ΠΡΠ΄Π° Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π° ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ: Π€ΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠ½ΠΎΠ²Ρ ΠΌΠ΅Ρ Π°Π½ΠΈΠΊΠΈ
ΠΠ»Π°Π²Π° 10. ΠΡΠ°ΡΠ°Π΅ΠΌ ΠΎΠ±ΡΠ΅ΠΊΡΡ: ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΈΠ»Ρ β FIZI4KA
Π ΡΡΠΎΠΉ Π³Π»Π°Π²Π΅β¦
- ΠΠ΅ΡΠ΅Ρ ΠΎΠ΄ΠΈΠΌ ΠΎΡ ΠΏΠΎΡΡΡΠΏΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΊ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΌΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ
- ΠΡΡΠΈΡΠ»ΡΠ΅ΠΌ ΡΠ°Π½Π³Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ ΠΈ ΡΠ°Π½Π³Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅
- ΠΡΡΡΠ½ΡΠ΅ΠΌ ΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ³Π»ΠΎΠ²ΡΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ
- Π Π°Π·Π±ΠΈΡΠ°Π΅ΠΌΡΡ Ρ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠΌ ΡΠΈΠ»Ρ
- ΠΠΎΠ΄Π΄Π΅ΡΠΆΠΈΠ²Π°Π΅ΠΌ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅
ΠΡΠ° ΠΈ ΡΠ»Π΅Π΄ΡΡΡΠ°Ρ Π³Π»Π°Π²Ρ ΠΏΠΎΡΠ²ΡΡΠ΅Π½Ρ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΌΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΡΠ°ΠΌΠΎΠΉ ΡΠ°Π·Π½ΠΎΠΉ ΠΏΡΠΈΡΠΎΠ΄Ρ: ΠΎΡ ΠΊΠΎΡΠΌΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ°Π½ΡΠΈΠΉ Π΄ΠΎ ΠΏΡΠ°ΡΠΈ. ΠΠΌΠ΅Π½Π½ΠΎ ΡΠ°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΡΠ°Π»ΠΎ ΠΏΡΠΈΡΠΈΠ½ΠΎΠΉ ΡΠΎΠ³ΠΎ, ΡΡΠΎ Π½Π°ΡΠ° ΠΏΠ»Π°Π½Π΅ΡΠ° ΠΈΠΌΠ΅Π΅Ρ ΠΊΡΡΠ³Π»ΡΡ ΡΠΎΡΠΌΡ. ΠΡΠ»ΠΈ Π²Π°ΠΌ ΠΈΠ·Π²Π΅ΡΡΠ½Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈ Π·Π°ΠΊΠΎΠ½Ρ ΠΡΡΡΠΎΠ½Π° (ΠΎΠ½ΠΈ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΡΡ Π² Π΄Π²ΡΡ ΠΏΠ΅ΡΠ²ΡΡ ΡΠ°ΡΡΡΡ ΡΡΠΎΠΉ ΠΊΠ½ΠΈΠ³ΠΈ), ΡΠΎ Π²Ρ ΡΠΌΠΎΠΆΠ΅ΡΠ΅ Π±ΡΡΡΡΠΎ ΠΎΠ²Π»Π°Π΄Π΅ΡΡ ΠΎΡΠ½ΠΎΠ²Π°ΠΌΠΈ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΠ°ΠΆΠ΅ Π΅ΡΠ»ΠΈ Π²Ρ ΠΏΠΎΠ·Π°Π±ΡΠ»ΠΈ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΈΠ· ΠΏΡΠ΅ΠΆΠ½ΠΈΡ Π³Π»Π°Π², Π½Π΅ Π±Π΅Π΄Π°, Π²Π΅Π΄Ρ ΠΊ Π½ΠΈΠΌ Π²ΡΠ΅Π³Π΄Π° ΠΌΠΎΠΆΠ½ΠΎ Π²Π΅ΡΠ½ΡΡΡΡΡ Π² ΡΠ»ΡΡΠ°Π΅ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ. Π ΡΡΠΎΠΉ Π³Π»Π°Π²Π΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΠΎΠ½ΡΡΠΈΡ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ: ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅, ΡΠ°Π½Π³Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅, ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΈΠ»Ρ ΠΈ Ρ.
Π Π°Π·Π±ΠΈΡΠ°Π΅ΠΌΡΡ Ρ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ
Π ΡΠΈΠ·ΠΈΠΊΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΠ½ΡΡΠΎ ΡΠ°Π·Π΄Π΅Π»ΡΡΡ Π½Π° ΠΏΠΎΡΡΡΠΏΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΠΈ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅. ΠΡΠΈ ΠΏΠΎΡΡΡΠΏΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π»ΡΠ±Π°Ρ ΠΏΡΡΠΌΠ°Ρ, ΡΠ²ΡΠ·Π°Π½Π½Π°Ρ Ρ Π΄Π²ΠΈΠΆΡΡΠΈΠΌΡΡ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠΌ, ΠΎΡΡΠ°Π΅ΡΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΉ ΡΠ°ΠΌΠΎΠΉ ΡΠ΅Π±Π΅. ΠΡΠΈ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π²ΡΠ΅ ΡΠΎΡΠΊΠΈ ΡΠ΅Π»Π° Π΄Π²ΠΈΠΆΡΡΡΡ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡΠΌ. Π’Π°Π½Π³Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ°ΡΡΡ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΡΡΠ΅Π³ΠΎ ΠΏΠΎ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ, Π° ΡΠ°Π΄ΠΈΠ°Π»ΡΠ½ΡΠΌ (ΠΈΠ»ΠΈ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΡΠΌ) Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ β ΡΠ°ΡΡΡ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΡΡΠ΅Π³ΠΎ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ (ΠΏΠΎ Π½ΠΎΡΠΌΠ°Π»ΠΈ) ΠΊ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ, Ρ.Π΅. Π²Π΄ΠΎΠ»Ρ ΡΠ°Π΄ΠΈΡΡΠ° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ.
ΠΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΏΠΎΡΡΡΠΏΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ²ΡΠ·Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌΠΈ ΡΠΎΡΠΌΡΠ»Π°ΠΌΠΈ:
ΠΠΎΠΏΡΡΡΠΈΠΌ, ΠΊΠΎΠ»Π΅ΡΠ° ΠΌΠΎΡΠΎΡΠΈΠΊΠ»Π° Π²ΡΠ°ΡΠ°ΡΡΡΡ Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ β\( \omega \)β, ΡΠ°Π²Π½ΠΎΠΉ 21,5\( 21,5\pi \)βΒ ΡΠ°Π΄ΠΈΠ°Π½ Π² ΡΠ΅ΠΊΡΠ½Π΄Ρ. Π‘ ΠΊΠ°ΠΊΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ Π΅Π΄Π΅Ρ ΠΌΠΎΡΠΎΡΠΈΠΊΠ»? Π§ΡΠΎΠ±Ρ Π΄Π°ΡΡ ΠΎΡΠ²Π΅Ρ Π½Π° ΡΡΠΎΡ Π²ΠΎΠΏΡΠΎΡ, Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΠΏΡΠΎΡΡΠΎΠΉ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ ΡΠ²ΡΠ·ΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ.
ΠΡΡΠΈΡΠ»ΡΠ΅ΠΌ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ
Π‘ΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π½Π³Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ ΠΏΡΠΈΠ½ΡΡΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΠ° ΡΠΈΡ. 10.1 ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ ΠΏΡΠΈΠΌΠ΅Ρ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΠΌΡΡΠΈΠΊΠ° Π΄Π»Ρ ΠΈΠ³ΡΡ Π² Π³ΠΎΠ»ΡΡ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Ρ ΡΠ°Π΄ΠΈΡΡΠΎΠΌ β\( \mathbf{r} \)β ΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ \( \mathbf{v} \). Π‘ΠΊΠΎΡΠΎΡΡΡ \( \mathbf{v} \) ΡΠ²Π»ΡΠ΅ΡΡΡ Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ, Ρ.Π΅. ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ (ΠΏΠΎΠ΄ΡΠΎΠ±Π½Π΅Π΅ ΠΎ Π²Π΅ΠΊΡΠΎΡΠ°Ρ ΡΠ°ΡΡΠΊΠ°Π·ΡΠ²Π°Π΅ΡΡΡ Π² Π³Π»Π°Π²Π΅ 4), ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΡΠΌ ΡΠ°Π΄ΠΈΡΡ-Π²Π΅ΠΊΡΠΎΡΡ \( \mathbf{r} \).
Π£Π³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ²ΡΠ·Π°Π½Π° Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ β\( v=r\omega \)β, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π»Π΅Π³ΠΊΠΎ ΠΈΠ½ΡΡΠΈΡΠΈΠ²Π½ΠΎ ΠΏΠΎΠ½ΡΡΡ. ΠΡΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ, ΡΠ΅ΠΌ Π΄Π°Π»ΡΡΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ° ΠΎΡ ΡΠ΅Π½ΡΡΠ° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ, ΡΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ Π΅Π΅ Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ.
ΠΠΎΠΏΡΠΎΠ±ΡΠ΅ΠΌ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΡΠΆΠ΅ ΡΠΏΠΎΠΌΡΠ½ΡΡΡΡ Π²ΡΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ ΡΠ²ΡΠ·ΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ \( v=r\omega \). ΠΠ»ΠΈΠ½Π° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ β\( L \)β ΡΠ°Π΄ΠΈΡΡΠ° β\( r \)β Π²ΡΡΠ°ΠΆΠ°Π΅ΡΡΡ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ β\( L=2\pi r \)β, Π° ΠΏΠΎΠ»Π½ΡΠΉ ΡΠ³ΠΎΠ», ΠΊΠΎΡΠΎΡΡΠΉ ΠΎΡ Π²Π°ΡΡΠ²Π°Π΅Ρ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ, ΡΠ°Π²Π΅Π½ β\( 2\pi \)β ΡΠ°Π΄ΠΈΠ°Π½.
ΠΠ· ΡΠΎΡΠΌΡΠ»Ρ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ
ΠΏΡΡΠ΅ΠΌ ΠΏΠΎΠ΄ΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ Π΄Π»Ρ β\( \Delta s \)β ΠΏΠΎΠ»ΡΡΠΈΠΌ:
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ:
Π³Π΄Π΅ β\( \omega \)β β ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ, β\( \Delta{\theta} \)ββ ΡΠ³ΠΎΠ» ΠΏΠΎΠ²ΠΎΡΠΎΡΠ°, β\( \Delta{t} \)β β Π²ΡΠ΅ΠΌΡ ΠΏΠΎΠ²ΠΎΡΠΎΡΠ° Π½Π° ΡΠ³ΠΎΠ» \( \Delta{\theta} \), ΡΠΎ:
Π’Π΅ΠΏΠ΅ΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π»Π΅Π³ΠΊΠΎ ΠΈ ΠΏΡΠΎΡΡΠΎ Π΄Π°ΡΡ ΠΎΡΠ²Π΅Ρ Π½Π° Π²ΠΎΠΏΡΠΎΡ, ΠΏΠΎΡΡΠ°Π²Π»Π΅Π½Π½ΡΠΉ Π² ΠΊΠΎΠ½ΡΠ΅ ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅Π³ΠΎ ΡΠ°Π·Π΄Π΅Π»Π°, Ρ.Π΅. ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠΊΠΎΡΠΎΡΡΡ ΠΌΠΎΡΠΎΡΠΈΠΊΠ»Π° ΠΏΠΎ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π΅Π³ΠΎ ΠΊΠΎΠ»Π΅Ρ. ΠΡΠ°ΠΊ, ΠΊΠΎΠ»Π΅ΡΠ° ΠΌΠΎΡΠΎΡΠΈΠΊΠ»Π° Π²ΡΠ°ΡΠ°ΡΡΡΡ Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ \( \omega \), ΡΠ°Π²Π½ΠΎΠΉ 21,5β\( \pi \)Β ΡΠ°Π΄ΠΈΠ°Π½ Π² ΡΠ΅ΠΊΡΠ½Π΄Ρ. ΠΡΡΡΡ ΡΠ°Π΄ΠΈΡΡ ΠΊΠΎΠ»Π΅ΡΠ° β\( r \)β ΡΠ°Π²Π΅Π½ 40 ΡΠΌ, ΡΠΎΠ³Π΄Π° Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ:
ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΡ Π² Π½Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΠΏΠΎΠ»ΡΡΠΈΠΌ:
ΠΡΠ°ΠΊ, ΡΠΊΠΎΡΠΎΡΡΡ ΠΌΠΎΡΠΎΡΠΈΠΊΠ»Π° ΡΠ°Π²Π½Π° 27 ΠΌ/Ρ ΠΈΠ»ΠΈ 97 ΠΊΠΌ/Ρ.
ΠΡΡΠΈΡΠ»ΡΠ΅ΠΌ ΡΠ°Π½Π³Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅
Π’Π°Π½Π³Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΊΠΎΡΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΡΠ° Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΎΡΠ΅Π½Ρ ΠΏΠΎΡ ΠΎΠΆΠ° Π½Π° Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ (ΡΠΌ. Π³Π»Π°Π²Ρ 3). ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΠΎΡΠΊΠΈ Π½Π° ΠΊΠΎΠ»Π΅ΡΠ΅ ΠΌΠΎΡΠΎΡΠΈΠΊΠ»Π° Π² ΠΌΠΎΠΌΠ΅Π½Ρ ΡΡΠ°ΡΡΠ° ΠΈΠΌΠ΅ΡΡ Π½ΡΠ»Π΅Π²ΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ, Π° ΡΠΏΡΡΡΡ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ΅ Π²ΡΠ΅ΠΌΡ ΠΏΠΎΡΠ»Π΅ ΡΠ°Π·Π³ΠΎΠ½Π° ΡΡΠΊΠΎΡΡΡΡΡΡ Π΄ΠΎ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ Π½Π΅Π½ΡΠ»Π΅Π²ΠΎΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ. ΠΠ°ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΡΠΎ ΡΠ°Π½Π³Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠΎΡΠΊΠΈ ΠΊΠΎΠ»Π΅ΡΠ°? ΠΠ΅ΡΠ΅ΡΠΎΡΠΌΡΠ»ΠΈΡΡΠ΅ΠΌ Π²ΠΎΠΏΡΠΎΡ: ΠΊΠ°ΠΊ ΡΠ²ΡΠ·Π°ΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅
Π³Π΄Π΅ β\( a \)β β ΡΡΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅, β\( \Delta v \)β β ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ, a β\( \Delta t \)β β Π²ΡΠ΅ΠΌΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ, Ρ ΡΠ³Π»ΠΎΠ²ΡΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ
Π³Π΄Π΅ \( \Delta\omega \) β ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ, \( \Delta t \) β Π²ΡΠ΅ΠΌΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ?
ΠΠ°ΠΊ ΠΌΡ ΡΠΆΠ΅ Π·Π½Π°Π΅ΠΌ, Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΠΈ ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ²ΡΠ·Π°Π½Ρ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎΠΌ
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ ΡΡΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π² ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ:
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ°Π΄ΠΈΡΡ ΠΎΡΡΠ°Π΅ΡΡΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠΌ, ΡΠΎ Π΅Π³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠ½Π΅ΡΡΠΈ Π·Π° ΡΠΊΠΎΠ±ΠΊΠΈ:
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ β\( \alpha=\Delta\omega/\Delta t \)β, ΡΠΎ:
ΠΡΠ°ΠΊ, ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ ΡΠ»Π΅Π΄ΡΡΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΡΠ²ΡΠ·ΠΈ ΠΌΠ΅ΠΆΠ΄Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠΌ ΠΈ ΡΠ³Π»ΠΎΠ²ΡΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ:
ΠΠ½Π°ΡΠ΅ Π³ΠΎΠ²ΠΎΡΡ, ΡΠ°Π½Π³Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ°Π΄ΠΈΡΡΠ° Π½Π° ΡΠ³Π»ΠΎΠ²ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅.
ΠΡΡΠΈΡΠ»ΡΠ΅ΠΌ ΡΠ΅Π½ΡΡΠΎΡΡΡΠ΅ΠΌΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅
Π¦Π΅Π½ΡΡΠΎΡΡΡΠ΅ΠΌΠΈΡΠ΅Π»ΡΠ½Π½ΡΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅, Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΠ΅ Π΄Π»Ρ ΡΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΎΠ±ΡΠ΅ΠΊΡΠ° Π½Π° ΠΊΡΡΠ³ΠΎΠ²ΠΎΠΉ ΠΎΡΠ±ΠΈΡΠ΅ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΠ°ΠΊ ΡΠ²ΡΠ·Π°Π½Ρ ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΠΈ ΡΠ΅Π½ΡΡΠΎΡΡΡΠ΅ΠΌΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅? Π€ΠΎΡΠΌΡΠ»Π° Π΄Π»Ρ ΡΠ΅Π½ΡΡΠΎΡΡΡΠ΅ΠΌΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠΆΠ΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡ ΡΠ°Π½Π΅Π΅ (ΡΠΌ. Π³Π»Π°Π²Ρ 7):
Π’Π΅ΠΏΠ΅ΡΡ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΡΠ²ΡΠ·ΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ β\( v=r\omega \)β, ΠΏΠΎΠ»ΡΡΠΈΠΌ:
ΠΠΎ ΡΡΠΎΠΉ ΡΠΎΡΠΌΡΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΡΠ΅Π½ΡΡΠΎΡΡΡΠ΅ΠΌΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΏΠΎ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ ΡΠ°Π΄ΠΈΡΡΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΡΠ΅Π½ΡΡΠΎΡΡΡΠ΅ΠΌΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΡΠ½Ρ, Π²ΡΠ°ΡΠ°ΡΡΠ΅ΠΉΡΡ Π²ΠΎΠΊΡΡΠ³ ΠΠ΅ΠΌΠ»ΠΈ, ΡΠ΄ΠΎΠ±Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΈΠΌΠ΅Π½Π½ΠΎ ΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ.
ΠΡΠ½Π° Π΄Π΅Π»Π°Π΅Ρ ΠΏΠΎΠ»Π½ΡΠΉ ΠΎΠ±ΠΎΡΠΎΡ Π²ΠΎΠΊΡΡΠ³ ΠΠ΅ΠΌΠ»ΠΈ Π·Π° 28 Π΄Π½Π΅ΠΉ, Ρ.Π΅. Π·Π° 28 Π΄Π½Π΅ΠΉ ΠΡΠ½Π° ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ β\( 2\pi \)β ΡΠ°Π΄ΠΈΠ°Π½. ΠΡΡΡΠ΄Π° ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ ΡΠ³Π»ΠΎΠ²ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ ΠΡΠ½Ρ:
Π§ΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ Π² ΠΏΡΠΈΠ²ΡΡΠ½ΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ°Ρ , ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ Π΄Π½ΠΈ Π² ΡΠ΅ΠΊΡΠ½Π΄Ρ:
ΠΠΎΡΠ»Π΅ ΠΏΠΎΠ΄ΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ ΡΡΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π² ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΏΠΎΠ»ΡΡΠΈΠΌ:
Π‘ΡΠ΅Π΄Π½ΠΈΠΉ ΡΠ°Π΄ΠΈΡΡ ΠΎΡΠ±ΠΈΡΡ ΠΡΠ½Ρ ΡΠ°Π²Π΅Π½ 3,85Β·108 ΠΌ. ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΡ ΡΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ ΡΠ°Π΄ΠΈΡΡΠ° Π² ΡΠΎΡΠΌΡΠ»Ρ ΡΠ΅Π½ΡΡΠΎΡΡΡΠ΅ΠΌΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ, ΠΏΠΎΠ»ΡΡΠΈΠΌ:
ΠΠ½Π°Ρ ΡΡΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΠΈ ΠΌΠ°ΡΡΡ ΠΡΠ½Ρ, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠ°Π²Π½Π° 7,35Β·1022 ΠΊΠ³, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠ΅Π½ΡΡΠΎΡΡΡΠ΅ΠΌΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠΈΠ»Ρ, Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡΡ Π΄Π»Ρ ΡΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΡΠ½Ρ Π½Π° Π΅Π΅ ΠΎΡΠ±ΠΈΡΠ΅:
ΠΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ Π²Π΅ΠΊΡΠΎΡΡ Π΄Π»Ρ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ
Π ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠΈΡ ΡΠ°Π·Π΄Π΅Π»Π°Ρ ΡΡΠΎΠΉ Π³Π»Π°Π²Ρ ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π»ΠΈΡΡ ΠΊΠ°ΠΊ ΡΠΊΠ°Π»ΡΡΡ, Ρ.Π΅. ΠΊΠ°ΠΊ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ, Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΠΈΠ΅ΡΡ ΡΠΎΠ»ΡΠΊΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ. ΠΠ΄Π½Π°ΠΊΠΎ ΡΡΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, Π½Π° ΡΠ°ΠΌΠΎΠΌ Π΄Π΅Π»Π΅, ΡΠ²Π»ΡΡΡΡΡ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ, Ρ.Π΅. ΠΎΠ½ΠΈ ΠΎΠ±Π»Π°Π΄Π°ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ (ΡΠΌ. Π³Π»Π°Π²Ρ 4). Π ΡΡΠΎΠΌ ΡΠ°Π·Π΄Π΅Π»Π΅ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
ΠΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ
ΠΠ°ΠΊ Π½Π°ΠΌ ΡΠΆΠ΅ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ, Π²ΡΠ°ΡΠ°ΡΡΠ΅Π΅ΡΡ ΠΊΠΎΠ»Π΅ΡΠΎ ΠΌΠΎΡΠΎΡΠΈΠΊΠ»Π° ΠΈΠΌΠ΅Π΅Ρ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΡΠ³Π»ΠΎΠ²ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ, Π½ΠΎ ΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅. Π§ΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°ΡΡ ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ? ΠΠ½ΠΎ Π½Π΅ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΠ°Π½Π³Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ, Π°β¦ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ ΠΊΠΎΠ»Π΅ΡΠ°!
ΠΡΠ° Π½ΠΎΠ²ΠΎΡΡΡ Π²ΡΠ΅Π³Π΄Π° ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΌΡ Π·Π°ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΡΡΠ²Ρ ΡΡΠ΅Π΄ΠΈ Π½ΠΎΠ²ΠΈΡΠΊΠΎΠ²: ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ β\( \omega \)β, ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅ΡΡΡ, Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π° Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π²ΡΠ°ΡΠ°ΡΡΠ΅Π³ΠΎΡΡ ΠΊΠΎΠ»Π΅ΡΠ° (ΡΠΈΡ. 10.2). ΠΠΎ Π²ΡΠ°ΡΠ°ΡΡΠ΅ΠΌΡΡ ΠΊΠΎΠ»Π΅ΡΠ΅ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΠΎΠΉ Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΎΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ Π΅Π³ΠΎ ΡΠ΅Π½ΡΡ. ΠΠΎΡΡΠΎΠΌΡ Π½Π°ΡΠ°Π»ΠΎ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΡΠΈΠ½ΡΡΠΎ ΡΠ°ΡΠΏΠΎΠ»Π°Π³Π°ΡΡ Π² ΡΠ΅Π½ΡΡΠ΅ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ.
ΠΠ»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ \( \omega \) ΡΠ°ΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ. ΠΡΠ»ΠΈ ΠΎΡ Π²Π°ΡΠΈΡΡ Π»Π°Π΄ΠΎΠ½ΡΡ ΠΎΡΡ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ, Π° ΠΏΠ°Π»ΡΡΡ ΡΠ²Π΅ΡΠ½ΡΡΡ ΡΠ°ΠΊ, ΡΡΠΎΠ±Ρ ΠΎΠ½ΠΈ ΡΠΊΠ°Π·ΡΠ²Π°Π»ΠΈ Π½Π° Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠ°Π½Π³Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ, ΡΠΎ Π²ΡΡΡΠ½ΡΡΡΠΉ Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΏΠ°Π»Π΅Ρ ΡΠΊΠ°ΠΆΠ΅Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ \( \omega \).
Π’Π΅ΠΏΠ΅ΡΡ ΡΠ³Π»ΠΎΠ²ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠ°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ ΠΎΡΡΠ°Π»ΡΠ½ΡΠ΅ Π²Π΅ΠΊΡΠΎΡΠ½ΡΠ΅ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΠ°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΏΠΎ ΠΏΡΠ°Π²ΠΈΠ»Ρ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ, Π° Π²Π΅Π»ΠΈΡΠΈΠ½Ρ β ΠΏΠΎ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ ΡΠ°Π½Π΅Π΅ ΡΠΎΡΠΌΡΠ»Π΅. Π’ΠΎ, ΡΡΠΎ Π²Π΅ΠΊΡΠΎΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΡΠ°ΡΡΠΎ Π²ΡΠ·ΡΠ²Π°Π΅Ρ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΡΡΡΠ΄Π½ΠΎΡΡΠΈ Ρ Π½Π°ΡΠΈΠ½Π°ΡΡΠΈΡ , Π½ΠΎ ΠΊ ΡΡΠΎΠΌΡ ΠΌΠΎΠΆΠ½ΠΎ Π±ΡΡΡΡΠΎ ΠΏΡΠΈΠ²ΡΠΊΠ½ΡΡΡ.
ΠΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ
ΠΡΠ»ΠΈ Π²Π΅ΠΊΡΠΎΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΡΠΎ ΠΊΡΠ΄Π° Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ Π²Π΅ΠΊΡΠΎΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ Π² ΡΠ»ΡΡΠ°Π΅ Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½ΠΈΡ ΠΈΠ»ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ΅ΠΊΡΠ°? ΠΠ°ΠΊ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ (ΡΠΌ. ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠΈΠ΅ ΡΠ°Π·Π΄Π΅Π»Ρ), ΡΠ³Π»ΠΎΠ²ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
Π³Π΄Π΅ β\( \alpha \)β β ΡΠ³Π»ΠΎΠ²ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅, β\( \Delta\omega \)β β ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ, β\( \Delta t \)ββ Π²ΡΠ΅ΠΌΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ.
Π Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΠ΅ ΠΎΠ½ΠΎ ΠΈΠΌΠ΅Π΅Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ Π²ΠΈΠ΄:
Π³Π΄Π΅ β\( \mathbf{\alpha} \)β β Π²Π΅ΠΊΡΠΎΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ, Π° β\( \Delta\mathbf{\omega} \)β β ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ. ΠΡΡΡΠ΄Π° ΡΡΠ½ΠΎ, ΡΡΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ.
ΠΡΠ»ΠΈ Π²Π΅ΠΊΡΠΎΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π΅, ΡΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ. ΠΡΠ»ΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ°ΡΡΠ΅Ρ, ΡΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° ΡΠΈΡ. 10.3.
Π Π΅ΡΠ»ΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΠ°Π΄Π°Π΅Ρ, ΡΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° ΡΠΈΡ. 10.4.
ΠΠΎΠ΄Π½ΠΈΠΌΠ°Π΅ΠΌ Π³ΡΡΠ·Ρ: ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΈΠ»Ρ
Π ΡΠΈΠ·ΠΈΠΊΠ΅ Π±ΠΎΠ»ΡΡΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π²ΡΠ΅ΠΌΡ, Π½ΠΎ ΠΈ ΠΌΠ΅ΡΡΠΎ ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠΈΠ»Ρ. ΠΡΠ΅ΠΌ ΠΊΠΎΠ³Π΄Π°-Π»ΠΈΠ±ΠΎ ΠΏΡΠΈΡ ΠΎΠ΄ΠΈΠ»ΠΎΡΡ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΡΡΡΠ°Π³ΠΎΠΌ Π΄Π»Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠΆΠ΅Π»ΡΡ Π³ΡΡΠ·ΠΎΠ². Π§Π΅ΠΌ Π΄Π»ΠΈΠ½Π½Π΅Π΅ ΡΡΡΠ°Π³, ΡΠ΅ΠΌ Π»Π΅Π³ΡΠ΅ ΡΠ΄Π²ΠΈΠ½ΡΡΡ Π³ΡΡΠ·. ΠΠ° ΡΠ·ΡΠΊΠ΅ ΡΠΈΠ·ΠΈΠΊΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠΈΠ»Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΡΠ°Π³Π° Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΠ΅ΡΡΡ ΠΏΠΎΠ½ΡΡΠΈΠ΅ΠΌ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΈΠ»Ρ.
ΠΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΠΈΠ»Ρ Π½Π΅ΡΠ°Π·ΡΡΠ²Π½ΠΎ ΡΠ²ΡΠ·Π°Π½ΠΎ Ρ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ². ΠΡΠ»ΠΈ ΠΏΡΠΈΠ»ΠΎΠΆΠΈΡΡ ΡΠΈΠ»Ρ ΠΊ ΠΊΡΠ°Ρ ΠΊΠ°ΡΡΡΠ΅Π»ΠΈ, ΡΠΎ ΠΊΠ°ΡΡΡΠ΅Π»Ρ Π½Π°ΡΠ½Π΅Ρ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.Β Π§Π΅ΠΌ Π΄Π°Π»ΡΡΠ΅ ΡΠΎΡΠΊΠ° ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠΈΠ»Ρ, ΡΠ΅ΠΌ Π»Π΅Π³ΡΠ΅ ΡΠ°ΡΠΊΡΡΡΠΈΡΡ ΠΊΠ°ΡΡΡΠ΅Π»Ρ Π΄ΠΎ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ (ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΡΡ Π² Π³Π»Π°Π²Π΅ 1 1 ).
Π Π²Π΅ΡΡ Π½Π΅ΠΉ ΡΠ°ΡΡΠΈ ΡΠΈΡ. 10.5 ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ Π²Π΅ΡΡ-ΠΊΠ°ΡΠ΅Π»ΠΈ Ρ Π³ΡΡΠ·ΠΎΠΌ ΠΌΠ°ΡΡΡ β\( m_1 \)β Π½Π° ΠΎΠ΄Π½ΠΎΠΌ ΠΊΠΎΠ½ΡΠ΅ ΠΈ Π³ΡΡΠ·ΠΎΠΌ Π±ΠΎΠ»ΡΡΠ΅ΠΉ ΠΌΠ°ΡΡΡ β\( m_2=2m_1 \)β ΠΏΠΎΡΠ΅ΡΠ΅Π΄ΠΈΠ½Π΅. Π§ΡΠΎΠ±Ρ ΡΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡΡ Π²Π΅ΡΡ-ΠΊΠ°ΡΠ΅Π»ΠΈ, Π½ΡΠΆΠ½ΠΎ ΡΠΌΠ΅ΡΡΠΈΡΡ Π³ΡΡΠ· Ρ Π±ΠΎΠ»ΡΡΠ΅ΠΉ ΠΌΠ°ΡΡΠΎΠΉ β\( m_2 \)β ΠΊ Π΄ΡΡΠ³ΠΎΠΌΡ ΠΊΠΎΠ½ΡΡ Π²Π΅ΡΠΎΠ², ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π² Π½ΠΈΠΆΠ½Π΅ΠΉ ΡΠ°ΡΡΠΈ ΡΠΈΡ. 10.5. ΠΠ°ΠΊ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ ΠΈΠ· ΠΎΠΏΡΡΠ°, ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π³ΡΡΠ·Π° Π² ΡΠΎΡΠΊΠ΅ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π²Π΅ΡΠΎΠ² Π½Π΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΠ²Π°Π½ΠΈΡ Π²Π΅ΡΠΎΠ². Π§ΡΠΎΠ±Ρ ΡΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡΡ Π²Π΅ΡΡ, Π½ΡΠΆΠ½ΠΎ ΡΠ΄Π²ΠΈΠ½ΡΡΡ Π³ΡΡΠ· Ρ Π±ΠΎΠ»ΡΡΠ΅ΠΉ ΠΌΠ°ΡΡΠΎΠΉ \( m_2=2m_1 \) ΠΊ Π΄ΡΡΠ³ΠΎΠΌΡ ΠΊΠΎΠ½ΡΡ Π²Π΅ΡΠΎΠ² Π½Π° ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ Π²Π΄Π²ΠΎΠ΅ ΠΌΠ΅Π½ΡΡΠ΅Π΅, ΡΠ΅ΠΌ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ ΡΠΎΡΠΊΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π΄ΠΎ Π²ΡΠΎΡΠΎΠ³ΠΎ Π³ΡΡΠ·Π° Ρ ΠΌΠ°ΡΡΠΎΠΉ β\( m_1 \)β.
ΠΠ½Π°ΠΊΠΎΠΌΠΈΠΌΡΡ Ρ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΠΈΠ»Ρ
ΠΠ»Ρ ΡΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΠ²Π°Π½ΠΈΡ Π²Π΅ΡΠΎΠ² Π²Π°ΠΆΠ½ΠΎ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ, ΠΊΠ°ΠΊΠ°Ρ ΡΠΈΠ»Π° ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ, Π½ΠΎ ΠΈ Π³Π΄Π΅ ΠΎΠ½Π° ΠΏΡΠΈΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΡΡΡ. Π Π°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ ΡΠΎΡΠΊΠΈ ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠΈΠ»Ρ Π΄ΠΎ ΡΠΎΡΠΊΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΠ»Π΅ΡΠΎΠΌ ΡΠΈΠ»Ρ.
ΠΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, ΡΡΠΎ Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ ΠΎΡΠΊΡΡΡΡ Π΄Π²Π΅ΡΡ, ΡΡ Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Π½ΡΡ Π½Π° ΡΠΈΡ. 10.6. ΠΠ°ΠΊ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ ΠΈΠ· ΠΎΠΏΡΡΠ°, Π΄Π²Π΅ΡΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡΠΊΡΡΡΡ, Π΅ΡΠ»ΠΈ ΠΏΡΠΈΠ»Π°Π³Π°ΡΡ ΡΠΈΠ»Ρ Π²Π±Π»ΠΈΠ·ΠΈ ΠΏΠ΅ΡΠ΅Π»Ρ (ΡΠΌ. ΡΡ Π΅ΠΌΡ Π Π½Π° ΡΠΈΡ. 10.6). ΠΠ΄Π½Π°ΠΊΠΎ, Π΅ΡΠ»ΠΈ ΠΏΡΠΈΠ»ΠΎΠΆΠΈΡΡ ΡΠΈΠ»Ρ ΠΏΠΎΡΠ΅ΡΠ΅Π΄ΠΈΠ½Π΅ Π΄Π²Π΅ΡΠΈ,Β ΡΠΎ ΠΎΡΠΊΡΡΡΡ Π΅Π΅ Π±ΡΠ΄Π΅Ρ Π³ΠΎΡΠ°Π·Π΄ΠΎ ΠΏΡΠΎΡΠ΅ (ΡΠΌ. ΡΡ Π΅ΠΌΡ Π Π½Π° ΡΠΈΡ. 10.6). ΠΠ°ΠΊΠΎΠ½Π΅Ρ, ΠΏΡΠΈΠ»Π°Π³Π°Ρ ΡΠΈΠ»Ρ Ρ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠ³ΠΎ ΠΊΡΠ°Ρ Π΄Π²Π΅ΡΠΈ ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅Π»Ρ, Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡΠΊΡΡΡΡ Ρ Π΅ΡΠ΅ ΠΌΠ΅Π½ΡΡΠΈΠΌ ΡΡΠΈΠ»ΠΈΠ΅ΠΌ (ΡΠΌ. ΡΡ Π΅ΠΌΡ Π Π½Π° ΡΠΈΡ. 10.6).
ΠΠ° ΡΠΈΡ. 10.6 ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ ΠΌΠ΅ΡΡ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅Π»Ρ Π΄ΠΎ ΡΠΎΡΠΊΠΈ ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠΈΠ»Ρ ΠΈ Π΅ΡΡΡ ΠΏΠ»Π΅ΡΠΎ ΡΠΈΠ»Ρ. ΠΠΎΠΌΠ΅Π½ΡΠΎΠΌ ΡΠΈΠ»Ρ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΡΠΈΠ»Π°Π³Π°Π΅ΠΌΠΎΠΉ ΡΠΈΠ»Ρ β\( F \)β Π½Π° ΠΏΠ»Π΅ΡΠΎ ΡΠΈΠ»Ρ β\( l \)β:
ΠΠΎΠΌΠ΅Π½Ρ ΡΠΈΠ»Ρ Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ Π‘Π ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ Π² ΠΒ·ΠΌ, Π° Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ Π‘ΠΠ‘ β Π² Π΄ΠΈΠ½Β·ΡΠΌ (ΠΏΠΎΠ΄ΡΠΎΠ±Π½Π΅Π΅ ΡΡΠΈ ΡΠΈΡΡΠ΅ΠΌΡ Π΅Π΄ΠΈΠ½ΠΈΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΡΡ Π² Π³Π»Π°Π²Π΅ 2).
ΠΠ΅ΡΠ½Π΅ΠΌΡΡ ΠΊ ΠΏΡΠΈΠΌΠ΅ΡΡ Π½Π° ΡΠΈΡ. 10.6, Π³Π΄Π΅ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΠΎΡΠΊΡΡΡΡ Π΄Π²Π΅ΡΡ ΡΠΈΡΠΈΠ½ΠΎΠΉ 1 ΠΌ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΈΠ»Ρ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ 200 Π. Π ΡΠ»ΡΡΠ°Π΅ Π (ΡΠΌ. ΡΠΈΡ. 10.6) ΠΏΠ»Π΅ΡΠΎ ΡΠΈΠ»Ρ ΡΠ°Π²Π½ΠΎ Π½ΡΠ»Ρ ΠΈ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΡΠΎΠ³ΠΎ ΠΏΠ»Π΅ΡΠ° Π½Π° ΡΠΈΠ»Ρ Π»ΡΠ±ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ (Π²ΠΊΠ»ΡΡΠ°Ρ ΠΈ ΡΠΈΠ»Ρ 200 Π) Π΄Π°ΡΡ Π½ΡΠ»Π΅Π²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΈΠ»Ρ. Π ΡΠ»ΡΡΠ°Π΅ Π (ΡΠΌ. ΡΠΈΡ. 10.6) ΠΏΠ»Π΅ΡΠΎ ΡΠΈΠ»Ρ ΡΠ°Π²Π½ΠΎ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ ΡΠΈΡΠΈΠ½Ρ Π΄Π²Π΅ΡΠΈ, Ρ.Π΅. ΠΏΠ»Π΅ΡΠΎ ΡΠΈΠ»Ρ β\( l \)β ΡΠ°Π²Π½ΠΎ 0,5 ΠΌ ΠΈ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΈΠ»Ρ Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π΅Π½:
Π ΡΠ»ΡΡΠ°Π΅ Π (ΡΠΌ. ΡΠΈΡ. 10.6) ΠΏΠ»Π΅ΡΠΎ ΡΠΈΠ»Ρ ΡΠ°Π²Π½ΠΎ ΡΠΈΡΠΈΠ½Π΅ Π΄Π²Π΅ΡΠΈ, Ρ.Π΅. ΠΏΠ»Π΅ΡΠΎ ΡΠΈΠ»Ρ \( l \) ΡΠ°Π²Π½ΠΎ 1 ΠΌ ΠΈ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΈΠ»Ρ Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π΅Π½:
ΠΡΠ°ΠΊ, ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ Π²Π΄Π²ΠΎΠ΅ Π΄Π»ΠΈΠ½Ρ ΠΏΠ»Π΅ΡΠ° ΠΏΡΠΈ ΡΠΎΠΉ ΠΆΠ΅ ΡΠΈΠ»Π΅ Π΄Π°Π΅Ρ Π½Π°ΠΌ ΡΠ°ΠΊΠΎΠ΅ ΠΆΠ΅ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΠΈΠ»Ρ. ΠΠΎ ΡΠΈΡ ΠΏΠΎΡ ΡΠΈΠ»Π° ΠΏΡΠΈΠ»Π°Π³Π°Π»Π°ΡΡ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ ΠΊ Π»ΠΈΠ½ΠΈΠΈ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΊΡ ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠΈΠ»Ρ ΠΈ ΡΠΎΡΠΊΡ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ. Π ΡΡΠΎ Π±ΡΠ΄Π΅Ρ Ρ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠΌ ΡΠΈΠ»Ρ, Π΅ΡΠ»ΠΈ Π΄Π²Π΅ΡΡ Π±ΡΠ΄Π΅Ρ Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ ΠΏΡΠΈΠΎΡΠΊΡΡΡΠ° ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠΈΠ»Ρ ΡΠΆΠ΅ Π±ΡΠ΄Π΅Ρ Π½Π΅ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΡΠΌ?
Π Π°Π·Π±ΠΈΡΠ°Π΅ΠΌΡΡ Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ ΡΠΈΠ»Ρ ΠΈ ΠΏΠ»Π΅ΡΠΎΠΌ ΡΠΈΠ»Ρ
ΠΠΎΠΏΡΡΡΠΈΠΌ, ΡΡΠΎ ΡΠΈΠ»Π° ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½Π° Π½Π΅ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ ΠΊ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠΈ Π΄Π²Π΅ΡΠΈ, Π° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° ΡΡ Π΅ΠΌΠ΅ Π Π½Π° ΡΠΈΡ. 10.7. ΠΠ°ΠΊ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ ΠΈΠ· ΠΎΠΏΡΡΠ°, ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ Π΄Π²Π΅ΡΡ ΠΎΡΠΊΡΡΡΡ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ. ΠΠ΅Π»ΠΎ Π² ΡΠΎΠΌ, ΡΡΠΎ Ρ ΡΠ°ΠΊΠΎΠΉ ΡΠΈΠ»Ρ Π½Π΅Ρ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ Π±Ρ ΠΌΠΎΠ³Π»Π° Π²ΡΠ·Π²Π°ΡΡ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π’ΠΎΡΠ½Π΅Π΅ Π³ΠΎΠ²ΠΎΡΡ, Ρ ΡΠ°ΠΊΠΎΠΉ ΡΠΈΠ»Ρ Π½Π΅Ρ Π½Π΅Π½ΡΠ»Π΅Π²ΠΎΠ³ΠΎ ΠΏΠ»Π΅ΡΠ° Π΄Π»Ρ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΠΈΠ»Ρ.
Π Π°Π·ΠΌΡΡΠ»ΡΠ΅ΠΌ Π½Π°Π΄ ΡΠ΅ΠΌ, ΠΊΠ°ΠΊ ΡΠΎΠ·Π΄Π°Π΅ΡΡΡ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΈΠ»Ρ
ΠΠΎΠΌΠ΅Π½Ρ ΡΠΈΠ»Ρ ΠΈΠ· ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅Π³ΠΎ ΠΏΡΠΈΠΌΠ΅ΡΠ° ΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΡΠΎΠ·Π΄Π°Π²Π°ΡΡ Π²ΡΠ΅Π³Π΄Π° Π΄Π»Ρ ΠΎΡΠΊΡΡΡΠΈΡ Π΄Π²Π΅ΡΠΈ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎ ΠΎΡ ΡΠΎΠ³ΠΎ, ΠΊΠ°ΠΊΡΡ Π΄Π²Π΅ΡΡ ΠΏΡΠΈΡ ΠΎΠ΄ΠΈΡΡΡ ΠΎΡΠΊΡΡΠ²Π°ΡΡ: Π»Π΅Π³ΠΊΡΡ ΠΊΠ°Π»ΠΈΡΠΊΡ ΠΈΠ·Π³ΠΎΡΠΎΠ΄ΠΈ ΠΈΠ»ΠΈ ΠΌΠ°ΡΡΠΈΠ²Π½ΡΡ Π΄Π²Π΅ΡΡ Π±Π°Π½ΠΊΠΎΠ²ΡΠΊΠΎΠ³ΠΎ ΡΠ΅ΠΉΡΠ°. ΠΠ°ΠΊ Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΈΠ»Ρ? Π‘Π½Π°ΡΠ°Π»Π° Π½ΡΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠ»Π΅ΡΠΎ ΡΠΈΠ», Π° ΠΏΠΎΡΠΎΠΌ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π΅Π³ΠΎ Π½Π° Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΡΠΈΠ»Ρ.
ΠΠ΄Π½Π°ΠΊΠΎ Π½Π΅ Π²ΡΠ΅Π³Π΄Π° Π²ΡΠ΅ ΡΠ°ΠΊ ΠΏΡΠΎΡΡΠΎ. ΠΠΎΡΠΌΠΎΡΡΠΈΡΠ΅ Π½Π° ΡΡ Π΅ΠΌΡ Π Π½Π° ΡΠΈΡ. 10.7. ΠΠ°ΠΊ Π²ΠΈΠ΄ΠΈΡΠ΅, ΡΠΈΠ»Π° ΠΏΡΠΈΠ»Π°Π³Π°Π΅ΡΡΡ ΠΏΠΎΠ΄ Π½Π΅ΠΊΠΎΡΠΎΡΡΠΌ ΡΠ³Π»ΠΎΠΌ β\( \theta \)β. ΠΠ°ΠΊ Π² ΡΠ°ΠΊΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠ»Π΅ΡΠΎ ΡΠΈΠ»Ρ? ΠΡΠ»ΠΈ Π±Ρ ΡΠ³ΠΎΠ»Β \( \theta \) Π±ΡΠ» ΠΏΡΡΠΌΡΠΌ, ΡΠΎ ΠΌΡ ΠΌΠΎΠ³Π»ΠΈ Π±Ρ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΡΠΆΠ΅ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ Π½Π°ΠΌ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
ΠΠ΄Π½Π°ΠΊΠΎ Π² Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΠ³ΠΎΠ» \( \theta \) Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΡΠΌ.
Π ΡΠ°ΠΊΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π½ΡΠΆΠ½ΠΎ ΠΏΡΠΎΡΡΠΎ ΠΏΠΎΠΌΠ½ΠΈΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ: ΠΏΠ»Π΅ΡΠΎΠΌ ΡΠΈΠ»Ρ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π΄Π»ΠΈΠ½Π° ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ°, ΠΎΠΏΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ· ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΠΎΠΉ ΡΠΎΡΠΊΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π½Π° ΠΏΡΡΠΌΡΡ, ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΊΠΎΡΠΎΡΠΎΠΉ Π΄Π΅ΠΉΡΡΠ²ΡΠ΅Ρ ΡΠΈΠ»Π°.
ΠΠΎΠΏΡΠΎΠ±ΡΠ΅ΠΌ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΡΡΠΎ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠ»Π΅ΡΠ° ΡΠΈΠ»Ρ Π΄Π»Ρ ΡΡ Π΅ΠΌΡ Π Π½Π° ΡΠΈΡ. 10.7. ΠΡΠΆΠ½ΠΎ ΠΏΡΠΎΠ΄Π»ΠΈΡΡ Π»ΠΈΠ½ΠΈΡ, Π²Π΄ΠΎΠ»Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ Π΄Π΅ΠΉΡΡΠ²ΡΠ΅Ρ ΡΠΈΠ»Π°, Π° ΠΏΠΎΡΠΎΠΌ ΠΎΠΏΡΡΡΠΈΡΡ Π½Π° Π½Π΅Π΅ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡ ΠΈΠ· ΡΠΎΡΠΊΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π΄Π²Π΅ΡΠΈ. ΠΠ· ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° Π»Π΅Π³ΠΊΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΈΡΠΊΠΎΠΌΠΎΠ΅ ΠΏΠ»Π΅ΡΠΎ ΡΠΈΠ»Ρ:
ΠΡΠ»ΠΈ ΡΠ³ΠΎΠ» \( \theta \) ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ, ΡΠΎ Π½ΠΈΠΊΠ°ΠΊΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΠΈΠ»Ρ Π½Π΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ (ΡΠΌ. ΡΡ Π΅ΠΌΡ Π Π½Π° ΡΠΈΡ. 10.7).
ΠΡΠ°ΠΊ, ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ Π΄Π»Ρ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΠΈΠ»Ρ Π΄Π»Ρ ΡΡ Π΅ΠΌΡ Π Π½Π° ΡΠΈΡ. 10.7:
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΅ΡΠ»ΠΈ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΠΎΡΠΊΡΡΡΡ Π΄Π²Π΅ΡΡ ΡΠΈΡΠΈΠ½ΠΎΠΉ 1 ΠΌ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΈΠ»Ρ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ 200 Π, ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ ΠΏΠΎΠ΄ ΡΠ³Π»ΠΎΠΌΒ \( \theta \) = 45Β°, ΡΠΎ ΡΠΎΠ·Π΄Π°Π²Π°Π΅ΠΌΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΡΠΎΠΉ ΡΠΈΠ»Ρ Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π΅Π½:
ΠΠ°ΠΊ Π²ΠΈΠ΄ΠΈΡΠ΅, ΡΡΠΎΡ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΈΠ»Ρ 140 ΠΒ·ΠΌ ΠΌΠ΅Π½ΡΡΠ΅, ΡΠ΅ΠΌ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΈΠ»Ρ 200 ΠΒ·ΠΌ, ΡΠΎΠ·Π΄Π°Π½Π½ΡΠΉ ΠΏΠΎΠ΄ ΠΏΡΡΠΌΡΠΌ ΡΠ³Π»ΠΎΠΌ Π½Π° ΡΡ Π΅ΠΌΠ΅ Π Π½Π° ΡΠΈΡ. 10.6.
ΠΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΠΈΠ»Ρ
Π£ΡΠΈΡΡΠ²Π°Ρ Π²ΡΠ΅ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠ΅ Π²ΡΡΠ΅ ΡΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ΅ ΡΠΈΠ»Ρ, Ρ ΡΠΈΡΠ°ΡΠ΅Π»Ρ Π²ΠΏΠΎΠ»Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΡΡΡ ΠΏΠΎΠ΄ΠΎΠ·ΡΠ΅Π½ΠΈΠ΅, ΡΡΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΈΠ»Ρ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ. Π ΡΡΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ°ΠΊ. ΠΠΎΠΌΠ΅Π½Ρ ΡΠΈΠ»Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ, Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΏΠΎ ΠΏΡΠ°Π²ΠΈΠ»Ρ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ. ΠΡΠ»ΠΈ ΠΎΡ Π²Π°ΡΠΈΡΡ Π»Π°Π΄ΠΎΠ½ΡΡ ΠΎΡΡ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ, Π° ΠΏΠ°Π»ΡΡΡ ΡΠ²Π΅ΡΠ½ΡΡΡ ΡΠ°ΠΊ, ΡΡΠΎΠ±Ρ ΠΎΠ½ΠΈ ΡΠΊΠ°Π·ΡΠ²Π°Π»ΠΈ Π½Π° Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠΈΠ»Ρ, ΡΠΎ Π²ΡΡΡΠ½ΡΡΡΠΉ Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΏΠ°Π»Π΅Ρ ΡΠΊΠ°ΠΆΠ΅Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΠΈΠ»Ρ.
ΠΠ° ΡΠΈΡ. 10.8 ΠΏΠΎΠΊΠ°Π·Π°Π½ ΠΏΡΠΈΠΌΠ΅Ρ ΡΠΈΠ»Ρ β\( \mathbf{F} \)β Ρ ΠΏΠ»Π΅ΡΠΎΠΌ \( \mathbf{l} \) ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅Π³ΠΎ Π²Π΅ΠΊΡΠΎΡΠ° ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΠΈΠ» \( \mathbf{M} \).
Π£ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΠ²Π°Π΅ΠΌ ΠΌΠΎΠΌΠ΅Π½ΡΡ ΡΠΈΠ»
Π ΠΆΠΈΠ·Π½ΠΈ Π½Π°ΠΌ ΡΠ°ΡΡΠΎ ΠΏΡΠΈΡ ΠΎΠ΄ΠΈΡΡΡ ΡΡΠ°Π»ΠΊΠΈΠ²Π°ΡΡΡΡ Ρ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠ½ΡΠΌΠΈ ΡΠΎΡΡΠΎΡΠ½ΠΈΡΠΌΠΈ. ΠΠ°ΠΊ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠ½ΠΎΠ΅ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ Ρ ΡΠΎΡΠΊΠΈ Π·ΡΠ΅Π½ΠΈΡ ΡΠΈΠ·ΠΈΠΊΠΈ? ΠΠ±ΡΡΠ½ΠΎ ΡΠΈΠ·ΠΈΠΊΠΈ ΠΏΠΎΠ΄ΡΠ°Π·ΡΠΌΠ΅Π²Π°ΡΡ ΠΏΠΎΠ΄ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠ½ΡΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ΠΌ ΠΎΠ±ΡΠ΅ΠΊΡΠ° ΡΠΎ, ΡΡΠΎ ΠΎΠ½ Π½Π΅ ΠΈΡΠΏΡΡΡΠ²Π°Π΅Ρ Π½ΠΈΠΊΠ°ΠΊΠΎΠ³ΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ (Π½ΠΎ ΠΌΠΎΠΆΠ΅Ρ Π΄Π²ΠΈΠ³Π°ΡΡΡΡ Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ).
ΠΠ»Ρ ΠΏΠΎΡΡΡΠΏΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠ½ΠΎΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ ΡΡΠΌΠΌΠ° Π²ΡΠ΅Ρ ΡΠΈΠ», Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΡ Π½Π° ΠΎΠ±ΡΠ΅ΠΊΡ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ:
ΠΠ½Π°ΡΠ΅ Π³ΠΎΠ²ΠΎΡΡ, ΡΠ΅Π·ΡΠ»ΡΡΠΈΡΡΡΡΠ°Ρ Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠ°Ρ ΡΠΈΠ»Π° ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ.
ΠΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠ½ΡΠΌ, Π΅ΡΠ»ΠΈ ΡΠ°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ Π±Π΅Π· ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ, Ρ.Π΅. Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ.
ΠΠ»Ρ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠ½ΠΎΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ ΡΡΠΌΠΌΠ° Π²ΡΠ΅Ρ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ² ΡΠΈΠ», Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΡ Π½Π° ΠΎΠ±ΡΠ΅ΠΊΡ, ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ:
ΠΠ°ΠΊ Π²ΠΈΠ΄ΠΈΡΠ΅, ΡΡΠΎ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠ½ΠΎΠ³ΠΎ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΡΡΠ»ΠΎΠ²ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΡΡΡΠΏΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. Π£ΡΠ»ΠΎΠ²ΠΈΡ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠ½ΠΎΠ³ΠΎ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΄ΠΎΠ±Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΠΈΠ»Ρ, Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΠ³ΠΎ Π΄Π»Ρ ΡΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΠ²Π°Π½ΠΈΡ Π½Π΅ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎ Π²ΡΠ°ΡΠ°ΡΡΠ΅Π³ΠΎΡΡ ΠΎΠ±ΡΠ΅ΠΊΡΠ°.
ΠΡΠΎΡΡΠΎΠΉ ΠΏΡΠΈΠΌΠ΅Ρ: Π²Π΅ΡΠ°Π΅ΠΌ ΡΠ΅ΠΊΠ»Π°ΠΌΠ½ΡΠΉ ΠΏΠ»Π°ΠΊΠ°Ρ
ΠΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, ΡΡΠΎ Ρ Π²Ρ ΠΎΠ΄Π° Π² ΠΌΠ°Π³Π°Π·ΠΈΠ½ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΠ²Π΅ΡΠΈΡΡ Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΈ ΡΡΠΆΠ΅Π»ΡΠΉ ΡΠ΅ΠΊΠ»Π°ΠΌΠ½ΡΠΉ ΠΏΠ»Π°ΠΊΠ°Ρ, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° ΡΠΈΡ. 10.9. Π₯ΠΎΠ·ΡΠΈΠ½ ΠΌΠ°Π³Π°Π·ΠΈΠ½Π° ΠΏΡΡΠ°Π»ΡΡ ΡΠ΄Π΅Π»Π°ΡΡ ΡΡΠΎ ΠΈ ΡΠ°Π½ΡΡΠ΅, Π½ΠΎ Ρ Π½Π΅Π³ΠΎ Π½ΠΈΡΠ΅Π³ΠΎ Π½Π΅ Π²ΡΡ ΠΎΠ΄ΠΈΠ»ΠΎ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΎΠ½ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π» ΠΎΡΠ΅Π½Ρ Π½Π΅ΠΏΡΠΎΡΠ½ΡΠΉ Π±ΠΎΠ»Ρ.
ΠΠΎΠΏΡΠΎΠ±ΡΠ΅ΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠΈΠ»Ρ, Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ Π±ΠΎΠ»Ρ Π΄ΠΎΠ»ΠΆΠ΅Π½ ΡΠ΄Π΅ΡΠΆΠΈΠ²Π°ΡΡ Π²ΡΡ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΡ, ΠΏΠΎΠΊΠ°Π·Π°Π½Π½ΡΡ Π½Π° ΡΠΈΡ. 10.9. ΠΡΡΡΡ ΠΏΠ»Π°ΠΊΠ°Ρ ΠΈΠΌΠ΅Π΅Ρ ΠΌΠ°ΡΡΡ 50 ΠΊΠ³ ΠΈ Π²ΠΈΡΠΈΡ Π½Π° ΡΠ΅ΡΡΠ΅ 3 ΠΌ ΠΎΡ ΡΠΎΡΠΊΠΈ ΠΎΠΏΠΎΡΡ ΡΠ΅ΡΡΠ°, Π° ΠΌΠ°ΡΡΡ ΡΠ΅ΡΡΠ° Π² Π΄Π°Π½Π½ΠΎΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ Π±ΡΠ΄Π΅ΠΌ ΡΡΠΈΡΠ°ΡΡ ΠΏΡΠ΅Π½Π΅Π±ΡΠ΅ΠΆΠΈΠΌΠΎ ΠΌΠ°Π»ΠΎΠΉ. ΠΠΎΠ»Ρ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π² 10 ΡΠΌ ΠΎΡ ΡΠΎΡΠΊΠΈ ΠΎΠΏΠΎΡΡ ΡΠ΅ΡΡΠ°.
Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΡΠ»ΠΎΠ²ΠΈΡΠΌ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ, ΡΡΠΌΠΌΠ° Π²ΡΠ΅Ρ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ² ΡΠΈΠ» Π΄ΠΎΠ»ΠΆΠ½Π° Π±ΡΡΡ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ:
ΠΠ½Π°ΡΠ΅ Π³ΠΎΠ²ΠΎΡΡ:
Π³Π΄Π΅ β\( \mathbf{M_ΠΏ} \)β β ΡΡΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΈΠ»Ρ ΡΠΎ ΡΡΠΎΡΠΎΠ½Ρ ΠΏΠ»Π°ΠΊΠ°ΡΠ°, Π°Β \( \mathbf{M_Π±} \) β ΡΡΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΈΠ»Ρ ΡΠΎ ΡΡΠΎΡΠΎΠ½Ρ Π±ΠΎΠ»ΡΠ°.
Π§Π΅ΠΌΡ ΡΠ°Π²Π½Ρ ΡΠΏΠΎΠΌΡΠ½ΡΡΡΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΡ? ΠΠΎΠΌΠ΅Π½Ρ ΡΠΈΠ»Ρ ΡΠΎ ΡΡΠΎΡΠΎΠ½Ρ ΠΏΠ»Π°ΠΊΠ°ΡΠ° ΠΌΠΎΠΆΠ½ΠΎ Π»Π΅Π³ΠΊΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅:
Π³Π΄Π΅ β\( m \)β = 50 ΠΊΠ³ β ΡΡΠΎ ΠΌΠ°ΡΡΠ° ΠΏΠ»Π°ΠΊΠ°ΡΠ°, β\( \mathbf{g} \)β β ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠ°Π΄Π΅Π½ΠΈΡ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΡΠΈΠ»Ρ Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡΠΈΡΡΠΆΠ΅Π½ΠΈΡ (ΡΠΈΠ»Ρ ΡΡΠΆΠ΅ΡΡΠΈ), β\( m\mathbf{g} \)β β ΡΠΈΠ»Π° ΡΡΠΆΠ΅ΡΡΠΈ ΠΏΠ»Π°ΠΊΠ°ΡΠ°, Π° β\( l_ΠΏ \)β = 3 ΠΌ β ΡΡΠΎ ΠΏΠ»Π΅ΡΠΎ ΡΠΈΠ»Ρ ΡΡΠΆΠ΅ΡΡΠΈ ΠΏΠ»Π°ΠΊΠ°ΡΠ°.
ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΠΏΠΎΠ»ΡΡΠΈΠΌ:
ΠΠ±ΡΠ°ΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, ΡΡΠΎ Π·Π΄Π΅ΡΡ ΠΏΠ΅ΡΠ΅Π΄ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠ°Π΄Π΅Π½ΠΈΡ ΠΏΠΎΠ΄ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΡΠΈΠ»Ρ Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡΠΈΡΡΠΆΠ΅Π½ΠΈΡ ΡΡΠΎΠΈΡ Π·Π½Π°ΠΊ βΠΌΠΈΠ½ΡΡβ. ΠΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ Π²Π΅ΠΊΡΠΎΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠ°Π΄Π΅Π½ΠΈΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ Π²Π½ΠΈΠ·, Ρ.Π΅. Π² ΡΡΠΎΡΠΎΠ½Ρ, ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΡ Π²ΡΠ±ΡΠ°Π½Π½ΠΎΠΌΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΎΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΠΎΠΌΠ΅Π½Ρ ΡΠΈΠ»Ρ ΡΠΎ ΡΡΠΎΡΠΎΠ½Ρ Π±ΠΎΠ»ΡΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
Π³Π΄Π΅ \( \mathbf{F_Π±} \) β ΡΡΠΎ ΠΈΡΠΊΠΎΠΌΠ°Ρ ΡΠΈΠ»Π°, Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ Π±ΠΎΠ»Ρ Π΄ΠΎΠ»ΠΆΠ΅Π½ ΡΠ΄Π΅ΡΠΆΠΈΠ²Π°ΡΡ Π²ΡΡ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΡ, Π° \( l_Π± \) = 0,1 ΠΌ β ΡΡΠΎ Π΅Π΅ ΠΏΠ»Π΅ΡΠΎ.
ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ Π΄Π»Ρ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ² ΡΠΈΠ» Π² ΡΠΎΡΠΌΡΠ»Ρ:
ΠΏΠΎΠ»ΡΡΠΈΠΌ, ΡΡΠΎ:
ΠΡΡΡΠ΄Π° Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΠΎΡΡΡΡ Π°Π»Π³Π΅Π±ΡΠ°ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΠΎΠ»ΡΡΠΈΠΌ ΠΈΡΠΊΠΎΠΌΡΡ ΡΠΈΠ»Ρ:
ΠΠ°ΠΊ Π²ΠΈΠ΄ΠΈΡΠ΅ ΡΠΈΠ»Π°, Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ Π±ΠΎΠ»Ρ Π΄ΠΎΠ»ΠΆΠ΅Π½ ΡΠ΄Π΅ΡΠΆΠΈΠ²Π°ΡΡ Π²ΡΡ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΡ, Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π²Π΅ΠΊΡΠΎΡΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠ°Π΄Π΅Π½ΠΈΡ, Ρ.Π΅. Π²Π²Π΅ΡΡ .
ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΠΏΠΎΠ»ΡΡΠΈΠΌ ΠΈΡΠΊΠΎΠΌΡΠΉ ΠΎΡΠ²Π΅Ρ:
ΠΠΎΠ»Π΅Π΅ ΡΠ»ΠΎΠΆΠ½ΡΠΉ ΠΏΡΠΈΠΌΠ΅Ρ: ΡΡΠΈΡΡΠ²Π°Π΅ΠΌ ΡΠΈΠ»Ρ ΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΈ ΡΠ°ΡΡΠ΅ΡΠ΅ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠ΅ΠΏΠ΅ΡΡ Π΄ΡΡΠ³ΡΡ Π±ΠΎΠ»Π΅Π΅ ΡΠ»ΠΎΠΆΠ½ΡΡ Π·Π°Π΄Π°ΡΡ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π΄Π»Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² Π½ΡΠΆΠ½ΠΎ ΡΡΠ΅ΡΡΡ ΡΠΈΠ»Ρ ΡΡΠ΅Π½ΠΈΡ. ΠΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, ΡΡΠΎ ΡΠ°Π±ΠΎΡΠ½ΠΈΠΊ ΠΌΠ°Π³Π°Π·ΠΈΠ½Π° ΡΠ΅ΡΠΈΠ» ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΏΠ΅ΡΠ΅Π½ΠΎΡΠ½ΡΡ Π»Π΅ΡΡΠ½ΠΈΡΡ Π΄Π»Ρ ΠΌΠΎΠ½ΡΠ°ΠΆΠ° ΡΠ΅ΠΊΠ»Π°ΠΌΠ½ΠΎΠ³ΠΎ ΠΏΠ»Π°ΠΊΠ°ΡΠ°, ΠΊΠ°ΠΊ ΡΡ Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° ΡΠΈΡ. 10.10.
ΠΡΡΡΡ Π»Π΅ΡΡΠ½ΠΈΡΠ° Π΄Π»ΠΈΠ½ΠΎΠΉ β\( l_Π» \)β = 4 ΠΌ ΡΡΠΎΠΈΡ ΠΏΠΎΠ΄ ΡΠ³Π»ΠΎΠΌ β\( \theta \)β = 45Β° ΠΊ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠΈ ΡΡΠΎΡΡΠ°ΡΠ°, ΡΠ°Π±ΠΎΡΠ½ΠΈΠΊ ΠΈΠΌΠ΅Π΅Ρ ΠΌΠ°ΡΡΡ β\( m_Ρ \)β = 45 ΠΊΠ³ ΠΈ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π½Π° Π½Π΅ΠΉ Π½Π° ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠΈ \( l_Ρ \) = 3 ΠΌ ΠΎΡ Π½ΠΈΠΆΠ½Π΅Π³ΠΎ ΠΊΠΎΠ½ΡΠ° Π»Π΅ΡΡΠ½ΠΈΡΡ, Π»Π΅ΡΡΠ½ΠΈΡΠ° ΠΈΠΌΠ΅Π΅Ρ ΠΌΠ°ΡΡΡ \(m_Π» \) = 20 ΠΊΠ³, Π° ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΡΡΠ΅Π½ΠΈΡ ΠΏΠΎΠΊΠΎΡ ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΡΡ ΡΡΠΎΡΡΠ°ΡΠ° ΠΈ ΠΊΠΎΠ½ΡΠ°ΠΌΠΈ Π»Π΅ΡΡΠ½ΠΈΡΡ ΡΠ°Π²Π΅Π½ β\( \mu_ΠΏ \)β = 0,7. ΠΠΎΠΏΡΠΎΡ: Π±ΡΠ΄Π΅Ρ Π»ΠΈ ΡΠ°ΠΊΠ°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡΡ Π² ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ? ΠΠΎΠΏΡΠΎΡΡΡ Π³ΠΎΠ²ΠΎΡΡ, Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΠΉ Π»ΠΈ Π±ΡΠ΄Π΅Ρ ΡΠΈΠ»Π° ΡΡΠ΅Π½ΠΈΡ, ΡΡΠΎΠ±Ρ Π»Π΅ΡΡΠ½ΠΈΡΠ° Π²ΠΌΠ΅ΡΡΠ΅ Ρ ΡΠ°Π±ΠΎΡΠΈΠΌ Π½Π΅ ΡΠΎΡΠΊΠΎΠ»ΡΠ·Π½ΡΠ»Π° ΠΈ ΡΠΏΠ°Π»Π°?
ΠΡΠ°ΠΊ, Π΄Π»Ρ ΠΎΡΠ²Π΅ΡΠ° Π½Π° ΡΡΠΎΡ Π²ΠΎΠΏΡΠΎΡ Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ ΡΡΠ΅ΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΠΈΠ»Ρ, Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΠ΅ Π½Π° Π»Π΅ΡΡΠ½ΠΈΡΡ:
- β\( \mathbf{F_Ρ} \)β β Π½ΠΎΡΠΌΠ°Π»ΡΠ½Π°Ρ ΡΠΈΠ»Π° ΡΠΎ ΡΡΠΎΡΠΎΠ½Ρ ΡΡΠ΅Π½Ρ;
- \( \mathbf{F_Ρ} \) β Π²Π΅Ρ ΡΠ°Π±ΠΎΡΠ΅Π³ΠΎ;
- \( \mathbf{F_Π»} \) β Π²Π΅Ρ Π»Π΅ΡΡΠ½ΠΈΡΡ;
- \( \mathbf{F_{ΡΡ}} \)Β β ΡΠΈΠ»Π° ΡΡΠ΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΡΡ ΡΡΠΎΡΡΠ°ΡΠ° ΠΈ ΠΊΠΎΠ½ΡΠ°ΠΌΠΈ Π»Π΅ΡΡΠ½ΠΈΡΡ;
- \( \mathbf{F_Ρ} \) β Π½ΠΎΡΠΌΠ°Π»ΡΠ½Π°Ρ ΡΠΈΠ»Π° ΡΠΎ ΡΡΠΎΡΠΎΠ½Ρ ΡΡΠΎΡΡΠ°ΡΠ°.
Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΡΠ»ΠΎΠ²ΠΈΡΠΌ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΡΡΡΠΏΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΡΡΠΌΠΌΠ° Π²ΡΠ΅Ρ ΡΠΈΠ», Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΡ Π½Π° Π»Π΅ΡΡΠ½ΠΈΡΡ, Π΄ΠΎΠ»ΠΆΠ½Π° Π±ΡΡΡ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ:
ΠΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ ΡΡΠΌΠΌΠ° Π²ΡΠ΅Ρ ΡΠΈΠ» Π²Π΄ΠΎΠ»Ρ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΡΠΈ, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΈΠ»Ρ ΡΠΎ ΡΡΠΎΡΠΎΠ½Ρ ΡΡΠ΅Π½Ρ \( \mathbf{F_Ρ} \) ΠΈ ΡΠΈΠ»Ρ ΡΡΠ΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΡΡ ΡΡΠΎΡΡΠ°ΡΠ° ΠΈ ΠΊΠΎΠ½ΡΠ°ΠΌΠΈ Π»Π΅ΡΡΠ½ΠΈΡΡ \( \mathbf{F_{ΡΡ}} \), Π΄ΠΎΠ»ΠΆΠ½Π° Π±ΡΡΡ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ, ΡΠΎ Π΅ΡΡΡ:
ΠΈΠ»ΠΈ
ΠΠ΅ΡΠ΅ΡΡΠ°Π·ΠΈΡΡΡ ΠΏΠΎΡΡΠ°Π²Π»Π΅Π½Π½ΡΠΉ Π²ΡΡΠ΅ Π²ΠΎΠΏΡΠΎΡ ΠΎ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΠΈ ΡΠΈΠ»Ρ ΡΡΠ΅Π½ΠΈΡ, ΠΏΠΎΠ»ΡΡΠΈΠΌ: Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ Π»ΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠ΅
ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΡΡΠΌΠΌΠ° Π²ΡΠ΅Ρ ΡΠΈΠ» Π²Π΄ΠΎΠ»Ρ Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΡΠΈ, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ Π²Π΅ΡΠ° ΡΠ°Π±ΠΎΡΠ΅Π³ΠΎ \( \mathbf{F_Ρ} \), Π²Π΅ΡΠ° Π»Π΅ΡΡΠ½ΠΈΡΡ \( \mathbf{F_Π»} \) ΠΈ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΈΠ»Ρ ΡΠΎ ΡΡΠΎΡΠΎΠ½Ρ ΡΡΠΎΡΡΠ°ΡΠ° \( \mathbf{F_Ρ} \), Π΄ΠΎΠ»ΠΆΠ½Π° Π±ΡΡΡ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ, ΡΠΎ Π΅ΡΡΡ:
ΠΈΠ»ΠΈ
Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΡΠ»ΠΎΠ²ΠΈΡΠΌ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠ½ΠΎΠ³ΠΎ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΡΠ°ΠΊΠΆΠ΅ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ Π½ΡΠ»Ρ Π²ΡΠ΅Ρ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ² ΡΠΈΠ», Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΡ Π½Π° Π»Π΅ΡΡΠ½ΠΈΡΡ:
ΠΡΡΡΡ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΠΎΠΉ ΡΠΎΡΠΊΠΎΠΉ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ Π½ΠΈΠΆΠ½ΠΈΠΉ ΠΊΠΎΠ½Π΅Ρ Π»Π΅ΡΡΠ½ΠΈΡΡ, ΡΠΎΠ³Π΄Π° Π΄ΠΎΠ»ΠΆΠ½Π° Π±ΡΡΡ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ ΡΡΠΌΠΌΠ° ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ² ΡΠΈΠ», ΡΠΎΠ·Π΄Π°Π²Π°Π΅ΠΌΡΡ Π²Π΅ΡΠΎΠΌ ΡΠ°Π±ΠΎΡΠ΅Π³ΠΎ β\( \mathbf{M_Ρ=[L_Ρ\!\times\! F_Ρ]} \)β, Π²Π΅ΡΠΎΠΌ Π»Π΅ΡΡΠ½ΠΈΡΡ \( \mathbf{M_Π»=[L_Π»\!\times\!F_Π»]} \) ΠΈ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΈΠ»ΠΎΠΉ ΡΠΎ ΡΡΠΎΡΠΎΠ½Ρ ΡΡΠ΅Π½Ρ \( \mathbf{M_Ρ=[L_Ρ\!\times\! F_Ρ]} \):
ΠΈΠ»ΠΈ
ΠΈΠ»ΠΈ
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ β\( L_Ρ=l_Ρ \)β, β\( L_Π»=l_Π»/2 \)β (ΡΠ΅Π½ΡΡ ΡΡΠΆΠ΅ΡΡΠΈ Π»Π΅ΡΡΠ½ΠΈΡΡ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΠΏΠΎΡΠ΅ΡΠ΅Π΄ΠΈΠ½Π΅ Π»Π΅ΡΡΠ½ΠΈΡΡ), \( L_Ρ=l_Π» \), β\( \alpha=360^{\circ}-\theta \)β, \( \beta=360^{\circ}-\theta \) ΠΈ β\( \gamma=\theta \)β, ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠΌ:
ΠΈΠ»ΠΈ
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΌΡ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΈ ΡΠΈΡΡΠ΅ΠΌΡ ΠΈΠ· Π΄Π²ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Ρ Π΄Π²ΡΠΌΡ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΌΠΈ ΡΠΈΠ» \( \mathbf{F_Ρ} \) ΠΈ \( \mathbf{F_Ρ} \):
ΠΠ°Π΄Π°Π΄ΠΈΠΌΡΡ Π²ΠΎΠΏΡΠΎΡΠΎΠΌ: ΡΠΎΠ±Π»ΡΠ΄Π°Π΅ΡΡΡ Π»ΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠ΅
ΠΠ· ΡΠΈΡΡΠ΅ΠΌΡ Π΄Π²ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΏΠΎΠ»ΡΡΠΈΠΌ:
ΠΡΠ°ΠΊ, ΠΎΡΡΠ°Π΅ΡΡΡ Π²ΡΡΡΠ½ΠΈΡΡ, ΡΠΎΠ±Π»ΡΠ΄Π°Π΅ΡΡΡ Π»ΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠ΅:
ΠΠΎΡΠ»Π΅ ΠΏΠΎΠ΄ΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΠΏΠΎΠ»ΡΡΠΈΠΌ:
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡΒ β\( \mu_Ρ \)β = 0,7, ΡΠΎ ΡΠΏΠΎΠΌΡΠ½ΡΡΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ ΡΠΎΠ±Π»ΡΠ΄Π°Π΅ΡΡΡ, ΠΈ Π»Π΅ΡΡΠ½ΠΈΡΠ° Ρ ΡΠ°Π±ΠΎΡΠΈΠΌ Π½Π΅ ΡΠΏΠ°Π΄Π΅Ρ.
ΠΠ»Π°Π²Π° 10. ΠΡΠ°ΡΠ°Π΅ΠΌ ΠΎΠ±ΡΠ΅ΠΊΡΡ: ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΈΠ»Ρ
3.2 (63.7%) 27 votesΠΠ²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΈ Π΅Π³ΠΎ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ
ΠΠ°ΡΡΠ΄Ρ Ρ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π²Π΄ΠΎΠ»Ρ ΠΏΡΡΠΌΠΎΠΉ Π² ΡΠΊΠΎΠ»ΡΠ½ΠΎΠΉ ΡΠΈΠ·ΠΈΠΊΠ΅ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ. ΠΠ»Ρ Π½Π΅Π³ΠΎ, ΠΏΠΎ Π°Π½Π°Π»ΠΎΠ³ΠΈΠΈ Ρ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΡΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ, Π²Π²ΠΎΠ΄ΡΡΡΡ ΠΏΠΎΠ½ΡΡΠΈΡ ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΡΠΈ, ΡΠΊΠΎΡΠΎΡΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ.
Π ΡΠΈΠ·ΠΈΠΊΠ΅ Π²ΡΠ΄Π΅Π»ΡΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π²ΠΈΠ΄ΠΎΠ² Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π». ΠΠ²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ β ΡΡΠΎ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΡΠ»ΡΡΠ°Π΅Π² Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π²Π΄ΠΎΠ»Ρ ΠΊΡΠΈΠ²ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ β ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
Π‘ΡΠ°Π²Π½ΠΈΠΌ ΠΏΠΎΠ½ΡΡΠΈΡ ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΡΠΈ, ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ Π΄Π»Ρ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ.
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΏΡΡΡ
ΠΠ»Ρ Π½Π°ΡΠ°Π»Π°, Π²ΡΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ ΡΠ°Π·Π½ΠΈΡΠ° ΠΌΠ΅ΠΆΠ΄Ρ ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌ ΠΈ Π½Π°ΡΠ°Π»ΡΠ½ΡΠΌ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΡΠΎΡΠΊΠΈ Π½Π° ΠΎΡΠΈ (ΡΠΈΡ. 1).
\[ S = x β x_{0} \]
Π ΠΈΡ. 1. ΠΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎ ΡΠ°Π·Π½ΠΎΡΡΠΈ ΠΌΠ΅ΠΆΠ΄Ρ ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌ ΠΈ Π½Π°ΡΠ°Π»ΡΠ½ΡΠΌ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡΠΌΠΈ ΡΠΎΡΠΊΠΈ Π½Π° ΠΎΡΠΈ
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠ΅ΠΏΠ΅ΡΡ ΠΊΠΎΠ»Π΅ΡΠΎ (ΡΠΈΡ. 2). ΠΠ° Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π΄ΠΈΠ°ΠΌΠ΅ΡΡ ΠΊΠΎΠ»Π΅ΡΠ°, ΡΠΏΡΠ°Π²Π° ΠΎΡΠΌΠ΅ΡΠΈΠΌ ΠΊΡΠ°ΡΠ½ΡΡ ΡΠΎΡΠΊΡ, ΠΎΡ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΌΡ Π½Π°ΡΠ½Π΅ΠΌ ΠΎΡΡΡΠΈΡΡΠ²Π°ΡΡ ΡΠ³Π»Ρ. Π£ΡΠ»ΠΎΠ²ΠΈΠΌΡΡ ΡΡΠΈΡΠ°ΡΡ, ΡΡΠΎ Π²ΠΎΠ·Π»Π΅ ΡΡΠΎΠΉ ΡΠΎΡΠΊΠΈ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π½ΡΠ»Π΅Π²ΠΎΠΉ ΡΠ³ΠΎΠ».
Π ΠΈΡ. 2. Π’ΠΎΡΠΊΠ° ΠΈΠ· ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ 1 ΡΠΌΠ΅ΡΡΠΈΠ»Π°ΡΡ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ 2, ΠΏΡΠΎΠΉΠ΄Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΏΡΡΡ
ΠΠ° ΠΎΠ±ΠΎΠ΄Π΅ ΠΊΠΎΠ»Π΅ΡΠ° Π²ΡΠ±Π΅ΡΠ΅ΠΌ ΡΠΎΡΠΊΡ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ β Π½ΠΈΠΏΠΏΠ΅Π»Ρ. Π‘Π½Π°ΡΠ°Π»Π° Π½ΠΈΠΏΠΏΠ΅Π»Ρ Π½Π°Ρ ΠΎΠ΄ΠΈΠ»ΡΡ Π² ΡΠΎΡΠΊΠ΅ 1. Π’ΠΎΡΠΊΠ° 1 ΡΠ΄Π²ΠΈΠ½ΡΡΠ° Π½Π° ΡΠ³ΠΎΠ» \(\gamma_{1}\) ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΡΠ°Π»Π° ΠΎΡΡΡΠ΅ΡΠ°.
ΠΡΠ΄Π΅ΠΌ Π²ΡΠ°ΡΠ°ΡΡ ΠΊΠΎΠ»Π΅ΡΠΎ Π² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ, ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½Π½ΠΎΠΌ ΡΠΈΠ½Π΅ΠΉ ΡΡΡΠ΅Π»ΠΊΠΎΠΉ. ΠΠΎΠ²Π΅ΡΠ½Π΅ΠΌ ΠΊΠΎΠ»Π΅ΡΠΎ Π½Π° Π½Π΅ΠΊΠΎΡΠΎΡΡΠΉ ΡΠ³ΠΎΠ», ΡΠ°ΠΊ, ΡΡΠΎΠ±Ρ ΠΊ ΠΊΠΎΠ½ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π½ΠΈΠΏΠΏΠ΅Π»Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΡΠΈΠ»ΡΡ Π² ΡΠΎΡΠΊΡ, ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½Π½ΡΡ ΡΠΈΡΡΠΎΠΉ 2 Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅. ΠΡΠ° ΡΠΎΡΠΊΠ° ΡΠΌΠ΅ΡΠ΅Π½Π° Π½Π° ΡΠ³ΠΎΠ» \(\gamma_{2}\) ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ Π½Π°ΡΠ°Π»Ρ ΠΎΡΡΡΠ΅ΡΠ°.
ΠΠΎ Π°Π½Π°Π»ΠΎΠ³ΠΈΠΈ Ρ ΠΏΠΎΡΡΡΠΏΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ, ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΏΡΡΡ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠΎΡΠ΅Π» Π½ΠΈΠΏΠΏΠ΅Π»Ρ β ΡΡΠΎ ΡΠ°Π·Π½ΠΈΡΠ° (ΡΠ°Π·Π½ΠΎΡΡΡ) ΡΠ³Π»ΠΎΠ²ΡΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ ΡΠΎΡΠ΅ΠΊ 1 ΠΈ 2.
\[\large \boxed{ \varphi = \gamma_{2} β \gamma_{1} }\]
\(\varphi \left( \text{ΡΠ°Π΄}\right)\) β ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΏΡΡΡ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ .
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΏΡΡΡ β ΡΡΠΎ ΡΠ³ΠΎΠ», Π½Π° ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΠΎΠ²Π΅ΡΠ½ΡΠ»ΡΡ Π½ΠΈΠΏΠΏΠ΅Π»Ρ, ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ Π΅Π³ΠΎ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΌΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ.
Π£Π³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ β ΠΊΡΠ΄Π° ΠΎΠ½Π° Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π°
ΠΡΠ»ΠΈ ΡΠ΅Π»ΠΎ Π΄Π²ΠΈΠ³Π°Π»ΠΎΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎ (Ρ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ), ΡΠΎ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅
\[v = \frac{S}{t} \]
Β
\(v \left( \frac{\text{ΠΌ}}{c} \right)\) β Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ β ΡΡΠΎ ΠΏΡΡΡ, Π΄Π΅Π»Π΅Π½Π½ΡΠΉ Π½Π° Π²ΡΠ΅ΠΌΡ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΎΠ½Π° ΠΈΠΌΠ΅Π΅Ρ ΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΡΡΡ ΠΌΠ΅ΡΡΠΎΠ² Π΄Π΅Π»Π΅Π½Π½ΡΡ Π½Π° ΡΠ΅ΠΊΡΠ½Π΄Ρ.
ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌΡ ΡΠ»ΡΡΠ°Ρ, Π΅ΡΠ»ΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΏΡΡΡ ΠΏΠΎΠ΄Π΅Π»ΠΈΡΡ Π½Π° Π²ΡΠ΅ΠΌΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΠΏΠΎΠ»ΡΡΠΈΠΌ ΡΠ³Π»ΠΎΠ²ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ.
\[ \large \boxed{ \omega = \frac{\varphi}{t} } \]
\(\omega \left( \frac{\text{ΡΠ°Π΄}}{c} \right)\) β ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ β ΡΡΠΎ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΏΡΡΡ, Π΄Π΅Π»Π΅Π½Π½ΡΠΉ Π½Π° Π²ΡΠ΅ΠΌΡ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΎΠ½Π° ΠΈΠΌΠ΅Π΅Ρ ΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΡΡΡ ΡΠ°Π΄ΠΈΠ°Π½ Π΄Π΅Π»Π΅Π½Π½ΡΡ Π½Π° ΡΠ΅ΠΊΡΠ½Π΄Ρ.
Π£Π³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ \( \omega \), ΡΠ°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ, ΡΠ²Π»ΡΠ΅ΡΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠΌ. ΠΠΎ Π² ΠΎΡΠ»ΠΈΡΠΈΠΈ ΠΎΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ Π΅Π³ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠΎ ΠΏΡΠ°Π²ΠΈΠ»Ρ Π±ΡΡΠ°Π²ΡΠΈΠΊΠ° (ΠΏΡΠ°Π²ΠΎΠ³ΠΎ Π²ΠΈΠ½ΡΠ°).
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΠ΅: ΠΠ°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ \( \vec{\omega} \) ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠΎ ΠΏΡΠ°Π²ΠΈΠ»Ρ Π±ΡΡΠ°Π²ΡΠΈΠΊΠ° (ΠΏΡΠ°Π²ΠΎΠ³ΠΎ Π²ΠΈΠ½ΡΠ°)!
ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ 3 ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ ΡΠ°ΡΠΏΠΎΠ»Π°Π³Π°Π΅ΡΡΡ Π² Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ, Π° Π²Π΅ΠΊΡΠΎΡ \( \vec{\omega }\) Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ Π²Π΄ΠΎΠ»Ρ Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ. ΠΠ°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΡΠΊΠ°Π·Π°Π½ΠΎ ΡΠΈΠ½Π΅ΠΉ ΡΡΡΠ΅Π»ΠΊΠΎΠΉ.
Π ΠΈΡ. 3. ΠΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΠΈ ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠΎΡΠΊΠΈ, Π²ΡΠ°ΡΠ°ΡΡΠ΅ΠΉΡΡ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ. Π£Π³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π° ΠΏΠΎ ΠΏΡΠ°Π²ΠΈΠ»Ρ ΠΏΡΠ°Π²ΠΎΠ³ΠΎ Π²ΠΈΠ½ΡΠ° Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ
ΠΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Π²Π΅ΠΊΡΠΎΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ \(\vec{v}\) ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅Ρ ΡΠ²ΠΎΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅. ΠΠΎ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Π²Π΅ΠΊΡΠΎΡ \(\vec{v}\) Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ ΠΏΠΎ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, Ρ. Π΅. ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ ΡΠ°Π΄ΠΈΡΡΡ.
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΠ΅: ΠΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ ΠΈ ΡΠ°Π΄ΠΈΡΡ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½Ρ, ΡΡΠΎ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ ΠΈΠ· Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ.
ΠΡΠ»ΠΈ ΡΠΎΡΠΊΠ° Π½Π°ΡΠ½Π΅Ρ Π²ΡΠ°ΡΠ°ΡΡΡΡ Π² ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΡ ΡΡΠΎΡΠΎΠ½Ρ, ΡΠΎ Π²Π΅ΠΊΡΠΎΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ°Π·Π²Π΅ΡΠ½ΡΡΡΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡΠΌ, ΡΠΊΠ°Π·Π°Π½Π½ΡΠΌ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ 3.
Π‘Π²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ
Π£Π³Π»ΠΎΠ²Π°Ρ ΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ²ΡΠ·Π°Π½Ρ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈ. ΠΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ β ΡΡΠΎ Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ°Π΄ΠΈΡΡΠ° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ.
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΠ΅: Π Π°Π΄ΠΈΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ β ΡΡΠΎ Π²Π΅ΠΊΡΠΎΡ, ΠΎΠ½ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ ΠΎΡ ΡΠ΅Π½ΡΡΠ° ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΊ Π΅Π΅ Π²Π½Π΅ΡΠ½Π΅ΠΉ Π³ΡΠ°Π½ΠΈΡΠ΅.
ΠΠ΅ΠΊΡΠΎΡΠ½ΡΠΉ Π²ΠΈΠ΄:
\[\large \boxed{ \left[\vec{\omega}, \vec{R} \right] = \vec{v} }\]
Π‘ΠΊΠ°Π»ΡΡΠ½ΡΠΉ Π²ΠΈΠ΄ Π·Π°ΠΏΠΈΡΠΈ ΡΠ²ΡΠ·ΠΈ ΡΠΊΠΎΡΠΎΡΡΠ΅ΠΉ:
\[ \large \boxed{ \omega \cdot R = v }\]
\(\omega \left( \frac{\text{ΡΠ°Π΄}}{c} \right)\) β ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ;
\(v \left( \frac{\text{ΠΌ}}{c} \right)\) β Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ;
\(R \left( \text{ΠΌ}\right)\) β ΡΠ°Π΄ΠΈΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ.
Π§Π°ΡΡΠΎΡΠ° ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄
ΠΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΎΠΏΠΈΡΡΠ²Π°ΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ°ΠΊΠΈΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ, ΠΊΠ°ΠΊ ΡΠ°ΡΡΠΎΡΠ° ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄.
ΠΠ΅ΡΠΈΠΎΠ΄ ΠΎΠ±ΡΠ°ΡΠ΅Π½ΠΈΡ β ΡΡΠΎ Π²ΡΠ΅ΠΌΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΎΠ±ΠΎΡΠΎΡΠ°. Π ΡΠΈΡΡΠ΅ΠΌΠ΅ Π‘Π ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΈΠ·ΠΌΠ΅ΡΡΡΡ Π² ΡΠ΅ΠΊΡΠ½Π΄Π°Ρ .
\( T \left(c \right)\) β Π²ΡΠ΅ΠΌΡ, Π·Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠ΅Π»ΠΎ ΡΠΎΠ²Π΅ΡΡΠΈΠ»ΠΎ ΠΏΠΎΠ»Π½ΡΠΉ ΠΎΠ±ΠΎΡΠΎΡ β ΠΏΠ΅ΡΠΈΠΎΠ΄. ΠΡΠ΅ΠΌΡ β ΡΡΠΎ ΡΠΊΠ°Π»ΡΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°.
Π§Π°ΡΡΠΎΡΠ° ΠΎΡΠ²Π΅ΡΠ°Π΅Ρ Π½Π° Π²ΠΎΠΏΡΠΎΡ: Β«Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΠ»Π½ΡΡ ΠΎΠ±ΠΎΡΠΎΡΠΎΠ² ΡΠΎΠ²Π΅ΡΡΠΈΠ»ΠΎ ΡΠ΅Π»ΠΎ Π·Π° ΠΎΠ΄Π½Ρ ΡΠ΅ΠΊΡΠ½Π΄Ρ?Β».
\( \displaystyle \nu\left( \frac{1}{c} \right)\) β ΡΠ°ΡΡΠΎΡΠ° ΠΎΠ±ΠΎΡΠΎΡΠΎΠ², ΡΠΊΠ°Π»ΡΡ.
ΠΠΌΠ΅ΡΡΠΎ Π·Π°ΠΏΠΈΡΠΈ \( \displaystyle \left( \frac{1}{c} \right)\) ΠΈΠ½ΠΎΠ³Π΄Π° ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ \(\displaystyle \left( c^{-1} \right)\), ΠΈΠ»ΠΈΒ \( \left( \text{ΠΡ} \right)\) β ΠΠ΅ΡΡ.{-1} \]
Π§Π°ΡΡΠΎΡΠ° ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠ²ΡΠ·Π°Π½Ρ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΉ ΠΏΡΠΎΠΏΠΎΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΡΡΡΡ:
\[ \large \boxed{ TΒ = \frac{1}{\nu} } \]
ΠΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΎΠ±ΠΎΡΠΎΡΠΎΠ²
ΠΠ²ΠΈΠ³Π°ΡΡΡ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΠ΅ Π²ΡΠ΅ΠΌΡ, ΡΠ΅Π»ΠΎ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΎΠΉΡΠΈ Π½Π΅ ΠΎΠ΄ΠΈΠ½ ΠΎΠ±ΠΎΡΠΎΡ. ΠΠ½Π°Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΏΡΡΡ \(\varphi \) ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ N ΠΎΠ±ΠΎΡΠΎΡΠΎΠ².
\[\large \boxed{ \varphi = 2 \pi \cdot N }\]
\( N \) β ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΎΠ±ΠΎΡΠΎΡΠΎΠ², ΡΠΊΠ°Π»ΡΡ. ΠΠ±ΠΎΡΠΎΡΡ ΡΡΠΈΡΠ°ΡΡ ΠΏΠΎΡΡΡΡΠ½ΠΎ.
Π‘Π²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ ΠΈ ΡΠ°ΡΡΠΎΡΠΎΠΉ
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ ΠΎΠ±Π΅ ΡΠ°ΡΡΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π½Π° Π²ΡΠ΅ΠΌΡ t, Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΠ΅Π»ΠΎ Π²ΡΠ°ΡΠ°Π»ΠΎΡΡ
\[ \frac{\varphi }{t} = 2 \pi \cdot \frac{N}{t} \]
ΠΠ΅Π²Π°Ρ ΡΠ°ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ β ΡΡΠΎ ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ.
\[ \large \boxed{ \frac{\varphi }{t} = \omega }\]
Π Π΄ΡΠΎΠ±Ρ Π² ΠΏΡΠ°Π²ΠΎΠΉ ΡΠ°ΡΡΠΈ β ΡΡΠΎ ΡΠ°ΡΡΠΎΡΠ°
\[ \large \boxed{ \frac{N}{t} = \nu }\]
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΌΡ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΈ ΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ ΠΈ ΡΠ°ΡΡΠΎΡΠΎΠΉ
\[ \large \boxed{ \left|\vec{\omega} \right|= 2 \pi \cdot \nu } \]
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΠ΅: Π Π΅ΡΠ°Ρ Π·Π°Π΄Π°ΡΠΈ Π½Π° ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, ΡΠ΄ΠΎΠ±Π½ΠΎ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄ΠΈΡΡ ΠΎΡ ΡΠ°ΡΡΠΎΡΡ ΠΊ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ. Π’ΠΎΠ³Π΄Π° ΠΌΠΎΠΆΠ½ΠΎ Π±ΡΠ΄Π΅Ρ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ Π°Π½Π°Π»ΠΎΠ³ΠΈΡ Ρ ΡΠΎΡΠΌΡΠ»Π°ΠΌΠΈ Π΄Π»Ρ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎ ΠΏΡΡΠΌΠΎΠΉ.
ΠΠ²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ | Π§Π°ΡΡΠ½Π°Ρ ΡΠΊΠΎΠ»Π°. 9 ΠΊΠ»Π°ΡΡ
ΠΠΎΠ½ΡΠΏΠ΅ΠΊΡ ΠΏΠΎ ΡΠΈΠ·ΠΈΠΊΠ΅ Π΄Π»Ρ 9 ΠΊΠ»Π°ΡΡΠ° Β«ΠΠ²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈΒ».Β ΠΡΠ΄Π° Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π° ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ΅Π»Π° ΠΏΡΠΈ Π΅Π³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ. ΠΡΠ΄Π° Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° ΠΏΡΠΈ Π΅Π³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΈ ΠΊΠ°ΠΊ Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅.
ΠΠΎΠ½ΡΠΏΠ΅ΠΊΡΡ ΠΏΠΎ ΡΠΈΠ·ΠΈΠΊΠ΅Β Β Π£ΡΠ΅Π±Π½ΠΈΠΊ ΡΠΈΠ·ΠΈΠΊΠΈΒ Β Π’Π΅ΡΡΡ ΠΏΠΎ ΡΠΈΠ·ΠΈΠΊΠ΅
ΠΠ²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ
ΠΠ΄Π½ΠΈΠΌ ΠΈΠ· ΠΏΡΠΎΡΡΠ΅ΠΉΡΠΈΡ Π²ΠΈΠ΄ΠΎΠ² ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ. Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠ°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΠΏΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ.
Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ Π²ΡΠΎΡΠΎΠΌΡ Π·Π°ΠΊΠΎΠ½Ρ ΠΡΡΡΠΎΠ½Π° Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΡΠ°Π²Π½ΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΡΡΠ΅ΠΉ Π²ΡΠ΅Ρ ΡΠΈΠ», Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΡ Π½Π° ΡΠ΅Π»ΠΎ. Π‘ΠΎΠΎΠ±ΡΠΈΠΌ ΡΠ°ΡΠΈΠΊΡ, Π»Π΅ΠΆΠ°ΡΠ΅ΠΌΡ Π½Π° ΡΡΠΎΠ»Π΅ ΠΈ Π·Π°ΠΊΡΠ΅ΠΏΠ»ΡΠ½Π½ΠΎΠΌΡ Π½Π° Π½ΠΈΡΠΈ, Π½Π°ΡΠ°Π»ΡΠ½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ Π² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ, ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎΠΌ Π½ΠΈΡΠΈ. ΠΠ½ Π½Π°ΡΠ½ΡΡ Π΄Π²ΠΈΠ³Π°ΡΡΡΡ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ. Π‘ΠΈΠ»Π° ΡΡΠΆΠ΅ΡΡΠΈ, Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠ°Ρ Π½Π° Π½Π΅Π³ΠΎ, ΡΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΠ²Π°Π΅ΡΡΡ ΡΠΈΠ»ΠΎΠΉ ΡΠΏΡΡΠ³ΠΎΡΡΠΈ ΡΡΠΎΠ»Π°, Π° ΡΠΈΠ»Π° ΡΡΠ΅Π½ΠΈΡ ΠΊΠ°ΡΠ΅Π½ΠΈΡ ΠΌΠ°Π»Π°, ΠΈ Π΅Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π½Π΅Π±ΡΠ΅ΡΡ. ΠΠΎΠ»ΡΡΠ°Π΅ΡΡΡ, ΡΡΠΎ ΡΠΈΠ»Π°, ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»ΠΈΠ²Π°ΡΡΠ°Ρ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°ΡΠΈΠΊΠ° ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, β ΡΠΈΠ»Π° ΡΠΏΡΡΠ³ΠΎΡΡΠΈ Π½ΠΈΡΠΈ, Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½Π°Ρ ΠΏΠΎ ΡΠ°Π΄ΠΈΡΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ. ΠΠΎΡΡΠΎΠΌΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±ΡΡΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΎ ΡΠ°ΠΊ ΠΆΠ΅, Ρ. Π΅.ΠΏΠΎ ΡΠ°Π΄ΠΈΡΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Π² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ ΠΊ ΡΠ΅Π½ΡΡΡ.
ΠΠΠΠ ΠΠΠΠΠΠΠ ΠΠΠΠ’ΠΠ Π ΠΠΠΠΠΠΠΠΠΠ Π‘ΠΠΠ ΠΠ‘Π’Π
ΠΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ΅Π»Π° ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΏΡΠΈ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎΠΌ ΠΌΠΎΠ΄ΡΠ»Π΅ ΡΠΊΠΎΡΠΎΡΡΠΈ Π² ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠΊΠΎΡΠΎΡΡΡ ΠΌΠ΅Π½ΡΠ΅Ρ ΡΠ²ΠΎΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅. ΠΠ°ΠΊ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ Π²Π΅ΠΊΡΠΎΡ ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ?
ΠΠ»Ρ ΠΎΡΠ²Π΅ΡΠ° Π½Π° ΡΡΠΎΡ Π²ΠΎΠΏΡΠΎΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΠΌ ΡΠ΅Π±Π΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΠ΅Π»Π°, Π·Π°ΠΊΡΠ΅ΠΏΠ»ΡΠ½Π½ΠΎΠ³ΠΎ Π½Π° Π²Π΅ΡΡΠ²ΠΊΠ΅ ΠΈ ΡΠ°ΡΠΊΡΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π² Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ.
ΠΡΠ»ΠΈ Π²Π΅ΡΡΠ²ΠΊΠ° ΠΎΠ±ΠΎΡΠ²ΡΡΡΡ, ΡΠΎ ΡΠ΅Π»ΠΎ Π½Π°ΡΠ½ΡΡ Π΄Π²ΠΈΠ³Π°ΡΡΡΡ ΠΏΠΎ ΠΏΡΡΠΌΠΎΠΉ. ΠΡΠ° ΠΏΡΡΠΌΠ°Ρ β ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ ΠΊ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, ΡΠ²Π»ΡΡΡΠ΅ΠΉΡΡ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠ΅ΠΉ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π°. ΠΡΠΈ ΡΡΠΎΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° Π² ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠ°Π·ΡΡΠ²Π° Π²Π΅ΡΡΠ²ΠΊΠΈ.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ΅Π»Π° Π² Π»ΡΠ±ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π° ΠΏΠΎ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ Π² ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅.
ΠΠΠΠ ΠΠΠΠΠΠΠ ΠΠΠΠ’ΠΠ Π Π£Π‘ΠΠΠ ΠΠΠΠ― Π’ΠΠΠ, ΠΠΠΠΠ£Π©ΠΠΠΠ‘Π― ΠΠ ΠΠΠ Π£ΠΠΠΠ‘Π’Π
ΠΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΠΏΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΊΠΎΡΠΎΡΡΡΡ Π² ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ. ΠΠ½Π°ΡΠΈΡ, ΡΠ°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Ρ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ. Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΠ°Π΄ΠΈΡΡΠ° R. ΠΠ±ΠΎΠ·Π½Π°ΡΠΈΠΌ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ΅Π»Π° Π² ΡΠΎΡΠΊΠ΅ Π ΡΠ΅ΡΠ΅Π· Κ1, Π° Π΅Π³ΠΎ ΡΠΊΠΎΡΠΎΡΡΡ Π² ΡΠΎΡΠΊΠ΅ Π ΡΠ΅ΡΠ΅Π· Κ2. Π’ΠΎΠ³Π΄Π° ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅, Ρ ΠΊΠΎΡΠΎΡΡΠΌ ΡΠ΅Π»ΠΎ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ, ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅
Π ΡΠΈΡΠ»ΠΈΡΠ΅Π»Π΅ ΡΡΠΎΠΉ ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠΎΠΈΡ Π²Π΅ΠΊΡΠΎΡΠ½Π°Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, Π° Π² Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ β ΡΠΊΠ°Π»ΡΡΠ½Π°Ρ. ΠΠΎΡΡΠΎΠΌΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ Π΄ΠΎΠ»ΠΆΠ½ΠΎ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡ Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π²Π΅ΠΊΡΠΎΡΠ°, ΡΠ°Π²Π½ΠΎΠ³ΠΎ ΡΠ°Π·Π½ΠΎΡΡΠΈ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΡΠΊΠΎΡΠΎΡΡΠ΅ΠΉ:
ΠΠ»Ρ ΡΠΎΠ³ΠΎ ΡΡΠΎΠ±Ρ ΠΈΠ·ΠΎΠ±ΡΠ°Π·ΠΈΡΡ Π²Π΅ΠΊΡΠΎΡ, ΡΠ²Π»ΡΡΡΠΈΠΉΡΡ ΡΠ°Π·Π½ΠΎΡΡΡΡ Π΄Π²ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ², ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. Π‘Π½Π°ΡΠ°Π»Π° Π²Π΅ΠΊΡΠΎΡΡ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ°ΡΡ ΠΈΡΡ ΠΎΠ΄ΡΡΠΈΠΌΠΈ ΠΈΠ· ΠΎΠ΄Π½ΠΎΠΉ ΡΠΎΡΠΊΠΈ (ΠΏΡΠΈ ΡΡΠΎΠΌ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ°ΡΡ ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅Π½ΠΎΡΠ°). ΠΠ°ΡΠ΅ΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄ΡΡ ΠΎΡΡΠ΅Π·ΠΎΠΊ ΡΠ°ΠΊ, ΡΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΠ»ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ.
Π Π½Π°ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΡΠΉ ΠΎΡΡΠ΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΠΈΠΉ ΠΊΠΎΠ½Π΅Ρ Π²ΡΡΠΈΡΠ°Π΅ΠΌΠΎΠ³ΠΎ Π²Π΅ΠΊΡΠΎΡΠ° Κ1 Ρ ΠΊΠΎΠ½ΡΠΎΠΌ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΠΌΠΎΠ³ΠΎ Π²Π΅ΠΊΡΠΎΡΠ° Κ2, ΠΈ Π±ΡΠ΄Π΅Ρ ΠΈΡ Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠΉ ΡΠ°Π·Π½ΠΎΡΡΡΡ.
ΠΠ· ΡΠΈΡΡΠ½ΠΊΠ° Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ Π²Π΅ΠΊΡΠΎΡ ΞΚ ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Π²Π΅ΠΊΡΠΎΡ a Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Ρ Π²Π½ΡΡΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ. ΠΠ»Ρ ΡΠΎΠ³ΠΎ ΡΡΠΎΠ±Ρ ΠΏΠΎΠ½ΡΡΡ, ΠΊΠ°ΠΊ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ Π² ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΠΌ, ΡΡΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΡ ΠΌΠΎΠΌΠ΅Π½ΡΠ° Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΡΠ΅Π»Π° Π² ΡΠΎΡΠΊΠ΅ Π Π΄ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°, ΠΊΠΎΠ³Π΄Π° ΡΠ΅Π»ΠΎ ΡΡΠ°Π»ΠΎ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡΡ Π² ΡΠΎΡΠΊΠ΅ Π, ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ Π²ΡΡ ΠΌΠ΅Π½ΡΡΠ΅ ΠΈ ΠΌΠ΅Π½ΡΡΠ΅. Π’ΠΎΠ³Π΄Π° ΡΠΎΡΠΊΠΈ Π ΠΈ Π ΡΡΡΠ³ΠΈΠ²Π°ΡΡΡΡ Π² ΠΎΠ΄Π½Ρ ΡΠΎΡΠΊΡ Π. ΠΡΠΈ ΡΡΠΎΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° ΞΚ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ°Π΅ΡΡΡ ΠΊ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π²Π΅ΠΊΡΠΎΡΠ° AO.
ΠΠΎΠ»ΡΡΠ°Π΅ΡΡΡ, ΡΡΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π°, Π΄Π²ΠΈΠΆΡΡΠ΅Π³ΠΎΡΡ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΠΏΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΊΠΎΡΠΎΡΡΡΡ, Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΎ ΠΏΠΎ ΡΠ°Π΄ΠΈΡΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΊ Π΅Ρ ΡΠ΅Π½ΡΡΡ. ΠΠΌΠ΅Π½Π½ΠΎ ΠΏΠΎΡΡΠΎΠΌΡ ΠΎΠ½ΠΎ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ΅Π½ΡΡΠΎΡΡΡΠ΅ΠΌΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Π°Ρ.
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ ΠΊ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½Π° ΡΠ°Π΄ΠΈΡΡΡ, ΠΏΡΠΎΠ²Π΅Π΄ΡΠ½Π½ΠΎΠΌΡ Π² ΡΠΎΡΠΊΠ΅ ΠΊΠ°ΡΠ°Π½ΠΈΡ, ΡΠΎ Π²Π΅ΠΊΡΠΎΡΡ ΡΠΊΠΎΡΠΎΡΡΠΈ Κ ΠΈ ΡΠ΅Π½ΡΡΠΎΡΡΡΠ΅ΠΌΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ Π°Ρ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½Ρ Π΄ΡΡΠ³ Π΄ΡΡΠ³Ρ.
ΠΠΠΠ£ΠΠ¬ Π¦ΠΠΠ’Π ΠΠ‘Π’Π ΠΠΠΠ’ΠΠΠ¬ΠΠΠΠ Π£Π‘ΠΠΠ ΠΠΠΠ― Π’ΠΠΠ
ΠΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠ΅Π½ΡΡΠΎΡΡΡΠ΅ΠΌΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ Π²Π½ΠΎΠ²Ρ ΠΎΠ±ΡΠ°ΡΠΈΠΌΡΡ ΠΊ ΡΠΈΡΡΠ½ΠΊΡ.
ΠΡ ΡΠΌΠΎΡΡΠ΅Π»ΠΈ ΠΠΎΠ½ΡΠΏΠ΅ΠΊΡ ΠΏΠΎ ΡΠΈΠ·ΠΈΠΊΠ΅ Π΄Π»Ρ 9 ΠΊΠ»Π°ΡΡΠ° Β«ΠΠ²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈΒ».
ΠΠ΅ΡΠ½ΡΡΡΡΡ ΠΊ Π‘ΠΏΠΈΡΠΊΡ ΠΊΠΎΠ½ΡΠΏΠ΅ΠΊΡΠΎΠ² ΠΏΠΎ ΡΠΈΠ·ΠΈΠΊΠ΅ (ΠΠ³Π»Π°Π²Π»Π΅Π½ΠΈΠ΅).
ΠΠ΅ΠΊΡΠΎΡΠ½Π°Ρ ΠΏΡΠΈΡΠΎΠ΄Π° Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊΠΈΠ½Π΅ΠΌΠ°ΡΠΈΠΊΠΈ
Π£Π³Π»ΠΎΠ²ΡΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΊΠ°ΠΊ Π²Π΅ΠΊΡΠΎΡΡ
ΠΠ°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠ³Π»ΠΎΠ²ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½, ΡΠ°ΠΊΠΈΡ ΠΊΠ°ΠΊ ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΠ°Π²ΠΈΠ»Π° ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ.
Π¦Π΅Π»ΠΈ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ°, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΡΠ°Π²ΠΈΠ»ΠΎ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ Π²ΡΠ²ΠΎΠ΄Ρ
ΠΠ»ΡΡΠ΅Π²ΡΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΡ
- Π£Π³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠ²Π»ΡΡΡΡΡ Π²Π΅ΠΊΡΠΎΡΠ½ΡΠΌΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Π°ΠΌΠΈ ΠΈ ΠΈΠΌΠ΅ΡΡ ΠΊΠ°ΠΊ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ, ΡΠ°ΠΊ ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅.
- ΠΠ°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ.
- ΠΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ, Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΏΠ°Π»Π΅Ρ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ, ΠΊΠΎΠ³Π΄Π° Π²Ρ ΡΠ³ΠΈΠ±Π°Π΅ΡΠ΅ ΠΏΠ°Π»ΡΡΡ Π² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ.
ΠΠ»ΡΡΠ΅Π²ΡΠ΅ ΡΠ΅ΡΠΌΠΈΠ½Ρ
- ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ : Π²Π΅ΠΊΡΠΎΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΠ°Ρ ΠΎΠ±ΡΠ΅ΠΊΡ Π² ΠΊΡΡΠ³ΠΎΠ²ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ; Π΅Π³ΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΡΠ°Π²Π½Π° ΠΈΠΌΠΏΡΠ»ΡΡΡ ΡΠ°ΡΡΠΈΡΡ, Π° Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Π΅Π΅ ΠΊΡΡΠ³ΠΎΠ²ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
- ΠΡΠ°Π²ΠΈΠ»ΠΎ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ : ΠΠ°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ Ο ΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° L, Π½Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΏΠ°Π»Π΅Ρ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ, ΠΊΠΎΠ³Π΄Π° Π²Ρ ΡΠ³ΠΈΠ±Π°Π΅ΡΠ΅ ΠΏΠ°Π»ΡΡΡ Π² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ.
- ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ : Π²Π΅ΠΊΡΠΎΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΠ°Ρ ΠΎΠ±ΡΠ΅ΠΊΡ Π² ΠΊΡΡΠ³ΠΎΠ²ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ; Π΅Π³ΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΡΠ°Π²Π½Π° ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ°ΡΡΠΈΡΡ, Π° Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Π΅Π΅ ΠΊΡΡΠ³ΠΎΠ²ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΈ ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΠΈΠΌΠ΅ΡΡ ΠΊΠ°ΠΊ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ, ΡΠ°ΠΊ ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠ²Π»ΡΡΡΡΡ Π²Π΅ΠΊΡΠΎΡΠ½ΡΠΌΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Π°ΠΌΠΈ.ΠΠ°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΡΠΈΡ Π²Π΅Π»ΠΈΡΠΈΠ½ ΠΏΠΎ ΡΠ²ΠΎΠ΅ΠΉ ΠΏΡΠΈΡΠΎΠ΄Π΅ ΡΡΡΠ΄Π½ΠΎ ΠΎΡΡΠ»Π΅Π΄ΠΈΡΡ — ΡΠΎΡΠΊΠ° Π½Π° Π²ΡΠ°ΡΠ°ΡΡΠ΅ΠΌΡΡ ΠΊΠΎΠ»Π΅ΡΠ΅ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎ Π²ΡΠ°ΡΠ°Π΅ΡΡΡ ΠΈ ΠΌΠ΅Π½ΡΠ΅Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅. ΠΡΡ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π²ΡΠ°ΡΠ°ΡΡΠ΅Π³ΠΎΡΡ ΠΊΠΎΠ»Π΅ΡΠ° — Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΠΌΠ΅ΡΡΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΈΠΌΠ΅Π΅Ρ ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅. ΠΠ°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π²Π΄ΠΎΠ»Ρ ΡΡΠΎΠΉ ΠΎΡΠΈ.
ΠΡΠ΅Π΄ΡΡΠ°Π²ΡΡΠ΅ ΡΠ΅Π±Π΅ ΠΎΡΡ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΡΡ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠΈΠΉ ΡΠ΅ΡΠ΅Π· ΡΠ΅Π½ΡΡ ΠΊΠΎΠ»Π΅ΡΠ°. ΠΠΎΠ»ΡΡ Π²ΡΡΡΡΠΏΠ°Π΅Ρ Ρ ΠΎΠ±Π΅ΠΈΡ ΡΡΠΎΡΠΎΠ½ ΠΊΠΎΠ»Π΅ΡΠ°, ΠΈ, Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΠΎΠ³ΠΎ, Ρ ΠΊΠ°ΠΊΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ Π²Ρ ΡΠΌΠΎΡΡΠΈΡΠ΅, ΠΊΠΎΠ»Π΅ΡΠΎ Π²ΡΠ°ΡΠ°Π΅ΡΡΡ Π»ΠΈΠ±ΠΎ ΠΏΠΎ ΡΠ°ΡΠΎΠ²ΠΎΠΉ ΡΡΡΠ΅Π»ΠΊΠ΅, Π»ΠΈΠ±ΠΎ ΠΏΡΠΎΡΠΈΠ² ΡΠ°ΡΠΎΠ²ΠΎΠΉ ΡΡΡΠ΅Π»ΠΊΠΈ.ΠΡΠ° Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΎΡ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π·Π°ΡΡΡΠ΄Π½ΡΠ΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ³Π»Π° ΠΏΠΎΠ²ΠΎΡΠΎΡΠ°. ΠΠ°ΠΊ ΠΈ Π΄Π»Ρ Π²ΡΠ΅Ρ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ Π²Π΅Π»ΠΈΡΠΈΠ½, ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΡΠ°Π½Π΄Π°ΡΡ Π΄Π»Ρ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠΉ Π΄Π΅Π»Π°Π΅Ρ ΡΡΠΈ ΡΠΈΠΏΡ Π²Π΅Π»ΠΈΡΠΈΠ½ ΡΠΎΠ³Π»Π°ΡΠΎΠ²Π°Π½Π½ΡΠΌΠΈ. ΠΠ»Ρ ΡΠ³Π»ΠΎΠ²ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΠ°Π²ΠΈΠ»Π° ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ, ΠΏΠΎΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ Π².
ΠΡΠ°Π²ΠΈΠ»ΠΎ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ : ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ (Π°) ΠΏΠΎΠΊΠ°Π·Π°Π½ Π΄ΠΈΡΠΊ, Π²ΡΠ°ΡΠ°ΡΡΠΈΠΉΡΡ ΠΏΡΠΎΡΠΈΠ² ΡΠ°ΡΠΎΠ²ΠΎΠΉ ΡΡΡΠ΅Π»ΠΊΠΈ, Π΅ΡΠ»ΠΈ ΡΠΌΠΎΡΡΠ΅ΡΡ ΡΠ²Π΅ΡΡ Ρ. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ (b) ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ. ΠΠ°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ Ο ΡΠ°Π·ΠΌΠ΅Ρ ΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ L ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΡΡ ΠΊΠ°ΠΊ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΏΠ°Π»Π΅Ρ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ, ΠΊΠΎΠ³Π΄Π° Π²Ρ ΡΠ³ΠΈΠ±Π°Π΅ΡΠ΅ ΠΏΠ°Π»ΡΡΡ Π² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π΄ΠΈΡΠΊΠ°, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ.
ΠΡΠ°Π²ΠΈΠ»ΠΎ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΊΠ°ΠΊ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°, ΡΠ°ΠΊ ΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΈΠ· Π²ΡΠ°ΡΠ°ΡΡΠ΅Π³ΠΎΡΡ Π΄ΠΈΡΠΊΠ° Π΄Π°Π²Π°ΠΉΡΠ΅ ΡΠ½ΠΎΠ²Π° ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΠΌ ΡΠ΅Π±Π΅ ΠΏΠΎΠ»ΡΡ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠΈΠΉ ΡΠ΅ΡΠ΅Π· ΡΠ΅Π½ΡΡ Π΄ΠΈΡΠΊΠ° Π½Π° ΠΎΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ. ΠΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π΄Π»Ρ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ, Π²Π°ΡΠ° ΠΏΡΠ°Π²Π°Ρ ΡΡΠΊΠ° Π±ΡΠ΄Π΅Ρ Π±ΡΠ°ΡΡ ΡΡΠ°Π½Π³Ρ ΡΠ°ΠΊ, ΡΡΠΎΠ±Ρ Π²Π°ΡΠΈ ΡΠ΅ΡΡΡΠ΅ ΠΏΠ°Π»ΡΡΠ° (ΡΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½ΡΠΉ, ΡΡΠ΅Π΄Π½ΠΈΠΉ, Π±Π΅Π·ΡΠΌΡΠ½Π½ΡΠΉ ΠΈ ΠΌΠΈΠ·ΠΈΠ½Π΅Ρ) ΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ. Π’ΠΎ Π΅ΡΡΡ Π²ΠΎΠΎΠ±ΡΠ°ΠΆΠ°Π΅ΠΌΠ°Ρ ΡΡΡΠ΅Π»ΠΊΠ° ΠΎΡ Π²Π°ΡΠ΅Π³ΠΎ Π·Π°ΠΏΡΡΡΡΡ ΠΊ ΠΊΠΎΠ½ΡΠΈΠΊΠ°ΠΌ ΠΏΠ°Π»ΡΡΠ΅Π² ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π² ΡΠΎΠΌ ΠΆΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ, ΡΡΠΎ ΠΈ Π΄ΠΈΡΠΊ.ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, Π²Π°Ρ Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΏΠ°Π»Π΅Ρ ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΠΏΡΡΠΌΠΎ Π½Π° ΠΎΡΠΈ, ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ Π΄ΡΡΠ³ΠΈΠΌ Π²Π°ΡΠΈΠΌ ΠΏΠ°Π»ΡΡΠ°ΠΌ (ΠΈΠ»ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Β«ΠΏΠΎΠ»ΡΡΡΒ» Π½Π° ΠΎΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ). ΠΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΡΠΎ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ, Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ Ο ΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° L ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΏΠ°Π»Π΅Ρ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ, ΠΊΠΎΠ³Π΄Π° Π²Ρ ΡΠ³ΠΈΠ±Π°Π΅ΡΠ΅ ΠΏΠ°Π»ΡΡΡ Π² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π΄ΠΈΡΠΊΠ°.
ΠΠΈΡΠΎΡΠΊΠΎΠΏΡ
ΠΠΈΡΠΎΡΠΊΠΎΠΏ — ΡΡΠΎ Π²ΡΠ°ΡΠ°ΡΡΠ΅Π΅ΡΡ ΠΊΠΎΠ»Π΅ΡΠΎ ΠΈΠ»ΠΈ Π΄ΠΈΡΠΊ, ΠΎΡΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ Π»ΡΠ±ΡΡ ΠΎΡΠΈΠ΅Π½ΡΠ°ΡΠΈΡ.
Π¦Π΅Π»ΠΈ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ
Π‘ΡΠ°Π²Π½ΠΈΡΠ΅ ΠΊΠΎΠ½ΡΠ΅ΠΏΡΠΈΡ Π²ΡΠ°ΡΠ°ΡΡΠ΅Π³ΠΎΡΡ ΠΊΠΎΠ»Π΅ΡΠ° Ρ Π³ΠΈΡΠΎΡΠΊΠΎΠΏΠΎΠΌ
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ Π²ΡΠ²ΠΎΠ΄Ρ
ΠΠ»ΡΡΠ΅Π²ΡΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΡ
- ΠΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ΅Π½ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ, ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΠΎΠΉ r ΠΈ F, ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ Π±ΡΠ΄Π΅Ρ ΡΠΊΠ°Π·ΡΠ²Π°ΡΡ Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΏΠ°Π»Π΅Ρ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ, Π΅ΡΠ»ΠΈ Π²Ρ ΡΠΎΠ³Π½Π΅ΡΠ΅ ΠΏΠ°Π»ΡΡΡ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ Π² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ F.
- Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΊΡΡΡΡΡΠ΅Π³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΡΠΎΠ·Π΄Π°Π²Π°Π΅ΠΌΠΎΠ³ΠΎ ΠΈΠΌ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°.
- ΠΠΈΡΠΎΡΠΊΠΎΠΏ ΠΏΡΠ΅ΡΠ΅ΡΡΠΈΡΡΠ΅Ρ Π²ΠΎΠΊΡΡΠ³ Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΡΠΈ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅Π³Π΄Π° Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»Π΅Π½ ΠΈ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ΅Π½ L.ΠΡΠ»ΠΈ Π³ΠΈΡΠΎΡΠΊΠΎΠΏ Π½Π΅ Π²ΡΠ°ΡΠ°Π΅ΡΡΡ, ΠΎΠ½ ΠΏΡΠΈΠΎΠ±ΡΠ΅ΡΠ°Π΅Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ ΠΊΡΡΡΡΡΠ΅Π³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΈ Π²ΡΠ°ΡΠ°Π΅ΡΡΡ Π²ΠΎΠΊΡΡΠ³ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΡΠΈ, ΠΏΠ°Π΄Π°Ρ, ΠΊΠ°ΠΊ ΠΈ ΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΠΎ ΠΎΠΆΠΈΠ΄Π°ΡΡ.
ΠΠ»ΡΡΠ΅Π²ΡΠ΅ ΡΠ΅ΡΠΌΠΈΠ½Ρ
- ΠΏΠΎΠ΄Π²Π΅Ρ : ΡΡΡΡΠΎΠΉΡΡΠ²ΠΎ Π΄Π»Ρ ΠΏΠΎΠ΄Π²Π΅ΡΠΈΠ²Π°Π½ΠΈΡ ΡΠ΅Π³ΠΎ-Π»ΠΈΠ±ΠΎ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΊΠΎΡΠ°Π±Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠ°ΡΠ°, ΡΡΠΎΠ±Ρ ΠΎΠ½ΠΎ ΠΎΡΡΠ°Π²Π°Π»ΠΎΡΡ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΡΠΌ ΠΏΡΠΈ ΠΎΠΏΡΠΎΠΊΠΈΠ΄ΡΠ²Π°Π½ΠΈΠΈ ΠΎΠΏΠΎΡΡ.
- ΠΡΠ°Π²ΠΈΠ»ΠΎ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ : ΠΠ°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ Ο ΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° L, Π½Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΏΠ°Π»Π΅Ρ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ, ΠΊΠΎΠ³Π΄Π° Π²Ρ ΡΠ³ΠΈΠ±Π°Π΅ΡΠ΅ ΠΏΠ°Π»ΡΡΡ Π² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ.
- ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ : Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΠΈΠ»ΠΈ ΡΠΊΡΡΡΠΈΠ²Π°ΡΡΠ΅Π΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠΈΠ»Ρ; (ΠΠ΄ΠΈΠ½ΠΈΡΠ° Π‘Π Π½ΡΡΡΠΎΠ½-ΠΌΠ΅ΡΡ ΠΈΠ»ΠΈ ΠΠΌ; Π±ΡΠΈΡΠ°Π½ΡΠΊΠ°Ρ Π΅Π΄ΠΈΠ½ΠΈΡΠ° ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΡ-ΡΡΠ½Ρ ΠΈΠ»ΠΈ ΡΡΡ-ΡΡΠ½Ρ)
ΠΠΈΡΠΎΡΠΊΠΎΠΏ — ΡΡΠΎ ΡΡΡΡΠΎΠΉΡΡΠ²ΠΎ Π΄Π»Ρ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΈΠ»ΠΈ ΡΠΎΡ ΡΠ°Π½Π΅Π½ΠΈΡ ΠΎΡΠΈΠ΅Π½ΡΠ°ΡΠΈΠΈ, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΠΎΠ΅ Π½Π° ΠΏΡΠΈΠ½ΡΠΈΠΏΠ°Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°. Π‘ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΡΠΊΠΈ Π·ΡΠ΅Π½ΠΈΡ Π³ΠΈΡΠΎΡΠΊΠΎΠΏ — ΡΡΠΎ Π²ΡΠ°ΡΠ°ΡΡΠ΅Π΅ΡΡ ΠΊΠΎΠ»Π΅ΡΠΎ ΠΈΠ»ΠΈ Π΄ΠΈΡΠΊ, ΠΎΡΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ Π»ΡΠ±ΡΡ ΠΎΡΠΈΠ΅Π½ΡΠ°ΡΠΈΡ. Π₯ΠΎΡΡ ΡΡΠ° ΠΎΡΠΈΠ΅Π½ΡΠ°ΡΠΈΡ Π½Π΅ ΠΎΡΡΠ°Π΅ΡΡΡ ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ, ΠΎΠ½Π° ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π² ΠΎΡΠ²Π΅Ρ Π½Π° Π²Π½Π΅ΡΠ½ΠΈΠΉ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π³ΠΎΡΠ°Π·Π΄ΠΎ ΠΌΠ΅Π½ΡΡΠ΅ ΠΈ Π² Π΄ΡΡΠ³ΠΎΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ, ΡΠ΅ΠΌ ΡΡΠΎ Π±ΡΠ»ΠΎ Π±Ρ Π±Π΅Π· Π±ΠΎΠ»ΡΡΠΎΠ³ΠΎ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°, ΡΠ²ΡΠ·Π°Π½Π½ΠΎΠ³ΠΎ Ρ Π²ΡΡΠΎΠΊΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π΄ΠΈΡΠΊΠ° ΠΈ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠΌ ΠΈΠ½Π΅ΡΡΠΈΠΈ.ΠΡΠΈΠ΅Π½ΡΠ°ΡΠΈΡ ΡΡΡΡΠΎΠΉΡΡΠ²Π° ΠΎΡΡΠ°Π΅ΡΡΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΠΎΠΉ, Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎ ΠΎΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠΎΠ½ΡΠ°ΠΆΠ½ΠΎΠΉ ΠΏΠ»Π°ΡΡΠΎΡΠΌΡ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠ° ΡΡΡΡΠΎΠΉΡΡΠ²Π° Π² ΠΊΠ°ΡΠ΄Π°Π½Π½ΠΎΠΌ ΠΏΠΎΠ΄Π²Π΅ΡΠ΅ ΡΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΡ Π²Π½Π΅ΡΠ½ΠΈΠΉ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ.
ΠΠ°ΠΊ ΡΡΠΎ ΡΠ°Π±ΠΎΡΠ°Π΅Ρ: ΠΏΡΠΈΠΌΠ΅ΡΡ
ΠΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ: ΠΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ, ΠΊΠ°ΠΊ Π²ΡΡΠ°ΠΆΠ°Π΅ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ,
[Π»Π°ΡΠ΅ΠΊΡ] \ tau = \ Delta \ text {L} / \ Delta \ text {t} [/ latex].
ΠΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΞL ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΊΡΡΡΡΡΠ΅Π³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°, ΠΊΠΎΡΠΎΡΡΠΉ Π΅Π³ΠΎ ΡΠΎΠ·Π΄Π°Π΅Ρ, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π°. ΠΡΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΠ°Π²ΠΈΠ»Π° ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ ΠΏΠ°Π»ΡΡΡ Π½Π° Π²Π°ΡΠ΅ΠΉ ΡΡΠΊΠ΅ ΡΠ³ΠΈΠ±Π°ΡΡΡΡ Π² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½Π½Π°Ρ ΡΠΈΠ»Π°, ΠΈ Π²Π°Ρ Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΏΠ°Π»Π΅Ρ ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°, ΠΊΡΡΡΡΡΠ΅Π³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ.
ΠΠ°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΊΡΡΡΡΡΠ΅Π³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° : ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ (Π°) ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ΅Π½ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ, ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΠΎΠΉ r ΠΈ F, ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠΊΠ°Π·Π°Π» Π±Ρ Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΏΠ°Π»Π΅Ρ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ, Π΅ΡΠ»ΠΈ Π±Ρ Π²Ρ ΡΠΎΠ³Π½ΡΠ»ΠΈ ΠΏΠ°Π»ΡΡΡ Π² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ F. Π ΠΈΡΡΠ½ΠΎΠΊ (b) ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, ΡΡΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΊΡΡΡΡΡΠ΅Π³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΠ°ΠΊΠΎΠ΅ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΎΠ½ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ.
ΠΡΠ°ΡΠ°ΡΡΠ΅Π΅ΡΡ ΠΊΠΎΠ»Π΅ΡΠΎ: ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ Π²Π΅Π»ΠΎΡΠΈΠΏΠ΅Π΄Π½ΠΎΠ΅ ΠΊΠΎΠ»Π΅ΡΠΎ Ρ ΠΏΡΠΈΠΊΡΠ΅ΠΏΠ»Π΅Π½Π½ΡΠΌΠΈ ΠΊ Π½Π΅ΠΌΡ ΡΡΡΠΊΠ°ΠΌΠΈ, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅. ΠΠΎΠ³Π΄Π° ΠΊΠΎΠ»Π΅ΡΠΎ Π²ΡΠ°ΡΠ°Π΅ΡΡΡ, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Π΅Π³ΠΎ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΡΠ»Π΅Π²Π° ΠΎΡ ΠΆΠ΅Π½ΡΠΈΠ½Ρ.ΠΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, ΡΠ΅Π»ΠΎΠ²Π΅ΠΊ, Π΄Π΅ΡΠΆΠ°ΡΠΈΠΉ ΠΊΠΎΠ»Π΅ΡΠΎ, ΠΏΡΡΠ°Π΅ΡΡΡ ΠΏΠΎΠ²Π΅ΡΠ½ΡΡΡ Π΅Π³ΠΎ, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅. ΠΠ΅ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ ΡΠΎΡΡΠΎΠΈΡ Π² ΡΠΎΠΌ, ΡΡΠΎ ΠΊΠΎΠ»Π΅ΡΠΎ Π±ΡΠ΄Π΅Ρ Π²ΡΠ°ΡΠ°ΡΡΡΡ Π² ΡΠΎΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΎΠ½Π° Π΅Π³ΠΎ ΡΠΎΠ»ΠΊΠ°Π΅Ρ, ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ ΡΠΎΠ²ΡΠ΅ΠΌ Π΄ΡΡΠ³ΠΎΠ΅. ΠΡΠΈΠ»ΠΎΠΆΠ΅Π½Π½ΡΠ΅ ΡΠΈΠ»Ρ ΡΠΎΠ·Π΄Π°ΡΡ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΡΠΌ ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΡ, ΠΈ ΡΡΠΎΡ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΎΠ·Π΄Π°Π΅Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° L Π² ΡΠΎΠΌ ΠΆΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ, ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎΠΌ ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠΌΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΌΡ ΠΌΠΎΠΌΠ΅Π½ΡΡ L, ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΠΈΠ·ΠΌΠ΅Π½ΡΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ L, Π½ΠΎ Π½Π΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ L. ΞL ΠΈ L add, Π΄Π°Π²Π°Ρ Π½ΠΎΠ²ΡΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π±ΠΎΠ»ΡΡΠ΅ Π½Π°ΠΊΠ»ΠΎΠ½Π΅Π½ΠΎ ΠΊ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΡ, ΡΠ΅ΠΌ ΡΠ°Π½ΡΡΠ΅.Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΎΡΡ ΠΊΠΎΠ»Π΅ΡΠ° ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΡΠΈΠ»Π°ΡΡ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΠΌ Π½Π° Π½Π΅Π΅ ΡΠΈΠ»Π°ΠΌ, Π° Π½Π΅ Π² ΠΎΠΆΠΈΠ΄Π°Π΅ΠΌΠΎΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ.
ΠΠΈΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΡΡΠ΅ΠΊΡ : ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ (Π°) ΡΠ΅Π»ΠΎΠ²Π΅ΠΊ, Π΄Π΅ΡΠΆΠ°ΡΠΈΠΉ Π²ΡΠ°ΡΠ°ΡΡΠ΅Π΅ΡΡ ΠΊΠΎΠ»Π΅ΡΠΎ Π²Π΅Π»ΠΎΡΠΈΠΏΠ΅Π΄Π°, ΠΏΠΎΠ΄Π½ΠΈΠΌΠ°Π΅Ρ Π΅Π³ΠΎ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΎΠΉ ΠΈ ΡΠΎΠ»ΠΊΠ°Π΅Ρ Π²Π½ΠΈΠ· Π»Π΅Π²ΠΎΠΉ ΡΡΠΊΠΎΠΉ, ΠΏΡΡΠ°ΡΡΡ ΠΏΠΎΠ²Π΅ΡΠ½ΡΡΡ ΠΊΠΎΠ»Π΅ΡΠΎ. ΠΡΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠΎΠ·Π΄Π°Π΅Ρ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΏΡΡΠΌΠΎ ΠΊ Π½Π΅ΠΉ. ΠΡΠΎΡ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ·ΡΠ²Π°Π΅Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΞL ΡΠΎΡΠ½ΠΎ Π² ΡΠΎΠΌ ΠΆΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ (b) ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π²Π΅ΠΊΡΠΎΡΠ½Π°Ρ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΠ°, ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡΠ°Ρ, ΠΊΠ°ΠΊ ΞL ΠΈ L ΡΠΊΠ»Π°Π΄ΡΠ²Π°ΡΡΡΡ, ΡΠΎΠ·Π΄Π°Π²Π°Ρ Π½ΠΎΠ²ΡΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ, Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΡΠΉ Π±ΠΎΠ»ΡΡΠ΅ Π² ΡΡΠΎΡΠΎΠ½Ρ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ°.ΠΠΎΠ»Π΅ΡΠΎ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΠΊ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΡ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ ΡΠΈΠ»Π°ΠΌ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΠ½ Π½Π° Π½Π΅Π³ΠΎ ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ.
ΠΠΈΡΠΎΡΠΊΠΎΠΏ: ΡΠ° ΠΆΠ΅ Π»ΠΎΠ³ΠΈΠΊΠ° ΠΎΠ±ΡΡΡΠ½ΡΠ΅Ρ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π³ΠΈΡΠΎΡΠΊΠΎΠΏΠΎΠ² (ΡΠΌ.). ΠΠ° Π²ΡΠ°ΡΠ°ΡΡΠΈΠΉΡΡ Π³ΠΈΡΠΎΡΠΊΠΎΠΏ Π΄Π΅ΠΉΡΡΠ²ΡΡΡ Π΄Π²Π΅ ΡΠΈΠ»Ρ. Π‘ΠΎΠ·Π΄Π°Π²Π°Π΅ΠΌΡΠΉ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ΅Π½ ΡΠ³Π»ΠΎΠ²ΠΎΠΌΡ ΠΌΠΎΠΌΠ΅Π½ΡΡ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°, Π½ΠΎ Π½Π΅ Π΅Π³ΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π°. ΠΠΈΡΠΎΡΠΊΠΎΠΏ ΠΏΡΠ΅ΡΠ΅ΡΡΠΈΡΡΠ΅Ρ Π²ΠΎΠΊΡΡΠ³ Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΡΠΈ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅Π³Π΄Π° Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»Π΅Π½ ΠΈ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ΅Π½ L. ΠΡΠ»ΠΈ Π³ΠΈΡΠΎΡΠΊΠΎΠΏ Π½Π΅ Π²ΡΠ°ΡΠ°Π΅ΡΡΡ, ΠΎΠ½ ΠΏΡΠΈΠΎΠ±ΡΠ΅ΡΠ°Π΅Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ ΠΊΡΡΡΡΡΠ΅Π³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° (L = ΞL) ΠΈ Π²ΡΠ°ΡΠ°Π΅ΡΡΡ Π²ΠΎΠΊΡΡΠ³ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΡΠΈ, ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅, ΠΊΠ°ΠΊ ΠΈ ΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΠΎ ΠΎΠΆΠΈΠ΄Π°ΡΡ.
ΠΠΈΡΠΎΡΠΊΠΎΠΏΡ : ΠΠ°ΠΊ Π²ΠΈΠ΄Π½ΠΎ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ (Π°), ΡΠΈΠ»Ρ, Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΠ΅ Π½Π° Π²ΡΠ°ΡΠ°ΡΡΠΈΠΉΡΡ Π³ΠΈΡΠΎΡΠΊΠΎΠΏ, ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ ΡΠΎΠ±ΠΎΠΉ Π΅Π³ΠΎ Π²Π΅Ρ ΠΈ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΈΠ²Π°ΡΡΡΡ ΡΠΈΠ»Ρ ΠΎΡ ΡΡΠΎΠΉΠΊΠΈ. ΠΡΠΈ ΡΠΈΠ»Ρ ΡΠΎΠ·Π΄Π°ΡΡ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΡΠΉ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π½Π° Π³ΠΈΡΠΎΡΠΊΠΎΠΏΠ΅, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠΎΠ·Π΄Π°Π΅Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΞL, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠ°ΠΊΠΆΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΡΠΌ. ΠΠ° ΡΠΈΡΡΠ½ΠΊΠ΅ (b) ΞL ΠΈ L ΡΠΊΠ»Π°Π΄ΡΠ²Π°ΡΡΡΡ, ΡΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ Π½ΠΎΠ²ΡΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Ρ ΡΠΎΠΉ ΠΆΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ, Π½ΠΎ Π² Π΄ΡΡΠ³ΠΎΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ, ΡΠ°ΠΊ ΡΡΠΎ Π³ΠΈΡΠΎΡΠΊΠΎΠΏ ΠΏΡΠ΅ΡΠ΅ΡΡΠΈΡΡΠ΅Ρ Π² ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ, Π° Π½Π΅ ΠΏΠ°Π΄Π°Π΅Ρ.
ΠΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΡ
ΠΠΈΡΠΎΡΠΊΠΎΠΏΡ ΡΠ»ΡΠΆΠ°Ρ Π΄Π°ΡΡΠΈΠΊΠ°ΠΌΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ.ΠΠΎ ΡΡΠΎΠΉ ΠΏΡΠΈΡΠΈΠ½Π΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π³ΠΈΡΠΎΡΠΊΠΎΠΏΠΎΠ² Π²ΠΊΠ»ΡΡΠ°ΡΡ ΠΈΠ½Π΅ΡΡΠΈΠ°Π»ΡΠ½ΡΠ΅ Π½Π°Π²ΠΈΠ³Π°ΡΠΈΠΎΠ½Π½ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠ΅ ΠΊΠΎΠΌΠΏΠ°ΡΡ Π½Π΅ Π±ΡΠ΄ΡΡ ΡΠ°Π±ΠΎΡΠ°ΡΡ (ΠΊΠ°ΠΊ Π² ΡΠ΅Π»Π΅ΡΠΊΠΎΠΏΠ΅ Π₯Π°Π±Π±Π»Π°) ΠΈΠ»ΠΈ Π±ΡΠ΄ΡΡ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΡΠΎΡΠ½ΡΠΌΠΈ (ΠΊΠ°ΠΊ Π² ΠΌΠ΅ΠΆΠΊΠΎΠ½ΡΠΈΠ½Π΅Π½ΡΠ°Π»ΡΠ½ΡΡ Π±Π°Π»Π»ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠ°ΠΊΠ΅ΡΠ°Ρ ). ΠΡΡΠ³ΠΎΠ΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ — ΡΡΠ°Π±ΠΈΠ»ΠΈΠ·Π°ΡΠΈΡ Π»Π΅ΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ Π°ΠΏΠΏΠ°ΡΠ°ΡΠΎΠ², ΡΠ°ΠΊΠΈΡ ΠΊΠ°ΠΊ ΡΠ°Π΄ΠΈΠΎΡΠΏΡΠ°Π²Π»ΡΠ΅ΠΌΡΠ΅ Π²Π΅ΡΡΠΎΠ»Π΅ΡΡ ΠΈΠ»ΠΈ Π±Π΅ΡΠΏΠΈΠ»ΠΎΡΠ½ΡΠ΅ Π»Π΅ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ Π°ΠΏΠΏΠ°ΡΠ°ΡΡ.
ΠΠΈΠ½Π΅ΠΌΠ°ΡΠΈΠΊΠ° Π²ΡΠ°ΡΠ΅Π½ΠΈΡ— ΠΠΎΠ³ΡΡ Π»ΠΈ ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈ ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ?
Physicsapproval, Π²Ρ, ΠΏΠΎ-Π²ΠΈΠ΄ΠΈΠΌΠΎΠΌΡ, ΡΠΆΠ΅ Π·Π½Π°Π΅ΡΠ΅, ΡΡΠΎ ΡΠ΅Π½Π·ΠΎΡ $ I $ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΈΠ½Π΅ΡΡΠΈΠΈ (Π΄Π»Ρ ΠΊΡΠ°ΡΠΊΠΎΡΡΠΈ ΡΠ΅Π½Π·ΠΎΡ ΠΈΠ½Π΅ΡΡΠΈΠΈ) Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅Π½Π·ΠΎΡΠΎΠΌ, Π° Π½Π΅ ΡΠΊΠ°Π»ΡΡΠΎΠΌ.ΠΡΠ»ΠΈ Π±Ρ ΡΡΠΎ Π±ΡΠ» ΡΠΊΠ°Π»ΡΡ, ΡΠΎ ΠΏΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΈ ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ Π²ΡΠ΅Π³Π΄Π° Π±ΡΠ»ΠΈ Π±Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Ρ. ΠΡΠΎ Π½Π΅ ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠ°ΠΊ ΠΈΠ·-Π·Π° ΡΠ΅Π½Π·ΠΎΡΠ½ΠΎΠΉ ΠΏΡΠΈΡΠΎΠ΄Ρ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅Π½Π·ΠΎΡΠ½ΠΎΠΉ.
Π’Π΅Π½Π·ΠΎΡ ΠΈΠ½Π΅ΡΡΠΈΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅Ρ ΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ²Π΅ΡΠ΄ΠΎΠ³ΠΎ ΡΠ΅Π»Π°, Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΡΠΉ Π² ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠΌ Π½Π°Π±ΠΎΡΠ΅ ΠΎΡΡΠΎΠ³ΠΎΠ½Π°Π»ΡΠ½ΡΡ Π΄Π΅ΠΊΠ°ΡΡΠΎΠ²ΡΡ ΠΎΡΠ΅ΠΉ, ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ ΡΠ΅ΡΠ΅Π· ΠΌΠ°ΡΡΠΈΡΡ 3×3, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ (Π°) ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½ΠΎΠΉ ΠΈ (Π±) ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΠΎΠ»ΡΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ. ΠΡΠΈ Π΄Π²Π° ΡΠ°ΠΊΡΠ° ΠΎΠ·Π½Π°ΡΠ°ΡΡ, ΡΡΠΎ Π²ΡΠ΅Π³Π΄Π° ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠ±ΡΠ°ΡΡ Π½Π°Π±ΠΎΡ ΠΎΡΡΠΎΠ³ΠΎΠ½Π°Π»ΡΠ½ΡΡ ΠΎΡΠ΅ΠΉ, Π² ΠΊΠΎΡΠΎΡΡΡ ΡΠ΅Π½Π·ΠΎΡ ΠΈΠ½Π΅ΡΡΠΈΠΈ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅Π½.ΠΠ»Ρ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΠΌΠ°ΡΡΠΈΡΡ 3×3 ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΠ»ΡΡΠ°Ρ:
- ΠΡΠ΅ ΡΡΠΈ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡΠ½ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ° ΡΠ°Π²Π½Ρ Π΄ΡΡΠ³ Π΄ΡΡΠ³Ρ,
- ΠΠ²Π° ΠΈΠ· ΡΡΠ΅Ρ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡΠ½ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ°Π²Π½Ρ Π΄ΡΡΠ³ Π΄ΡΡΠ³Ρ, Π½ΠΎ ΡΡΠ΅ΡΠΈΠΉ — ΡΠ°Π·Π½ΠΎΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ, ΠΈ
- Π’ΡΠΈ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡΠ½ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ° ΠΈΠΌΠ΅ΡΡ ΡΠ°Π·Π½ΠΎΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ.
Π ΠΏΠ΅ΡΠ²ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ $ \ mathrm I \ vec \ omega $ Π²ΡΠ΅Π³Π΄Π° Π±ΡΠ΄Π΅Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ $ \ vec \ omega $. ΠΠΎ Π²ΡΠΎΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ $ \ mathrm I \ vec \ omega $ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ $ \ vec \ omega $, Π΅ΡΠ»ΠΈ $ \ omega $ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΎ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ ΠΈΠ»ΠΈ ΠΈΠΌΠ΅Π΅Ρ Π½ΡΠ»Π΅Π²ΡΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ Π²Π΄ΠΎΠ»Ρ ΡΡΠΎΠΉ ΠΎΡΠΈ.Π ΡΡΠ΅ΡΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ $ \ mathrm I \ vec \ omega $ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ $ \ vec \ omega $ ΡΠΎΠ³Π΄Π° ΠΈ ΡΠΎΠ»ΡΠΊΠΎ ΡΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° $ \ vec \ omega $ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π° ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΡ ΠΎΡΠ΅ΠΉ ΡΠ΅Π½Π·ΠΎΡΠ° ΠΈΠ½Π΅ΡΡΠΈΠΈ.
ΠΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, ΡΡΠΎ ΡΠ΅Π½Π·ΠΎΡ ΠΈΠ½Π΅ΡΡΠΈΠΈ (ΠΊΠΎΠ³Π΄Π° ΠΎΠ½ ΠΎΡΡΠΎΠ³ΠΎΠ½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½) ΠΈΠΌΠ΅Π΅Ρ ΡΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ° ΠΈ ΡΡΠΎ ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΠΈΠΌΠ΅Π΅Ρ ΠΏΠΎ ΠΊΡΠ°ΠΉΠ½Π΅ΠΉ ΠΌΠ΅ΡΠ΅ Π΄Π²Π° Π½Π΅Π½ΡΠ»Π΅Π²ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°, ΠΊΠΎΠ³Π΄Π° Π²ΡΡΠ°ΠΆΠ΅Π½Π° Π² ΡΠ΅ΡΠΌΠΈΠ½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ, ΠΊΠΎΡΠΎΡΠ°Ρ Π΄Π΅Π»Π°Π΅Ρ ΡΠ΅Π½Π·ΠΎΡ ΠΈΠ½Π΅ΡΡΠΈΠΈ ΠΎΡΡΠΎΠ³ΠΎΠ½Π°Π»ΡΠ½ΡΠΌ. Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, $$ \ begin {Π²ΡΡΠΎΠ²Π½Π΅Π½ΠΎ} \ mathrm I & = \ begin {bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \ end {bmatrix} \\ \ vec \ omega & = \ phantom {\, \, \, 0} \ begin {bmatrix} \ omega_a \\ \ omega_b \\ \ omega_c \ end {bmatrix} \ end {Π²ΡΡΠΎΠ²Π½Π΅Π½ΠΎ} $$ Π³Π΄Π΅ $ a $, $ b $, $ c $ ΡΠ°Π·Π»ΠΈΡΠ½Ρ ΠΈ ΠΏΠΎ ΠΊΡΠ°ΠΉΠ½Π΅ΠΉ ΠΌΠ΅ΡΠ΅ Π΄Π²Π° ΠΈΠ· $ \ omega_a $, $ \ omega_b $ ΠΈ $ \ omega_c $ ΠΎΡΠ»ΠΈΡΠ½Ρ ΠΎΡ Π½ΡΠ»Ρ.ΠΡΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ $$ \ mathrm I \ vec \ omega = \ begin {bmatrix} a \, \ omega_a \\ b \, \ omega_b \\ c \, \ omega_c \ end {bmatrix} $$ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌ $ \ vec \ omega $.
ΠΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²ΠΎ: $ \ vec \ omega $ ΠΈ $ \ mathrm I \ vec \ omega $ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Ρ (ΠΈΠ»ΠΈ Π°Π½ΡΠΈΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Ρ), ΡΠΎΠ»ΡΠΊΠΎ Π΅ΡΠ»ΠΈ $ \ omega \ times (\ mathrm I \ vec \ omega) $ — Π½ΡΠ»Π΅Π²ΠΎΠΉ Π²Π΅ΠΊΡΠΎΡ. ΠΠ· Π²ΡΡΠ΅ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ ΡΡΠΎ $$ \ omega \ times (\ mathrm I \ vec \ omega) = \ begin {bmatrix} (b-c) \ omega_b \ omega_c \\ (c-a) \ omega_c \ omega_a \\ (a-b) \ omega_a \ omega_b \ end {bmatrix} $$ ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ $ a $, $ b $, $ c $ ΡΠ°Π·Π»ΠΈΡΠ½Ρ, ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΠΈΠ· $ b-c $, $ c-a $ ΠΈ $ a-b $ Π½Π΅ ΡΠ°Π²Π½ΠΎ Π½ΡΠ»Ρ.ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΏΠΎ ΠΊΡΠ°ΠΉΠ½Π΅ΠΉ ΠΌΠ΅ΡΠ΅ Π΄Π²Π° ΠΈΠ· $ \ omega_a $, $ \ omega_b $ ΠΈ $ \ omega_c $ Π½Π΅Π½ΡΠ»Π΅Π²ΡΠ΅, ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π½Π΅ΠΊΠΎΡΠΎΡΠ°Ρ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΡ $ \ omega_i \ omega_j $, ΠΊΠΎΡΠΎΡΠ°Ρ Π½Π΅ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π² ΡΡΠΎΠΌ Π²Π΅ΠΊΡΠΎΡΠ΅ Π΅ΡΡΡ Ρ ΠΎΡΡ Π±Ρ ΠΎΠ΄ΠΈΠ½ Π½Π΅Π½ΡΠ»Π΅Π²ΠΎΠΉ ΡΠ»Π΅ΠΌΠ΅Π½Ρ.
6.5: Π£Π³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅
. Π£Π³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ
ΠΡ Π²ΡΠ΅Π³Π΄Π° Π±ΡΠ΄Π΅ΠΌ Π²ΡΠ±ΠΈΡΠ°ΡΡ ΠΏΡΠ°Π²ΡΡ ΡΠΈΠ»ΠΈΠ½Π΄ΡΠΈΡΠ΅ΡΠΊΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. ΠΡΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π°Ρ ΠΎΡΡ z Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π° ββΠ²Π²Π΅ΡΡ , ΡΠΎ ΠΌΡ Π²ΡΠ±ΠΈΡΠ°Π΅ΠΌ, ΡΡΠΎΠ±Ρ ΞΈ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π»ΡΡ Π² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ ΠΏΡΠΎΡΠΈΠ² ΡΠ°ΡΠΎΠ²ΠΎΠΉ ΡΡΡΠ΅Π»ΠΊΠΈ, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ°Ρ 6.{-1} \ right] \) ΠΠ±ΡΠ°ΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, ΡΡΠΎ ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ — ΡΡΠΎ ΠΏΡΠΎΡΡΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π° z -ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ,
\ [\ omega \ Equiv \ left | \ omega_ {z} \ right | = \ left | \ frac {d \ theta} {d t} \ right | \]
ΠΡΠ»ΠΈ ΡΠΊΠΎΡΠΎΡΡΡ ΠΎΠ±ΡΠ΅ΠΊΡΠ° Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ \ (+ \ hat {\ boldsymbol {\ theta}} \) — (Π²ΡΠ°ΡΠ°Π΅ΡΡΡ ΠΏΡΠΎΡΠΈΠ² ΡΠ°ΡΠΎΠ²ΠΎΠΉ ΡΡΡΠ΅Π»ΠΊΠΈ Π½Π° ΡΠΈΡ. 6.7 (a)), ΡΠΎ z -ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΡΠΊΠΎΡΠΎΡΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π°, \ (\ omega_ {z} = d \ theta / dt> 0 \) ΠΠ΅ΠΊΡΠΎΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ Π·Π°ΡΠ΅ΠΌ ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ \ (+ \ hat {\ mathbf {k}} \) -, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ 6. .7 (Π°). ΠΡΠ»ΠΈ ΡΠΊΠΎΡΠΎΡΡΡ ΠΎΠ±ΡΠ΅ΠΊΡΠ° Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ \ (- \ hat {\ boldsymbol {\ theta}} \) — (Π²ΡΠ°ΡΠ°ΡΡΠΈΠΉΡΡ ΠΏΠΎ ΡΠ°ΡΠΎΠ²ΠΎΠΉ ΡΡΡΠ΅Π»ΠΊΠ΅ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ 6.7 (b)), ΡΠΎΠ³Π΄Π° z -ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°, \ (\ omega_ {z} = d \ theta / dt <0 \). ΠΠ°ΡΠ΅ΠΌ Π²Π΅ΠΊΡΠΎΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ \ (- \ hat {\ mathbf {k}} \) -, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ 6.7 (b).
Π ΠΈΡΡΠ½ΠΎΠΊ 6.7 (b) ΠΠ΅ΠΊΡΠΎΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ Π΄Π»Ρ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Ρ dΞΈ / dt> 0. Π ΠΈΡΡΠ½ΠΎΠΊ 6.7 (b) Π£Π³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ Π΄Π»Ρ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Ρ dΞΈ / dt <0.Π‘ΠΊΠΎΡΠΎΡΡΡ ΠΈ ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ²ΡΠ·Π°Π½Ρ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ
\ [\ overrightarrow {\ mathbf {v}} = \ overrightarrow {\ boldsymbol {\ omega}} \ times \ overrightarrow {\ mathbf {r}} = \ frac {d \ theta} {dt} \ hat {\ mathbf {k}} \ times r \ hat {\ mathbf {r}} = r \ frac {d \ theta} {dt} \ hat {\ boldsymbol {\ theta}} \]
ΠΡΠΈΠΌΠ΅Ρ 6. {- 2} \).{2}} {3} \]
11.2 Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ — Π£Π½ΠΈΠ²Π΅ΡΡΠΈΡΠ΅ΡΡΠΊΠ°Ρ ΡΠΈΠ·ΠΈΠΊΠ°, ΡΠΎΠΌ 1
Π¦Π΅Π»ΠΈ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ
Π ΠΊΠΎΠ½ΡΡ ΡΡΠΎΠ³ΠΎ ΡΠ°Π·Π΄Π΅Π»Π° Π²Ρ ΡΠΌΠΎΠΆΠ΅ΡΠ΅:
- ΠΠΏΠΈΡΠΈΡΠ΅ Π²Π΅ΠΊΡΠΎΡΠ½ΡΡ ΠΏΡΠΈΡΠΎΠ΄Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°
- ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΏΠΎΠ»Π½ΡΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΈ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ°ΡΡΠΈΡ
- ΠΡΡΠΈΡΠ»ΠΈΡΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠ²Π΅ΡΠ΄ΠΎΠ³ΠΎ ΡΠ΅Π»Π°, Π²ΡΠ°ΡΠ°ΡΡΠ΅Π³ΠΎΡΡ Π²ΠΎΠΊΡΡΠ³ ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΎΡΠΈ
- Π Π°ΡΡΠ΅Ρ ΠΊΡΡΡΡΡΠ΅Π³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° Π½Π° ΡΠ²Π΅ΡΠ΄ΠΎΠΌ ΡΠ΅Π»Π΅, Π²ΡΠ°ΡΠ°ΡΡΠ΅ΠΌΡΡ Π²ΠΎΠΊΡΡΠ³ ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΎΡΠΈ
- ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΎΡ ΡΠ°Π½Π΅Π½ΠΈΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΏΡΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ², ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΡ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ
ΠΠΎΡΠ΅ΠΌΡ ΠΠ΅ΠΌΠ»Ρ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ°Π΅Ρ Π²ΡΠ°ΡΠ°ΡΡΡΡ? Π‘ ΡΠ΅Π³ΠΎ Π²ΡΠ΅ Π·Π°Π²Π΅Π»ΠΎΡΡ? ΠΠΎΡΠ΅ΠΌΡ Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΏΡΠΈΡΡΠΆΠ΅Π½ΠΈΠ΅ ΠΠ΅ΠΌΠ»ΠΈ Π½Π΅ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ°Π΅Ρ ΠΡΠ½Ρ ΠΊ ΠΠ΅ΠΌΠ»Π΅? Π ΠΊΠ°ΠΊ ΡΠΈΠ³ΡΡΠΈΡΡΠΊΠ΅ ΡΠ΄Π°Π΅ΡΡΡ Π²ΡΠ°ΡΠ°ΡΡΡΡ Π²ΡΠ΅ Π±ΡΡΡΡΠ΅Π΅ ΠΈ Π±ΡΡΡΡΠ΅Π΅, ΠΏΡΠΎΡΡΠΎ Π²ΡΡΠ³ΠΈΠ²Π°Ρ Π² ΡΠ΅Π±Ρ ΡΡΠΊΠΈ? ΠΠΎΡΠ΅ΠΌΡ Π΅ΠΉ Π½Π΅ Π½ΡΠΆΠ½ΠΎ ΠΏΡΠΈΠΊΠ»Π°Π΄ΡΠ²Π°ΡΡ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ, ΡΡΠΎΠ±Ρ Π²ΡΠ°ΡΠ°ΡΡΡΡ Π±ΡΡΡΡΠ΅Π΅?
ΠΡΠ²Π΅Ρ Π² Π½ΠΎΠ²ΠΎΠΌ ΡΠΎΡ ΡΠ°Π½ΡΠ΅ΠΌΠΎΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π²ΡΠ΅ ΡΡΠΈ ΡΡΠ΅Π½Π°ΡΠΈΠΈ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π² Π·Π°ΠΊΡΡΡΡΡ ΡΠΈΡΡΠ΅ΠΌΠ°Ρ .ΠΡΠ° Π½ΠΎΠ²Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ, Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½Π° ΠΈΠΌΠΏΡΠ»ΡΡΡ. Π ΡΡΠΎΠΉ Π³Π»Π°Π²Π΅ ΠΌΡ ΡΠ½Π°ΡΠ°Π»Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ, Π° Π·Π°ΡΠ΅ΠΌ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΠΎΡΠ΅ΠΊ Π·ΡΠ΅Π½ΠΈΡ. ΠΠ΄Π½Π°ΠΊΠΎ ΡΠ½Π°ΡΠ°Π»Π° ΠΌΡ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ. ΠΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π½Π°ΠΌ ΡΠ°Π·Π²ΠΈΡΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π΄Π»Ρ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ°ΡΡΠΈΡ ΠΈ Π΄Π»Ρ ΡΠ²Π΅ΡΠ΄ΠΎΠ³ΠΎ ΡΠ΅Π»Π°, ΠΈΠΌΠ΅ΡΡΠ΅Π³ΠΎ ΡΠΈΠ»ΠΈΠ½Π΄ΡΠΈΡΠ΅ΡΠΊΡΡ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡ.
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ
(ΡΠΈΡΡΠ½ΠΎΠΊ) ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΡΠ°ΡΡΠΈΡΡ Π² ΠΏΠΎΠ·ΠΈΡΠΈΠΈ
.Ρ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠΌ
ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠΎΠΈΡΡ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ.ΠΠ°ΠΆΠ΅ Π΅ΡΠ»ΠΈ ΡΠ°ΡΡΠΈΡΠ° Π½Π΅ Π²ΡΠ°ΡΠ°Π΅ΡΡΡ Π²ΠΎΠΊΡΡΠ³ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ, ΠΌΡ Π²ΡΠ΅ ΡΠ°Π²Π½ΠΎ ΠΌΠΎΠΆΠ΅ΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π² ΡΠ΅ΡΠΌΠΈΠ½Π°Ρ Π²Π΅ΠΊΡΠΎΡΠ° ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°.
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠ°ΡΡΠΈΡΡ
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ
ΡΠ°ΡΡΠΈΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ ΠΏΠ΅ΡΠ΅ΠΊΡΠ΅ΡΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅
ΠΈ
, ΠΈ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠ΅ΠΉ
ΠΈ
Π ΠΈΡΡΠ½ΠΎΠΊ 11.9 Π ΡΡΠ΅Ρ ΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ Π²Π΅ΠΊΡΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ ΠΌΠ΅ΡΡΠΎΠ½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΡΠ°ΡΡΠΈΡΡ Π² ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ xy Ρ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠΌ
. ΠΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΡΠ°Π²Π΅Π½
, ΠΊΠΎΡΠΎΡΡΠΉ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π² z-Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ. ΠΠ°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅
ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎΠΌ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ.
ΠΠ°ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π²ΡΠ±ΡΠ°ΡΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠ΅ΠΉ
ΠΈ
Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ΅Π½ Π²ΡΠ±ΠΎΡΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΊΡΡΡΡΡΠ΅Π³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°, ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ
., ΠΊΠ°ΠΊ ΠΎΠΏΠΈΡΠ°Π½ΠΎ Π² ΡΠ°Π·Π΄Π΅Π»Π΅ Β«ΠΡΠ°ΡΠ΅Π½ΠΈΠ΅ Ρ ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΎΡΡΡΒ».ΠΠ΅Π»ΠΈΡΠΈΠ½Π° ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΠΈΠ· ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅ΠΊΡΠ΅ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ,
Π³Π΄Π΅
— ΡΡΠΎ ΡΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρ
ΠΈ
ΠΠ΄ΠΈΠ½ΠΈΡΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°:
.
ΠΠ°ΠΊ ΠΈ Π² ΡΠ»ΡΡΠ°Π΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΊΡΡΡΡΡΠ΅Π³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°, ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠ»Π΅ΡΠΎ ΡΡΡΠ°Π³Π°
, ΡΠΎ Π΅ΡΡΡ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΏΠΎ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΡ ΠΎΡ Π²Π΅ΠΊΡΠΎΡΠ° ΠΈΠΌΠΏΡΠ»ΡΡΠ°
Π² ΠΏΡΠΎΠΈΡΡ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅,
ΠΡΠΈ ΡΠ°ΠΊΠΎΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ
.ΠΡ Π²ΠΈΠ΄ΠΈΠΌ, ΡΡΠΎ Π΅ΡΠ»ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅
ΡΠ°ΠΊΠΎΠ΅, ΡΡΠΎ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· ΠΎΡΠΈΠ΄ΠΆΠΈΠ½, Π·Π½Π°ΡΠΈΡ
, Π° ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ ΠΏΠ»Π΅ΡΠΎ ΡΡΡΠ°Π³Π° ΡΠ°Π²Π½ΠΎ Π½ΡΠ»Ρ.Π ΡΡΠΎΠΌ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π²ΡΠ±ΠΎΡΠ° Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΡΠ»ΠΈ ΠΌΡ Π²ΠΎΠ·ΡΠΌΠ΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΎΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ ΠΊΡΡΡΡΡΠ΅Π³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° Π½Π° ΡΠ°ΡΡΠΈΡΠ΅:
ΠΠ΄Π΅ΡΡ ΠΌΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅
ΠΈ ΡΠΎΡ ΡΠ°ΠΊΡ, ΡΡΠΎ Π²Π΅ΠΊΡΠΎΡ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅ΡΡΡ ΡΠ°ΠΌ Ρ ΡΠΎΠ±ΠΎΠΉ, ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ. ΠΠ· Π²ΡΠΎΡΠΎΠ³ΠΎ Π·Π°ΠΊΠΎΠ½Π° ΠΡΡΡΠΎΠ½Π°,
ΡΠΈΡΡΠ°Ρ ΡΠΈΠ»Π°, Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠ°Ρ Π½Π° ΡΠ°ΡΡΠΈΡΡ, ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠΈΡΡΠΎΠ³ΠΎ ΠΊΡΡΡΡΡΠ΅Π³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°, ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ Π·Π°ΠΏΠΈΡΠ°ΡΡ
ΠΠ±ΡΠ°ΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° ΡΡ ΠΎΠ΄ΡΡΠ²ΠΎ Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠΌ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠΌ Π²ΡΠΎΡΠΎΠ³ΠΎ Π·Π°ΠΊΠΎΠ½Π° ΠΡΡΡΠΎΠ½Π°,
.Π‘Π»Π΅Π΄ΡΡΡΠ°Ρ ΡΡΡΠ°ΡΠ΅Π³ΠΈΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌ ΠΌΠΎΠΆΠ΅Ρ ΡΠ»ΡΠΆΠΈΡΡ ΡΡΠΊΠΎΠ²ΠΎΠ΄ΡΡΠ²ΠΎΠΌ Π΄Π»Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΠ°ΡΡΠΈΡΡ.
Π‘ΡΡΠ°ΡΠ΅Π³ΠΈΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌ: ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠ°ΡΡΠΈΡΡ
- ΠΡΠ±Π΅ΡΠΈΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ, ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΊΠΎΡΠΎΡΠΎΠΉ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ.
- ΠΠ°ΠΏΠΈΡΠΈΡΠ΅ ΡΠ°Π΄ΠΈΡΡ-Π²Π΅ΠΊΡΠΎΡ ΡΠΎΡΠ΅ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ Π² ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠΈ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡΠΎΡΠ°.
- ΠΠ°ΠΏΠΈΡΠΈΡΠ΅ Π²Π΅ΠΊΡΠΎΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ° ΡΠ°ΡΡΠΈΡΡ Π² ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΠΈ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡΠΎΡΠ°.
- ΠΠΎΠ·ΡΠΌΠΈΡΠ΅ ΠΊΡΠ΅ΡΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅
ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠΉΡΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ, ΡΡΠΎΠ±Ρ ΡΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°.
- ΠΠΎΡΠΌΠΎΡΡΠΈΡΠ΅, Π΅ΡΡΡ Π»ΠΈ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°. ΠΡΠ»ΠΈ Π΅ΡΡΡ, ΡΠΎ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ, ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠΉΡΠ΅
Π΄Π»Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΠΊΡΡΡΡΡΠ΅Π³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°. ΠΡΠ»ΠΈ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ Π΄Π»Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° Π½Π΅Ρ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠΎ ΡΠΈΡΡΡΠΉ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ.
ΠΡΠΈΠΌΠ΅Ρ
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΈ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π½Π° ΠΌΠ΅ΡΠ΅ΠΎΡΠ΅
ΠΠ΅ΡΠ΅ΠΎΡ Π²Ρ ΠΎΠ΄ΠΈΡ Π² Π°ΡΠΌΠΎΡΡΠ΅ΡΡ ΠΠ΅ΠΌΠ»ΠΈ ((Π ΠΈΡΡΠ½ΠΎΠΊ)) ΠΈ ΠΊΡΠΎ-ΡΠΎ Π½Π°Π±Π»ΡΠ΄Π°Π΅Ρ Π·Π° Π½ΠΈΠΌ Π½Π° Π·Π΅ΠΌΠ»Π΅, ΠΏΡΠ΅ΠΆΠ΄Π΅ ΡΠ΅ΠΌ ΠΎΠ½ ΡΠ³ΠΎΡΠΈΡ Π² Π°ΡΠΌΠΎΡΡΠ΅ΡΠ΅.ΠΠ΅ΠΊΡΠΎΡ
ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠ΅ΡΠ΅ΠΎΡΠ° ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°Π±Π»ΡΠ΄Π°ΡΠ΅Π»Ρ. Π ΡΠΎΡ ΠΌΠΎΠΌΠ΅Π½Ρ, ΠΊΠΎΠ³Π΄Π° Π½Π°Π±Π»ΡΠ΄Π°ΡΠ΅Π»Ρ Π²ΠΈΠ΄ΠΈΡ ΠΌΠ΅ΡΠ΅ΠΎΡ, ΠΎΠ½ ΠΈΠΌΠ΅Π΅Ρ ΠΈΠΌΠΏΡΠ»ΡΡ
, Π° ΠΎΠ½ ΡΠ°Π·Π³ΠΎΠ½ΡΠ΅ΡΡΡ Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ
ΠΏΠΎ Π΅Π³ΠΎ ΠΏΡΡΠΈ, ΠΊΠΎΡΠΎΡΡΠΉ Π΄Π»Ρ Π½Π°ΡΠΈΡ ΡΠ΅Π»Π΅ΠΉ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΈΠ½ΡΡΡ Π·Π° ΠΏΡΡΠΌΡΡ Π»ΠΈΠ½ΠΈΡ. (Π°) ΠΠ°ΠΊΠΎΠ² ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΌΠ΅ΡΠ΅ΠΎΡΠ° ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π² ΠΌΠ΅ΡΡΠ΅ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π½Π°Π±Π»ΡΠ΄Π°ΡΠ΅Π»Ρ? Π±) ΠΠ°ΠΊΠΎΠ² ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΠΌΠ΅ΡΠ΅ΠΎΡΠ° ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ?
Π ΠΈΡΡΠ½ΠΎΠΊ 11.10 ΠΠ°Π±Π»ΡΠ΄Π°ΡΠ΅Π»Ρ Π½Π° Π·Π΅ΠΌΠ»Π΅ Π²ΠΈΠ΄ΠΈΡ ΠΌΠ΅ΡΠ΅ΠΎΡ Π² ΠΏΠΎΠ·ΠΈΡΠΈΠΈΡ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠΌ
.
Π‘ΡΡΠ°ΡΠ΅Π³ΠΈΡ
ΠΡ ΡΠ°Π·Π»Π°Π³Π°Π΅ΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ x ΠΈ y ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ ΠΊΠΈΠ½Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π΄Π»Ρ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΊΠ°ΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΡ Π²ΡΡΠ°Π²Π»ΡΠ΅ΠΌ ΡΡΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠΉ ΠΈΠΌΠΏΡΠ»ΡΡ, Π° Π·Π°ΡΠ΅ΠΌ Π²ΡΡΠΈΡΠ»ΡΠ΅ΠΌ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΠ΅ΡΠ΅ΠΊΡΠ΅ΡΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅. ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π²Π΅ΠΊΡΠΎΡΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ ΠΈΠΌΠΏΡΠ»ΡΡΠ° Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π² ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ xy , ΠΌΡ ΠΎΠΆΠΈΠ΄Π°Π΅ΠΌ, ΡΡΠΎ Π²Π΅ΠΊΡΠΎΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° Π±ΡΠ΄Π΅Ρ ΡΠ°ΡΠΏΠΎΠ»Π°Π³Π°ΡΡΡΡ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ z .Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ, ΠΌΡ Π±Π΅ΡΠ΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°.
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΠ΅ΡΠ΅ΠΎΡ Π²Ρ ΠΎΠ΄ΠΈΡ Π² Π°ΡΠΌΠΎΡΡΠ΅ΡΡ ΠΠ΅ΠΌΠ»ΠΈ ΠΏΠΎΠ΄ ΡΠ³Π»ΠΎΠΌ
Β°.Π½ΠΈΠΆΠ΅ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΠΈ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ Π² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡΡ x ΠΈ y ΡΠ°Π²Π½Ρ
ΠΠ°ΠΏΠΈΡΠ΅ΠΌ ΡΠΊΠΎΡΠΎΡΡΠΈ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΊΠΈΠ½Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ.
- Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠ°Π²Π΅Π½
ΠΏΠΎ Π°Π΄ΡΠ΅ΡΡ
, ΠΌΠΎΠΌΠ΅Π½Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠ΅ΡΠ΅ΠΎΡΠ° ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΡΠ°Π²Π΅Π½
ΠΡΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ, ΠΊΠΎΠ³Π΄Π° Π½Π°Π±Π»ΡΠ΄Π°ΡΠ΅Π»Ρ Π²ΠΈΠ΄ΠΈΡ ΠΌΠ΅ΡΠ΅ΠΎΡ.
- Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ, Π²ΠΎΠ·ΡΠΌΠ΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°. ΠΠ·ΡΠ² ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΡ
ΠΊΠ°ΠΊ ΡΡΠ½ΠΊΡΠΈΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΡΠΎ ΡΠ²Π»ΡΠ΅ΡΡΡ Π²ΡΠΎΡΡΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ Π²ΡΡΠ΅, ΠΌΡ ΠΈΠΌΠ΅Π΅ΠΌ
Π’ΠΎΠ³Π΄Π°, Π½Π°ΡΠΈΠ½Π°Ρ Ρ
, Ρ Π½Π°Ρ
ΠΠ΄ΠΈΠ½ΠΈΡΡ ΠΊΡΡΡΡΡΠ΅Π³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° Π΄Π°Π½Ρ ΠΊΠ°ΠΊ Π½ΡΡΡΠΎΠ½-ΠΌΠ΅ΡΡΡ, Π½Π΅ ΠΏΡΡΠ°ΡΡ Ρ Π΄ΠΆΠΎΡΠ»ΡΠΌΠΈ. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΏΡΠΎΠ²Π΅ΡΠΊΠΈ ΠΎΡΠΌΠ΅ΡΠΈΠΌ, ΡΡΠΎ ΠΏΠ»Π΅ΡΠΎ ΡΡΡΠ°Π³Π° ΡΠ²Π»ΡΠ΅ΡΡΡ x -ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠΌ Π²Π΅ΠΊΡΠΎΡΠ°
.Π² (ΡΠΈΡΡΠ½ΠΎΠΊ), ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΎΠ½ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ΅Π½ ΡΠΈΠ»Π΅, Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠ΅ΠΉ Π½Π° ΠΌΠ΅ΡΠ΅ΠΎΡ, ΠΊΠΎΡΠΎΡΡΠΉ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΠΏΠΎ Π΅Π³ΠΎ ΠΏΡΡΠΈ.ΠΠΎ Π²ΡΠΎΡΠΎΠΌΡ Π·Π°ΠΊΠΎΠ½Ρ ΠΡΡΡΠΎΠ½Π° ΡΡΠ° ΡΠΈΠ»Π° ΡΠ°Π²Π½Π°
.ΠΠ»Π΅ΡΠΎ ΡΡΡΠ°Π³Π°
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ
ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅
ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΌΠ΅ΡΠ΅ΠΎΡ ΡΡΠΊΠΎΡΡΠ΅ΡΡΡ Π²Π½ΠΈΠ· ΠΊ ΠΠ΅ΠΌΠ»Π΅, Π΅Π³ΠΎ ΡΠ°Π΄ΠΈΡΡ ΠΈ Π²Π΅ΠΊΡΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡΡ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Ρ
, ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ ΡΡΠ½ΠΊΡΠΈΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π½Π° ΠΌΠ΅ΡΠ΅ΠΎΡΠ΅ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ, ΠΎΠ΄Π½Π°ΠΊΠΎ, ΠΏΠΎΡΡΠΎΡΠ½Π΅Π½, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ ΠΏΠ»Π΅ΡΠΎ ΡΡΡΠ°Π³Π°
ΠΈ ΡΠΈΠ»Π°, Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠ°Ρ Π½Π° ΠΌΠ΅ΡΠ΅ΠΎΡ, ΠΏΠΎΡΡΠΎΡΠ½Π½Ρ.ΠΡΠΎΡ ΠΏΡΠΈΠΌΠ΅Ρ Π²Π°ΠΆΠ΅Π½ ΡΠ΅ΠΌ, ΡΡΠΎ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, ΡΡΠΎ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π²ΡΠ±ΠΎΡΠ° Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ, ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΎΠ½ ΡΠ°ΡΡΡΠΈΡΡΠ²Π°Π΅ΡΡΡ. ΠΠ΅ΡΠΎΠ΄Ρ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Π½ΡΠ΅ Π² ΡΡΠΎΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅, ΡΠ°ΠΊΠΆΠ΅ Π²Π°ΠΆΠ½Ρ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° Π΄Π»Ρ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ°ΡΡΠΈΡ ΠΈ ΡΠ²Π΅ΡΠ΄ΠΎΠ³ΠΎ ΡΠ΅Π»Π°.
ΠΡΠΎΠ²Π΅ΡΡΡΠ΅ ΡΠ²ΠΎΠ΅ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅
ΠΡΠΎΡΠΎΠ½, Π²ΡΠ°ΡΠ°ΡΡΠΈΠΉΡΡ Π²ΠΎΠΊΡΡΠ³ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ, ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ ΠΊΡΡΠ³ΠΎΠ²ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Π±ΡΠΌΠ°Π³ΠΈ, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½ΠΈΠΆΠ΅. ΠΡΡΠ³ΠΎΠ²ΠΎΠΉ ΠΏΡΡΡ ΠΈΠΌΠ΅Π΅Ρ ΡΠ°Π΄ΠΈΡΡ 0,4 ΠΌ ΠΈ ΡΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΎΡΠΎΠ½Π°
..ΠΠ°ΠΊΠΎΠ² ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΏΡΠΎΡΠΎΠ½Π° ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ?
[ΠΏΠΎΠΊΠ°Π·Π°ΡΡ-ΠΎΡΠ²Π΅Ρ q = β878379 β³] ΠΠΎΠΊΠ°Π·Π°ΡΡ ΠΎΡΠ²Π΅Ρ [/ ΡΠ°ΡΠΊΡΡΡΡ-ΠΎΡΠ²Π΅Ρ]
[ΡΠΊΡΡΡΡΠΉ-ΠΎΡΠ²Π΅Ρ a =β 878379 β³] ΠΠ· ΡΠΈΡΡΠ½ΠΊΠ° ΠΌΡ Π²ΠΈΠ΄ΠΈΠΌ, ΡΡΠΎ ΠΏΠ΅ΡΠ΅ΠΊΡΠ΅ΡΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠ°Π΄ΠΈΡΡ-Π²Π΅ΠΊΡΠΎΡΠ° ΠΈ Π²Π΅ΠΊΡΠΎΡΠ° ΠΈΠΌΠΏΡΠ»ΡΡΠ° Π΄Π°Π΅Ρ Π²Π΅ΠΊΡΠΎΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ Π·Π° ΠΏΡΠ΅Π΄Π΅Π»Ρ ΡΡΡΠ°Π½ΠΈΡΡ. ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΡ ΡΠ°Π΄ΠΈΡΡ ΠΈ ΠΈΠΌΠΏΡΠ»ΡΡ Π² Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°, ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ
[/ hidden-answer]
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ°ΡΡΠΈΡ
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ°ΡΡΠΈΡ Π²Π°ΠΆΠ΅Π½ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ Π½Π°ΡΡΠ½ΡΡ Π΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Π°Ρ , ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ Π°ΡΡΡΠΎΠ½ΠΎΠΌΠΈΡ.Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠΏΠΈΡΠ°Π»ΡΠ½ΡΡ Π³Π°Π»Π°ΠΊΡΠΈΠΊΡ, Π²ΡΠ°ΡΠ°ΡΡΠΈΠΉΡΡ ΠΎΡΡΡΠΎΠ² Π·Π²Π΅Π·Π΄, ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠΉ Π½Π°ΡΠ΅ΠΌΡ ΠΠ»Π΅ΡΠ½ΠΎΠΌΡ ΠΡΡΠΈ. ΠΡΠ΄Π΅Π»ΡΠ½ΡΠ΅ Π·Π²Π΅Π·Π΄Ρ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ ΠΊΠ°ΠΊ ΡΠΎΡΠ΅ΡΠ½ΡΠ΅ ΡΠ°ΡΡΠΈΡΡ, ΠΊΠ°ΠΆΠ΄Π°Ρ ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ ΠΈΠΌΠ΅Π΅Ρ ΡΠ²ΠΎΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ. ΠΠ΅ΠΊΡΠΎΡΠ½Π°Ρ ΡΡΠΌΠΌΠ° ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΡΠ³Π»ΠΎΠ²ΡΡ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ² Π΄Π°Π΅Ρ ΠΏΠΎΠ»Π½ΡΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π³Π°Π»Π°ΠΊΡΠΈΠΊΠΈ. Π ΡΡΠΎΠΌ ΡΠ°Π·Π΄Π΅Π»Π΅ ΠΌΡ ΡΠ°Π·ΡΠ°Π±Π°ΡΡΠ²Π°Π΅ΠΌ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΡ, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠΎΡΠΎΡΡΡ ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΠΏΠΎΠ»Π½ΡΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ°ΡΡΠΈΡ.
Π ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅ΠΌ ΡΠ°Π·Π΄Π΅Π»Π΅ ΠΌΡ Π²Π²Π΅Π»ΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΎΠ΄ΠΈΠ½ΠΎΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ ΠΎΠΊΠΎΠ»ΠΎ ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠΈ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.ΠΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ ΡΡΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎ
Π³Π΄Π΅ Π²Π΅ΠΊΡΠΎΡ
— ΠΎΡ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° Π΄ΠΎ ΡΠ°ΡΡΠΈΡΡ, Π°
— ΠΈΠΌΠΏΡΠ»ΡΡ ΡΠ°ΡΡΠΈΡΡ. ΠΡΠ»ΠΈ Ρ Π½Π°Ρ Π΅ΡΡΡ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΈΠ· N ΡΠ°ΡΡΠΈΡ, ΠΊΠ°ΠΆΠ΄Π°Ρ ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ ΠΈΠΌΠ΅Π΅Ρ Π²Π΅ΠΊΡΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΡ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ, Π·Π°Π΄Π°Π½Π½ΡΠΉ ΠΊΠ°ΠΊ
ΠΈ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΈΠΌΠ΅ΡΡΠΈΠΉ ΠΈΠΌΠΏΡΠ»ΡΡ
, ΡΠΎ ΠΏΠΎΠ»Π½ΡΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ°ΡΡΠΈΡ ΠΎΠΊΠΎΠ»ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΡΠ°Π²Π΅Π½ Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠΉ ΡΡΠΌΠΌΠ΅ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΡΡ ΡΠ³Π»ΠΎΠ²ΡΡ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ² ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.Π’ΠΎ Π΅ΡΡΡ
ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ, Π΅ΡΠ»ΠΈ Π½Π° ΡΠ°ΡΡΠΈΡΡ i Π΄Π΅ΠΉΡΡΠ²ΡΠ΅Ρ ΡΠΈΡΡΡΠΉ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ
ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ, ΡΠΎ ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΉΡΠΈ ΡΠΈΡΡΡΠΉ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΠΎΠΊΡΡΠ³ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ, ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π½ΡΠΉ ΡΠΈΡΡΠ΅ΠΌΠΎΠΉ ΡΠ°ΡΡΠΈΡ, ΠΏΡΡΠ΅ΠΌ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ (ΡΠΈΡΡΠ½ΠΎΠΊ):
Π‘ΡΠΌΠΌΠ° ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΠΊΡΡΡΡΡΠΈΡ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ² ΡΠΎΠ·Π΄Π°Π΅Ρ ΡΠΈΡΡΡΠΉ Π²Π½Π΅ΡΠ½ΠΈΠΉ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π² ΡΠΈΡΡΠ΅ΠΌΠ΅, ΠΊΠΎΡΠΎΡΡΠΉ ΠΌΡ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΠΌ
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ,
(ΡΠΈΡΡΠ½ΠΎΠΊ) ΡΡΠ²Π΅ΡΠΆΠ΄Π°Π΅Ρ, ΡΡΠΎ ΡΠΊΠΎΡΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ°Π²Π½Π° ΡΠΈΡΡΠΎΠΌΡ Π²Π½Π΅ΡΠ½Π΅ΠΌΡ ΠΊΡΡΡΡΡΠ΅ΠΌΡ ΠΌΠΎΠΌΠ΅Π½ΡΡ, Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠ΅ΠΌΡ Π½Π° ΡΠΈΡΡΠ΅ΠΌΡ, ΠΊΠΎΠ³Π΄Π° ΠΎΠ±Π΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΈΠ·ΠΌΠ΅ΡΡΡΡΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ°. (ΡΠΈΡΡΠ½ΠΎΠΊ) ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡΡΡ ΠΊ Π»ΡΠ±ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅, ΠΈΠΌΠ΅ΡΡΠ΅ΠΉ ΡΠΈΡΡΡΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ, Π²ΠΊΠ»ΡΡΠ°Ρ ΡΠ²Π΅ΡΠ΄ΡΠ΅ ΡΠ΅Π»Π°, ΠΊΠ°ΠΊ ΠΎΠ±ΡΡΠΆΠ΄Π°Π΅ΡΡΡ Π² ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΌ ΡΠ°Π·Π΄Π΅Π»Π΅.
ΠΡΠΈΠΌΠ΅Ρ
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΡΠ΅Ρ ΡΠ°ΡΡΠΈΡ
Π‘ΡΡΠ»Π°ΡΡΡ Π½Π° (Π ΠΈΡΡΠ½ΠΎΠΊ) (Π°), ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅ ΠΏΠΎΠ»Π½ΡΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΡΠ΅Ρ ΡΠ°ΡΡΠΈΡ ΠΎΠΊΠΎΠ»ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. Π±) ΠΠ°ΠΊΠΎΠ²Π° ΡΠΊΠΎΡΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°?
Π ΠΈΡ. 11.11. Π’ΡΠΈ ΡΠ°ΡΡΠΈΡΡ Π² ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ xy Ρ ΡΠ°Π·Π½ΡΠΌΠΈ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ ΠΈΠΌΠΏΡΠ»ΡΡΠ°.Π‘ΡΡΠ°ΡΠ΅Π³ΠΈΡ
ΠΠ°ΠΏΠΈΡΠΈΡΠ΅ Π²Π΅ΠΊΡΠΎΡΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ ΠΈΠΌΠΏΡΠ»ΡΡΠ° Π΄Π»Ρ ΡΡΠ΅Ρ ΡΠ°ΡΡΠΈΡ. ΠΡΡΠΈΡΠ»ΠΈΡΠ΅ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠ΅ ΡΠ³Π»ΠΎΠ²ΡΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΡ ΠΈ ΡΠ»ΠΎΠΆΠΈΡΠ΅ ΠΈΡ ΠΊΠ°ΠΊ Π²Π΅ΠΊΡΠΎΡΡ, ΡΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΏΠΎΠ»Π½ΡΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ. ΠΠ°ΡΠ΅ΠΌ ΠΏΡΠΎΠ΄Π΅Π»Π°ΠΉΡΠ΅ ΡΠΎ ΠΆΠ΅ ΡΠ°ΠΌΠΎΠ΅ Ρ ΠΊΡΡΡΡΡΠΈΠΌΠΈ ΠΌΠΎΠΌΠ΅Π½ΡΠ°ΠΌΠΈ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅
- Π§Π°ΡΡΠΈΡΠ° 1:
Π§Π°ΡΡΠΈΡΠ° 2:
,
Π§Π°ΡΡΠΈΡΠ° 3:
,
ΠΡ ΡΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΠΌ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠ΅ ΡΠ³Π»ΠΎΠ²ΡΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΡ, ΡΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΎΠ±ΡΡΡ ΡΡΠΌΠΌΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ:
- ΠΡΠ΄Π΅Π»ΡΠ½ΡΠ΅ ΡΠΈΠ»Ρ ΠΈ ΡΡΡΠ°Π³ΠΈ
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ:
ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅
ΠΡΠΎΡ ΠΏΡΠΈΠΌΠ΅Ρ ΠΈΠ»Π»ΡΡΡΡΠΈΡΡΠ΅Ρ ΠΏΡΠΈΠ½ΡΠΈΠΏ ΡΡΠΏΠ΅ΡΠΏΠΎΠ·ΠΈΡΠΈΠΈ Π΄Π»Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΈ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ°ΡΡΠΈΡ.Π‘Π»Π΅Π΄ΡΠ΅Ρ ΡΠΎΠ±Π»ΡΠ΄Π°ΡΡ ΠΎΡΡΠΎΡΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΡΠΈ ΠΎΡΠ΅Π½ΠΊΠ΅ ΡΠ°Π΄ΠΈΡΡ-Π²Π΅ΠΊΡΠΎΡΠΎΠ²
.ΡΠ°ΡΡΠΈΡ Π΄Π»Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΡΠ³Π»ΠΎΠ²ΡΡ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ² ΠΈ ΡΡΡΠ°Π³ΠΎΠ²
Π΄Π»Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΠΊΡΡΡΡΡΠΈΡ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ², ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΡΠΎ ΡΠΎΠ²Π΅ΡΡΠ΅Π½Π½ΠΎ ΡΠ°Π·Π½ΡΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ.
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠ²Π΅ΡΠ΄ΠΎΠ³ΠΎ ΡΠ΅Π»Π°
ΠΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΌΡ ΠΎΠ±ΠΎΠ±ΡΠΈΠ»ΠΈ Π½Π° ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ°ΡΡΠΈΡ. Π’Π΅ΠΏΠ΅ΡΡ ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΏΡΠΈΠ½ΡΠΈΠΏΡ, ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Π½ΡΠ΅ Π² ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅ΠΌ ΡΠ°Π·Π΄Π΅Π»Π΅, Π΄Π»Ρ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΊΠΎΠ½ΡΠ΅ΠΏΡΠΈΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΠ²Π΅ΡΠ΄ΠΎΠ³ΠΎ ΡΠ΅Π»Π°.Π£ Π½Π΅Π±Π΅ΡΠ½ΡΡ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ², ΡΠ°ΠΊΠΈΡ ΠΊΠ°ΠΊ ΠΏΠ»Π°Π½Π΅ΡΡ, Π΅ΡΡΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΈΠ·-Π·Π° ΠΈΡ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΠΈ ΠΎΡΠ±ΠΈΡ Π²ΠΎΠΊΡΡΠ³ Π·Π²Π΅Π·Π΄. Π ΡΠ΅Ρ Π½ΠΈΠΊΠ΅ Π²ΡΠ΅, ΡΡΠΎ Π²ΡΠ°ΡΠ°Π΅ΡΡΡ Π²ΠΎΠΊΡΡΠ³ ΠΎΡΠΈ, Π½Π΅ΡΠ΅Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΌΠ°Ρ ΠΎΠ²ΠΈΠΊΠΈ, ΠΏΡΠΎΠΏΠ΅Π»Π»Π΅ΡΡ ΠΈ Π²ΡΠ°ΡΠ°ΡΡΠΈΠ΅ΡΡ ΡΠ°ΡΡΠΈ Π² Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»ΡΡ . ΠΠ½Π°Π½ΠΈΠ΅ ΡΠ³Π»ΠΎΠ²ΡΡ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ² ΡΡΠΈΡ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΠΈΠΌΠ΅Π΅Ρ ΡΠ΅ΡΠ°ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ, ΡΠ°ΡΡΡΡ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΎΠ½ΠΈ ΡΠ²Π»ΡΡΡΡΡ.
Π§ΡΠΎΠ±Ρ ΡΠ°Π·Π²ΠΈΡΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠ²Π΅ΡΠ΄ΠΎΠ³ΠΎ ΡΠ΅Π»Π°, ΠΌΡ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΡΠ΅ΠΌ ΡΠ²Π΅ΡΠ΄ΠΎΠ΅ ΡΠ΅Π»ΠΎ ΠΊΠ°ΠΊ ΡΠΎΡΡΠΎΡΡΠ΅Π΅ ΠΈΠ· Π½Π΅Π±ΠΎΠ»ΡΡΠΈΡ ΠΌΠ°ΡΡΠΎΠ²ΡΡ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠΎΠ²,
Π (Π ΠΈΡΡΠ½ΠΎΠΊ) ΡΠ²Π΅ΡΠ΄ΠΎΠ΅ ΡΠ΅Π»ΠΎ Π²ΡΠ½ΡΠΆΠ΄Π΅Π½ΠΎ Π²ΡΠ°ΡΠ°ΡΡΡΡ Π²ΠΎΠΊΡΡΠ³ ΠΎΡΠΈ z Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ
.ΠΡΠ΅ ΠΌΠ°ΡΡΠΎΠ²ΡΠ΅ ΡΠ΅Π³ΠΌΠ΅Π½ΡΡ, ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠΈΠ΅ ΡΠ²Π΅ΡΠ΄ΠΎΠ΅ ΡΠ΅Π»ΠΎ, ΡΠΎΠ²Π΅ΡΡΠ°ΡΡ ΠΊΡΡΠ³ΠΎΠ²ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π²ΠΎΠΊΡΡΠ³ ΠΎΡΠΈ z Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ. ΠΠ° ΡΠ°ΡΡΠΈ (Π°) ΡΠΈΡΡΠ½ΠΊΠ° ΠΏΠΎΠΊΠ°Π·Π°Π½ ΠΌΠ°ΡΡΠΎΠ²ΡΠΉ ΡΠ΅Π³ΠΌΠ΅Π½Ρ
.Ρ Π²Π΅ΠΊΡΠΎΡΠΎΠΌ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ
ΠΎΡ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΈ ΡΠ°Π΄ΠΈΡΡ
Π΄ΠΎ ΠΎΡΠΈ z . ΠΠ΅Π»ΠΈΡΠΈΠ½Π° Π΅Π³ΠΎ ΡΠ°Π½Π³Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ
. ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π²Π΅ΠΊΡΠΎΡΡ
ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½Ρ Π΄ΡΡΠ³ Π΄ΡΡΠ³Ρ, Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΈΠΌΠΏΡΠ»ΡΡΠ° ΡΡΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠΎΠ²ΠΎΠ³ΠΎ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ° ΡΠ°Π²Π½Π°
. Π ΠΈΡΡΠ½ΠΎΠΊ 11.12 (a) Π’Π²Π΅ΡΠ΄ΠΎΠ΅ ΡΠ΅Π»ΠΎ Π²ΡΠ½ΡΠΆΠ΄Π΅Π½ΠΎ Π²ΡΠ°ΡΠ°ΡΡΡΡ Π²ΠΎΠΊΡΡΠ³ ΠΎΡΠΈ z. Π’Π²Π΅ΡΠ΄ΠΎΠ΅ ΡΠ΅Π»ΠΎ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½ΠΎ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ z. ΠΠ°ΡΡΠΎΠ²ΡΠΉ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π½Π° ΠΏΠΎΠ·ΠΈΡΠΈΠΈ
, ΡΡΠΎ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠ³ΠΎΠ»
ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ z. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ ΠΊΡΡΠ³ΠΎΠ²ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎ ΠΌΠ°Π»ΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠΎΠ²ΠΎΠ³ΠΎ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°. (Π±)
— ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΌΠ°ΡΡΠΎΠ²ΠΎΠ³ΠΎ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ° ΠΈ ΠΈΠΌΠ΅Π΅Ρ ΡΠΎΡΡΠ°Π²Π»ΡΡΡΡΡ ΠΏΠΎ ΠΎΡΠΈ z
.
ΠΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ, Π²Π΅ΠΊΡΠΎΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ, ΠΏΠΎΠΊΠ°Π·Π°Π½Π½ΠΎΠΌ Π² ΡΠ°ΡΡΠΈ (b). Π‘ΡΠΌΠΌΠ° ΡΠ³Π»ΠΎΠ²ΡΡ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ² Π²ΡΠ΅Ρ ΠΌΠ°ΡΡΠΎΠ²ΡΡ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠΎΠ² ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ ΠΊΠ°ΠΊ Π²Π΄ΠΎΠ»Ρ, ΡΠ°ΠΊ ΠΈ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ ΠΎΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ. ΠΠ°ΠΆΠ΄ΡΠΉ ΠΌΠ°ΡΡΠΎΠ²ΡΠΉ ΡΠ΅Π³ΠΌΠ΅Π½Ρ ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΡΡ ΡΠΎΡΡΠ°Π²Π»ΡΡΡΡΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠΈΡΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠ΅ΠΉ ΠΈΠ΄Π΅Π½ΡΠΈΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠΎΠ²ΠΎΠ³ΠΎ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ° Π½Π° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Π΅ ΡΠ²Π΅ΡΠ΄ΠΎΠ³ΠΎ ΡΠ΅Π»Π°. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΡΠΌ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠΌ, ΠΊΠΎΡΠΎΡΡΠΉ Π΄Π°Π΅Ρ Π½Π΅Π½ΡΠ»Π΅Π²ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈ ΡΡΠΌΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΠΎ Π²ΡΠ΅ΠΌ ΠΌΠ°ΡΡΠΎΠ²ΡΠΌ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΠΌ.ΠΠ· ΡΠ°ΡΡΠΈ (Π±) ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ
ΠΏΠΎ ΠΎΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ —
Π§ΠΈΡΡΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ²Π΅ΡΠ΄ΠΎΠ³ΠΎ ΡΠ΅Π»Π° Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΡΠ°Π²Π΅Π½
.Π‘ΡΠΌΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅
— ΡΡΠΎ ΠΏΡΠΎΡΡΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΈΠ½Π΅ΡΡΠΈΠΈ I ΡΠ²Π΅ΡΠ΄ΠΎΠ³ΠΎ ΡΠ΅Π»Π° ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ. ΠΠ»Ρ ΡΠΎΠ½ΠΊΠΈΡ ΠΏΡΠ»Π΅Ρ, Π²ΡΠ°ΡΠ°ΡΡΠΈΡ ΡΡ Π²ΠΎΠΊΡΡΠ³ ΠΎΡΠΈ, ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ ΠΏΡΠ»Π΅Ρ, Π²ΡΠ΅
ΡΠ°Π²Π½Ρ R , ΠΏΠΎΡΡΠΎΠΌΡ ΡΡΠΌΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΊ
., ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΈΠ½Π΅ΡΡΠΈΠΈ ΡΠΎΠ½ΠΊΠΎΠ³ΠΎ ΠΎΠ±ΡΡΡΠ°, ΠΏΠΎΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ Π½Π° (Π ΠΈΡΡΠ½ΠΎΠΊ).Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΡΠ²Π΅ΡΠ΄ΠΎΠ³ΠΎ ΡΠ΅Π»Π°, Π²ΡΠ°ΡΠ°ΡΡΠ΅Π³ΠΎΡΡ Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ
Π²ΠΎΠΊΡΡΠ³ ΠΎΡΠΈ
ΠΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π΅ ΠΈΠΌΠΏΡΠ»ΡΡΠ°
. ΠΠ°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΎ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ, Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡΠ°Π²ΠΈΠ»ΠΎΠΌ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ.
ΠΡΠΈΠΌΠ΅Ρ
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΌΠ°Π½ΠΈΠΏΡΠ»ΡΡΠΎΡΠ° ΡΠΎΠ±ΠΎΡΠ°
Π ΠΎΠ±ΠΎΡ-ΠΌΠ°Π½ΠΈΠΏΡΠ»ΡΡΠΎΡ Π½Π° ΠΌΠ°ΡΡΠΎΡ ΠΎΠ΄Π΅, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ Curiosity , ΠΏΠΎΠΊΠ°Π·Π°Π½Π½ΡΠΉ Π½Π° (Π ΠΈΡΡΠ½ΠΎΠΊ), ΡΠ°Π²Π΅Π½ 1.ΠΠ»ΠΈΠ½Π° 0 ΠΌ, Π½Π° ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠΌ ΠΊΠΎΠ½ΡΠ΅ Π΅ΡΡΡ ΡΠΈΠΏΡΡ Π΄Π»Ρ Π·Π°Ρ Π²Π°ΡΠ° ΠΊΠ°ΠΌΠ½Π΅ΠΉ. ΠΠ°ΡΡΠ° ΡΡΠΊΠΈ 2,0 ΠΊΠ³, ΠΌΠ°ΡΡΠ° ΡΠΈΠΏΡΠΎΠ² 1,0 ΠΊΠ³. Π‘ΠΌ. (Π ΠΈΡΡΠ½ΠΎΠΊ). Π ΡΠΊΠ° ΡΠΎΠ±ΠΎΡΠ° ΠΈ ΡΠΈΠΏΡΡ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄ΡΡ ΠΈΠ· ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΠΏΠΎΠΊΠΎΡ Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅
.Π·Π° 0,1 Ρ. ΠΠ½ Π²ΡΠ°ΡΠ°Π΅ΡΡΡ Π²Π½ΠΈΠ· ΠΈ ΠΏΠΎΠ΄Π½ΠΈΠΌΠ°Π΅Ρ ΠΌΠ°ΡΡΠΈΠ°Π½ΡΠΊΠΈΠΉ ΠΊΠ°ΠΌΠ΅Π½Ρ ΠΌΠ°ΡΡΠΎΠΉ 1,5 ΠΊΠ³. ΠΡΡ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ — ΡΡΠΎ ΡΠΎΡΠΊΠ°, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΡΠΊΠ° ΡΠΎΠ±ΠΎΡΠ° ΡΠΎΠ΅Π΄ΠΈΠ½ΡΠ΅ΡΡΡ Ρ ΠΌΠ°ΡΡΠΎΡ ΠΎΠ΄ΠΎΠΌ. (a) ΠΠ°ΠΊΠΎΠ² ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΌΠ°Π½ΠΈΠΏΡΠ»ΡΡΠΎΡΠ° ΡΠΎΠ±ΠΎΡΠ° Π²ΠΎΠΊΡΡΠ³ ΠΎΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΡΠ΅ΡΠ΅Π· 0,1 Ρ, ΠΊΠΎΠ³Π΄Π° ΡΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΡΠ°Π»Π° ΡΡΠΊΠΎΡΡΡΡΡΡ? (Π±) ΠΠ°ΠΊΠΎΠ² ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΌΠ°Π½ΠΈΠΏΡΠ»ΡΡΠΎΡΠ° ΡΠΎΠ±ΠΎΡΠ°, ΠΊΠΎΠ³Π΄Π° ΠΎΠ½ Π΄Π΅ΡΠΆΠΈΡ Π² ΡΠ²ΠΎΠΈΡ ΡΠΈΠΏΡΠ°Ρ ΠΌΠ°ΡΡΠΈΠ°Π½ΡΠΊΠΈΠΉ ΠΊΠ°ΠΌΠ΅Π½Ρ ΠΈ Π²ΡΠ°ΡΠ°Π΅ΡΡΡ Π²Π²Π΅ΡΡ ? (c) ΠΠΎΠ³Π΄Π° ΡΡΠΊΠ° Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ ΠΊΠ°ΠΌΠ½Ρ Π² ΡΠΈΠΏΡΠ°Ρ , ΠΊΠ°ΠΊΠΎΠ² ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π² ΡΠΎΡΠΊΠ΅, Π³Π΄Π΅ ΡΡΠΊΠ° ΡΠΎΠ΅Π΄ΠΈΠ½ΡΠ΅ΡΡΡ Ρ ΠΌΠ°ΡΡΠΎΡ ΠΎΠ΄ΠΎΠΌ, ΠΊΠΎΠ³Π΄Π° ΠΎΠ½ ΡΡΠΊΠΎΡΡΠ΅ΡΡΡ ΠΎΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΠΏΠΎΠΊΠΎΡ Π΄ΠΎ ΡΠ²ΠΎΠ΅ΠΉ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ?
Π ΠΈΡΡΠ½ΠΎΠΊ 11.13 Π ΠΎΠ±ΠΎΡ-ΠΌΠ°Π½ΠΈΠΏΡΠ»ΡΡΠΎΡ Π½Π° ΠΌΠ°ΡΡΠΎΡ ΠΎΠ΄Π΅ Π½Π°ΠΊΠ»ΠΎΠ½ΡΠ΅ΡΡΡ ΠΈ ΠΏΠΎΠ΄Π½ΠΈΠΌΠ°Π΅Ρ ΠΌΠ°ΡΡΠΈΠ°Π½ΡΠΊΠΈΠΉ ΠΊΠ°ΠΌΠ΅Π½Ρ. (ΠΊΡΠ΅Π΄ΠΈΡ: ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΡΠ°Π±ΠΎΡΡ NASA / JPL-Caltech)Π‘ΡΡΠ°ΡΠ΅Π³ΠΈΡ
ΠΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ (ΡΠΈΡΡΠ½ΠΎΠΊ), ΡΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΠΊΠΎΠ½ΡΠΈΠ³ΡΡΠ°ΡΠΈΡΡ . ΠΠΎΠ³Π΄Π° ΡΡΠΊΠ° Π²ΡΠ°ΡΠ°Π΅ΡΡΡ Π²Π½ΠΈΠ·, ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ Π΄Π°Π΅Ρ Π²Π΅ΠΊΡΠΎΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°, Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΡΠΉ Π·Π° ΠΏΡΠ΅Π΄Π΅Π»Ρ ΡΡΡΠ°Π½ΠΈΡΡ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΌΡ Π±ΡΠ΄Π΅ΠΌ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ z . ΠΠΎΠ³Π΄Π° ΡΡΠΊΠ° Π²ΡΠ°ΡΠ°Π΅ΡΡΡ Π²Π²Π΅ΡΡ , ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ Π·Π°Π΄Π°Π΅Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° Π½Π° ΡΡΡΠ°Π½ΠΈΡΡ ΠΈΠ»ΠΈ Π² ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ z- .ΠΠΎΠΌΠ΅Π½Ρ ΠΈΠ½Π΅ΡΡΠΈΠΈ — ΡΡΠΎ ΡΡΠΌΠΌΠ° ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ² ΠΈΠ½Π΅ΡΡΠΈΠΈ. Π ΡΠΊΠ° ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΠΎΠ²Π°Π½Π° ΡΠ²Π΅ΡΠ΄ΡΠΌ ΡΡΠ΅ΡΠΆΠ½Π΅ΠΌ, Π° ΡΠΈΠΏΡΡ ΠΈ ΠΊΠ°ΠΌΠ΅Π½Ρ ΠΠ°ΡΡΠ° ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΠΎΠ²Π°Π½Ρ ΠΊΠ°ΠΊ ΡΠΎΡΠ΅ΡΠ½ΡΠ΅ ΠΌΠ°ΡΡΡ, ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΡΠ΅ Π½Π° ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠΈ 1 ΠΌ ΠΎΡ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. Π ΡΠ°ΡΡΠΈ (c) ΠΌΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ Π²ΡΠΎΡΠΎΠΉ Π·Π°ΠΊΠΎΠ½ ΠΡΡΡΠΎΠ½Π° Π΄Π»Ρ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ, ΡΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π½Π° ΡΡΠΊΠ΅ ΡΠΎΠ±ΠΎΡΠ°.
Π Π΅ΡΠ΅Π½ΠΈΠ΅
- ΠΠ°ΠΏΠΈΡΡΠ²Π°Ρ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΡ ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΈΠΌΠ΅Π΅ΠΌ Π ΠΎΠ±ΠΎΡ-ΠΌΠ°Π½ΠΈΠΏΡΠ»ΡΡΠΎΡ:
Π©ΠΈΠΏΡΡ:
ΠΠ°ΡΡ ΡΠΎΠΊ:
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Π±Π΅Π· Π³ΠΎΡΠ½ΠΎΠΉ ΠΏΠΎΡΠΎΠ΄Ρ ΠΠ°ΡΡΠ° ΠΏΠΎΠ»Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΈΠ½Π΅ΡΡΠΈΠΈ ΡΠ°Π²Π΅Π½
., Π° Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΠ°Π²Π½Π°
.ΠΠ΅ΠΊΡΠΎΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ Π·Π° ΠΏΡΠ΅Π΄Π΅Π»Ρ ΡΡΡΠ°Π½ΠΈΡΡ Π²
, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΌΠ°Π½ΠΈΠΏΡΠ»ΡΡΠΎΡ ΡΠΎΠ±ΠΎΡΠ° Π²ΡΠ°ΡΠ°Π΅ΡΡΡ ΠΏΡΠΎΡΠΈΠ² ΡΠ°ΡΠΎΠ²ΠΎΠΉ ΡΡΡΠ΅Π»ΠΊΠΈ.
- ΠΡ Π΄ΠΎΠ»ΠΆΠ½Ρ Π²ΠΊΠ»ΡΡΠΈΡΡ ΠΊΠ°ΠΌΠ΅Π½Ρ ΠΠ°ΡΡΠ° Π² ΡΠ°ΡΡΠ΅Ρ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΈΠ½Π΅ΡΡΠΈΠΈ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΌΡ ΠΈΠΌΠ΅Π΅ΠΌ
ΠΈ
Π’Π΅ΠΏΠ΅ΡΡ Π²Π΅ΠΊΡΠΎΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ Π½Π° ΡΡΡΠ°Π½ΠΈΡΡ Π²
ΠΏΠΎ ΠΏΡΠ°Π²ΠΈΠ»Ρ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΠ΅ΠΏΠ΅ΡΡ ΠΌΠ°Π½ΠΈΠΏΡΠ»ΡΡΠΎΡ ΡΠΎΠ±ΠΎΡΠ° Π²ΡΠ°ΡΠ°Π΅ΡΡΡ ΠΏΠΎ ΡΠ°ΡΠΎΠ²ΠΎΠΉ ΡΡΡΠ΅Π»ΠΊΠ΅.
- ΠΡ Π½Π°Ρ
ΠΎΠ΄ΠΈΠΌ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ, ΠΊΠΎΠ³Π΄Π° ΡΡΡΠ°Π³ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ ΠΏΠΎΡΠΎΠ΄Ρ, Π²Π·ΡΠ² ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ (Π ΠΈΡΡΠ½ΠΎΠΊ)
ΠΠΎ Ρ
, ΠΈ ΠΏΠΎΠ½ΠΈΠΌΠ°Ρ, ΡΡΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΈ ΠΊΡΡΡΡΡΠ΅Π³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ, ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ ΠΎΠΏΡΡΡΠΈΡΡ Π²Π΅ΠΊΡΠΎΡΠ½ΡΠ΅ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΈ Π½Π°ΠΉΡΠΈ
, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ Π²ΡΠΎΡΡΠΌ Π·Π°ΠΊΠΎΠ½ΠΎΠΌ ΠΡΡΡΠΎΠ½Π° Π΄Π»Ρ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ.Π‘
, ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ ΡΠ°ΡΡΡΠΈΡΠ°ΡΡ ΡΠΈΡΡΡΠΉ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ:
ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π² (Π°) ΠΌΠ΅Π½ΡΡΠ΅, ΡΠ΅ΠΌ Π² (Π±) ΠΈΠ·-Π·Π° ΡΠΎΠ³ΠΎ, ΡΡΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΈΠ½Π΅ΡΡΠΈΠΈ Π² (Π±) Π±ΠΎΠ»ΡΡΠ΅, ΡΠ΅ΠΌ (Π°), Π² ΡΠΎ Π²ΡΠ΅ΠΌΡ ΠΊΠ°ΠΊ ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ°ΠΊΠ°Ρ ΠΆΠ΅.
ΠΡΠΎΠ²Π΅ΡΡΡΠ΅ ΡΠ²ΠΎΠ΅ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅
ΠΠΎΡΠΎΡΡΠΉ ΠΈΠΌΠ΅Π΅Ρ Π±ΠΎΠ»ΡΡΠΈΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ: ΡΠ²Π΅ΡΠ΄Π°Ρ ΡΡΠ΅ΡΠ° ΠΌΠ°ΡΡΠΎΠΉ ΠΌ , Π²ΡΠ°ΡΠ°ΡΡΠ°ΡΡΡ Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠ°ΡΡΠΎΡΠΎΠΉ
ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ z ΠΈΠ»ΠΈ ΡΠΏΠ»ΠΎΡΠ½ΠΎΠΉ ΡΠΈΠ»ΠΈΠ½Π΄Ρ ΡΠΎΠΉ ΠΆΠ΅ ΠΌΠ°ΡΡΡ ΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ z ?
[ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ-ΠΎΡΠ²Π΅Ρ q = βfs-id1165038013710 β³] ΠΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ [/ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ-ΠΎΡΠ²Π΅Ρ]
[ΡΠΊΡΡΡΡΠΉ-ΠΎΡΠ²Π΅Ρ a = βfs-id1165038013710 β³]
; ΠΠ· ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΡΠ³Π»ΠΎΠ²ΡΡ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ² ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ:
.Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π² ΡΠΈΠ»ΠΈΠ½Π΄ΡΠ΅
Π±ΠΎΠ»ΡΡΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ. ΠΡΠΎ ΡΠ²ΡΠ·Π°Π½ΠΎ Ρ ΡΠ΅ΠΌ, ΡΡΠΎ ΠΌΠ°ΡΡΠ° ΡΠΈΠ»ΠΈΠ½Π΄ΡΠ° ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° Π΄Π°Π»ΡΡΠ΅ ΠΎΡ ΠΎΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ.
[/ hidden-answer]
Π‘Π²ΠΎΠ΄ΠΊΠ°
- Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ
ΠΎΠ΄ΠΈΠ½ΠΎΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ Π² ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΠΎΡΡΡΠ΅ΡΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ Π²Π΅ΠΊΡΠΎΡΠ½ΡΠΌ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ Π²Π΅ΠΊΡΠΎΡΠ° ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΠΈΠΌΠΏΡΠ»ΡΡΠ° ΡΠ°ΡΡΠΈΡΡ.
- Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ
ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ°ΡΡΠΈΡ Ρ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠΎΠΉ ΠΎΡΡΡΠ΅ΡΠ° — ΡΡΠΎ Π²Π΅ΠΊΡΠΎΡΠ½Π°Ρ ΡΡΠΌΠΌΠ° ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΡΡ ΠΈΠΌΠΏΡΠ»ΡΡΠΎΠ² ΡΠ°ΡΡΠΈΡ, ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ.
- Π§ΠΈΡΡΡΠΉ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠΈ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΡΠΎΠΉ ΡΠΎΡΠΊΠΈ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ:
.
- ΠΠ΅ΡΡΠΊΠΎΠ΅ Π²ΡΠ°ΡΠ°ΡΡΠ΅Π΅ΡΡ ΡΠ΅Π»ΠΎ ΠΈΠΌΠ΅Π΅Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ.
Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ ΠΏΠΎ ΠΎΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ
ΠΏΠ΅ΡΠ΅Π΄Π°Π΅Ρ ΡΠΈΡΡΡΠΉ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π½Π° ΡΠ²Π΅ΡΠ΄ΠΎΠ΅ ΡΠ΅Π»ΠΎ ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ.
ΠΠΎΠ½ΡΠ΅ΠΏΡΡΠ°Π»ΡΠ½ΡΠ΅ Π²ΠΎΠΏΡΠΎΡΡ
ΠΠΎΠΆΠ½ΠΎ Π»ΠΈ ΠΏΡΠΈΡΠ²ΠΎΠΈΡΡ ΡΠ°ΡΡΠΈΡΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π±Π΅Π· ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΎΡΠΊΠΈ ΠΎΡΡΡΠ΅ΡΠ°?
ΠΡΡΡ Π»ΠΈ Ρ ΡΠ°ΡΡΠΈΡΡ, Π΄Π²ΠΈΠΆΡΡΠ΅ΠΉΡΡ ΠΏΠΎ ΠΏΡΡΠΌΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ, ΡΠΎΡΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ? ΠΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, ΡΡΠΎ Π»ΠΈΠ½ΠΈΡ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ Π½Π°ΡΠ°Π»ΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
[ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ-ΠΎΡΠ²Π΅Ρ q = βfs-id1165038304636 β³] ΠΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ [/ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ-ΠΎΡΠ²Π΅Ρ]
[ΡΠΊΡΡΡΡΠΉ-ΠΎΡΠ²Π΅Ρ a = βfs-id1165038304636 β³]
ΠΡΠ΅ ΡΠΎΡΠΊΠΈ Π½Π° ΠΏΡΡΠΌΠΎΠΉ Π΄Π°Π΄ΡΡ Π½ΡΠ»Π΅Π²ΠΎΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ Π²Π΅ΠΊΡΠΎΡ, ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡΠΈΠΉΡΡ Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌ Π²Π΅ΠΊΡΠΎΡΠΎΠΌ, ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ.
[/ hidden-answer]
ΠΡΠΈ ΠΊΠ°ΠΊΠΈΡ ΡΡΠ»ΠΎΠ²ΠΈΡΡ ΡΠ²Π΅ΡΠ΄ΠΎΠ΅ ΡΠ΅Π»ΠΎ ΠΈΠΌΠ΅Π΅Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ, Π½ΠΎ Π½Π΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ?
ΠΡΠ»ΠΈ ΡΠ°ΡΡΠΈΡΠ° Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π²ΡΠ±ΡΠ°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠΈ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ, ΠΎΠ½Π° ΠΈΠΌΠ΅Π΅Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠΉ ΠΈΠΌΠΏΡΠ»ΡΡ.ΠΠ°ΠΊΠΈΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΡ Π΄ΠΎΠ»ΠΆΠ½Ρ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°ΡΡ Π΄Π»Ρ ΡΠΎΠ³ΠΎ, ΡΡΠΎΠ±Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΡΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ Π±ΡΠ» ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π²ΡΠ±ΡΠ°Π½Π½ΠΎΠ³ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ?
[show-answer q = βfs-id1165038313442 β³] ΠΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ [/ show-answer]
[ΡΠΊΡΡΡΡΠΉ-ΠΎΡΠ²Π΅Ρ a = βfs-id1165038313442 β³]
Π§Π°ΡΡΠΈΡΠ° Π΄ΠΎΠ»ΠΆΠ½Π° Π΄Π²ΠΈΠ³Π°ΡΡΡΡ ΠΏΠΎ ΠΏΡΡΠΌΠΎΠΉ, ΠΏΡΠΎΡ ΠΎΠ΄ΡΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π²ΡΠ±ΡΠ°Π½Π½ΡΡ ΡΠΎΡΠΊΡ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
[/ hidden-answer]
ΠΡΠ»ΠΈ Π²Ρ Π·Π½Π°Π΅ΡΠ΅ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ°ΡΡΠΈΡΡ, ΠΌΠΎΠΆΠ΅ΡΠ΅ Π»ΠΈ Π²Ρ ΡΠΊΠ°Π·Π°ΡΡ ΡΡΠΎ-Π½ΠΈΠ±ΡΠ΄Ρ ΠΎΠ± ΡΠ³Π»ΠΎΠ²ΠΎΠΌ ΠΌΠΎΠΌΠ΅Π½ΡΠ΅ ΡΠ°ΡΡΠΈΡΡ?
ΠΡΠΎΠ±Π»Π΅ΠΌΡ
Π 0.Π§Π°ΡΡΠΈΡΠ° Π²Π΅ΡΠΎΠΌ 2 ΠΊΠ³ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΠΏΠΎ Π»ΠΈΠ½ΠΈΠΈ
ΡΠΎ ΡΠΊΠΎΡΠΎΡΡΡΡ
. ΠΠ°ΠΊΠΎΠ² ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠ°ΡΡΠΈΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ?
ΠΡΠΈΡΠ° Π»Π΅ΡΠΈΡ Π½Π°Π΄ Π²Π°ΡΠΈΠΌ ΠΌΠ΅ΡΡΠΎΠΌ Π½Π° Π²ΡΡΠΎΡΠ΅ 300,0 ΠΌ ΡΠΎ ΡΠΊΠΎΡΠΎΡΡΡΡ 20,0 ΠΌ / Ρ ΠΏΠΎ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π·Π΅ΠΌΠ»ΠΈ. ΠΡΠΈΡΠ° ΠΈΠΌΠ΅Π΅Ρ ΠΌΠ°ΡΡΡ 2,0 ΠΊΠ³. Π Π°Π΄ΠΈΡΡ-Π²Π΅ΠΊΡΠΎΡ ΠΊ ΠΏΡΠΈΡΠ΅ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠ³ΠΎΠ»
ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π·Π΅ΠΌΠ»ΠΈ. Π Π°Π΄ΠΈΡΡ-Π²Π΅ΠΊΡΠΎΡ ΠΏΡΠΈΡΡ ΠΈ Π΅Π΅ Π²Π΅ΠΊΡΠΎΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ° Π»Π΅ΠΆΠ°Ρ Π² ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ xy .ΠΠ°ΠΊΠΎΠ² ΠΌΠΎΠΌΠ΅Π½Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΡΠΈΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΡΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π²Ρ ΡΡΠΎΠΈΡΠ΅?
[ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ-ΠΎΡΠ²Π΅Ρ q = βfs-id1165036984700 β³] ΠΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ [/ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ-ΠΎΡΠ²Π΅Ρ]
[ΡΠΊΡΡΡΡΠΉ-ΠΎΡΠ²Π΅Ρ a = βfs-id1165036984700 β³]
ΠΠ΅Π»ΠΈΡΠΈΠ½Π° Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ°Π΄ΠΈΡΡΠ° ΠΏΡΠΈΡΡ ΠΈ Π΅Π΅ Π²Π΅ΠΊΡΠΎΡΠ° ΠΈΠΌΠΏΡΠ»ΡΡΠ° Π΄Π°Π΅Ρ
, ΡΡΠΎ Π΄Π°Π΅Ρ
ΠΊΠ°ΠΊ Π²ΡΡΠΎΡΠ° ΠΏΡΠΈΡΡ Ρ . ΠΠ°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌ ΡΠ°Π΄ΠΈΡΡΠ° ΠΈ ΠΈΠΌΠΏΡΠ»ΡΡΠ°, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎ Π²ΡΠ±ΠΈΡΠ°Π΅ΠΌ ΠΊΠ°ΠΊ
., ΠΊΠΎΡΠΎΡΡΠΉ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π² ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Π·Π΅ΠΌΠ»ΠΈ:
[/ hidden-answer]
ΠΠΎΠ»ΠΈΠ΄ Π€ΠΎΡΠΌΡΠ»Ρ-1 ΠΌΠ°ΡΡΠΎΠΉ 750.0 ΠΊΠ³ ΠΏΡΠ΅ΠΎΠ΄ΠΎΠ»Π΅Π²Π°Π΅Ρ Π΄ΠΈΡΡΠ°Π½ΡΠΈΡ ββΠ² ΠΠΎΠ½Π°ΠΊΠΎ ΠΈ Π²Ρ ΠΎΠ΄ΠΈΡ Π² ΠΊΡΡΠ³ΠΎΠ²ΠΎΠΉ ΠΏΠΎΠ²ΠΎΡΠΎΡ ΡΠΎ ΡΠΊΠΎΡΠΎΡΡΡΡ 220,0 ΠΊΠΌ / Ρ ΠΏΡΠΎΡΠΈΠ² ΡΠ°ΡΠΎΠ²ΠΎΠΉ ΡΡΡΠ΅Π»ΠΊΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΡΡΠ³Π°. ΠΠ° Π΄ΡΡΠ³ΠΎΠΌ ΡΡΠ°ΡΡΠΊΠ΅ Π΄ΠΈΡΡΠ°Π½ΡΠΈΠΈ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Ρ Π²Ρ ΠΎΠ΄ΠΈΡ Π²ΠΎ Π²ΡΠΎΡΠΎΠΉ ΠΊΡΡΠ³ΠΎΠ²ΠΎΠΉ ΠΏΠΎΠ²ΠΎΡΠΎΡ Π½Π° ΡΠΊΠΎΡΠΎΡΡΠΈ 180 ΠΊΠΌ / Ρ ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΎΡΠΈΠ² ΡΠ°ΡΠΎΠ²ΠΎΠΉ ΡΡΡΠ΅Π»ΠΊΠΈ. ΠΡΠ»ΠΈ ΡΠ°Π΄ΠΈΡΡ ΠΊΡΠΈΠ²ΠΈΠ·Π½Ρ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΠΎΠ²ΠΎΡΠΎΡΠ° ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 130,0 ΠΌ, Π° ΡΠ°Π΄ΠΈΡΡ Π²ΡΠΎΡΠΎΠ³ΠΎ — 100,0 ΠΌ, ΡΡΠ°Π²Π½ΠΈΡΠ΅ ΡΠ³Π»ΠΎΠ²ΡΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΡ Π³ΠΎΠ½ΠΎΡΠ½ΠΎΠ³ΠΎ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Ρ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΏΠΎΠ²ΠΎΡΠΎΡΠ΅ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΡΡΠ³ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΠ²ΠΎΡΠΎΡΠ°.
Π§Π°ΡΡΠΈΡΠ° ΠΌΠ°ΡΡΡ 5.0 ΠΊΠ³ ΠΈΠΌΠ΅Π΅Ρ Π²Π΅ΠΊΡΠΎΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ
Π² ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΠΊΠΎΠ³Π΄Π° Π΅Π³ΠΎ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½Π°
ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠΎΠΈΡΡ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ. Π°) ΠΠ°ΠΊΠΎΠ² ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠ°ΡΡΠΈΡΡ? (Π±) ΠΡΠ»ΠΈ ΡΠΈΠ»Π°
Π΄Π΅ΠΉΡΡΠ²ΡΠ΅Ρ Π½Π° ΡΠ°ΡΡΠΈΡΡ Π² ΡΡΠΎΡ ΠΌΠΎΠΌΠ΅Π½Ρ, ΠΊΠ°ΠΊΠΎΠ² ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ?
[show-answer q = βfs-id1165037011854 β³] ΠΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ [/ show-answer]
[ΡΠΊΡΡΡΡΠΉ-ΠΎΡΠ²Π΅Ρ a = βfs-id1165037011854 β³]
Π°.
;
Π³.
[/ hidden-answer]
ΠΡΠΏΠΎΠ»ΡΠ·ΡΠΉΡΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ, ΡΡΠΎΠ±Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΡΠ³Π»ΠΎΠ²ΡΡ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ² ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΡΠ°ΡΡΠΈΡ, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½ΠΈΠΆΠ΅. ΠΡΡ z- Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π²Π½Π΅ ΡΡΡΠ°Π½ΠΈΡΡ.
ΠΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, ΡΡΠΎ ΡΠ°ΡΡΠΈΡΡ Π² ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅ΠΉ Π·Π°Π΄Π°ΡΠ΅ ΠΈΠΌΠ΅ΡΡ ΠΌΠ°ΡΡΡ
. Π‘ΠΊΠΎΡΠΎΡΡΠΈ ΡΠ°ΡΡΠΈΡ
,
,
,
.(Π°) ΠΡΡΠΈΡΠ»ΠΈΡΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠ°ΡΡΠΈΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. (Π±) ΠΠ°ΠΊΠΎΠ² ΠΏΠΎΠ»Π½ΡΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠ΅ΡΡΡΠ΅Ρ ΡΠ°ΡΡΠΈΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ?
[ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ-ΠΎΡΠ²Π΅Ρ q = βfs-id1165038225062 β³] ΠΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ [/ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ-ΠΎΡΠ²Π΅Ρ]
[ΡΠΊΡΡΡΡΠΉ-ΠΎΡΠ²Π΅Ρ a = βfs-id1165038225062 β³]
Π°.
,
,
; Π±.
[/ hidden-answer]
ΠΠ²Π΅ ΡΠ°ΡΡΠΈΡΡ ΡΠ°Π²Π½ΠΎΠΉ ΠΌΠ°ΡΡΡ Π΄Π²ΠΈΠΆΡΡΡΡ Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ Π² ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡΡ ΠΏΠΎ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌ Π»ΠΈΠ½ΠΈΡΠΌ, ΡΠ°Π·Π΄Π΅Π»Π΅Π½Π½ΡΠΌ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ΠΌ d .ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅, ΡΡΠΎ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΡΠΎΠΉ Π΄Π²ΡΡ ΡΠ°ΡΡΠΈΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΠ΄ΠΈΠ½ ΠΈ ΡΠΎΡ ΠΆΠ΅, Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎ ΠΎΡ ΡΠΎΠ³ΠΎ, ΠΊΠ°ΠΊΠ°Ρ ΡΠΎΡΠΊΠ° ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΎΡΠΈΠ΅Π½ΡΠΈΡΠ° Π΄Π»Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°.
Π‘Π°ΠΌΠΎΠ»Π΅Ρ ΠΌΠ°ΡΡΠΎΠΉ
Π»Π΅ΡΠΈΡ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΠΎ Π½Π° Π²ΡΡΠΎΡΠ΅ 10 ΠΊΠΌ Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ 250 ΠΌ / Ρ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΠ΅ΠΌΠ»ΠΈ. (Π°) ΠΠ°ΠΊΠΎΠ²Π° Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΠ°ΠΌΠΎΠ»Π΅ΡΠ° ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°Π·Π΅ΠΌΠ½ΠΎΠ³ΠΎ Π½Π°Π±Π»ΡΠ΄Π°ΡΠ΅Π»Ρ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ ΠΏΠΎΠ΄ ΡΠ°ΠΌΠΎΠ»Π΅ΡΠΎΠΌ? (b) ΠΠ΅Π½ΡΠ΅ΡΡΡ Π»ΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΏΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ°ΠΌΠΎΠ»Π΅ΡΠ° ΠΏΠΎ ΡΠ²ΠΎΠ΅ΠΉ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ?
[show-answer q = βfs-id1165037975868 β³] ΠΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ [/ show-answer]
[ΡΠΊΡΡΡΡΠΉ-ΠΎΡΠ²Π΅Ρ a = βfs-id1165037975868 β³]
Π°.
; Π±. ΠΠ΅Ρ, ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΎΡΡΠ°Π΅ΡΡΡ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΡΠΌ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΏΠ΅ΡΠ΅ΠΊΡΠ΅ΡΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²ΠΊΠ»ΡΡΠ°Π΅Ρ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎΠ΅ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Π΄ΠΎ Π·Π΅ΠΌΠ»ΠΈ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎ ΠΎΡ ΡΠΎΠ³ΠΎ, Π³Π΄Π΅ ΠΎΠ½ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π½Π° ΡΠ²ΠΎΠ΅ΠΌ ΠΏΡΡΠΈ.
[/ hidden-answer]
Π ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°ΡΡΠΈΡΡ Π²Π΅ΡΠΎΠΌ 1,0 ΠΊΠ³ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ
, Π΅Π³ΠΎ ΡΠΊΠΎΡΠΎΡΡΡ
, Π° ΡΠΈΠ»Π° Π½Π° Π½Π΅ΠΌ
. Π°) ΠΠ°ΠΊΠΎΠ² ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠ°ΡΡΠΈΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ? Π±) ΠΠ°ΠΊΠΎΠ² ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠ°ΡΡΠΈΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ? (c) ΠΠ°ΠΊΠΎΠ²Π° ΡΠΊΠΎΡΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΠ°ΡΡΠΈΡΡ Π² Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ?
Π§Π°ΡΡΠΈΡΠ° ΠΌΠ°ΡΡΠΎΠΉ ΠΌ ΠΏΠ°Π΄Π°Π΅Ρ Π² ΡΠΎΡΠΊΡ
ΠΈ ΠΏΠ°Π΄Π°Π΅Ρ Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΠΎ Π² Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΌ ΠΏΠΎΠ»Π΅ ΠΠ΅ΠΌΠ»ΠΈ
(a) ΠΠ°ΠΊΠΎΠ²ΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΡΠ°ΡΡΠΈΡΡ Π²ΠΎΠΊΡΡΠ³ ΠΎΡΠΈ z , ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΠΏΡΡΠΌΠΎ Π·Π° ΠΏΡΠ΅Π΄Π΅Π»Ρ ΡΡΡΠ°Π½ΠΈΡΡ, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½ΠΈΠΆΠ΅? (b) Π Π°ΡΡΡΠΈΡΠ°ΠΉΡΠ΅ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π½Π° ΡΠ°ΡΡΠΈΡΡ Π²ΠΎΠΊΡΡΠ³ ΠΎΡΠΈ z .(c) Π Π°Π²Π΅Π½ Π»ΠΈ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° Π²ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ?
Π°.
;
Π³.
; c. Π΄Π°
(a) ΠΡΡΠΈΡΠ»ΠΈΡΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΠ΅ΠΌΠ»ΠΈ Π½Π° Π΅Π΅ ΠΎΡΠ±ΠΈΡΠ΅ Π²ΠΎΠΊΡΡΠ³ Π‘ΠΎΠ»Π½ΡΠ°. (b) Π‘ΡΠ°Π²Π½ΠΈΡΠ΅ ΡΡΠΎΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Ρ ΡΠ³Π»ΠΎΠ²ΡΠΌ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠΌ ΠΠ΅ΠΌΠ»ΠΈ Π²ΠΎΠΊΡΡΠ³ ΡΠ²ΠΎΠ΅ΠΉ ΠΎΡΠΈ.
ΠΠ°Π»ΡΠ½ ΠΌΠ°ΡΡΠΎΠΉ 20 ΠΊΠ³ ΠΈ ΡΠ°Π΄ΠΈΡΡΠΎΠΌ 20 ΡΠΌ ΠΊΠ°ΡΠΈΡΡΡ Ρ Ρ ΠΎΠ»ΠΌΠ° Π²ΡΡΠΎΡΠΎΠΉ 15 ΠΌ. ΠΠ°ΠΊΠΎΠ² Π΅Π³ΠΎ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ, ΠΊΠΎΠ³Π΄Π° ΠΎΠ½ Π½Π° ΠΏΠΎΠ»ΠΏΡΡΠΈ Π²Π½ΠΈΠ· ΠΏΠΎ ΡΠΊΠ»ΠΎΠ½Ρ? (Π±) ΠΠ½ΠΈΠ·Ρ?
[ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ-ΠΎΡΠ²Π΅Ρ q = βfs-id1165038295181 β³] ΠΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ [/ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ-ΠΎΡΠ²Π΅Ρ]
[ΡΠΊΡΡΡΡΠΉ-ΠΎΡΠ²Π΅Ρ a = βfs-id1165038295181 β³]
Π°.
;
;
;
Π³.
;
[/ hidden-answer]
Π‘ΠΏΡΡΠ½ΠΈΠΊ Π²ΡΠ°ΡΠ°Π΅ΡΡΡ ΡΠΎ ΡΠΊΠΎΡΠΎΡΡΡΡ 6,0 ΠΎΠ± / Ρ. Π‘ΠΏΡΡΠ½ΠΈΠΊ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΊΠΎΡΠΏΡΡΠ° Π² ΡΠΎΡΠΌΠ΅ ΡΠ°ΡΠ° ΡΠ°Π΄ΠΈΡΡΠΎΠΌ 2,0 ΠΌ ΠΈ ΠΌΠ°ΡΡΠΎΠΉ 10 000 ΠΊΠ³, Π° ΡΠ°ΠΊΠΆΠ΅ Π΄Π²ΡΡ Π°Π½ΡΠ΅Π½Π½, Π²ΡΡΡΡΠΏΠ°ΡΡΠΈΡ ΠΈΠ· ΡΠ΅Π½ΡΡΠ° ΠΌΠ°ΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΊΠΎΡΠΏΡΡΠ°, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΠΎΠ²Π°ΡΡ ΡΡΠ΅ΡΠΆΠ½ΡΠΌΠΈ Π΄Π»ΠΈΠ½ΠΎΠΉ 3,0 ΠΌ ΠΈ ΠΌΠ°ΡΡΠΎΠΉ 10. ΠΊΠ³.ΠΠ½ΡΠ΅Π½Π½Π° Π»Π΅ΠΆΠΈΡ Π² ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ. ΠΠ°ΠΊΠΎΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠΏΡΡΠ½ΠΈΠΊΠ°?
ΠΠΈΠ½Ρ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· Π΄Π²ΡΡ Π»ΠΎΠΏΠ°ΡΡΠ΅ΠΉ Π΄Π»ΠΈΠ½ΠΎΠΉ 3,0 ΠΌ ΠΊΠ°ΠΆΠ΄Π°Ρ ΠΈ ΠΌΠ°ΡΡΠΎΠΉ 120 ΠΊΠ³ ΠΊΠ°ΠΆΠ΄Π°Ρ. ΠΡΠΎΠΏΠ΅Π»Π»Π΅Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ ΠΊΠ°ΠΊ ΠΎΠ΄ΠΈΠ½ ΡΡΠ΅ΡΠΆΠ΅Π½Ρ, Π²ΡΠ°ΡΠ°ΡΡΠΈΠΉΡΡ Π²ΠΎΠΊΡΡΠ³ ΡΠ²ΠΎΠ΅Π³ΠΎ ΡΠ΅Π½ΡΡΠ° ΠΌΠ°ΡΡ. ΠΡΠΎΠΏΠ΅Π»Π»Π΅Ρ Π·Π°ΠΏΡΡΠΊΠ°Π΅ΡΡΡ ΠΈΠ· ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΠΏΠΎΠΊΠΎΡ ΠΈ Π²ΡΠ°ΡΠ°Π΅ΡΡΡ Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ Π΄ΠΎ 1200 ΠΎΠ± / ΠΌΠΈΠ½ Π·Π° 30 ΡΠ΅ΠΊΡΠ½Π΄. (Π°) ΠΠ°ΠΊΠΎΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΏΡΠΎΠΏΠ΅Π»Π»Π΅ΡΠ° Π½Π°
?(b) ΠΠ°ΠΊΠΎΠ² ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π½Π° Π³ΡΠ΅Π±Π½ΠΎΠΌ Π²ΠΈΠ½ΡΠ΅?
[show-answer q = βfs-id1165037978194 β³] ΠΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ [/ show-answer]
[ΡΠΊΡΡΡΡΠΉ-ΠΎΡΠ²Π΅Ρ a = βfs-id1165037978194 β³]
Π°.
;
;
;
;
;
Π³.
[/ hidden-answer]
ΠΡΠ»ΡΡΠ°Ρ — ΡΡΠΎ Π±ΡΡΡΡΠΎ Π²ΡΠ°ΡΠ°ΡΡΠ°ΡΡΡ Π½Π΅ΠΉΡΡΠΎΠ½Π½Π°Ρ Π·Π²Π΅Π·Π΄Π°. ΠΡΠ»ΡΡΠ°Ρ ΠΡΠ°Π±ΠΎΠ²ΠΈΠ΄Π½ΠΎΠΉ ΡΡΠΌΠ°Π½Π½ΠΎΡΡΠΈ Π² ΡΠΎΠ·Π²Π΅Π·Π΄ΠΈΠΈ Π’Π΅Π»ΡΡΠ° ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄
., ΡΠ°Π΄ΠΈΡΡ 10,0 ΠΊΠΌ, ΠΌΠ°ΡΡΠ°
ΠΠ΅ΡΠΈΠΎΠ΄ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΠΏΡΠ»ΡΡΠ°ΡΠ° ΡΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π΅ΠΌ Π±ΡΠ΄Π΅Ρ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°ΡΡΡΡ ΠΈΠ·-Π·Π° ΠΈΡΠΏΡΡΠΊΠ°Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅Ρ Π΅Π³ΠΎ ΡΠ°Π΄ΠΈΡΡ, Π½ΠΎ ΡΠ½ΠΈΠΆΠ°Π΅Ρ Π΅Π³ΠΎ Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ ΡΠ½Π΅ΡΠ³ΠΈΡ.Π°) Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΏΡΠ»ΡΡΠ°ΡΠ°? (b) ΠΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, ΡΡΠΎ ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ ΡΠΎ ΡΠΊΠΎΡΠΎΡΡΡΡ
. ΠΠ°ΠΊΠΎΠΉ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Ρ ΠΏΡΠ»ΡΡΠ°ΡΠ°?
ΠΠΎΠΏΠ°ΡΡΠΈ Π²Π΅ΡΡΡΠ½ΠΎΠΉ ΡΡΡΠ±ΠΈΠ½Ρ ΠΈΠΌΠ΅ΡΡ Π΄Π»ΠΈΠ½Ρ 30 ΠΌ ΠΈ Π²ΡΠ°ΡΠ°ΡΡΡΡ Ρ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ 20 ΠΎΠ± / ΠΌΠΈΠ½. (a) ΠΡΠ»ΠΈ Π»ΠΎΠΏΠ°ΡΠΊΠΈ Π²Π΅ΡΡΡ 6000 ΠΊΠ³ ΠΊΠ°ΠΆΠ΄Π°Ρ, Π° ΡΠΎΡΠΎΡΠ½ΡΠΉ ΡΠ·Π΅Π» ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· ΡΡΠ΅Ρ Π»ΠΎΠΏΠ°ΡΡΠ΅ΠΉ, Π²ΡΡΠΈΡΠ»ΠΈΡΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΡΡΠ±ΠΈΠ½Ρ ΠΏΡΠΈ ΡΡΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ. (b) ΠΠ°ΠΊΠΎΠΉ ΠΊΡΡΡΡΡΠΈΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ Π΄Π»Ρ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π»ΠΎΠΏΠ°ΡΡΠ΅ΠΉ Π΄ΠΎ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ Π·Π° 5 ΠΌΠΈΠ½ΡΡ?
[show-answer q = βfs-id1165037027769 β³] ΠΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ [/ show-answer]
[ΡΠΊΡΡΡΡΠΉ-ΠΎΡΠ²Π΅Ρ a = βfs-id1165037027769 β³]
Π°.
;
Π³.
[/ hidden-answer]
ΠΠΌΠ΅ΡΠΈΠΊΠ°Π½ΡΠΊΠΈΠ΅ Π³ΠΎΡΠΊΠΈ ΠΈΠΌΠ΅ΡΡ ΠΌΠ°ΡΡΡ 3000,0 ΠΊΠ³ ΠΈ Π΄ΠΎΠ»ΠΆΠ½Ρ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎ ΠΏΡΠΎΠΉΡΠΈ ΡΠ΅ΡΠ΅Π· Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΡΡ ΠΊΡΡΠ³ΠΎΠ²ΡΡ ΠΏΠ΅ΡΠ»Ρ ΡΠ°Π΄ΠΈΡΡΠΎΠΌ 50,0 ΠΌ. ΠΠ°ΠΊΠΎΠ² ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΊΠΈ Π² Π½ΠΈΠΆΠ½Π΅ΠΉ ΡΠ°ΡΡΠΈ ΠΏΠ΅ΡΠ»ΠΈ, ΡΡΠΎΠ±Ρ ΠΎΠ½Π° ΠΌΠΎΠ³Π»Π° Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎ ΠΏΡΠΎΠΉΡΠΈ? ΠΡΠ΅Π½Π΅Π±ΡΠ΅Π³Π°ΠΉΡΠ΅ ΡΡΠ΅Π½ΠΈΠ΅ΠΌ Π½Π° ΡΡΠ°ΡΡΠ΅. ΠΠΎΠ·ΡΠΌΠΈΡΠ΅ ΠΊΠ°Π±ΠΎΡΠ°ΠΆΠ½ΠΎΠ΅ ΡΡΠ΄Π½ΠΎ Π·Π° ΡΠΎΡΠ΅ΡΠ½ΡΡ ΡΠ°ΡΡΠΈΡΡ.
ΠΠ°ΡΠ½ΡΠΈΠ½Π±Π°ΠΉΠΊΠ΅Ρ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ ΠΏΡΡΠΆΠΎΠΊ Π² Π³ΠΎΠ½ΠΊΠ΅ ΠΈ Π²Π·Π»Π΅ΡΠ°Π΅Ρ Π² Π²ΠΎΠ·Π΄ΡΡ . ΠΠΎΡΠ½ΡΠΉ Π²Π΅Π»ΠΎΡΠΈΠΏΠ΅Π΄ Π΅Π΄Π΅Ρ Π² 10.0 ΠΌ / Ρ Π΄ΠΎ Π²Π·Π»Π΅ΡΠ°. ΠΡΠ»ΠΈ ΠΌΠ°ΡΡΠ° ΠΏΠ΅ΡΠ΅Π΄Π½Π΅Π³ΠΎ ΠΊΠΎΠ»Π΅ΡΠ° Π²Π΅Π»ΠΎΡΠΈΠΏΠ΅Π΄Π° ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 750 Π³ ΠΈ ΠΈΠΌΠ΅Π΅Ρ ΡΠ°Π΄ΠΈΡΡ 35 ΡΠΌ, ΠΊΠ°ΠΊΠΎΠ² ΠΌΠΎΠΌΠ΅Π½Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π²ΡΠ°ΡΠ°ΡΡΠ΅Π³ΠΎΡΡ ΠΊΠΎΠ»Π΅ΡΠ° Π² Π²ΠΎΠ·Π΄ΡΡ Π΅ Π² ΠΌΠΎΠΌΠ΅Π½Ρ ΠΎΡΡΡΠ²Π° Π²Π΅Π»ΠΎΡΠΈΠΏΠ΅Π΄Π° ΠΎΡ Π·Π΅ΠΌΠ»ΠΈ?
[ΠΠΎΠΊΠ°Π·Π°ΡΡ-ΠΎΡΠ²Π΅Ρ q = βfs-id1165036996469 β³] ΠΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ [/ ΡΠ°ΡΠΊΡΡΡΡ-ΠΎΡΠ²Π΅Ρ]
[ΡΠΊΡΡΡΡΠΉ-ΠΎΡΠ²Π΅Ρ a = βfs-id1165036996469 β³]
[/ hidden-answer]
ΠΠ»ΠΎΡΡΠ°ΡΠΈΠΉ
- ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ
- Π²ΡΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΎΠ³ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΉ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΈΠ½Π΅ΡΡΠΈΠΈ Π½Π° ΡΠ³Π»ΠΎΠ²ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ
ΠΠ΅Π±-ΡΠ°ΠΉΡ ΠΊΠ»Π°ΡΡΠ° ΡΠΈΠ·ΠΈΠΊΠΈ
Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΊΡΡΠ³ΠΎΠ²ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅
Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΊΡΡΠ³ΠΎΠ²ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΠ°ΡΡ ΠΊΠ°ΠΊ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠ΅ΠΊΡΠ° ΠΏΠΎ ΠΊΡΡΠ³Ρ Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ.ΠΠΎΠ³Π΄Π° ΠΎΠ±ΡΠ΅ΠΊΡ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΠΏΠΎ ΠΊΡΡΠ³Ρ, ΠΎΠ½ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎ ΠΌΠ΅Π½ΡΠ΅Ρ ΡΠ²ΠΎΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅. ΠΠΎ Π²ΡΠ΅Ρ ΡΠ»ΡΡΠ°ΡΡ ΠΎΠ±ΡΠ΅ΠΊΡ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΠΏΠΎ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ. ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ΅ΠΊΡΠ°, Π²Π΅ΠΊΡΠΎΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ°ΠΊΠΆΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ ΠΏΠΎ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ. ΠΠ½ΠΈΠΌΠ°ΡΠΈΡ ΡΠΏΡΠ°Π²Π° ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ°Π΅Ρ ΡΡΠΎ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠΉ ΡΡΡΠ΅Π»ΠΊΠΈ.
ΠΠ±ΡΠ΅ΠΊΡ, Π΄Π²ΠΈΠΆΡΡΠΈΠΉΡΡ ΠΏΠΎ ΠΊΡΡΠ³Ρ, ΡΡΠΊΠΎΡΡΠ΅ΡΡΡ. Π£ΡΠΊΠΎΡΡΡΡΠΈΠ΅ΡΡ ΠΎΠ±ΡΠ΅ΠΊΡΡ — ΡΡΠΎ ΠΎΠ±ΡΠ΅ΠΊΡΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠ΅Π½ΡΡΡ ΡΠ²ΠΎΡ ΡΠΊΠΎΡΠΎΡΡΡ — Π»ΠΈΠ±ΠΎ ΡΠΊΠΎΡΠΎΡΡΡ (Ρ.Π΅., Π²Π΅Π»ΠΈΡΠΈΠ½Π° Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ) ΠΈΠ»ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅. ΠΠ±ΡΠ΅ΠΊΡ, ΡΠΎΠ²Π΅ΡΡΠ°ΡΡΠΈΠΉ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΊΡΡΠ³ΠΎΠ²ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, Π΄Π²ΠΈΠΆΠ΅ΡΡΡ Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅, ΠΎΠ½ ΡΡΠΊΠΎΡΡΠ΅ΡΡΡ ΠΈΠ·-Π·Π° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ. ΠΠ°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ Π²Π½ΡΡΡΡ. ΠΠ½ΠΈΠΌΠ°ΡΠΈΡ ΡΠΏΡΠ°Π²Π° ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ°Π΅Ρ ΡΡΠΎ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠΉ ΡΡΡΠ΅Π»ΠΊΠΈ.
ΠΠΎΠ½Π΅ΡΠ½ΠΎΠΉ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΎΠΉ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ΅ΠΊΡΠ°, ΡΠΎΠ²Π΅ΡΡΠ°ΡΡΠ΅Π³ΠΎ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΊΡΡΠ³ΠΎΠ²ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΈΡΡΠ°Ρ ΡΠΈΠ»Π°. Π§ΠΈΡΡΠ°Ρ ΡΠΈΠ»Π°, Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠ°Ρ Π½Π° ΡΠ°ΠΊΠΎΠΉ ΠΎΠ±ΡΠ΅ΠΊΡ, Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π° ββΠΊ ΡΠ΅Π½ΡΡΡ ΠΊΡΡΠ³Π°.Π§ΠΈΡΡΠ°Ρ ΡΠΈΠ»Π° Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΠΎΠΉ Π²Π½ΡΡΡΡ ΠΈΠ»ΠΈ ΡΠ΅Π½ΡΡΠΎΡΡΡΠ΅ΠΌΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΈΠ»ΠΎΠΉ . ΠΠ΅Π· ΡΠ°ΠΊΠΎΠΉ Π²Π½ΡΡΡΠ΅Π½Π½Π΅ΠΉ ΡΠΈΠ»Ρ ΠΎΠ±ΡΠ΅ΠΊΡ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ°Π» Π±Ρ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΏΡΡΠΌΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ, Π½ΠΈΠΊΠΎΠ³Π΄Π° Π½Π΅ ΠΎΡΠΊΠ»ΠΎΠ½ΡΡΡΡ ΠΎΡ ΡΠ²ΠΎΠ΅Π³ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅, Ρ Π²Π½ΡΡΡΠ΅Π½Π½Π΅ΠΉ ΡΠΈΡΡΠΎΠΉ ΡΠΈΠ»ΠΎΠΉ, Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΠΎΠΉ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ Π²Π΅ΠΊΡΠΎΡΡ ΡΠΊΠΎΡΠΎΡΡΠΈ, ΠΎΠ±ΡΠ΅ΠΊΡ Π²ΡΠ΅Π³Π΄Π° ΠΌΠ΅Π½ΡΠ΅Ρ ΡΠ²ΠΎΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΈ ΠΈΡΠΏΡΡΡΠ²Π°Π΅Ρ Π²Π½ΡΡΡΠ΅Π½Π½Π΅Π΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅.
ΠΠ»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΠΎ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΡΠ΅ΡΠΈΡΠ΅ The Physics Classroom Tutorial. ΠΠΎΡΡΡΠΏΠ½Π° ΠΏΠΎΠ΄ΡΠΎΠ±Π½Π°Ρ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ ΠΏΠΎ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΡΠ΅ΠΌΠ°ΠΌ:
Π‘ΠΊΠΎΡΠΎΡΡΡΠ£ΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅
Π§ΠΈΡΡΠ°Ρ ΡΠΈΠ»Π° ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅
ΠΡΡΠ³ΠΎΠ²ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈ ΡΠ°Π½Π³Π΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ
ΠΡΡΠ³ΠΎΠ²ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅
Π’ΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅Π½ΡΡΠΎΡΡΡΠ΅ΠΌΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΈΠ»Ρ
Π£Π³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅
Π£Π³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΠ°Π»Π΅Π΅: ΠΠΎΠΌΠ΅Π½Ρ ΠΈΠ½Π΅ΡΡΠΈΠΈ Up: ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠΎΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΡΠ΅Π΄ΡΠ΄ΡΡΠ°Ρ: ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠΎΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ
Π£Π³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅
Π£Π³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ²ΡΠ·Π°Π½Π° ΡΠΎ ΡΠΊΠΎΡΠΎΡΡΡΡ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ, ΡΠΎ Π΅ΡΡΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΎΠ±ΠΎΡΠΎΡΠΎΠ² Π² ΡΠ΅ΠΊΡΠ½Π΄Ρ.Π£Π΄ΠΎΠ±Π½Π΅Π΅ Π²ΡΠ΅Π³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄Π»Ρ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ³Π»ΠΎΠ², ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ ΡΠ³ΠΎΠ» Π² ΡΠ°Π΄ΠΈΠ°Π½Π°Ρ Π΄Π»ΠΈΠ½Ρ Π΄ΡΠ³ΠΈ ΡΠ²ΡΠ·Π°Π½ΠΎ Ρ ΡΠ°Π΄ΠΈΡΡΠΎΠΌ Π΄ΡΠ³ΠΈ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ
ΠΠ»Ρ Π²ΡΠ΅Π³ΠΎ ΠΊΡΡΠ³Π° ΡΠ³ΠΎΠ» ΡΡΠ±ΡΠ΅Π½Π΄ΠΈΡΠΎΠ²Π°Π½ Π½Π° Π΄Π»ΠΈΠ½Ρ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ (360
) ΡΠ²Π»ΡΠ΅ΡΡΡ
ΠΠ΄ΠΈΠ½ΠΈΡΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ — r / s (ΡΠ°Π΄ΠΈΠ°Π½Ρ Π² ΡΠ΅ΠΊΡΠ½Π΄Ρ). Π£Π³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ — ΡΡΠΎ Π²Π΅ΠΊΡΠΎΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°. Π―ΡΠ½ΠΎ Π²ΡΠ°ΡΠ°ΡΡΠΈΠΉΡΡ ΠΎΠ±ΡΠ΅ΠΊΡ (Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π²Π΅Π»ΠΎΡΠΈΠΏΠ΅Π΄Π½ΠΎΠ΅ ΠΊΠΎΠ»Π΅ΡΠΎ) ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΡ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΠΈ ΡΡΠ²ΡΡΠ²ΠΎ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ.ΠΠ΅ΠΊΡΠΎΡΠ½Π°Ρ ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ Π²ΡΠ°ΡΠ°ΡΡΠ΅Π³ΠΎΡΡ ΠΎΠ±ΡΠ΅ΠΊΡ ΠΏΠΎ ΡΠΎΠ³Π»Π°ΡΠ΅Π½ΠΈΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ ΠΏΠ΅ΡΠΏΠ΅Π½Π΄ΠΈΠΊΡΠ»ΡΡΠ½ΠΎ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΠΈ Π² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ ΠΎΡ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Π΄Π»Ρ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΠΏΠΎ ΡΠ°ΡΠΎΠ²ΠΎΠΉ ΡΡΡΠ΅Π»ΠΊΠ΅ ΠΈ ΠΎΡ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Π΄Π»Ρ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΡΠΈΠ² ΡΠ°ΡΠΎΠ²ΠΎΠΉ ΡΡΡΠ΅Π»ΠΊΠΈ. ΠΡΠΎΡ ΡΡΠΎ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ, ΡΠΎ Π΅ΡΡΡ ΡΠ³ΠΈΠ±Π°ΡΡ ΠΏΠ°Π»ΡΡΡ ΠΏΡΠ°Π²ΠΎΠΉ ΡΡΠΊΠΈ Π² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ, Π° Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΏΠ°Π»Π΅Ρ ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π½Π° ΠΎΠ±ΡΡΠ½ΡΡ Π²Π΅ΠΊΡΠΎΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ°. Π£Π³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½Π° ΡΠΈΠΌΠ²ΠΎΠ»ΠΎΠΌ
. Π§Π°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ ΠΌΡ Π±ΡΠ΄Π΅ΠΌ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ, Π° ΡΡΡΠ΅Π»ΠΊΡ, ΡΠΊΠ°Π·ΡΠ²Π°ΡΡΡΡ Π½Π° Π²Π΅ΠΊΡΠΎΡ, ΡΠ΄ΠΎΠ±Π½ΠΎ ΡΠ±ΡΠ°ΡΡ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π²ΡΠ°ΡΠ°ΡΡΠΈΠΉΡΡ Π΄ΠΈΡΠΊ, ΡΠ³ΠΎΠ», Π½Π° ΠΊΠΎΡΠΎΡΡΠΉ ΠΎΠ½ ΠΏΠΎΠ²ΠΎΡΠ°ΡΠΈΠ²Π°Π΅ΡΡΡ Π·Π° Π²ΡΠ΅ΠΌΡ
Π΅ΡΡΡ
ΠΡΡΠΎΠΊ Π΄ΠΈΡΠΊΠ° Π½Π° ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠΈ
ΠΎΡ ΠΎΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π±ΡΠ΄Π΅Ρ Π΄Π²ΠΈΠ³Π°ΡΡΡΡ ΠΏΠΎ Π΄ΡΠ³Π΅ Π½Π° Π΄Π»ΠΈΠ½Ρ
Π Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ°ΡΡΠΈ ΠΎΠ±ΡΠ΅ΠΊΡΠ° ΡΠ°Π²Π½Π°
Π£Π³Π»ΠΎΠ²ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ — ΡΡΠΎ ΡΠΊΠΎΡΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ
. ΠΠ°Π·ΠΎΠ²ΡΠΉ ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎ Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΈΠ· ΠΈΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΡΡΡΠΎΠ½Π°.Π ΡΠ°Π±Π»ΠΈΡΠ΅ ΡΠΊΠ°Π·Π°Π½Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ.
Π‘ΠΊΠΎΡΡ Π. ΠΠ΅ΠΊΡΡΠ΅Ρ
ΠΡ 5 Π΄Π΅ΠΊΠ°Π±ΡΡ 15:33:45 EST 1995
ΠΠ·Π°ΠΈΠΌΠ½ΠΎΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ Π³ΠΎΠ»Π΅Π½ΠΎΡΡΠΎΠΏΠ½ΡΡ ΠΈ ΡΠ°Π·ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΡΡ ΡΡΡΡΠ°Π²ΠΎΠ² Ρ Π»ΡΠ΄Π΅ΠΉ ΠΏΡΠΈ ΡΠΏΠΎΠΊΠΎΠΉΠ½ΠΎΠΌ ΡΡΠΎΡΠ½ΠΈΠΈ
Π§Π΅Π»ΠΎΠ²Π΅ΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΏΠΎΠΊΠΎΠΉΠ½ΠΎΠ΅ ΡΡΠΎΡΠ½ΠΈΠ΅ ΡΠ°ΡΡΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΡΠΉ ΠΏΠ΅ΡΠ΅Π²Π΅ΡΠ½ΡΡΡΠΉ ΠΌΠ°ΡΡΠ½ΠΈΠΊ, Π²ΡΠ°ΡΠ°ΡΡΠΈΠΉΡΡ Π²ΠΎΠΊΡΡΠ³ Π³ΠΎΠ»Π΅Π½ΠΎΡΡΠΎΠΏΠ½ΠΎΠ³ΠΎ ΡΡΡΡΠ°Π²Π°, ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΈ, ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π²ΠΎΠΊΡΡΠ³ ΡΠ°Π·ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΡΡΠ°Π²Π° Π΄ΠΎΠ²ΠΎΠ»ΡΠ½ΠΎ Π½Π΅Π²Π΅Π»ΠΈΠΊΠΎ.ΠΠ΄Π½Π°ΠΊΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π½Π΅Π΄Π°Π²Π½ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π²ΠΎΠΊΡΡΠ³ ΡΠ°Π·ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΡΡΠ°Π²Π° ΠΌΠΎΠΆΠ΅Ρ ΠΈΠ³ΡΠ°ΡΡ Π²Π°ΠΆΠ½ΡΡ ΡΠΎΠ»Ρ Π² ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΌ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½ΠΈΠΈ ΡΠ΅Π½ΡΡΠ° ΠΌΠ°ΡΡΡ ΡΠ΅Π»Π° (Π¦ΠΠ’) Π½Π°Π΄ ΠΎΠΏΠΎΡΠ½ΠΎΠΉ Π·ΠΎΠ½ΠΎΠΉ. Π¦Π΅Π»ΡΡ ΡΡΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π±ΡΠ»ΠΎ ΠΈΠ·ΡΡΠΈΡΡ, ΠΊΠ°ΠΊ ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΡΠ΅ΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°Π·ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΡΠΌ ΠΈ Π³ΠΎΠ»Π΅Π½ΠΎΡΡΠΎΠΏΠ½ΡΠΌ ΡΡΡΡΠ°Π²Π°ΠΌΠΈ Π²ΠΎ Π²ΡΠ΅ΠΌΡ ΡΠΏΠΎΠΊΠΎΠΉΠ½ΠΎΠ³ΠΎ ΡΡΠΎΡΠ½ΠΈΡ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ°. Π‘ΡΠ±ΡΠ΅ΠΊΡΡ ΡΠΏΠΎΠΊΠΎΠΉΠ½ΠΎ ΡΡΠΎΡΠ»ΠΈ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 30 ΡΠ΅ΠΊΡΠ½Π΄ Ρ ΠΎΡΠΊΡΡΡΡΠΌΠΈ (EO) ΠΈΠ»ΠΈ Π·Π°ΠΊΡΡΡΡΠΌΠΈ (EC) Π³Π»Π°Π·Π°ΠΌΠΈ, ΠΈ ΠΌΡ ΠΈΠ·ΠΌΠ΅ΡΠΈΠ»ΠΈ Π½Π΅Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠ³Π»ΠΎΠ²ΡΠ΅ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π²ΠΎΠΊΡΡΠ³ Π³ΠΎΠ»Π΅Π½ΠΎΡΡΠΎΠΏΠ½ΡΡ (ΡΠ΅ΡΠ°Π°) ΠΈ ΡΠ°Π·ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΡΡ (ΡΠ΅ΡΠ°) ΡΡΡΡΠ°Π²ΠΎΠ², ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΡΠΈ Π²ΡΡΠΎΠΊΠΎΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ Π»Π°Π·Π΅ΡΠ½ΡΡ Π΄Π°ΡΡΠΈΠΊΠ° ΡΠΌΠ΅ΡΠ΅Π½ΠΈΡ CCD.ΠΡΠ»ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΊΠ°ΠΊ ΠΏΠΎ ΡΠ³Π»ΠΎΠ²ΠΎΠΌΡ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΡ, ΡΠ°ΠΊ ΠΈ ΠΏΠΎ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ (ΠΏΠ΅ΡΠ²Π°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΡ). ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΠΎΡΠΈΠ±ΠΊΠ° ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π½Π΅ Π±ΡΠ»Π° ΠΏΡΠ΅ΠΎΠ±Π»Π°Π΄Π°ΡΡΠ΅ΠΉ Π΄Π°ΠΆΠ΅ ΡΡΠ΅Π΄ΠΈ Π΄Π°Π½Π½ΡΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ Π±ΡΠ»ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ ΠΏΡΡΠ΅ΠΌ Π²Π·ΡΡΠΈΡ Π²ΡΠΎΡΠΎΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΡ. ΠΡΠ»ΠΎ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ, ΡΡΠΎ ΡΠ³Π»ΠΎΠ²ΠΎΠ΅ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅, ΡΠΊΠΎΡΠΎΡΡΡ ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ Π±Π΅Π΄ΡΠ° Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π±ΠΎΠ»ΡΡΠ΅ (P <0,001), ΡΠ΅ΠΌ Ρ Π³ΠΎΠ»Π΅Π½ΠΎΡΡΠΎΠΏΠ½ΠΎΠ³ΠΎ ΡΡΡΡΠ°Π²Π°, ΡΡΠΎ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π°Π΅Ρ, ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°Π·ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΡΡΠ°Π²Π° Π½Π΅Π»ΡΠ·Ρ ΠΈΠ³Π½ΠΎΡΠΈΡΠΎΠ²Π°ΡΡ Π΄Π°ΠΆΠ΅ Π²ΠΎ Π²ΡΠ΅ΠΌΡ ΡΠΏΠΎΠΊΠΎΠΉΠ½ΠΎΠ³ΠΎ ΡΡΠΎΡΠ½ΠΈΡ.ΠΡ ΡΠ°ΠΊΠΆΠ΅ ΠΎΠ±Π½Π°ΡΡΠΆΠΈΠ»ΠΈ, ΡΡΠΎ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½Π°Ρ Π²Π·Π°ΠΈΠΌΠ½Π°Ρ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ³Π»ΠΎΠ²ΡΠΌΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡΠΌΠΈ ΡΠ°Π·ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΈ Π³ΠΎΠ»Π΅Π½ΠΎΡΡΠΎΠΏΠ½ΠΎΠ³ΠΎ ΡΡΡΡΠ°Π²ΠΎΠ², Π° ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΠΈΠ»ΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ³Π»ΠΎΠ²ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ Π³ΠΎΠ»Π΅Π½ΠΎΡΡΠΎΠΏΠ½ΠΎΠ³ΠΎ ΡΡΡΡΠ°Π²Π° ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠΈΡΡΠ΅ΡΡΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΡΠΌ ΡΠ³Π»ΠΎΠ²ΡΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ°Π·ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΡΡΠ°Π²Π°. ΠΠ½Π°Π»ΠΈΠ· Π³Π»Π°Π²Π½ΡΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² ΠΏΠΎΠΊΠ°Π·Π°Π», ΡΡΠΎ ΡΡΠΎ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΎ ΠΊΠ°ΠΊ: thetah = gammathetaa Ρ Π³Π°ΠΌΠΌΠΎΠΉ = -3,15 +/- 1,24 ΠΈ gamma = -3,12 +/- 1,46 (ΡΡΠ΅Π΄Π½Π΅Π΅ +/- SD) Π΄Π»Ρ EO ΠΈ EC, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, Π³Π΄Π΅ theta - ΡΡΠΎ ΡΠ³Π»ΠΎΠ²ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅.