем плюсы и минусы дифференциала Торсен?

Подобное устройство имеет много достоинств, однако при этом не лишено некоторых недостатков. С них и начнем. В первую очередь Торсен имеет довольно высокую стоимость, потому как у него довольно сложный процесс изготовления и процесс сборки. Дифференциал также увеличивает расход топлива по причине потерь на трение элементов. Среди минусов также стоит отметить и сравнительно низкий коэффициент полезного действия, предрасположенность механизма к заклиниванию и высокий износ нагруженных элементов. Для работы механизма требуются особые смазочные материала. Несмотря на это достоинств у дифференциала немалое количество и они зачастую превосходят все те минусы, которые были перечислены. Среди них особенно выделяется высокая точность работы, ее плавность и минимальная шумность. Благодаря Торсен обеспечивается отличное распределение мощности между колесами и ведущими мостами. Происходит это автоматически, без участия автомобилиста. За счет того, что перераспределение крутящего момента происходит мгновенно, не оказывается влияние на процесс торможения. Дифференциал при его корректном использовании совершенно не нуждается в обслуживании.

Подробнее о дифференциале Торсен будет рассказано в этом видеоматериале:

Опубликовано: 21 ноября 2019

Дифференциал (механика) — Википедия

Устройство дифференциала (центральная часть) Задний ведущий мост, в нём стоит дифференциал.

Дифференциа́л (от лат. differentia – разность, различие) — механизм в составе трансмиссий транспортных и (реже) технологических машин по передаче мощности посредством вращения с одновременным делением единого потока мощности на два дифференциально связанных или суммированием двух независимых потоков мощности в один. Особенность дифференциала и смысл его термина в том, что деление/суммирование потоков мощности этот механизм производит именно дифференциально: каждый из двух исходящих/входящих потоков может в любое время получать/давать от 0 до 100% мощности относительно единого на входе/выходе (с поправкой на КПД дифференциала), а соотношение этих мощностей между собой может быть любое в пределах этих 100%.

В каноническом чисто механическом виде представляет собой планетарную передачу, состоящую из одного простого трёхзвенного плоского или пространственного планетарного механизма без каких-либо управляющих элементов (тормозов или фрикционов). Фактические дифференциалы, исходя из своих задач в трансмиссии, могут быть дополнены планетарными рядами и управляющими элементами. Однако в последнее время получили распространение чисто фрикционные устройства, выполяющие функции дифференциала — вискомуфты.

В отличие от мощности и угловой скорости вращения крутящий момент дифференциалом делится жёстко и неизменно. Отсюда такие термины как симметричный дифференциал (момент делится в соотношении 50/50) или несимметричный (момент делится в любых неравных соотношениях). При суммировании крутящие моменты на дифференциале также складываются в один по определённым принципам.

С точки зрения механики, любой дифференциал имеет две и только две степени свободы. Механизм, выполняющий функции дифференциала и имеющий три степени свободы, правильнее называть двойным дифференциалом (четыре — тройным, и так далее).

Назначение

Необходимость применения дифференциала в конструкции привода автомобилей обусловлена тем, что внешнее колесо при повороте проходит более длинную дугу, чем внутреннее. То есть при вращении ведущих колёс с одинаковой скоростью поворот возможен только с пробуксовкой, а это негативно сказывается на управляемости и сильно повышает износ шин.

Назначение дифференциала в автомобилях:

  • позволяет ведущим колёсам вращаться с разными угловыми скоростями;
  • неразрывно передаёт крутящий момент от двигателя на ведущие колёса;

В случае единственного приводного колеса или отдельного двигателя для каждого из ведущих колёс дифференциал не требуется. В конструкции раллийных автомобилей иногда дифференциал намертво блокируют (заваривают), жёстко связывая колёса ведущей оси — это допустимо, так как на гравии или снегу в ралли повороты проходятся только с заносом. Также дифференциал отсутствует в конструкции картов, при этом гибкость их рам обычно позволяет вывешивать ведущее заднее колесо с внутренней стороны поворота без отрыва передних колёс от трассы. В веломобилях с ведущей осью вместо дифференциала часто применяются более простые и доступные трещотки (обгонные муфты) в колёсах — такой привод допускает вращение колёс на ведущей оси с разной скоростью, но при этом весь момент передаётся только на то колесо, которое медленнее вращается.

Устройство

Основой любого дифференциала может быть только планетарная передача, которая в силу механики своей работы единственная из всех передач вращательного движения может решать задачи, стоящие перед дифференциалом в трансмиссии. Термин «планетарный дифференциал» является избыточным — любой дифференциал планетарный. Работоспособность как дифференциала абсолютно не зависит ни от её состава или формы, ни от выбора конкретных звеньев под ведущие или ведомые. Любая в самом простом своём варианте — трёхзвенного планетарного механизма без каких-либо управляющих элементов — может выполнять функции по разложению одного потока на два взаимосвязанных или сложению двух независимых потоков в один. Выбор иных звеньев в качестве ведущих, а других в качестве ведомых определяется лишь требуемой кинематикой связей дифференциала с другими элементами трансмиссии и особенностями механики работы дифференциала в выбранном формате распределения функций между звеньями. Дополнение управляющими элементами и применение так называемых сложных планетарных механизмов наделяет дифференциал возможностями по взаимовыравниванию угловых скоростей потоков и возможностями по активному управлению этими скоростями.

Дифференциал автомобиля Porsche Cayenne в разрезе

Каноническим, наиболее известным видом дифференциала является межколёсный дифференциал автомобиля, выполненный на основе простого (то есть, трёхзвенного) пространственного планетарного механизма схемы на четырёх конических шестернях. Водилом планетарной передачи такого дифференциала фактически служит весь его корпус — это ведущее звено ➁. Две шестерни являются сателлитами на общей оси ➂. И две шестерни являются двумя солнцами — двумя ведомыми звеньями ➃. Подача мощности осуществляется на корпус (водило) через жёстко закреплённую ведомую шестерню главной передачи, которая в свою очередь в паре с ведущей шестернёй ➀ формально есть другой элемент трансмиссии, несмотря на то, что дифференциал с ведомой шестернёй зачастую выглядит как единый сборочный узел. Снятие мощности осуществляется с двух солнц, к которым в данном случае пристыкованы валы с шарнирами типа ШРУС.

Расположение

На автомобилях с одной ведущей осью дифференциал располагается на ведущей оси.

На автомобилях со сдвоенной ведущей осью два дифференциала, по одному на каждой оси.

На автомобилях с подключаемым полным приводом по одному дифференциалу на каждой оси. На таких машинах не рекомендуется ездить по дорогам с плотным покрытием с включенным полным приводом.

На автомобилях с постоянным полным приводом есть три дифференциала: по одному на каждой оси (межколёсный), плюс один распределяет крутящий момент между осями (межосевой).

При трёх или четырёх ведущих мостах (колёсная формула 6 × 6 или 8 × 8) добавляется ещё межтележечный дифференциал.

Проблема буксующего колеса

Обычный («свободный») дифференциал отлично работает, пока ведущие колёса неразрывно связаны с дорогой. Но, когда одно из колёс теряет сцепление (оказывается в воздухе или на льду), то вращается именно это колесо, в то время как другое, стоящее на твёрдой земле, неподвижно. В случае потери сцепления одним из колёс, его сопротивление вращению падает, а раскрутка происходит без существенного увеличения момента сопротивления (трение скольжения в пятне контакта меньше трения покоя и несущественно зависит от скорости пробуксовки). В момент когда колесо начинает проскальзывать, крутящие моменты на колесах не равны друг другу, а обратно пропорциональны сопротивлению вращения колес.

При прямолинейном движении автомобиля сателлиты относительно собственной оси не вращаются. Но каждый, подобно равноплечему рычагу, делит крутящий момент ведомой шестерни главной передачи поровну между шестернями полуосей. Когда автомобиль движется по криволинейной траектории, внутреннее по отношению к центру описываемой автомобилем окружности колесо вращается медленней, наружное быстрей — при этом сателлиты вращаются вокруг своей оси, обегая шестерни полуосей. Но принцип деления момента поровну между колесами — сохраняется. Мощность же, подаваемая на колеса, перераспределяется, — ведь она равна произведению крутящего момента на угловую скорость колеса. Если радиус поворота настолько мал, что внутреннее колесо останавливается, тогда внешнее вращается с вдвое большей скоростью, чем при движении автомобиля по прямолинейной траектории. Итак, дифференциал не меняет крутящий момент, но перераспределяет между колесами мощность. Последняя всегда больше на том колесе, которое вращается быстрее.

История способов решения проблемы буксующего колеса

  • 1825 — Онесифор Пеккёр (Onesiphore Pecqueur, 1792—1852) изобрёл дифференциал.
  • 1932 — Фердинанд Порше начал исследования в области дифференциалов c проскальзыванием.
  • 1935 — компания "ZF Friedrichshafen AG", сотрудничающая с "Порше", выпустила на рынок кулачковый дифференциал, примененный впоследствии на ранних моделях Фольксваген (Type B-70)[1]
  • 1956 — американская компания Packard одной из первых начала выпуск моделей с -дифференциалом под фирменным названием «Twin Traction». В 60-х годах многие компании начали производство LSD-дифференциалов под различными фирменными названиями:
  • Alfa Romeo: Q2
  • American Motors: Twin-Grip
  • Buick: Positive Traction
  • Cadillac : Controlled
  • Chevrolet/GMC: Positraction
  • Chrysler: Sure Grip
  • Dana Corporation:Trak-Lok or Powr-Lok
  • Ferrari: E-Diff
  • Fiat: Viscodrive
  • Ford: Equa-Lock and Traction-Lok
  • International: Trak-Lok или Power-Lok
  • Jeep: Trac-Lok (clutch-type mechanical), Tru-Lok (gear-type mechanical), and Vari-Lok (gerotor pump), Power Lok
  • Oldsmobile: Anti-Spin
  • Pontiac: Safe-T-Track
  • Porsche: PSD (electro-hydraulic mechanical)
  • Saab: Saab XWD eLSD
  • Studebaker-Packard Corporation: Twin Traction

Самоблокирующийся дифференциал

Термин обозначает любой дифференциал, механика работы которого позволяет ему самостоятельно блокироваться — то есть, в первую очередь, выравнивать угловые скорости ведомых шестерён и превращаться в прямую передачу. Самоблокирующиеся дифференциалы не требуют никаких внешних систем управления и работают автономно. В автомобилях могут использоваться и как межколёсные и как межосевые. В гусеничной технике не используются. Условно все «самоблоки» можно разделить на две группы: срабатывающие от крутящего момента и срабатывающие от разницы угловых скоростей на ведомых шестернях. В первую группу попадают дифференциалы Quaife и Torsen, дифференциалы с дисковой и конусной блокировкой, кулачковые. Во вторую — механизмы, состоящие из обычного дифференциала и автоматического блокирующего устройства: дифференциалы с вискомуфтой, с центробежным автоматом включения (Eaton G80), дифференциалы с фрикционной блокировкой и дифференциальным насосом, дифференциалы с гидросопротивлением.

Принудительно блокируемые дифференциалы

Ручная блокировка дифференциала

Дифференциал с принудительной блокировкой

По команде из кабины шестерни дифференциала блокируются, и колёса вращаются синхронно. Таким образом, дифференциал стоит блокировать перед преодолением сложных участков пути (вязкий грунт, препятствия), и затем разблокировать после выезда на обычную дорогу. Применяется в вездеходах и внедорожниках.

При езде на таких автомобилях чаще всего не рекомендуется блокировать дифференциал, когда автомобиль движется, желательно включать блокировку на стоянке. Также нужно знать, что крутящий момент, создаваемый мотором, настолько велик, что может сломать механизм блокировки или полуось. Обычно производители автомобиля отдельно указывают рекомендованную максимальную скорость движения при заблокированном дифференциале, в случае её превышения возможны поломки трансмиссии. Включенная блокировка, особенно в переднем мосту, отрицательно влияет на управляемость.

Электронное управление дифференциалом

На внедорожниках, снабжённых антипробуксовочной системой (TRC и другие), если одно из колёс буксует, оно подтормаживается рабочим тормозом.

Похожее решение было применено в «Формуле-1» в 1998 г. в команде «Макларен»: в повороте внутреннее колесо подтормаживалось рабочим тормозом. Эту систему быстро запретили, однако в Формуле-1 прижилась конструкция фрикционного дифференциала, в котором фрикцион дополнительно управляется компьютером. В 2002 году технический регламент был ужесточён; с того же (2002) года и по сей день в Формуле-1 разрешены только дифференциалы простейшего типа.

Преимущество электронного управления в том, что повышается тяга в повороте, и степень блокировки можно настроить в зависимости от предпочтений гонщика. На прямой совсем не теряется мощность двигателя. Недостаток в том, что датчики и исполнительные механизмы обладают некоторой инерцией, и такой дифференциал нечувствителен к быстро меняющимся дорожным условиям.

DPS

Основная статья: DPS

Dual Pump System — система с двумя насосами, автоматически подключающая вторую ось, когда не хватает одной. Применяется в системах полного привода Honda. Достоинства: работает автоматически, на хорошей дороге экономит бензин. Недостатки: ограниченная проходимость, сложность, ограничения на буксировку.

Активный дифференциал

Термин означает любой дифференциал, устройство которого позволяет перераспределять мощность/тягу на ведомых звеньях в любой требуемой для данного момента движения пропорции. Именно в этом и есть отличие активного дифференциала от блокируемого, в котором мощность/тяга на ведомых звеньях может быть лишь выравнена до пропорции 50/50. Все активные дифференциалы имеют двухканальную систему управления и обязательно два управляющих элемента — два тормоза или два фрикциона — включающихся в работу по команде от внешних источников. Все активные дифференциалы помимо основной планетарной передачи, выполняющей функции свободной раздачи мощности, имеют парный комплект дополнительных планетарных или простых зубчатых передач, выполняющих функцию перераспределения мощности в свою сторону. Каждая из этих парных передач связана со своим управляющим элементом. Хотя какие-либо механизмы блокировки у активных дифференциалов отсутствуют, фактически, все активные дифференциалы также являются блокируемыми, только в них не один симметричный режим блокировки, а два несимметричных (по одному для каждой из двух сторон). В этих режимах управляющий элемент дифференциала работает без внутренней пробуксовки, а сам дифференциал превращается в понижающе-повышающую передачу. На легковых автомобилях с активными дифференциалами эти крайние режимы могут и не использоваться, зато они используются в дифференциальных механизмах поворота гусеничных машин.

Случаи отсутствия дифференциалов в трансмиссии

Наличие дифференциалов, делящих мощность, в трансмиссии транспортной машины не обязательно. Их отсутствие несомненно приводит к повышению нагрузок на трансмиссию и повышенному износу колёс, но с этим либо мирятся, либо в аспекте предполагаемой эксплуатации конкретной машины это не важно. Четырёхколёсный автомобиль с двумя ведущими колёсами в принципе может обходится без дифференциала — например, карт, или гоночный автомобиль с задней ведущей осью для гонок на покрытиях с низким коэффициентом сцепления. В экстра случаях дифференциал может отсутствовать даже и на гоночной машине для асфальта (пример — победитель гонки 24 часа Ле-Мана 1991 года Mazda 787B). На чисто переднеприводной машине межколёсный дифференциал должен быть обязательно, так как его отсутствие не позволит адекватно поворачивать независимо от типа дорожного покрытия. В полноприводных машинах могут отсутствовать межосевые дифференциалы, при этом опять же, либо это неважно в аспекте экплуатации машины (пример — гоночные машины WRC 2012-2016 годов), либо движение на такой машине допускается только на покрытиях с низким коэффициентом сцепления (пример — внедорожники с подключаемой передней осью типа УАЗ-469 или Jeep Wrangler). Дифференциалы отсутствуют на тяговых машинах ж/д транспорта — на электровозах, тепловозах, электропоездах, вагонах метро. Колёса одной оси этих машин за счёт конической поверхности круга катания и увеличения ширины колеи на дуге могут сдвигаться чуть в сторону от центра пути и тем самым обеспечивают разный диаметр в точках контакта колеса с рельсом. Плюс к этому, колёса могут проскальзывают при движении по дуге, издавая при этом специфический звук, что отчасти нивелируется наклоном рельсового полотна в кривых. Отдельные механизмы поворота гусеничных машин также могут обходиться без дифференциалов в своей конструкции — здесь движение машины по дуге определяется либо пробуксовкой фрикционных муфт, либо вообще машина имеет лишь несколько фиксированных радиусов поворота. Дифференциалов нет в веломобилях, где вместо них ради удешевления и простоты применяются более простые и доступные трещотки (обгонные муфты) в колёсах — такой привод допускает вращение колёс на ведущей оси с разной скоростью, но при этом тяга передаётся только на то колесо, которое медленнее вращается. Дифференциалов может не быть в мотоблоках и средствах малой механизации, где их отсутствие нивелируется предельно узкой колеёй колёс ведущей оси, легкодеформируемыми покрышками и низким коэффициентом сцепления между колёсами и землёй.

См. также

Примечания

  1. ↑ The Motor Vehicle K.Newton W.Steeds T.K.Garrett Ninth Edition pp549-550

Ссылки

Дифференциал (механика) — Википедия

Устройство дифференциала (центральная часть) Задний ведущий мост, в нём стоит дифференциал.

Дифференциа́л (от лат. differentia – разность, различие) — механизм в составе трансмиссий транспортных и (реже) технологических машин по передаче мощности посредством вращения с одновременным делением единого потока мощности на два дифференциально связанных или суммированием двух независимых потоков мощности в один. Особенность дифференциала и смысл его термина в том, что деление/суммирование потоков мощности этот механизм производит именно дифференциально: каждый из двух исходящих/входящих потоков может в любое время получать/давать от 0 до 100% мощности относительно единого на входе/выходе (с поправкой на КПД дифференциала), а соотношение этих мощностей между собой может быть любое в пределах этих 100%.

В каноническом чисто механическом виде представляет собой планетарную передачу, состоящую из одного простого трёхзвенного плоского или пространственного планетарного механизма без каких-либо управляющих элементов (тормозов или фрикционов). Фактические дифференциалы, исходя из своих задач в трансмиссии, могут быть дополнены планетарными рядами и управляющими элементами. Однако в последнее время получили распространение чисто фрикционные устройства, выполяющие функции дифференциала — вискомуфты.

В отличие от мощности и угловой скорости вращения крутящий момент дифференциалом делится жёстко и неизменно. Отсюда такие термины как симметричный дифференциал (момент делится в соотношении 50/50) или несимметричный (момент делится в любых неравных соотношениях). При суммировании крутящие моменты на дифференциале также складываются в один по определённым принципам.

С точки зрения механики, любой дифференциал имеет две и только две степени свободы. Механизм, выполняющий функции дифференциала и имеющий три степени свободы, правильнее называть двойным дифференциалом (четыре — тройным, и так далее).

Назначение

Необходимость применения дифференциала в конструкции привода автомобилей обусловлена тем, что внешнее колесо при повороте проходит более длинную дугу, чем внутреннее. То есть при вращении ведущих колёс с одинаковой скоростью поворот возможен только с пробуксовкой, а это негативно сказывается на управляемости и сильно повышает износ шин.

Назначение дифференциала в автомобилях:

  • позволяет ведущим колёсам вращаться с разными угловыми скоростями;
  • неразрывно передаёт крутящий момент от двигателя на ведущие колёса;

В случае единственного приводного колеса или отдельного двигателя для каждого из ведущих колёс дифференциал не требуется. В конструкции раллийных автомобилей иногда дифференциал намертво блокируют (заваривают), жёстко связывая колёса ведущей оси — это допустимо, так как на гравии или снегу в ралли повороты проходятся только с заносом. Также дифференциал отсутствует в конструкции картов, при этом гибкость их рам обычно позволяет вывешивать ведущее заднее колесо с внутренней стороны поворота без отрыва передних колёс от трассы. В веломобилях с ведущей осью вместо дифференциала часто применяются более простые и доступные трещотки (обгонные муфты) в колёсах — такой привод допускает вращение колёс на ведущей оси с разной скоростью, но при этом весь момент передаётся только на то колесо, которое медленнее вращается.

Устройство

Основой любого дифференциала может быть только планетарная передача, которая в силу механики своей работы единственная из всех передач вращательного движения может решать задачи, стоящие перед дифференциалом в трансмиссии. Термин «планетарный дифференциал» является избыточным — любой дифференциал планетарный. Работоспособность как дифференциала абсолютно не зависит ни от её состава или формы, ни от выбора конкретных звеньев под ведущие или ведомые. Любая в самом простом своём варианте — трёхзвенного планетарного механизма без каких-либо управляющих элементов — может выполнять функции по разложению одного потока на два взаимосвязанных или сложению двух независимых потоков в один. Выбор иных звеньев в качестве ведущих, а других в качестве ведомых определяется лишь требуемой кинематикой связей дифференциала с другими элементами трансмиссии и особенностями механики работы дифференциала в выбранном формате распределения функций между звеньями. Дополнение управляющими элементами и применение так называемых сложных планетарных механизмов наделяет дифференциал возможностями по взаимовыравниванию угловых скоростей потоков и возможностями по активному управлению этими скоростями.

Дифференциал автомобиля Porsche Cayenne в разрезе

Каноническим, наиболее известным видом дифференциала является межколёсный дифференциал автомобиля, выполненный на основе простого (то есть, трёхзвенного) пространственного планетарного механизма схемы на четырёх конических шестернях. Водилом планетарной передачи такого дифференциала фактически служит весь его корпус — это ведущее звено ➁. Две шестерни являются сателлитами на общей оси ➂. И две шестерни являются двумя солнцами — двумя ведомыми звеньями ➃. Подача мощности осуществляется на корпус (водило) через жёстко закреплённую ведомую шестерню главной передачи, которая в свою очередь в паре с ведущей шестернёй ➀ формально есть другой элемент трансмиссии, несмотря на то, что дифференциал с ведомой шестернёй зачастую выглядит как единый сборочный узел. Снятие мощности осуществляется с двух солнц, к которым в данном случае пристыкованы валы с шарнирами типа ШРУС.

Расположение

На автомобилях с одной ведущей осью дифференциал располагается на ведущей оси.

На автомобилях со сдвоенной ведущей осью два дифференциала, по одному на каждой оси.

На автомобилях с подключаемым полным приводом по одному дифференциалу на каждой оси. На таких машинах не рекомендуется ездить по дорогам с плотным покрытием с включенным полным приводом.

На автомобилях с постоянным полным приводом есть три дифференциала: по одному на каждой оси (межколёсный), плюс один распределяет крутящий момент между осями (межосевой).

При трёх или четырёх ведущих мостах (колёсная формула 6 × 6 или 8 × 8) добавляется ещё межтележечный дифференциал.

Проблема буксующего колеса

Обычный («свободный») дифференциал отлично работает, пока ведущие колёса неразрывно связаны с дорогой. Но, когда одно из колёс теряет сцепление (оказывается в воздухе или на льду), то вращается именно это колесо, в то время как другое, стоящее на твёрдой земле, неподвижно. В случае потери сцепления одним из колёс, его сопротивление вращению падает, а раскрутка происходит без существенного увеличения момента сопротивления (трение скольжения в пятне контакта меньше трения покоя и несущественно зависит от скорости пробуксовки). В момент когда колесо начинает проскальзывать, крутящие моменты на колесах не равны друг другу, а обратно пропорциональны сопротивлению вращения колес.

При прямолинейном движении автомобиля сателлиты относительно собственной оси не вращаются. Но каждый, подобно равноплечему рычагу, делит крутящий момент ведомой шестерни главной передачи поровну между шестернями полуосей. Когда автомобиль движется по криволинейной траектории, внутреннее по отношению к центру описываемой автомобилем окружности колесо вращается медленней, наружное быстрей — при этом сателлиты вращаются вокруг своей оси, обегая шестерни полуосей. Но принцип деления момента поровну между колесами — сохраняется. Мощность же, подаваемая на колеса, перераспределяется, — ведь она равна произведению крутящего момента на угловую скорость колеса. Если радиус поворота настолько мал, что внутреннее колесо останавливается, тогда внешнее вращается с вдвое большей скоростью, чем при движении автомобиля по прямолинейной траектории. Итак, дифференциал не меняет крутящий момент, но перераспределяет между колесами мощность. Последняя всегда больше на том колесе, которое вращается быстрее.

История способов решения проблемы буксующего колеса

  • 1825 — Онесифор Пеккёр (Onesiphore Pecqueur, 1792—1852) изобрёл дифференциал.
  • 1932 — Фердинанд Порше начал исследования в области дифференциалов c проскальзыванием.
  • 1935 — компания "ZF Friedrichshafen AG", сотрудничающая с "Порше", выпустила на рынок кулачковый дифференциал, примененный впоследствии на ранних моделях Фольксваген (Type B-70)[1]
  • 1956 — американская компания Packard одной из первых начала выпуск моделей с -дифференциалом под фирменным названием «Twin Traction». В 60-х годах многие компании начали производство LSD-дифференциалов под различными фирменными названиями:
  • Alfa Romeo: Q2
  • American Motors: Twin-Grip
  • Buick: Positive Traction
  • Cadillac : Controlled
  • Chevrolet/GMC: Positraction
  • Chrysler: Sure Grip
  • Dana Corporation:Trak-Lok or Powr-Lok
  • Ferrari: E-Diff
  • Fiat: Viscodrive
  • Ford: Equa-Lock and Traction-Lok
  • International: Trak-Lok или Power-Lok
  • Jeep: Trac-Lok (clutch-type mechanical), Tru-Lok (gear-type mechanical), and Vari-Lok (gerotor pump), Power Lok
  • Oldsmobile: Anti-Spin
  • Pontiac: Safe-T-Track
  • Porsche: PSD (electro-hydraulic mechanical)
  • Saab: Saab XWD eLSD
  • Studebaker-Packard Corporation: Twin Traction

Самоблокирующийся дифференциал

Термин обозначает любой дифференциал, механика работы которого позволяет ему самостоятельно блокироваться — то есть, в первую очередь, выравнивать угловые скорости ведомых шестерён и превращаться в прямую передачу. Самоблокирующиеся дифференциалы не требуют никаких внешних систем управления и работают автономно. В автомобилях могут использоваться и как межколёсные и как межосевые. В гусеничной технике не используются. Условно все «самоблоки» можно разделить на две группы: срабатывающие от крутящего момента и срабатывающие от разницы угловых скоростей на ведомых шестернях. В первую группу попадают дифференциалы Quaife и Torsen, дифференциалы с дисковой и конусной блокировкой, кулачковые. Во вторую — механизмы, состоящие из обычного дифференциала и автоматического блокирующего устройства: дифференциалы с вискомуфтой, с центробежным автоматом включения (Eaton G80), дифференциалы с фрикционной блокировкой и дифференциальным насосом, дифференциалы с гидросопротивлением.

Принудительно блокируемые дифференциалы

Ручная блокировка дифференциала

Дифференциал с принудительной блокировкой

По команде из кабины шестерни дифференциала блокируются, и колёса вращаются синхронно. Таким образом, дифференциал стоит блокировать перед преодолением сложных участков пути (вязкий грунт, препятствия), и затем разблокировать после выезда на обычную дорогу. Применяется в вездеходах и внедорожниках.

При езде на таких автомобилях чаще всего не рекомендуется блокировать дифференциал, когда автомобиль движется, желательно включать блокировку на стоянке. Также нужно знать, что крутящий момент, создаваемый мотором, настолько велик, что может сломать механизм блокировки или полуось. Обычно производители автомобиля отдельно указывают рекомендованную максимальную скорость движения при заблокированном дифференциале, в случае её превышения возможны поломки трансмиссии. Включенная блокировка, особенно в переднем мосту, отрицательно влияет на управляемость.

Электронное управление дифференциалом

На внедорожниках, снабжённых антипробуксовочной системой (TRC и другие), если одно из колёс буксует, оно подтормаживается рабочим тормозом.

Похожее решение было применено в «Формуле-1» в 1998 г. в команде «Макларен»: в повороте внутреннее колесо подтормаживалось рабочим тормозом. Эту систему быстро запретили, однако в Формуле-1 прижилась конструкция фрикционного дифференциала, в котором фрикцион дополнительно управляется компьютером. В 2002 году технический регламент был ужесточён; с того же (2002) года и по сей день в Формуле-1 разрешены только дифференциалы простейшего типа.

Преимущество электронного управления в том, что повышается тяга в повороте, и степень блокировки можно настроить в зависимости от предпочтений гонщика. На прямой совсем не теряется мощность двигателя. Недостаток в том, что датчики и исполнительные механизмы обладают некоторой инерцией, и такой дифференциал нечувствителен к быстро меняющимся дорожным условиям.

DPS

Основная статья: DPS

Dual Pump System — система с двумя насосами, автоматически подключающая вторую ось, когда не хватает одной. Применяется в системах полного привода Honda. Достоинства: работает автоматически, на хорошей дороге экономит бензин. Недостатки: ограниченная проходимость, сложность, ограничения на буксировку.

Активный дифференциал

Термин означает любой дифференциал, устройство которого позволяет перераспределять мощность/тягу на ведомых звеньях в любой требуемой для данного момента движения пропорции. Именно в этом и есть отличие активного дифференциала от блокируемого, в котором мощность/тяга на ведомых звеньях может быть лишь выравнена до пропорции 50/50. Все активные дифференциалы имеют двухканальную систему управления и обязательно два управляющих элемента — два тормоза или два фрикциона — включающихся в работу по команде от внешних источников. Все активные дифференциалы помимо основной планетарной передачи, выполняющей функции свободной раздачи мощности, имеют парный комплект дополнительных планетарных или простых зубчатых передач, выполняющих функцию перераспределения мощности в свою сторону. Каждая из этих парных передач связана со своим управляющим элементом. Хотя какие-либо механизмы блокировки у активных дифференциалов отсутствуют, фактически, все активные дифференциалы также являются блокируемыми, только в них не один симметричный режим блокировки, а два несимметричных (по одному для каждой из двух сторон). В этих режимах управляющий элемент дифференциала работает без внутренней пробуксовки, а сам дифференциал превращается в понижающе-повышающую передачу. На легковых автомобилях с активными дифференциалами эти крайние режимы могут и не использоваться, зато они используются в дифференциальных механизмах поворота гусеничных машин.

Случаи отсутствия дифференциалов в трансмиссии

Наличие дифференциалов, делящих мощность, в трансмиссии транспортной машины не обязательно. Их отсутствие несомненно приводит к повышению нагрузок на трансмиссию и повышенному износу колёс, но с этим либо мирятся, либо в аспекте предполагаемой эксплуатации конкретной машины это не важно. Четырёхколёсный автомобиль с двумя ведущими колёсами в принципе может обходится без дифференциала — например, карт, или гоночный автомобиль с задней ведущей осью для гонок на покрытиях с низким коэффициентом сцепления. В экстра случаях дифференциал может отсутствовать даже и на гоночной машине для асфальта (пример — победитель гонки 24 часа Ле-Мана 1991 года Mazda 787B). На чисто переднеприводной машине межколёсный дифференциал должен быть обязательно, так как его отсутствие не позволит адекватно поворачивать независимо от типа дорожного покрытия. В полноприводных машинах могут отсутствовать межосевые дифференциалы, при этом опять же, либо это неважно в аспекте экплуатации машины (пример — гоночные машины WRC 2012-2016 годов), либо движение на такой машине допускается только на покрытиях с низким коэффициентом сцепления (пример — внедорожники с подключаемой передней осью типа УАЗ-469 или Jeep Wrangler). Дифференциалы отсутствуют на тяговых машинах ж/д транспорта — на электровозах, тепловозах, электропоездах, вагонах метро. Колёса одной оси этих машин за счёт конической поверхности круга катания и увеличения ширины колеи на дуге могут сдвигаться чуть в сторону от центра пути и тем самым обеспечивают разный диаметр в точках контакта колеса с рельсом. Плюс к этому, колёса могут проскальзывают при движении по дуге, издавая при этом специфический звук, что отчасти нивелируется наклоном рельсового полотна в кривых. Отдельные механизмы поворота гусеничных машин также могут обходиться без дифференциалов в своей конструкции — здесь движение машины по дуге определяется либо пробуксовкой фрикционных муфт, либо вообще машина имеет лишь несколько фиксированных радиусов поворота. Дифференциалов нет в веломобилях, где вместо них ради удешевления и простоты применяются более простые и доступные трещотки (обгонные муфты) в колёсах — такой привод допускает вращение колёс на ведущей оси с разной скоростью, но при этом тяга передаётся только на то колесо, которое медленнее вращается. Дифференциалов может не быть в мотоблоках и средствах малой механизации, где их отсутствие нивелируется предельно узкой колеёй колёс ведущей оси, легкодеформируемыми покрышками и низким коэффициентом сцепления между колёсами и землёй.

См. также

Примечания

  1. ↑ The Motor Vehicle K.Newton W.Steeds T.K.Garrett Ninth Edition pp549-550

Ссылки

Как работает дифференциал Torsen | SPEEDME.RU

Дифференциал предназначен для распределения крутящего момента между ведущими колесами либо между ведущими мостами и широко применяется в современных внедорожниках, что повышает их проходимость. Разберемся в его устройстве.

Фото: www. kolesa.ru

Дифференциал Torsen является механическим самоблокирующимся дифференциалом, в котором используется сложный набор червячных шестерен. Само название расшифровывается как TORque SENsing — «чувствующий крутящий момент».

Самоблокировка осуществляется при разности крутящих моментов на корпусе механического устройства и на приводном валу. Его основу составляют ведомые и ведущие червячные шестерни, которые более известны под наименованием «полуосевые» и «сателлитами» соответственно. Червячная передача не вращается от других шестерен, но может при этом сама передавать вращение другим шестерням, что позволяет частично блокировать дифференциал.

Из-за разницы конструкции дифференциала, крутящий момент может распределяться по осям автомобиля в соотношении от 2,5:1 (60 % : 40 %) до 6:1 (84 % : 16 %) или даже до 7:1 (86 % : 14 %).

При хорошем зацепе колес автомобиля с поверхностью и плавном движении крутящий момент распределяется поровну между осями. При скачке крутящего момента ведущие червячные шестерни пытаются начать движение в противоположную сторону. Ведомые шестерни перегружаются, блокируются выходные валы, а излишний крутящий момент от двигателя машины передается на другую ось.

Фото: techautoport.ru

Дифференциал Torsen пережил несколько поколений:

T-1 — первое поколение, в котором в качестве червячных пар выступают сателлиты и шестерни ведущих полуосей. Ведущие шестерни полуосей связаны прямозубым зацеплением. Оси сателлитов перпендикулярны полуосям.

T-2 — второе поколение устройства отличается от первого поколения тем, что оси сателлитов здесь расположены вдоль полуосей; сами сателлиты расположены в специальных карманах корпуса дифференциала; участвующие в процессе блокировки механизма при расклинивании шестерни парных сателлитов — косозубые.

T-3 — третье поколение дифференциала имеет планетарную конструкцию и задействовано в большинстве случаев в качестве межосевого дифференциала на машинах с полным приводом. Сам дифференциал вполне компактный ввиду того, что ведущая шестерня и оси сателлитов располагаются в конструкции параллельно.

Как работает дифференциал?

Нефтяники любят свою терминологию. Коллектор, крутящий момент, дифференциал. Энтузиасты используют эти термины с большим энтузиазмом, в то время как средний автомобилист кивает, не зная, что обсуждается.

Если вы поклонник Top Gear или его мега-бюджетного конкурента: The Grand Tour, вы можете узнать выражение «дифференциал с ограниченным скольжением». Вы, наверное, знаете, что это положительный момент и используется на высокопроизводительных автомобилях, но, возможно, не совсем уверены, почему.

Чтобы быстро разобраться, давайте начнем с объяснения, что такое на самом деле дифференциал.

ЧТО ТАКОЕ ДИФФЕРЕНЦИАЛ?

Проще говоря, дифференциал - это система, которая передает крутящий момент двигателя на колеса. Дифференциал забирает мощность от двигателя и разделяет ее, позволяя колесам вращаться с разной скоростью.

Вы, наверное, спросите, почему мне нужно, чтобы колеса вращались с разной скоростью друг от друга?

Если вы бензин, это, вероятно, до боли очевидно.Опять же, если вы бензин, то не читали бы статью, объясняющую, как работает дифференциал.

Все сводится к основам физики.

Представьте себе вагонетку из картона с колесами от молочных бутылок, навинченными на соломенные оси. Вы можете катить его вперед и назад сколько угодно. Он будет катиться свободно и плавно.

Поверните его за угол, и у вас не будет проблем, так как каждое колесо может вращаться независимо от другого.

Теперь попробуйте приклеить колеса к оси соломинки.Вы заметите, что колеса теперь скользят по полу, когда вы пытаетесь повернуться. Это связано с тем, что каждое из колес должно пройти разное расстояние, но заблокировано вместе на одной оси.

Давайте поднимем его на ступеньку выше. Представьте, что вы пытаетесь повернуть 2-тонный автомобиль на скорости 60 миль в час с заблокированными колесами. Колеса не будут просто прыгать через дорогу. Их сильно выталкивают на асфальт. Эти огромные силы создают огромную нагрузку на всю конструкцию транспортного средства.

Вам вообще будет сложно повернуть, не говоря уже о плавности и безопасности на высоких скоростях.

Инженеры должны были придумать хитроумный способ подключения колес к выходной мощности двигателя, но при этом позволить каждому колесу двигаться со скоростью, отличной от скорости другого.

ЗДЕСЬ КАК ЭТО РАБОТАЕТ

Если посмотреть на современный дифференциал в сборе, он выглядит невероятно сложно.

Однако, если вы разберете его систематически и поймете основы того, чего он пытается достичь и как он пытается этого достичь, вы заметите, что это действительно очень красивая вещь.

Чтобы увидеть дифференциал в ретро-стиле, посмотрите это видео от Chevrolet motors.

Теперь мы понимаем основы дифференциала, или «открытого дифференциала» в данном случае, давайте обсудим немного больше о дифференциале повышенного трения (LSD).

Представьте, что вы на трассе и пытаетесь выйти из крутого поворота на скорости 50 миль в час. Вся эта сила пойдет по пути наименьшего сопротивления.

Весь вес перенесен в одну сторону.Вся эта мощность просто вращает внутреннее колесо, что приводит к огромной потере мощности или вращению и огромной аварии.

LSD существует, чтобы минимизировать эту потерю привода. Система сцепления обеспечивает трение с каждой стороны оси, позволяя автомобилю перераспределять крутящий момент на каждое колесо, позволяя снизить мощность, насколько это необходимо. Если вы умеете управлять рулем, вы даже сможете управлять автомобилем на повороте, используя только мощность.

Как мы уверены, вы можете себе представить: весь дифференциальный механизм должен выдерживать огромное количество силы, что является лишь одной из причин, почему эти компоненты сделаны из самых прочных материалов.Не соломинки и крышки от молочных бутылок.

Дифференциалы должны быть чрезвычайно прочными. Когда автомобили были медленнее и менее требовательны, можно было использовать более дешевые металлы. Это уже не так.

Даже самые простые автомобили сегодня могут комфортно двигаться со скоростью более 90 миль в час и способны безопасно проходить поворот на относительно высоких скоростях. Высококачественные компоненты больше не предназначены для гоночной трассы.

MAT FOUNDRY GROUP ЯВЛЯЕТСЯ ВЕДУЩИМ ПРОИЗВОДИТЕЛЕМ СЕРЫХ И ЧУГУННЫХ КОМПОНЕНТОВ ДЛЯ АВТОМОБИЛЕЙ.ЧТОБЫ УЗНАТЬ БОЛЬШЕ О НАС ПРОСМОТРЕТЬ НАШИ ПРОДУКТЫ ИЛИ СВЯЗАТЬСЯ С НАМИ СЕГОДНЯ

Как работает дифференциал? 3 вопроса

Нет автомобилей без дифференциалов - иначе мы ехали бы по крутым поворотам с вращающимися колесами и визгом шин. Этот важный компонент расположен в центре ведущей оси, где его функция состоит в том, чтобы гарантировать, что два колеса могут вращаться с разной скоростью при движении по поворотам, при этом имея одинаковую тяговую мощность.Крутящий момент двигателя всегда делится в фиксированном соотношении.
Кстати: Полноприводные автомобили имеют дифференциал на каждой оси, плюс центральный дифференциал, который распределяет мощность двигателя между осями в заданном соотношении.

Основным техническим принципом обычно является так называемая коническая дифференциальная передача с клеткой дифференциала, двумя планетарными передачами и двумя выходными валами. Важнейшей особенностью является то, что две планетарные шестерни образуют связь между приводом двигателя и двумя выходными валами, но делают это по-разному:

  • При движении прямо: Двигатель приводит в движение клетку дифференциала.Планетарные передачи в это время неподвижны. В результате сепаратор и два выходных вала вращаются с одинаковой скоростью. Это означает, что два колеса на оси также вращаются с одинаковой скоростью.
  • При движении на поворотах: Теперь внешнее колесо на оси должно преодолевать большее расстояние, поэтому два выходных вала должны вращаться с разной скоростью. Для этого планетарные шестерни дифференциала вращаются вокруг своих осей с разной скоростью. Это уравновешивает разницу в скоростях двух колес.

Основной технический принцип дифференциала становится проблемой, когда две шины на ведущей оси движутся по поверхностям с разным сцеплением, например, по льду и сухому асфальту. Колесо на льду будет крутиться, а другое вообще не двигаться. Автомобиль «застрянет». Это происходит потому, что дифференциал распределяет мощность двигателя в соответствии с сопротивлением шин. Колесо на льду, естественно, имеет значительно меньшее «сопротивление», поэтому дифференциал распределяет на него всю мощность привода.Блокировки дифференциала помогают поддерживать движение в таких ситуациях. Они передают привод обратно на шину, которая вращается медленнее или не вращается совсем. Блокировки дифференциала бывают разных типов.
Очень ясное и понятное объяснение базового принципа дифференциала дает этот короткометражный фильм от 1937 года:

Как работает дифференциал? 3 вопроса - 3 ответа последнее изменение: 30 апреля 2019 г., Маркус Исгро

Дифференциальные уравнения второго порядка

Здесь мы узнаем, как решать уравнения этого типа:

d 2 y dx 2 + p dy dx + qy = 0

Дифференциальное уравнение

Дифференциальное уравнение - это уравнение с функцией и одной или несколькими производными:


Пример: уравнение с функцией y и ее производная dy dx

Заказать

Порядок - это старшая производная (первая производная? Вторая производная и т. Д.):

Пример:

dy dx + y 2 = 5x

Он имеет только первую производную dy dx , как и «Первый порядок»

Пример:

d 2 y dx 2 + xy = sin (x)

Это вторая производная d 2 y dx 2 , так же как «Второй порядок» или «Порядок 2»

Пример:

d 3 y dx 3 + x dy dx + y = e x

У этого есть третья производная d 3 y dx 3 , которая превосходит dy dx , так же как и «третий порядок» или «порядок 3»

Перед тем, как заняться дифференциальными уравнениями второго порядка, убедитесь, что вы знакомы с различными методами решения дифференциальных уравнений первого порядка.

Дифференциальные уравнения второго порядка

Мы можем решить дифференциальное уравнение второго порядка типа:

d 2 y dx 2 + P (x) dy dx + Q (x) y = f (x)

, где P (x), Q (x) и f (x) являются функциями x, используя:

Вариация параметров, которая работает только тогда, когда f (x) является полиномом, экспонентой, синусом, косинусом или их линейной комбинацией.

Undetermined Coefficients, который немного сложнее, но работает с более широким спектром функций.

Но здесь мы начнем с изучения случая, когда f (x) = 0 (это делает его «однородным»):

d 2 y dx 2 + P (x) dy dx + Q (x) y = 0

, а также где функции P (X) и Q (x) являются константами p и q :

d 2 y dx 2 + p dy dx + qy = 0

Давайте научимся их решать!

e на помощь

Мы собираемся использовать специальное свойство производной экспоненциальной функции:

В любой момент наклон (производная) e x равен значению e x :

И когда мы вводим значение "r" вот так:

f (x) = e rx

Находим:

  • первая производная f '(x) = re rx
  • вторая производная f '' (x) = r 2 e rx

Другими словами, первая и вторая производные f (x) обе являются кратными f (x)

Это нам очень поможет!

Пример 1: Решить

d 2 y dx 2 + dy dx - 6y = 0

Пусть y = e rx , получаем:

  • dy dx = re rx
  • d 2 y dx 2 = r 2 e rx

Подставьте их в уравнение выше:

r 2 e rx + re rx - 6e rx = 0

Упростить:

e rx (r 2 + r - 6) = 0

г 2 + г - 6 = 0

Мы свели дифференциальное уравнение к обыкновенному квадратному уравнению!

Это квадратное уравнение получило специальное название характеристическое уравнение .

Мы можем разложить это на:

(г - 2) (г + 3) = 0

Итак, r = 2 или −3

Итак, у нас есть два решения:

y = e 2x

y = e −3x

Но это не окончательный ответ, потому что мы можем комбинировать разные , кратные этих двух ответов, чтобы получить более общее решение:

y = Ae 2x + Be −3x

Check

Давайте проверим этот ответ.Первые производные:

y = Ae 2x + Be −3x

dy dx = 2Ae 2x - 3Be −3x

d 2 y dx 2 = 4Ae 2x + 9Be −3x

Теперь подставьте в исходное уравнение:

d 2 y dx 2 + dy dx - 6y = 0

(4Ae 2x + 9Be −3x ) + (2Ae 2x - 3Be −3x ) - 6 (Ae 2x + Be −3x ) = 0

4Ae 2x + 9Be −3x + 2Ae 2x - 3Be −3x - 6Ae 2x - 6Be −3x = 0

4Ae 2x + 2Ae 2x - 6Ae 2x + 9Be −3x - 3Be −3x - 6Be −3x = 0

0 = 0

Сработало!

Итак, этот метод вообще работает?

Ну и да, и нет. Ответ на этот вопрос зависит от констант p и q .

При y = e rx как решение дифференциального уравнения:

d 2 y dx 2 + p dy dx + qy = 0

получаем:

r 2 e rx + pre rx + qe rx = 0

e rx (r 2 + пр + q) = 0

р 2 + пр + д = 0

Это квадратное уравнение, и может быть три типа ответа:

  • два настоящих корня
  • один настоящий корень (т.е. оба настоящих корня одинаковые)
  • два сложных корня

Как мы решаем это зависит от типа!

Мы можем легко определить, какой тип, вычислив дискриминант p 2 - 4q . Когда это

  • положительный получаем два настоящих корня
  • ноль получаем один реальный корень
  • отрицательно получаем два сложных корня

Два настоящих корня

Когда дискриминант p 2 - 4q является положительным , мы можем перейти прямо из дифференциального уравнения

d 2 y dx 2 + p dy dx + qy = 0

через «характеристическое уравнение»:

р 2 + пр + д = 0

к общему решению с двумя действительными корнями r 1 и r 2 :

y = Ae r 1 x + Be r 2 x

Пример 2: Решить

d 2 y dx 2 - 9 dy dx + 20y = 0

Характеристическое уравнение:

r 2 - 9r + 20 = 0

Фактор:

(г - 4) (г - 5) = 0

r = 4 или 5

Итак, общее решение нашего дифференциального уравнения:

y = Ae 4x + Be 5x

А вот несколько примеров значений:

Пример 3: Решить

6 d 2 y dx 2 + 5 dy dx - 6y = 0

Характеристическое уравнение:

6r 2 + 5r - 6 = 0

Фактор:

(3r - 2) (2r + 3) = 0

r = 2 3 или −3 2

Итак, общее решение нашего дифференциального уравнения:

y = Ae ( 2 3 x) + Be ( −3 2 x)

Пример 4: Решить

9 d 2 y dx 2 - 6 dy dx - y = 0

Характеристическое уравнение:

9r 2 - 6r - 1 = 0

Это непросто множить, поэтому мы используем формулу квадратного уравнения:

x = −b ± √ (b 2 - 4ac) 2a

с a = 9, b = −6 и c = −1

x = - (- 6) ± √ ((- 6) 2 - 4 × 9 × (−1)) 2 × 9

x = 6 ± √ (36 + 36) 18

x = 6 ± 6√2 18

x = 1 ± √2 3

Итак, общее решение дифференциального уравнения -

y = Ae ( 1 + √2 3 ) x + Be ( 1 - √2 3 ) x

Один настоящий корень

Когда дискриминант p 2 - 4q равен нулю , мы получаем один действительный корень (т.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *