Основные механизмы двс: Основные механизмы и системы двигателя

Содержание

Основные механизмы и системы двигателя внутреннего сгорания



из "Автомобили и тракторы "

Двигатель внутреннего сгорания (рис. 4) состоит из следуюш,их механизмов и систем, выполняющих определенные функции. [c.15]
Кривошипно-шатунный механизм осуществляет рабочий цикл двигателя и преобразует прямолинейное, возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Механизм состоит из цилиндра 13 с головкой 12, поршня 15 с кольцами, поршневого пальца 16, шатуна 18, коленчатого вала 20, маховика 19. Механизм установлен в картере, закрытом снизу поддоном (резервуаром для масла)- 21. [c.15]
Механизм газораспределения предназначен для своевременного впуска в цилиндр горючей смеси или воздуха и своевременного удаления отработавших газов. Он состоит из клапанов 8 и 11, пружин 4, толкателей 3, распределительного вала 2 и шестерен 1 привода распределительного вала. [c.15]
Система охлаждения служит для отвода избыточного тепла от нагретых деталей двигателя и поддержания нормального температурного режима. Она бывает жидкостной или воздушной. Если система охлаждения жидкостная, то она состоит из рубашки 14 охлаждения, радиатора, водяного насоса 17, вентилятора, термостата и патрубков. [c.15]
Система воздушного охлаждения состоит из теплоотводящих ребер, вентилятора, кожуха и щитков, направляющих воздушный поток для отвода тепла. [c.15]
Система питания служит для приготовления горючей смеси и подвода ее к цилиндру (карбюраторные двигатели) или подачи топлива в цилиндр и наполнения его воздухом (дизели). [c.16]
У карбюраторных двигателей эта система состоит из топливного бака, топливопроводов, топливного и воздушного фильтров, топлив -ного насоса, карбюратора (или смесителя) 7, впускного 6 и выпускного 5 трубопроводов, глушителя. [c.16]
У дизелей система питания состоит из тех же деталей и приборов, с той лишь разницей, что вместо карбюратора установлены топливный насос высокого давления и форсунка. [c.16]
Система зажигания предназначена для принудительного воспламенения рабочей смеси от электрической искры. В нее входят приборы, обеспечивающие получение электрического тока высокого напряжения, провода 9 и свечи 10. [c.16]
У дизельных двигателей приборы системы зажигания отсутствуют, так как топливо воспламеняется от соприкосновения со сжатым воздухом, имеющим высокую температуру. [c.16]
Система пуска предназначена для пуска двигателя. К ней относятся пусковой бензиновый двигатель с механизмом передачи (на тракторе), электрический стартер на автомобилей иногда на тракторе, декомпрессионный механизм, приборы подогрева охлаждающей жидкости и воздуха. [c.16]
Двухтактные двигатели имеют те же основные механизмы и системы, что и четырехтактные, но отличаются по устройству и действию механизма газораспределения. [c.16]

Вернуться к основной статье

Конструкция основных узлов дизельных двигателей

Современный дизельный двигатель представляет собой сложный агрегат, состоящий из ряда отдельных механизмов, систем и устройств. Конструкция дизельного двигателя зависит от его назначения, мощности, области применения и т.д. В любом двигателе можно выделить следующие основные узлы: остов, кривошипно-шатунный механизм, механизм газораспределения и продувочные и наддувочные устройства (рис. 23).

Остов двигателя поддерживает и направляет движущиеся детали, воспринимает все усилия при работе двигателя; представляет собой совокупность неподвижных деталей двигателя – фундаментной рамы, картера, цилиндров, крышек цилиндров, анкерных связей, шпилек и болтов, стягивающих эти детали.

Фундаментная рама является основанием остова, предназначена для укладки коленчатого вала и служит емкостью для сбора масла, вытекающего из узлов смазывания двигателя. Рама нагружена массой двигателя, силами давления газов, силами инерции поступательного движения и вращающихся масс; Если двигатель оборудован навешенными механизмами (водяными, масляными, топливоподкачивающими насосами), то они монтируются на переднем конце рамы; Рамовые подшипники являются опорой для шеек коленчатого вала;

Картер служит для соединения цилиндров с фундаментной рамой, образует закрытое пространство для размещения кривошипно-шатунного механизма (КШМ). Детали картера подвергаются растяжению от действия максимальной силы давления газов и сжатию усилием предварительной затяжки, а также изгибающим усилиям в крейцкопфных двигателях;

Рабочие цилиндры – это часть двигателя, где осуществляется рабочий цикл. Цилиндр состоит из рубашки и вставной втулки. Во втулке движется поршень и протекают рабочие процессы. Рубашка является опорой для втулки и образует полости для ее охлаждения. Цилиндры устанавливают на верхнюю обработанную плоскость станины или картера и закрепляют шпильками или анкерными связями.

Крышка рабочего цилиндра закрывает и уплотняет рабочий цилиндр и образует вместе с поршнем и втулкой камеру сгорания; на крышку действуют усилия от затяжки крышечных шпилек и переменного давления газов, а также высокая тепловая нагрузка; крышки двухтактных дизелей имеют более простую конструкцию из-за отсутствия клапанов;

Кривошипно-шатунный механизм воспринимает усилие от давления газов и преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Основными деталями КШМ в крейцкопфных двигателях являются поршень, шток поршня, крейцкопф, шатун, коленчатый вал; в тронковых двигателях – поршень, поршневой палец, шатун, коленчатый вал.

Поршень воспринимает силу давления газов и передает ее через шатун на коленчатый вал. В тронковых двигателях он выполняет роль ползуна, управляет газообменом в двухтактных дизелях; днище поршня воспринимает давление и теплоту горячих газов, ограничивает и формирует камеру сгорания. Форма днища поршня зависит от примененного способа смесеобразования, расположения камеры сгорания и типа продувки. Поршень уплотняется в цилиндре поршневыми кольцами – компрессионными и маслосъемными. Компрессионные кольца уплотняют рабочий зазор, отводят теплоту от поршня к стенкам цилиндра, маслосъемные кольца регулируют количество масла, удаляя его излишки с зеркала цилиндра;

Шатун соединяет поршень или поперечину крейцкопфа с коленчатым валом, обеспечивает перемещение поршня при совершении вспомогательных ходов; шатун подвергается действию силы от давления газов, сил инерции поступательно движущихся масс и сил инерции, возникающих при качании шатуна;

Группа коленчатого вала – сюда входят следующие узлы двигателя: коленчатый вал, противовесы, распределительная шестерня или звездочка, шестерни привода навешенных вспомогательных механизмов, узел осевой фиксации, демпфер, маховик. Коленчатый вал относится к числу наиболее ответственных, напряженных и дорогостоящих деталей. При работе двигателя вал нагружается силами давления газов, силами инерции движущихся возвратно-поступательно и вращающихся деталей. Для уравновешивания центробежных сил коленчатые валы снабжаются противовесами. Если вспомогательные механизмы, обеспечивающие работу дизеля, приводятся во вращение от коленчатого вала самого двигателя, то раздача мощности на механизмы производится от коробки приводов. Отбор мощности производится на механизмы газораспределения, топливные, масляные насосы и насосы системы охлаждения. Для обеспечения равномерности вращения коленчатого вала двигателя применяются маховики.

Механизм газораспределения открывает и закрывает впускные и выпускные органы в соответствии с принятыми фазами газообмена. Механизм газораспределения состоит из рабочих клапанов и деталей, передающих им движение от коленчатого вала двигателя – шестерен, распределительных валов, толкателей, штанг, рычагов. Конструкция механизма газораспределения зависит от конструкции самого дизельного двигателя. Как правило, применяются следующие типы газораспределения: клапанное, золотниковое и комбинированное.

Клапанное газораспределение применяется в четырехтактных дизелях всех типов и в качестве привода выпускных клапанов в двухтактных дизелях при клапанно-щелевой схеме газообмена (рис. 24).

Привод верхних клапанов может осуществляться непосредственно от распределительного вала или через промежуточные детали в виде толкателей, штанг, коромысел, рычагов, траверс. Расположение распределительного вала при этом может быть как верхним над крышкой блока цилиндров (рис. 24.а – г), так и нижним – вдоль блока цилиндров (рис. 24.д). Верхние клапаны дают возможность получить компактную камеру сгорания цилиндрической, конической или сферической формы, благоприятной для смесеобразования и сгорания топлива. Верхнее расположение клапанов типично для различного рода дизельных двигателей. При нижнем расположении клапанов (рис. 24.е) упрощается устройство головки цилиндров и механизма привода клапанов, уменьшается число деталей механизма газораспределения и высота самого двигателя. При этом клапаны могут располагаться как с одной, так и с обеих сторон блока цилиндров.

Золотниковое (бесклапанное) газораспределение осуществляется поступательно движущимися или вращающимися золотниками, а также золотниками, совершающими одновременно поступательное и угловое перемещения. При золотниковом газораспределении можно обеспечить большие проходные сечения для газов и бесшумную работу двигателя. В двухтактных дизелях в роли золотниковой пары выступает сам поршень и окна во втулках цилиндра.

К продувочным и наддувочным устройствам для зарядки цилиндров двигателя относятся: продувочные насосы (в двухтактных дизелях), наддувочные агрегаты, детали приводов, ресиверы продувочного и наддувочного воздуха, охладители воздуха, воздушные фильтры.

Литература

Судовые энергетические установки. Дизельные и газотурбинные установки. Болдырев О.Н. [2003]

Похожие статьи

Клапаны двигателя: конструктивные особенности и назначение

Клапанный механизм – это основной исполнительный компонент ГРМ (газораспределительный механизм) современного двигателя внутреннего сгорания (ДВС). Именно этот узел отвечает за безупречно точную работу мотора и обеспечивает в процессе работы:

  • своевременную подачу подготовленной топливовоздушной смеси в камеры сгорания цилиндров;
  • последующий отвод выхлопных газов.

Клапаны – ключевые детали механизма, которые должны гарантировать полную герметизацию камеры сгорания при воспламенении в ней топлива. Во время работы мотора они испытывают постоянно высокую нагрузку. Вот почему к процессу их изготовления, а также особенностям конструкции, регулировкам и непосредственно самой работе клапанов ДВС предъявляются жесткие требования.

Общее устройство

Для нормальной работы двигателя в конструкции газораспределительного механизма предусмотрена установка двух типов клапанов: впускных и выпускных. Первые отвечают за пропуск в камеру сгорания топливовоздушной смеси, вторые – за отвод отработанных газов.

Клапанная группа (одновременно является оконечным элементом системы ГРМ) включает в себя основные детали:

  • стальная пружина;
  • устройство (механизм) для крепления возвратного механизма;
  • втулка, направляющая движение;
  • посадочное седло.

Эксперты MotorPage.Ru обращают внимание автовладельцев на тот факт, что именно сопряжение «седло-клапан» при работе мотора подвергается самой высокой степени воздействия экстремальных температур и разнонаправленным (вверх, вниз, в стороны) механическим нагрузкам.

Кроме того, из-за скоростной работы образуется недостаточное количество смазки. В результате – интенсивный износ и необходимость проведения ремонта двигателя, замены и установки новых деталей ГРМ с последующей регулировкой зазоров.

К каждой паре и группе клапанов предъявляются следующие требования:

  • минимально возможный вес;
  • антикоррозийная устойчивость;
  • безупречная теплоотдача клапана;
  • устойчивость к высоким температурам;
  • герметичность работы при контакте с седлом;
  • повышенная механическая прочность и жесткость одновременно;
  • отличный показатель стойкости к механическим и ударным нагрузкам;
  • максимальный уровень обтекаемости при поступлении рабочей смеси в камеру сгорания и выпуске отработанных газов.

Конструктивные особенности

Главное предназначение клапана – своевременное открывание и закрывание технологических отверстий в блоке цилиндров для выпуска отработанных газов и впуска очередной порции топливовоздушной смеси.

В процессе работы двигателя основание выпускного клапана нагревается до высоких температур. У бензиновых моторов этот параметр достигает 800 - 900°С, у дизельных силовых агрегатов – 500 - 700°С. Впускные работают при температуре порядка 300°С.

Чтобы обеспечить необходимый уровень устойчивости к таким нагрузкам, для изготовления выпускных клапанов используют специальные жаропрочные сплавы и материалы, содержащие большое количество легирующих присадок.

Конструктивно деталь состоит из двух частей:

  • головка, изготавливаемая из материала, устойчивого к экстремальным нагревам;
  • стержень из высококачественной легированной углеродистой стали.

Для защиты от коррозии поверхность выпускных клапанов в местах контакта с цилиндром покрывается специальным сплавом толщиной 1,5 – 2,5 мм.

К впускным клапанам требования не столь жесткие, поскольку в процессе работы двигателя они охлаждаются свежей топливовоздушной смесью. Для изготовления стержней используются низколегированные марки сплавов с повышенными параметрами прочности, а тарелки делают из жаропрочных сталей.

Требования к изготовлению пружин и втулок

Пружины. В системе ГРМ эта деталь работает в условиях экстремально высоких температурных и механических нагрузок. Задача – обеспечить плотный и надежный контакт между клапаном и седлом в момент их стыковки.

Нередко в процессе работы пружины ломаются, испытывая повышенные нагрузки, зачастую это происходит по причине вхождения ее в резонанс. Как отмечают эксперты Моторпейдж, риск подобных неисправностей гораздо ниже при использовании пружин с переменным шагом витков. Также достаточно эффективны конические или двойные (усиленные) модели.

Пружины для клапанов изготавливают из специальной легированной стальной проволоки. Ее закаляют и подвергают отпуску (технологические операции, используемые в металлургическом производстве). Защиту от коррозии обеспечивает дополнительная обработка оксидом цинка или кадмия.

Втулки. Обеспечивают отвод излишков тепловой энергии от стержня клапана, а также его перемещение в заданной (возвратно-поступательной) плоскости. Эти направляющие элементы системы постоянно омываются раскаленными парами и отработанными выхлопными газами. Функционируют также в условиях экстремальных температур.

Потому к материалу изготовления втулок тоже предъявляются высокие требования – хорошая износоустойчивость, стойкость к максимально допустимым температурам и трению. Данным запросам соответствуют некоторые виды чугуна, алюминиевая бронза, высокопрочная керамика. Именно эти материалы и используются для производства втулок.

Страница не найдена |

Страница не найдена |

404. Страница не найдена

Архив за месяц

ПнВтСрЧтПтСбВс

78910111213

14151617181920

21222324252627

282930    

       

       

       

     12

       

     12

       

      1

3031     

     12

       

15161718192021

       

25262728293031

       

    123

45678910

       

     12

17181920212223

31      

2728293031  

       

      1

       

   1234

567891011

       

     12

       

891011121314

       

11121314151617

       

28293031   

       

   1234

       

     12

       

  12345

6789101112

       

567891011

12131415161718

19202122232425

       

3456789

17181920212223

24252627282930

       

  12345

13141516171819

20212223242526

2728293031  

       

15161718192021

22232425262728

2930     

       

Архивы

Июл

Авг

Сен

Окт

Ноя

Дек

Метки

Настройки
для слабовидящих

Министерство образования и науки Российской Федерации

%PDF-1.6 % 1 0 obj >/Metadata 2973 0 R/Outlines 2995 0 R/OutputIntents[>]/Pages 2 0 R/StructTreeRoot 470 0 R/Type/Catalog>> endobj 2972 0 obj >/Font>>>/Fields[]>> endobj 2973 0 obj >stream application/pdf

  • Министерство образования и науки Российской Федерации
  • User
  • 2014-06-10T13:42:38+06:00Microsoft® Word 20102015-01-15T11:49:10+06:002015-01-15T11:49:10+06:00Microsoft® Word 2010uuid:28bfb033-3f86-453a-b196-06f5da28d9a7uuid:13be335a-603e-42b5-a887-60a756958401default1
  • converteduuid:ccfcba62-8b01-46ab-88e8-27aa8eb04447converted to PDF/A-1aPreflight2015-01-15T11:47:38+06:00
  • converteduuid:44d3ccb6-7ca0-4132-a53f-fdc3aaa69f95PDF/A conversion failed; Version and conformance level identification removedPreflight2015-01-15T11:47:41+06:00
  • http://ns.adobe.com/pdf/1.3/pdfAdobe PDF Schema
  • internalA name object indicating whether the document has been modified to include trapping informationTrappedText
  • http://ns.adobe.com/xap/1.0/mm/xmpMMXMP Media Management Schema
  • internalUUID based identifier for specific incarnation of a documentInstanceIDURI
  • internalThe common identifier for all versions and renditions of a document.OriginalDocumentIDURI
  • http://www.aiim.org/pdfa/ns/id/pdfaidPDF/A ID Schema
  • internalPart of PDF/A standardpartInteger
  • internalAmendment of PDF/A standardamdText
  • internalConformance level of PDF/A standardconformanceText
  • endstream endobj 2995 0 obj > endobj 2 0 obj > endobj 470 0 obj > endobj 472 0 obj > endobj 471 0 obj > endobj 475 0 obj [474 0 R 477 0 R 481 0 R 484 0 R 485 0 R 486 0 R 487 0 R 488 0 R 489 0 R 489 0 R 490 0 R 490 0 R 491 0 R 491 0 R 492 0 R 492 0 R 492 0 R 492 0 R 492 0 R 492 0 R 492 0 R 493 0 R 493 0 R 494 0 R 494 0 R 494 0 R 494 0 R 494 0 R 494 0 R 494 0 R 494 0 R 494 0 R 494 0 R 494 0 R 494 0 R 494 0 R 494 0 R 494 0 R 494 0 R 494 0 R 494 0 R 494 0 R 494 0 R 494 0 R 494 0 R 494 0 R 494 0 R 494 0 R 494 0 R 495 0 R 495 0 R 496 0 R 496 0 R 497 0 R 497 0 R 498 0 R 498 0 R 499 0 R 499 0 R 500 0 R 500 0 R 501 0 R 501 0 R 502 0 R 502 0 R 503 0 R 503 0 R 504 0 R 504 0 R 505 0 R 505 0 R 506 0 R 506 0 R 506 0 R 507 0 R 507 0 R 507 0 R 508 0 R 508 0 R 508 0 R 508 0 R] endobj 510 0 obj [509 0 R 509 0 R 509 0 R 509 0 R 511 0 R 511 0 R 511 0 R 511 0 R 511 0 R 512 0 R 512 0 R 512 0 R 512 0 R 512 0 R 512 0 R 512 0 R 513 0 R 513 0 R 514 0 R 514 0 R 514 0 R 514 0 R 514 0 R 514 0 R 514 0 R 514 0 R 514 0 R 514 0 R 514 0 R 514 0 R 514 0 R 514 0 R 514 0 R 514 0 R 514 0 R 514 0 R 514 0 R 514 0 R 514 0 R 514 0 R 514 0 R 515 0 R 515 0 R 515 0 R 515 0 R 515 0 R 515 0 R 515 0 R 515 0 R 515 0 R 515 0 R 515 0 R 515 0 R 515 0 R 516 0 R 516 0 R 516 0 R 516 0 R 516 0 R 516 0 R 517 0 R 517 0 R 518 0 R 518 0 R 518 0 R 518 0 R 522 0 R 524 0 R 525 0 R 525 0 R 526 0 R 526 0 R 526 0 R 526 0 R 526 0 R 526 0 R 526 0 R 526 0 R 526 0 R 526 0 R 526 0 R 526 0 R 526 0 R 527 0 R 528 0 R 529 0 R 529 0 R 529 0 R 529 0 R 529 0 R 529 0 R 529 0 R 529 0 R 529 0 R 529 0 R 529 0 R 529 0 R 530 0 R 530 0 R 531 0 R 531 0 R 531 0 R 532 0 R 533 0 R 534 0 R 535 0 R 536 0 R 537 0 R 538 0 R 539 0 R 540 0 R 541 0 R 542 0 R 542 0 R 542 0 R 542 0 R 542 0 R 542 0 R 542 0 R 542 0 R 542 0 R 542 0 R 542 0 R 542 0 R 542 0 R 542 0 R 542 0 R 542 0 R 542 0 R 542 0 R 542 0 R 542 0 R 542 0 R 542 0 R 542 0 R] endobj 545 0 obj [544 0 R 549 0 R 550 0 R 554 0 R 555 0 R 559 0 R 560 0 R 564 0 R 565 0 R 569 0 R 570 0 R 575 0 R 576 0 R 580 0 R 581 0 R 583 0 R 586 0 R 587 0 R 591 0 R 592 0 R 596 0 R 597 0 R 601 0 R 602 0 R 607 0 R 608 0 R 613 0 R 614 0 R 618 0 R 619 0 R 623 0 R 624 0 R 628 0 R 629 0 R 633 0 R 634 0 R 638 0 R 639 0 R 643 0 R 644 0 R 649 0 R 650 0 R 654 0 R 655 0 R 659 0 R 660 0 R 664 0 R 665 0 R 669 0 R 670 0 R] endobj 547 0 obj > endobj 552 0 obj > endobj 557 0 obj > endobj 562 0 obj > endobj 567 0 obj > endobj 572 0 obj > endobj 578 0 obj > endobj 584 0 obj > endobj 589 0 obj > endobj 594 0 obj > endobj 599 0 obj > endobj 604 0 obj > endobj 610 0 obj > endobj 616 0 obj > endobj 621 0 obj > endobj 626 0 obj > endobj 631 0 obj > endobj 636 0 obj > endobj 641 0 obj > endobj 646 0 obj > endobj 652 0 obj > endobj 657 0 obj > endobj 662 0 obj > endobj 667 0 obj > endobj 673 0 obj > endobj 676 0 obj [675 0 R 677 0 R 681 0 R 682 0 R 686 0 R 687 0 R 691 0 R 692 0 R 696 0 R 697 0 R 701 0 R 702 0 R 706 0 R 707 0 R 711 0 R 712 0 R 716 0 R 717 0 R 722 0 R 723 0 R 727 0 R 728 0 R 732 0 R 733 0 R 737 0 R 738 0 R 743 0 R 744 0 R 748 0 R 749 0 R 753 0 R 754 0 R 758 0 R 759 0 R 763 0 R 764 0 R 768 0 R 769 0 R 773 0 R 774 0 R 778 0 R 779 0 R 783 0 R 784 0 R 788 0 R 789 0 R 793 0 R 794 0 R 798 0 R 799 0 R 803 0 R 804 0 R] endobj 679 0 obj > endobj 684 0 obj > endobj 689 0 obj > endobj 694 0 obj > endobj 699 0 obj > endobj 704 0 obj > endobj 709 0 obj > endobj 714 0 obj > endobj 719 0 obj > endobj 725 0 obj > endobj 730 0 obj > endobj 735 0 obj > endobj 740 0 obj > endobj 746 0 obj > endobj 751 0 obj > endobj 756 0 obj > endobj 761 0 obj > endobj 766 0 obj > endobj 771 0 obj > endobj 776 0 obj > endobj 781 0 obj > endobj 786 0 obj > endobj 791 0 obj > endobj 796 0 obj > endobj 801 0 obj > endobj 808 0 obj [807 0 R 811 0 R 812 0 R 816 0 R 817 0 R 821 0 R 822 0 R 826 0 R 827 0 R 831 0 R 832 0 R 836 0 R 837 0 R 841 0 R 842 0 R 846 0 R 847 0 R 851 0 R 852 0 R 856 0 R 857 0 R 861 0 R 862 0 R 863 0 R 864 0 R] endobj 809 0 obj > endobj 814 0 obj > endobj 819 0 obj > endobj 824 0 obj > endobj 829 0 obj > endobj 834 0 obj > endobj 839 0 obj > endobj 844 0 obj > endobj 849 0 obj > endobj 854 0 obj > endobj 859 0 obj > endobj 867 0 obj [866 0 R 868 0 R 869 0 R 870 0 R 871 0 R 871 0 R 871 0 R 871 0 R 871 0 R 871 0 R 871 0 R 871 0 R 871 0 R 871 0 R 871 0 R 871 0 R 871 0 R 871 0 R 871 0 R 871 0 R 871 0 R 871 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 872 0 R 873 0 R 873 0 R 873 0 R 873 0 R 873 0 R 873 0 R 873 0 R 873 0 R 873 0 R 873 0 R 873 0 R 873 0 R 873 0 R 873 0 R 873 0 R 873 0 R 873 0 R 873 0 R 873 0 R 873 0 R 873 0 R 873 0 R 873 0 R 873 0 R 873 0 R 873 0 R 873 0 R 873 0 R 873 0 R 873 0 R 874 0 R 874 0 R 874 0 R 874 0 R 874 0 R 874 0 R 874 0 R 874 0 R 874 0 R 874 0 R 874 0 R 874 0 R 874 0 R 874 0 R 874 0 R 874 0 R 874 0 R 874 0 R 874 0 R 874 0 R 874 0 R 874 0 R 874 0 R 874 0 R 874 0 R 874 0 R 874 0 R 874 0 R 875 0 R 875 0 R 875 0 R 875 0 R 875 0 R 875 0 R 875 0 R 875 0 R 875 0 R 875 0 R 875 0 R 875 0 R 875 0 R 875 0 R 875 0 R 875 0 R 875 0 R 875 0 R 875 0 R 875 0 R 876 0 R] endobj 878 0 obj [877 0 R 879 0 R 880 0 R 881 0 R 882 0 R 883 0 R] endobj 886 0 obj [885 0 R 887 0 R 888 0 R 889 0 R 890 0 R 891 0 R 892 0 R 893 0 R 894 0 R 895 0 R 896 0 R 897 0 R 898 0 R 899 0 R 900 0 R 901 0 R 902 0 R 903 0 R 904 0 R 905 0 R 906 0 R 907 0 R 908 0 R 909 0 R] endobj 911 0 obj [910 0 R 912 0 R 913 0 R 914 0 R 915 0 R 916 0 R 917 0 R 918 0 R 918 0 R 918 0 R 918 0 R 918 0 R 918 0 R 918 0 R 918 0 R 918 0 R 918 0 R 918 0 R 918 0 R 918 0 R 918 0 R 919 0 R 922 0 R 923 0 R 921 0 R 924 0 R] endobj 926 0 obj [925 0 R 927 0 R 928 0 R 929 0 R 930 0 R 931 0 R] endobj 933 0 obj [932 0 R 934 0 R 937 0 R 995 0 R 996 0 R 936 0 R 945 0 R 960 0 R 946 0 R 969 0 R 947 0 R 970 0 R 948 0 R 971 0 R 949 0 R 972 0 R 950 0 R 973 0 R 951 0 R 974 0 R 952 0 R 975 0 R 953 0 R 976 0 R 954 0 R 977 0 R 955 0 R 978 0 R 956 0 R 979 0 R 957 0 R 980 0 R 981 0 R 958 0 R 982 0 R 983 0 R 959 0 R 984 0 R 961 0 R 985 0 R 962 0 R 986 0 R 963 0 R 987 0 R 964 0 R 989 0 R 965 0 R 990 0 R 966 0 R 991 0 R 992 0 R 967 0 R 993 0 R 968 0 R 994 0 R 939 0 R 940 0 R 942 0 R 943 0 R] endobj 998 0 obj [997 0 R 999 0 R 1000 0 R 1001 0 R 1002 0 R 1003 0 R 1004 0 R 1005 0 R 1006 0 R] endobj 1008 0 obj [1007 0 R 1009 0 R 1010 0 R 1011 0 R 1012 0 R 1013 0 R 1014 0 R 1015 0 R] endobj 1017 0 obj [1016 0 R 1018 0 R 1019 0 R 1020 0 R 1021 0 R 1022 0 R 1023 0 R 1024 0 R 1025 0 R 1026 0 R 1026 0 R 1026 0 R 1026 0 R 1026 0 R 1026 0 R 1027 0 R 1028 0 R 1029 0 R 1030 0 R 1031 0 R] endobj 1033 0 obj [1032 0 R 1034 0 R 1035 0 R 1036 0 R 1037 0 R 1038 0 R 1039 0 R 1040 0 R 1041 0 R] endobj 1043 0 obj [1042 0 R 1044 0 R 1045 0 R 1046 0 R 1047 0 R 1051 0 R 1053 0 R 1055 0 R 1056 0 R 1057 0 R 1061 0 R 1063 0 R 1065 0 R 1068 0 R 1069 0 R 1070 0 R 1072 0 R 1073 0 R 1074 0 R 1076 0 R 1077 0 R 1078 0 R 1080 0 R 1081 0 R 1082 0 R 1083 0 R 1084 0 R 1085 0 R] endobj 1087 0 obj [1086 0 R 1088 0 R 1089 0 R 1092 0 R 1094 0 R 1091 0 R 1095 0 R] endobj 1097 0 obj [1096 0 R 1098 0 R 1099 0 R 1100 0 R 1101 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1102 0 R 1103 0 R 1103 0 R 1103 0 R 1103 0 R 1103 0 R 1103 0 R 1103 0 R] endobj 1105 0 obj [1104 0 R 1104 0 R 1104 0 R 1104 0 R 1104 0 R 1104 0 R 1104 0 R 1104 0 R 1104 0 R 1104 0 R 1104 0 R 1104 0 R 1104 0 R 1104 0 R 1104 0 R 1104 0 R 1104 0 R 1104 0 R 1104 0 R 1104 0 R 1104 0 R 1104 0 R 1104 0 R 1104 0 R 1104 0 R 1104 0 R 1104 0 R 1104 0 R 1106 0 R 1106 0 R 1106 0 R 1106 0 R 1106 0 R 1106 0 R 1106 0 R 1106 0 R 1106 0 R 1106 0 R 1106 0 R 1106 0 R 1106 0 R 1107 0 R 1107 0 R 1107 0 R 1107 0 R 1107 0 R 1107 0 R 1107 0 R 1107 0 R 1107 0 R 1107 0 R 1107 0 R 1107 0 R 1107 0 R 1107 0 R 1108 0 R 1108 0 R 1108 0 R 1108 0 R 1108 0 R 1108 0 R 1108 0 R 1108 0 R 1108 0 R 1108 0 R 1108 0 R 1108 0 R 1108 0 R 1108 0 R 1108 0 R 1108 0 R 1108 0 R 1108 0 R 1108 0 R 1108 0 R 1108 0 R 1108 0 R 1108 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1109 0 R 1110 0 R 1110 0 R 1110 0 R 1110 0 R 1110 0 R 1110 0 R 1110 0 R 1110 0 R 1110 0 R 1110 0 R 1110 0 R 1110 0 R 1110 0 R 1110 0 R 1110 0 R 1110 0 R 1110 0 R 1110 0 R 1110 0 R 1110 0 R 1110 0 R 1110 0 R 1110 0 R 1110 0 R 1110 0 R 1110 0 R 1110 0 R 1110 0 R] endobj 1112 0 obj [1111 0 R 1113 0 R 1114 0 R 1115 0 R 1116 0 R 1117 0 R 1118 0 R] endobj 1120 0 obj [1119 0 R 1121 0 R 1122 0 R 1123 0 R 1124 0 R 1125 0 R 1129 0 R 1130 0 R 1132 0 R 1133 0 R 1137 0 R 1139 0 R 1140 0 R 1143 0 R 1144 0 R 1145 0 R 1146 0 R 1147 0 R 1148 0 R 1149 0 R 1150 0 R 1152 0 R 1153 0 R 1154 0 R 1155 0 R 1156 0 R 1157 0 R 1158 0 R 1159 0 R 1161 0 R 1162 0 R 1163 0 R 1164 0 R 1165 0 R 1166 0 R 1167 0 R 1168 0 R 1169 0 R 1170 0 R] endobj 1172 0 obj [1171 0 R 1173 0 R 1174 0 R 1175 0 R 1179 0 R 1181 0 R 1183 0 R 1185 0 R 1186 0 R 1189 0 R 1191 0 R 1192 0 R 1194 0 R 1195 0 R 1197 0 R 1198 0 R 1199 0 R 1202 0 R 1204 0 R 1205 0 R 1207 0 R 1208 0 R 1210 0 R 1211 0 R 1212 0 R 1215 0 R 1217 0 R 1218 0 R 1220 0 R 1221 0 R 1223 0 R 1224 0 R 1225 0 R 1228 0 R 1229 0 R 1239 0 R 1240 0 R 1230 0 R 1233 0 R 1231 0 R 1232 0 R 1234 0 R 1235 0 R 1236 0 R 1237 0 R 1238 0 R] endobj 1242 0 obj [1241 0 R 1243 0 R 1244 0 R 1245 0 R 1246 0 R 1247 0 R 1248 0 R] endobj 1250 0 obj [1249 0 R 1251 0 R 1252 0 R 1253 0 R 1254 0 R 1255 0 R 1256 0 R 1257 0 R 1257 0 R 1257 0 R 1257 0 R 1257 0 R 1258 0 R 1258 0 R 1258 0 R 1258 0 R 1258 0 R 1258 0 R 1258 0 R 1258 0 R 1258 0 R 1258 0 R 1258 0 R 1258 0 R 1258 0 R 1258 0 R 1258 0 R 1258 0 R 1258 0 R 1258 0 R 1258 0 R 1258 0 R 1258 0 R 1258 0 R 1258 0 R 1259 0 R 1260 0 R 1260 0 R 1260 0 R 1260 0 R 1260 0 R 1260 0 R 1260 0 R 1260 0 R 1260 0 R 1260 0 R 1260 0 R 1260 0 R 1260 0 R 1260 0 R 1260 0 R 1260 0 R 1260 0 R 1260 0 R 1261 0 R 1261 0 R 1261 0 R 1261 0 R 1261 0 R 1261 0 R 1261 0 R 1261 0 R 1261 0 R 1261 0 R 1262 0 R 1265 0 R 1264 0 R 1266 0 R 1266 0 R 1266 0 R 1266 0 R 1266 0 R 1266 0 R 1266 0 R 1266 0 R 1266 0 R 1267 0 R 1268 0 R] endobj 1270 0 obj [1269 0 R 1273 0 R 1272 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1274 0 R 1275 0 R 1276 0 R 1277 0 R 1278 0 R 1278 0 R 1278 0 R 1278 0 R 1278 0 R 1278 0 R 1278 0 R 1278 0 R 1278 0 R 1278 0 R 1278 0 R 1278 0 R 1278 0 R 1278 0 R 1278 0 R 1278 0 R 1278 0 R 1278 0 R 1278 0 R 1278 0 R 1278 0 R 1278 0 R 1278 0 R 1278 0 R 1278 0 R 1278 0 R 1278 0 R 1278 0 R 1278 0 R] endobj 1280 0 obj [1279 0 R 1283 0 R 1282 0 R 1285 0 R 1287 0 R 1286 0 R 1288 0 R 1288 0 R 1288 0 R 1288 0 R 1288 0 R 1288 0 R 1288 0 R 1288 0 R 1288 0 R 1288 0 R 1288 0 R 1288 0 R 1288 0 R 1288 0 R 1288 0 R 1288 0 R 1288 0 R 1288 0 R 1288 0 R 1288 0 R 1288 0 R 1288 0 R 1288 0 R 1288 0 R 1289 0 R 1290 0 R 1291 0 R 1292 0 R 1293 0 R 1297 0 R 1295 0 R 1298 0 R 1296 0 R 1299 0 R 1299 0 R 1299 0 R 1299 0 R 1299 0 R 1299 0 R 1299 0 R 1299 0 R 1299 0 R 1299 0 R 1299 0 R 1299 0 R 1299 0 R 1299 0 R 1299 0 R 1300 0 R 1300 0 R 1300 0 R 1300 0 R 1300 0 R 1300 0 R 1300 0 R 1300 0 R 1300 0 R 1300 0 R 1300 0 R 1300 0 R 1300 0 R 1300 0 R 1300 0 R 1300 0 R 1300 0 R 1300 0 R 1300 0 R 1300 0 R 1300 0 R 1300 0 R 1300 0 R 1300 0 R 1300 0 R 1300 0 R 1300 0 R 1300 0 R] endobj 1302 0 obj [1301 0 R 1301 0 R 1301 0 R 1301 0 R 1301 0 R 1301 0 R 1301 0 R 1301 0 R 1301 0 R 1301 0 R 1301 0 R 1301 0 R 1301 0 R 1301 0 R 1301 0 R 1301 0 R 1305 0 R 1304 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1306 0 R 1307 0 R 1308 0 R 1308 0 R 1308 0 R 1308 0 R 1308 0 R 1308 0 R 1308 0 R 1308 0 R 1308 0 R 1308 0 R 1308 0 R 1309 0 R 1310 0 R 1313 0 R 1312 0 R 1314 0 R 1317 0 R 1316 0 R 1318 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1319 0 R 1320 0 R 1320 0 R 1320 0 R 1320 0 R 1320 0 R 1320 0 R 1320 0 R 1320 0 R 1320 0 R 1320 0 R 1320 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1321 0 R 1322 0 R 1323 0 R] endobj 1325 0 obj [1324 0 R 1326 0 R 1326 0 R 1326 0 R 1326 0 R 1330 0 R 1328 0 R 1331 0 R 1329 0 R 1332 0 R 1332 0 R 1332 0 R 1332 0 R 1332 0 R 1332 0 R 1332 0 R 1332 0 R 1332 0 R 1332 0 R 1332 0 R 1332 0 R 1332 0 R 1332 0 R 1332 0 R 1332 0 R 1333 0 R 1334 0 R 1337 0 R 1336 0 R 1338 0 R 1341 0 R 1340 0 R 1342 0 R 1343 0 R 1344 0 R] endobj 1346 0 obj [1345 0 R 1347 0 R 1348 0 R 1349 0 R 1350 0 R 1354 0 R 1356 0 R 1357 0 R 1361 0 R 1361 0 R 1361 0 R 1361 0 R 1361 0 R 1361 0 R 1361 0 R 1363 0 R 1363 0 R 1363 0 R 1363 0 R 1363 0 R 1363 0 R 1363 0 R 1363 0 R 1363 0 R 1365 0 R 1365 0 R 1365 0 R 1365 0 R 1365 0 R 1365 0 R 1365 0 R 1365 0 R 1365 0 R 1366 0 R 1369 0 R 1370 0 R 1371 0 R 1372 0 R 1374 0 R 1375 0 R 1376 0 R 1377 0 R 1379 0 R 1380 0 R 1381 0 R 1382 0 R 1384 0 R 1385 0 R 1386 0 R 1387 0 R 1388 0 R 1389 0 R 1390 0 R 1393 0 R 1392 0 R 1394 0 R 1394 0 R 1394 0 R 1394 0 R 1394 0 R 1394 0 R 1394 0 R 1394 0 R 1394 0 R 1394 0 R 1394 0 R 1395 0 R] endobj 1398 0 obj [1399 0 R 1397 0 R 1400 0 R 1401 0 R 1402 0 R 1403 0 R 1404 0 R 1405 0 R 1406 0 R 1407 0 R 1408 0 R 1409 0 R 1410 0 R 1411 0 R 1412 0 R 1413 0 R] endobj 1415 0 obj [1414 0 R 1416 0 R 1417 0 R 1418 0 R 1419 0 R 1420 0 R 1421 0 R 1422 0 R 1423 0 R 1424 0 R] endobj 1426 0 obj [1425 0 R 1427 0 R 1428 0 R 1429 0 R 1430 0 R 1434 0 R 1435 0 R 1437 0 R 1438 0 R 1442 0 R 1444 0 R 1446 0 R 1447 0 R 1452 0 R 1454 0 R 1456 0 R 1458 0 R 1460 0 R 1462 0 R 1464 0 R 1466 0 R 1468 0 R 1469 0 R 1470 0 R 1471 0 R 1473 0 R 1474 0 R 1475 0 R 1476 0 R 1477 0 R 1478 0 R 1479 0 R 1480 0 R 1481 0 R 1482 0 R 1483 0 R 1484 0 R 1486 0 R 1487 0 R 1488 0 R 1489 0 R 1490 0 R 1491 0 R 1492 0 R 1493 0 R 1494 0 R 1495 0 R 1496 0 R 1497 0 R 1499 0 R 1500 0 R 1501 0 R 1502 0 R 1503 0 R 1504 0 R 1505 0 R 1506 0 R 1507 0 R 1508 0 R 1509 0 R 1510 0 R 1512 0 R 1515 0 R 1515 0 R 1515 0 R 1515 0 R 1516 0 R 1518 0 R 1519 0 R 1521 0 R 1522 0 R 1524 0 R 1525 0 R 1526 0 R 1527 0 R] endobj 1529 0 obj [1528 0 R 1530 0 R 1531 0 R 1532 0 R 1533 0 R 1534 0 R 1535 0 R 1536 0 R 1537 0 R 1538 0 R] endobj 1540 0 obj [1539 0 R 1541 0 R 1542 0 R 1543 0 R 1544 0 R 1545 0 R 1546 0 R] endobj 1548 0 obj [1547 0 R 1549 0 R 1552 0 R 1551 0 R 1553 0 R 1554 0 R] endobj 1556 0 obj [1555 0 R 1557 0 R 1558 0 R 1561 0 R 1560 0 R 1562 0 R 1563 0 R 1564 0 R 1564 0 R 1564 0 R 1564 0 R 1564 0 R 1564 0 R 1564 0 R 1564 0 R 1564 0 R 1564 0 R 1564 0 R 1564 0 R 1564 0 R 1564 0 R 1564 0 R 1564 0 R 1564 0 R 1564 0 R 1564 0 R 1564 0 R 1564 0 R 1564 0 R 1564 0 R 1564 0 R 1564 0 R 1565 0 R 1565 0 R 1565 0 R 1565 0 R 1565 0 R 1565 0 R 1565 0 R 1565 0 R 1565 0 R 1565 0 R 1565 0 R 1565 0 R 1565 0 R 1565 0 R 1565 0 R 1565 0 R 1565 0 R 1566 0 R 1566 0 R 1566 0 R 1566 0 R 1566 0 R 1566 0 R 1566 0 R 1566 0 R 1566 0 R 1566 0 R 1566 0 R 1566 0 R 1566 0 R 1566 0 R 1566 0 R 1566 0 R 1566 0 R 1566 0 R 1566 0 R 1566 0 R 1566 0 R 1566 0 R 1566 0 R 1566 0 R 1566 0 R 1567 0 R 1567 0 R 1567 0 R 1567 0 R 1567 0 R 1567 0 R 1567 0 R 1567 0 R 1567 0 R 1567 0 R 1567 0 R 1567 0 R 1567 0 R 1567 0 R 1567 0 R 1567 0 R 1567 0 R 1567 0 R 1567 0 R] endobj 1569 0 obj [1568 0 R 1570 0 R 1571 0 R 1572 0 R 1573 0 R 1576 0 R 1575 0 R 1577 0 R 1577 0 R 1577 0 R 1577 0 R 1577 0 R 1577 0 R 1577 0 R 1577 0 R 1577 0 R 1577 0 R 1577 0 R 1577 0 R 1577 0 R 1577 0 R 1577 0 R 1577 0 R 1577 0 R 1577 0 R 1578 0 R 1579 0 R 1579 0 R 1579 0 R 1579 0 R 1579 0 R 1579 0 R 1579 0 R 1579 0 R 1579 0 R 1579 0 R 1579 0 R 1579 0 R 1579 0 R 1579 0 R 1579 0 R 1579 0 R 1579 0 R 1579 0 R 1580 0 R 1581 0 R 1582 0 R 1583 0 R] endobj 1585 0 obj [1584 0 R 1586 0 R 1587 0 R 1587 0 R 1587 0 R 1587 0 R 1587 0 R 1587 0 R 1587 0 R 1587 0 R 1587 0 R 1587 0 R 1587 0 R 1587 0 R 1587 0 R 1587 0 R 1587 0 R 1587 0 R 1587 0 R 1587 0 R 1587 0 R 1587 0 R 1587 0 R 1588 0 R 1588 0 R 1588 0 R 1588 0 R 1588 0 R 1589 0 R 1589 0 R 1589 0 R 1589 0 R 1589 0 R 1589 0 R 1589 0 R 1589 0 R 1589 0 R 1589 0 R 1589 0 R 1589 0 R 1589 0 R 1589 0 R 1589 0 R 1589 0 R 1589 0 R 1589 0 R 1590 0 R 1590 0 R 1590 0 R 1590 0 R 1590 0 R 1590 0 R 1590 0 R 1590 0 R 1590 0 R 1590 0 R 1590 0 R 1590 0 R 1590 0 R 1590 0 R 1590 0 R 1590 0 R 1590 0 R 1590 0 R 1590 0 R 1590 0 R 1590 0 R 1590 0 R 1590 0 R 1590 0 R 1590 0 R 1590 0 R 1590 0 R 1590 0 R 1590 0 R 1593 0 R 1592 0 R 1594 0 R 1595 0 R 1596 0 R 1596 0 R 1596 0 R 1596 0 R 1596 0 R 1596 0 R 1596 0 R 1596 0 R 1596 0 R 1596 0 R 1596 0 R 1596 0 R 1596 0 R 1596 0 R 1596 0 R 1596 0 R 1596 0 R 1596 0 R 1596 0 R 1596 0 R 1597 0 R] endobj 1599 0 obj [1598 0 R 1598 0 R 1598 0 R 1598 0 R 1598 0 R 1598 0 R 1598 0 R 1598 0 R 1598 0 R 1598 0 R 1598 0 R 1598 0 R 1598 0 R 1598 0 R 1598 0 R 1598 0 R 1600 0 R 1600 0 R 1600 0 R 1600 0 R 1600 0 R 1600 0 R 1600 0 R 1600 0 R 1600 0 R 1600 0 R 1600 0 R 1600 0 R 1600 0 R 1600 0 R 1600 0 R 1600 0 R 1600 0 R 1600 0 R 1600 0 R 1600 0 R 1600 0 R 1600 0 R 1600 0 R 1600 0 R 1600 0 R 1601 0 R 1601 0 R 1601 0 R 1601 0 R 1601 0 R 1601 0 R 1601 0 R 1601 0 R 1601 0 R 1601 0 R 1601 0 R 1601 0 R 1602 0 R 1602 0 R 1602 0 R 1602 0 R 1602 0 R 1602 0 R 1602 0 R 1602 0 R 1602 0 R 1602 0 R 1602 0 R 1602 0 R 1602 0 R 1602 0 R 1602 0 R 1602 0 R 1603 0 R 1604 0 R 1605 0 R 1606 0 R 1607 0 R 1608 0 R 1609 0 R 1610 0 R] endobj 1612 0 obj [1611 0 R 1613 0 R 1614 0 R 1615 0 R 1616 0 R 1617 0 R 1618 0 R 1619 0 R] endobj 1621 0 obj [1620 0 R 1622 0 R 1623 0 R 1624 0 R 1625 0 R 1626 0 R 1627 0 R 1628 0 R] endobj 1630 0 obj [1629 0 R 1631 0 R 1632 0 R 1633 0 R 1634 0 R 1635 0 R] endobj 1637 0 obj [1636 0 R 1640 0 R 1639 0 R 1641 0 R 1642 0 R 1643 0 R] endobj 1645 0 obj [1644 0 R 1646 0 R 1647 0 R 1648 0 R 1649 0 R] endobj 1652 0 obj [1653 0 R 1651 0 R 1654 0 R 1657 0 R 1656 0 R 1658 0 R 1659 0 R 1660 0 R 1660 0 R 1660 0 R 1660 0 R 1660 0 R 1660 0 R 1660 0 R 1660 0 R 1660 0 R 1660 0 R 1660 0 R 1660 0 R 1660 0 R 1660 0 R 1660 0 R 1660 0 R 1660 0 R 1660 0 R 1660 0 R 1660 0 R 1660 0 R 1660 0 R 1660 0 R 1660 0 R 1660 0 R 1660 0 R 1660 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R 1661 0 R] endobj 1663 0 obj [1662 0 R 1664 0 R 1664 0 R 1664 0 R 1664 0 R 1664 0 R 1664 0 R 1664 0 R 1664 0 R 1664 0 R 1664 0 R 1664 0 R 1664 0 R 1664 0 R 1664 0 R 1664 0 R 1664 0 R 1664 0 R 1664 0 R 1665 0 R 1666 0 R 1667 0 R 1668 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1669 0 R 1670 0 R 1670 0 R 1670 0 R 1670 0 R 1670 0 R 1670 0 R 1670 0 R 1670 0 R 1670 0 R 1670 0 R 1670 0 R 1670 0 R 1670 0 R 1670 0 R 1670 0 R 1670 0 R 1670 0 R 1670 0 R 1671 0 R 1672 0 R 1673 0 R 1674 0 R 1675 0 R 1676 0 R 1676 0 R 1676 0 R 1676 0 R 1676 0 R 1676 0 R 1676 0 R 1676 0 R 1676 0 R 1676 0 R 1676 0 R 1676 0 R 1676 0 R 1676 0 R 1676 0 R 1676 0 R 1676 0 R 1676 0 R 1676 0 R 1676 0 R 1676 0 R 1676 0 R 1676 0 R 1676 0 R 1676 0 R 1676 0 R 1677 0 R 1677 0 R 1677 0 R 1677 0 R 1677 0 R 1677 0 R 1677 0 R 1677 0 R 1677 0 R 1677 0 R 1677 0 R 1677 0 R 1677 0 R 1677 0 R 1677 0 R 1677 0 R 1677 0 R 1677 0 R] endobj 1679 0 obj [1678 0 R 1680 0 R 1680 0 R 1680 0 R 1680 0 R 1680 0 R 1680 0 R 1680 0 R 1680 0 R 1680 0 R 1680 0 R 1680 0 R 1680 0 R 1680 0 R 1680 0 R 1680 0 R 1681 0 R 1684 0 R 1683 0 R 1685 0 R 1686 0 R 1687 0 R 1688 0 R 1689 0 R 1690 0 R 1691 0 R 1692 0 R] endobj 1694 0 obj [1693 0 R 1695 0 R 1695 0 R 1695 0 R 1695 0 R 1695 0 R 1695 0 R 1695 0 R 1695 0 R 1695 0 R 1695 0 R 1695 0 R 1695 0 R 1696 0 R 1697 0 R 1698 0 R 1699 0 R 1700 0 R 1700 0 R 1700 0 R 1700 0 R 1700 0 R 1700 0 R 1700 0 R 1700 0 R 1700 0 R 1700 0 R 1700 0 R 1700 0 R 1700 0 R 1700 0 R 1700 0 R 1700 0 R 1700 0 R 1700 0 R 1700 0 R 1700 0 R 1700 0 R 1700 0 R 1700 0 R 1700 0 R 1701 0 R 1701 0 R 1701 0 R 1701 0 R 1701 0 R 1701 0 R 1701 0 R 1701 0 R 1701 0 R 1701 0 R 1701 0 R 1701 0 R 1701 0 R 1701 0 R 1701 0 R 1701 0 R 1702 0 R 1703 0 R 1703 0 R 1703 0 R 1703 0 R 1703 0 R 1703 0 R 1703 0 R 1703 0 R 1703 0 R 1703 0 R 1703 0 R 1703 0 R 1703 0 R 1703 0 R 1703 0 R 1703 0 R 1703 0 R 1703 0 R 1703 0 R 1703 0 R 1703 0 R 1703 0 R 1703 0 R 1703 0 R 1703 0 R 1704 0 R 1704 0 R 1704 0 R 1704 0 R 1704 0 R 1704 0 R 1704 0 R 1704 0 R 1704 0 R 1704 0 R 1704 0 R 1704 0 R 1704 0 R 1704 0 R 1704 0 R 1704 0 R 1704 0 R 1704 0 R 1704 0 R 1704 0 R 1704 0 R 1704 0 R 1704 0 R 1704 0 R 1704 0 R 1704 0 R 1704 0 R 1704 0 R 1705 0 R 1706 0 R 1707 0 R 1707 0 R 1707 0 R 1707 0 R 1707 0 R 1707 0 R 1707 0 R 1707 0 R 1707 0 R 1707 0 R 1707 0 R 1707 0 R 1707 0 R 1707 0 R 1707 0 R 1707 0 R 1707 0 R 1707 0 R 1708 0 R 1709 0 R] endobj 1711 0 obj [1710 0 R 1714 0 R 1713 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1715 0 R 1716 0 R 1719 0 R 1718 0 R 1720 0 R 1720 0 R 1720 0 R 1720 0 R 1720 0 R 1720 0 R 1720 0 R 1720 0 R 1720 0 R 1720 0 R 1721 0 R 1722 0 R 1723 0 R 1724 0 R 1725 0 R 1726 0 R] endobj 1728 0 obj [1727 0 R 1729 0 R 1730 0 R 1731 0 R 1734 0 R 1733 0 R 1735 0 R 1736 0 R 1739 0 R 1738 0 R 1740 0 R 1743 0 R 1742 0 R 1744 0 R] endobj 1746 0 obj [1745 0 R 1747 0 R 1748 0 R 1748 0 R 1748 0 R 1748 0 R 1748 0 R 1748 0 R 1748 0 R 1748 0 R 1748 0 R 1748 0 R 1748 0 R 1748 0 R 1748 0 R 1748 0 R 1748 0 R 1748 0 R 1748 0 R 1748 0 R 1748 0 R 1748 0 R 1748 0 R 1748 0 R 1748 0 R 1748 0 R 1748 0 R 1749 0 R 1752 0 R 1751 0 R 1753 0 R 1754 0 R 1755 0 R 1756 0 R 1757 0 R] endobj 1759 0 obj [1758 0 R 1760 0 R 1763 0 R 1762 0 R 1764 0 R 1764 0 R 1764 0 R 1764 0 R 1764 0 R 1764 0 R 1764 0 R 1764 0 R 1764 0 R 1764 0 R 1764 0 R 1764 0 R 1764 0 R 1764 0 R 1764 0 R 1764 0 R 1764 0 R 1764 0 R 1764 0 R 1764 0 R 1765 0 R 1766 0 R 1769 0 R 1768 0 R 1772 0 R 1771 0 R 1774 0 R 1776 0 R 1775 0 R 1777 0 R 1778 0 R 1781 0 R 1783 0 R 1780 0 R 1786 0 R 1785 0 R] endobj 1788 0 obj [1787 0 R 1789 0 R 1790 0 R 1791 0 R 1792 0 R 1793 0 R] endobj 1795 0 obj [1794 0 R 1796 0 R 1797 0 R 1798 0 R 1799 0 R 1800 0 R 1801 0 R 1802 0 R 1803 0 R 1804 0 R 1805 0 R 1806 0 R 1807 0 R 1808 0 R 1809 0 R 1810 0 R 1811 0 R] endobj 1813 0 obj [1812 0 R 1814 0 R 1815 0 R 1816 0 R 1817 0 R 1818 0 R 1819 0 R 1820 0 R 1821 0 R] endobj 1823 0 obj [1822 0 R 1824 0 R 1825 0 R 1826 0 R 1827 0 R 1828 0 R 1829 0 R 1830 0 R 1831 0 R 1832 0 R 1833 0 R 1834 0 R 1835 0 R 1836 0 R 1837 0 R 1838 0 R 1839 0 R 1840 0 R 1841 0 R 1842 0 R] endobj 1845 0 obj [1846 0 R 1844 0 R 1847 0 R 1848 0 R] endobj 1850 0 obj [1849 0 R 1851 0 R 1852 0 R 1853 0 R 1854 0 R 1855 0 R] endobj 1857 0 obj [1856 0 R 1858 0 R 1859 0 R 1860 0 R 1861 0 R 1862 0 R 1865 0 R 1864 0 R 1866 0 R] endobj 1868 0 obj [1867 0 R 1869 0 R 1870 0 R 1871 0 R 1872 0 R 1873 0 R 1874 0 R 1875 0 R 1876 0 R] endobj 1878 0 obj [1877 0 R 1879 0 R 1880 0 R 1881 0 R 1882 0 R 1883 0 R 1884 0 R 1885 0 R 1886 0 R 1887 0 R 1888 0 R 1889 0 R] endobj 1891 0 obj [1890 0 R 1892 0 R 1893 0 R 1894 0 R 1895 0 R 1896 0 R 1897 0 R] endobj 1899 0 obj [1898 0 R 1900 0 R 1901 0 R 1902 0 R 1903 0 R 1904 0 R 1905 0 R 1906 0 R 1907 0 R 1908 0 R 1909 0 R 1910 0 R 1911 0 R] endobj 1913 0 obj [1912 0 R 1914 0 R 1915 0 R 1916 0 R 1917 0 R 1918 0 R 1919 0 R 1920 0 R] endobj 1922 0 obj [1921 0 R 1923 0 R 1924 0 R 1925 0 R 1926 0 R 1927 0 R 1928 0 R 1929 0 R] endobj 1931 0 obj [1930 0 R 1932 0 R 1933 0 R 1934 0 R 1935 0 R 1936 0 R 1937 0 R] endobj 1939 0 obj [1938 0 R 1940 0 R 1941 0 R 1942 0 R 1943 0 R 1944 0 R 1945 0 R 1946 0 R 1947 0 R 1948 0 R 1949 0 R 1950 0 R] endobj 1952 0 obj [1951 0 R 1953 0 R 1954 0 R 1955 0 R 1956 0 R 1957 0 R 1958 0 R 1959 0 R 1960 0 R 1961 0 R 1962 0 R 1963 0 R 1964 0 R 1965 0 R 1966 0 R] endobj 1968 0 obj [1967 0 R 1969 0 R 1970 0 R 1971 0 R 1972 0 R 1973 0 R 1974 0 R 1975 0 R 1976 0 R] endobj 1978 0 obj [1977 0 R 1979 0 R 1980 0 R 1981 0 R 1982 0 R 1983 0 R 1984 0 R 1985 0 R] endobj 1987 0 obj [1986 0 R 1988 0 R 1989 0 R 1990 0 R 1991 0 R 1992 0 R 1993 0 R 1994 0 R 1995 0 R 1996 0 R 1997 0 R 1998 0 R 1999 0 R 2000 0 R] endobj 2002 0 obj [2001 0 R 2003 0 R 2004 0 R 2005 0 R 2006 0 R 2007 0 R 2008 0 R 2009 0 R 2010 0 R 2011 0 R 2012 0 R 2013 0 R 2014 0 R 2015 0 R 2016 0 R] endobj 2018 0 obj [2017 0 R 2019 0 R 2020 0 R 2021 0 R 2022 0 R 2023 0 R] endobj 2026 0 obj [2027 0 R 2025 0 R 2028 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2029 0 R 2030 0 R 2031 0 R 2032 0 R 2033 0 R 2034 0 R] endobj 2036 0 obj [2035 0 R 2037 0 R 2038 0 R 2041 0 R 2040 0 R 2042 0 R 2042 0 R 2042 0 R 2042 0 R 2042 0 R 2042 0 R 2042 0 R 2042 0 R 2042 0 R 2042 0 R 2042 0 R 2042 0 R 2042 0 R 2042 0 R 2042 0 R 2042 0 R 2042 0 R 2042 0 R 2042 0 R 2042 0 R 2042 0 R 2042 0 R 2042 0 R 2042 0 R 2042 0 R 2043 0 R 2043 0 R 2043 0 R 2043 0 R 2043 0 R 2043 0 R 2043 0 R 2043 0 R 2043 0 R 2043 0 R 2043 0 R] endobj 2045 0 obj [2044 0 R 2046 0 R 2046 0 R 2046 0 R 2046 0 R 2046 0 R 2046 0 R 2046 0 R 2046 0 R 2046 0 R 2046 0 R 2046 0 R 2046 0 R 2046 0 R 2046 0 R 2046 0 R 2046 0 R 2046 0 R 2046 0 R 2046 0 R 2048 0 R 2048 0 R 2048 0 R 2048 0 R 2048 0 R 2048 0 R 2048 0 R 2048 0 R 2048 0 R 2048 0 R 2048 0 R 2048 0 R 2048 0 R 2048 0 R 2048 0 R 2048 0 R 2048 0 R 2048 0 R 2048 0 R 2048 0 R 2048 0 R 2048 0 R 2048 0 R 2048 0 R 2048 0 R 2048 0 R 2049 0 R 2050 0 R 2052 0 R 2054 0 R 2053 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2056 0 R 2057 0 R 2057 0 R 2057 0 R 2057 0 R 2057 0 R 2057 0 R 2057 0 R 2057 0 R 2057 0 R 2057 0 R 2057 0 R 2057 0 R 2057 0 R 2047 0 R] endobj 2059 0 obj [2058 0 R 2058 0 R 2058 0 R 2058 0 R 2058 0 R 2058 0 R 2058 0 R 2058 0 R 2058 0 R 2058 0 R 2058 0 R 2058 0 R 2060 0 R 2063 0 R 2062 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2064 0 R 2065 0 R 2066 0 R 2067 0 R 2067 0 R 2067 0 R 2067 0 R 2067 0 R 2067 0 R 2067 0 R 2067 0 R 2067 0 R 2067 0 R 2067 0 R 2067 0 R 2067 0 R 2067 0 R 2067 0 R 2067 0 R 2067 0 R 2067 0 R] endobj 2069 0 obj [2068 0 R 2070 0 R 2070 0 R 2070 0 R 2070 0 R 2070 0 R 2070 0 R 2070 0 R 2070 0 R 2070 0 R 2070 0 R 2070 0 R 2070 0 R 2070 0 R 2070 0 R 2070 0 R 2070 0 R 2070 0 R 2070 0 R 2071 0 R 2072 0 R 2073 0 R 2074 0 R 2076 0 R 2079 0 R 2077 0 R 2080 0 R 2078 0 R 2081 0 R 2082 0 R 2083 0 R] endobj 2085 0 obj [2084 0 R 2086 0 R 2087 0 R 2088 0 R 2089 0 R 2090 0 R 2091 0 R 2092 0 R 2093 0 R 2094 0 R 2095 0 R] endobj 2097 0 obj [2096 0 R 2098 0 R 2099 0 R 2100 0 R 2101 0 R 2102 0 R 2103 0 R 2104 0 R 2105 0 R 2106 0 R] endobj 2108 0 obj [2107 0 R 2109 0 R 2110 0 R 2111 0 R 2112 0 R 2113 0 R 2114 0 R 2115 0 R 2117 0 R 2118 0 R 2119 0 R 2120 0 R 2121 0 R 2122 0 R 2123 0 R 2124 0 R 2116 0 R] endobj 2126 0 obj [2125 0 R 2127 0 R 2128 0 R 2129 0 R 2130 0 R 2131 0 R 2132 0 R 2133 0 R 2134 0 R 2135 0 R] endobj 2137 0 obj [2136 0 R 2138 0 R 2139 0 R 2140 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2141 0 R 2142 0 R 2143 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2144 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2145 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2146 0 R 2147 0 R 2147 0 R 2147 0 R 2147 0 R 2147 0 R 2147 0 R 2147 0 R 2147 0 R 2147 0 R 2147 0 R 2147 0 R 2147 0 R 2147 0 R 2147 0 R 2147 0 R 2147 0 R 2147 0 R 2147 0 R 2147 0 R 2147 0 R 2147 0 R 2147 0 R 2147 0 R 2147 0 R 2147 0 R 2147 0 R 2148 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2149 0 R 2150 0 R 2151 0 R 2152 0 R] endobj 2154 0 obj [2153 0 R 2155 0 R 2156 0 R 2157 0 R 2158 0 R 2159 0 R 2160 0 R 2161 0 R] endobj 2163 0 obj [2162 0 R 2164 0 R 2165 0 R 2166 0 R 2167 0 R 2168 0 R] endobj 2170 0 obj [2169 0 R 2171 0 R 2172 0 R 2173 0 R 2174 0 R 2175 0 R 2176 0 R 2177 0 R 2178 0 R] endobj 2180 0 obj [2179 0 R 2181 0 R 2185 0 R 2186 0 R 2188 0 R 2190 0 R 2191 0 R 2195 0 R 2197 0 R 2199 0 R 2201 0 R 2203 0 R 2204 0 R 2207 0 R 2208 0 R 2209 0 R 2210 0 R 2212 0 R 2213 0 R 2214 0 R 2215 0 R 2217 0 R 2218 0 R 2219 0 R 2220 0 R 2222 0 R 2223 0 R 2224 0 R 2225 0 R 2227 0 R 2228 0 R 2229 0 R 2230 0 R 2232 0 R 2233 0 R 2234 0 R 2235 0 R 2236 0 R 2237 0 R 2238 0 R 2239 0 R 2239 0 R 2239 0 R 2239 0 R 2239 0 R 2239 0 R 2240 0 R 2241 0 R 2242 0 R] endobj 2244 0 obj [2243 0 R 2245 0 R 2246 0 R 2247 0 R 2248 0 R 2249 0 R 2250 0 R 2254 0 R 2255 0 R 2256 0 R 2258 0 R 2259 0 R 2263 0 R 2264 0 R 2265 0 R 2267 0 R 2268 0 R 2269 0 R 2271 0 R 2272 0 R 2274 0 R 2275 0 R 2276 0 R 2277 0 R 2280 0 R 2281 0 R 2282 0 R 2283 0 R 2283 0 R 2283 0 R 2284 0 R 2284 0 R 2286 0 R 2287 0 R 2288 0 R 2289 0 R 2290 0 R 2292 0 R 2293 0 R 2294 0 R 2295 0 R 2296 0 R 2298 0 R 2299 0 R 2300 0 R 2301 0 R 2302 0 R 2304 0 R 2305 0 R 2306 0 R 2307 0 R 2308 0 R 2309 0 R 2310 0 R] endobj 2312 0 obj [2311 0 R 2311 0 R 2311 0 R 2311 0 R 2311 0 R 2311 0 R 2311 0 R 2311 0 R 2311 0 R 2311 0 R 2311 0 R 2311 0 R 2311 0 R 2313 0 R 2313 0 R 2313 0 R 2313 0 R 2313 0 R 2313 0 R 2313 0 R 2313 0 R 2313 0 R 2313 0 R 2313 0 R 2313 0 R 2313 0 R 2313 0 R 2314 0 R 2315 0 R 2316 0 R 2317 0 R 2318 0 R 2319 0 R 2320 0 R 2321 0 R 2322 0 R 2323 0 R] endobj 2325 0 obj [2324 0 R 2326 0 R 2327 0 R 2328 0 R 2329 0 R 2330 0 R 2331 0 R] endobj 2333 0 obj [2332 0 R 2334 0 R 2335 0 R 2336 0 R 2337 0 R 2338 0 R 2341 0 R 2340 0 R 2342 0 R 2342 0 R 2342 0 R 2342 0 R 2342 0 R 2342 0 R 2342 0 R 2342 0 R 2342 0 R 2342 0 R 2342 0 R 2342 0 R 2342 0 R 2342 0 R 2342 0 R 2342 0 R 2342 0 R 2342 0 R 2342 0 R 2342 0 R 2342 0 R 2342 0 R 2342 0 R 2343 0 R 2344 0 R 2344 0 R 2344 0 R 2344 0 R 2344 0 R 2344 0 R 2344 0 R 2344 0 R 2344 0 R 2344 0 R 2344 0 R 2344 0 R 2344 0 R 2344 0 R 2344 0 R 2344 0 R 2344 0 R 2344 0 R 2344 0 R 2344 0 R 2344 0 R 2344 0 R 2344 0 R 2344 0 R 2344 0 R 2344 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R 2345 0 R] endobj 2347 0 obj [2346 0 R 2348 0 R 2349 0 R 2349 0 R 2349 0 R 2349 0 R 2349 0 R 2349 0 R 2349 0 R 2349 0 R 2349 0 R 2349 0 R 2349 0 R 2349 0 R 2349 0 R 2349 0 R 2349 0 R 2349 0 R 2349 0 R 2350 0 R 2350 0 R 2350 0 R 2350 0 R 2350 0 R 2350 0 R 2350 0 R 2350 0 R 2350 0 R 2350 0 R 2350 0 R 2350 0 R 2350 0 R 2350 0 R 2350 0 R 2351 0 R 2352 0 R 2353 0 R 2353 0 R 2353 0 R 2353 0 R 2353 0 R 2353 0 R 2353 0 R 2353 0 R 2353 0 R 2353 0 R 2353 0 R 2353 0 R 2353 0 R 2353 0 R 2353 0 R 2353 0 R 2353 0 R 2353 0 R 2353 0 R 2353 0 R 2353 0 R 2353 0 R 2353 0 R 2353 0 R 2353 0 R 2354 0 R 2355 0 R 2356 0 R 2356 0 R 2356 0 R 2356 0 R 2356 0 R 2356 0 R 2356 0 R 2356 0 R 2356 0 R 2356 0 R 2356 0 R 2356 0 R 2356 0 R 2356 0 R 2356 0 R 2356 0 R 2356 0 R 2356 0 R 2356 0 R 2356 0 R 2356 0 R 2356 0 R] endobj 2358 0 obj [2357 0 R 2359 0 R 2360 0 R 2361 0 R 2361 0 R 2361 0 R 2361 0 R 2361 0 R 2361 0 R 2361 0 R 2361 0 R 2361 0 R 2361 0 R 2361 0 R 2361 0 R 2361 0 R 2361 0 R 2361 0 R 2361 0 R 2361 0 R 2361 0 R 2361 0 R 2361 0 R 2361 0 R 2361 0 R 2361 0 R 2361 0 R 2362 0 R 2363 0 R 2364 0 R 2365 0 R 2365 0 R 2365 0 R 2365 0 R 2365 0 R 2365 0 R 2365 0 R 2365 0 R 2365 0 R 2365 0 R 2365 0 R 2365 0 R 2365 0 R 2365 0 R 2365 0 R 2365 0 R 2365 0 R 2365 0 R 2365 0 R 2365 0 R 2365 0 R 2365 0 R 2366 0 R] endobj 2368 0 obj [2367 0 R 2369 0 R 2370 0 R 2371 0 R 2372 0 R 2373 0 R 2374 0 R 2375 0 R 2376 0 R] endobj 2378 0 obj [2377 0 R 2379 0 R 2380 0 R 2381 0 R 2382 0 R 2383 0 R 2384 0 R 2385 0 R 2386 0 R 2387 0 R 2388 0 R 2389 0 R 2390 0 R 2391 0 R 2392 0 R 2393 0 R 2394 0 R] endobj 2396 0 obj [2395 0 R 2397 0 R 2398 0 R 2400 0 R 2402 0 R 2401 0 R 2403 0 R 2404 0 R 2405 0 R] endobj 2408 0 obj [2409 0 R 2407 0 R 2410 0 R 2411 0 R 2412 0 R 2413 0 R 2414 0 R] endobj 2416 0 obj [2415 0 R 2417 0 R 2418 0 R 2419 0 R 2420 0 R 2421 0 R 2422 0 R 2423 0 R 2424 0 R 2425 0 R] endobj 2427 0 obj [2426 0 R 2428 0 R 2429 0 R 2430 0 R 2431 0 R 2432 0 R 2433 0 R 2434 0 R 2437 0 R 2436 0 R 2438 0 R 2439 0 R 2440 0 R] endobj 2442 0 obj [2441 0 R 2443 0 R 2444 0 R 2445 0 R 2446 0 R 2447 0 R 2448 0 R 2449 0 R 2450 0 R 2451 0 R 2452 0 R 2453 0 R] endobj 2455 0 obj [2454 0 R 2456 0 R 2457 0 R 2458 0 R 2459 0 R 2460 0 R 2461 0 R 2462 0 R] endobj 2464 0 obj [2463 0 R 2465 0 R 2466 0 R 2467 0 R 2468 0 R 2469 0 R 2470 0 R 2471 0 R] endobj 2473 0 obj [2472 0 R 2474 0 R 2475 0 R 2476 0 R 2477 0 R 2478 0 R 2479 0 R 2480 0 R 2481 0 R 2482 0 R 2483 0 R 2484 0 R] endobj 2486 0 obj [2485 0 R 2487 0 R 2488 0 R 2489 0 R 2490 0 R 2491 0 R 2492 0 R 2493 0 R 2496 0 R 2495 0 R 2497 0 R 2497 0 R 2497 0 R 2497 0 R 2497 0 R 2497 0 R 2497 0 R 2497 0 R 2497 0 R 2497 0 R 2497 0 R 2497 0 R 2497 0 R 2497 0 R 2497 0 R 2497 0 R 2497 0 R 2497 0 R 2497 0 R] endobj 2500 0 obj [2501 0 R 2499 0 R 2502 0 R 2503 0 R 2504 0 R 2505 0 R 2505 0 R 2505 0 R 2510 0 R 2507 0 R 2512 0 R 2512 0 R 2512 0 R 2512 0 R 2512 0 R 2512 0 R 2512 0 R 2512 0 R 2512 0 R 2512 0 R 2512 0 R 2512 0 R 2512 0 R 2512 0 R 2513 0 R] endobj 2516 0 obj [2517 0 R 2515 0 R 2518 0 R 2519 0 R 2522 0 R 2521 0 R 2523 0 R 2524 0 R] endobj 2526 0 obj [2525 0 R 2527 0 R 2528 0 R 2529 0 R 2530 0 R 2531 0 R 2532 0 R 2533 0 R 2534 0 R] endobj 2536 0 obj [2535 0 R 2537 0 R 2538 0 R 2539 0 R 2540 0 R 2541 0 R 2542 0 R 2543 0 R 2544 0 R 2545 0 R] endobj 2547 0 obj [2546 0 R 2548 0 R 2549 0 R 2550 0 R 2551 0 R] endobj 2553 0 obj [2552 0 R 2554 0 R 2555 0 R 2556 0 R 2557 0 R 2558 0 R 2559 0 R] endobj 2561 0 obj [2560 0 R 2562 0 R 2562 0 R 2562 0 R 2562 0 R 2562 0 R 2562 0 R 2562 0 R 2562 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2563 0 R 2564 0 R 2564 0 R 2564 0 R 2564 0 R 2564 0 R 2564 0 R 2564 0 R 2564 0 R 2564 0 R 2564 0 R 2564 0 R 2564 0 R 2564 0 R 2564 0 R 2564 0 R 2564 0 R 2564 0 R 2564 0 R 2564 0 R 2564 0 R 2564 0 R 2564 0 R 2564 0 R 2564 0 R 2564 0 R 2564 0 R 2565 0 R 2565 0 R 2565 0 R 2565 0 R 2565 0 R 2565 0 R 2565 0 R 2565 0 R 2565 0 R 2565 0 R 2565 0 R 2565 0 R 2565 0 R 2565 0 R 2565 0 R 2565 0 R 2565 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2566 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2567 0 R 2568 0 R 2569 0 R] endobj 2571 0 obj [2570 0 R 2572 0 R 2573 0 R 2574 0 R 2575 0 R 2576 0 R 2577 0 R 2578 0 R] endobj 2580 0 obj [2579 0 R 2581 0 R 2582 0 R 2583 0 R 2584 0 R 2585 0 R 2586 0 R 2587 0 R] endobj 2589 0 obj [2588 0 R 2590 0 R 2591 0 R 2592 0 R 2594 0 R 2595 0 R] endobj 2597 0 obj [2596 0 R 2598 0 R 2599 0 R 2600 0 R 2601 0 R 2602 0 R 2603 0 R 2604 0 R 2605 0 R 2606 0 R 2607 0 R 2608 0 R 2609 0 R 2610 0 R 2611 0 R 2612 0 R 2613 0 R 2614 0 R 2615 0 R] endobj 2617 0 obj [2616 0 R 2618 0 R 2619 0 R 2620 0 R 2621 0 R 2622 0 R 2623 0 R 2624 0 R 2625 0 R] endobj 2627 0 obj [2626 0 R 2628 0 R 2629 0 R 2630 0 R 2631 0 R 2632 0 R 2633 0 R] endobj 2635 0 obj [2634 0 R 2636 0 R 2637 0 R 2638 0 R 2639 0 R 2640 0 R 2641 0 R 2642 0 R 2643 0 R 2644 0 R 2645 0 R] endobj 2647 0 obj [2646 0 R 2648 0 R 2649 0 R 2650 0 R 2651 0 R 2652 0 R 2653 0 R 2654 0 R 2655 0 R 2656 0 R] endobj 2658 0 obj [2657 0 R 2659 0 R 2660 0 R 2661 0 R 2662 0 R 2663 0 R] endobj 2665 0 obj [2664 0 R 2666 0 R 2667 0 R 2668 0 R 2669 0 R 2670 0 R 2671 0 R] endobj 2673 0 obj [2672 0 R 2674 0 R 2675 0 R 2676 0 R 2677 0 R 2678 0 R 2679 0 R 2680 0 R 2681 0 R 2683 0 R 2684 0 R 2685 0 R 2686 0 R 2687 0 R 2688 0 R 2689 0 R 2690 0 R 2691 0 R 2692 0 R 2693 0 R 2694 0 R] endobj 2696 0 obj [2695 0 R 2697 0 R 2698 0 R 2699 0 R 2700 0 R 2701 0 R 2702 0 R 2703 0 R 2704 0 R 2707 0 R 2706 0 R 2708 0 R 2709 0 R 2710 0 R 2711 0 R 2711 0 R 2711 0 R 2711 0 R 2711 0 R 2711 0 R 2711 0 R 2711 0 R 2711 0 R 2711 0 R 2711 0 R 2711 0 R 2711 0 R 2711 0 R 2711 0 R 2711 0 R 2711 0 R 2711 0 R 2711 0 R 2711 0 R 2711 0 R 2711 0 R 2711 0 R 2711 0 R 2711 0 R 2711 0 R 2712 0 R 2712 0 R 2712 0 R 2712 0 R 2712 0 R 2712 0 R 2712 0 R 2712 0 R 2712 0 R 2712 0 R 2712 0 R 2712 0 R 2712 0 R 2712 0 R 2712 0 R 2712 0 R 2712 0 R 2712 0 R 2712 0 R 2712 0 R 2712 0 R] endobj 2714 0 obj [2713 0 R 2715 0 R 2715 0 R 2715 0 R 2715 0 R 2715 0 R 2715 0 R 2715 0 R 2715 0 R 2715 0 R 2715 0 R 2715 0 R 2715 0 R 2715 0 R 2715 0 R 2715 0 R 2715 0 R 2715 0 R 2715 0 R 2715 0 R 2715 0 R 2715 0 R 2715 0 R 2715 0 R 2715 0 R 2715 0 R 2715 0 R 2715 0 R 2715 0 R 2716 0 R 2716 0 R 2716 0 R 2716 0 R 2716 0 R 2716 0 R 2716 0 R 2716 0 R 2716 0 R 2716 0 R 2716 0 R 2716 0 R 2716 0 R 2716 0 R 2716 0 R 2717 0 R 2718 0 R 2719 0 R 2720 0 R 2721 0 R 2722 0 R 2723 0 R 2724 0 R 2725 0 R 2726 0 R 2727 0 R] endobj 2729 0 obj [2728 0 R 2730 0 R 2731 0 R 2732 0 R 2733 0 R 2734 0 R 2735 0 R 2736 0 R] endobj 2738 0 obj [2737 0 R 2739 0 R 2740 0 R 2741 0 R 2742 0 R 2743 0 R 2744 0 R 2745 0 R] endobj 2747 0 obj [2746 0 R 2748 0 R 2749 0 R 2750 0 R 2751 0 R 2752 0 R 2753 0 R 2754 0 R] endobj 2756 0 obj [2755 0 R 2757 0 R 2758 0 R 2759 0 R 2760 0 R 2761 0 R 2762 0 R 2762 0 R 2762 0 R 2762 0 R 2762 0 R 2762 0 R 2762 0 R 2762 0 R 2762 0 R 2762 0 R 2762 0 R 2762 0 R 2762 0 R 2762 0 R 2762 0 R 2762 0 R 2762 0 R 2762 0 R 2762 0 R 2762 0 R 2762 0 R 2762 0 R 2762 0 R 2762 0 R 2762 0 R 2762 0 R 2762 0 R 2762 0 R 2762 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2763 0 R 2764 0 R 2764 0 R 2764 0 R 2764 0 R 2764 0 R 2764 0 R 2764 0 R 2764 0 R] endobj 2766 0 obj [2765 0 R 2765 0 R 2765 0 R 2765 0 R 2765 0 R 2765 0 R 2767 0 R 2767 0 R 2767 0 R 2767 0 R 2767 0 R 2767 0 R 2767 0 R 2767 0 R 2767 0 R 2767 0 R 2767 0 R 2767 0 R 2767 0 R 2767 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2768 0 R 2770 0 R 2772 0 R 2771 0 R 2773 0 R 2774 0 R 2774 0 R 2774 0 R 2774 0 R 2774 0 R 2774 0 R 2774 0 R 2774 0 R 2774 0 R 2774 0 R 2774 0 R 2774 0 R 2774 0 R 2774 0 R 2774 0 R 2774 0 R 2774 0 R 2774 0 R 2775 0 R 2775 0 R 2775 0 R 2775 0 R 2775 0 R 2775 0 R 2775 0 R 2775 0 R 2775 0 R] endobj 2777 0 obj [2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2776 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2778 0 R 2779 0 R 2779 0 R 2779 0 R 2779 0 R 2779 0 R 2779 0 R 2779 0 R 2779 0 R 2779 0 R 2779 0 R 2779 0 R 2779 0 R 2779 0 R 2779 0 R 2779 0 R 2779 0 R 2779 0 R 2779 0 R 2780 0 R 2780 0 R 2780 0 R 2780 0 R 2780 0 R 2780 0 R 2780 0 R 2780 0 R 2780 0 R 2780 0 R 2780 0 R 2780 0 R 2780 0 R 2780 0 R 2780 0 R 2780 0 R 2780 0 R 2780 0 R 2780 0 R 2781 0 R 2782 0 R 2783 0 R 2784 0 R] endobj 2786 0 obj [2785 0 R 2787 0 R 2788 0 R 2789 0 R 2790 0 R 2791 0 R] endobj 2793 0 obj [2792 0 R 2794 0 R 2795 0 R 2796 0 R 2797 0 R 2798 0 R 2799 0 R 2800 0 R] endobj 2802 0 obj [2801 0 R 2803 0 R 2804 0 R 2805 0 R 2806 0 R 2807 0 R 2808 0 R 2809 0 R] endobj 2811 0 obj [2810 0 R 2812 0 R 2813 0 R 2814 0 R 2815 0 R 2816 0 R 2817 0 R 2818 0 R] endobj 2820 0 obj [2819 0 R 2821 0 R 2822 0 R 2823 0 R] endobj 2825 0 obj [2824 0 R 2826 0 R 2827 0 R 2827 0 R 2827 0 R 2828 0 R 2829 0 R 2830 0 R 2831 0 R 2832 0 R 2833 0 R 2834 0 R 2835 0 R 2836 0 R 2837 0 R 2838 0 R 2839 0 R] endobj 2842 0 obj [2841 0 R 2843 0 R 2844 0 R 2845 0 R 2845 0 R 2845 0 R 2845 0 R 2845 0 R 2845 0 R 2845 0 R 2846 0 R 2847 0 R 2848 0 R 2849 0 R 2850 0 R 2850 0 R 2850 0 R 2850 0 R 2850 0 R 2850 0 R 2850 0 R 2850 0 R 2850 0 R 2850 0 R 2850 0 R 2850 0 R 2850 0 R 2851 0 R 2852 0 R 2852 0 R 2852 0 R 2852 0 R 2852 0 R 2852 0 R 2852 0 R 2852 0 R 2852 0 R 2852 0 R 2853 0 R 2853 0 R 2853 0 R 2853 0 R 2853 0 R 2853 0 R 2853 0 R 2853 0 R 2853 0 R 2853 0 R 2854 0 R 2855 0 R 2856 0 R 2857 0 R 2857 0 R 2857 0 R 2857 0 R 2857 0 R] endobj 2859 0 obj [2858 0 R 2860 0 R 2861 0 R 2862 0 R 2863 0 R 2864 0 R 2865 0 R 2866 0 R 2867 0 R 2868 0 R 2869 0 R] endobj 2871 0 obj [2870 0 R 2872 0 R 2873 0 R 2874 0 R 2875 0 R 2876 0 R 2877 0 R 2878 0 R 2878 0 R 2878 0 R 2878 0 R 2878 0 R 2878 0 R 2878 0 R 2879 0 R 2880 0 R 2881 0 R 2882 0 R 2883 0 R 2884 0 R 2885 0 R 2886 0 R 2887 0 R 2888 0 R 2889 0 R 2890 0 R 2891 0 R] endobj 2893 0 obj [2892 0 R 2894 0 R 2895 0 R 2896 0 R 2897 0 R 2898 0 R 2899 0 R 2900 0 R 2901 0 R 2902 0 R 2903 0 R 2904 0 R 2905 0 R 2906 0 R 2907 0 R 2908 0 R 2909 0 R 2910 0 R 2911 0 R 2912 0 R 2913 0 R 2914 0 R 2915 0 R 2916 0 R 2917 0 R 2918 0 R 2919 0 R 2920 0 R 2921 0 R 2922 0 R 2923 0 R 2924 0 R 2925 0 R 2926 0 R 2927 0 R 2928 0 R 2929 0 R 2929 0 R 2929 0 R 2929 0 R 2929 0 R 2929 0 R 2929 0 R 2929 0 R 2929 0 R 2929 0 R 2929 0 R 2929 0 R 2929 0 R 2929 0 R 2929 0 R 2930 0 R 2931 0 R 2932 0 R 2933 0 R 2934 0 R 2935 0 R 2936 0 R] endobj 2892 0 obj > endobj 2894 0 obj > endobj 2895 0 obj > endobj 2896 0 obj > endobj 2897 0 obj > endobj 2898 0 obj > endobj 2899 0 obj > endobj 2900 0 obj > endobj 2901 0 obj > endobj 2902 0 obj > endobj 2903 0 obj > endobj 2904 0 obj > endobj 2905 0 obj > endobj 2906 0 obj > endobj 2907 0 obj > endobj 2908 0 obj > endobj 2909 0 obj > endobj 2910 0 obj > endobj 2911 0 obj > endobj 2912 0 obj > endobj 2913 0 obj > endobj 2914 0 obj > endobj 2915 0 obj > endobj 2916 0 obj > endobj 2917 0 obj > endobj 2918 0 obj > endobj 2919 0 obj > endobj 2920 0 obj > endobj 2921 0 obj > endobj 2922 0 obj > endobj 2923 0 obj > endobj 2924 0 obj > endobj 2925 0 obj > endobj 2926 0 obj > endobj 2927 0 obj > endobj 2928 0 obj > endobj 2929 0 obj > endobj 2930 0 obj > endobj 2931 0 obj > endobj 2932 0 obj > endobj 2933 0 obj > endobj 2934 0 obj > endobj 2935 0 obj > endobj 2936 0 obj > endobj 473 0 obj > endobj 467 0 obj >/MediaBox[0 0 595.BykQgMK7CA!0uB&E*[email protected]աv7JQ| .𬵗ݓXB`J)9:ݶjzRuŨ,WPz%'Ncxn& )W:;ȵ8LQuTw1L>)fG&rsuK &"#"P1CEјNέYE1'/aF7QꦏE 8_QmG؂6j\l:_=dy-Sm~>I%mE243UwhԇT5ˎ{ͻtn %r"SgԖy݅2o;N-݁.Gċi3dM4 \}R7?|ϋ6Cc0r#A؁4\i5#g>:ȤHd+p

    Тюнинг двигателя: основные способы модернизации ДВС

    В статье освещены основные способы тюнинга двигателя, отмечены важные моменты, которые необходимо соблюдать при проведении доработок, даны некоторые общие рекомендации.

    Тюнингом называется доработка двигателя в целях увеличения его мощности и эффективности. Модернизация происходит за счет замены заводских деталей, установки новых механизмов и улучшения уже имеющихся систем.

    Двигатели современных автомобилей с электронным блоком управления подвергаются также чип-тюнингу – корректировке программы бортового компьютера. Такой метод позволяет повысить мощность агрегата без наддува на 10 %, с наддувом – на 30-40 %.

    Достичь наилучших результатов форсирования двигателя можно только в специализированных сервисных центрах, оборудованных профессиональным инструментом и качественными запчастями.

    Каждый автомобиль имеет свои конструктивные нюансы, поэтому индивидуальный подход к ТС – залог его оптимальной доработки. По большому счету, в улучшении параметров нуждаются только двигатели гоночных автомобилей, в остальных случаях тюнинг не всегда целесообразен, так как требует больших затрат при спорных результатах.

    Далее в статье освещены основные способы модернизации двигателя, отмечены важные моменты, которые необходимо соблюдать при проведении работ, даны общие рекомендации по тюнингу.

    Основные способы тюнинга двигателя

    Существует два основных способа повышения мощности двигателя:

    • Снижение массы движущихся частей
    • Установка новых элементов

    Так, к примеру, стандартные детали двигателя заменяют на облегченные (поршни, шкивы, маховик и пр.), вместо механических систем устанавливают электрические. Некоторые автовладельцы (особенно это касается водителей гоночных автомобилей) в целях снижения веса снимают с ТС все навесное оборудование.

    Рассмотрим наиболее распространенные методы совершенствования двигателя подробнее.


    Смена головки блока цилиндров

    Сегодня существует множество вариантов головок блока цилиндра, предназначенных специально для тюнинга двигателя. Их соединительные разъемы и патрубки имеют такую же конструкцию, как и стандартные ГБЦ, поэтому при их установке сложностей не возникает.

    Помимо специальных головок, выпускаются модифицированные модели для конкретных автомобилей. Стоят они дешевле тюнинговых, однако также привносят новые возможности для двигателя.

    Современные ГБЦ с вертикальным и горизонтальным вихрем увеличивают скорость поступления воздуха и в улучшают общие характеристики воздушного потока.


    Расточка блока цилиндров

    Процедура расточки цилиндров помогает увеличить общий объем двигателя. Операция по увеличению сечения гильз изнутри осуществляется только на специализированном высокоточном станке, позволяющем сохранить их правильную геометрию.

    Для расточенных цилиндров подбираются бОльшие по диаметру поршни, так как только идеальное совмещение этих деталей обеспечивает необходимый уровень компрессии двигателя.


    Тюнинг клапанов двигателя

    Клапаны двигателя пропускают и выпускают воздушный поток. Временем открытия клапанов управляет распределительный вал, а степенью – толкатель.

    Впускные клапаны не должны иметь острых углов и "заусенцев", препятствующих прохождению воздуха, поэтому эти элементы должны быть тщательно отполированы. Важно, чтобы клапаны размещались в посадочных местах плотно и без зазоров.

    Увеличить количество поступающего воздуха можно путем расширения впускных отверстий или установки большего количества клапанов (16, 20, 24, 32 и т.д.). Последний способ наиболее актуален, так как увеличенные отверстия и большие клапаны уменьшают скорость воздушного потока на низких оборотах, что негативно отражается на крутящем моменте.

    Помимо увеличения количества клапанов, устанавливают специальные тюнинговые клапанные пружины.


    Замена штатного распредвала

    Не менее популярный способ тюнинга, чем расточка блока цилиндров.

    Распределительный вал управляет открытием и закрытием клапанов двигателя. Время открытия задается профилем кулачков вала.

    В отличие от обычных распредвалов, тюнинговые имеют более высокие и широкие кулачки, позволяющие клапанам подниматься выше и находится в открытом состоянии дольше. Это способствует подаче большего количества топливно-воздушной смеси.

    Существует несколько видов модернизированных распределительных валов для умеренной, быстрой и спортивной езды:

    • Mild Road Cams: подходят практически для всех автомобилей, улучшают приемистость и мощность двигателя
    • Fast Road Cams: идеальны для скоростных автомобилей, увеличивают мощность двигателя, однако нестабильно работают на холостом ходу
    • Competition Cams: предназначены для спортивных автомобилей; эффективно повышают мощность двигателя, однако увеличивают расход топлива, обладают неровным холостым ходом и быстро изнашиваются

    Спортивные распредвалы непригодны для использования в городских условиях, так как характеризуются максимальной отдачей в области почти предельных частот вращения двигателя (2-3 тыс. оборотов).


    Доработка топливной системы

    Для повышения мощности двигателя очень важно увеличить количество топливно-воздушной смеси, поступающей в камеру сгорания. Сделать это можно путем доработки топливной системы автомобиля: установки более производительного насоса, топливной рампы с мощными инжекторами, усовершенствования топливного регулятора.

    После проведения этих мероприятий обычно требуется использовать бензин с максимальным октановым числом.


    Использование строкер-китов

    Многие компании производят готовые комплекты (поршни, кольца, шатуны, подшипники и коленвал) для механического тюнинга двигателя. В основном, эти наборы ориентированы на американские восьмицилиндровые двигатели. Их использование изменяет длину хода поршня, увеличивает крутящий момент и в результате добавляет силовому агрегату 10-15 % объема.

    Все детали строкер-китов изготавливаются по передовым спортивным технологиям, поэтому имеют больший запас прочности и износостойкости.

    В зависимости от оборотистости двигателя существует несколько базовых вариантов строкер-китов с деталями разной высоты, ширины, углом поворота кулачка и прочими характеристиками.


    Повышение компрессии двигателя

    Повысить компрессию в цилиндрах можно разными способами. Одним из них является использование так называемых высококомпрессионных поршней. Обычно они выполнены из алюминиевого сплава с добавлением кремния, имеют увеличенное компрессионное кольцо и выпуклость на днище.

    Высококомпрессионные поршни создают более высокое давление, чем стандартные, чем ускоряют процесс сгорания топлива и повышают мощность двигателя. В процессе работы они выдерживают очень большие нагрузки и температуры, поэтому могут использоваться для комплектации автомобилей с самыми мощными двигателями.

    Снизить износ дорогостоящих высококомпрессионных и стандартных поршней помогает их обработка специальными антифрикционными покрытиями с дисульфидом молибдена и графитом.

    Ранее они наносились только на заводе-изготовителе, сейчас их применение не ограничено промышленными рамками – защитные составы доступны в компактном и удобном аэрозольном формате.

    По-настоящему уникальным средством для восстановления изношенного заводского покрытия является MODENGY Для деталей ДВС. Оно защищает детали при "масляном голодании" и перегреве, предотвращает появление задиров на сопряженных поверхностях и максимально снижает их износ.

    Состав используется для юбок поршней, вкладышей распредвалов, дроссельных заслонок, шлицевых соединений, штоков клапанов.

    Покрытие наносится после предварительного очищения и обезжиривания поверхностей Специальным очистителем-активатором MODENGY, сохнет при комнатной температуре и не требует возобновления в дальнейшем.

    Уровень компрессии двигателя можно увеличить не только с помощью применения специальных поршней, но и путем шлифовки головки блока цилиндров. При этом стандартная прокладка ГБЦ меняется на тюнинговую (выдерживающую избыточное давление).

    Различные методы повышения давления не следует применять в двигателях с турбонаддувом – для них свойственна малая компрессия, в противном случае возникает риск детонации и повреждения силового агрегата.


    Установка турбокомпрессора или турбонагнетателя

    Принудительно закачать во впускной коллектор больше воздуха и создать тем самым более высокое давление могут 2 устройства: турбокомпрессор и турбонагнетатель.

    Турбокомпрессор увеличивает мощность двигателя только при достижении нужного числа оборотов. Промежуток времени от старта двигателя до этого момента называется турболагом.

    Турбонагнетатель начинает свою работу сразу, однако при этом отнимает около 30 % мощности силового агрегата.


    Установка прямоточного глушителя

    Чтобы выхлопные газы легче отделялись от двигателя с турбокомпрессором, устанавливается глушитель без катализатаров, с ровными изгибами или вообще без них. Он оказывает наименьшее сопротивление газам, и при комплексном подходе к тюнингу выхлопной системы прибавляет 15-20 % к мощности двигателя.


    Установка дополнительного радиатора

    Мощный модернизированный двигатель испытывает экстремальные нагрузки и температуры, поэтому требует более совершенной системы охлаждения.

    Именно поэтому, чтобы продлить срок службы силового агрегата после доработки, желательно установить отдельный масляный радиатор и тосольный радиатор большего размера.


    Общие рекомендации

    Затраты на тюнинг практически не ограничены, поэтому, прежде, чем приступать к доработке двигателя, определитесь с конкретными целями.

    Перед покупкой запчастей для тюнинга обязательно проконсультируйтесь у квалифицированных специалистов, а лучше доверьте им весь процесс.

    Внимательно относитесь к автомобилю после тюнинга, не пренебрегайте советами мастеров, вовремя меняйте масло и проходите диагностику.

    Помните, что в некоторых случаях замена двигателя целесообразнее его доработки.

    Механизмы и системы обслуживающие двигатель внутреннего сгорания

    Впуск в цилиндр четырехтактного дизеля воздуха и выпуск из него отработавших газов совершаются соответственно через впускной и выпускной клапаны с механическим управлением. Продолжительность открытия и закрытия клапанов регулируется с помощью распределительного вала и механизма газораспределения. Распределительный вал получает вращение от коленчатого вала двигателя через зубчатые шестерни или с помощью цепной передачи. У многих быстроходных дизелей распределительный вал установлен на уровне крышек цилиндров либо непосредственно под клапанами.

    На рис. 63 показан этот вариант расположения распределительного вала. Вращение от коленчатого вала к распределительному передается вертикальным промежуточным валом 6 и шестернями 8, 7, 4 и 5. Открытие клапана осуществляется с помощью рычага 2, имеющего ось качания 1 и ролик 3, который при вращении распределительного вала перекатывается по поверхности закрепленной на нем кулачковой шайбы. При подъеме конца рычага с роликом другой его конец опускается и открывает клапан; закрытие клапана осуществляется пружиной, установленной на его штоке и сжимающейся при открытии клапана.


    Рис. 63. Механизм газораспределителя быстроходного дизеля.

    У многих двигателей средней и малой мощности передача вращения распределительному валу производится цилиндрическими шестернями (см. рис. 54): ведущей 17, установленной на коленчатом валу 16, паразитной 15 и ведомой 18 — на распределительном валу. Распределительный вал 13 с насаженными на него кулачками 14 установлен примерно на уровне средней части картера 2. Ввиду низкого расположения распределительного вала привод клапана осуществляется при помощи длинной штанги 7 и двуплечего рычага 5.

    Впускные и выпускные клапаны механизма газораспределения работают в тяжелых условиях, поэтому материал для их изготовления должен обладать жаростойкостью, высокой прочностью, ударной вязкостью и износостойкостью.

    Распределительный вал и кулачковые шайбы также являются ответственными деталями механизма распределения. В быстроходных двигателях распределительный вал изготовлен заодно с кулачками. В тихоходных двигателях шайбы изготовляют в виде отдельных деталей и закрепляют на распределительном валу с помощью шпонок или специальных зажимных приспособлений, позволяющих производить более точную установку каждой шайбы. Расположение кулачковых шайб на распределительном валу (угол их заклинивания), а также их профиль должны обеспечивать определенную последовательность работы клапанов, согласованную с продолжительностью тактов цикла в каждом цилиндре двигателя и с последовательностью работы цилиндров. Углы заклинивания кулачковых шайб согласовывают с расположением кривошипов коленчатого вала.

    У реверсивных двигателей для привода каждого клапана имеются две кулачковые шайбы — переднего и заднего хода, так как при реверсе изменяется газораспределение. Кроме кулачковых шайб впускного и выпускного клапанов на распределительном валу закреплены шайбы топливных насосов высокого давления и детали распределителя пускового воздуха, а также различные шестерни.

    В двухтактных двигателях конструкция органов газораспределения определяется системой продувки цилиндров.

    Топливная система судовой дизельной установки включает: танки для хранения запасов топлива, расходные цистерны, топливоперекачивающие насосы для перекачки топлива из танков в расходные цистерны, комплекс топливоподготовки, топливо-подкачивающие насосы для подачи топлива к топливным насосам высокого давления, фильтры и форсунки.

    В комплекс топливоподготовки входят сепараторы в комплекте с насосами и подогревателями, фильтры грубой и тонкой очистки топлива и отстойные цистерны.

    Топливоподкачивающий насос предназначен для создания в трубопроводе избыточного давления, необходимого для преодоления сопротивления трубопровода и для обеспечения подпора топливным насосам высокого давления.

    Топливный насос высокого давления (ТНВД) служит для подачи дозированного количества топлива высокого давления через форсунку в камеру сгорания рабочего цилиндра в момент, точно согласованный с положением поршня в цилиндре. При этом необходимо обеспечивать постоянное количество подаваемого топлива на данном режиме работы и определенную продолжительность подачи. Эти насосы бывают индивидуальными и многосекционными (блочными). Индивидуальный ТНВД обеспечивает работу только одного цилиндра, а блочный — работу всех цилиндров дизеля. Такой насос помимо общих требований, предъявляемых к ТНВД, должен обеспечивать также определенную очередность впрыска топлива в цилиндры дизеля.

    По способу дозирования топлива и по другим признакам различают топливные насосы плунжерного, золотникового и клапанного типов, с газовыми толкателями и др. Наибольшее применение для судовых двигателей получили топливные насосы плунжерного и золотникового типов.

    На рис. 64 показан топливный насос плунжерного типа. Корпус 6 насоса установлен на кронштейне блока цилиндров. Плунжер 1 насоса, расположенный во втулке 4, перемещается под действием толкателя 17 при набегании ролика 18 на выступ кулачковой шайбы. Пружина 2 обеспечивает плавное перемещение плунжера 1 вниз, упираясь в торец стопорной гайки 3, которая закрепляет втулку 4. В корпусе насоса, в нижней части штуцера 7 расположен нагнетательный клапан 5, перпендикулярно к которому слева установлен предохранительный клапан. Всасывающий клапан 10 расположен вертикально, справа от нагнетательного. Контргайка 8 закрывает отверстие в месте установки всасывающего клапана.


    Рис. 64. Топливный насос высокого давления.

    Топливо, поступая через штуцер 9, заполняет рабочую полость насоса при открытом всасывающем клапане, который работает с помощью штока 12, расположенного во втулке 11 и упирающегося в толкатель 14 штока клапана. На эксцентрик 15, установленный на конце отсечного валика (на рисунке не виден), опирается двуплечий рычаг 16, левый конец которого шарнирно соединен с толкателем 17 плунжера, а правый упирается в толкатель 14 штока клапана.

    Продолжительность хода плунжера 1 от момента закрытия всасывающего клапана до момента достижения ВМТ определяет количество топлива, подаваемого в цилиндр двигателя за каждый рабочий цикл. Эта продолжительность зависит от зазора между хвостовиком всасывающего клапана и штоком 12. Для изменения зазора, а вместе с этим и количества подаваемого топлива в зависимости от изменения нагрузки, приложенной к дизелю, поворачивают отсечной валик, а вместе с ним эксцентрик 15, и тем самым поднимают или опускают правый конец рычага 16. Индивидуальное регулирование зазора в каждом насосе с целью равномерного распределения топлива по цилиндрам достигается поворотом болта 13, головка которого упирается в тарелку штока 12. Кулачковая шайба симметричного профиля, от которой получает движение толкатель 17, обеспечивает работу двигателя как на передний, так и на задний ход. Применение всасывающего клапана 10 в качестве перепускного упрощает конструкцию насоса и повышает надежность его работы.

    Форсунка служит для распыливания топлива, поступающего от ТНВД, в камере сгорания дизеля. В настоящее время применяются исключительно форсунки закрытого типа, т. е. такие, у которых сопловые отверстия открываются лишь на период впрыска топлива. Запорным органом в них служит игла форсунки, управление которой осуществляется автоматически — давлением самого топлива.

    На рис. 65, а показан общий вид закрытой форсунки. Корпус 8 форсунки вставлен в центральное отверстие крышки цилиндра и закреплен шпильками. Топливо нагнетается в форсунку через штуцер, ввертываемый в отверстие корпуса в направлении, указанном на рисунке стрелкой. По каналу 7 в корпусе топливо направляется в иглодержатель 3 иглы 2. Съемный распылитель 1, имеющий от семи до девяти сопловых отверстий диаметром 0,15—0,3 мм, закреплен гайкой 5.

    Существуют различные конструкции распылителей форсунок; наиболее распространенная показана на рис. 65, б.


    Рис. 65. Устройство закрытой форсунки.

    Давление топлива, при котором происходит подъем иглы 2, регулируется пружиной 12, установленной в колпачке 9 с гайкой 11 и пробкой 10. Игла перемещается в отверстиях иглодержателя 3 и плотно прилегает к его стенкам (зазор составляет 1,5—2 мкм). Такой характер сопряжения достигается притиркой. Наибольший подъем (ход) иглы составляет 0,4—0,6 мм. У данной форсунки он ограничен втулкой 4, запрессованной в корпусе форсунки. Возврат иглы на место происходит под давлением пружины через штангу 6. Прокачивание форсунки топливом с целью удаления из нее воздуха производят по каналу 15, закрытому болтом 13 с шариковым клапаном 14 на конце.

    Для повышения надежности работы форсунок на дизелях с диаметром цилиндра свыше 400 мм рекомендуется применять форсунки с охлаждением. Обычно отвод теплоты от форсунок производят тем же топливом, которое поступает для работы дизеля.

    В последнее время на некоторых дизелях стали применять форсунки с гидравлически запираемой иглой, менее чувствительные к качеству топлива. У этих форсунок игла прижимается к седлу распылителя давлением жидкости — гидросмеси. В качестве гидросмеси применяют смесь смазочного масла с топливом. В такой форсунке отсутствуют пружина, штанга и детали регулировки пружины, что существенно упрощает конструкцию и повышает надежность эксплуатации.

    Фильтры входят в состав топливной системы. Между расходным топливным баком и топливоподкачивающим насосом обычно устанавливают сетчатый фильтр грубой очистки, а между топливоподкачивающим насосом и ТНВД — фильтры тонкой очистки низкого давления. Механические включения и продукты окисления топлива удаляют из корпуса фильтра периодической его очисткой или через кран в нижней части корпуса. Фильтрующим материалом в фильтрах низкого Давления является войлок в виде тонких и толстых пластин, надетых на сетчатый каркас, либо специальные фильтровальные ткани и материалы. Фильтр тонкой очистки высокого давления устанавливают перед форсункой или непосредственно в ее корпусе; он служит для предохранения сопловых отверстий форсунки от засорения. Здесь фильтрующим элементом является прошлифованный цилиндрический стержень с продольными каналами либо вставка цилиндрической или конической формы, полученная путем спекания большого количества латунных шариков диаметром 0,25 мм.

    Система смазки состоит из циркуляционных масляных насосов, фильтров грубой и тонкой очистки, емкостей для масла, масляного холодильника и связывающих все эти элементы трубопроводов. Назначение системы смазки изложено в гл. X.

    Система охлаждения предназначена для подачи охлаждающей жидкости к наиболее нагретым деталям и узлам двигателя, а также для охлаждения масла и наддувочного или продувочного воздуха в соответствующих холодильниках. В качестве охлаждающих жидкостей используют пресную и забортную воду и только для охлаждения головок поршней дизелей большой мощности — масло.

    Водяная система охлаждения может быть проточной (одноконтурной) и замкнутой (двухконтурной). При проточной системе через полости охлаждения двигателя прокачивается забортная вода, поступающая через кингстон. Охладив цилиндры, крышки цилиндров, выпускной коллектор и смазочное масло, эта вода сливается за борт. При замкнутой системе охлаждение двигателя осуществляется пресной, а в ряде случаев и дистиллированной водой, циркулирующей по замкнутому кругу (внутренний контур). В свою очередь охлаждение пресной воды производится забортной водой в специальном холодильнике (внешний контур). В настоящее время для большинства дизелей применяются замкнутые системы охлаждения.

    Двигатель внутреннего сгорания - Energy Education

    Двигатели внутреннего сгорания (ДВС) являются наиболее распространенной формой тепловых двигателей, поскольку они используются в транспортных средствах, лодках, кораблях, самолетах и ​​поездах. Они названы так потому, что топливо воспламеняется для выполнения работы внутри двигателя. [1] В качестве выхлопных газов выбрасывается та же смесь топлива и воздуха. Это можно сделать с помощью поршня (так называемого поршневого двигателя) или турбины.

    Закон идеального газа

    Тепловые двигатели внутреннего сгорания работают по принципу закона идеального газа: [math] pV = nRT [/ math].Повышение температуры газа увеличивает давление, которое заставляет газ расширяться. [1] Двигатель внутреннего сгорания имеет камеру, в которую добавлено топливо, которое воспламеняется для повышения температуры газа.

    Когда в систему добавляется тепло, это заставляет внутренний газ расширяться. В поршневом двигателе это заставляет поршень подниматься (см. Рисунок 2), а в газовой турбине горячий воздух нагнетается в камеру турбины, вращая турбину (Рисунок 1). Прикрепив поршень или турбину к распределительному валу, двигатель может преобразовывать часть энергии, поступающей в систему, в полезную работу. [2] Для сжатия поршня в двигателе прерывистого внутреннего сгорания двигатель выпускает газ. Затем используется радиатор, чтобы система работала при постоянной температуре. Газовая турбина, которая использует непрерывное горение, просто выбрасывает свой газ непрерывно, а не по циклу.

    Поршни и турбины

    Рисунок 1. Схема газотурбинного двигателя. [3]

    Двигатель, в котором используется поршень , называется двигателем внутреннего сгорания прерывистого действия , тогда как двигатель, в котором используется турбина , называется двигателем непрерывного внутреннего сгорания .Разница в механике очевидна из-за названий, но разница в использовании менее очевидна.

    Поршневой двигатель чрезвычайно отзывчив по сравнению с турбиной, а также более экономичен при низкой мощности. Это делает их идеальными для использования в транспортных средствах, так как они также запускаются быстрее. И наоборот, турбина имеет превосходное отношение мощности к массе по сравнению с поршневым двигателем, а ее конструкция более надежна для продолжительной работы с высокой выходной мощностью. Турбина также работает лучше, чем поршневой двигатель без наддува, на больших высотах и ​​при низких температурах.Его легкий вес, надежность и возможность работы на большой высоте делают турбины предпочтительным двигателем для самолетов. Турбины также широко используются на электростанциях для выработки электроэнергии.

    Двигатель четырехтактный

    главная
    Рис. 2. 4-х тактный двигатель внутреннего сгорания. 1: впрыск топлива, 2: зажигание, 3: расширение (работа выполнена), 4: выхлоп. [4]

    Хотя существует множество типов двигателей внутреннего сгорания, четырехтактный поршневой двигатель (рис. 2) является одним из самых распространенных.Он используется в различных автомобилях (которые, в частности, используют бензин в качестве топлива), таких как автомобили, грузовики и некоторые мотоциклы. Четырехтактный двигатель обеспечивает один рабочий ход на каждые два цикла поршня. Справа есть анимация четырехтактного двигателя и дальнейшее объяснение процесса ниже.

    1. В камеру впрыскивается топливо.
    2. Загорается топливо (в дизельном двигателе это происходит иначе, чем в бензиновом).
    3. Этот огонь толкает поршень, что является полезным движением.
    4. Отходы химикатов, по объему (или массе) это в основном водяной пар и двуокись углерода. Могут быть загрязнители, а также окись углерода от неполного сгорания.

    Двухтактный двигатель

    главная
    Рисунок 3. 2-тактный двигатель внутреннего сгорания [5]

    Как следует из названия, системе требуется всего два движения поршня для выработки энергии. Основным отличительным фактором, который позволяет двухтактному двигателю работать только с двумя движениями поршня, является то, что выпуск и впуск газа происходят одновременно, [6] , как показано на Рисунке 3.Сам поршень используется в качестве клапана системы вместе с коленчатым валом для направления потока газов. Кроме того, из-за частого контакта с движущимися компонентами топливо смешивается с маслом для добавления смазки, что обеспечивает более плавный ход. В целом двухтактный двигатель содержит два процесса:

    1. Топливно-воздушная смесь добавляется и поршень движется вверх (сжатие). Впускной канал открывается из-за положения поршня, и топливовоздушная смесь поступает в удерживающую камеру.Свеча зажигания воспламеняет сжатое топливо и начинает рабочий такт.
    2. Нагретый газ оказывает высокое давление на поршень, поршень движется вниз (расширение), отходящее тепло отводится.

    Роторный двигатель (Ванкеля)

    главная
    Рисунок 4. Цикл роторного двигателя. Он всасывает воздух / топливо, сжимает его, воспламеняется, обеспечивая полезную работу, а затем выпускает газ. [7]

    В двигателе этого типа имеется ротор (внутренний круг обозначен буквой «B» на рисунке 4), который заключен в корпус овальной формы.Он выполняет стандартные этапы четырехтактного цикла (впуск, сжатие, зажигание, выпуск), однако эти этапы выполняются 3 раза за один оборот ротора , создавая три такта мощности за один оборот .

    Для дальнейшего чтения

    Список литературы

    1. 1.0 1.1 Р. Д. Найт, «Тепловые двигатели и холодильники» в журнале Физика для ученых и инженеров: стратегический подход, 3-е изд. Сан-Франциско, США: Pearson Addison-Wesley, 2008, гл.19, сек 2, с. 530
    2. ↑ Р. А. Хинрихс и М. Кляйнбах, «Тепло и работа», в Энергия: ее использование и окружающая среда , 5-е изд. Торонто, Онтарио. Канада: Брукс / Коул, 2013, глава 4, стр.93-122
    3. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/4/4c/Jet_engine.svg
    4. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/d/dc/4StrokeEngine_Ortho_3D_Small.gif
    5. ↑ "Файл: Двухтактный двигатель.gif - Wikimedia Commons ", Commons.wikimedia.org, 2018. [Online]. Доступно: https://commons.wikimedia.org/wiki/File:Two-Stroke_Engine.gif.[ Дата обращения: 17 мая 2018 г.].
    6. ↑ С. Ву, Термодинамика и тепловые циклы. Нью-Йорк: Nova Science Publishers, 2007.
    7. ↑ Wikimedia Commons [Online], доступно: http://upload.wikimedia.org/wikipedia/commons/f/fc/Wankel_Cycle_anim_en.gif

    Двигатель внутреннего сгорания - Energy Education

    Двигатели внутреннего сгорания (ДВС) являются наиболее распространенной формой тепловых двигателей, поскольку они используются в транспортных средствах, лодках, кораблях, самолетах и ​​поездах.Они названы так потому, что топливо воспламеняется для выполнения работы внутри двигателя. [1] В качестве выхлопных газов выбрасывается та же смесь топлива и воздуха. Это можно сделать с помощью поршня (так называемого поршневого двигателя) или турбины.

    Закон идеального газа

    Тепловые двигатели внутреннего сгорания работают по принципу закона идеального газа: [math] pV = nRT [/ math]. Повышение температуры газа увеличивает давление, которое заставляет газ расширяться. [1] Двигатель внутреннего сгорания имеет камеру, в которую добавлено топливо, которое воспламеняется для повышения температуры газа.

    Когда в систему добавляется тепло, это заставляет внутренний газ расширяться. В поршневом двигателе это заставляет поршень подниматься (см. Рисунок 2), а в газовой турбине горячий воздух нагнетается в камеру турбины, вращая турбину (Рисунок 1). Прикрепив поршень или турбину к распределительному валу, двигатель может преобразовывать часть энергии, поступающей в систему, в полезную работу. [2] Для сжатия поршня в двигателе прерывистого внутреннего сгорания двигатель выпускает газ.Затем используется радиатор, чтобы система работала при постоянной температуре. Газовая турбина, которая использует непрерывное горение, просто выбрасывает свой газ непрерывно, а не по циклу.

    Поршни и турбины

    Рисунок 1. Схема газотурбинного двигателя. [3]

    Двигатель, в котором используется поршень , называется двигателем внутреннего сгорания прерывистого действия , тогда как двигатель, в котором используется турбина , называется двигателем непрерывного внутреннего сгорания .Разница в механике очевидна из-за названий, но разница в использовании менее очевидна.

    Поршневой двигатель чрезвычайно отзывчив по сравнению с турбиной, а также более экономичен при низкой мощности. Это делает их идеальными для использования в транспортных средствах, так как они также запускаются быстрее. И наоборот, турбина имеет превосходное отношение мощности к массе по сравнению с поршневым двигателем, а ее конструкция более надежна для продолжительной работы с высокой выходной мощностью. Турбина также работает лучше, чем поршневой двигатель без наддува, на больших высотах и ​​при низких температурах.Его легкий вес, надежность и возможность работы на большой высоте делают турбины предпочтительным двигателем для самолетов. Турбины также широко используются на электростанциях для выработки электроэнергии.

    Двигатель четырехтактный

    главная
    Рис. 2. 4-х тактный двигатель внутреннего сгорания. 1: впрыск топлива, 2: зажигание, 3: расширение (работа выполнена), 4: выхлоп. [4]

    Хотя существует множество типов двигателей внутреннего сгорания, четырехтактный поршневой двигатель (рис. 2) является одним из самых распространенных.Он используется в различных автомобилях (которые, в частности, используют бензин в качестве топлива), таких как автомобили, грузовики и некоторые мотоциклы. Четырехтактный двигатель обеспечивает один рабочий ход на каждые два цикла поршня. Справа есть анимация четырехтактного двигателя и дальнейшее объяснение процесса ниже.

    1. В камеру впрыскивается топливо.
    2. Загорается топливо (в дизельном двигателе это происходит иначе, чем в бензиновом).
    3. Этот огонь толкает поршень, что является полезным движением.
    4. Отходы химикатов, по объему (или массе) это в основном водяной пар и двуокись углерода. Могут быть загрязнители, а также окись углерода от неполного сгорания.

    Двухтактный двигатель

    главная
    Рисунок 3. 2-тактный двигатель внутреннего сгорания [5]

    Как следует из названия, системе требуется всего два движения поршня для выработки энергии. Основным отличительным фактором, который позволяет двухтактному двигателю работать только с двумя движениями поршня, является то, что выпуск и впуск газа происходят одновременно, [6] , как показано на Рисунке 3.Сам поршень используется в качестве клапана системы вместе с коленчатым валом для направления потока газов. Кроме того, из-за частого контакта с движущимися компонентами топливо смешивается с маслом для добавления смазки, что обеспечивает более плавный ход. В целом двухтактный двигатель содержит два процесса:

    1. Топливно-воздушная смесь добавляется и поршень движется вверх (сжатие). Впускной канал открывается из-за положения поршня, и топливовоздушная смесь поступает в удерживающую камеру.Свеча зажигания воспламеняет сжатое топливо и начинает рабочий такт.
    2. Нагретый газ оказывает высокое давление на поршень, поршень движется вниз (расширение), отходящее тепло отводится.

    Роторный двигатель (Ванкеля)

    главная
    Рисунок 4. Цикл роторного двигателя. Он всасывает воздух / топливо, сжимает его, воспламеняется, обеспечивая полезную работу, а затем выпускает газ. [7]

    В двигателе этого типа имеется ротор (внутренний круг обозначен буквой «B» на рисунке 4), который заключен в корпус овальной формы.Он выполняет стандартные этапы четырехтактного цикла (впуск, сжатие, зажигание, выпуск), однако эти этапы выполняются 3 раза за один оборот ротора , создавая три такта мощности за один оборот .

    Для дальнейшего чтения

    Список литературы

    1. 1.0 1.1 Р. Д. Найт, «Тепловые двигатели и холодильники» в журнале Физика для ученых и инженеров: стратегический подход, 3-е изд. Сан-Франциско, США: Pearson Addison-Wesley, 2008, гл.19, сек 2, с. 530
    2. ↑ Р. А. Хинрихс и М. Кляйнбах, «Тепло и работа», в Энергия: ее использование и окружающая среда , 5-е изд. Торонто, Онтарио. Канада: Брукс / Коул, 2013, глава 4, стр.93-122
    3. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/4/4c/Jet_engine.svg
    4. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/d/dc/4StrokeEngine_Ortho_3D_Small.gif
    5. ↑ "Файл: Двухтактный двигатель.gif - Wikimedia Commons ", Commons.wikimedia.org, 2018. [Online]. Доступно: https://commons.wikimedia.org/wiki/File:Two-Stroke_Engine.gif.[ Дата обращения: 17 мая 2018 г.].
    6. ↑ С. Ву, Термодинамика и тепловые циклы. Нью-Йорк: Nova Science Publishers, 2007.
    7. ↑ Wikimedia Commons [Online], доступно: http://upload.wikimedia.org/wikipedia/commons/f/fc/Wankel_Cycle_anim_en.gif

    Двигатель внутреннего сгорания - Energy Education

    Двигатели внутреннего сгорания (ДВС) являются наиболее распространенной формой тепловых двигателей, поскольку они используются в транспортных средствах, лодках, кораблях, самолетах и ​​поездах.Они названы так потому, что топливо воспламеняется для выполнения работы внутри двигателя. [1] В качестве выхлопных газов выбрасывается та же смесь топлива и воздуха. Это можно сделать с помощью поршня (так называемого поршневого двигателя) или турбины.

    Закон идеального газа

    Тепловые двигатели внутреннего сгорания работают по принципу закона идеального газа: [math] pV = nRT [/ math]. Повышение температуры газа увеличивает давление, которое заставляет газ расширяться. [1] Двигатель внутреннего сгорания имеет камеру, в которую добавлено топливо, которое воспламеняется для повышения температуры газа.

    Когда в систему добавляется тепло, это заставляет внутренний газ расширяться. В поршневом двигателе это заставляет поршень подниматься (см. Рисунок 2), а в газовой турбине горячий воздух нагнетается в камеру турбины, вращая турбину (Рисунок 1). Прикрепив поршень или турбину к распределительному валу, двигатель может преобразовывать часть энергии, поступающей в систему, в полезную работу. [2] Для сжатия поршня в двигателе прерывистого внутреннего сгорания двигатель выпускает газ.Затем используется радиатор, чтобы система работала при постоянной температуре. Газовая турбина, которая использует непрерывное горение, просто выбрасывает свой газ непрерывно, а не по циклу.

    Поршни и турбины

    Рисунок 1. Схема газотурбинного двигателя. [3]

    Двигатель, в котором используется поршень , называется двигателем внутреннего сгорания прерывистого действия , тогда как двигатель, в котором используется турбина , называется двигателем непрерывного внутреннего сгорания .Разница в механике очевидна из-за названий, но разница в использовании менее очевидна.

    Поршневой двигатель чрезвычайно отзывчив по сравнению с турбиной, а также более экономичен при низкой мощности. Это делает их идеальными для использования в транспортных средствах, так как они также запускаются быстрее. И наоборот, турбина имеет превосходное отношение мощности к массе по сравнению с поршневым двигателем, а ее конструкция более надежна для продолжительной работы с высокой выходной мощностью. Турбина также работает лучше, чем поршневой двигатель без наддува, на больших высотах и ​​при низких температурах.Его легкий вес, надежность и возможность работы на большой высоте делают турбины предпочтительным двигателем для самолетов. Турбины также широко используются на электростанциях для выработки электроэнергии.

    Двигатель четырехтактный

    главная
    Рис. 2. 4-х тактный двигатель внутреннего сгорания. 1: впрыск топлива, 2: зажигание, 3: расширение (работа выполнена), 4: выхлоп. [4]

    Хотя существует множество типов двигателей внутреннего сгорания, четырехтактный поршневой двигатель (рис. 2) является одним из самых распространенных.Он используется в различных автомобилях (которые, в частности, используют бензин в качестве топлива), таких как автомобили, грузовики и некоторые мотоциклы. Четырехтактный двигатель обеспечивает один рабочий ход на каждые два цикла поршня. Справа есть анимация четырехтактного двигателя и дальнейшее объяснение процесса ниже.

    1. В камеру впрыскивается топливо.
    2. Загорается топливо (в дизельном двигателе это происходит иначе, чем в бензиновом).
    3. Этот огонь толкает поршень, что является полезным движением.
    4. Отходы химикатов, по объему (или массе) это в основном водяной пар и двуокись углерода. Могут быть загрязнители, а также окись углерода от неполного сгорания.

    Двухтактный двигатель

    главная
    Рисунок 3. 2-тактный двигатель внутреннего сгорания [5]

    Как следует из названия, системе требуется всего два движения поршня для выработки энергии. Основным отличительным фактором, который позволяет двухтактному двигателю работать только с двумя движениями поршня, является то, что выпуск и впуск газа происходят одновременно, [6] , как показано на Рисунке 3.Сам поршень используется в качестве клапана системы вместе с коленчатым валом для направления потока газов. Кроме того, из-за частого контакта с движущимися компонентами топливо смешивается с маслом для добавления смазки, что обеспечивает более плавный ход. В целом двухтактный двигатель содержит два процесса:

    1. Топливно-воздушная смесь добавляется и поршень движется вверх (сжатие). Впускной канал открывается из-за положения поршня, и топливовоздушная смесь поступает в удерживающую камеру.Свеча зажигания воспламеняет сжатое топливо и начинает рабочий такт.
    2. Нагретый газ оказывает высокое давление на поршень, поршень движется вниз (расширение), отходящее тепло отводится.

    Роторный двигатель (Ванкеля)

    главная
    Рисунок 4. Цикл роторного двигателя. Он всасывает воздух / топливо, сжимает его, воспламеняется, обеспечивая полезную работу, а затем выпускает газ. [7]

    В двигателе этого типа имеется ротор (внутренний круг обозначен буквой «B» на рисунке 4), который заключен в корпус овальной формы.Он выполняет стандартные этапы четырехтактного цикла (впуск, сжатие, зажигание, выпуск), однако эти этапы выполняются 3 раза за один оборот ротора , создавая три такта мощности за один оборот .

    Для дальнейшего чтения

    Список литературы

    1. 1.0 1.1 Р. Д. Найт, «Тепловые двигатели и холодильники» в журнале Физика для ученых и инженеров: стратегический подход, 3-е изд. Сан-Франциско, США: Pearson Addison-Wesley, 2008, гл.19, сек 2, с. 530
    2. ↑ Р. А. Хинрихс и М. Кляйнбах, «Тепло и работа», в Энергия: ее использование и окружающая среда , 5-е изд. Торонто, Онтарио. Канада: Брукс / Коул, 2013, глава 4, стр.93-122
    3. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/4/4c/Jet_engine.svg
    4. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/d/dc/4StrokeEngine_Ortho_3D_Small.gif
    5. ↑ "Файл: Двухтактный двигатель.gif - Wikimedia Commons ", Commons.wikimedia.org, 2018. [Online]. Доступно: https://commons.wikimedia.org/wiki/File:Two-Stroke_Engine.gif.[ Дата обращения: 17 мая 2018 г.].
    6. ↑ С. Ву, Термодинамика и тепловые циклы. Нью-Йорк: Nova Science Publishers, 2007.
    7. ↑ Wikimedia Commons [Online], доступно: http://upload.wikimedia.org/wikipedia/commons/f/fc/Wankel_Cycle_anim_en.gif

    Двигатель внутреннего сгорания - обзор

    10.4 Усовершенствованные низкотемпературные системы сгорания

    В дизельном двигателе сгорание топлива до постановления Агентства по охране окружающей среды США 2010 года определялось обычным сгоранием для широкого диапазона уровней NO x 0.От 4 до более 10 г / (л.с. / ч). Для уровня NO x (0,2 г / (л.с. / ч) EPA 2010 и даже ниже) были предложены различные режимы LTC, чтобы попытаться контролировать как выбросы в цилиндрах, так и BSFC. LTC привлекает большое внимание в отрасли тяжелых дизельных двигателей. LTC включает в себя множество инновационных и различных механизмов предварительно смешанного горения, обнаруженных многими исследователями, такими как PCCI (Kanda et al. , 2005, 2006; Zhang et al. , 2009; Murata et al. , 2010 ), HCCI (Stanglmaier and Roberts, 1999; Epping et al., 2002; zhao et al. , 2003; Cracknell et al. , 2008; Шлейер, 2006; Zhao, 2007), воспламенение от сжатия с предварительным смешиванием (PCI), модулированная кинетика (MK), Unibus и воспламенение от сжатия с контролируемой реактивностью (RCCI) (Reitz, 2010) и т. Д.

    Общей особенностью LTC является улучшение предварительного смешивания топлива. и воздух, и поддерживать низкую температуру горения, чтобы одновременно избежать образования NO x и сажи (De Ojeda et al. , 2007, 2008, 2009; Musculus et al., 2011). LTC также потенциально может предложить низкий расход топлива из-за короткой продолжительности сгорания. Высокий термический КПД и низкие выбросы NO x , сажи, HC и CO требуют точного контроля процесса LTC при самовоспламенении и времени сгорания, чтобы заряд реакционной смеси в цилиндре сгорал в области одновременно низкого уровня. выбросы на известной диаграмме ϕ - T , обычно используемой при анализе горения (рис. 10.3). LTC обычно использует высокую скорость рециркуляции отработавших газов, высокое давление наддува, высокую степень сжатия, бедную смесь (но с высоким допуском для высокого эквивалентного отношения или низкого отношения воздух-топливо) и высокую скорость горения для достижения чрезвычайно низкого выхлопа двигателя NO x и выбросы ТЧ и может соответствовать стандарту выбросов США 2010 года с решениями для цилиндров.Система рециркуляции отработавших газов и время закрытия впускного клапана (IVC) обычно используются в PCCI или HCCI для управления оптимальным фазированием сгорания дизельного топлива.

    10.3. Иллюстрация низкотемпературного горения.

    Ранний PCCI относится к впрыску топлива далеко до верхней мертвой точки (ВМТ), а события воспламенения и горения обычно происходят до ВМТ. Поздний PCCI относится к впрыску топлива после ВМТ, а события воспламенения и горения происходят далеко после ВМТ. Как ранний, так и поздний PCCI могут полагаться на длительные задержки зажигания для достижения хорошего перемешивания и получения очень низких NO x и сажи при низком BMEP.Ранний PCCI обладает хорошей стабильностью и низким расходом топлива, но он требует более высокой скорости рециркуляции отработавших газов и генерирует более высокое пиковое давление в цилиндре, более высокий шум сгорания и более ограниченный диапазон BMEP, чем поздний PCCI. Поздний PCCI имеет более узкий диапазон стабильности горения и, следовательно, обычно требует датчика горения для его контроля. Стэнтон (2008) показывает, что ранний PCCI превосходит поздний PCCI и бездымное обогащенное сгорание на низких скоростях и нагрузках с точки зрения теплового КПД при том же низком уровне NO x , равном 0.2 г / (л.с. / час).

    LTC обычно сталкивается с проблемами высоких выбросов HC и CO из-за сложностей в управлении зажиганием, а иногда проблемы достаточно серьезны, чтобы привести к высокому BSFC. Высокие выбросы HC и CO обусловлены относительно низкой летучестью дизельного топлива, конденсацией топлива и гашением пламени на поверхности камеры сгорания или в щели, а также столкновением со стенкой распылителя (Miles et al. , 2010). Попадание жидкого топлива на стены иногда также может затруднить удаление сажи в LTC.

    Хотя углеводороды и CO можно контролировать с помощью дизельного окислительного катализатора (DOC), высокий BSFC и высокий уровень выбросов CO 2 по-прежнему являются проблемой для LTC в плане соблюдения нормативных требований по парниковым газам (GHG). Преимущество топливной экономичности дизельного HCCI / PCCI ограничено нынешней неспособностью адекватно контролировать оптимальную фазу сгорания и попадание жидкого топлива, особенно при высоких нагрузках. В LTC с кинетическим управлением имеется только небольшое окно сгорания для одновременного низкого уровня выбросов и высокого теплового КПД, и это окно очень трудно контролировать при различных скоростях и нагрузках.Разница BSFC между LTC и обычным дизельным топливом заключается в сложной комбинации нескольких следующих аспектов. Контролируемое время сгорания, более бедная и предварительно смешанная смесь, меньшие потери теплопередачи в цилиндрах, меньшее количество поступающего кислорода LTC могут дать некоторые комбинированные преимущества в тепловом КПД (например, всего 7%). Однако более низкая степень сжатия, пониженная эффективность сгорания (связанная с чрезмерными выбросами HC и CO) и более высокая температура всасываемого заряда могут в определенной степени компенсировать выигрыш в тепловом КПД (например,г., 3%). Наконец, может быть либо чистая прибыль, либо потеря BSFC для LTC по сравнению с обычным сжиганием (Musculus et al. , 2011).

    Нижняя граница диапазона нагрузок при работе LTC ограничена стабильностью воспламенения и горения. Запуск LTC при высоких нагрузках также является нерешенной проблемой. Работа LTC при высоких нагрузках ограничена или запрещена высоким коэффициентом эквивалентности (низким соотношением воздух-топливо), высоким выбросом сажи и чрезмерно высоким пиковым давлением в цилиндре и скоростью нарастания.Диапазон нагрузки от минимальной до максимальной, достижимой в PCCI / HCCI, зависит от цетанового числа топлива. Проблема реализации LTC возникает не только из-за контроля стабильной фазировки сгорания (через EGR и VVA) и управления переходами между различными режимами сгорания от низких нагрузок до высоких (и наоборот), но также из-за того, что камера сгорания и Конфигурация сопла форсунки должна быть совместима с обычным сгоранием. Несмотря на то, что диапазон скоростей-нагрузок LTC расширяется за счет передовых технологий сгорания, в настоящее время обычное сгорание на дизельном топливе все еще необходимо использовать при высоких нагрузках.Следует отметить, что режимы высокой или полной нагрузки часто являются критическими режимами, используемыми при проектировании системы дизельного двигателя.

    В PCCI с кинетическим управлением поиск оптимальной топливной смеси для управления реактивностью является эффективным способом расширения диапазона BMEP для HCCI / PCCI. Стоит отметить новый развивающийся режим горения, RCCI (Reitz et al. , 2009; Reitz, 2010; Splitter et al. , 2010, 2011a, 2011b, 2011c; Kokjohn et al. , 2011; Wagner и др. , 2011; Ниман и др., 2012). Это режим горения между дизельным HCCI и самовоспламенением с бензиновым двигателем (CAI) с точки зрения химического состава горения. Концепция RCCI заключается в достижении высокого теплового КПД и низкого уровня выбросов NO x и сажи в широком диапазоне нагрузок двигателя путем смешивания топлива с различной реактивностью в цилиндре. RCCI использует прямой впрыск дизельного топлива плюс впрыск бензина или прямой впрыск бензина с добавками (например, 75–90% бензина плюс 25–10% дизельного топлива) для контроля условий заряда в цилиндрах и работы в цикле воспламенения от сжатия.Хорошо известно, что высокая летучесть топлива (например, смесь дизельного топлива и бензина в цилиндре) может способствовать смешиванию. Как указал Рейц (2010), дизельное топливо легко воспламеняется, но его трудно испарять, а бензин трудно воспламенить, но он может легко испаряться. Оба вида топлива имеют преимущества и недостатки с точки зрения контроля HCCI / PCCI. Дизельное топливо подходит для сгорания с предварительной смесью при низкой нагрузке, но при высоких нагрузках может вызвать сгорание слишком рано, и поэтому дизельное топливо сталкивается с пределом нагрузки при высоком BMEP.Напротив, бензин плохо сгорает при низких нагрузках, но может обеспечивать хорошее сгорание при высоких нагрузках. Следовательно, двухтопливное сгорание с воспламенением от сжатия может предложить жизнеспособный путь для решения проблемы ограничения диапазона нагрузки HCCI / PCCI, чтобы должным образом контролировать время сгорания и скорость повышения давления в цилиндре, а также расширить пределы нагрузки для чистого дизельного топлива или бензина.

    Следует отметить, что добавление отношения дизельного топлива к бензину в управление LTC обеспечивает еще одно важное измерение параметров управления сгоранием.RCCI имеет гораздо более высокие выбросы HC и CO (как и бензиновые двигатели), чем обычные дизельные двигатели, и поэтому требует катализаторов окисления HC и CO. Хотя эффективность сгорания RCCI ниже, чем у обычного дизельного топлива (например, 97% против 99% из-за чрезмерных выбросов углеводородов), преимущества RCCI с точки зрения времени сгорания, эквивалентности более бедной смеси, значительно сниженной скорости рециркуляции отработавших газов (например, нулевой рециркуляции отработавших газов) и уменьшенные насосные / тепловые потери, а также меньшая теплопередача в цилиндрах могут обеспечить чистую прибыль в несколько процентных пунктов увеличения теплового КПД.Сообщалось (Reitz, 2010), что RCCI может предложить примерно 20% улучшение теплового КПД по сравнению с обычным дизельным сгоранием при соблюдении NO x и выбросов ТЧ без дополнительной обработки. Reitz (2010) также сообщил, что RCCI может достичь высокого теплового КПД, превышающего 50%, как для двигателей большой мощности, так и для двигателей малой мощности.

    Развитие двигателя внутреннего сгорания

    Люди строят автомобили уже более века, и почти под каждым капотом находится двигатель внутреннего сгорания.В течение последних 100 лет его принцип оставался неизменным: воздух и топливо попадают внутрь, в цилиндрах происходит взрыв, и сила толкает вас вперед. Но с каждым годом инженеры оттачивают двигатель внутреннего сгорания, чтобы он двигался быстрее и дальше, делая его более эффективным, чем раньше, производя мощность, которую вы раньше видели только на суперкарах. Состояние двигателя внутреннего сгорания никогда не могло бы зайти так далеко без этих серьезных скачков. Вот как мы дошли до этого.


    1955

    Впрыск топлива

    До впрыска топлива дозирование бензина в камеру сгорания было неточным и сложным процессом.Карбюраторы часто нуждались в очистке и восстановлении, и на них влияли погодные условия, температура и высота над уровнем моря. Для сравнения, впрыск топлива был простым: он помогал двигателю работать более плавно, более стабильно на холостом ходу, работал более эффективно и избавлял от надоедливой рутины регулировки дроссельной заслонки каждый раз, когда вы ее запускали. Созданный из самолетов военного времени, он впервые был внедрен в автомобиль в 1955 году. В том же году Стирлинг Мосс и Денис Дженкинсон проехали на гоночном автомобиле Mercedes-Benz 300SLR через изнурительную гонку Mille Miglia протяженностью 992 мили в Италии, победив с рекордом. ни разу не сломался: 10 часов 7 минут 48 секунд.

    Британский автогонщик Стирлинг Мосс на пути к победе в итальянской гонке Mille Miglia Race, установив новый рекорд.

    KeystoneGetty Images

    Дорожная версия

    Benz стала не только первым серийным автомобилем с системой впрыска топлива, разработанным Bosch, но и самым быстрым автомобилем в мире. Два года спустя Chevrolet подарил Corvette двигатель «Fuelie» с системой впрыска топлива Rochester Ramjet, которая смогла разогнать 300SL.Тем не менее, именно системы Bosch с электронным управлением нашли свое применение почти во всех автопроизводителях Европы, а к восьмидесятым годам система впрыска топлива захватила мир.


    1962

    Турбонаддув

    Турбокомпрессор - одна из жемчужин развития двигателей. Турбина в форме улитки, набирающая больше воздуха в цилиндр, когда-то позволяла 12-цилиндровым истребителям времен Второй мировой войны взлетать выше, быстрее и дальше. Угадай, что? То же самое и на суше.Когда в 1962 году дебютировал первый автомобиль с турбонаддувом, он был обнаружен не под капотом легкого европейского малолитражного автомобиля, BMW 2002 или Saab 99, а благодаря мозговому доверию General Motors, наполненному деньгами и желающему опробовать новые технологии.

    Предоставлено Hagerty

    В то время Oldsmobile Jetfire требовал - почти с каждым баком, полным бензина, - добавлением «Turbo Rocket Fluid», оригинального названия дистиллированной воды и метанола Jetsons.GM отказалась от этой концепции в середине десятилетия. Но к концу 1970-х такие компании, как BMW, Saab и Porsche, заняли позицию, доказали свою ценность в автоспорте, и теперь каждая машина имеет турбокомпрессор. Почти.

    Турбокомпрессор превратился из грязного трюка с быстрой скоростью в вашем 930 Turbo в выполнение семейных обязанностей в Mazda CX-9, чей 2,5-литровый двигатель был оснащен первой в своем роде системой Dynamic Pressure Turbo в 2016 году. В действии действует принцип «большой палец над садовым шлангом»: ограниченный поток ускоряет выхлоп в турбину, улучшая отзывчивость на низких оборотах и ​​уменьшая турбо-лаг.Кроме того, с более строгими стандартами выбросов и эффективности, это необходимый компонент для выжимания мощности большого двигателя из самых маленьких и легких двигателей. И крутящий момент! Вам больше не нужно сбивать мессершмитты, чтобы почувствовать себя втянутым в кресло.


    1964

    Роторный двигатель

    Единственным двигателем, который действительно сломал шаблон - единственным, кто попал в производство - было вращающееся чудо инженера Феликса Ванкеля, треугольник внутри овала, вращающийся, как демон.По самой природе своей конструкции роторный двигатель легче, менее сложен и имеет более высокие обороты, чем типичная коробка с поршнями. Mazda и несуществующий немецкий автопроизводитель NSU были первыми, кто подписал контракт; В 1964 году NSU Spider стал первым серийным автомобилем с Ванкелем.

    Mazda, однако, была единственной компанией, которая действительно работала с ним - первой Mazda с роторным двигателем была Cosmo 1967 года, предшественница длинной линейки спортивных автомобилей, седанов и даже случайных пикапов. последний RX-8 сошел с конвейера в 2012 году.Концепция RX-Vision 2016, представленная на Токийском автосалоне 2015 года, подтвердила непристойные слухи о том, что группа преданных своему делу инженеров, которым нечего терять, все еще разрабатывает следующий великий роторный двигатель где-то на заводе в Хиросиме.

    Вверху слева: Mazda Cosmo Sport 110S 1967 года выпуска; справа и внизу слева: роторный двигатель Mazda RENESIS

    . Предоставлено Mazda

    .

    1981

    Деактивация цилиндра

    Идея проста.Чем меньше срабатывает цилиндр, тем лучше пробег. Как превратить V8 в четырехцилиндровый? Если вы были Кадиллаком около 1981 года, вы представили двигатель с метким названием 8-6-4, в котором использовались соленоиды с электронным управлением для закрытия клапанов на двух или четырех цилиндрах. Это должно было повысить эффективность, скажем, при движении по шоссе. Но последовавшая за этим ненадежность и неуклюжесть были настолько печально известны, что никто не осмеливался повторить попытку в течение двадцати лет.

    Теперь у нескольких производителей идея наконец-то работает - и она перешла на более мелкие двигатели.


    2012

    Степень сжатия

    Наука работает следующим образом: внутри цилиндра двигателя чем меньше вы можете сжать воздух и топливо, тем больше мощности вы получите при взрыве. Объем, который поршень может сжать, и есть степень сжатия. Но производители не могут слишком сильно увеличивать степень сжатия, иначе смесь воспламенится сама по себе; последующий «стук» разорвет двигатель.

    В надире 1970-х годов, задыхаясь от правил, касающихся смога, и вынужденные бороться с неэтилированным бензином, производители построили массивные двигатели V8, которые хрипели.Эти большие мальчики сдерживались болезненно низкой степенью сжатия - свинец, который когда-то был в бензине, предотвращал детонацию. Благодаря электронному управлению подачей топлива и лучшему пониманию контроля за выбросами двигатели стали вырабатывать больше мощности при уменьшении рабочего объема.

    Двигатель Mazda SKYACTIV-G 2018 года с отключением цилиндров выдает 187 лошадиных сил и 186 фунт-фут крутящего момента.

    Предоставлено Mazda

    .

    В 2012 году двигатель Mazda SKYACTIV-G был запущен в производство с самой высокой степенью сжатия для серийного двигателя, поразительной 14: 1 (в Америке - 13: 1), что позволяет ему извлекать энергию практически из каждой капли бензина без множество оборудования для защиты от смога.Следующее нововведение Mazda вывело высокую степень сжатия на новый уровень. SKYACTIV-X использует искровое зажигание от сжатия (SPCCI) для воспламенения топливно-воздушной смеси с минимальным количеством бензина, сочетая крутящий момент дизельного двигателя с высокими оборотами бензинового двигателя.

    Даже спустя столетие, даже при использовании альтернативных видов топлива и методов движения, двигатель внутреннего сгорания остается самой большой добычей в городе. Спустя столько времени основы не изменились. Но всегда найдется автомобильная компания, которая готова представить что-то новое, и постоянное совершенствование является ключом к сохранению актуальности двигателя внутреннего сгорания в предстоящие годы.

    Клапанный механизм двигателя внутреннего сгорания (Патент)

    Морита, С., Сато, К., Асаока, Ю., Харада, И., и Хирано, Т. Клапанный механизм двигателя внутреннего сгорания . США: Н. П., 1987. Интернет.

    Морита, С., Сато, К., Асаока, Й, Харада, И., и Хирано, Т. Клапанный механизм ДВС . Соединенные Штаты.

    Морита, С., Сато, К., Асаока, Ю., Харада, И., и Хирано, Т. Вт. «Клапанный механизм двигателя внутреннего сгорания». Соединенные Штаты.

    @article {osti_6740601,
    title = {Клапанный механизм ДВС},
    author = {Морита, С. и Сато, К. и Асаока, Ю. и Харада, И. и Хирано, Т.},
    abstractNote = {В этом патенте описан клапанный механизм двигателя внутреннего сгорания, клапанный механизм содержит: подъемник гидравлического клапана, собранный в выемке коромысла, шарнирно соединенный с валом коромысла, причем вал проходит через отверстие в коромысле.Гидравлический подъемник клапана имеет корпус подъемника, вставленный с возможностью скольжения в выемку, плунжер, вставленный с возможностью скольжения в корпус подъемника, масляную камеру, образованную между выемкой и поршнем, камеру давления масла, сообщающуюся с масляной камерой через канал и образованную между корпус подъемника и плунжер. Обратный клапан, расположенный в канале, для обеспечения избирательного сообщения между масляной камерой и камерой давления масла; канал подачи масла, сформированный в коромысле и проходящий от канала подачи масла, образованного в валу коромысла, к масляной камере; и обратный канал, образованный в коромысле и сообщающийся с масляным каналом в коромысле.Обратный путь проходит от верха масляной камеры до зазора между внутренней частью отверстия коромысла и внешней стороной вала коромысла, причем обратный путь обеспечивает постоянное сообщение между масляной камерой и зазором.},
    doi = {},
    url = {https://www.osti.gov/biblio/6740601}, journal = {},
    number =,
    объем =,
    place = {United States},
    год = {1987},
    месяц = ​​{2}
    }

    Привод клапана двигателя внутреннего сгорания (Патент)

    Нагахиро, К., Аджики, Й, Като, М., и Иноуэ, К. Привод клапана двигателя внутреннего сгорания . США: Н. П., 1988. Интернет.

    Нагахиро, К., Аджики, И., Катох, М., и Иноуэ, К. Привод клапана для двигателя внутреннего сгорания . Соединенные Штаты.

    Нагахиро, К., Аджики, Й, Като, М., и Иноуэ, К.Вт. «Механизм привода клапана двигателя внутреннего сгорания». Соединенные Штаты.

    @article {osti_5139328,
    title = {Привод клапана двигателя внутреннего сгорания},
    author = {Нагахиро, К. и Аджики, И и Като, М. и Иноуэ, К.},
    abstractNote = {Описан механизм привода клапана для приведения в действие пары клапанов двигателя внутреннего сгорания, содержащий: распределительный вал, вращающийся синхронно с вращением двигателя внутреннего сгорания и имеющий первый кулачок низкой скорости, второй кулачок низкой скорости , и высокоскоростной кулачок, которые имеют разные профили кулачка, соответственно, первый и второй низкоскоростные кулачки расположены по одному на каждой стороне высокоскоростного кулачка; коромысел; первый, второй и третий коромысла, установленные с возможностью вращения на валу коромысла и удерживаемые в скользящем контакте с первым кулачком низкой скорости, вторым кулачком низкой скорости и кулачком высокой скорости, соответственно, для приведения в действие клапанов в соответствии с кулачковые профили кулачков; и средство, оперативно расположенное внутри и между первым, вторым и третьим коромыслами для выборочного соединения первого, второго и третьего коромысел, чтобы обеспечить их угловое перемещение в унисон, и отсоединения первого, второго и третьего коромысел, чтобы позволить отдельные угловые движение оного.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *