Коробка робот принцип работы: 6 правил, о которых мало кто знает :: Autonews

Содержание

устройство и принцип работы. Советы по выбору.

 

Коробка робот похожа на механическую. Единственным отличием от механики является то, что в коробке робот передачи переключает некий исполнительный механизм (робот). Есть два типа исполнительных механизмов:

  • • Гидравлический привод;
  • • Электрический привод.

 

Классическая роботизированная коробка передач была сконструирована в 60-х годах 20 века. Основным ее недостатком является большое время переключения передач, что приводит к толчкам и провалам в динамике автомобиля. Для того чтобы сократить время переключения передач, была разработана коробка с двумя сцеплениями. Стоит отметить, что роботизированная коробка передач с двойным сцеплением является самой распространенной на рынке. Например, всем известная коробка DSG от Фольсксваген является роботизированной коробкой передач с двумя сцеплениями.

Такую коробку можно условно представить состоящей из двух коробок (см. рисунок). Каждая из них со своим сцеплением. Одна коробка передач отвечает за нечетные передачи, вторая – за четные. Коробки существует независимо от друг друга.

Давайте рассмотрим процесс переключения передач. Предположим, вы едете на первой передаче. В то время как вы едете на первой, датчики управления сообщают коробке, что происходит разгон автомобиля и заранее включается вторая передача. Т.е. в момент, когда необходимо включить вторую передачу, она уже включена заранее. И коробка просто выключает первую передачу.

Для наглядности давайте рассмотри процесс переключения передач на классической механике.

  1. 1. Выжимаете сцепление;
  2. 2. Выключаете передачу;
  3. 3. Включаете передачу;
  4. 4. Отпускаете сцепление.

 

В коробке робот необходимо выполнить всего два действия:

  1. 1. Выключить сцепление 1
  2. 2. Включить сцепление 2.

 

Получается, что в механической коробке передач необходимо выполнить на два действия больше, чем в роботизированной. Поэтому роботизированная коробка передач быстрее переключает передачи, что сказывается на динамике автомобиля, а также на расходе топлива.

Выводы: Современные роботизированные коробки передач имеют два сцепления. Каждое из которых, отвечает за свои передачи. Эти передачи включаются заблаговременно, а в момент непосредственного переключения управление коробкой просто включает или выключает требуемое сцепление.

На рынке существует два вида сцепления:

  • • Сухого типа. Для автомобилей с малой мощностью. Недостаток коробок со сцеплением сухого типа – малый ресурс.
  • • Мокрого типа. Для автомобилей повышенной мощности. Работают с использованием масла и рассчитаны на более продолжительный срок службы.

 

Коробка-робот по сравнению с автоматической коробкой передач имеет несколько преимуществ:

  • • Низкий расход топлива;
  • • Лучшая динамика автомобиля;
  • • Стоимость.

 

К недостаткам можно отнести:

  • • низкий ресурс
  • • недостаток квалифицированного ремонта роботизированных коробок передач в СНГ.

 

Если вы спросите, с какой же коробкой нужно покупать автомобиль? Если рассматривайте покупку нового авто, то мы однозначно рекомендуем коробку робот. Однако если вы покупаете бэушный авто с пробегом более 200 тыс., то здесь лучше рассматривать вариант покупки либо механики, либо автоматической акпп.

 

 

 

Что делать, чтобы роботизированная коробка передач не ломалась

Что может сломаться в «роботе» 

Самый пугающий (но на самом деле самый безобидный) симптом проявляется в следующем: «мозги» коробки в какой-то момент перестают распознавать положение селектора или не разрешают включить Drive или Reverse, а в некоторых случаях — даже завести мотор. В режим самозащиты «робот» может перейти либо при перегреве, либо при сбоях в работе датчиков. Сильный перегрев, кстати, их и «пере­кашивает», делая проблему регулярной.

«Робот» с одним диском, несмотря на простоту конструкции, не может похвастаться огромным ресурсом. Если сама коробка обычно служит долго, то сцепление изнашивается быстрее, чем у опытного водителя, ездящего на «механике» — порой уже через 20–30 тыс. км. Нередки и отказы его серво­привода, которому требуется немалое усилие для размыкания дисков.

Тонким местом преселективных коробок тоже оказались сцепления. Их износ — самая распро­странённая неисправ­ность трансмиссий этого типа. Традици­онные «сухие» диски сцепления, нормально работающие в паре с МКПП, при быстрых и частых пере­ключениях «робота» склонны к перегреву и, как следствие, быстрому износу и деформации, поэтому их применяют только там, где нагрузки на коробку относительно невелики. С мощными моторами или на тяжёлых машинах приходится использовать много­дисковые сцепления, работающие в специальном масле, которое их охлаждает. И всё равно для узла «сухих» сцеплений в пресе­лективной коробке неплохим ресурсом считаются 60–70 тыс. км, «мокрые» могут прослужить вдвое дольше, но их обслужи­вание и замена обходятся значительно дороже. Верные признаки износа сцеплений — толчки при пере­ключениях, вибрации при старте автомобиля с места.

Чтобы коробка переключалась плавно, а сцепления служили долго, требуется очень точная и согласованная работа систем управления сцепле­ниями и сменой передач. Если заведующий этим мехатронный блок настроен недостаточно тонко и неточно исполняет команды электронной программы управления, то коробка начинает методично убивать сама себя.

Именно мехатроника — самая капризная часть «робота». Этот блок, совмещающий в себе электронные и гидравли­ческие части для приводных механизмов, работает в довольно сложных условиях — ему приходится с большой частотой выполнять разные команды, выдер­живать большое давление рабочей жидкости (она отличается от масла, залитого в саму коробку), подстраивать свои режимы под текущие условия езды, режимы и фактический износ сцеплений. В общем, сбои, перегревы, отклонения в работе управляющих соленоидов, загряз­нение масляных каналов, подтёки и даже трещины в корпусе мехатронного блока — список возможных проблем довольно обширен.

Самые редкие, но тоже больно бьющие по карману неисправ­ности связаны с механической частью коробки. Износ валов, шестерёнок, вилок пере­ключения, подшип­ников и прочих деталей редуктора (всё это проявляется специфи­ческим шумом или заминками в пере­ключениях передач) лечится, как правило, только капитальным ремонтом «робота». Либо его полной заменой.

Впрочем, не всё так драматично. Инженеры постоянно работают над повышением надёжности «роботов» с двумя сцеплениями. Если правильно эксплу­атировать и обслуживать, то сегодня даже «сухая» конструкция способна без каких-либо проблем и дорого­стоящих замен пройти 150–200 тысяч пробега.

Описание принципов работы роботизированной КПП DCT Хендай

Рассмотрим DCT автомобилей Hyundai: принцип работы, характерные особенности, плюсы и минусы.

Роботизированная трансмиссия — новшество из мира спортивных автокаров

Роботизированная КП (DCT Хендай) — преселиктивная коробка передач, попавшая на любительский рынок в модифицированном виде относительно недавно из автоспорта, оснащенная прямым включением и двумя сцеплениями, на которые возложены разные функции:

  • Контроль над нечетными передачами.
  • Контроль над четными передачами.

Сравнительно быстрый и, что немаловажно, плавный разгон, в процессе которого скорости переключаются в доли секунды — главные особенности роботизированной трансмиссии автомобиля Hyundai. Кроме этого, сочетание комфортного управления транспортным средством, которое дает автомат, с неоспоримым экономичным режимом и динамикой от МКП — так же отличительная характеристика роботизированной КП, относящиеся к достоинствам этой трансмиссии.

К преимуществам так же можно отнести следующее:

  • дешевле автоматической КП;
  • небольшая масса робота;
  • некоторые модели Hyundai оснащены подрулевыми лепестками — альтернатива традиционному рычагу переключения скоростей, что позволяет быстро поставить необходимую передачу, а значит предать динамичности транспортному средству.

Корейские кроссоверы премиум класса — например, Hyundai Tucson (2016 года), при желании автолюбителя могут комплектоваться 7-ступенчатой роботизированной коробкой с двойным сцеплением и подрулевыми лепестками (несмотря на название, они расположены сразу за рулем). Данная система КПП идет исключительно с силовой установкой мощностью в 175 лошадиных сил.

Категорически противопоказаны пробуксовки, страдает плавность переключения скоростей, при даже кратковременной остановке необходимо переходить в нейтральное положение. Это очевидные недостатки роботизированной коробки. К ним же следует присовокупить дороговизну устройства, как при приобретении, так и в последующем обслуживании и ремонте.

Идеальной коробки передач не существует. Поэтому, выбирая, необходимо расставлять приоритеты. То есть, что предпочтительней: динамика, стоимость, экономичность или комфорт. Определившись, проще осуществить правильный выбор относительно трансмиссии.

Преселективная роботизированная коробка передач DSG в автомобилях Volkswagen

Специалисты компании Volkswagen создали новую, уникальную коробку переключения скоростей DSG (Direct Shift Gearbox), которая по своим техническим характеристикам намного превосходит существующие образцы.

В настоящее время преселективные роботизированные коробки передач DSG второго поколения устанавливаются на большинство моделей Volkswagen: Golf, Passat B8,Passat СС, Tiguan, Jetta.

Использование этой коробки передач позволяет почувствовать комфорт и удобство при переключении. Данная коробка сочетает в себе все современные технологии трансмиссий различных типов. Переключение скоростей осуществляется вручную, но за весь процесс отвечает электроника и различные автоматизированные механизмы.

Отличительной особенностью работы коробки является то, что во время переключения передач не изменяется поток мощности. Плавность работы такого агрегата по достоинству оценят как любители загородной быстрой езды, так и владельцы автомобилей, передвигающиеся преимущественно в городской черте.

Особенности работы коробки-робота

Коробка передач DSG может эксплуатироваться в двух режимах — спортивном и нормальном.

Спортивный режим. Данный режим предусматривает более длительное раскручивание при переходе на повышенные скорости и быстрый переход на пониженные передачи. Такой режим является предпочтительным при скоростной езде. Имеется функция Tiptronik, которая позволяет производить управление передачами в ручном режиме.

Всем, кто любит спортивный тип езды, можно использовать переключатели-лепестки, смонтированные на руле. Такие лепестки позволяют почувствовать мощь автомобиля и от души насладиться спортивной ездой.

Нормальный режим. Такой режим является привычным для всех автомобилистов и может использоваться при передвижении по городу или для небыстрого, экономного вождения.

Устройство DSG

6-ступенчатая коробка DSG имеет два, независимых друг от друга блока трансмиссий. Благодаря такой конструкции, происходит поочередное сцепление с двигателем, в зависимости от включенной в данный момент передачи. Для управления используется двойное сцепление, которое состоит из пары муфт, которые установлены в едином корпусе.

Одно сцепление отвечает за работу 1, 3, 5 передачи, второе за 2, 4, 6 передачу. Каждый блок оснащен отдельным приводным валом, передающий вращающее действие на колеса. Передача осуществляется с помощью дифференциала.

КПД роботизированных коробок передач

Применение схемы двойного сцепления в коробках DSG, при сравнении с АКП, имеющей гидротрансформатор, позволяет в значительной мере увеличить КПД. Интеллектуальная система коробки в сочетании с небольшой массой, позволяет значительно понизить расход топлива. Оценить все положительные качества данной коробки можно на автомобилях Passat CC, Golf GTI, Passat Variant.

Интеллектуальный блок управления

Коробка снабжена встроенным блоком, который проводит анализ оборотов двигателя, скорости движения, нажим на педаль газа.

На основе полученных данных автоматически выбирается необходимая передача или момент перехода на другую передачу. Это обеспечивает плавность движения и снижает нагрузку на двигатель.


её отличие от автоматической, плюсы и минусы

Тяговые характеристики двигателей внутреннего сгорания и их приспособляемость к нагрузке недостаточны для прямого привода. Для адаптации используются разнообразные типы коробок перемены передач, которые позволяют изменить частоту вращения в достаточно широком диапазоне.

Помимо этого, такой механизм обеспечивает возможность движения задним ходом, длительной остановки автомобиля с работающим силовым агрегатом.

Коробка передач робот оснащается автоматом для управления работой устройства в заданном режиме с учетом нагрузки и других условий движения. Процессом руководит электронный блок, запрограммированный определенным образом.

Водитель осуществляет выбор алгоритма и задает его при помощи селектора, кроме того, он может перенимать управление работой механизма и производить переключения как на обычной механике.

Использование роботизированных коробок обеспечивает водителю максимально комфортные условия. Нет необходимости отвлекаться и терять время на переключения передач, а заложенные в процессор программы обеспечивают (в зависимости от условий движения) максимальную экономию топлива.

Большинство ведущих автопроизводителей, и АвтоВАЗ в их числе, широко используют коробки передач такого типа на транспортных средствах разных классов.

Что такое коробка передач робот

В настоящее время существует множество разнообразных конструкций механизмов автомобильных трансмиссий. Для ответа на вопрос:  коробка передач робот — что это такое?, следует разобраться в ее устройстве, изучить принцип работы и проанализировать достоинства и недостатки. Практически любой сложный механизм имеет свои плюсы и минусы,  устранение которых невозможно без коренной переделки системы.

По своей сути роботизированная коробка является логическим развитием традиционной механической. В ней функции управления переключением передач автоматизированы и контролируются электронным блоком. Помимо этого процессор дает команду на исполнительный механизм сцепления для разобщения двигателя и трансмиссии при перемене передаточного числа.

Роботизированная коробка работает в комплексе с иными элементами трансмиссии. Автоматизированное управление согласуется с работой сцепления, предназначенного для обеспечения переключений.

Устройство и принцип работы

За все время развития автомобилестроения предпринимались множественные попытки упростить управление трансмиссией. Первые удачные конструкции роботизированных коробок передач, пошедшие в серию, появились только после оснащения машин процессорами. Все попытки автоматизировать управление при помощи электромеханических и гидравлических устройств не дали положительных результатов.

Они оказались слишком ненадежными и не обеспечивали приемлемой скорости переключения. Еще одним недостатком такого рода коробок была излишне высокая сложность и, как следствие, запредельная стоимость.

Решить все технические проблемы стало возможным только с появлением компактных и недорогих процессоров и датчиков, контролирующих режимы работы двигателя и трансмиссии.

Конструкция

Многие производители автомобилей самостоятельно занимались разработкой данного класса механизмов. Это обеспечило достаточно большое разнообразие конструкций коробок передач роботов, тем не менее, можно выделить в них общие элементы:

  • электронный блок управления;
  • механическая коробка передач;
  • сцепление фрикционного типа;
  • система управления переключением передач и муфтой.

Нередко функции электронного блока выполняет бортовой компьютер, контролирующий работу системы питания и зажигания в силовом агрегате. Процессор устанавливается вне картера коробки и соединяется с нею кабельными системами. Особое внимание при этом уделяется защите соединений, используются специально разработанные уплотнители. Нередко контактные группы покрываются тонким слоем золота для предотвращения окисления.

За основу роботизированных коробок обычно берутся хорошо себя зарекомендовавшие устройства. Так, компания Mercedes-Benz при изготовлении агрегата Speedshift использовала АКП 7G-Tronic, вместо гидротрансформатора использовали многодисковое сухое сцепления фрикционного типа.

По аналогичному пути пошли и баварские автомобилестроители из BMW, оснастив шестиступенчатую механическую коробку автоматизированной системой управления.

Обязательным элементом, обеспечивающим работу коробки, является механизм сцепления. В случае с роботизированным устройством применяется конструкция фрикционного типа с одним или несколькими дисками. В последние годы появились трансмиссии с двойным механизмом сцепления, работающими параллельно. Такая конструкция обеспечивает передачу крутящего момента от двигателя без прерывания.

Роботизированные трансмиссии мировых автопроизводителей
Тип трансмиссииС одним сцеплениемС двумя сцеплениями
Audi R-Tronic +
Audi S-Tronic +
Alfa Romeo Selespeed+ 
BMW SMG+ 
Citroen SensoDrive+ 
Ford Durashift+ 
Ford Powershift +
Lamborghini ISR +
Mitsubishi Allshift+ 
Opel Easytronic+ 
Peugeot 2-Tronic+ 
Porsche PDK +
Renault Quickshift+ 
Toyota MultiMode+ 
Volkswagen DSG +

Системы управления работой сцепления и переключением передач бывают двух видов: с электрическим или гидравлическим приводом. Каждый из вариантов имеет свои положительные и отрицательные стороны. Возможны комбинации из названных выше способов управления коробкой, позволяющие максимально использовать достоинства обеих конструкций и свести к минимуму их недостатки.

Электрический привод сцепления использует сервомоторы, которые обеспечивают минимальное энергопотребление. Отрицательным моментом является крайне низкое время переключения передач (в пределах от 300 мс до 500 мс), что приводит к рывкам и повышенным нагрузкам на детали трансмиссии.

Гидравлические приводы работают значительно быстрее, это делает возможным оснащение такими коробками даже спортивных автомобилей. На суперкаре Ferrari 599GTO время переключения составляет всего – 60 мс, а у Lamboghini Aventador и того меньше – 50 мс. Такие показатели обеспечивают данным машинам высокие динамические характеристики при сохранении плавности движения.

Принцип действия

Для того, чтобы понять как работает роботизированная коробка передач, следует получить представление об алгоритме работы ее механизмов.

Водитель запускает двигатель, выжимает педаль тормоза и переводит селектор в определенное положение. Привод сцепления разрывает поток мощности, а исполнительный механизм коробки производит подключение выбранной передачи.

Водитель отпускает тормоз и плавно увеличивает обороты, автомобиль начинает движение. В дальнейшем все переключения производятся в автоматическом режиме, при этом учитываются заданный режим и данные от датчиков. Управление механизмом осуществляется процессором в соответствии с выбранным алгоритмом. При этом у водителя имеется возможность вмешиваться в работу коробки.

Видео — роботизированная КПП (робот):

Полуавтоматический режим роботизированной трансмиссии аналогичен функции ручного управления автоматической коробки — Tiptronic. В таком случае водитель при помощи рычага селектора или переключателей установленных на рулевой колонке производит переключения передач с понижением или повышением. Отсюда исходит и другое название роботизированной коробки – секвентальная.

Трансмиссия такого типа получает все большее распространение на автомобилях. При этом наблюдается следующее разделение: коробками с электрическими сервомоторами комплектуются бюджетные модели. Ведущие автопроизводителя разрабатывают и выпускают серийно следующие типы механизмов:

  • Citroen – SensoDrive;
  • Fiat — Dualogic;
  • Ford — Durashift EST;
  • Mitsubishi — Allshift;
  • Opel — Easytronic;
  • Peugeot – Tronic;
  • Toyota – MultiMode.

Для более дорогих моделей производятся коробки с гидравлическим приводом:

  • Alfa Romeo — Selespeed;
  • Audi — R-Tronic;
  • BMW — SMG;
  • Quickshift от Renault.

Самая продвинутая по показателям роботизированная коробка ISR (Independent Shifting Rods) устанавливается на суперкары от компании Lamborghini.

Отличие роботизированной коробки передач от автоматической

Развитие и невысокая стоимость электронных блоков управления сделали возможным их применение на серийных моделях машин. Они имеют разные виды трансмиссии и возникает закономерный вопрос — в чем разница между коробкой передач роботом и автоматом? Если таковые отличия существуют, то какой вид из них будет лучше отвечать требованиям водителя и на какие характеристики следует обратить внимание при выборе автомобиля.

Разница между роботизированной коробкой и автоматом состоит в конструкции сцепления. Вместо гидротрансформатора в ней используется одно- или многодисковое сухое сцепление фрикционного типа.

В редукторе, как в механике, ведущие и ведомые шестерни находятся в постоянном зацеплении и задействуются они при помощи специальных муфт. Для уравнения угловых скоростей используются синхронизаторы.

Видео — тест драйв Лада Приора с роботом АМТ:

В автоматических коробках преимущественно используются редукторы планетарного типа и сложная система управления их функционированием. В первом и втором варианте выбор передаточного отношения определяется автоматикой. Это освобождает водителя от необходимости отслеживать режимы работы двигателя и производить переключения.

В сравнении автоматической коробки с роботом, лидером по такому показателю, как экономичность, является второе устройство. В сухом сцеплении механические потери значительно ниже, нежели у гидротрансформатора.

С другой стороны, автомат лучше обеспечивает плавность движения и езда в таком автомобиле более комфортная. Еще одним недостатком такого типа трансмиссии является дороговизна ремонта, который может выполняться только высококвалифицированными специалистами в условиях техцентра.

При выборе между роботизированной коробкой и автоматом следует принимать все вышеперечисленные факторы. Для недорогих бюджетных моделей существенными являются стоимость автомобиля и издержки на его содержание. При покупке элитных автомобилей такие вопросы обычно не имеют особого значения. Для водителя разницы в управлении автоматом или роботом практически нет.

Роботизированная коробка передач плюсы и минусы

Сложные системы, к каковым относятся и автомобильные трансмиссии, имеют вполне определенные достоинства и недостатка. Ниже приведен анализ плюсов и минусов в конструкции и эксплуатации роботизированной коробки передач. При этом в расчет принимаются динамические, стоимостные и некоторые другие характеристики агрегата.

К перечню положительных сторон коробки передач с роботизированным управлением можно отнести следующее:

  • Высокая надежность механизма редуктора, проверенного длительной эксплуатацией.
  • Применение сухого сцепления фрикционного типа способствует снижению потерь и уменьшению расхода топлива.
  • Небольшое количество эксплуатационной жидкости – трансмиссионного масла порядка 3-4 литров, против – 6-8 литров у вариатора.
  • Высокая ремонтопригодность роботизированной коробки (фактически в качестве ее основы используется хорошо известная механика).
  • Автоматика повышает ресурс сцепления до 45 – 55 % по сравнению с традиционным управлением педалью.
  • Наличие полуавтоматического режима, позволяющего водителю вмешиваться в работу агрегата при движении в сложных дорожных условиях на подъеме или в пробке.

Достоинства КПП «робот» очевидны, что способствует повышению популярности данного типа трансмиссии на автомобилях разного класса. Усилиями инженеров и конструкторов агрегат постоянно совершенствуется, его характеристики улучшаются.

Видео — как работает роботизированная коробка передач на Лада Приора:

Тем не менее, у роботизированной коробки передач имеются и некоторые минусы:

  • Невозможность перепрошивки процессора и задания иного алгоритма управления с целью повышения динамических характеристик автомобиля.
  • Невысокая скорость перемены передач у коробок с электрическими сервоприводами, которые невозможно исправить без переделки всей конструкции.
  • Возможность пробуксовки сцепления и перегрева механизма при движении на низкой скорости в горку или в городской пробке. Опытные водители рекомендуют в таком случае использовать режим Tiptronic.
  • Частые рывки при автоматическом переключении передач, сброс газа перед данной операцией или равномерный режим движения, позволит снять остроту проблемы.

У робота есть целый ряд преимуществ перед иными видами трансмиссий и некоторые недостатки. Такой тип механизма рекомендуется водителям со спокойной манерой управления автомобилем.

Для любителей прокатиться с ветерком такая коробка будет слишком задумчивой. Все имеющиеся минусы механизма своими силами устранить невозможно, поэтому к его особенностям следует просто приспособиться.

В целом коробка передач робот заслужила положительные отзывы автовладельцев. Особенно отмечаются большой ресурс работы, высокая надежность и её неприхотливость.

По некоторым отзывам покупателей Датсун Он-До можно отметить, что они с удовольствием бы купили этот автомобиль, укомплектованный роботом.

Как подобрать масло для автомобиля можете прочитать в статье.

Жидкая резина (https://voditeliauto.ru/stati/tyuning/zhidkaya-rezina-dlya-avto.html) для покраски автомобиля

Видео — нюансы работы роботизированной коробки передач:


Роботизированная коробка передач автомобиля — устройство и как работает

Роботизированная коробка передач автомобиля — разновидность полуавтоматических КПП, которая объединяет черты механической коробки и автоматической. Расскажем что такое коробка — робот, как работает и в чем преимущество перед другими типами трансмиссии.

Что это такое

Вместо третьей педали, которую нужно выжать для переключения скоростей с механической коробкой передач, в авто с роботизированной коробкой передач две педали. Роль третьей педали играет целая система сенсоров, передатчиков и исполнительных механизмов, которые при помощи бортового компьютера переключают коробку без участия водителя и сцепления. Компьютер синхронизирует работу деталей коробки, а некоторые электронные системы способны научиться распознавать стиль вождения водителя и предугадывать его действия. У роботизированной КПП ручка переключения скоростей находится там же, где и ручка механической коробки, но вместо Ж-образного переключения, ручка переключается только вперед или назад.

Как работает

Работает следующим образом. При переключении ручки передач и нажатии педали газа сенсоры передают информацию в блок управления, который в свою очередь передает сигнал в коробку передач. Сенсоры коробки передач также сообщают в блок информацию о действующей скорости и новом требовании переключения скоростей.

Блок управления синхронизирует информацию, полученную от сенсоров, и выбирает оптимальную скорость и время переключения скоростей и обеспечивает слаженность работы механизмов коробки передач. При этом принимается в расчет скорость вращения двигателя, работа кондиционера, показатели спидометра.

Бортовой компьютер роботизированной КПП управляет гидромеханикой, который смыкает или размыкает сцепление. Этот процесс происходит синхронно с действием водителя, переключающего ручку скоростей. Гидромеханический блок использует жидкость из тормозной системы для запуска гидравлического цилиндра, обеспечивающего движение актуатора.

В чём преимущество

Электроника реагирует быстрее человека и более точно, поэтому «выжать» сцепление можно без участия водителя. Для парковки автомобиля, обратного хода или нейтрального положения трансмиссии водитель должен предварительно выжать обе педали одновременно, после этого можно выбрать один из трех вариантов.

Сцепление нужно только, чтобы машина пришла в движение. Для быстрого переключения скорости на более высокую необходимо убрать ногу с педали газа, чтобы двигатель сбавил обороты для подходящей скорости. Для этого ручка передачи скоростей должна стоять на нужной позиции.

Роботизированная коробка передач (робот) что это? Как работает: плюсы, минусы

 

 

Коробка робот: преимущества, недостатки

 

Еще совсем недавно рядовой автолюбитель не имел свободы выбора трансмиссии с покупкой автомобиля. Технологический прогресс последних лет подарил несколько интересных систем – это и вариатор, и роботизированная коробка. Техническая реализация коробки-робота велась еще в 20 лет назад, однако внедрение этой трансмиссии в массы произошло сравнительно недавно. Первую версию агрегата немецкие инженеры выпустили в 2002 году. С тех пор было придумано немалое количество его разных вариаций и модификаций.

 

Конструкция и принцип работы роботизированной коробки

В конструктивном плане коробка-робот идентична с обычной «механикой». Вся разница заключается в том, что подбор и переключение передач в ней это полностью автоматизированный процесс. Фактически это значит, что есть некий «мозг», который и отвечает за включение нужной скорости. Причем процесс смыкания/размыкания сцепления практически не заметен и не ощутим. Поэтому водители авто с роботом отмечают высокий уровень комфорта, простоту использования и динамичность.

 

 

Особенность робота заключается и в том, что эта коробка может совмещать как одно, так и сразу два сцепления. Внедрив в конструкцию дополнительный механизм разъединения трансмиссии от двигателя, инженеры попытались снизить негативный эффект провалов тяги. Двойное сцепление реализовано в коробках по типу DSG или Powershift. Такие коробки еще называют преселективными или «предварительно выбирающими». Они позволяют при включенной скорости выбрать следующую передачу без перерыва в работе КПП. На авто с такими коробками передача крутящего момента происходит без потерь, так как нет разрыва потока мощности.

 

Стоит ли приобретать автомобиль с преселективной коробкой?

 

Как и в случае с автоматической коробкой, функционирование робота невозможно без наличия электронной системы. Датчики следят за определенными рабочими характеристиками коробки, передают информацию блоку управления, где формируются команды исполнительным механизмам с учетом прописанных алгоритмов. Предусмотрен и ручной режим работы (как Типтроник на АКПП), благодаря которому водитель имеет возможность переключать передачи за счет органов управления – селектор или переключатели, расположенные под рулем.

 

Разновидности роботизированных коробок

Нередко робот является агрегатом, сконструированным на базе готового решения. Часто за основу узла инженеры берут гидромеханический автомат и внедряют фрикционное многодисковое сцепление. Также возможен вариант, когда классическая «механика» получает привод гидравлического или механического типа.

 

Коробка робот с электрическим приводом считается более простым и дешевым решением. Его основной недостаток – низкая скорость работы (0.3-0.5 с) с одновременным небольшим энергопотреблением. В такой коробке исполнительными механизмами выступают сервоприводы и механическая передача. В гидравлике задействованы специальные гидроцилиндры, которыми управляют электромагнитные клапаны.

 

Коробка с гидравликой работает шустрее, однако её функционирование подразумевает наличие в системе жидкости под давлением. Поддержка постоянного давления требует серьёзных энергетических затрат. Тем не менее, робот с гидравлическим приводом нашел свое применение на многих спортивных автомобилях, таких как Lamborghini Aventador, Ferrari 599GTO. Также его ставят на машины из среднего и премиум сегмента. Робот с электрическим приводом не составит труда обнаружить на недорогой современной машине. Рассмотрим детально распространенные модификации РКПП с двойным сцеплением.

 

DSG

Роботизированная коробка DSG считается наиболее «продвинутой» версией автомата. Её легко встретить на автомобилях концерна VAG. Пожалуй, это самая распространенная модификация РКПП с двойным сцеплением. То есть, это преселективная трансмиссия, переключающая передачи крайне быстро (буквально за доли секунд). Эффективность работы DSG значительно выше обычной АКПП. В ней первое сцепление отвечает за нечетные передачи, а второе за четные. В свою очередь коробки DSG принято делить на два вида – «мокрые» и «сухие». Первый вид – «мокрый» – появился первым и характеризуется наличием шести передач. Сцепление в такой DSG находится в масляной ванне, отсюда и название. Спустя время Volkswagen презентовали DSG-7. Это РКПП с «сухим» сцеплением. На практике считается более проблематичным вариантом.

 

Познакомиться подробнее с DSG (нажмите, чтобы прочитать статью)

 

Интересное видео на тему того, как работает роботизированная коробка ДСГ

 

Проблемы

 

Powershift

Роботизированная трансмиссия Powershift является разработкой компании Ford, поэтому и устанавливается на автомобили североамериканского концерна. Это преселективная КПП с двумя сцеплениями. В качестве исполнительных механизмов выступают сервоприводы, которыми управляет электронный блок, закрепленный на корпусе коробки. Если верить многочисленным отзывам, то Powershift более надежна конкурентной DSG. Однако это не делает её лидером рынка, так как получила те же недостатки, что и роботизированная КПП от Volkswagen.

 

Познакомиться подробнее с PowerShift (нажмите, чтобы прочитать статью)

 

S-tronic

Компания Audi входит в состав концерна VAG, но это не мешает ей разрабатывать собственные автомобильные трансмиссии. Так инженеры Audi создали преселективную коробку S-tronic, которая сильно напоминает DSG. Но есть некоторые существенные отличия. Сегодня S-tronic ставят преимущественно на автомобили с передним и полным приводом. В ней также два сцепления, что позволяет роботу работать беспрерывно в одном потоке и без потери мощности. Еще есть R-tronic – другая модификация РКПП от компании Audi. Отличается от S-tronic наличием гидропривода. Такая коробка переключает передачи примерно за 0.8 мс, а это серьёзный показатель динамичности.

 

Познакомиться с S-Tronic (нажмите, чтобы прочитать статью)

 

DCT M Drivelogic

Впервые роботом DCT M Drivelogic баварские инженеры оснастили BMW M3. Коробка может работать как в полностью автоматическом, так и в ручном режиме. В обоих случаях передачи переключаются с недостижимой механике и автомату скоростью. Водителю не нужно пользоваться селектором коробки передач. Достаточно переключить лепестковый элемент управления под рулем в нужное положение. Особенность DCT M заключается в наличии функции Drivelogic, которая позволяет водителю самостоятельно переключать передачи и переходить от спокойного стиля вождения к динамичному. Всего предусмотрено 11 программ – 5 для автоматического режима и 6 для ручного.

 

PDK

Роботизированная КПП от компании Porsche конструктивно является узлов, в корпусе которого помещены две механически коробки. Также конструкцией предусмотрено два сцепления, поэтому PDK относится к сегменту трансмиссий с двойным сцеплением. Функционирует робот за счет гидравлического привода и электронного блока управления. Всего предусмотрено семь передач, последняя с большим передаточным отношением снижает показатель расхода топлива. Пик динамики наблюдается с активной шестой скоростью. Коробка работает в двух режимах – автоматическом и ручном (полуавтоматическом). Сегодня PDK ставят на автомобили с мощными моторами – Porsche Panamera Turbo, Porsche 911 Turbo, Porsche Cayman.

 

Speedshift DCT

7-ступенчатая роботизированная КПП была разработана специально для мощных автомобилей концерна Mercedes Benz и подразделения AMG. Коробка отличается наличием четырех программ и функции старта Rage AMG Speedshift. Вместо привычного гидротрансформатора в Speedshift DCT задействована компактная муфта сцепления, работающая в масляной ванне – так называемое «мокрое» сцепление. От Других модификаций РКПП этот робот отличается небольшим весом – всего 80 кг. Сделать узел легким удалось за счет применение в его изготовлении его картера легкого магниевого сплава.

 

 

TCT

Компания Alfa Romeo недавно презентовала свою версию роботизированной коробки передач – Twin Clutch Transmission. В первую очередь её поставили на модель Giulietta, где она превосходно сочетается с бензиновым и дизельным мотором (разгон до «сотни» всего за 7.7 и 7.9 сек соответственно). Коробка TCT оснащена гидронасосом электрического типа, который обеспечивает работоспособность привода сцепления и механизма переключения передач. Проектировался узел при помощи специалистов компании LuK, имеющих огромный опыт в разработке и производстве автомобильных сцеплений. Некоторые конструктивные элементы TCT также выполнены из легких материалов, что делает коробку на 10 кг легче, чем классическая механика или вариатор.

 

Twin Clutch SST

Робот с двойным сцеплением Twin Clutch SST ставят на автомобили Mitsubishi, например, на Lancer Evolution и Outlander XL. Это спортивная коробка, в которой вместо гидротрансформатора исправно служат два механизма сцепления, помещенные в один корпус. Отличается тремя режимами работы, которые позволяют адаптироваться автомобилю под разные условия эксплуатации. Для городской езды подходит режим Normal Mode: переключение передач происходит плавнее и мягче, расход топлива минимальный. В режиме Sport Mode переход на высшие скорости происходит на высоких оборотах, что несколько увеличивает расход. Третий режим Super Sport Mode переключает скорости на максимально высоких оборотах. Его целесообразно использовать, когда требуется полностью реализовать динамический потенциал автомобиля.

 

Плюсы и минусы робота

 

Сегодня можно найти довольно большое число автовладельцев, положительно отзывающихся о роботизированной коробке. Особенно нравится автоматизированная трансмиссия начинающим водителям. Это и понятно, ведь для управления автомобилем достаточно нажимать педаль тормоза и газа, а электронная система самостоятельно включит нужную передачу. Отсюда вытекают главные преимущества КПП:

 

  • высокий комфорт;
  • удобство;
  • простота использования;
  • высокая скорость переключения передач;
  • экономия топлива в городском цикле;
  • конструктивная схожесть с механикой, что придает агрегату дополнительную надежность, если сравнивать с тем же вариатором;
  • возможность переключения ступеней в ручном режиме.

 

Как показывает практика, расход бензина автомобилем коробкой-роботом при одинаковых условиях в городском цикле на 20% меньше, чем у транспортного средства с привычным автоматом. Однако такое устройство далеко неидеальное. Также в процессе эксплуатации авто можно ощутить некоторые недостатки узла:

 

  1. высокая стоимость обслуживания и ремонта;
  2. непродолжительные задержки в переключении передач;
  3. дешевые модели не позволяют провести адаптацию под конкретный стиль вождения.

 

Специалисты прогнозируют, что по мере увеличения автомобилей с роботом, развитием технологий ремонта и обслуживания этой коробки со временем станет более доступным и дешевым ремонт агрегата. Тот самый электронно-гидравлический блок, или просто «мехатроник», является самой дорогостоящей деталью в DSG. Еще несколько лет назад в случае его даже не самой критичной поломки дилеры, не думая, ставили вердикт – замена устройства. Сейчас хватает специализированных сервисов, выполняющих простые и сложные ремонты «мехатроника».

 

Основные отличия от автоматической коробки

Автоматическая коробка не утратила актуальности ни с появлением вариатора, ни с появлением роботизированной трансмиссии. Это по-прежнему довольно надежный, а главное хорошо изученный агрегат. Сходство в том, что и автомат, и робот обеспечивают плавный переход с одной передачи на другую. На этом всё. Гораздо больше отличий. Главная разница между этими двумя коробками заключается в следующем:

 

  1. В АКПП не предусмотрено жесткое сцепление с двигателем;
  2. Робот ощутимей снижает нагрузку на мотор за счет максимально коротких переключений передач;
  3. С автоматической КПП автомобиль уступает в плане динамики;
  4. Новые РКПП еще недостаточно хорошо изучены, окончательно неизвестен ресурс этих агрегатов, чего нельзя сказать об АКПП.

 

Возможно, автомат даже накладней обслуживать, а вот что касается ремонта, то здесь и говорить нечего. Автоматическую коробку перебирают на каждом шагу, хватает и грамотных специалистов, способных в кратчайшие сроки восстановить агрегат после серьёзной поломки. В случае с РКПП ситуация ровно обратная.

 

Заключение

Мы выяснили, что такое коробка робот. Очевидно, что будущее за конструктивно и функционально совершенными автомобильными системами. Но процесс окончательного усовершенствования робота еще не начался. Перед покупкой автомобиля нужно четко уяснить для себя, каким требованиям он должен отвечать. Сказать точно, что лучше – робот или автомат – крайне сложно. И, наверное, никто не возьмется за это. Поэтому каждый автомобилист должен на основании всех плюсов и минусов определить для себя, какой тип трансмиссии удовлетворит все запросы и потребности.

Что такое робот-подборщик?

Роботы для захвата и размещения обычно используются в современных производственных средах. Автоматизация подбора и размещения ускоряет процесс подбора деталей или предметов и их размещения в других местах. Автоматизация этого процесса помогает увеличить производительность. Роботы для захвата и размещения выполняют повторяющиеся задачи, позволяя людям сосредоточиться на более сложной работе.

Как работают роботы по подбору и укладке

Обычно роботы по подбору и укладке устанавливаются на устойчивую стойку и располагаются так, чтобы дойти до разных участков для выполнения работы.Они используют передовые системы зрения для идентификации, захвата и перемещения объектов из одного места в другое. Имея множество вариантов конструкции, роботы для захвата и размещения могут быть сконфигурированы с различными вариантами инструментов на конце руки для использования в различных приложениях, таких как сборка, упаковка или сбор мусора. Например, роботы по подбору и размещению могут использоваться для подбора предметов для заказа и помещения их в коробку для упаковки, или они могут использоваться для подбора деталей, необходимых для сборки, и перемещения их в следующее место.

Типы роботов для захвата и размещения

Существует несколько типов роботов для захвата и размещения, в том числе:

  • Роботизированная рука — Роботизированная рука является наиболее распространенным типом роботов для захвата и размещения. 5-осевой робот-манипулятор может использоваться для стандартных задач захвата и размещения, когда объекты собираются и перемещаются в другие места в одной плоскости. 6-осевой робот-манипулятор используется для более сложных приложений, например, когда объекты необходимо повернуть или переориентировать перед размещением в другом месте.
  • Декартова — Подобно 6-осевой роботизированной руке, декартовы роботы работают в нескольких плоскостях. Эти роботы перемещаются по трем ортогональным осям (X, Y и Z) с использованием декартовых координат. Они могут быть сконструированы с любым типом линейного привода и несколькими типами приводных механизмов, такими как ременные, шариковые или ходовые винтовые механизмы. Как правило, они имеют лучшую точность позиционирования по сравнению с 6-осевыми роботизированными манипуляторами.
  • Delta — Роботы Delta, которые часто используются в приложениях, где роботы собирают элементы группами и помещают их в шаблоны сборки или контейнеры, обладают передовыми технологиями технического зрения, которые позволяют им различать различные размеры, формы и цвета.Есть несколько конфигураций роботов Delta, но большинство из них имеют три руки, которые работают по четырем осям. У них есть тяжелые двигатели, прикрепленные к раме, с легкими рычагами, соединенными с соединительными стержнями с шарнирами на обоих концах каждого рычага (обычно шаровыми шарнирами), чтобы обеспечить движение.
  • Fast pick — Роботы Fast Pick идеальны для использования в средне- и крупносерийных приложениях с высокоскоростными артикулами. Роботы для быстрого подбора полностью автоматизируют процесс подбора, освобождая человеческий персонал, чтобы сосредоточиться на более эффективных действиях.Они идеально подходят для быстро продвигающихся товаров для пополнения запасов, таких как рекламные товары, добавляемые к заказам, или аккумуляторы. Эти роботы могут забирать до 300 SKU в час из пула до 8 SKU.
  • Совместная работа — Совместные роботы дополняют работу людей, помогая сотрудникам выбирать места и направляя сотрудников при выполнении каждой задачи. Оптимизируя маршруты в режиме реального времени и удерживая сотрудников при выполнении задач, совместные роботы помогают сотрудникам работать более эффективно.

Приложения для роботов по подбору и размещению

Роботы по подбору и размещению часто используются в производстве, но также используются в таких приложениях, как упаковка, сбор и контроль ящиков.Вот несколько наиболее распространенных приложений для роботов, занимающихся подбором и размещением, и способы их использования.

  • Сборка — Роботы для захвата и размещения, используемые при сборке, захватывают поступающие детали из одного места, например конвейера, и помещают или прикрепляют деталь к другой части изделия. Затем две соединенные детали транспортируются на следующую сборочную площадку.
  • Упаковка — Роботы для захвата и размещения, используемые в процессе упаковки, захватывают предметы из входящего источника или обозначенной области и помещают их в упаковочный контейнер.
  • Подбор ящиков — Роботы подбора и размещения, используемые в приложениях подбора ящиков, захватывают детали или предметы из ящиков. Эти роботы для захвата и размещения обычно имеют передовые системы технического зрения, позволяющие им различать цвет, форму и размер, чтобы выбирать нужные предметы даже из ящиков, содержащих случайно перемешанные предметы. Затем эти детали или элементы отправляются в другое место для сборки или упаковки.
  • Инспекция — Роботы для захвата и размещения, используемые для инспекций, оснащены передовыми системами технического зрения, позволяющими захватывать объекты, обнаруживать аномалии и удалять дефектные детали или предметы, помещая их в указанное место.

Преимущества роботов для захвата и размещения

Основными преимуществами роботов для захвата и размещения являются скорость и постоянство. Роботов можно настроить в соответствии с конкретными производственными требованиями, и они легко программируются, поэтому их можно использовать для нескольких приложений. Хотя конструкции различаются, роботы для захвата и размещения часто бывают небольшими по размеру и легкими, что делает их идеальными для использования в приложениях с ограниченным пространством.

Роботы для подбора и размещения помогают увеличить объем производства, помогая в процессах подбора и упаковки на складе.Они также обеспечивают хорошую рентабельность инвестиций для производителей. В обоих случаях роботы для подбора и размещения освобождают сотрудников и операторов от монотонной повторяющейся работы, что повышает производительность и снижает физическую нагрузку на рабочих, которая обычно возникает при выполнении таких задач.

Как выбрать подходящего робота для захвата и размещения

Роботы для захвата и размещения могут выполнять практически все операции по перемещению материалов экономически и эффективно — будь то сборка деталей, сбор бункеров или упаковка.Поскольку на рынке доступно несколько конструкций и конфигураций, может быть сложно выбрать тот, который соответствует вашим эксплуатационным потребностям. Чтобы помочь вам принять правильное решение, давайте рассмотрим некоторые факторы и особенности, на которые следует обратить внимание при покупке робота для захвата и размещения.

Количество осей

Количество осей определяет степень свободы и движения робота подбора и размещения. Как правило, большее количество осей означает большее движение и гибкость, поэтому лучше иметь больше осей, чем меньше.Для приложений выполнения заказов, в которых товары помещаются на конвейер, сборный бункер или непосредственно в упаковочный контейнер, робот должен иметь от четырех до пяти осей. Шесть или более осей предпочтительнее для приложений, в которых робот должен вращаться или двигаться линейно для выполнения задач в пределах его рабочего диапазона.

Вылет

Вылет — это часть рабочего диапазона, который описывает максимальное расстояние (по горизонтали и вертикали), в пределах которого робот захвата и размещения может обрабатывать предметы.Поскольку робот должен собирать и размещать предметы с высокой точностью, вам следует оценить его радиус действия, чтобы определить, подходит ли он для ваших операций. Максимальный горизонтальный вылет — это расстояние от центра базы робота до самой дальней точки его захвата или настраиваемого конца рычага. Максимальный вертикальный вылет робота измеряется от самой низкой точки, которую может достичь робот (обычно от его основания), до максимальной высоты, которую может поднять запястье.

Повторяемость

Повторяемость описывает способность робота подбирать и опускать предметы в одном и том же месте для каждой выполняемой им процедуры.Для высокоточных работ (таких как создание электронной платы) требуются роботы с превосходной повторяемостью и радиусом нулевого допуска. Правильный робот для захвата и размещения должен соответствовать радиусу допуска для вашего целевого приложения — примерно (<0,5 мм) для операций по выполнению заказов.

Скорость

Для повышения производительности и эффективности вам понадобится робот для подбора и укладки, который сможет последовательно выполнять ваши операции по перемещению материалов с необходимой скоростью.В технических характеристиках робота обычно указывается скорость (в градусах в секунду) от 0 до максимальной скорости. Убедитесь, что робот-подборщик может выполнять операции со скоростью (и выше), необходимой для вашей операции. Кроме того, лучше всего приобрести робота для захвата и размещения с максимальной скоростью, который может комфортно справляться с периодами пикового спроса.

Конфигурация и видение

Роботы для захвата и размещения могут быть:

  • Шарнирно-сочлененный робот (закрепленный с помощью поворотных рычагов на трех вертикальных осях)
  • Сферический робот, обеспечивающий одно линейное и два вращательных движения
  • Цилиндрический робот обеспечение движения по горизонтальной, вертикальной и вращательной осям

Хотя большинство роботов для захвата и размещения являются гибкими, они ограничены своими размерами, насадками для работы с продуктом и широтой движения.Эти характеристики влияют на то, где они могут быть развернуты и с какими предметами они могут обращаться. Кроме того, система визуального контроля должна быть достаточно сложной, чтобы идентифицировать несколько предметов из пула артикулов.

Полезная нагрузка

Полезная нагрузка — это максимальный вес, который робот может передать из одной точки в другую. Он включает в себя вес собираемого продукта и вес инструмента, на котором находится рука робота. Робот-подборщик должен уметь поднимать самый тяжелый предмет из вашего инвентаря, полностью вытягивать руку и точно размещать указанный предмет.

Сколько стоит сборщик и установка роботов?

Логистические операторы могут получить огромную выгоду от развертывания подходящих роботов для подбора и размещения на своих складах. В связи с тем, что пандемия коронавируса нарушает цепочки поставок по всему миру, для предприятий как никогда важно автоматизировать деятельность по выполнению заказов, чтобы идти в ногу с растущим спросом потребителей и сокращением предложения рабочей силы.

Роботы по подбору и размещению точно, точно и надежно выполняют задачи по подбору, не делая перерывов и не будучи подверженными усталости, монотонности и отвлекающим факторам окружающей среды.Хотя такая автоматизированная точность должна быть дорогостоящей, предварительная стоимость робота по подбору и размещению по оценкам оценивается в несколько тысяч долларов.

Время установки незначительно, поскольку компаниям не нужно вносить серьезные изменения в инфраструктуру своих складских помещений. Правильные роботы по подбору и размещению могут начать работать почти сразу после того, как они будут установлены и запрограммированы, и могут сразу же начать повышать уровень производительности.

Несмотря на высокий уровень современных технологий, используемых при создании роботов для захвата и размещения, они требуют минимального обслуживания.Используя надлежащие методы очистки и инструкции по техническому обслуживанию, предприятия могут выполнять все необходимое техническое обслуживание на месте. Это значительно снижает общую стоимость владения роботом-подборщиком по сравнению с другими технологиями автоматизации склада.

Инвестиции в роботов для захвата и размещения позволяют компаниям получить конкурентное преимущество и максимизировать производительность своих предприятий.

Узнайте больше о Fast Lane от 6 River Systems, полностью автоматизированном решении для подбора высокоскоростных SKU.

.www | ГМУНК

сентябрь 2013 ––

Во время сотрудничества с безумно безумными гениями в Bot & Dolly в прекрасном Сан-Франциско, Манковиц получил задание Design Direct создать поистине уникальную вещь под названием BOX. Изначально предполагалось, что произведение будет функционировать как технологическая демонстрация, но Мунковиц и команда быстро осознали его визуальный потенциал и превратили его в предмет дизайна и исполнения.

Получившийся в результате короткометражный фильм — единственное в своем роде визуальное и технологическое достижение благодаря особому сочетанию таланта и оборудования за дверями предприятия B&D, и был принят во всем мире с неожиданными похвалами и демонстрацией в Интернете и на других ресурсах. фестивальный цикл — все благодаря огромному количеству любви и страсти, вложенных в проект.

Концепция


–– Проекция

В основе пьесы лежали Принципы сценической магии с использованием пяти основных категорий иллюзий. Эти категории во многом определили концептуальную и эстетическую основу и были объединены с эстетикой графического дизайна, наполненной минималистичными формами и иллюминированной фрактальной геометрией.

Затем это направление было помещено в проекционную физическую инсталляцию, где вся «магия» была зафиксирована вживую и в камере, снята в документальном стиле без пост-эффектов или обработки, чтобы все выглядело аутентичным и реальным.По сути, огромные технологии за кулисами полностью скрыты от зрителя методами, используемыми для съемки представления.

Подход к проектированию


–– Теория иллюзий в дизайне

Подход к дизайну фильма заключался в том, чтобы Графика была проинформирована Черно-Белым Искусством Оптических Облаков в качестве основного визуального катализатора. Было логично, что визуально, если произведение будет основано на принципах магии и иллюзий, графика также впишется в эту теорию иллюзий в дизайне.Эта эстетика была применена ко всем произведениям искусства в КОРОБКЕ, и она эволюционировала на протяжении всего произведения по мере изучения Принципов, чередующихся между затененной объемной графикой и самосветящейся геометрией.

Во-вторых, дизайн освещения и стиль съемок в значительной степени основывались на эстетике «Нуар» 40-х и 50-х годов, когда использовалась черно-белая палитра и очень стилизованное минимальное освещение для создания очень театрального изображения; поскольку с точки зрения эстетики дизайна имело смысл отдать дань уважения тому периоду для произведения, основанного на такой вневременной форме искусства, как магия.

И, наконец, финальная часть головоломки заключалась в создании звуковой среды, которая способствовала психоделической природе дизайна; по сути, выстраивая эмоциональную дугу по всему произведению, когда оно переходит от таинственных объектов внутри Коробки к ярко освещенной и открытой демонстрации технологий и, в конечном итоге, достигает своей кульминации в виде полностью реализованного перформанса. Множество аналоговых синтезаторов использовалось самим мастером Soviet Rouge, которые идеально вписывались в концептуальные реплики и визуальную палитру пьесы.

Преобразование

–– Глава 01 Первый принцип Магии, исследуемый в этой пьесе, — это Трансформация, где КОРОБКА трансформируется из одного состояния в другое, во многом как шелковый носовой платок, меняющий цвет, или типичный карточный трюк, меняющий одну масть на другую … В данном случае Трансформация было достигнуто за счет того, что КОРОБКА сначала реагировала на прикосновение и жест персонажа, а затем на его движение, что делало Геометрию и Объем Коробки этими действиями.

Было исследовано множество визуальных стилей, чередующихся между Затененной графикой, Оп-артом, Освещенными кубами и Каркасами.

Левитация

–– Глава 02

Второй принцип Magic — это левитация, где так же, как фокусник бросает вызов гравитации и парит в нескольких дюймах от пола, холст начинает отрываться от земли и соприкасаться с сюрреалистическим. Появляется еще один холст, и вместе стая сфер взаимодействует с освещенным туннелем, создавая иллюзию левитации объектов и перехода с одного холста на другой.

Ближе к концу раздела сферы возвращаются как одна сверхмощная Электросфера, которая является визуальной кульминацией раздела, затрагивая тему Восстановления, другого Принципа Магии.

Перекресток

–– Глава 03

Третий принцип Magic на самом деле называется «Проникновение», но поскольку мы все — кучка мальчишек, мы не могли справиться с этим названием, поэтому термин «пересечение» использовался для того, чтобы все оставались взрослыми. Для этого принципа, который основан на идее прохождения одного объекта через другой — то есть набора стальных колец, соединяющихся и разъединяющихся, или мечей, проходящих через помощника в корзине — графическое решение заключалось в том, чтобы два холста взаимодействовали друг с другом, в то время как визуализация визуального эффекта «Solid-through-Solid».

Таким образом, используя общую центральную область пересечения, было визуализировано множество графических выдавливаний и углублений, чтобы создать глубину и интригу при выполнении этого Принципа Магии.

Телепортация

–– Глава 04

Четвертый принцип Магии — это телепортация, когда маг заставляет что-то перемещаться из одного места в другое — заимствованное кольцо находится внутри клубка шерсти, канарейка внутри лампочки, помощник из шкафа в заднюю часть театра, монета из одной руки в другую и т. д.В этом разделе призма постоянно дублирует себя с каждым состоянием внешнего вида, в конечном итоге превращаясь в додекаэдр, который затем переносится между холстами в потоке роботизированного движения.

В конце концов, Додекаэдр становится легким объектом и путешествует по длинному глубокому коридору, в конце концов снова распадается на части и падает в глубокую пропасть, выступающую на полу.

Escape

–– Глава 05

Пятый и последний Принцип магии, по определению, заключается в том, что мага помещают в ограничивающее устройство (т.е., наручники или смирительную рубашку) или смертельную ловушку, и сбегает в безопасное место. Примеры включают в себя то, что его надевают смирительной рубашкой и помещают в переполненный резервуар с водой, связывают и помещают в автомобиль, проходя через автомобильную дробилку.

В приложении BOX Demo персонаж «захвачен» единой геометрией холста, а затем раскрывается в Box, где персонаж затем перемещается в объеме, поскольку геометрический свет падает позади него. В подходящем крещендо открывается гигантский алмазный портал, где персонаж сбегает из объема, путешествуя по коридору, интерактивное освещение освещает его конечности, когда он уносится к Спасению.

Процесс

–– Объединение отраслей Процесс создания части был довольно сложным, сочетая традиционные инструменты графического дизайна и анимации с роботизированной анимацией, проекционным картированием, автоматизированной кинематографией и другими технологиями, уникальными для студии. Задача заставить графический дизайн сначала интегрироваться с роботами, перемещающимися в физическом пространстве, а затем поддерживать его визуальную точность при проецировании, требовала множества итераций, поскольку то, что хорошо выглядит на экране, не всегда переводится в проецируемые и снятые изображения.

В конце концов, была разработана довольно сложная система для визуализации дизайна почти в точности так, как задумано; Да и крутой проектор 4K тоже не повредил. Для получения дополнительной информации в The Creator’s Project есть прекрасная короткометражка о проекте, которую стоит посмотреть.

Воспоминания


–– Дети веселятся

Эта команда была одной из лучших на сегодняшний день, и не только из-за огромного таланта каждого члена в соответствующем опыте. С дядей Джеффом, многочасовой и сложной креативной работой, эта команда всегда была сплочена, доверяла друг другу и чертовски весело проводила время.

В результате этот восхитительный танцевальный ансамбль был вырезан, чтобы передать дух проекта, мастерски отредактированный единственным и неповторимым Яном Колоном — им действительно понравилась эта калибровочная палочка PhaseSpace. Было очень весело создавать этот невероятно богатый проект; один из лучших когда-либо. Всегда.

BOX Credit List



Производственная компания: BOT & DOLLY
Исполнительные продюсеры: Билл Галуша, Ник Рид
Исполнительный креативный директор: Джефф Линнелл
Креативный и технический директор: Тарик Абад.
Директор по дизайну: Брэдли Дж. Манковиц
Ведущие графические дизайнеры: Брэдли Дж. Манковиц, Джейсон Инглиш Керр
3D-художники: Скотт Пагано, Брэдли Дж. Манковиц, Джейсон Инглиш Керр, Конор Гребель
Конористы: 2D-художники: , Бен Хокинс, Педро Фигера
Оператор-постановщик: Джо Пикард
Художники по свету: Джо Пикард, Фил Рейнери
Проекционный / сенсорный дизайнер: Фил Рейнери
Робототехника Анимация: Тарик Абдель-Гавад, Брэндон Кувад Джордж Бэнкс, Майкл Бердсворт
Оператор робототехники: Майкл Бердсворт, Брэндон Круисман 901 21 Изготовление пропов: Мэтт Биттерман, Итан Дейл
Руководитель сценария: Ян Колон
Звукорежиссеры: Джо Пикард, Майкл Бердсворт
PAs: Шон Сервис, Дакота Смит, Нико Мизоно, Эрик Вендел Патрик Уолш1 Редакторы: Эшли Родхольм, Ян Колон
Музыка / звуковой дизайн: Кейт Руджеро
Звуковой микс: Джоэл Раабе
Исполнители: Тарик Абдель-Гавад, Ирис, Скаут

Робот захвата и установки Рука и движение, контролируемое беспроводным радиочастотным модулем

Робот захвата и размещения — это робот, который используется для подбора объекта и размещения его в желаемом месте.Это может быть цилиндрический робот, обеспечивающий движение по горизонтальной, вертикальной и вращательной осям, сферический робот, обеспечивающий два вращательных и одно линейное движение, шарнирный робот или робот-скара (неподвижные роботы с вращающимися руками по 3 вертикальным осям).


Преимущества

Прежде чем двигаться дальше, давайте рассмотрим несколько причин, по которым предпочтение отдается роботам, занимающимся подбором и размещением:

  • Они быстрее и могут выполнять работу за секунды по сравнению с их человеческими аналогами.
  • Они гибкие и имеют соответствующую конструкцию.
  • Они точные.
  • Они повышают безопасность рабочей среды и никогда не устают.

Детали робота Pick N Place Robot

Pick N Place Robot

Давайте посмотрим, из чего на самом деле состоит робот Pick and Place:


  • Rover : это основной корпус робота, состоящий из нескольких жестких тела, подобные цилиндру или сфере, соединениям и звеньям. Он также известен как манипулятор.
  • Концевой эффектор : Это корпус, соединенный с последним шарниром марсохода, который используется для захвата или перемещения объектов. Это может быть аналогия руки человека.
  • Исполнительные механизмы : Они являются драйверами робота. Это фактически приводит в действие робота. Это может быть любой двигатель, например серводвигатель, шаговый двигатель, пневматические или гидравлические цилиндры.
  • Датчики: Они используются для определения внутреннего, а также внешнего состояния, чтобы убедиться, что робот в целом работает плавно.Датчики включают сенсорные датчики, ИК-датчик и т. Д.
  • Контроллер : Он используется для управления исполнительными механизмами на основе обратной связи датчика и, таким образом, управления движением каждого сустава и, в конечном итоге, движением концевого эффектора.

Работа простого робота Pick N Place Robot:

Основная функция робота Pick and Place выполняется его шарнирами. Суставы аналогичны суставам человека и используются для соединения двух последовательных твердых тел в роботе. Они могут быть поворотными или линейными.Чтобы добавить шарнир к любому звену робота, нам нужно знать о степенях свободы и степенях движения этой части тела. Под степенями свободы понимается линейное и вращательное движение тела, а под градусами движения подразумевается количество осей, по которым тело может перемещаться.

Простой робот для захвата и размещения груза

Простой робот для захвата и размещения состоит из двух твердых тел на подвижном основании, соединенных между собой поворотным шарниром. Поворотный шарнир — это шарнир, который обеспечивает вращение на 360 градусов вокруг любой из осей.

  • Дно или основание крепятся колесами, которые обеспечивают линейное перемещение.
  • Жесткое тело 1 st закреплено и поддерживает второе жесткое тело, на котором установлен концевой эффектор.
  • Твердый корпус 2 nd имеет движение по всем 3 осям и имеет 3 степени свободы. Он соединен с корпусом 1 st поворотным шарниром.
  • Концевой эффектор должен иметь все 6 степеней свободы, чтобы достигать всех сторон компонента и занимать положение на любой высоте.

В целом, базовый робот для захвата и размещения работает следующим образом:


  • Колеса под основанием помогают перемещать робота в желаемое место.
  • Жесткое тело, поддерживающее концевой эффектор, изгибается или выпрямляется, чтобы достичь положения, в котором находится объект.
  • Концевой эффектор крепко захватывает объект и помещает его в желаемое положение.

Теперь, когда у нас есть краткое представление о роботе для захвата и размещения, основной вопрос заключается в том, как им фактически управлять.

Простым роботом для захвата и размещения можно управлять, управляя движением его рабочего органа. Движение может быть с использованием гидравлического движения, то есть с использованием гидравлической жидкости под давлением для привода робота, или с использованием пневматического движения, то есть с использованием сжатого воздуха для создания механического движения. Однако наиболее эффективным способом является использование двигателей для обеспечения требуемого движения. Двигатели должны управляться, чтобы обеспечить необходимое движение роботу и рабочему элементу.

Рабочий пример управления роботом Pick N Place

Как насчет управления роботом с помощью всего нескольких кнопок на клавиатуре? Да, это возможно! Просто нажав нужную кнопку, мы можем передать роботу команду, чтобы он двигался в любом направлении для достижения нашей задачи.Более того, этого можно достичь с помощью простой беспроводной связи.

Давайте посмотрим, как это работает на самом деле:

Передатчик состоит из клавиатуры, соединенной с микроконтроллером. Любой номер кнопки в десятичном формате преобразуется микроконтроллером в 4-значное двоичное, и параллельный выход на одном из его портов подается на кодировщик. Кодер преобразует эти параллельные данные в последовательные, и они поступают в передатчик, снабженный антенной для передачи последовательных данных.Блок-схема

, показывающая передатчик робота Pick N Place

Сторона приемника состоит из декодера, соединенного с микроконтроллером. Декодер преобразует полученную команду из последовательного формата в параллельную и передает эти данные микроконтроллеру. На основе этой команды микроконтроллер отправляет соответствующие входные сигналы драйверам двигателей для управления соответствующими двигателями. Блок-схема

, показывающая приемник робота Pick N Place.

Система состоит из двух двигателей, обеспечивающих движение всего робота, и двух других двигателей, обеспечивающих движение руки.Концевым эффектором или захватом необходимо управлять, чтобы оказывать необходимое давление на объект для эффективного обращения с ним и обеспечения мягкого захвата. Это обеспечивается за счет управления двигателями рычагов с помощью соответствующей команды. Выход двигателей рычага подключен к резистору 10 Ом / 2 Вт, и во время перегрузки двигателя или состояния блокировки на резисторе создается высокое напряжение, которое вызывает высокий логический уровень на выходе оптоизолятора и прерывание. Контакт микроконтроллера, подключенный к выходу оптоизолятора через pnp-транзистор, получает низкий логический сигнал, который останавливает все остальные операции захвата.

Таким образом, с помощью простой радиочастотной связи мы можем фактически управлять роботом для захвата и размещения.

Практическое применение робота для захвата и установки:

  • Защитные приложения : Его можно использовать для наблюдения, а также для захвата вредных объектов, таких как бомбы, и их безопасного распространения.
  • Промышленное применение : Эти роботы используются в производстве, чтобы подбирать необходимые детали и размещать их в правильном положении для сборки оборудования.Его также можно использовать для размещения предметов на конвейерной ленте, а также для сбора дефектных продуктов с конвейерной ленты.
  • Медицинские приложения : Эти роботы могут использоваться в различных хирургических операциях, таких как операции по замене суставов, ортопедические и внутренние хирургические операции. Он выполняет операции с большей точностью и аккуратностью.

Помимо этих приложений, эти роботы могут также использоваться в различных других приложениях, подходящих для человечества.

Остается вопрос: как далеко наступит день, когда роботы полностью упростят путь людям?

Техника управления | Основные принципы коллаборативных роботов

Быстрая установка, простое программирование, гибкое развертывание и безопасная работа — четыре основных принципа, определяющих совместных роботов.Многие люди ошибочно считают, что проектирование коллаборативных роботов связано только с безопасностью; это просто стоимость входа.

Обновление внутренних функций коллаборативного робота усилило каждый из этих четырех основных принципов. Встроенная функция измерения крутящего момента, функции безопасности и повышенная точность позволяют ускорить интеграцию в широкий спектр перспективных приложений. Повышенная повторяемость делает совместных роботов подходящими для точной отделки, сборки и электронных задач.

Встроенные датчики силы крутящего момента

Коллаборативный робот со встроенными датчиками крутящего момента позволяет сразу же применять крутящий момент и упрощает обучение роботов.

В приложении для полировки с использованием того же инструмента для полировки, что и человек, коллаборативный робот может использовать ручной инструмент. В отдельной демонстрации захват опускается до тех пор, пока не почувствует небольшое сопротивление. Затем открывается и захватывает деталь. Нет необходимости во внешнем датчике для определения контакта со встроенными датчиками крутящего момента силы.

Сотрудничество человека и машины

Производство должно учитывать человеческую ценность и безопасность, мастерство и понимание потребителей, материалов и процессов.Это основные составляющие создания стоимости фабрики. Эту ценность создают не только роботы; люди, работающие с роботами, также создают большую ценность для компании.

Такие тенденции, как массовая персонализация, предполагают использование технологий для возвращения человеческой ценности, улучшения производства. Совместные роботы — это то, что нужно компаниям для производства персонализированных продуктов, которые требуются потребителям.

Вдали от отгороженных промышленных роботов, которые заменяют людей автоматизированными процессами, роботы для совместной работы улучшают человеческое мастерство за счет скорости, точности и точности, необходимых для создания современных продуктов.Совместные роботы несут человеческое прикосновение к массам.

Юрген фон Холлен — президент Universal Robots. Под редакцией Марка Т. Хоске, контент-менеджера, Control Engineering, CFE Media , [email protected].

КЛЮЧЕВЫЕ СЛОВА: Коллаборативный робот, определение силы / момента

Совместные роботы проще интегрировать благодаря встроенным функциям измерения силы и крутящего момента.

Люди и роботы могут совместно работать в производственных приложениях.

Роботы для совместной работы могут улучшить человеческое мастерство за счет скорости, точности и точности.

УЧИТЬСЯ

Как совместные роботы могут помочь людям в ваших производственных приложениях?

ОНЛАЙН ЭКСТРА

Universal Robots предоставляет дополнительную информацию о линейке коллаборативных роботов серии e.

См. Соответствующие новые продукты для инженеров на сайте www.controleng.com/NP4E

Знать принцип работы робота для предотвращения препятствий

Введение

Слишком сложно представить нашу жизнь без офисного программного обеспечения, ноутбуков, планшетов с мобильными приложениями и браузеров.Поскольку мы применяем эти инструменты почти каждый день, учащимся необходимо понимать принципы их работы. Это огромный плюс, если человек знает, как избавиться от ошибок в компьютере и вернуть его в рабочее состояние. Точно так же еще труднее держаться подальше от темы «робот, избегающий препятствий».

Программирование — совершенно расплывчатый предмет, особенно для молодых умов и учащихся, которым нужен практический опыт, а не абстрактные концепции. С другой стороны, детские роботы намного нагляднее и нагляднее, поэтому их легче понять.С помощью робототехники учащиеся могут создавать роботов, отслеживать, как корректировать код, изменять свое поведение, определять, что работает неправильно, и исправлять ошибки. Бьюсь об заклад, молодым людям никогда не будет скучно только потому, что они будут постоянно вовлечены в работу, проектировать и анализировать, как они выполняют команды. И один из таких интересных и удивительных студентов-роботов, которые в настоящее время проявляют интерес к созданию, — это «Робот, избегающий препятствий, использующий Arduino».

В настоящее время многие отрасли промышленности используют роботов из-за их высокого уровня производительности и надежности, что является большим подспорьем для людей.Такая робототехника используется для обнаружения препятствий и предотвращения столкновений. Конструкция такого робота для уклонения от препятствий требует интеграции многих датчиков.

Хотите знать, как это работает и какие датчики необходимы для точной работы? Этот пост вас расскажет.

Принцип работы / Как это работает?

Источник

Робот для объезда препятствий использует ультразвуковые датчики, помогающие машине двигаться. Для выполнения желаемой операции используется микроконтроллер.Двигатели робота для объезда препятствий подключены через микросхему драйвера двигателя к микроконтроллеру.

Каждый раз, когда робот, избегающий препятствий, движется по заданному пути, ультразвуковой датчик непрерывно передает ультразвуковые волны от своей сенсорной головки. Таким образом, всякий раз, когда на пути встречается какое-либо препятствие, объект отражает ультразвуковые волны. Вскоре информация передается в микроконтроллер, который отвечает за управление двигателями слева, справа, сзади и спереди на основе ультразвуковых сигналов.

Типы датчиков, используемых для предотвращения препятствий Роботизированный автомобиль

Обнаружение препятствий

Инфракрасные датчики используются для обнаружения препятствий для робота, уклоняющегося от препятствий, за которым следует выходной сигнал датчика, который затем отправляет сигнал на микроконтроллер. Микроконтроллер управляет транспортным средством с помощью двигателя постоянного тока, установленного в транспортном средстве. Если внутри ИК-датчика появится какое-либо препятствие, микроконтроллер немедленно остановит автомобиль, и включится сирена.Затем, всего через несколько минут, робот немедленно проверит статус пути. Если препятствие устранено, робот тут же движется вперед. В противном случае он вернется к месту начала движения. Датчик выдает импульс на хост, который прекращается при обнаружении эха; следовательно, считается, что ширина от одного импульса к другому дает результаты в отношении расстояния до объекта.

Обнаружение пути

Обычная причина — оба датчика выдают ориентиры, и робот следует за ними, двигаясь прямо по траектории.Как только линия заканчивается, робот разворачивается на 180 и возвращается на то же место. Но тогда для чего нужен датчик приближения? Ну, он используется для определения пути. Если подходящий датчик не обнаружен на кривой, микроконтроллер активирует левый двигатель, чтобы повернуть налево. При обнаружении сигнала робота, уклоняющегося от препятствия Arduino, моторы активируются, чтобы двигаться вперед. Когда линия заканчивается, робот разворачивается на 180 и возвращается в то же место.

Ультразвуковой датчик

Этот датчик используется только для обнаружения препятствия и имеет тенденцию передавать ультразвуковые волны от своей сенсорной головки.Затем он снова принимает ультразвуковые волны, отраженные от объекта. Этот датчик слишком компактен и обладает очень высокими характеристиками.

Заключение

Уроки STEM необходимы студентам, поскольку они готовятся к работе в 21 веке. С помощью роботов Arduino, избегающих препятствий, учащиеся узнают больше, чем просто «как кодировать». Мало того, они обладают высокой квалификацией в лидерстве, участии сообщества, общении на различных технологических платформах, поиске своих увлечений и командной работе, что позволит им добиться успеха далеко после школьных лет.

Изучение робототехники с помощью заданий Stem для детей поможет заложить основу для будущей карьеры учащегося. Кроме того, набор робототехники для студентов, предлагаемый Sparklebox, позволяет развивать технические и межличностные навыки, которые потребуются им для влияния на экономику в будущем.

Итак, если вы ищете Arduino, избегающую машин с препятствиями, зайдите сюда и купите его для своего маленького чемпиона.

Пусть он сверкает этими удивительными коробками от Sparklebox!

Если вам это понравилось, вам также может понравиться…

5 уловок, которые сделают математику интересной и увлекательной для вашего ребенка, в том числе с помощью наборов для математики!

6 лучших игрушек для творчества и рукоделия для начинающего художника

Самостоятельное обучение с помощью учебных комплектов для детей

Глоссарий терминов по робототехнике | Определения и примеры робототехники

Термины, определения и примеры робототехники

Функция графического 3D-дисплея
Функция трехмерного графического отображения (далее именуемая функцией трехмерного отображения) заключается в том, что трехмерная модель робота отображается в окне подвесного программирования, и может быть подтверждено текущее значение робота.Используя многооконную функцию, позиция обучения задания, отображаемая в содержании задания, также может быть подтверждена в окне 3D-дисплея. Если функция функциональной безопасности активна, также может отображаться диапазон функциональной безопасности.


Абсолютные данные (данные ABSO)
Абсолютные данные (данные ABSO) — это поправочный коэффициент для данных, который устанавливает указанное нулевое значение, когда робот находится в заданном исходном положении (положение калибровки).

Точность
Точность — это измерение отклонения между командной характеристикой и достигнутой характеристикой (R15.05-2), или точность, с которой может быть достигнуто вычисленное или вычисленное положение робота. Точность обычно хуже, чем повторяемость руки. Точность не постоянна по всему рабочему пространству из-за влияния кинематики звена.

Активный совместимый робот
Активно совместимый робот — это робот, в котором изменение движения во время выполнения задачи инициируется системой управления. Модификация индуцированного движения незначительна, но достаточна для облегчения выполнения желаемой задачи.

Фактическая позиция
Положение или расположение точки управления инструментом. Обратите внимание, что это не будет точно таким же, как позиция запроса, из-за множества невыявленных ошибок, таких как отклонение линии связи, нерегулярность передачи, допуски в длине линии связи и т. Д.

Привод
Силовой механизм, используемый для движения или поддержания положения робота (например, двигатель, который преобразует электрическую энергию, чтобы вызвать движение робота) (R15.07). Привод реагирует на сигнал, полученный от системы управления.

Плечо
Взаимосвязанный набор звеньев и механических соединений, включающий робот-манипулятор, который поддерживает и / или перемещает запястье и руку или рабочий орган в пространстве. Сама рука не имеет рабочего органа.
См. Манипулятор, Рабочий орган и Запястье.

Шарнирно-сочлененный манипулятор
Манипулятор с рукой, которая разделена на секции (звенья) одним или несколькими суставами.Каждое из сочленений представляет собой степень свободы в системе манипулятора и допускает поступательное и вращательное движение.

Шарнирное соединение
Описывает сочлененное устройство, такое как сочлененный манипулятор. Шарниры обеспечивают вращение вокруг вертикальной оси и подъем из горизонтальной плоскости. Это позволяет роботу достигать ограниченного пространства.

Робот-сборщик
Робот, специально разработанный для стыковки, подгонки или иной сборки различных деталей или компонентов в готовые изделия.В основном используется для захвата деталей и соединения или подгонки их друг к другу, например, при производстве на сборочных линиях.

Функция автоматического измерения
Для оптимального движения робота необходимо указать массовые характеристики рабочего органа. Эти свойства могут быть получены из CAD-модели инструмента. Функция автоматического измерения является альтернативой модели САПР и использует саму руку робота для измерения свойств инструмента. С помощью этой функции пользователь может регистрировать нагрузку на инструмент, положение центра тяжести инструмента и момент инерции в центре тяжести.

Автоматический режим
См. Режим воспроизведения.

Ось
Направление, используемое для задания движения робота в линейном или вращательном режиме. (ISO 8373)

Взаимодействие осей
Область пересечения осей — это функция, которая определяет текущее положение каждой оси и выводит сигнал в зависимости от того, находится ли текущее положение в пределах заранее определенного диапазона.


База
Устойчивая платформа, к которой крепится промышленный робот-манипулятор.

Базовая система координат
Базовая система координат (иногда называемая мировой системой координат) определяет общую точку отсчета для ячейки или приложения. Это полезно при использовании нескольких роботов или устройств, поскольку позиции, определенные в базовых координатах, будут одинаковыми для всех роботов и устройств. (см. рисунок справа)

Базовая ссылка
Стационарная базовая конструкция манипулятора, поддерживающая первый сустав.

Приработка
Burn-In — это процедура тестирования робота, при которой все компоненты робота работают непрерывно в течение длительного периода времени.Это делается для проверки движения и программирования движения робота на ранних этапах, чтобы избежать сбоев в работе после развертывания.


Компьютерное проектирование (CAD)
Компьютерное проектирование (САПР). Приложения компьютерной графики, предназначенные для проектирования объектов (или частей), которые должны быть изготовлены. Компьютер используется как инструмент для разработки схем и создания чертежей, которые позволяют точно производить объект. Система CAD позволяет создавать трехмерные чертежи основных фигур, точно определять размеры и размещение компонентов, создавать линии заданной длины, ширины или угла, а также удовлетворять различные геометрические формы.Эта система также позволяет проектировщику испытывать моделируемую деталь при различных напряжениях, нагрузках и т. Д.

Карусель
Вращающаяся платформа, которая доставляет объекты роботу и служит системой очереди объектов. Эта карусель доставляет объекты или детали на станцию ​​загрузки / выгрузки робота.

Декартовы координаты
Декартовы координаты — это тип системы координат, которая определяет положение точки в двухмерном пространстве с помощью пары числовых чисел, которые дополнительно определяют расстояние до фиксированных осей, перпендикулярных друг другу.Проще говоря, график XY представляет собой двумерную декартову систему координат. Когда точка задана в трехмерном пространстве (график XYZ), она составляет трехмерную декартову систему координат. Положение TCP робота указывается в декартовой системе координат.

Декартов манипулятор
Декартов манипулятор — это манипулятор робота с призматическими шарнирами, который позволяет перемещаться по одной или нескольким из трех осей в системе координат X, Y, Z.

Декартова топология
Топология, в которой повсюду используются призматические соединения, обычно расположенные перпендикулярно друг другу.

Робот в декартовых координатах
Робот с декартовыми координатами — это робот, чьи степени свободы манипулятора определяются декартовыми координатами. Это описывает движения восток-запад, север-юг и вверх-вниз, а также вращательные движения для изменения ориентации.

Категория 3 (Cat3)
Категория 3 (категория 3) означает, что элементы системы управления, связанные с безопасностью, будут спроектированы таким образом, чтобы:

  • Одиночные неисправности не препятствуют правильной работе функции безопасности.

  • Одиночные неисправности будут обнаружены при следующем запросе функции безопасности или до него.

  • Когда происходит единичный отказ, безопасное состояние должно поддерживаться до тех пор, пока обнаруженный отказ не будет исправлен.

  • Обнаружены все разумно предсказуемые неисправности.

Центробежная сила
Когда тело вращается вокруг оси, отличной от оси, расположенной в центре его масс, оно оказывает на ось направленную наружу радиальную силу, называемую центробежной силой, которая удерживает его от движения по прямой тангенциальной линии.Чтобы компенсировать эту силу, робот должен приложить противоположный крутящий момент в суставе вращения.

Тип кругового движения
Расчетный путь, который выполняет робот, имеет круглую форму.

Зажим
Конечный эффектор, который служит пневматической рукой, которая контролирует захват и отпускание объекта. Тактильные датчики и датчики силы обратной связи используются для управления силой, приложенной зажимом к объекту. См. «Концевой эффектор».

Зажим
Максимально допустимая сила, действующая на область тела в результате столкновения робота, когда период контакта приводит к пластической деформации мягких тканей человека.

Сила зажима
При контакте может быть зажат части тела (частей).

Замкнутый
Управление осуществляется роботом-манипулятором посредством обратной связи. Когда манипулятор находится в действии, его датчики постоянно передают информацию контроллеру робота, который используется для дальнейшего направления манипулятора в рамках данной задачи. Многие датчики используются для передачи информации о размещении манипулятора, скорости, крутящем моменте, приложенных силах, а также о размещении целевого движущегося объекта и т. Д.См. Обратную связь.

Коллаборативный робот
Термин, используемый для описания роботизированной системы, предназначенной для работы в одном или нескольких из четырех совместных режимов.

Командный интерпретатор

Модуль или набор модулей, определяющий значение полученной команды. Команда разбивается на части (разбирается) и обрабатывается.

Командная позиция
Конечная точка движения робота, которую пытается достичь контроллер.

Соответствие
Смещение манипулятора в ответ на силу или крутящий момент. Высокая податливость означает, что манипулятор немного перемещается при нагрузке. Это называется пористым или упругим. При стрессе низкая комплаенс будет жесткой системой.

Робот, соответствующий требованиям
Робот, который выполняет задачи по отношению к внешним силам, изменяя свои движения таким образом, чтобы эти силы сводились к минимуму. Указанное или разрешенное движение достигается за счет поперечной (горизонтальной), осевой (вертикальной) или вращательной податливости.

Конфигурация
Расположение ссылок, созданное определенным набором совместных позиций на роботе. Обратите внимание, что может быть несколько конфигураций, приводящих к одному и тому же положению конечной точки.

Контактный датчик
Устройство, которое обнаруживает присутствие объекта или измеряет величину приложенной силы или крутящего момента, приложенного к объекту при физическом контакте с ним. Контактное зондирование можно использовать для определения местоположения, идентичности и ориентации деталей.

Непрерывный путь
Описывает процесс, в котором робот контролирует весь пройденный путь, в отличие от метода обхода от точки к точке. Это используется, когда траектория рабочего органа наиболее важна для обеспечения плавного движения, например, при окраске распылением и т. Д. См. «От точки к точке».

Алгоритм управления
Монитор, используемый для обнаружения отклонений траектории, в котором датчики обнаруживают такие отклонения, и приложения крутящего момента вычисляются для приводов.

Команда управления
Команда, передаваемая роботу с помощью устройства ввода от человека к машине. См. Кулон (Обучение). Эта команда принимается системой контроллера робота и интерпретируется. Затем соответствующая команда подается на исполнительные механизмы робота, которые позволяют ему реагировать на начальную команду. Часто команда должна интерпретироваться с использованием логических единиц и определенных алгоритмов. См. «Устройство ввода и цикл команд».

Устройство управления
Любая часть управляющего оборудования, обеспечивающая средства для вмешательства человека в управление роботом или роботизированной системой, например кнопка аварийного останова, кнопка запуска или селекторный переключатель.(R15.06)

Режим управления
Средства, с помощью которых инструкции передаются роботу.

Управляемость
Свойство системы, с помощью которого входной сигнал может переводить систему из начального состояния в желаемое состояние по предсказуемому пути в течение заранее определенного периода времени.

Контроллер
Устройство обработки информации, входными данными которого являются как желаемое, так и измеренное положение, скорость или другие соответствующие переменные в процессе, а выходными данными являются управляющие сигналы для управляющего двигателя или исполнительного механизма.(R15.02)

Система управления
Механизм управления роботом обычно представляет собой компьютер определенного типа, который используется для хранения данных (как робота, так и рабочей среды), а также хранения и выполнения программ, управляющих роботом. Система Контроллера содержит программы, данные, алгоритмы; логический анализ и различные другие операции обработки, которые позволяют ему выполнять. См. Робот.

Система координат или рамка
Система координат (или рамка) определяет исходное положение и ориентацию, с которой можно измерить положение робота.Все положения робота определены со ссылкой на систему координат. Роботы Yaskawa используют следующие системы координат:

Центральный процессор (ЦП)
Центральный процессор (ЦП) — это основная печатная плата и процессор системы контроллера.

Кубическая зона помех
Эта область представляет собой прямоугольный параллелепипед, который параллелен базовой координате, координате робота или координате пользователя. Контроллер YRC1000 определяет, находится ли текущее положение TCP манипулятора внутри или за пределами этой области, и выводит это состояние в качестве сигнала.

Цикл
Однократное выполнение полного набора движений и функций, содержащихся в программе робота. (R15.05-2)

Циклическая система координат
Система координат, которая определяет положение любой точки с точки зрения углового размера, радиального размера и высоты от базовой плоскости. Эти три измерения определяют точку на цилиндре.

Цикло-привод
Торговая марка устройства понижения скорости, которое преобразует низкий крутящий момент на высокой скорости в высокий крутящий момент на низкой скорости, обычно используемое на большой (большей) оси.

Цилиндрическая топология
Топология, в которой плечо следует радиусом горизонтального круга с призматическим шарниром для подъема или опускания круга. Не популярен в промышленности.


Выключатель аварийного отключения
Устаревший срок. См. Включение устройства.

Степени свободы
Количество независимых направлений или суставов робота (R15.07), которые позволяют роботу перемещать свой конечный эффектор через требуемую последовательность движений.Для произвольного позиционирования необходимо 6 степеней свободы: 3 для положения (влево-вправо, вперед-назад и вверх-вниз) и 3 для ориентации (рыскание, тангаж и крен).

Прямой привод
Совместное срабатывание, в том числе без элементов трансмиссии (т. Е. Тяга привинчена к выходу двигателя).

Простои
Период времени, в течение которого робот или производственная линия останавливаются из-за неисправности или отказа. См. Время безотказной работы.

Привод
Редуктор скорости (зубчатый) для преобразования низкого крутящего момента на высокой скорости в высокий крутящий момент на низкой скорости.См. Разделы Harmonic Drive, Cyclo Drive и Rotary Vector Drive).

Прямая доставка
Метод подвода предмета к рабочему месту под действием силы тяжести. Обычно желоб или контейнер размещают таким образом, чтобы по окончании работы над деталью она упала или упала в желоб или на конвейер с небольшой транспортировкой робота или вообще без нее.

Динамика
Изучение движения, сил, вызывающих движение, и сил, обусловленных движением. Динамика манипулятора робота очень сложна, поскольку является результатом кинематического поведения всех масс внутри конструкции руки.Кинематика манипулятора робота сложна сама по себе.


Аварийный останов
Работа схемы с использованием аппаратных компонентов, которая перекрывает все другие органы управления роботом, снимает мощность привода с исполнительных механизмов робота и вызывает остановку всех движущихся частей. (R15.06)

Переключатель включения
См. Включение устройства.

Разрешающее устройство
Устройство с ручным управлением, которое при постоянном включении разрешает движение.Освобождение устройства должно остановить движение робота и связанное с ним оборудование, которое может представлять опасность. (R15.06)

Кодировщик
Устройство обратной связи в руке робота-манипулятора, которое предоставляет контроллеру данные о текущем положении (и ориентации руки). Луч света проходит через вращающийся кодовый диск, который содержит точный узор из непрозрачных и прозрачных сегментов на своей поверхности. Свет, который проходит через диск, попадает в фотодетекторы, которые преобразуют световой рисунок в электрические сигналы.См. Раздел «Обратная связь, управление с обратной связью» и «Датчик обратной связи».

EOAT
См. Захват или Концевой эффектор.

Рабочий орган
Вспомогательное устройство или инструмент, специально предназначенные для крепления к запястью робота или монтажной пластине для инструмента, чтобы робот мог выполнять свою задачу. (Примеры могут включать: захват, пистолет для точечной сварки, пистолет для дуговой сварки, распылительный пистолет или любые другие инструменты.) (R15.06)

Конечная точка
Номинальное управляемое положение, которого манипулятор будет пытаться достичь в конце пути движения.Конец дистального звена.

Ошибка
Разница между фактическим ответом робота и отданной командой.

Расширяемость
Возможность добавлять в систему ресурсы, такие как память, жесткий диск большего размера, новая карта ввода-вывода и т. Д.

Предел внешней силы
Пороговое значение, при котором робот перемещается или сохраняет положение даже при приложении внешних сил (при условии, что силы не превышают пределов, которые могут вызвать ошибку).


Обратная связь
Возврат информации от манипулятора или датчика к процессору робота для обеспечения самокорректирующегося управления манипулятором.
См. Раздел «Управление обратной связью» и «Датчик обратной связи».

Управление обратной связью
Тип управления системой, получаемый, когда информация от манипулятора или датчика возвращается контроллеру робота для получения желаемого эффекта робота. См. Раздел «Обратная связь, управление с обратной связью» и «Датчик обратной связи».

Датчик обратной связи
Механизм, через который информация от сенсорных устройств возвращается в блок управления роботом. Информация используется в последующем направлении движения робота. См. «Управление с обратной связью и управление с обратной связью».

Гибкость
Способность робота выполнять самые разные задачи.

Силовая обратная связь
Метод обнаружения, использующий электрические сигналы для управления рабочим органом робота во время работы рабочего органа.Информация поступает от датчиков силы рабочего органа к блоку управления роботом во время выполнения конкретной задачи, чтобы обеспечить улучшенную работу рабочего органа.
См. Раздел «Обратная связь», «Датчик обратной связи» и «Датчик силы».

Датчик силы
Датчик, способный измерять силы и крутящий момент, прилагаемые роботом и его запястьем. Такие датчики обычно содержат тензодатчики. Датчик предоставляет информацию, необходимую для обратной связи по силе. См. Force Feedback

.

Решение прямой кинематики

Расчет, необходимый для определения положения конечной точки с учетом положений суставов.Для большинства топологий роботов это проще, чем найти решение с обратной кинематикой.

Передняя кинематика
Вычислительные процедуры, определяющие, где находится рабочий орган робота в пространстве. В процедурах используются математические алгоритмы вместе с совместными датчиками для определения его местоположения.

Рама
Система координат, используемая для определения положения и ориентации объекта в пространстве, а также положения робота в его модели.

Блок функциональной безопасности (FSU)
Блок функциональной безопасности (FSU) — это компонент контроллера робота Yaskawa, который обеспечивает программируемые функции безопасности, которые обеспечивают совместную работу робота. Поскольку эти функции безопасности являются программируемыми, FSU позволяет минимизировать площадь близлежащего общего оборудования, а также области, доступные для человека. FSU состоит из двух параллельных центральных процессоров (ЦП), работающих одновременно, что обеспечивает двухканальную проверку.Кроме того, FSU получает позицию робота от своих энкодеров независимо от системы управления движением робота. Основываясь на этой обратной связи, FSU контролирует положение, скорость и положение манипулятора и инструмента.


Портал
Регулируемый подъемный механизм, который перемещается по фиксированной платформе или гусенице, поднятому или на уровне земли по осям X, Y, Z.

Портальный робот
Робот с тремя степенями свободы по системе координат X, Y и Z.Обычно состоит из намоточной системы (используемой как кран), которая при намотке или размотке обеспечивает движение вверх и вниз по оси Z. Катушка может скользить слева направо по валу, который обеспечивает движение по оси Z. Катушка и вал могут двигаться вперед и назад по направляющим, которые обеспечивают движение по оси Y. Обычно используется, чтобы расположить концевой эффектор над желаемым объектом и поднять его.

Гравитационная загрузка
Сила, прилагаемая вниз, из-за веса манипулятора робота и / или нагрузки на конце руки.Сила создает ошибку в отношении точности положения концевого эффектора. Компенсирующая сила может быть вычислена и применена, чтобы вернуть руку в желаемое положение.

Захват
Концевой эффектор, предназначенный для захвата и удержания (ISO 8373), а также «захватывания» или захвата объекта. Он прикреплен к последнему звену руки. Он может удерживать объект, используя несколько различных методов, таких как: приложение давления между своими «пальцами», или может использовать намагничивание или вакуум для удержания объекта и т. Д.См. «Концевой эффектор».


Рука
Зажим или захват, используемый в качестве рабочего органа для захвата предметов. См. Концевой эффектор, Захват.

Ручное управление
Совместная функция, позволяющая оператору вручную направлять робота в желаемое положение. Эта задача может быть решена за счет использования дополнительного внешнего оборудования, установленного непосредственно на роботе, или робота, специально разработанного для поддержки этой функции. Оба решения потребуют использования элементов функциональной безопасности.Оценка риска должна использоваться, чтобы определить, необходимы ли какие-либо дополнительные меры безопасности для снижения рисков в роботизированной системе.

Гармонический привод
Компактный легкий редуктор, который преобразует низкий крутящий момент на высокой скорости в высокий крутящий момент на низкой скорости. Обычно находится на малой (меньшей) оси.

Ремень
Обычно несколько проводов, связанных вместе для подачи питания и / или передачи сигналов к / от устройств. Например, двигатели робота подключены к контроллеру через жгут проводов.

Опасное движение
Непреднамеренное / неожиданное движение робота, которое может привести к травме.

Удерживать
Остановка всех движений робота во время его последовательности, при которой на роботе сохраняется некоторая мощность. Например, выполнение программы останавливается, однако питание серводвигателей остается включенным, если требуется перезапуск.

Исходное положение
Известное и фиксированное положение на основной оси координат манипулятора, где он останавливается, или в указанном нулевом положении для каждой оси.Это положение уникально для каждой модели манипулятора. На роботах Motoman® есть индикаторные метки, которые показывают исходное положение для соответствующей оси.


МЭК
Международная электротехническая комиссия

Индуктивный датчик
Класс датчиков приближения, который имеет половину ферритового сердечника, катушка которого является частью цепи генератора. Когда металлический объект входит в это поле, в какой-то момент объект поглощает достаточно энергии из поля, чтобы заставить осциллятор перестать колебаться.Это означает, что объект присутствует в определенной близости. См. Датчик приближения.

Промышленный робот
Перепрограммируемый многофункциональный манипулятор, предназначенный для перемещения материалов, деталей, инструментов или специализированных устройств посредством переменных запрограммированных движений для выполнения множества задач (R15.06). Основные компоненты: одна или несколько рук, которые могут двигаться в нескольких направлениях, манипулятор и компьютерный контроллер, который дает подробные инструкции по перемещению.

ИНФОРМАЦИЯ
Язык программирования роботов для роботов Yaskawa. Язык ИНФОРМ позволяет пользователю робота: инструктировать робота использовать его основные возможности для выполнения определенного набора ожиданий, а также описывать роботу через определение параметров и условий, какие ожидания возникают в определенных ситуациях или сценариях. Проще говоря, язык программирования INFORM позволяет пользователю указывать роботу, что делать, когда это делать, где это делать и как это делать.

Устройства ввода
Разнообразные устройства, позволяющие взаимодействовать между человеком и машиной. Это позволяет человеку программировать, управлять и моделировать робота. К таким устройствам относятся пульт для программирования, компьютерные клавиатуры, мышь, джойстики, кнопки, панель оператора, тумба оператора и т. Д.

Инструкция
Строка программного кода, вызывающая действие системного контроллера. См. Командное положение.

Цикл команд
Время, которое требуется циклу системы контроллера робота для декодирования команды или инструкции перед ее выполнением.Программисты-роботы должны очень внимательно анализировать цикл команд, чтобы обеспечить быструю и правильную реакцию на изменяющиеся команды.

Интегрировать
Чтобы объединить разные подсистемы, такие как роботы и другие устройства автоматизации, или, по крайней мере, разные версии подсистем в одной оболочке управления.

Интегратор
Компания, предоставляющая услуги с добавленной стоимостью, результатом которых является создание решений автоматизации путем объединения робота и другого оборудования автоматизации и управления для создания решения автоматизации для конечных пользователей.

Интеллектуальный робот
Робот, который можно запрограммировать на выбор производительности в зависимости от сенсорных входов с минимальной или нулевой помощью со стороны человека. См. Робот.

Зона помех
Зона помех — это функция, которая предотвращает помехи между несколькими манипуляторами или манипулятором и периферийным устройством. Области можно настроить до 64 областей. Три типа методов использования каждой области интерференции: кубическая интерференция, вне кубической области и осевая интерференция.

Интерполяция
Метод создания путей к конечным точкам. В общем, для задания движения несколько узловых точек определяются до того, как все промежуточные положения между ними вычисляются с помощью математической интерполяции. Таким образом, используемый алгоритм интерполяции существенно влияет на качество движения.

ISO
Международная организация по стандартизации

ISO 10218-1 Роботы и робототехнические устройства — Требования безопасности для промышленных роботов — Часть 1: Роботы
Специализированная спецификация безопасности робота, которая касается требований производителя, функциональности, требуемых характеристик безопасности, опасностей, мер защиты и документации для самого робота.

ISO 10218-2 Роботы и роботизированные устройства — Требования безопасности для промышленных роботов — Часть 2: Роботизированные системы и интеграция
Сопутствующий документ ISO 10218-1. Эта спецификация безопасности предоставляет руководство как для конечных пользователей, так и для интеграторов роботов, поскольку она касается безопасного проектирования, установки и ввода в эксплуатацию робототехнических систем, а также рекомендуемых процедур, мер безопасности и информации, необходимой для использования.

ISO TS 15066 (ANSI RIA 15.606): Роботы и роботизированные устройства — Совместные роботы
Предоставляет подробное руководство, отсутствующее в ISO 10218, части 1 или 2, по безопасному использованию промышленных роботов, работающих совместно.


Матрица Якоби
Матрица Якоби связывает скорости изменения совместных значений со скоростью изменения координат конечных точек. По сути, это набор алгоритмов вычислений, которые обрабатываются для управления позиционированием робота.

РАБОТА
JOB — это название Yaskawa программы для роботов, созданной с использованием языка программирования роботов INFORM компании Yaskawa. Обычно задание состоит из инструкций, которые сообщают контроллеру робота, что делать, и данных, которые программа использует во время работы.

Шарнир
Часть системы манипулятора, которая обеспечивает вращение и / или поступательную степень свободы звена рабочего органа.

Совместное интерполированное движение
Метод координации движения суставов, при котором все суставы достигают желаемого места одновременно. Этот метод сервоуправления обеспечивает предсказуемый путь независимо от скорости и обеспечивает самое быстрое время цикла захвата и размещения для конкретного движения.

Тип шарнира движения
Тип совместного движения, также известный как двухточечное движение, представляет собой метод интерполяции траектории, который управляет движением робота, перемещая каждое соединение непосредственно в заданное положение, так что все оси достигают этого положения одновременно. Хотя путь предсказуем, он не будет линейным.

Совместное пространство
а. Совместное пространство (или совместные координаты) — это просто метод определения положения робота с точки зрения значения каждой оси, а не положения TCP.Например, исходное положение робота часто определяется в Joint Space, поскольку каждая ось находится под углом 0 градусов.
б. Набор совместных позиций.

Соединения
Части манипулятора робота, которые действительно сгибаются или двигаются.


Кинематика
Связь между движением конечной точки робота и движением суставов. Для декартового робота это набор простых линейных функций (линейные дорожки, которые могут быть расположены в направлениях X, Y, Z), для вращающейся топологии (шарниры, которые вращаются), однако кинематика намного сложнее, включая сложные комбинации тригонометрии. функции.Кинематика руки обычно делится на прямое и обратное решения.


Захват ковша
Конечный эффектор, который действует как совок. Он обычно используется для сбора жидкости, переноса ее в форму и заливки жидкости в форму. Обычно используется для работы с расплавленным металлом в опасных условиях. См. «Концевой эффектор».

Лазер
Акроним от «Усиление света за счет вынужденного излучения». Устройство, которое производит когерентный монохроматический луч света, который является чрезвычайно узким и сфокусированным, но все же находится в пределах видимого светового спектра.Обычно он используется в качестве бесконтактного датчика для роботов. Роботизированные приложения включают: определение расстояния, определение точного местоположения, картографирование поверхности, сканирование штрих-кода, резку, сварку и т. Д.

Линейное движение с интерполяцией
Это метод интерполяции траектории, который управляет движением робота, перемещая каждое соединение в скоординированном движении так, чтобы все оси приходили в позицию одновременно. Путь контрольной точки инструмента (TCP) предсказуем и будет линейным.

Линейный тип движения
Это метод интерполяции траектории, который управляет движением робота, перемещая каждое соединение в скоординированном движении так, чтобы все оси приходили в позицию одновременно. Путь контрольной точки инструмента (TCP) предсказуем и будет линейным.

Ссылка
Жесткая часть манипулятора, соединяющая соседние суставы.

Ссылки
Статический материал, который соединяет суставы руки вместе.Тем самым образуется кинематическая цепочка. В человеческом теле звеньями являются кости.

Время цикла нагрузки
Термин технологического процесса производственной или сборочной линии, который описывает полное время, необходимое для выгрузки последней заготовки и загрузки следующей.


Магнитные извещатели
Датчики роботов, которые могут определять присутствие ферромагнитного материала. Твердотельные детекторы с соответствующим усилением и обработкой могут обнаруживать металлический объект с высокой степенью точности.См. Датчик.

Манипулятор
Машина или роботизированный механизм, который обычно состоит из серии сегментов (соединенных или скользящих друг относительно друга) с целью захвата и / или перемещения объектов (частей или инструментов), обычно с несколькими степенями свободы. Управление манипулятором может осуществляться оператором, программируемым электронным контроллером или любой логической системой (например, кулачковым устройством, проводным и т. Д.) (ISO 8373)
См. Руку, запястье и рабочий орган

.

Ручной режим
См. Режим обучения.

Погрузочно-разгрузочные работы
Процесс, с помощью которого промышленный робот-манипулятор переносит материалы из одного места в другое.

Робот для обработки материалов
Робот, спроектированный и запрограммированный таким образом, что он может обрабатывать, резать, формировать или изменять форму, функцию или свойства материалов, с которыми он работает, в период между моментом первого захвата материалов и моментом их выпуска в производственный процесс.

Функция сдвига зеркала
С помощью функции зеркального сдвига задание преобразуется в задание, в котором траектория симметрична пути исходного задания.Это преобразование может быть выполнено для указанной координаты из координат X-Y, X-Z или Y-Z координат робота и координат пользователя. Функция зеркального смещения подразделяется на следующие три: функция импульсного зеркального смещения, функция зеркального смещения координат робота и функция зеркального смещения пользовательских координат. (см. рисунок справа)

Переключатель режима
В соответствии со стандартами безопасности промышленный робот имеет три различных режима работы. Это обучение (также называемое ручным), воспроизведение (также называемое автоматическим) и дистанционное управление.Переключение между этими режимами осуществляется с помощью переключателя с ключом на подвесном пульте обучения и называется переключателем режима.

Модульность
Свойство гибкости встроено в робота и систему управления путем сборки отдельных узлов, которые можно легко соединить или скомпоновать с другими частями или узлами.

Модуль
Автономный компонент пакета. Этот компонент может содержать подкомпоненты, известные как подмодули.

Ось движения
Линия, определяющая ось движения линейного или поворотного сегмента манипулятора.

Двигатель
См. Серводвигатель.

Отключение звука
При тестировании программы робота отключение любых устройств защиты от присутствия во время полного цикла робота или его части.


Автономное программирование
Метод программирования, при котором целевая программа определяется на устройствах или компьютерах отдельно от робота для последующего ввода программной информации роботу. (ISO 8373) б.Средство программирования робота во время его работы. Это становится важным при производстве и производстве сборочных линий из-за сохранения высокой производительности, пока робот программируется для других задач.

Оператор
Лицо, уполномоченное запускать, контролировать и останавливать запланированную продуктивную работу робота или роботизированной системы. Оператор также может взаимодействовать с роботом для производственных целей. (R15.06)

Оптический кодировщик
Датчик обнаружения, который измеряет линейное или вращательное движение, обнаруживая движение маркировки мимо фиксированного луча света.Его можно использовать для подсчета оборотов, идентификации деталей и т. Д.

Оптические датчики приближения
Датчики роботов, которые измеряют видимый или невидимый свет, отраженный от объекта, для определения расстояния. Лазеры используются для большей точности.

Ориентация
Угол, образованный большой осью объекта относительно базовой оси. Он должен быть определен относительно трехмерной системы координат. Угловое положение объекта относительно системы отсчета робота.См. Roll, Pitch и Yaw.


Паллетирование
Организованный процесс штабелирования пакетов (т. Е. Ящиков, пакетов, контейнеров и т. Д.) На поддоне.

Функция PAM — регулировка положения вручную
Регулировка положения вручную позволяет регулировать положение с помощью простых операций, наблюдая за движением манипулятора и не останавливая манипулятор. Позиции можно регулировать как в режиме обучения, так и в режиме воспроизведения.

Функция параллельного смещения
Параллельный сдвиг относится к смещению объекта из фиксированного положения таким образом, что все точки внутри объекта перемещаются на равное расстояние.В модели для параллельного сдвига, показанной ниже, значение сдвига может быть определено как расстояние L (трехмерное координатное смещение). Функция параллельного смещения имеет отношение к фактической работе манипулятора, потому что ее можно использовать для уменьшения объема работы, связанной с обучением, путем смещения обученного пути (или положения). В примере на рисунке ниже обученная позиция A сдвигается с шагом на расстояние L (на самом деле это трехмерное смещение XYZ, которое может распознать робот).

Путь
Непрерывное геометрическое место позиций (или точек в трехмерном пространстве), пересекаемое центральной точкой инструмента и описываемое в указанной системе координат. (R15.05-2)

Полезная нагрузка — максимальная
Максимальная масса, которой робот может манипулировать при указанной скорости, ускорении / замедлении, расположении (смещении) центра тяжести и воспроизводимости при непрерывной работе в указанном рабочем пространстве. Максимальная полезная нагрузка указана в килограммах.(R15.05-2)

Подвеска [Подвеска Teach]
Переносное устройство ввода, связанное с системой управления, с помощью которой можно программировать или перемещать робота. (ISO 8373) Это позволяет человеку-оператору занять наиболее удобное положение для наблюдения, контроля и записи желаемых движений в память робота.

Кулон обучающий
Отображение и запись положения и ориентации системы робота и / или манипулятора по мере того, как робот вручную поэтапно перемещается от начального состояния по пути к конечному целевому состоянию.Положение и ориентация каждой критической точки (суставы, база робота и т. Д.) Записываются и сохраняются в базе данных для каждой обученной позиции, через которую проходит робот на пути к своей конечной цели. Теперь робот может повторить путь самостоятельно, следуя пути, сохраненному в базе данных.

Уровень эффективности d (PLd)
Уровень эффективности (PL) ISO «d» означает, что средняя вероятность опасного отказа в час связанных с безопасностью частей системы управления находится в пределах от ≥ 10-7 до <10-6.Кроме того, учитываются и другие факторы, такие как правильная установка, техническое обслуживание и защита от факторов окружающей среды. Это минимальный уровень эффективности, указанный в ISO 10218-2, раздел 5.2.2, если оценка риска не позволит использовать более низкое значение.

Уровень эффективности e (PLe)
Уровень эффективности ISO (PL) «e» означает, что средняя вероятность опасного отказа в час связанных с безопасностью частей системы управления находится в пределах от ≥ 10-8 до <10-7.Кроме того, учитываются и другие факторы, такие как правильная установка, техническое обслуживание и защита от факторов окружающей среды.

Цикл подбора и размещения
Время, необходимое манипулятору, чтобы поднять объект и поместить его в желаемое место, а затем вернуться в исходное положение. Это включает время во время фаз ускорения и замедления конкретной задачи. Движение робота контролируется из одной точки в пространстве в другую в системе движения «точка-точка» (PTP).Каждая точка запрограммирована в управляющей памяти робота, а затем воспроизводится во время рабочего цикла.

Задача по подбору и размещению
Повторяющаяся задача переноса детали, состоящая из действия подбора, за которым следует действие по размещению.

Точки защемления
Точка защемления — это любая точка, в которой человек или часть тела человека может оказаться зажатым между движущимися частями машины, или между движущейся и неподвижной частями машины, или между материалом и любой частью машины. .Точка защемления не обязательно должна приводить к травме конечности или части тела, хотя может привести к травме — она ​​должна только защемить или ущипнуть человека, чтобы он не смог вырваться или вынуть защемленную часть из точки защемления.

Шаг
Вращение рабочего органа в вертикальной плоскости вокруг конца руки робота-манипулятора.
См. Roll and Yaw.

Режим воспроизведения
После того, как робот запрограммирован в режиме обучения, контроллер робота можно переключить в режим воспроизведения для выполнения программы робота.В режиме воспроизведения воспроизводится программа робота. Это режим, в котором роботы используются в производстве.

Воспроизведение
Воспроизведение — это операция, при которой воспроизводится обученное задание. Эта функция используется, чтобы решить, где возобновить воспроизведение при запуске операции после приостановки воспроизведения и перемещения курсора или выбора других заданий. 0: запускает операцию, когда курсор находится в задании, отображаемом в данный момент. 1: Появится окно продолжения воспроизведения.Выберите «ДА», и воспроизведение возобновится в том месте, где находился курсор, когда воспроизведение было приостановлено. Если выбрано «НЕТ», воспроизведение возобновляется с того места, где находится курсор в задании, отображаемом в данный момент. Режимы Включите пульт программирования: PLAY — задание запускается кнопкой [СТАРТ] на пульте программирования, а задание REMOTE запускается периферийным устройством (внешний пусковой вход).

Точка-точка
Движение манипулятора, в котором задано ограниченное количество точек на прогнозируемой траектории движения.Манипулятор перемещается от точки к точке, а не по непрерывной плавной траектории.

Поза
Альтернативный термин для конфигурации робота, который описывает линейное и угловое положение. Линейное положение включает азимут, высоту и дальность до объекта. Угловое положение включает в себя крен, тангаж и рыскание объекта. См. Roll, Pitch и Yaw.

Позиция
Определение местоположения объекта в трехмерном пространстве, обычно определяемое трехмерной системой координат с использованием координат X, Y и Z.

Уровень позиции
Уровень положения — это степень приближения манипулятора к обученному положению. Уровень положения может быть добавлен к командам перемещения MOVJ (совместная интерполяция) и MOVL (линейная интерполяция). Если уровень положения не установлен, точность зависит от скорости работы. Установка соответствующего уровня перемещает манипулятор по траектории, подходящей для окружающих условий и обрабатываемой детали. (см. рисунок справа)

Переменные положения
Переменные положения используются в программе робота (JOB) для определения местоположения в трехмерном пространстве, обычно определяемого трехмерной системой координат с использованием координат X, Y и Z.Поскольку это переменная, значение может меняться в зависимости от условий или информации, переданной в задание.

Ограничение мощности и усилия (PFL)
Совместная функция, которая позволяет оператору и роботу работать в непосредственной близости друг от друга, гарантируя, что робот замедлится и остановится до возникновения ситуации контакта. Для безопасной реализации этой функции необходимо использовать функциональную безопасность и дополнительное оборудование для обнаружения. Оценка рисков должна использоваться для определения необходимости дополнительных мер безопасности для снижения рисков в роботизированной системе.

Устройство защиты от присутствия
Устройство, разработанное, сконструированное и установленное для создания сенсорного поля для обнаружения вторжения в такое поле людьми, роботами или объектами. См. Датчик.

Программируемый логический контроллер (ПЛК)
Твердотельная система управления, которая имеет программируемую пользователем память для хранения инструкций для реализации определенных функций, таких как: логика управления вводом-выводом, синхронизация, счетная арифметика и обработка данных.ПЛК состоит из центрального процессора, интерфейса ввода / вывода, памяти и устройства программирования, в котором обычно используются эквивалентные символы реле. ПЛК специально разработан как промышленная система управления, которая может выполнять функции, эквивалентные релейной панели или проводной твердотельной логической системе управления, и может быть интегрирована в систему управления роботом.

Программируемый робот
Функция, позволяющая проинструктировать робота выполнить последовательность шагов, а затем выполнять эту последовательность повторяющимся образом.Затем его можно перепрограммировать для выполнения другой последовательности шагов, если это необходимо.

Датчик приближения
Бесконтактное сенсорное устройство, используемое для определения, когда объекты находятся на небольшом расстоянии, и оно может определять расстояние до объекта. Несколько типов включают: радиочастотный, магнитный мост, ультразвуковой и фотоэлектрический. Обычно используется для: высокоскоростного счета, обнаружения металлических предметов, контроля уровня, считывания кодовых меток и концевых выключателей. См. Индуктивный датчик.

Координаты импульса
Роботы Yaskawa определяют положение осей шарниров робота в градусах для поворотных шарниров.Импульс — это еще один способ указать положение сустава робота, и он используется при подсчете импульсов энкодера двигателя робота.


Обеспечение качества (ОК)
Описывает методы, политику и процедуры, необходимые для проведения тестирования обеспечения качества во время проектирования, производства и доставки этапов создания, перепрограммирования или обслуживания роботов.

Досягаемость: Объем пространства (конверт), которого может достичь рабочий орган робота, по крайней мере, в одной ориентации.

Квазистатический зажим
Тип контакта между человеком и частью робототехнической системы, при котором часть тела может быть зажата между подвижной частью роботизированной системы и другой неподвижной или подвижной частью роботизированной ячейки


Вылет
Объем пространства (оболочки), которого может достичь рабочий орган робота хотя бы в одной ориентации.

Система реального времени
Компьютерная система, в которой компьютер должен выполнять свои задачи в рамках временных ограничений некоторого процесса одновременно с системой, которой он помогает. Компьютер обрабатывает системные данные (входные данные) от датчиков с целью мониторинга и вычисления параметров (выходов) управления системой, необходимых для правильной работы системы или процесса. От компьютера требуется, чтобы он выполнял свою работу достаточно быстро, чтобы не отставать от оператора, взаимодействующего с ним через оконечное устройство (например, экран или клавиатуру).Оператор, взаимодействующий с компьютером, имеет возможность доступа, поиска и хранения через систему управления базами данных. Доступ к системе позволяет оператору вмешиваться и изменять работу системы.

Робот для воспроизведения записи
Манипулятор, для которого критические точки вдоль желаемых траекторий сохраняются последовательно путем записи фактических значений кодеров положения суставов робота, когда он перемещается под операционным управлением. Для выполнения задачи эти точки воспроизводятся в сервосистеме робота.См. Сервосистема.

Робот с прямоугольными координатами
Робот, рука манипулятора которого движется линейными движениями по набору декартовых или прямоугольных осей в направлениях X, Y и Z. Форма рабочего конверта образует прямоугольную фигуру. См. Рабочий конверт.

Надежность
Вероятность или процент времени, в течение которого устройство будет работать без сбоев в течение определенного периода времени или объема использования (R15.02). Также называется: время безотказной работы робота или среднее время наработки на отказ (MTBF).

Восстановление
Для обновления или модификации роботов в соответствии с пересмотренными спецификациями производителя. (R15.06)

Удаленный режим
Удаленный режим — это тип режима воспроизведения, в котором автоматическое выполнение программы робота инициируется с внешнего устройства (а не с обучающего пульта). В этом режиме использование обучающего пульта отключено.

Повторяемость
Мера того, насколько близко рука может повторно занять обученное положение.Например: после того, как манипулятор вручную помещен в определенное место, и это местоположение определено роботом, повторяемость определяет, насколько точно манипулятор может вернуться в это точное местоположение. Степень разрешения в системе управления роботом определяет повторяемость. В общем, воспроизводимость руки никогда не может быть лучше, чем ее разрешение. См. «Обучение и точность».

Разрешение
Количество шарнирного движения робота, необходимое для изменения положения на один счет.Хотя разрешение каждого датчика совместной обратной связи обычно является постоянным, разрешение конечной точки в мировых координатах не является постоянным для поворотных рычагов из-за нелинейности кинематики рычага.

Поворотный шарнир
Суставы робота, способные совершать вращательные движения.

Оценка рисков
Процесс оценки предполагаемого использования машины или системы на предмет прогнозируемых опасностей и последующего определения уровня риска, связанного с идентифицированными задачами.

Снижение рисков
Вторичный шаг в процессе оценки риска, который включает снижение уровня риска для идентифицированных задач путем применения мер по снижению риска с целью устранения или смягчения опасностей.

Робот
Перепрограммируемый многофункциональный манипулятор, предназначенный для перемещения материала, деталей, инструментов или определенных устройств посредством переменных запрограммированных движений для выполнения множества задач. Общие элементы, из которых состоит робот: контроллер, манипулятор и рабочий орган.См. Манипулятор, Контроллер и Рабочий орган.

Система координат робота
Система координат робота определяется в базовой оси робота, а точки в системе координат робота будут относиться к базе робота. Обратите внимание, что по умолчанию базовая система координат и система координат робота одинаковы. (см. рисунок справа)

Робот-интегратор
См. Интегратор.

Язык программирования роботов
Интерфейс между человеком-пользователем и роботом, который связывает человеческие команды с роботом.

Робот, контролирующий пределы диапазона
Следит за тем, чтобы рука манипулятора или его инструмент находились в обозначенной зоне безопасности

Моделирование роботов
Метод имитации и прогнозирования поведения и работы роботизированной системы на основе модели (например, компьютерной графики) физической системы. (R15.07)

Рулон
Вращение концевого эффектора робота в плоскости, перпендикулярной концу руки манипулятора.См. Pitch and Yaw.

Поворотный шарнир
Сустав, который скручивается, качается или изгибается вокруг оси.

Поворотный векторный привод (RV)
Торговая марка устройства понижения скорости, которое преобразует низкий крутящий момент на высокой скорости в высокий крутящий момент на низкой скорости, обычно используемое на большой (большей) оси. См. Cyclo Drive и Harmonic Drive.

Вращательное движение
Сустав, который скручивается, качается или изгибается вокруг оси. Примером этого является локоть человеческой руки.


Защита
Барьерное ограждение, устройство или защитная процедура, предназначенные для защиты персонала. (R15.06)

Уровень полноты безопасности
Уровень полноты безопасности (SIL) — это метод IEC для определения уровня производительности системы безопасности. SIL 2 соответствует уровню эффективности ISO «d», а SIL 3 соответствует уровню эффективности ISO «e». ISO 10218 допускает использование того и другого.

Логическая схема безопасности
Логическая схема безопасности контролирует критически важные для безопасности внешние устройства, такие как световые завесы и генерируемые FSU сигналы.Логическая схема безопасности программируется через интуитивно понятный пользовательский интерфейс, поддерживаемый подвесным пультом программирования Yaskawa. Это позволяет настроить логические операции, такие как остановка манипулятора или выдача сигнала, если сервоприводы включены.

Остановка с контролем безопасности
Совместная функция, разработанная для обеспечения безопасного взаимодействия человека и робота. Только когда движение робота прекратится, безопасность человека войдет в рабочее пространство для совместной работы. Сервоприводы могут оставаться под напряжением в соответствии с остановкой категории 2 в соответствии с ISO 10218-1: 2011, 5.4. Оценка риска должна использоваться, чтобы определить, необходимы ли какие-либо дополнительные меры безопасности для снижения рисков в роботизированной системе.

Робот SCARA
Цилиндрический робот, имеющий два параллельных шарнирных соединения (горизонтально шарнирно сочлененных) и обеспечивающий податливость в одной выбранной плоскости. (ISO 8373) Примечание: SCARA является производным от селективно совместимой руки для роботизированной сборки

Вторая исходная позиция
Помимо «исходного положения» манипулятора, второе исходное положение можно настроить как контрольную точку для абсолютных данных.Начальное значение второго исходного положения — это исходное положение (где все оси находятся на импульсе 0). Вторую исходную позицию можно изменить.

Режим безопасности
Уровни режимов оператора на контроллерах роботов Yaskawa включают в себя: режим работы, режим редактирования, режим управления, режим безопасности и режим одноразового управления.

Датчик
Инструменты, используемые в качестве устройств ввода для роботов, которые позволяют ему определять аспекты, касающиеся окружающей среды робота, а также собственное позиционирование робота.Датчики реагируют на физические стимулы (такие как тепло, свет, звук, давление, магнетизм и движение) и передают результирующий сигнал или данные для измерения, управления или того и другого. (R15.06)

Сенсорная обратная связь
Переменные данные, измеряемые датчиками и передаваемые на контроллер в замкнутой системе. Если контроллер получает обратную связь, выходящую за пределы допустимого диапазона, значит, произошла ошибка. Контроллер отправляет роботу сигнал об ошибке.Робот вносит необходимые корректировки в соответствии с сигналом ошибки.

Сервоуправление
Процесс, с помощью которого система управления роботом проверяет, соответствует ли достигнутая поза робота позе, заданной при планировании движения, с требуемыми характеристиками и критериями безопасности. (ISO 8373)

Серводвигатель
Электроэнергетический механизм, используемый для движения или поддержания положения робота (например, двигатель, который преобразует электрическую энергию в движение робота) (R15.07). Двигатель реагирует на сигнал, полученный от системы управления, и часто включает энкодер для обеспечения обратной связи с контуром управления.

Сервопак
Электроэнергетический механизм переменного тока, управляемый с помощью логики, для преобразования энергии источника питания в форме синусоидальной волны в квадратную форму с широтно-импульсной модуляцией (ШИМ), подаваемую на двигатели для управления двигателем: скорость, направление, ускорение, замедление. и контроль торможения.

Робот с сервоприводом
Управление роботом с помощью сервосистемы с замкнутым контуром, в которой положение оси робота измеряется устройствами обратной связи и сохраняется в памяти контроллера.См. Система с обратной связью и Сервосистема.

Сервосистема
Система, в которой контроллер выдает команды на двигатели, двигатели приводят в движение рычаг, а датчик энкодера измеряет вращательные движения двигателя и сообщает о величине движения обратно контроллеру. Этот процесс продолжается много раз в секунду, пока рука не переместится в требуемую точку. См. Сервоуправляемый робот

.

Функция обнаружения удара
Обнаружение удара — это функция, поддерживаемая контроллером робота Yaskawa, которая снижает воздействие столкновения робота, останавливая манипулятор без какого-либо внешнего датчика, когда инструмент или манипулятор сталкиваются с периферийным устройством.

Плечо
Первую или вторую ось робота иногда называют осью плеча, поскольку она чем-то напоминает человеческое плечо. Это часто используется при описании гуманоидных систем или систем с двумя руками, таких как Yaskawa Motoman® SDA10D.

SIL
См. Уровень полноты безопасности

.

Моделирование
Графическая компьютерная программа, представляющая робота и окружающую его среду, которая имитирует поведение робота во время имитации запуска робота.Это используется для определения поведения робота в определенных ситуациях, прежде чем фактически дать команду роботу выполнить такие задачи. Рассматриваются следующие элементы моделирования: 3D-моделирование окружающей среды, эмуляция кинематики, эмуляция планирования пути и моделирование датчиков. См. Сенсор, Прямая кинематика и Робот.

Сингулярность
Конфигурация, в которой два шарнира манипулятора робота становятся коаксиальными (выровненными по общей оси). В особой конфигурации плавное следование по траектории обычно невозможно, и робот может потерять управление.Термин происходит от поведения матрицы Якоби, которая становится сингулярной (т. Е. Не имеет обратной) в этих конфигурациях.

SLURBT
SLURBT — это термины, которые Yaskawa Motoman использует для описания каждой оси робота для удобства. Определение каждого значения следующее:

S — качели или вертлюги
L — нижний рычаг
U — Плечо
R — повернуть на
B — Колено
Т — Твист

Функция настройки мягкого ограничения
Функция настройки Softlimit — это функция для установки диапазона ограничения перемещения оси движения манипулятора в программном обеспечении.

Контроль скорости и разделения
Совместная функция, которая позволяет оператору и роботу работать в непосредственной близости друг от друга, гарантируя, что робот замедлится и остановится до возникновения ситуации контакта. Для безопасной реализации этой функции необходимо использовать функциональную безопасность и дополнительное оборудование для обнаружения. Оценка риска должна использоваться, чтобы определить, необходимы ли какие-либо дополнительные меры безопасности для снижения рисков в роботизированной системе.

Сплайн
Гладкая непрерывная функция, используемая для аппроксимации набора функций, которые однозначно определены на наборе подинтервалов. Аппроксимирующая функция и набор аппроксимируемых функций пересекаются в достаточном количестве точек, чтобы обеспечить высокую степень точности приближения. Назначение плавной функции — позволить роботу-манипулятору выполнить задачу без рывков.

Сплайн Тип движения
Расчетный путь, который выполняет робот, который может иметь параболическую форму.Сплайновое движение может также создавать кривую произвольной формы со смесью круглых и параболических форм.

Системный интегратор
См. Интегратор.


Обучение
Чтобы запрограммировать руку манипулятора, вручную направляя ее через серию движений и записывая положение в памяти контроллера робота для воспроизведения.

Блокировка обучения
Пока установлена ​​блокировка обучения, режим работы привязан к режиму обучения, и машины не могут воспроизводиться ни с помощью [СТАРТ], ни с внешнего входа.В целях безопасности всегда устанавливайте переключатель режима в положение «ОБУЧЕНИЕ» перед началом обучения.

Режим обучения
Режим контроллера робота, в котором робот-манипулятор программируется путем ручного управления им через серию движений и записи положения в память контроллера робота для воспроизведения. Промышленные роботы, у которых нет активной функции ограничения мощности и усилия, требуют использования трехпозиционного переключателя включения в режиме обучения.

Подвеска Teach
Портативный блок управления, который используется оператором для удаленного управления роботом при выполнении его задач.Движения записываются системой управления роботом для последующего воспроизведения. Современные промышленные роботы поставляются с подвесками для программирования, которые не только позволяют обучать роботов, но также поддерживают полнофункциональное программирование роботов и безопасный пользовательский интерфейс.

Окно обучения
Окно обучения — это экран пользовательского интерфейса на пульте программирования. Это окно содержит окно СОДЕРЖАНИЕ ЗАДАНИЯ, и в этом окне проводится обучение. Окно СОДЕРЖАНИЕ ЗАДАНИЯ содержит следующие элементы: номера строк, курсор, инструкции, дополнительные элементы, комментарии и т. Д.

Балка проходная
Система обнаружения объектов, используемая в системе датчиков изображения робота. Точно сфокусированный луч света закреплен на одном конце, а детектор — на другом. Когда луч света прерывается, объект ощущается.

Функция измерения времени
Функция измерения времени измеряет время выполнения указанного раздела в задании или время вывода указанного сигнала.

Инструмент
Термин, используемый в широком смысле для определения рабочего устройства, установленного на конце манипулятора робота, такого как рука, захват, сварочная горелка, отвертка и т. Д.См. «Рука», «Захват» и «Рабочий орган».

Инструмент и рука Помехи
В системе с одним контроллером и несколькими манипуляторами можно использовать функцию проверки вмешательства инструмента и рычага для обнаружения возможных помех и предотвращения столкновения во время работы. Можно проверить следующие три шаблона:

  • Плечо против руки

  • Рычаг против инструмента

  • Инструмент против инструмента

Интерференция проверяется с помощью цилиндра, который немного больше, чем рычаг или инструмент.На обоих концах цилиндра помещается сфера. Если цилиндр и сферы одного манипулятора во время движения контактируют с цилиндрами другого манипулятора, манипуляторы останавливаются из-за обнаружения помех.

Центр инструмента (TCP)
Центральная точка инструмента (TCP) определяет вершину текущего инструмента, как определено относительно фланца инструмента. Например, для сварочного робота TCP обычно определяется на кончике сварочного пистолета. После определения и настройки TCP движение робота будет определено относительно этого кадра (т.е., вращение в направлении Rx вызовет вращение вокруг оси X, и позиции будут обучаться в этом кадре.

Контрольная точка инструмента
См. Центр инструмента

.

Координаты инструмента
Когда инструмент, прикрепленный к роботу, перемещается, его система координат инструмента движется вместе с фиксированной системой координат, например мировыми координатами. Как правило, координаты инструмента не совпадают с мировыми координатами XYZ.

Рама для инструментов
Система координат, прикрепленная к рабочему органу робота (относительно базовой рамы).

Датчик касания
Чувствительное устройство, иногда используемое с рукой или захватом робота, которое определяет физический контакт с объектом, тем самым давая роботу искусственное ощущение осязания. Датчики реагируют на контактные силы, возникающие между ними и твердыми предметами.

Построение траектории (расчет)
Вычисление функций движения, которые позволяют плавно контролировать движение суставов.

Преобразователь
Устройство, преобразующее энергию из одной формы в другую.Обычно это устройство, преобразующее входной сигнал в выходной сигнал другой формы. Его также можно рассматривать как устройство, которое преобразует статические сигналы, обнаруженные в окружающей среде (например, давление), в электрический сигнал, который отправляется в систему управления роботом.


Время работы
Период времени, в течение которого робот или производственная линия работают или доступны для работы, в отличие от времени простоя.

Настройка координат пользователя
Координаты пользователя определяются тремя точками, которые были обучены манипулятору с помощью осевых операций.Этими тремя определяющими точками являются ORG, XX и XY, как показано на диаграмме ниже. Эти три точки позиционных данных регистрируются в пользовательском файле координат. ORG — это исходное положение, а XX — точка на оси X. XY — это точка со стороны оси Y от пользовательских координат, которые были обучены, а направления осей Y и Z определяются точкой XY.

Пользовательская система координат
Пользовательская система координат — это любая контрольная точка, которую пользователь определил для своего приложения.Он часто прикрепляется к объекту, например к поддону, и позволяет пользователю обучать точкам относительно этого объекта. Например, набор положений может быть обучен относительно пользовательской системы координат, прикрепленной к поддону, а затем легко перенесен в другую пользовательскую систему координат на другом поддоне. Это позволяет эффективно повторно использовать позиции. См. Также «Настройка координат пользователя

».


Ручной вакуумный стакан
Конечный эффектор для руки робота, который используется для захвата объектов легкого и среднего веса с помощью всасывания для манипуляций.К таким предметам может относиться стекло, пластик; и т. д. Обычно используется из-за его достоинств, заключающихся в уменьшении скольжения предметов, когда они находятся в пределах досягаемости вакуумной чашки. См. «Концевой эффектор».

Визуальное сопровождение
Система управления, в которой траектория робота изменяется в ответ на ввод от системы технического зрения.

Датчик технического зрения
Датчик, который определяет форму, местоположение, ориентацию или размеры объекта с помощью визуальной обратной связи, например, телекамеры.


Рабочий пакет
Набор всех точек, до которых манипулятор может добраться без вторжения. Иногда форма рабочего пространства и положение самого манипулятора могут ограничивать рабочий диапазон.

Рабочий конверт (космос)
Объем пространства, в котором робот может выполнять поставленные задачи.

Работа в исходном положении
Исходное рабочее положение является ориентиром для операций с манипулятором.Это предотвращает взаимодействие с периферийным устройством, гарантируя, что манипулятор всегда находится в пределах установленного диапазона в качестве предварительного условия для таких операций, как запуск линии. Манипулятор можно переместить в заданное рабочее исходное положение с помощью пульта программирования или ввода сигнала с внешнего устройства. Когда манипулятор находится в непосредственной близости от исходного рабочего положения, включается сигнал рабочего исходного положения.

Заготовка
Любая деталь, которая обрабатывается, совершенствуется или изготавливается до того, как станет готовым продуктом.

Рабочее пространство
Объем пространства, в котором робот может выполнять поставленные задачи.

Мировые координаты
Справочная система координат, в которой рычаг манипулятора движется линейными движениями по набору декартовых или прямоугольных осей в направлениях X, Y и Z. Форма рабочего конверта образует прямоугольную фигуру. См. Прямоугольные координаты.

Мировая модель
Трехмерное представление рабочей среды робота, включая объекты, их положение и ориентацию в этой среде, которое хранится в памяти робота.Поскольку объекты обнаруживаются в окружающей среде, система контроллера робота постоянно обновляет модель мира. Роботы используют эту модель мира, чтобы определять свои действия для выполнения поставленных задач.

Запястье
Набор поворотных шарниров между манипулятором и рабочим органом робота, которые позволяют ориентировать рабочий орган по отношению к обрабатываемой детали. В большинстве случаев запястье может иметь степени свободы, которые позволяют ему захватывать объект с ориентацией по крену, тангажу и рысканью.См. Раздел «Рука», «Рабочий орган», «Крен», «Шаг», «Рыскание» и «Деталь».

Запястье [вторичная ось]
Набор взаимосвязанных звеньев и механических соединений между рычагом и рабочим органом, который поддерживает, позиционирует и ориентирует рабочий орган. (ISO 8373)


Рыскание
Вращение рабочего органа в горизонтальной плоскости вокруг конца руки манипулятора. Боковое движение по оси. Смотрите Roll and Pitch.

CARDBOARD Роботизированная гидравлическая рука: 16 шагов (с изображениями)

Введение: CARDBOARD Роботизированная гидравлическая рука

Здравствуйте, Instructables!

В этой инструкции мы покажем вам, как сделать свой собственный гидравлический рычаг! В этом проекте основное внимание уделяется принципам гидравлических движений.Для этого мы провели небольшую демонстрацию роботизированной гидравлической руки. Нам удалось выполнить несколько довольно крутых задач с помощью нашей «Руки», посмотрите видео ниже, чтобы лучше понять!

Этот проект полностью сделан из картона и пары шприцев, все планы и чертежи имеются. Чего ты ждешь? Приступим!

Добавить TipAsk QuestionDownload

Шаг 1: О ТЕХНОВАЦИЯХ!

Мы размещаем все наши проекты на Instructables , месте, где вы можете исследовать, документировать и делиться своими творениями своими руками.Вы также можете подписаться на наш канал на YouTube. Здесь . Мы публикуем много фотографий в процессе разработки и много обсуждаем на нашей странице в Facebook и в Instagram.

Пожалуйста, поддержите нас по телефону Patreon , а также ознакомьтесь с нашими планами. Обязательно подпишитесь, поделитесь и оставьте комментарий, чтобы сообщить нам, как вам это понравилось!

Добавить TipAsk QuestionDownload

Шаг 2: Необходимые материалы:

Одна из причин, по которой этот проект интересно делать, заключается в том, что необходимые материалы очень дешевы и их легко найти дома!

МАТЕРИАЛЫ:

  • КАРТОН (желательно двойной гофрированный картон, хотя можно обойтись и с одинарным гофром.В результате получится немного более слабая модель.)
  • ШПРИЦЫ 10 мл x 8 (эти шприцы будут действовать как мышцы гидравлического рычага)
  • ТРУБКА длиной 2 м (трубка должна плотно входить в отверстие шланга) шприц.)
  • ЗУБЧИКИ
  • SUPERGLUE (вам понадобится много!)

ИНСТРУМЕНТЫ:

  • X-acto нож
  • Ножницы

Приступим…

Добавить TipAsk QuestionDownload

Шаг 3: Создание чертежа

Весь дизайн умещается на двух листах формата A4. Сначала мы набросали детали, а затем, имея в виду механизмы, сделали чертеж.

Я сделал этот шаг намного проще для вас, все, что вам нужно сделать, это распечатать шаблоны на следующем шаге. Если вы хотите, вы можете настроить дизайн в соответствии с вашим внешним видом 🙂

Добавить TipAsk QuestionDownload

Шаг 4: РАЗРАБОТКА ШАБЛОНОВ И ПЛАНОВ

Мы, , разработали всех деталей, чтобы вам не приходилось измерять и рисовать.Просто распечатайте два файла, с одинаковым масштабом, все части в правильных размерах. Наклейте распечатки на картон и приступайте к работе!

Отверстия от зубочисток тоже есть, если у вас есть другие сомнения, мы загрузили много фотографий, чтобы вы лучше понимали визуально ! Удачи!

Добавить TipAsk QuestionDownload

Шаг 5: ОПОРА РУК И ПЕРЕДНИЕ

Следуйте шаблонам и аккуратно вырежьте опоры для рук и для предплечья .Обратите внимание, что я начал его с одного гофрированного картона, но затем мне пришлось усилить его, добавив второй слой .

Начните с чернового пропила, а затем продолжайте резать все глубже и глубже, пока деталь не выскочит наружу, не применяйте силу!

Добавить TipAsk QuestionDownload

Шаг 6: GRIPPER

После того, как вы вырежете захват, вы можете приступить к проделыванию отверстий.

Добавить TipAsk QuestionDownload

Шаг 7: СВЕРЛЕНИЕ ОТВЕРСТИЙ

Все точки на шаблонах находятся там, где должны быть отверстия.Эти отверстия размером с вашу зубочистку, так что найдите подходящую насадку. Начните с того, что проткните кончиком ножа небольшую вмятину, направляющую для насадки. Затем аккуратно просверлите все отверстия, и вы готовы приступить к сборке ARM.

СОВЕТ: Вы заметите, что только под весом сверла отверстие протыкается. хотя маленькие прокладки имеют тенденцию складываться и разрушаться. Чтобы этого не произошло, вы можете вместо этого протолкнуть отвертку.

Добавить TipAsk QuestionDownload

Шаг 8: Сухая посадка

Я бы посоветовал вам начать с сборки сухой посадки, чтобы убедиться, что вы знаете, какая деталь куда идет.Это позволит избежать ошибок и недоразумений в дальнейшем. Планы хорошо объяснены , и я не думаю, что у вас возникнут какие-либо проблемы, следуя им Спасение

Вы заметите, что концы частей при интенсивном использовании ослабевают и начинают разделяться. Мы нашли простой способ исправить это, закрыв все края деталей полосами малярной ленты ! Это не только значительно усиливает всю конструкцию, но и добавляет красивый вид нашей модели!

Добавить TipAsk QuestionDownload

Шаг 10: Подготовка шприцев

Возьмите четыре шприца, они будут прикреплены к руке.Чтобы прикрепить его так, чтобы сустав мог поворачиваться, вам необходимо отрегулировать шприцы таким образом.

  1. Закрепите дополнительную пластиковую деталь сверху, так как это может привести к ненужной ширине.
  2. Просверлите отверстие примерно в половине см от верха диаметром, равным размеру зубочистки. Один из четырех шприцев будет иметь два отверстия вверху, это шприц захвата.
  3. Возьмите две застежки-молнии и застегните их в форме «восьмерки». Затяните одну петлю вокруг шприца, затем наденьте зубочистку на другую и затяните ее до упора, наконец, защелкните лишнюю часть стяжки.

Фотографии снимут любые сомнения!

Добавить TipAsk QuestionDownload

Шаг 11: Вращающаяся платформа

Чтобы сделать вращающуюся платформу, найдите старую крышку ручки, вы будете использовать ее в качестве оси, на которой вращается рука. Отрежьте кусок картона длиной и шириной немного больше, чем Опорные элементы .

Сделайте отверстие в центре диаметром немного больше, чем колпачок ручки, чтобы его можно было легко перемещать.Приклейте кусок суперклеем к опорам. Затем возьмите прямоугольный кусок картона гораздо большего размера, чтобы сформировать основу. Как и раньше, просверлите отверстие в центре на этот раз, чтобы крышка плотно прилегала. Вдавите колпачок и нанесите несколько капель клея для прочности. Затем вставьте основной корпус …

Добавить TipAsk QuestionDownload

Шаг 12: Механизм вращающейся платформы

Теперь, когда у нас есть готовый механизм, пора добавить шприц. Разрежьте кусочки и склейте их, как на картинках.Затем прикрепите один конец шприца к только что изготовленной детали. Наклейте кусок суперклеем на основной корпус, осталось только сжать шприц и просто вставить зубочистку в основу. это автоматически зафиксирует ваш шприц и превратит движение во вращение руки.

Добавить TipAsk QuestionDownload

Шаг 13: Захват!

Вставьте полужёсткие медные провода во внутренние отверстия и согните их наружу, чтобы они не выходили.Затем закрутите каждый из них в соответствующие отверстия в шприце. Я согнул два небольших куска картона вокруг линейки, чтобы получить конец захвата. Чтобы добавить сцепления, мы вырезали два крошечных прямоугольника из старого «коврика для йоги» и приклеили их с обоих концов. Зафиксируйте шприц и прикрепите треугольную часть захвата к руке.

Добавить TipAsk QuestionDownload

Шаг 14: Обрежьте концы

Вы почти закончили, просто закрепите концы выступающих зубочисток.

Добавить TipAsk QuestionDownload

Шаг 15: ВРЕМЯ ТЕСТИРОВАНИЯ!

Смешайте 4 красителя с водой в стакане и заполните 4 «контроллера» (оставшиеся шприцы).Затем разрежьте трубку на четыре равные части. Присоедините конец к контроллеру и сжимайте шприц, пока вода не начнет выходить на другом конце. Это нужно для того, чтобы вы не теряли давления. теперь прикрепите другой шприц (тот, что в руке), убедившись, что он полностью сжат.

Нажмите и потяните, чтобы увидеть magic !

Добавить TipAsk QuestionDownload

Шаг 16: Готово!

И готово! Теперь приступайте к тестированию вашего нового гидравлического рычага.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *