Схема подключения светодиодов к 12 вольт: Страница не найдена – Светодиодное освещение
Схема подключения светодиода
Введение
Использование светодиодов для освещения и индикации — это надежное и экономичное решение. Светодиоды имеют очень высокий КПД, надежны, экономичны, безопасны, долговечны в сравнении с лампами накаливания и люминесцентными лампами. В данной статье рассматриваются способы включения светодиодов. Описываются способы питания светодиода от компьютера.
Что такое светодиод и как он работает
Светодиод — это, во-первых, диод. И точно так же как у обычного диода, у светодиода есть два вывода (контакта питания): анод (плюс) и катод (минус). Это связано с тем, что светодиод является полупроводником, то есть, проводит электрический ток только в одну сторону (от анода к катоду), и не проводит в обратную (от катода к аноду).
Итак, для того, чтобы светодиод засветился, надо пропускать через него электрический ток в направлении от анода к катоду. Для этого следует подать на его анод положительное, а на катод — отрицательное напряжение.
Тут и начинается самое неприятное. Оказывается, что светодиод нельзя подключать к источнику питания напрямую, поскольку это приводит к немедленному сгоранию светодиода. Причина сего поведения кроется в следующем. Выражаясь простым бытовым языком, светодиод является очень жадной и неразумной личностью: получив неограниченное питание он начинает потреблять такую мощность, которую физически не способен выдержать.
Как мы все уже догадались, для нормальной работы светодиоду нужен строгий ограничитель. Именно с этой целью последовательно со светодиодом устанавливают резистор, который служит надежным ограничителем тока и мощности. Этот резистор называют ограничительным.
Какие бывают светодиоды
Во-первых, светодиоды можно разделить по цветам: красный, желтый, зеленый, голубой, фиолетовый, белый. Большинство современных светодиодов выполнено из бесцветного прозрачного пластика, поэтому невозможно определить цвет светодиода не включив его.
Во-вторых, светодиоды можно разделить по номинальному току потребления. Широко распространены модели с током потребления 10 миллиампер (мА) и 20 мА. Следует помнить, что светодиод не в состоянии контролировать потребляемый ток. Именно поэтому мы вынуждены использовать ограничительные резисторы.
В-третьих, светодиоды можно разделить по такому параметру, как падение напряжения в открытом состоянии при номинальном токе. Несмотря на то, что про этот параметр нередко забывают — его влияние весьма и весьма значительно. Благодаря этому параметру иногда можно избавиться от ограничительного резистора.
Светодиод(ы) можно подключить к компьютеру разными способами.
Для подключения светодиодов в качестве простого освещения удобно использовать разъемы блока питания, выдающие 5 и 12 вольт. Для подключения светодиодов в качестве светомузыки удобно использовать LPT порт компьютера.
Подключение светодиодов к блоку питания
Блок питания компьютера — это замечательный источник питания для светодиода или линейки из светодиодов, поскольку он вырабатывает стабилизированное напряжение +5 вольт (В) и +12 В.
Итак, разъем имеет четыре контакта, к которым подходят четыре же провода: два из них черные — это «ноль», один красный выдает напряжение +5 вольт, и один желтый выдает +12 вольт.
Рассмотрим схему подключения одного светодиода.
При питании от 5 В последовательно со светодиодом необходимо включить ограничительный резистор номиналом от 100 до 200 Ом. | |
При питании от 12 В последовательно со светодиодом требуется включить ограничительный резистор номиналом от 400 до 900 Ом. |
Рассмотрим схему подключения двух светодиодов.
При питании двух светодиодов от 5 вольт, в схему надо включить резистор до 100 Ом. Некоторые светодиоды в такой схеме будут светиться слишком тускло (даже без резистора). | |
При питании двух светодиодов от 12 В, в схему надо включить резистор от 250 до 600 Ом. |
Рассмотрим схему подключения трех и четырех светодиодов.
При питании трех светодиодов от 12 В, следует использовать резистор номиналом от 100 до 250 Ом. | |
Некоторые светодиоды в такой схеме включения будут светиться слишком тускло (даже без резистора). |
Универсальный принцип расчета ограничительного резистора описан в статье «Методика расчета питания светодиода».
Выше приведены схемы последовательного включения светодиодов. Существуют также способы параллельного включения светодиодов. Обратите внимание, что под параллельным включением подразумевается схема в которой, когда аноды и катоды всех светодиодов непосредственно сходятся в две точки (два пучка).
Такие схемы, как правило, не экономичны и небезопасны, как для блока питания, так и для светодиодов. Кроме того, схемы параллельного включения более сложны в расчетах, требовательны к источнику питания, поэтому мы будем пользоваться ими только в особых случаях. Просто посмотрим как выглядит такая схема.
При паралельном включении светодиодов следует использовать только одинаковые светодиоды, с минимальным разбросом характеристик. Сопротивление ограничительного резистора должно быть рассчитано и подобрано с высокой степенью точности. В случае выхода из строя одного из светодиодов — остальные могут выгореть по очереди друг за другом в считанные минуты. |
Рекомендую никогда не использовать эту схему включения светодиодов. Но если все же условия требуют параллельного включения то советую использовать следующий вариант.
Такая схема параллельного включения светодиодов практически избавлена от опасности последовательного выгорания светодиодов. В данном случае вместо ограничиельного резистора включено несколько обычных выпрямительных диодов разных марок (НЕ светодиодов). |
Благодаря падению напряжения на этих диодах, до светодиодов доходит напряжение уже не 5 Вольт, а значительно меньше. Ограничительные диоды подбираются так, чтобы до светодиодов доходило напряжение равное их падению напряжения в открытом состоянии.
Эта схема используется используется автором для круглосуточного светодиодного освещения квартиры.
Подключение светодиодов к LPT порту
При питании светодиода от LPT порта необходимо последовательно со светодиодом можно включить резистор номиналом до 100 Ом. В большинстве случаев, при питании светодиода от LPT порта резистор бывает не нужен. LPT порт предварительно должен быть переведен в режим EPP. Подробное описание способа подключения светодиодов к LPT порту содержится в статье «LPT порт и 12 светодиодов». |
Универсальный принцип расчета ограничительного резистора описан в статье «Универсальная методика рассчета питания светодиодов».
Схема подключения светодиода 3w 12в
Впервые светодиоды начались использоваться в начале 60-х годов. С того времени произошло видоизменений. Светодиоды имеют массу преимуществ, таких как:
- Низкое потребление;
- Длительный срок службы;
- Прочность;
- Широкий выбор спектра света;
- Могут работать от низкого напряжения;
- Являются пожаробезопасными.
Потому как светодиодам для работы нужен только источник постоянного тока, следует производить монтаж с правильной полярностью. Когда диоды подключены неверно, функционировать они не будут. Чтобы их работа происходила правильно важно знать, как подключить светодиод.
Понимание плюса и минуса
Определяется полярность несколькими методами:
В старых моделях, в которых имеются длинные ножки, всё довольно просто. Ножка длиннее имеет полярность плюс (анод), что короче – минус (катод). Также на головке есть срез, который показывает расположение полярностей.
Если посмотреть внутрь диода, то контакт, который выглядит как флажок – это минусовой, тонкий будет плюсом.
Проверить можно посредством мультиметра. Чтобы это сделать, следует настроить его для «прозвона». С помощью щупов следует дотронуться к контактам. Когда он начнёт светиться – значит на красном контакте +, а на чёрном -.
Осуществление питания
Наиболее важным фактором при выборе питания выступают следующие значения: токовая сила и падение напряжения. Почти все они имеют расчет на токовую силу 20 миллиампер, однако, присутствуют модели, имеющие сразу 4 кристаллика, поэтому он должен быть рассчитан на силу тока в четыре раза больше. Также диод имеет свою допускаемую величину напряжения Umax, при прямом включении и Umaxобр, при обратном. Когда подаётся более высокое напряжение, происходит пробой, после чего кристаллы больше не функционируют. Есть также минимум напряжения, которого хватит для питания Umin, его хватит для работы светодиода. Эти минимальные и максимальные пределы значений называются зоной работы. В зоне работы и должна осуществляться работа светодиода. При неправильном расчете, светодиод просто перегорит.
На каждом светодиоде указывается определённое напряжение, маркировка расположена на упаковке. Важно знать, что это указано возможное падения напряжение, а не рабочее напряжение. Это нужно знать для того, чтобы высчитывать сопротивление резистора, задача которого ограничить ток. Для каждого отдельно взятого светодиода одного номинала, требуемое напряжение может отличаться. Важно для подключения следить за током, а не напряжением.
Данные источники света в своём большинстве потребляют номинальное напряжение 2 – 3 вольт. Противопоказано подключать их прямиком к 12 вольтам, без использования ограничительного резистора. Во многих случаях для экономии используют прямую схему подключения светодиода к батарейке, без использования резистора, но такой источник света прослужит очень недолго. Для сверх ярких светодиодов резисторы не используются, так как для них сделаны драйвера, которые могут ограничивать ток. Это наиболее современный вариант светодиодов.
Как рассчитать резистор
Есть формула расчета сопротивления резистора:
Величина сопротивления подразумевается R.
Напряжение питания Uпит.
Падающее напряжение Uпад.
Протекающий ток – I.
Постоянная величина коэффициента надёжности диода – 0.75.
Для примера рассмотрено подключение к 12 вольтному аккумулятору. Тогда будет:
- Uпит – 12 вольта, что подразумевает аккумуляторное напряжение).
- Uпад – 2.2 вольт, которым выступает напряжение для питания светодиода).
- I – 0.01 ампер, показывает ток диода.
По данным цифрам можно произвести подсчёт по формуле, которая покажет, что получилась цифра 1.306. Так как у резисторов имеется определённый шаг, то подойдёт — 1.3 кОм.
Дальнейшей задачей будет вычисление требуемого минимума на мощность резистора. Нужно понимать точную цифру проходящего тока, потому что она может не соответствовать вышеуказанному. Вычисление можно произвести по такой формуле:
I = U / (Rрез.+ Rсвет)
Сопротивление, которым обладает диод:
Rсвет=Uпад.ном. / Iном. = 2.2 / 0,01 = 220 Ом,
что говорит о том, что подсчитанный фактический ток будет:
I = 12 / (1300 + 220) = 0,007 А.
Для понимания фактического падения напряжения нужно посчитать:
Uпад.свет = Rсвет * I = 220 * 0,007 = 1,54 В
Далее, вычисление мощности:
P = (Uпит. — Uпад.)² / R = (12 -1,54)²/ 1300 = 0,0841 Вт.
Мощность лучше брать с небольшим запасом. Сейчас будет в самый раз 0.125 Вт.
При подключении 1 светодиода к аккумулятору 12 вольт потребуется в сети резистор, который обладает сопротивлением 1.3 кОм и мощностью 0.125 Вт.
Подключение к сети 220 В
Для светодиодов, требующих ток от сети 220 В, важно знать важнейший пункт характеристики светодиода. Особенно это касается вопросов по теме, как подключить мощный светодиод. Характеристика состоит в наиболее допускаемой величине обратного напряжения. Во многих случаях оно составляет 20 В. Когда поступает сетевое питание, при обратной полярности (переменный ток) на него придёт полная амплитуда напряжения 315 В. Такое напряжение получилось потому что амплитудное напряжение почти в полтора раза выше действующего. Для работоспособности светодиодов помимо резистора, следует установить светодиод посредством последовательного подключения, который не позволит обратному напряжению пробить его.
Следующий вариант подключения от 220 В подразумевает расстановку двух диодов встречно-параллельно.
Подобный способ, где предусмотрено использование резистора – не считается правильным подключением. При использовании резистора 24 кОм, энергия рассеивания, будет приблизительно 3 Вт. А при подключении диода последовательно, можно уменьшить её в 2 раза. На обратное напряжение светодиод должен иметь напряжение не меньшее 400 В. Когда включаются 2 встречных светодиода, есть возможность вставки двух резисторов на два вата, чтобы сопротивление на каждом получилось в 2 раза меньше.
Важно понимать, что используя резистор с большим сопротивлением, к примеру, 200 кОм, есть возможность включения и без защитного диода. Так происходит, потому что обратный ток будет довольно слабым для повреждения диода. В этом варианте будет хуже яркость, но для некоторых целей, таких как подсветка, вполне хватит.
Так как сетевой ток переменный, имеется возможность включить в цепь конденсатор взамен резистора. Если сравнивать с ограничительным резистором, конденсатор не нагревается. Чтобы конденсатор мог пропускать переменный ток, сквозь него должно пройти оба полупериода сети. Так как светодиод может проводить ток лишь к одной из сторон, нужно поставить другой светодиод или диод встречно-параллельно. Это позволит пропустить второй полупериод.
Важно знать, что когда схема отключена от сети, конденсатор содержит в себе определённое напряжение, которое может равняться 315 В. Чтобы не произошел случайный удар током, следует провести установку разрядного резистора большего номинала, расположив его параллельно конденсатору. Запас мощности на конденсаторе служи для того, чтобы при обычной работе ток был незначительным и не вызывал нагрева. Чтобы обеспечить защиту от импульсных зарядных токов ставится низкоомный резистор, который будет являться предохранителем.
Мощность конденсатора должна быть от 400 В и выше. Есть варианты для цепей с переменным током напряжения, подойдут от 250 В и выше. Если требуется запустить несколько светодиодов, следует использовать последовательное соединение.
Когда происходит монтаж светодиодного освещения, расчёт диода должен происходить на ток, что будет не меньше, чем ток, проходящий сквозь светодиод. С обратным напряжением расчет должен быть таким, чтобы оно было не меньше, чем общее слагаемого напряжения на светодиодах. Используя данные рекомендации можно понять как правильно подключить светодиод.
Варианты подключений от 12 В
От 12 В подключать можно несколькими способами. Источником питания 12 В может использоваться аккумулятор. В этом примере производится подключение 3-х светодиодов.
Есть вариант подключить все через свой резистор, который выполнит функцию ограничения тока.
Другим вариантом будет включение всех светодиодов параллельным подключением, устанавливая 1 резистор, что рассчитан на тройной ток. Однако минус будет в разбросе параметров со светодиодами единого типа. Соответственно светодиод, что обладает самым слабым внутренним сопротивлением, первым пропустит повышенные токи и перегорит. После чего остальные сгорят тоже потому что ток для них будет очень сильный. В итоге приходится, как и в предыдущем варианте, устанавливать для каждого светодиода резистор.
Однако имеется альтернатива этому варианту. Можно сделать соединение последовательно, используя лишь один резистор. Так ток будет проходить сквозь каждый светодиод равномерно. Важно чтобы источник питания не имел напряжение выше сумм падения на каждом светодиоде. Далее важно правильно выбрать резистор ограничивающий ток и такой монтаж светодиодной подсветки способен работать длительный срок.
Вывод и видео
Для подключения светодиодов требуется обладать минимальным уровнем теоретических знаний, а также уметь паять. Если минимальные навыки и знания как правильно подключить светодиод присутствуют, то трудностей это не вызовет. Если есть сомнения, то вопрос как подключить светодиод, лучше доверить специалистам. Наиболее простой вариант, это установка светодиодных светильников, выполнить который можно без проблем самостоятельно.
Самое правильное подключение нескольких светодиодов – последовательное. Сейчас объясню почему.
Дело в том, что определяющим параметром любого светодиода является его рабочий ток. Именно от тока через светодиод зависит то, какова будет мощность (а значит и яркость) светодиода. Именно превышение максимального тока приводит к чрезмерному повышению температуры кристалла и выходу светодиода из строя – быстрому перегоранию либо постепенному необратимому разрушению (деградации).
Ток – это главное. Он указан в технических характеристиках светодиода (datasheet). А уже в зависимости от тока, на светодиоде будет то или иное напряжение. Напряжение тоже можно найти в справочных данных, но его, как правило, указывают в виде некоторого диапазона, потому что оно вторично.
Для примера, заглянем в даташит светодиода 2835:
Как видите, прямой ток указан четко и определенно – 180 мА. А вот напряжение питания светодиодов при таком токе имеет некоторый разброс – от 2.9 до 3.3 Вольта.
Получается, что для того, чтобы задать требуемый режим работы светодиода, нужно обеспечить протекание через него тока определенной величины. Следовательно, для питания светодиодов нужно использовать источник тока, а не напряжения.
Конечно, к светодиоду можно подключить источник стабилизированного напряжения (например, выход лабораторного блока питания), но тогда нужно точно знать какой величины должно быть напряжение для получения заданного тока через светодиод.
Например, в нашем примере со светодиодом 2835, можно было бы подать на него где-то 2.5 В и постепенно повышать напругу до тех пор, пока ток не станет оптимальным (150-180 мА).
Так делать можно, но в этом случае придется настраивать выходное напряжение блока питания под каждый конкретный светодиод, т.к. все они имеют технологический разброс параметров. Если, подключив к одному светодиоду 3.1В, вы получили максимальный ток в 180 мА, то это не значит, что поменяв светодиод на точно такой же из той же партии, вы не сожгете его (т.к. ток через него при напряжении 3.1В запросто может превысить максимально допустимое значение).
К тому же необходимо очень точно поддерживать напряжение на выходе блока питания, что накладывает определенные требования к его схемотехнике. Превышение заданного напряжения всего на 10% почти гарантированно приведет к перегреву и выходу светодиода из строя, так как ток при этом превысит все мыслимые значения.
Вот прекрасная иллюстрация к вышесказанному:
Поэтому самым правильным и простым решением будет использовать для подключения светодиодов драйвера тока (он же источник тока). И тогда будет совершенно неважно, какой вы возьмете светодиод и каким будет прямое напряжение на нем. Нужно просто найти драйвер на нужный ток и дело в шляпе.
Теперь, возвращаемся к главному вопросу статьи – почему все-таки последовательное подключение, а не параллельное? Давайте посмотрим, в чем разница.
Параллельное подключение
При параллельном подключении светодиодов, напряжение на них будет одинаковым. А так как не существует двух диодов с абсолютно одинаковыми характеристиками, то будет наблюдаться следующая картина: через какой-то светодиод будет идти ток ниже номинального (и светить он будет так себе), зато через соседний светодиод будет херачить ток в два раза превышающий максимальный и через полчаса он сгорит (а может и быстрее, если повезет).
Очевидно, что такого неравномерного распределения мощностей нужно избегать.
Для того, чтобы существенно сгладить разброс в ТТХ светодиодов, лучше подключать их через ограничительные резисторы. Напряжение блока питания при этом может быть существенно выше прямого напряжения на светодиодах. Как подключать светодиоды к источнику питания показано на схеме:
Проблема такой схемы подключения светодиода в том, что чем больше разница между напряжением блока питания и напряжением на диодах, тем больше бесполезной мощности рассеивается на ограничительных резисторах и тем, соответственно, ниже КПД всей схемы.
Ограничение тока происходит по простой схеме: повышение тока через светодиод приводит к повышению тока и через резистор тоже (т.к. они включены последовательно). На резисторе увеличивается падение напряжения, а на светодиоде, соответственно, уменьшается (т.к. общее напряжение постоянно). Уменьшение напряжения на светодиоде автоматически приводит к снижению тока. Так все и работает.
В общем, сопротивление резисторов рассчитывается по закону Ома. Разберем на конкретном примере. Допустим, у нас есть светодиод с номинальным током 70 мА, рабочее напряжение при таком ток равно 3.6 В (это все берем из даташита к светодиоду). И нам нужно подключить его к 12 вольтам. Значит, нам нужно рассчитать сопротивление резистора:
Получается, что для питания светодиода от 12 вольт нужно подключить его через 1-ваттный резистор на 120 Ом.
Точно таким же образом, можно посчитать, каким должно быть сопротивление резистора под любое напряжение. Например, для подключение светодиода к 5 вольтам сопротивление резистора надо уменьшить до 24 Ом.
Значения резисторов под другие токи можно взять из таблицы (расчет производился для светодиодов с прямым напряжением 3.3 вольта):
Uпит | ILED | ||||||||
---|---|---|---|---|---|---|---|---|---|
5 мА | 10 мА | 20 мА | 30 мА | 50 мА | 70 мА | 100 мА | 200 мА | 300 мА | |
5 вольт | 340 Ом | 170 Ом | 85 Ом | 57 Ом | 34 Ом | 24 Ом | 17 Ом | 8.5 Ом | 5.7 Ом |
12 вольт | 1.74 кОм | 870 Ом | 435 Ом | 290 Ом | 174 Ом | 124 Ом | 87 Ом | 43 Ом | 29 Ом |
24 вольта | 4.14 кОм | 2.07 кОм | 1.06 кОм | 690 Ом | 414 Ом | 296 Ом | 207 Ом | 103 Ом | 69 Ом |
При подключении светодиода к переменному напряжению (например, к сети 220 вольт), можно повысить КПД устройства, взяв вместо балластного резистора (активного сопротивления) неполярный конденсатор (реактивное сопротивление). Подробно и с конкретными примерами мы разбирали этот момент в статье про подключение светодиода к 220 В.
Последовательное подключение
При последовательном же подключении светодиодов через них протекает один и тот же ток. Количество светодиодов не имеет значение, это может быть всего один светодиод, а может быть 20 или даже 100 штук.
Например, мы можем взять один светодиод 2835 и подключить его к драйверу на 180 мА и светодиод будет работать в нормальном режиме, отдавая свою максимальную мощность. А можем взять гирлянду из 10 таких же светодиодов и тогда каждый светодиод также будет работать в нормальном паспортном режиме (но общая мощность светильника, конечно, будет в 10 раз больше).
Ниже показаны две схемы включения светодиодов, обратите внимание на разницу напряжений на выходе драйвера:
Так что на вопрос, каким должно быть подключение светодиодов, последовательным или параллельным, может быть только один правильный ответ – конечно, последовательным!
Количество последовательно подключенных светодиодов ограничено только возможностями самого драйвера.
Идеальный драйвер может бесконечно повышать напряжение на своем выходе, чтобы обеспечить нужный ток через нагрузку, поэтому к нему можно подключить бесконечное количество светодиодов. Ну а реальные устройства, к сожалению, имеют ограничение по напряжению не только сверху, но и снизу.
Вот пример готового устройства:
Мы видим, что драйвер способен регулировать выходное напряжение только лишь в пределах 64. 106 вольт. Если для поддержания заданного тока (350 мА) нужно будет поднять напряжение выше 106 вольт, то облом. Драйвер выдаст свой максимум (106В), а уж какой при этом будет ток – это от него уже не зависит.
И, наоборот, к такому led-драйверу нельзя подключать слишком мало светодиодов. Например, если подключить к нему цепочку из 10-ти последовательно включенных светодиодов, драйвер никак не сможет понизить свое выходное напряжение до необходимых 32-36В. И все десять светодидов, скорее всего, просто сгорят.
Наличие минимального напряжения объясняется (в зависимости от схемотехнического решения) ограничениями мощности выходного регулирующего элемента либо выходом за предельные режимы генерации импульсного преобразователя.
Разумеется, драйверы могут быть на любое входное напряжение, не обязательно на 220 вольт. Вот, например, драйвер превращающий любой источник постоянного напряжения (блок питания) от 6 до 20 вольт в источник тока на 3 А:
Вот и все. Теперь вы знаете, как включить светодиод (один или несколько) – либо через токоограничительный резистор, либо через токозадающий драйвер.
Как выбрать нужный драйвер?
Тут все очень просто. Выбирать нужно всего лишь по трем параметрам:
- выходной ток;
- максимальное выходное напряжение;
- минимальное выходное напряжение.
Выходной (рабочий) ток драйвера светодиодов – это самая важная характеристика. Ток должен быть равен оптимальному току для светодиодов.
Например, в нашем распоряжении оказалось 10 штук полноспектральных светодиодов для фитолампы:
Номинальный ток этих диодов – 700 мА (берется из справочника). Следовательно, нам нужен драйвер тока на 700 мА. Ну или чуточку меньше, чтобы продлить срок жизни светодиодов.
Максимальное выходное напряжение драйвера должно быть больше, чем суммарное прямое напряжение всех светодиодов. Для наших фитосветодиодов прямое напряжение лежит в диапазоне 3. 4 вольта. Берем по-максимуму: 4В х 10 = 40В. Наш драйвер должен быть в состоянии выдать не менее 40 вольт.
Минимальное напряжение, соответственно, рассчитывается по минимальному значению прямого напряжения на светодиодах. То есть оно должно быть не более 3В х 10 = 30 Вольт. Другими словами, наш драйвер должен уметь снижать выходное напряжение до 30 вольт (или ниже).
Таким образом, нам нужно подобрать схему драйвера, рассчитанного на ток 650 мА (пусть будет чуть меньше номинального) и способного по необходимости выдавать напряжение в диапазоне от 30 до 40 вольт.
Следовательно, для наших целей подойдет что-нибудь вроде этого:
Разумеется, при выборе драйвера диапазон напряжений всегда можно расширять в любую сторону. Например, вместо драйвера с выходом на 30-40 В прекрасно подойдет тот, который выдает от 20 до 70 Вольт.
Примеры драйверов, идеально совместимых с различными типами светодиодов, приведены в таблице:
Светодиоды | Какой нужен драйвер |
---|---|
60 мА, 0.2 Вт (smd 5050, 2835) | см. схему на TL431 |
150мА, 0.5Вт (smd 2835, 5630, 5730) | драйвер 150mA, 9-34V (можно одновременно подключить от 3 до 10 светодиодов) |
300 мА, 1 Вт (smd 3528, 3535, 5730-1, LED 1W) | драйверы 300мА, 3-64V (на 1-24 последовательно включенных светодиода) |
700 мА, 3 Вт (led 3W, фитосветодиоды) | драйвер 700мА (для 6-10 светодиодов) |
3000 мА, 10 Ватт (XML2 T6) | драйвер 3A, 21-34V (на 7-10 светодиодов) или см. схему |
Кстати, для правильного подключения светодиодов вовсе не обязательно покупать готовый драйвер, можно просто взять какой-нибудь подходящий блок питания (например, зарядник от телефона) и прикрутить к нему простейший стабилизатор тока на одном транзисторе или на LM317.
Готовые схемы стабилизаторов тока для светодиодов можно взять из этой статьи.
Подключение светодиода к источнику питания 12 В может быть осуществлено несколькими способами. Первым вариантом решения задачи является увеличение последовательно соединенных светодиодов в цепи. Второй способ связан с применением токоограничивающего резистора.
Содержание
- Расчет резистора на примере одного светодиода
- Подключение 3-х светодиодов к 12 В
Рассмотрим оба способа.
Расчет резистора на примере одного светодиодаБольшинство светодиодов имеют прямое падение напряжения при допустимом токе 1,8 – 3,6 В. Следовательно, для подключения к источнику 12 В нам необходимо понизить напряжение на светодиоде, в противном случае он сгорит. Это выполняется при помощи токоограничивающего резистора. При правильно подобранном сопротивлении которого светодиод будет работать исправно. Чтобы узнать где катод, а где анод светодиода прочтите эту статью.
Допустим, что у нас имеется белый светодиод, параметры которого следующие:
Расчет резистора проводится согласно следующей формуле:
где Uп – это напряжение питания, Uсв – прямое падение напряжения на светодиоде, а I – ток светодиода, 0,75 – коэффициент надежности светодиода.
Если неизвестен ток светодиода, но известна его мощность, формула приобретает вид:
В нашем случае, ток светодиода известен.
Исходя из наших расчетов, нам необходим ближайший по номиналу резистор на 620 Ом. В случае если рассчитанное сопротивление выйдет таким, что резистор подобрать будет сложно, то есть смысл использовать несколько параллельно соединенных резисторов.
Чтобы резистор не сгорел, необходимо правильно подобрать его по мощности. Для этого сделаем расчет мощности выделяемой на резисторе.
Рассчитываем сопротивление светодиода:
Затем рассчитываем общий ток в цепи с учетом добавленного сопротивления резистора:
Подставляем получившееся значение в формулу мощности постоянного тока:
Делаем вывод, что нам нужен резистор, рассчитанный как минимум на 0,25 Вт мощности. Если у вас не имеется такого резистора под рукой, можно выйти из ситуации при помощи двух подключенных параллельно резистора по 0,125 Вт каждый или просто поставив увеличить номинал резистора на 15-20%(в данном случае это возможно, но при этом яркость светодиода снизится).
Подключение 3-х светодиодов к 12 ВПодключение трех светодиодов к источнику питания 12 В, позволяет использовать резистор с меньшей мощностью, так как суммарное падение напряжения на трех светодиодах будет больше в 3 раза.
Допустим, что у нас имеется желтый светодиод со следующими параметрами:
Рассчитаем сопротивление балластного резистора по уже известной формуле:
Ближайший резистор, подходящий по номиналу 510 Ом, определим требуемую мощность
Рассчитываем сопротивление светодиода:
Общий ток в цепи с учетом добавленного сопротивления резистора:
Подставляем получившееся значение в формулу мощности постоянного тока:
По сравнению с предыдущим примером, в данном случае нам требуется менее мощный резистор, а значит, выбираем на 0,125 Вт.
Данная схема подключения используется в светодиодных лентах на 12 В, с той лишь разницей, что там таких цепочек несколько и между собой они соединены параллельно.
Этот способ имеет существенный недостаток – при сгорании одного из светодиодов, остальные перестают работать.
Схема подключения светодиода
электрика, сигнализация, видеонаблюдение, контроль доступа (СКУД), инженерно технические системы (ИТС)
Схема подключения светодиода очень проста. Это можно видеть на рисунке 1. Однако, для того чтобы правильно подключить светодиод необходимо произвести некоторые расчеты.
Как видно из приведенной схемы светодиод (VD) подключается последовательно c резистором (R), образуя с ним делитель напряжения. Также резистор можно рассматривать как элемент, обеспечивающий номинальный рабочий ток светодиода.
Для расчета величины его сопротивления нам необходимо знать:
- падение напряжения на светодиоде (Uvd),
- уже упомянутый его рабочий ток (Iраб).
Если подходить строго, то эти значения следует брать из паспорта светодиода, но для дальнейших примеров я приму их за 2 Вольта (В) и 15 милиАмпер (мА) соответственно. Это достаточно реальные величины.
Далее берем закон Ома и на его основании пишем формулу:
R=U/I=(Uпит-Uvd)/Iраб=(Uпит-2)/15
Заметьте, я указал ток в мА, поэтому сопротивление получится в килоОмах (кОм). Для небольших токов так удобнее. Остается определиться с напряжением питания. Для 12 Вольт сопротивление резистора будет:
R=(12-2)/15=0,666 кОм. Ближайшее по ряду, если не ошибаюсь, 0,68 кОм или 680 ом. Округлять надо в большую сторону.
Кроме того, надо определить мощность, рассеиваемую резистором:
P=I*U=I2*R=152*0,68=153. Ток берем в мА, сопротивление в кОм, мощность получаем в милиВаттах (мВт). Ближайшая по ряду, округленная в большую сторону мощность резистора составляет 0,250 Вт.
Обратили внимание не некоторую некорректность? Расчетное значение сопротивления мы округлили в большую сторону, значит ток в цепи будет меньше, то есть мы получили завышенное значение мощности. Желающие могут посчитать точно, но разница будет незначительная.
Примем эту схему за базовую и на ее основе рассмотрим варианты подключения нескольких светодиодов:
Параллельное подключение светодиодов (рис.2) большинством специалистов не рекомендуется по следующим основным объективным причинам:
- из-за разброса параметров токи, протекающие через светодиоды, будут различны, что может привести к выходу из строя того светодиода, где окажется превышенным максимально допустимое значение тока,
- при неисправности любого светодиода (обрыв) его ток поделится между оставшимися, далее по сценарию предыдущего пункта. Потом цепная реакция и вся линейка выходит из строя.
- ток потребления такой схемы равен сумме токов всех светодиодов, то есть при их значительном количестве имеет достаточно большое значение.
Негативные последствия такого подключения можно отчасти избежать, если уменьшить рабочий ток процентов на 30% от номинального, правда яркость сечения светодиодов при этом снизится.
Если сказанное Вас не пугает можете рассчитать сопротивление и мощность резистора по приведенной ранее методике при условии что Iраб=Ivd1+…+Ivdn или просто умножьте ток любого светодиода на их количество. Почему? Потому, что для этих двух случаев светодиоды должны иметь максимально близкие параметры, то есть быть однотипными, кроме того, желательно из одной партии.
Последовательное подключение светодиодов (рис.3) более корректно, недостатком может явиться разная яркость их свечения (опять же из за разброса параметров).
Кстати, такое соединение используется в светодиодной ленте.
Для расчета этой схемы следует взять Uvd=Uvd1+…+Uvdn
Еще одно, общее для всех схем подключения ограничение, Uvd должно быть меньше Uпит на величину, позволяющую установить токоограничивающий резистор.
Например, для схемы на рис.3 при напряжении питания 12В и падении напряжения на светодиоде 2В можно взять пять светодиодов, суммарным падением напряжения 10В. Если их будет 6 штук, то Ur =0, что означает отсутствие резистора, а такого быть не должно.
Последнее, как быть, если при последовательном соединении не удается соблюсти указанное условие?
Выход — использовать смешанное подключение (рис.4). Расчет схемы в этом случае производится для каждой последовательной цепи подключения, а при одинаковом количестве светодиодов и их типов в каждой цепи расчет можно сделать один раз для любой последовательной группы светодиодов.
Напоминаю — все светодиоды должны быть однотипные, по крайней мере, для общей последовательной цепи.
© 2012-2021 г. Все права защищены.
Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
Как рассчитать и выбрать токоограничивающий резистор для светодиодов
Автор Aluarius На чтение 9 мин. Просмотров 2.1k. Опубликовано
Расчет резистора для светодиода
Светодиод – прибор, который преобразует проходящий через него ток в световое излучение. Их используют для освещения в прожекторах и лампах, для украшения в гирляндах, в фарах авто. В статье ниже вы узнаете, как правильно подключить светодиод и чем отличаются разные виды соединений. А также, зачем для подключения нужен резистор и как рассчитать, какой резистор вам нужен.
Особенности подключения светодиода
Главная особенность подключения светодиода к блоку питания — маленькое внутреннее сопротивление. То есть, при прямом подключении к сети, сила тока будет слишком высокой и светодиод может сгореть. Подключение кристалла светодиода происходит по медным или золотым нитям. Они выдерживают небольшие скачки тока, но, когда допустимое значение сильно превышается, они перегорают, прекращая питание элемента. Поэтому для их подключения используют резистор, ограничивающий поступление тока, так, чтобы он по номиналу подходил к заявленной у диода характеристике.
Также при подключении ограничителей тока необходимо помнить про соблюдение полярности и подключать отрицательный анод к отрицательному полю, а катод к положительному.
Особенности дешёвых LED
При подборе светодиода на рынке можно найти совершенно разные цены. Чем же отличаются дорогие диоды от дешёвых?
Светодиоды за разную стоимость отличаются не только внешними особенностями, но и техническими характеристиками. У дешёвых светодиодов параметры сильно отличаются друг от друга, в то время, как у дорогих они уменьшаются плавно при изменении тока или напряжения сети. Кроме того, дешёвые аналоги могут служить недолго и свет будет более тусклым или режущим глаза. На что нужно обратить внимание при покупке светодиодной лампы и как ее установить читайте тут.
Можно ли обойтись без резисторов
Если подсоединить светодиоды без резистора, то при небольшом изменении напряжения в сети, ток, подаваемый в диод, изменится в несколько раз. Даже если вы подключили несколько диодов, и они работают без резистора, нет гарантии, что напряжение сети не поднимется выше допустимого. Поэтому, если вы не хотите, чтобы диоды сгорели, нужно либо воспользоваться резистором, ограничивающим поток тока, либо использовать драйвер.
Справка! драйвер — блок питания для светодиодов, в нём стабильно поддерживается определённый ток на выходе. Драйверы часто используют в качестве источника питания для светодиода.
В каких случаях допускается подключение светодиода через резистор
В некоторых случаях подключение светодиодов возможно не через драйвер, а токоограничительный резистор.
- Если свечение нужно в качестве индикатора, где не имеет значения, насколько ярко будет гореть диод, а важен сам факт свечения.
- Для проверки работоспособности диодов их подключают через резистор к аккумулятору с высоким напряжением, из-за которого ЛЕД элемент может сломаться. Резистор ограничивает поступающее на диод напряжение и можно проверить его работоспособность без риска поломки деталей.
- Для определения отрицательного и положительного полей светодиода.
- При исследовании, как будет работать новый светодиод, используют ограничительные резисторы, чтобы элемент не перегорел при тестировании.
Расчет резистора для светодиода при последовательно-параллельном соединении
Последовательно-параллельно светодиоды соединяют в осветительных приборах с высокой мощностью. Соединение универсально: используется и для постоянного, и для переменного тока.
В таком случае последовательно соединённые цепочки светодиодов соединяют параллельно.
Для успешного соединения в каждой цепочке должно быть одинаковое количество диодов.
Нагрузочный резистор должен быть выбран с учётом того, что во всех параллельных ветках будет одинаковое напряжение. Поэтому для вычисления нужно вычислить только сопротивление одного резистора в любой цепи:
R = (Un*ULED)/ ULED,
где n — число светодиодов на ветке.
Лимит по числу диодов на ветке находится по формуле: n = (U = ULED)/ULED.
После проведения необходимых расчётов можно соединить диоды гибридным способом.
Плюсы гибридного соединения:
- При выходе из строя одного диода, остальная часть схемы продолжит полноценно работать и не случится перенапряжения.
- Для работы нужно меньше резисторов, чем в других соединениях.
Вычисление сопротивления при параллельном соединении светодиодов
Параллельное соединение используют, если суммарное соединение диодов, которых нужно подсоединить к источнику питанию, больше, чем напряжение источника. То есть, если при последовательном соединении диодов питания не хватает, и они не работают.
При параллельном соединении несколько веток с диодами параллельно соединяют, на каждой из них установлен свой резистор.
В таком случае во всем устройстве будет одинаково меняться напряжение, а проходящий ток может быть разным на каждой из веток.
Расчёты проводят для каждой отдельно взятой ветки.
Сначала нужно рассчитать сопротивление резистора по закону Ома:
U=I*R,
I — допустимый ток для прибора, значение можно взять из характеристики прибора.
Теперь нужно рассчитать мощность резистора:
P = U2/R.
Можно сократить: P=I*U.
Преимущества параллельного соединения:
- Если один светодиод перегорит, то другие цепи продолжат работать;
- Можно добавить больше светодиодов, чем при последовательном;
- Можно использовать для двуцветного свечения лампочек. При этом цвет диодов меняется при изменении направления тока.
Если добавить импульсный модулятор к двум параллельно соединенным диодам, можно добиться широкого диапазона изменения цвета.
Недостатки:
- Увеличение нагрузки на остальные элементы, если один перестанет работать;
- Нужно много резисторов для соединения.
Пример расчета сопротивления резистора при последовательном подключении
Диоды можно соединять последовательно в цепочку. Для этого нужно анод устройства соединить с катодом другого, и так продолжать цепочку, пока не достигнете нужного размера. Соединение происходит с помощью резистора, который ограничивает ток, поступающий на элементы, чтобы избежать их поломки.
Зная закон Ома, можно найти сопротивление включенного в схему резистора:
R=(U-ULED1+…+ULEDn)/ILED
Где U — напряжение сети;
ULED1— ULEDn — сумма напряжений включенных в цепь светодиодов.
ILED — ток, являющийся оптимальным для светодиодов.
Мощность резистора вычисляется по формуле:
P = I2*R
Лучше всего поставить резистор с мощностью, в два раза превышающую нужное значение, чтобы при перепаде напряжения устройства продолжало исправно работать.
Преимущества последовательного соединения:
- В цепочке один ток;
- Простое и быстрое соединение;
- Возможное количество светодиодов ограничено уровнем напряжения;
- При выходе из строя одного диода, перестаёт работать вся цепочка.
Как подключить светодиод к 220в через резистор
Светодиоды пропускают через себя ток в одном направлении. При переменном напряжении его направление меняется 2 раза за период, то есть в одном случае ток протекает через диод, а в ином — нет. Так как ток протекает в половине случаев, для определения среднего значения тока, который проходит через диод, нужно разделить U пополам.
Соответственно, U = 110В.
Допустим, собственное сопротивление у диода: 1,7 Ом.
Ток, проходящий через диод:
I=U/ ULED
110/1,7=65А.
Высокий ток, пройдя через полупроводник, сожжёт его, поэтому нужно использовать дополнительный прибор с сопротивлением, чтобы он, по принципу рассеивания, уменьшал количество тока, подаваемого на диод.
При высоком токе нельзя использовать параллельное соединение, так как если одна из цепей перестанет работать, значение тока в остальных увеличится и прибор сгорит.
- Можно использовать дополнительный LED-элемент для блокировки обратного напряжения.
- Использование встречно-параллельного соединения диодов с резистором:
Для того, чтобы прибор работал исправно, необходимо учитывать, что через все диоды должен проходить один ток, значит нужно подобрать элементы с одинаковыми характеристиками.
После соединения пересчитайте ёмкость конденсатора, потому что на светодиодах должно увеличиться напряжение.
Какой резистор нужен для светодиода на 12 вольт
12-вольтовая система — стандартная в автомобиле. В подключении LED-элемента к 12 вольтовой системе нет ничего сложного. Важно правильно провести расчёты сопротивления диода через токоограничивающий резистор.
Перед началом вычислений надо узнать характеристики имеющихся светодиодов: падение напряжения и требуемый им ток.
Сопротивление резистора рассчитывается по формуле:
R = U/I
- 1 светодиод
ULED = 3.3 Вольт
ILED = 0,02А
При таком внутреннем сопротивлении диода, он будет отлично работать в системе, напряжение которой ограничивается значением 3,3 Вольт.
Возьмём напряжение с запасом, так как скачки бывают до максимального значения 14,5.
Максимально возможное напряжение отличается от допустимого для исправной работы светящегося элемента на 11,2 Вольта. Значит, перед включением диода, нужно снизить подаваемый ему ток на это значение.
Сперва нужно посчитать сопротивление, необходимое резистору:
R=U/I. R=560 Ом.
Для того, чтобы расчёты были более надёжными, надо вычислить мощность резистора:
P = U * I Мощность — 0,224Вт.
При выборе резистора, необходимо округлять значения в большую сторону и выбирать более мощный вариант.
- 2 и 3 светодиода
Рассчитывается аналогичным образом, светодиодное напряжение будет умножаться на количество светящихся элементов - От 4 светодиодов
При подключении больше трёх светодиодов к такой сети не нужен будет резистор, так как напряжение не будет сильно превышать допустимое и светодиоды будут работать исправно.
Резисторы вы можете установить и на положительном, и на отрицательном полюсе, это не имеет значения при использовании.
Теория
Для того, чтобы светодиоды не перегорели, важно правильно рассчитать ограничивающий резистор.
Математический расчёт
Необходимые вычисления можно сделать самостоятельно, при низких значениях вам не потребуется калькулятор. Либо при помощи специальной программы, проводящей подсчёты за вас.
При расчёте сопротивления гасящего резистора нужно знать закон Ома.
R = U-ULED /ILED
U — напряжение сети;
ULED — значение напряжения, оптимального для работы диода
I LED —ток, на который рассчитана работа элемента
Чтобы не произошёл перегрев резистора во время работы, необходимо дополнительно рассчитывать оптимальную мощность для такого напряжения.
P = (U-ULED)*ILED
В этой схеме резистор подключается к катоду светящегося элемента.
Графический расчёт
В большинстве случаев, пользуются математическими вычислениями, но графический способ более наглядный и в каких-то случаях его применять значительно удобнее.
Для построения графика нужно знать характеристики светящегося элемента: ток и напряжение.
Теперь можно узнать сопротивление резистора по графику:
На нём пунктирной линией показано вычисление для элемента, на работу которого нужно 20мА тока. Далее соединяем точку пересечения пунктирной линии с «кривой ЛЕД», отмеченной голубым цветом, со значением напряжения диода. Линия пересекает шкалу максимального тока, где указано нужное значение.
После этого нужно провести расчёт сопротивления токоограничивающего резистора:
R=ULED/Imax
Его мощность: P=I2*R
Схемы подключений светодиодной ленты можно посмотреть здесь.
Светодиоды стали незаменимой частью нашей жизни, они стоят в качестве индикаторов на бытовой технике, в виде декоративных светодиодных лент и в составе оптопары в промышленности, а также в качестве более экологичного и экономного освещения. В использовании светодиодов нет ничего сложного, главное — не забывать использовать балластный резистор, благодаря которому ток будет ограниченно поступать на светящиеся элементы, и они не сломаются. Теперь вы знаете, как рассчитать нужное сопротивление резистора, разные способы соединения диодов и для чего их используют.
Как подключить ленту 12В/24В к блоку питания
Есть несколько причин отсутствия свечения, неравномерного свечения ленты или вообще выхода светодиодной подсветки из строя. И основная причина — это неправильное подключение и монтаж ленты с ошибками. В нашей статье рассмотрим, как правильно подключить ленту 12В или 24В к блоку питания (подробнее о блоках питания читайте здесь).
Внимание!
Подключение светодиодных лент к блоку питания необходимо проводить при выключенном напряжении сети 220В.
Определяем полярность контактов
Для начала узнайте питающее напряжение светодиодной ленты. На всем протяжении ленты указывается её питающее напряжение (12В или 24В), а также обозначается полярность контактов.
Для одноцветной (монохромной) ленты, как правило, красный цвет — это «+» (положительный контакт), черный — это «-» (отрицательный контакт).
Но встречаются и ленты с другими цветовыми выходами, где белый провод «+», белый провод с дополнительными штрихами — это «-».
Надо помнить, что для лучшего понимания полярности контактов ленты, лучше обращать внимание на то, как полярность указана на самой ленте. То есть, проверить на ленте обозначение «+» и «-».
Что проверяем перед подключением ленты
Перед подключением светодиодной ленты необходимо убедиться в правильности выбора блока питания. Для этого необходимо правильно рассчитать потребляемую мощность блока питания. Про выбор блока питания подробно описано в нашей статье здесь.
Также необходимо проверить соответствие напряжения питания светодиодной ленты и блока питания. Для светодиодных лент с напряжением питания 12В необходим блок питания с выходным напряжением 12В. Для светодиодных лент с напряжением 24В предусматривается подключение к блокам питания 24В, соответственно.
Подсказка:
На корпусе блоков питания IP20 имеется маркировка подключения контактов.
Полярность подключения
При подключении светодиодной ленты необходимо соблюдать полярность подключения. «V+» предназначен для подключения положительного контакта ленты «+», «V-» – для подключения отрицательного контакта ленты «-».
Блоки питания, имеющие большую мощность, оснащены несколькими выходными контактами: V+, V+ и V-, V-. Это необходимо, для равномерного распределения подключения светодиодных лент.
Подключение светодиодной ленты длиной 5 м
При подключении светодиодных лент длиной 5 м, с большой мощностью, предусматривается подключение в центральной части светодиодной ленты.
Это необходимо для равномерного распределения напряжения питания.
Заземление
Также блоки большой мощности необходимо подключать к системе электрозаземления. Для этого на панели контактов блока питания есть контакт для подключения заземления.
Подключение блока питания к сети 220В
После подключения светодиодной ленты производится подключение блока питания к электросети 220В.
Подключение блока питания к электросети 220В производится с соблюдением техники безопасности — при отключенном напряжении сети.
Входные контакты для подключения проводов 220В обозначаются «L» и «N».
Также не забудьте произвести подключение провода заземления на клемму заземления, если она предусмотрена конструкцией.
Подключение с использованием коннектора
На корпусе блоков питания со степенью защиты IP65/IP67 имеется маркировка сторон подключения, также предусмотрены цветовые обозначения проводов. Подробнее о блоках питания и их выборе — читаем в статье здесь.
Сторона входного напряжения 220В обозначается как АС (АСL и АСN) и маркируется синим и коричневым. Сторона выходного напряжения DC обозначается как «DC + » и «DC — », маркировка проводов красная и черная, соответственно.
Подключение таких блоков производится при помощи электроклемм или электроколодок.
Для лучшего соблюдения степени пылевлагозащиты IP65/67 необходимо произвести дополнительную влагоизоляцию (герметизацию) мест электросоединений при помощи силиконового герметика.
Это важно:
- К выходным контактам DC («DC+» и «DC-»), красный и черный провода, подключаем контакты светодиодной ленты «+» и «-».
- Подключение блока питания производится при выключенном напряжении электросети 220В.
- Со стороны входного напряжения AC (ACL и ACN) подключаем провода напряжения питания 220В.
Проверка перед включением
Перед включением светодиодной ленты, подключенной к блоку питания, рекомендуется осмотреть собранную электросхему для проверки соблюдения полярности подключения, а также убедиться в отсутствии замыкания проводов и некачественно смонтированных контактов.
Уверены, после такой пошаговой инструкции у вас все получится!
Схема светодиодной лампы на 12 вольт
Как подключить светодиод к 12 вольтам
Светодиоды уже давно используются в различных сферах жизни и деятельности людей. Благодаря своим качествам и техническим характеристикам, они приобрели широкую популярность. На основе этих источников света создаются оригинальные светотехнические конструкции. Поэтому у многих потребителей до воль но часто возникает вопрос, как подключить светодиод к 12 воль там. Данная тема очень актуальна, поскольку такое подключение имеет принципиальные отличия от других типов ламп. Следует учитывать, что для работы светодиодов используется только постоянный ток. Большое значение имеет соблюдение полярности при подключении, в противном случае, светодиоды просто не будут работать.
Особенности подключения светодиодов
В большинстве случаев для подключаемых светодиодов требуется ограничение тока с помощью резисторов. Но, иногда вполне возможно обойтись и без них. Например, фонарики, брелоки и другие сувениры со светодиодными лампочками питаются от батареек, подключенных напрямую. В этих случаях ограничение тока происходит за счет внутреннего сопротивления батареи. Ее мощность настолько мала, что ее попросту не хватит, чтобы сжечь осветительные элементы.
Однако при некорректном подключении эти источники света очень быстро перегорают. Наблюдается стремительное падение яркости свечения, когда на них начинает действовать нормальный ток. Светодиод продолжает светиться, но в полном объеме выполнять свои функции он уже не может. Такие ситуации возникают, когда отсутствует ограничивающий резистор. При подаче питания светильник выходит из строя буквально за несколько минут.
Одним из вариантов некорректного подключения в сеть на 12 воль т является увеличение количества светодиодов в схемах более мощных и сложных устройств. В этом случае они соединяются последовательно, в расчете на сопротивление батарейки. Однако при перегорании одной или нескольких лампочек, все устройство выходит из строя.
Существует несколько способов, как подключить светодиоды на 12 воль т схема которых позволяет избежать поломок. Можно подключить один резистор, хотя это и не гарантирует стабильную работу устройства. Это связано с существенными различиями полупроводниковых приборов, несмотря на то, что они могут быть из одной партии. Они обладают собственными техническими характеристиками, отличаются по току и напряжению. При превышении током номинального значения один из светодиодов может перегореть, после этого остальные лампочки также очень быстро выйдут из строя.
В другом случае предлагается соединить каждый светодиод с отдельным резистором. Получается своеобразный стабилитрон, обеспечивающий корректную работу, поскольку токи приобретают независимость. Однако данная схема получается слишком громоздкой и чрезмерно загруженной дополнительными элементами. В большинстве случаев ничего не остается, как подключить светодиоды к 12 воль там последовательно. При таком подключении схема становится максимально компактной и очень эффективной. Для ее стабильной работы следует заранее позаботиться об увеличении питающего напряжения.
Определение полярности светодиода
Чтобы решить вопрос, как подключить светодиоды в цепь 12 воль т, необходимо определить полярность каждого из них. Для определения полярности светодиодов существует несколько способов. Стандартная лампочка имеет одну длинную ножку, которая считается анодом, то есть, плюсом. Короткая ножка является катодом – отрицательным контактом со знаком минус. Пластиковое основание или головка имеет срез, указывающий на место расположения катода – минуса.
В другом способе необходимо внимательно посмотреть внутрь стеклянной колбочки светодиода. Можно легко разглядеть тонкий контакт, который является плюсом, и контакт в форме флажка, который, соответственно, будет минусом. При наличии мультиметра можно легко определить полярность. Нужно выполнить установку центрального переключателя в режим прозвонки, а щупами прикоснуться к контактам. Если красный щуп соприкоснулся с плюсом, светодиод должен загореться. Значит черный щуп будет прижат к минусу.
Тем не менее, при кратковременном неправильном подключении лампочек с нарушением полярности, с ними не произойдет ничего плохого. Каждый светодиод способен работать только в одну сторону и выход из строя может случиться только в случае повышения напряжения. Значение номинального напряжения для отдельно взятого светодиода составляет от 2,2 до 3 воль т, в зависимости от цвета. При подключении светодиодных лент и модулей, работающих от 12 воль т и выше, в схему обязательно добавляются резисторы.
Расчет подключения светодиодов в схемах на 12 и 220 воль т
Отдельный светодиод невозможно напрямую подключить к источнику питания на 12 В поскольку он сразу же сгорит. Необходимо использование ограничительного резистора, параметры которого рассчитываются по формуле: R= (Uпит-Uпад)/0,75I, в которой R является сопротивлением резистора, Uпит и Uпад – питающее и падающее напряжения, I – ток, проходящий по цепи, 0,75 – коэффициент надежности светодиода, являющийся постоянной величиной.
В качестве примера можно взять схему, используемую при подключение светодиодов на 12 воль т в авто к аккумулятору. Исходные данные будут выглядеть следующим образом:
- Uпит = 12В – напряжение в автомобильном аккумуляторе;
- Uпад = 2,2В – питающее напряжение светодиода;
- I = 10 мА или 0,01А – ток отдельного светодиода.
В соответствии с формулой, приведенной выше, значение сопротивления будет следующим: R = (12 – 2,2)/0,75 х 0,01 = 1306 Ом или 1,306 кОм. Таким образом, ближе всего будет стандартная величина резистора в 1,3 кОм. Кроме того, потребуется расчет минимальной мощности резистора. Данные расчеты используются и при решении вопроса, как подключить мощный светодиод к 12 воль там. Предварительно определяется величина фактического тока, которая может не совпадать со значением, указанным выше. Для этого используется еще одна формула: I = U / (Rрез.+ Rсвет), в которой Rсвет является сопротивлением светодиода и определяется как Uпад.ном. / Iном. = 2.2 / 0,01 = 220 Ом. Следовательно, ток в цепи составит: I = 12 / (1300 + 220) = 0,007 А.
В результате, фактическое падение напряжения светодиода будет равно: Uпад.свет = Rсвет х I = 220 х 0,007 = 1,54 В. Окончательно значение мощности будет выглядеть так: P = (Uпит. — Uпад.)² / R = (12 -1,54)²/ 1300 = 0,0841 Вт). Для практического подключения значение мощности рекомендуется немного увеличить, например, до 0,125 Вт. Благодаря этим расчетам, удается легко подключить светодиод к аккумулятору 12 воль т. Таким образом, для правильного подключения одного светодиода к автомобильному аккумулятору на 12В, в цепи дополнительно понадобится резистор на 1,3 кОм, мощность которого составляет 0,125Вт, соединяющийся с любым контактом светодиода.
Расчет подключения светодиода к сети 220В осуществляется по такой же схеме, что и для 12В. В качестве примера берется такой же светодиод с током 10 мА и напряжением 2,2В. Поскольку в сети используется переменный ток напряжением 220В, расчет резистора будет выглядеть следующим образом: R = (Uпит.-Uпад.) / (I х 0,75). Вставив в формулу все необходимые данные, получаем реальное значение сопротивления: R = (220 — 2.2) / (0,01 х 0,75) = 29040 Ом или 29,040 кОм. Ближайший стандартный номинал резистора – 30 кОм.
Далее выполняется расчет мощности. Вначале определяется значение фактического тока потребления: I = U / (Rрез.+ Rсвет). Сопротивление светодиода рассчитывается по формуле: Rсвет = Uпад.ном. / Iном. = 2.2 / 0,01 = 220 Ом. Следовательно, ток в электрической цепи будет составлять: I = 220 / (30000 + 220) = 0,007А. В результате, реальное падение напряжение на светодиоде будет следующим: Uпад.свет = Rсвет х I = 220 х 0,007 = 1,54В.
Для определения мощности резистора используется формула: P = (Uпит. — Uпад.)² / R = (220 -1,54)² / 30000 = 1,59Вт. Значение мощности следует увеличить до стандартного, составляющего 2Вт. Таким образом, чтобы подключить один светодиод к сети с напряжением 220В понадобится резистор на 30 кОм с мощностью 2Вт.
Однако в сети протекает переменный ток и горение лампочки будет происходить лишь в одной полуфазе. Светильник будет выдавать быстрый мигающий свет, с частотой 25 вспышек в секунду. Для человеческого глаза это совершенно незаметно и воспринимается как постоянное свечение. В такой ситуации возможны обратные пробои, которые могут привести к преждевременному выходу из строя источника света. Чтобы избежать этого, выполняется установка обратно направленного диода, обеспечивающего баланс во всей сети.
Ошибки при подключении
Как подключить светодиод к 12В постоянного тока
Среди большинства осветительных элементов особую популярность завоевали светодиоды 12 Вольт (LED). Маленькие лампочки потребляют минимум электроэнергии. При этом дают широкий спектр цветов освещения и служат до 40 000 часов.
Особенности подключения LED лампочек
Сфера применения светодиодов достаточно широка — от производства ТВ техники до подсветок в жилых, коммерческих помещениях. Однако способы подключения маленьких ламп известны не каждому мастеру. Все выделяют три метода монтажа LED:
- последовательный;
- параллельный;
- комбинированный.
Принципы подключения
Для установки LED ламп существует несколько важных принципов, которых следует придерживаться:
- Важно соблюдать полярность при подсоединении светодиода. Иначе он быстрее выйдет из строя или не будет светиться вообще.
- Расположение анода и катода указано на цоколе лампочки в виде насечек, зеленых точек.
- Запрещено в одну линию и на один резистор последовательно монтировать лампы разного цвета. Это влияет на их производительность и в принципе свечение.
- Информацию о полярностях можно найти в технической документации к LED.
На каждые 12 В можно подключать не более 6 светодиодов.
Виды источников питания
Каждый светодиод 12В должен подключаться только к источнику питания с таким же напряжением. Причем ИП обязан иметь стабилизированный выходной ток. Проще всего и желательно подсоединять LED к таким источникам питания на 12 В:
- Бестрансформаторные БП (блоки питания). Имеют токозадающий резистор на выходе и гасящий конденсатор. Но в подобных БП отсутствует стабилизирующая защита. Это сильно влияет на продолжительность работы лампочек при скачках напряжения.
- Автомобильный аккумулятор. Если подсоединять LED к аккумулятору, нужно подобрать резистор по мощности и сопротивлению.
- Нестабилизированные БП. Их главные компоненты — конденсатор, выпрямитель и понижающий трансформатор. Подобные блоки питания актуальны для объектов со стабильным напряжением.
- Импульсные источники питания. В качестве примера можно взять блок питания компьютера. Если пользователю не будет мешать шум кулеров, можно использовать и его
Стоимость нового ИП на 12 Вольт зависит от варианта исполнения (наличие корпуса или его отсутствие) и от мощности, исчисляемой в Ваттах.
Как определить полярность светодиода
Все светодиоды на 12 вольт (белые, красные, синие и других цветов) имеют анод и катод (полярности). Их нужно учитывать при подключении LED. Определить полярности можно одним из способов:
- По конструкции. Одна из ножек на цоколе лампочки всегда длиннее на несколько мм. Это и есть анод. Он маркируется значком «+» или зеленой точкой.
- По чаше внутри колбы. Если внимательно присмотреться, на ней можно увидеть два кристалла. Больший обозначает катод. Меньший — анод.
- С использованием мультиметра. Для этого устройство нужно выставить в режим «Прозвонка». Затем щупы аппарата подводят к катоду и аноду. К первому — черный, ко второму — красный. При правильном их расположении лампочка должна светиться. Если этого не произошло, значит, мастер неправильно определил «+» и «-». Нужно изменить положение щупов. Если и это не помогло, светодиод просто неисправен.
Иногда мастера определяют полярность LED при помощи батарейки. Но это кропотливо. Лучше воспользоваться вышеприведенными методами.
Способы подключения светодиодов к ИП на 12 вольт
Чтобы подключить светодиод к 12 вольтам, если его напряжение всего 3В, придется компенсировать излишки в размере 9 Вольт через резистор или стабилитрон (что неэффективно), либо подключать лед лампы последовательно по три штуки сразу.
Красные и желтые LED можно подсоединять сразу по пять штук, поскольку падение из напряжения ниже 2,2 Вольт.
Перед тем как рассчитать резистор, нужно выяснить рабочее напряжение каждой лампочки. Его измеряют самостоятельно или выясняют информацию из технической документации.
Светодиоды на 12 В подключают только через стабилизатор. Если речь идет о подсоединении ленты ламп в ИП, важно знать, что у них есть ограничительный резистор, рассчитанный на каждую групп из нескольких LED.
Последовательное подключение
Если мастер выполняет подключение светодиода 12 Вольт по последовательной схеме, лампы собирают в цепочку. При этом катод каждого предыдущего элемента припаивают к аноду каждого следующего.
При такой схеме сборки через все лампочки проходит ток величиной 20 мА. Уровень напряжения здесь же складывается из сумм падения Вольт на каждой из них. Таким образом, в одну цепь запрещено подключать произвольное количество лампочек.
Если нужно последовательно подключить большое количество светодиодных ламп, нужно брать источник питания с большими показателями по напряжению и мощности.
К недостаткам последовательного подключения относят:
- Выход из строя всей световой цепочки при поломке одного элемента.
- Необходимость закупки более мощного ИП при монтаже большого количества ламп.
В качестве примера последовательного подключения можно рассмотреть стандартную ёлочную гирлянду. При поломке одного элемента она перестает работать вся. Поэтому нужно найти отошедший контакт и снова спаять его.
Алгоритм действий
Чтобы подключить светодиод к 12В постоянного тока, нужно усвоить основной алгоритм действий:
- Определяют тип блока питания, выясняют его напряжение на выходе и вообще работоспособность.
- Выявляют номинальный ток LED, потребляемую мощность и напряжение.
- Определяют возможность подключения светодиодов к БП по имеющимся параметрам.
- Соединяют и спаивают лампочки с соблюдением полярности. Резистор ставят на любой части цепочки.
Контакты после завершения работ тщательно изолируют.
Сколько светодиодов можно подключить к 12 Вольт
Чтобы выяснить, сколько светодиодов можно подключить к 12 В, необходимо поделить Uпит на Uпад. Либо разрешено исходить из среднего значения 2 Вольта на каждую лампочку. Таким образом на каждые 12 В разрешено монтировать не больше 6 LED. Если учесть, что какая-то часть напряжения (примерно 2 В) обязательно должна уходить к гасящему резистору, количество диодов уменьшится на один.
Напряжение светодиода не всегда равно 2 В. К тому же при подключении и соединении ЛЕД стоит учитывать оттенок свечения лампочки и его яркость. Для определения точного количества ламп на один БП двенадцать Вольт можно воспользоваться специальной программой.
Распространенные ошибки
Часто мастера допускают ошибки при монтаже LED. Самые актуальные из них:
- Подключение лампочек напрямую без резистора. В этом случае диоды просто перегорают.
- Выполнение параллельного подключения при помощи одного резистора. Такая ошибка грозит постепенным выходом из строя всех лампочек. Ведь рабочий ток у каждой свой.
- Неправильно подобранный резистор. В этом случае через лампочки проходит слишком большой ток, что опять же приводит к их сгоранию. Если же сопротивление будет большим, элементы будут светиться недостаточно ярко.
- Выполнение последовательного подключения с разными токами потребления. Здесь возможны два варианта — лампы будут светиться с разной интенсивностью яркости, или перегорят те, которые рассчитаны на меньший ток.
- Подсоединение лед ламп к сети с переменным током 220 без использования диода либо иных защитных компонентов. На лампочку поступает напряжение 315 В, что моментально приводит к её сгоранию.
Если учитывать эти ошибки и выполнять подсоединение светодиодов правильно, декоративная подсветка, которую мастер решил встроить дома, будет работать долго и исправно.
Подключение светодиодов к 12 В, схемы и пояснение
В настоящей статье рассмотрим наиболее простые и самые сложные способы и схемы, которые используются, чтобы произвести подключение светодиодов к 12В. Даные схемы идеально подойдут как для подключения через БП, так и к аккумуляторным батареям автомобилей
После статьи о подключении светодиодов к 220 В множество вопросов у посетителей отпало. Но возник другой вопрос – в частности: подключение светодиодов к 12 В. В большей своей части этим интересуются автолюбители.
Я хочу сделать схему. которая позволит питать от 1-3 светодиодов в параллель от 12 В. Воспользовавшись одним из онлайн калькуляторов высчитал, что мне нужны 2 резистора – 100 и 33 Ом. После сборки схемы 100 Ом резистор перегревается и происходит сбой. Что нужно сделать, чтобы резистор не перегревался? Оба резистора 1/2 Вт. Светодиоды 3,6 В. Андрей П.
Из множества вопросов выбрал один, наиболее интересный. И попробую более популярно объяснить процесс подключения светодиодов к 12 В.
Подключение светодиодов к 12 В по простой схеме
Вопрос не содержал никаких толковых объяснений, поэтому пришлось не много додумать его. По моему мнению схема подключения светодиодов к 12 В выглядит следующим образом: два резистора используются для деления напряжения, причем светодиоды подключаются параллельно к точке соединения двух резисторов.
Данная схема не подходит для наших целей, деления в пропорции 1 к 4 не будет.
Нам необходимо либо использовать три светодиода, соединенных последовательно с одним резистором, или если Вы все-таки желаете параллельное соединение, то резистор необходимо устанавливать у каждого LED.
В моем случае я бы взял сопротивление по 20 мА. Это самое оптимальное решение. А вообще, резисторы подбирать нужно от конкретного типа светодиодов.
Подключение светодиодов к автомобильному аккумулятору от 9-12-16В
Рассмотренная выше схема подключения очень простая и подразумевает, что у Вас есть постоянный ток на 12 В.
Ранее я уже оговорился, что большинство вопросов задают автолюбители, а это само – собой подразумевает подключение любых светодиодов к аккумулятору авто. Большинство аккумуляторов работают на номинальных 12 В, но разброс напряжения на батарее начинается от 9 В и заканчивается на 16 В во время эксплуатации.
Возьмем простой пример – падение напряжения на светодиоде порядка 3,5 В при токе 100 мА. следовательно мы имеем мощность в 0,35 Вт (Мощность = ток х Напряжение).
Для светодиода это не сыграет большой роли, т.к. у нас еще есть 12, 5 В, которые мы можем еще куда-нибудь применить, используя, естественно резистор: (16В – 3.5 в) * 100 ма = 1.25 Вт.
Номинальное напряжение батареи 12 В
Номинальная Calcluations (т. е. Vbattery = 12В):
Рled = 3,5 в * 100 ма = 0.35Вт (так же как и раньше)
Presistor = 8,5 в * 100ма = 0.85 Вт
Чтобы избежать излишнего падения напряжения на резистор можно использовать схему ( показанную в первой части статьи). Однако, стоит помнить, что если аккумулятор разряжен и близок к 12 В, то вероятность велика, что Ваши светодиоды, подключенные к 12 В, просто не будут гореть.
3,5 в + 3,5 в + 3,5 В + Ток*Rresistor = довольно близко к 12В.
Подключение светодиодов к 12 В используя два резистора
Можно подключить светодиоды к 12 В используя не один а два резистора. Схема не много сложнее, но более безопасна и “более рабочая”.
В каждой строке подключается биполярный транзистор. В первой строке мы видим, что база замыкается на коллектор и эмиттер и на землю. Все базы связываются между собой. В результате чего ток через каждую строку будет идти одинаковый. Гарантировать на все сто процентов работу не возможно, так как большую роль может сыграть температурный режим.
Еще раз повторюсь. что данная схема “более безопасна”, т.к. в этом случае можно не использовать большие 2 Вт резисторы, которые достаточно сильно греются. Помимо этого. экспериментальным путем, можно регулировать яркость светодиодов, подбирая транзисторы.
Видео подключения светодиода к 12 вольт
Понимаю, что большинству будет не понятно все то. что здесь написано. поэтому для тех, кто хочет просто увидеть и повторить – смотрите видео, в котором популярно показано как подключать светодиоды к постоянному току 12 Вольт.
{SOURCE}
Подключение светодиода к сети 220в , схема и расчет
Сегодня к светодиодам значительно возрос интерес, ведь за ними будущее в освещении. Возникает вопрос как происходит подключение светодиода к сети 220 В, на который мы подробно ответим в этой статье. Также рассмотрим напряжение питания, распиновку, цоколевку, схемы подключения и различные расчеты.
Светодиодом называют полупроводниковый прибор, где электрический ток переходит в свет. Диод пропускает ток только в одном направлении. Светодиоды подключаются к 220В благодаря драйверу, который подходит по всем характеристикам.
Подключение по схеме может быть параллельным или последовательным. Светодиод характеризуется прочным корпусом, долгой и надежной работой.
Как устроен светодиод
Обычный индикаторный светодиод изготавливают в эпоксидном корпусе с диаметром 5 мм и двумя контактными выводами для подключения к цепям электрического тока: анодом и катодом. Визуально они отличаются по длине. У нового прибора без обрезанных контактов катод короче.
- Запомнить это положение помогает простое правило: с буквы «К» начинаются оба слова:
- катод;
- короче.
Когда же ножки светодиода обрезаны, то анод можно определить подачей на контакты напряжения 1,5 вольта от простой пальчиковой батарейки: свет появляется при совпадении полярностей.
Как устроен светодиод? Светоизлучающий активный монокристалл полупроводника имеет вид прямоугольного параллелепипеда. Он размещён около светоотражающего рефлектора параболической формы из алюминиевого сплава и смонтирован на подложке с нетокопроводящими свойствами.
На окончании светового прозрачного корпуса из полимерных материалов расположена линза, фокусирующая световые лучи. Она совместно с рефлектором образует оптическую систему, формирующую угол потока излучения. Его характеризуют диаграммой направленности светодиода.
Она характеризует отклонение света от геометрической оси общей конструкции в стороны, что приводит к увеличению рассеивания. Такое явление возникает из-за появления при производстве небольших нарушений технологии, а также старения оптических материалов во время эксплуатации и некоторых других факторов.
Внизу корпуса может быть расположен алюминиевый или латунный поясок, служащий радиатором для отвода тепла, выделяемого при прохождении электрического тока.
Этот принцип конструкции широко распространен. На его основе создают и другие полупроводниковые источники света, использующие иные формы структурных элементов.
Свечение в полупроводниковом кристалле возникает при рекомбинации электронов и дырок в области p-n-перехода. Область p-n-перехода, образуется контактом двух полупроводников с разными типами проводимости. Для этого приконтактные слои полупроводникового кристалла легируют разными примесями: по одну сторону акцепторными, по другую — донорскими.
Светодиоды на основе фосфида и арсенида галлия, излучающие в желто-зеленой, желтой и красной областях спектра были разработаны еще в 60-х — 70-х годах прошлого столетия. Их применяли в световых индикаторах, табло, приборных панелях автомобилей и самолетов, рекламных экранах, различных системах визуализации информации.
По светоотдаче светодиоды обогнали обычные лампы накаливания. По долговечности, надежности, безопасности они тоже их превзошли. Долго не существовало светодиодов синего, сине-зеленого и белого цвета.Цвет светодиода зависит от ширины запрещенной зоны, в которой рекомбинируют электроны и дырки, то есть от материала полупроводника и легирующих примесей. Чем «синее» светодиод, тем выше энергия квантов, а значит, тем больше должна быть ширина запрещенной зоны.
Голубые светодиоды удалось изготовить на основе полупроводников с большой шириной запрещенной зоны — карбида кремния, соединений элементов II и IV группы или нитридов элементов III группы. Однако, у светодиодов на основе SiC оказался слишком мал КПД и низок квантовый выход излучения (то есть число излученных квантов на одну рекомбинировавшую пару).
У светодиодов на основе твердых растворов селенида цинка ZnSe квантовый выход был выше, но они перегревались из-за большого сопротивления и оказались недолговечны. Первый голубой светодиод удалось изготовить на основе пленок нитрида галлия на сапфировой подложке.
Квантовый выход — это число излученных квантов света на одну рекомбинировавшую электронно-дырочную пару. Различают внутренний и внешний квантовый выход. Внутренний — в самом p-n-переходе, внешний — для прибора в целом (ведь свет может теряться «по дороге» — поглощаться, рассеиваться).
Внутренний квантовый выход для хороших кристаллов с хорошим тепло-отводом достигает почти 100%, рекорд внешнего квантового выхода для красных светодиодов составляет 55%, а ддя синих — 35%. Внешний квантовый выход — одна из основных характеристик эффективности светодиода.
Белый света от светодиодов можно получить несколькими способами. Первый — смешать цвета по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например, линзы. В результате получается белый свет.
Второй способ заключается в том, что на поверхность светодиода, излучающего в ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих, соответственно, голубой, зеленый и красный свет. По принципу люминесцентной лампы.
Третий способ — это когда желто-зеленый или зелено-красный люминофор наносятся на голубой светодиод. При этом два или три излучения смешиваются, образуя белый или близкий к белому свет.
Напряжение питания светодиодов
Несмотря на то что электрический параметр №1 для светодиода – это номинальный ток, часто для расчётов необходимо знать напряжение на его выводах. Под понятием «напряжение светодиода» понимают разницу потенциалов на p-n-переходе в открытом состоянии.
Оно является справочным параметром и вместе с другими характеристиками указывается в паспорте к полупроводниковому прибору. 3, 9 или 12 вольт… Часто в руки попадают экземпляры, о которых ничего не известно. Так как узнать падение напряжения на светодиоде?
- Теоретический метод
Прекрасной подсказкой в этом случае является цвет свечения, внешняя форма и размеры полупроводникового прибора. Если корпус светодиода выполнен из прозрачного компаунда, то цвет его остаётся загадкой, разгадать которую поможет мультиметр.
Для этого переключатель цифрового тестера переводят в положение «проверка на обрыв» и щупами поочерёдно касаются выводов светодиода. У исправного элемента в прямом смещении будет наблюдаться небольшое свечение кристалла. Таким образом, можно сделать вывод не только о цвете свечения, но и о работоспособности полупроводникового прибора.
Светоизлучающие диоды разных цветов изготавливают из различных полупроводниковых материалов. Именно химический состав полупроводника во многом определяет напряжение питания светодиодов, точнее, падение напряжение на p-n-переходе.
В связи с тем, что в производстве кристаллов используют десятки химических соединений, точного напряжения для всех светодиодов одного цвета не существует. Однако есть определённый диапазон значений, которых зачастую достаточно для проведения предварительных расчетов элементов электронной цепи.
С одной стороны, размер и внешний вид корпуса не влияют на прямое напряжение светодиода. Но, с другой стороны. через линзу можно увидеть количество излучающих кристаллов, которые могут быть соединены последовательно. Слой люминофора в SMD светодиодах может скрывать целую цепочку из кристаллов.
Ярким примером является миниатюрные многокристальные светодиоды от компании Cree, падение напряжения на которых зачастую значительно превышает 3 вольта. В последние годы появились белые SMD светодиоды, в корпусе которых размещено 3 последовательно соединённых кристалла. Их часто можно встретить в китайских светодиодных лампах на 220 вольт.
Естественно убедиться в исправности LED-кристаллов в такой лампе при помощи мультиметра не удастся. Стандартная батарейка тестера выдаёт 9 В, а минимальное напряжение срабатывания трёхкристального белого светоизлучающего диода – 9,6 В. Также встречаются двухкристальная модификация с порогом срабатывания от 6 вольт.
- Практический метод
Самые точные данные о прямом падении напряжения на светодиоде можно получить путём проведения практических измерений. Для этого понадобится регулируемый блок питания (БП) постоянного тока с напряжение от 0 до 12 вольт, вольтметр или мультиметр и резистор на 510 Ом (можно больше). Лабораторная схема для тестирования показана на рисунке.
Здесь всё просто: резистор ограничивает ток, а вольтметр отслеживает прямое напряжение светодиода. Плавно увеличивая напряжение от источника питания, наблюдают за ростом показаний на вольтметре. В момент достижения порога срабатывания светодиод начнёт излучать свет.
В какой-то момент яркость достигнет номинального значения, а показания вольтметра перестанут резко нарастать. Это означает, что p-n-переход открыт, и дальнейший прирост напряжения с выхода БП будет прикладываться только к резистору. Текущие показания на экране и будут номинальным прямым напряжением светодиода.
Если ещё продолжить наращивать питание схемы, то расти будет только ток через полупроводник, а разность потенциалов на нём изменится не более чем на 0,1-0,2 вольт. Чрезмерное превышение тока приведёт к перегреву кристалла и электрическому пробою p-n-перехода.
Если рабочее напряжение на светодиоде установилось около 1,9 вольт, но при этом свечение отсутствует, то возможно тестируется инфракрасный диод. Чтобы убедиться в этом, нужно направить поток излучения на включенную фотокамеру телефона. На экране должно появиться белое пятно.
В отсутствии регулируемого блока питания можно запитать светодиод «кроной» на 9 В. Также можно задействовать в измерениях сетевой адаптер на 3 или 9 вольт, который выдаёт выпрямленное стабилизированное напряжение, и пересчитать номинал сопротивления резистора.
Распиновка светодиода
Для решения вопроса существует всего 3 способа:
- Конструктивно
Согласно нормам, принятым во всем мире, на обычном светодиоде (не SMD типа), длинная ножка всегда является «+» или же анодом. Для работы светодиода на него должна подаваться положительная полуволна. А короткая – катодом.
- С помощью мультиметра
Для проверки необходимо переключатель прибора поставить в режим «Прозвонка» и установить красный щуп мультиметра на анод, а черный – на катод. В результате светодиод должен засветиться. Если этого не произошло, необходимо поменять полярность (черный на анод, а красный на катод).
Если присмотреться к светодиоду, то можно увидеть 2 кончика возле кристалла. Тот, который больше – катод, тот, что меньше – анод.
Цоколевка светодиодов
Под цоколевкой принято понимать внешний вид (исполнение корпуса) светодиода. Каждый производитель выполняет светодиод в своем корпусе, в зависимости от структуры и назначения. Единого стандарта, как в светодиодных лампах не существует, напомню, самые распространенные цоколи ламп: е27, е14.
Какого-либо единого стандарта цоколевки светодиодов не существует. Каждый производитель делает так, как считает нужным. В итоге, на прилавках магазинов мы получаем множество светодиодов, различающихся по форме, внешнему виду, дизайну.
Из всего множества все – таки можно выделить пару небольших групп. Например, самые распространенные простые светодиоды выполняются в прозрачном или цветном корпусе из прочного пластика или стекла, и имеют форму цилиндра, край которого чаще всего закруглен.
Более дорогие светодиоды состоят из нескольких частей: основания и линзы. На основании расположены токопроводящие дорожки, а линза выполнена из качественного материала, которая служит в качестве рассеивателя света.
Основание изготавливают в виде круга или квадрата. Полярность на квадрате обозначают скошенным уголком. Например, светодиоды CREE, выглядят следующим образом:
Нестандартная цоколевка может встретиться при ремонте электронных блоков и вызвать определенные затруднения в определении полярности. По цоколевке светодиода определяется его полярность, знание которой требуется для ремонта или правильного монтажа светодиода в схему.Не всегда есть возможность определить полярность привычными способами, из-за нестандартной цоколевки светодиода: особенное строение корпуса, утолщение одного из светодиодов и другие причины. Поэтому, в таких случаях, как не крути, придется прибегнуть к электрическому замеру.
Обозначение светодиодов на схеме
Светодиод на схеме обозначается в виде обычного диода с двумя стрелками, направленными в сторону, обозначающее излучение света. Сам диод может изображаться, как в круге, так и без него.
Со стороны носика треугольника находится катод, а со стороны задней части треугольника – анод. Иногда на схеме можно увидеть обозначения анода и катода в виде букв А и К или + и -, что соответственно обозначает, анод и катод или плюс и минус.
Подписывается полупроводниковый элемент на отечественных схемах буквами HL (HL1, HL2 и т.д.) – это по ГОСТ. В зарубежных стандартах обозначение светодиода на схеме аналогично российскому. Подписывается он уже другим словом — LED (LED1, LED2, LED3 и т.д.), что в переводе с английского расшифровывается как light — emitting diode – светоизлучающий диод.
Не стоит путать обозначение светодиода на схеме с фотодиодом. С первого взгляда может показаться, что они одинаковые, однако, при детальном рассмотрении видна существенная разница: стрелки фоторезистора направлены на диод (треугольник с палочкой у острого конца).
Вторым отличием является буквенное обозначение фоторезистора – VD или VB, что означает фотоэлемент.
В заключении хочется сказать, что маркировка очень важна. Знание ее расшифровки, позволяет определить основные параметры светодиода, не открывая даташит. Запомнить маркировку всех производителей нереально, да и не к чему, достаточно знать расшифровку основных брендов.
Последовательное подключение светодиодов
При последовательном соединении через токоограничивающий резистор в одну цепочку собираются несколько светодиодов, причем катод предыдущего припаивается к аноду последующего:
В схеме, по всем светодиодам будет проходить один ток (20мА), а уровень напряжения будет состоять из сумм падения напряжения на каждом. Это означает, используя данную схему подключения, нельзя включить в цепь любое количество светодиодов, т.к. оно ограничено падением напряжения.
Падение напряжения – это уровень напряжения, которое светоизлучающий диод преобразует в световую энергию (свечение).
Например, в схеме падение напряжения на одном светодиоде составит 3 Вольта. Всего в схеме 3 светодиода. Источник питания 12В. Считаем, 3 Вольта * 3 led = 9 В — падение напряжения.
После несложных расчетов, мы видим, что не сможем включить в схему последовательного подключения более 4 светодиодов (3*4=12В), запитывая их от обычного автомобильного аккумулятора (или другого источника с напряжением 12В).
Если захотим последовательно подключить большее количество LEd, то понадобится источник питания с большим номиналом.
Данная схема довольно часто встречалась в елочных гирляндах, однако из-за одного существенного недостатка в современных светодиодных гирляндах применяют смешанное подключение. Что за недостаток, разберем ниже.
- Недостатки последовательного подключения:
- При выходе из строя хотя бы одного элемента, не рабочей становится вся схема.
- Для питания большого количества led нужен источник с высоким напряжением.
Параллельное соединение светодиодов
В данной ситуации все происходит наоборот. На каждом светодиоде уровень напряжения одинаковый, а сила тока состоит из суммы токов, проходящих через них.
Следуя из вышесказанного делаем вывод, если у нас есть источник в 12В и 10 светодиодов, блок питания должен выдерживать нагрузку в 0,2А (10*0,002). Исходя из вышеупомянутых расчетов — для параллельного подключения потребуется токоограничивающий резистор с номиналом 2,4 Ом (12*0,2).
Это глубокое заблуждение!!! Почему? Ответ Вы найдете ниже.
Характеристики каждого светодиода даже одной серии и партии всегда разные. Если другими словами: чтобы засветился один, необходимо пропустить через него ток с номиналом 20 мА, а для другого этот номинал может составлять уже 25 мА.
Таким образом, если в схеме установить только одно сопротивление, номинал которого был рассчитан ранее, через светодиоды будет проходить разный ток, что вызовет перегрев и выход из строя светодиодов, рассчитанных на номинал в 18мА, а более мощные будут светить всего на 70% от номинала.
Исходя из вышесказанного, стоит понимать, что при параллельном подключении, необходимо устанавливать отдельное сопротивление для каждого.
- Недостатки параллельного подключения:
- Большое количество элементов.
- При выходе одного диода из строя увеличивается нагрузка на остальные.
Смешанное подключение
Подобный способ подключения является самым оптимальным. По такому принципу собраны все светодиодные ленты. Он подразумевает комбинацию параллельного и последовательного подключения. Как он выполняется можно увидеть на фото:
Схема подразумевает включение параллельно не отдельных светодиодов, а последовательных цепочек из них. В результате этого даже при выходе из строя одной или нескольких цепочек, светодиодная гирлянда или лента будут по-прежнему одинаково светить.
Мы рассмотрели основные способы подключения простых светодиодов. Теперь разберем методы соединения мощных светодиодов, и с какими проблемами можно столкнуться при неправильном подключении.
Как подключить светодиод к сети 220 вольт
Светодиод – это разновидность полупроводниковых диодов с напряжением и током питания намного меньшим, чем в бытовой электросети. При прямом подключении в сеть 220 вольт, он мгновенно выйдет из строя.
Поэтому светоизлучающий диод обязательно подключается только через токоограничивающий элемент. Наиболее дешевыми и простыми в сборке является схемы с понижающим элементом в виде резистора или конденсатора.
Первое, что нужно знать при подключении к сети 220В, — для номинального свечения через светодиод должен проходить ток в 20мА, а падение напряжения на нем не должно превышать 2,2-3В. Исходя из этого, необходимо рассчитать номинал токоограничивающего резистора по следующей формуле:
- где:
- 0,75 – коэффициент надежности LED;
- U пит – это напряжения источника питания;
- U пад – напряжение, которое падает на светоизлучающем диоде и создает световой поток;
- I – номинальный ток, проходящий через него;
- R – номинал сопротивления для регулирования проходящего тока.
После соответствующих вычислений, номинал сопротивления должен соответствовать 30 кОм.
Однако не стоит забывать, что на сопротивлении будет выделятся большое количество тепла за счет падения напряжения. По этой причине дополнительно необходимо рассчитать мощность этого резистора по формуле:
Для нашего случая U – это будет разность напряжения питающей сети и напряжения падения на светодиоде. После соответствующих вычислений, для подключения одного led мощность сопротивления должна равняться 2Вт.
Важный момент, на который нужно обратить внимание при подключении светодиода в сеть переменного тока – это ограничение обратного напряжения. С этой задачей легко справляется любой кремниевый диод, рассчитанный на ток не менее того, что течет в цепи. Подключается диод последовательно после резистора или обратной полярностью параллельно светодиоду.
Существует мнение, что можно обойтись без ограничения обратного напряжения, так как электрический пробой не вызывает повреждения светоизлучающего диода. Однако обратный ток может вызвать перегрев p-n перехода, в результате чего произойдет тепловой пробой и разрушение кристалла светодиода.
Вместо кремниевого диода можно использовать второй светоизлучающий диод с аналогичным прямым током, который подключается обратной полярностью параллельно первому светодиоду. Отрицательной стороной схем с токоограничивающим резистором является необходимость в рассеивании большой мощности.
Эта проблема становится особо актуальной, в случае подключения нагрузки с большим потребляемым током. Решается данная проблема путем замены резистора на неполярный конденсатор, который в подобных схемах называют балластным или гасящим.
Включенный в сеть переменного тока неполярный конденсатор, ведет себя как сопротивление, но не рассеивает потребляемую мощность в виде тепла.
В данных схемах, при выключении питания, конденсатор остается не разряженным, что создает угрозу поражения электрическим током. Данная проблема легко решается путем подключения к конденсатору шунтирующего резистора мощностью 0,5 ватт с сопротивлением не менее 240 кОм.
Расчет резистора для светодиода
Во всех выше представленных схемах с токоограничивающим резистором расчет сопротивления производится согласно закону Ома:
R = U/I
- где:
- U – это напряжение питания;
- I – рабочий ток светодиода.
Рассеиваемая резистором мощность равна P = U * I.
Если планируется использовать схему в корпусе с низкой конвекцией, рекомендуется увеличить максимальное значение рассеиваемой резистором мощности на 30%.
Расчет гасящего конденсатора для светодиода
Расчёт ёмкости гасящего конденсатора (в мкФ) производится по следующей формуле:
C = 3200*I/U
- где:
- I – это ток нагрузки;
- U – напряжение питания.
Данная формула является упрощенной, но ее точности достаточно для последовательного подключения 1-5 слаботочных светодиодов.
Для защиты схемы от перепадов напряжения и импульсных помех, гасящий конденсатор нужно выбирать с рабочим напряжением не менее 400 В.
Конденсатор лучше использовать керамический типа К73–17 с рабочим напряжением более 400 В или его импортный аналог. Нельзя использовать электролитические (полярные) конденсаторы.
Схема лед драйвера на 220 вольт
Схема лед драйвера на 220 вольт представляет собой не что иное, как импульсный блок питания.
В качестве самодельного светодиодного драйвера от сети 220В рассмотрим простейший импульсный блок питания без гальванической развязки. Основное преимущество таких схем – простота и надёжность.
Но будьте осторожны при сборке, поскольку у такой схемы нет ограничения по отдаваемому току. Светодиоды будут отбирать свои положенные полтора ампера, но, если вы коснётесь оголённых проводов рукой, ток достигнет десятка ампер, а такой удар тока очень ощутимый.
- Схема простейшего драйвера для светодиодов на 220В состоит их трёх основных каскадов:
- делитель напряжения на ёмкостном сопротивлении;
- диодный мост;
- каскад стабилизации напряжения.
Первый каскад – ёмкостное сопротивление на конденсаторе С1 с резистором. Резистор необходим для саморазрядки конденсатора и на работу самой схемы не влияет. Его номинал не особо критичен и может быть от 100кОм до 1Мом с мощностью 0,5-1 Вт. Конденсатор обязательно не электролитический на 400-500В (эффективное амплитудное напряжение сети).
При прохождении полуволны напряжения через конденсатор, он пропускает ток, пока не произойдет заряд обкладок. Чем меньше его ёмкость, тем быстрее происходит полная зарядка. При ёмкости 0,3-0,4мкФ время зарядки составляет 1/10 периода полуволны сетевого напряжения.
Говоря простым языком, через конденсатор пройдет лишь десятая часть поступающего напряжения.
Второй каскад – диодный мост. Он преобразует переменное напряжение в постоянное. После отсечения большей части полуволны напряжения конденсатором, на выходе диодного моста получаем около 20-24В постоянного тока.
Третий каскад – сглаживающий стабилизирующий фильтр. Конденсатор с диодным мостом выполняют функцию делителя напряжения. При изменении вольтажа в сети, на выходе диодного моста амплитуда так же будет меняться.
Чтобы сгладить пульсацию напряжения параллельно цепи подключаем электролитический конденсатор. Его ёмкость зависит от мощности нашей нагрузки. В схеме драйвера питающее напряжение для светодиодов не должно превышать 12В. В качестве стабилизатора можно использовать распространённый элемент L7812.
Собранная схема светодиодной лампы на 220 вольт начинает работать сразу, но перед включением в сеть тщательно изолируйте все оголённые провода и места пайки элементов схемы.
Вариант драйвера без стабилизатора тока
В сети существует огромное количество схем драйверов для светодиодов от сети 220В, которые не имеют стабилизаторов тока.
Проблема любого безтрансформаторного драйвера – пульсация выходного напряжения, следовательно, и яркости светодиодов. Конденсатор, установленный после диодного моста, частично справляется с этой проблемой, но решает её не полностью.
На диодах будет присутствовать пульсация с амплитудой 2-3В. Когда мы устанавливаем в схему стабилизатор на 12В, даже с учётом пульсации амплитуда входящего напряжения будет выше диапазона отсечения.
Диаграмма напряжения в схеме без стабилизатора Диаграмма в схеме со стабилизаторомПоэтому драйвер для диодных ламп, даже собранный своими руками, по уровню пульсации не будет уступать аналогичным узлам дорогих ламп фабричного производства.
Как видите, собрать драйвер своими руками не представляет особой сложности. Изменяя параметры элементов схемы, мы можем в широких пределах варьировать значения выходного сигнала.
Если у вас возникнет желание на основе такой схемы собрать схему светодиодного прожектора на 220 вольт, лучше переделать выходной каскад под напряжение 24В с соответствующим стабилизатором, поскольку выходной ток у L7812 1,2А, это ограничивает мощность нагрузки в 10Вт.
Для более мощных источников освещения требуется либо увеличить количество выходных каскадов, либо использовать более мощный стабилизатор с выходным током до 5А и устанавливать его на радиатор.
Это нужно знать
Главное – это помнить о технике безопасности. Представленные схемы питаются от 220 В сети переменного тока, поэтому требуют во время сборки особого внимания. Подключение светодиода в сеть должно осуществляться в четком соответствии с принципиальной схемой.
Отклонение от схемы или небрежность может привести к короткому замыканию или выходу из строя отдельных деталей. При первом включении, сборки рекомендуется дать поработать некоторое время, чтобы убедиться в ее стабильности и отсутствии сильного нагрева элементов.
Для повышения надёжности устройства рекомендуется использовать заранее проверенные детали с запасом по предельно допустимым значениям напряжения и мощности. Собирать бестрансформаторные источники питания следует внимательно и помнить, что они не имеют гальванической развязки с сетью.
Готовая схема должна быть надёжно изолирована от соседних металлических деталей и защищена от случайного прикосновения. Демонтировать её можно только с отключенным напряжением питания.
Автор:Сергей Владимирович, инженер-электрик.
Подробнее об авторе.
Как подключить фары и переключатели в электрической системе автофургона своими руками — EXPLORIST.life
Вы когда-нибудь жили в доме, в котором был свет, который нельзя было выключить и включить выключателем? Нет? Я тоже. Давайте продолжим эту серию. В этом сообщении в блоге вы узнаете, как установить 12-вольтовые фары и переключатели в ваш DIY Camper
.СЕЙЧАС В НАЛИЧИИ: Руководство по параллельным цепям 12 В https://shop.explorist.life/shop/all-products/solar-wiring-diagrams/12v-branch-circuits/
Небольшая заметка, прежде чем мы начнем.Это лишь одна часть из всеобъемлющей серии «Как установить электрическую систему для автофургона своими руками». Если вы только что наткнулись на эту статью, не заметив ее, вероятно, некоторые вещи мы уже рассмотрели. Если вы хотите ознакомиться с этим пошаговым руководством, вы можете сделать это здесь: https://www.explorist.life/diy-campervan-solar
Кроме того, у нас есть интерактивные схемы подключения солнечных батарей, которые представляют собой полное решение от А до Я, чтобы научить вас, какие именно детали и куда идут, какого размера провода использовать, рекомендации по размеру предохранителей, размеры наконечников проводов и многое другое, чтобы помочь сэкономить у вас время и разочарование.Вы можете проверить это здесь: https://www.explorist.life/solarwiringdiagrams/
.Как подключить фары для кемпинга 12 В к батарее
Хотя действительно возможно подключить фары непосредственно к положительной и отрицательной клеммам аккумуляторной батареи, установка полной электрической системы в самодельный кемпер потребует перемещения ответвленных цепей (фонарей, вентиляторов, USB-розеток и т. Д.) От аккумуляторный блок. Для этого я рекомендую использовать центр распределения питания, такой как WFCO WF-8950 (https: // amzn.к / 3kLk6gf). Вот как WFCO WF-8950 распределяет мощность:
Как подключить блок предохранителей 12 В к блоку батарей
На всех схемах подключения солнечных батарей EXPLORIST.life я интегрировал WFCO WF-8950 в каждую, чтобы обеспечить питание всех вспомогательных цепей 12 В. На следующей схеме показан путь, по которому панель распределения питания 12 В получает питание от аккумуляторной батареи. Питание 12 В поступает от блока аккумуляторов 12 В и распределяется через шины 12 В (распределитель Victron Lynx на этой схеме) к основным компонентам системы.От распределителя Lynx питание идет по положительным и отрицательным проводам к стороне постоянного тока центра распределения питания, где имеется 15 различных цепей, готовых передавать мощность через положительный и отрицательный провод к каждой из отдельных ответвлений на 12 В (индикаторы, вентиляторы, розетки USB и т. д.).
Как подключить панель распределения питания 12 В (видео)
Это был очень краткий обзор того, как подключить распределительную панель. Если вам нужен более подробный обзор, вот подробное руководство и видео для публикации в блоге: https: // www.exploorist.life/how-to-wire-a-power-distribution-panel/
Как подключить лампу 12 В
Подключить лампу 12 В от аккумуляторной батареи 12 В через блок предохранителей на 12 В довольно просто. Все, что требуется, это:
- Подключите положительный провод к положительной клемме с предохранителем на распределительном щитке.
- Подключите отрицательный провод к клемме отрицательной шины в распределительном щите.
- Подключите положительный провод к положительному проводу на фонаре с помощью гайки рычага.
- Подключите отрицательный провод к отрицательному проводу на фонаре с помощью гайки рычага.
КАК ПОДКЛЮЧИТЬ НЕСКОЛЬКО СВЕТИЛЬНИКОВ 12В ВМЕСТЕ
Предыдущая диаграмма может оказаться менее чем полезной, потому что большинство людей подключают не только один источник света. Как правило, желательно одновременное включение нескольких источников света. Следуя тем же шагам, что и раньше, но добавьте следующее:
- Подсоедините положительный провод к гайке рычага, соединенной с положительным проводом на 1-м фонаре, и протяните его к гайке рычага, соединенной с положительным проводом на 2-м фонаре.
- Подсоедините отрицательный провод к гайке рычага, соединенной с отрицательным проводом на 1-м фонаре, и протяните его к гайке рычага, соединенной с отрицательным проводом на 2-м фонаре.
- Повторите этот процесс для всех источников света.
Как установить выключатели света 12 В
Теперь, когда вы знаете, как питание от блока предохранителей 12 В подается на светильник или несколько ламп, пришло время научиться подключать выключатель, чтобы вы могли включать и выключать свет по своему желанию.В этом разделе будут рассмотрены источники света, которые включаются и выключаются из одного места. Позже в этом посте мы рассмотрим двухсторонние переключатели света, которые могут управлять светом из разных мест.
12v spst схема выключателя света
Стандартный переключатель 12 В, который мы используем для управления освещением из одного места, называется «однополюсный однополюсный» или обычно сокращенно «SPST». Это самый простой переключатель. Он просто находится в выключенном состоянии. Сзади три клеммы:
- Средний терминал принимает питание от распределительного щита.
- Верхний терминал будет передавать питание на свет, если переключатель включен.
- Нижняя клемма — это отрицательная клемма. Это просто позволяет светодиоду на переключателе работать в зависимости от того, включен или выключен переключатель. Если вы не хотите, чтобы маленькая светодиодная лампа, встроенная в переключатель, работала, вы можете обойти отрицательную клемму на задней панели переключателя и не использовать ее.
ПРИМЕЧАНИЕ: На остальных показанных схемах отрицательная клемма переключателя НЕ будет подключена.Светодиодный индикатор на переключателе довольно яркий, и если эти переключатели расположены в том же месте, где вы спите, они очень раздражают.
Как работает выключатель света на 12 в?
Стандартный переключатель 12 В, который мы используем для управления освещением из одного места, называется «однополюсный однополюсный» или обычно сокращенно «SPST». Переключатель просто «разрывает» или «соединяет» положительный провод в системе, позволяя току течь или не течь, в зависимости от того, нажат переключатель или нет.Вот пример того, как переключатель работает в двух положениях для управления цепочкой из 3 ламп:
Обратите внимание, что на этой схеме отрицательная клемма переключателя НЕ подключена, что означает, что маленький светодиод на переключателе НЕ будет активен.
Как подключить несколько ламп 12 В к одному выключателю
Подключение нескольких ламп 12 В к переключателю 12 В так же просто, как подключение плюсов к плюсам и минусов к минусам и установка переключателя SPST между блоком предохранителей и цепочкой огней.Переключатель ДОЛЖЕН находиться между блоком предохранителей и фарами. Вот схема подключения 12-вольтовых ламп и переключателей, на которой показаны 12 ламп, управляемых одним переключателем:
Как подключить несколько «зон» источников света
Если вы хотите, чтобы в вашем кемпере было несколько «зон» света, вы можете просто «скопировать и вставить» схему сверху вниз в следующее место предохранителя в распределительной коробке. Это позволит вам иметь переключатели либо в одних и тех же местах, либо в двух отдельных местах для управления несколькими зонами.Однако помните, что здесь показан один переключатель, управляющий одной зоной освещения. Вот как это будет выглядеть:
Как подключить двухпозиционный переключатель 12 В
Назначение двухпозиционного переключателя состоит в том, чтобы вы могли иметь один переключатель у входа, а другой, скажем, у кровати, чтобы вы могли управлять одним и тем же набором светильников из двух разных мест.
ОЧЕНЬ ОЧЕНЬ важно, чтобы вы выбрали правильный переключатель. Вам нужен переключатель «Single Pole Double Throw — On / On» 12 В.Вот как работает этот переключатель:
Фары 12 В — Схема подключения двухпозиционного переключателя
На схеме ниже показано, как соединить двухпозиционные переключатели вместе и как подключить их к цепочке огней. Положительный провод от блока предохранителей 12 В подает питание на центральную клемму переключателя SPDT On-On. Клеммы «Нагрузка 1» и «Нагрузка 2» переключателя включения-выключения SPDT затем подключаются к клеммам «Нагрузка 1» и «Нагрузка 2» второго переключателя включения-выключения SPDT во 2-м месте.Оттуда центральный терминал подает питание на свет в зависимости от ориентации переключателей.
Фары 12 В — Перечень деталей 2-позиционного переключателя
Вот список деталей, показанных на диаграмме выше:
Вот как переключатель работает в различных положениях:
Надеюсь, теперь вы знаете, как подключить 12-вольтовые фары и переключатели к своему DIY Camper. Если у вас есть какие-либо вопросы, оставьте их в комментариях ниже и подпишитесь на будущие обновления.
Теперь, когда вы знаете, как подключить 12-вольтовый переключатель и все ваше освещение, пришло время урока о том, как определить, какой размер и тип провода использовать в электрической системе вашего дома на колесах.Проверьте это здесь: https://www.explorist.life/what-wire-to-use-for-diy-camper-solar-system/
Все, что вы здесь изучаете, используется в наших БЕСПЛАТНЫХ интерактивных схемах подключения солнечных батарей. Если вы еще этого не сделали, ознакомьтесь с ними, поскольку они представляют собой полное решение для электрической системы автофургона. Посмотрите их здесь: https://www.explorist.life/solarwiringdiagrams/
Помните, что это лишь часть полной обучающей серии по электрике автофургонов. Чтобы увидеть все отдельные руководства, щелкните здесь: https: // www.exploorist.life/diy-campervan-solar
Наконец, если вы нашли это руководство полезным, оно действительно означало бы для нас весь мир, если бы вы поделились им с кем-то, кто может его использовать, прикрепили его к pinterest для дальнейшего использования или поделились им в группе facebook, когда у кого-то есть вопрос по этой теме. Нажмите на пузырь в правом нижнем углу, чтобы подписаться на уведомления о будущих обновлениях и, как всегда, оставляйте любые вопросы в комментариях ниже.
Как сделать простую схему светодиодного фонаря на 12 В
В этом посте мы попытаемся создать простую схему светодиодного фонаря на 12 В, которую можно использовать ночью во время путешествий и прогулок, например, на пикниках, в походах или в кемпинге и т. Д.
Введение
До сих пор мы подробно обсуждали белые светодиоды во многих моих предыдущих статьях и узнали, насколько эти лампы эффективны с точки зрения энергопотребления.
В этой статье мы рассмотрим очень простую конфигурацию изготовления светодиодной лампы или светодиодного фонаря.
Новых энтузиастов электроники часто путают сложности подключения при настройке множества светодиодов в группы.
Здесь мы увидим, как можно подключить до 64 светодиодов для изготовления предлагаемого блока.
Как это работает
Детали принципиальной схемы можно понять из следующих пунктов:
Белые светодиоды обычно имеют прямое падение напряжения около 3 вольт.
При работе с указанным выше уровнем напряжения устройство способно производить свет на оптимальном уровне, а спецификации также обеспечивают более длительный срок службы.
Минимальный ток, требуемый при указанном выше уровне напряжения, составляет около 20 мА, что снова является оптимальной величиной и идеально подходит для белого светодиода.
Это означает, что для управления одним белым светодиодом наиболее простым способом нам потребуется 3 * 0,02 = 0,06 Вт, что довольно незначительно по сравнению с относительной освещенностью, получаемой от него.
Самое лучшее, что пока соблюдаются указанные выше характеристики напряжения и тока, устройство продолжает потреблять 0,06 Вт независимо от количества подключенных светодиодов.
В данной схеме максимальное доступное напряжение равно 12, при делении 12 на 3 = 4, что означает, что при этом напряжении можно разместить 4 числа светодиодов, и тем не менее мы можем ограничить мощность до 0.06 Вт.
Однако приведенный выше расчет сделает схему весьма уязвимой для падений напряжения, и если падение напряжения даже на один вольт сделает светодиод слишком тусклым или может просто выключить их, мы не хотим, чтобы это произошло.
Поэтому, хотя эффективность может немного снизиться, мы выбрали конфигурацию, которая позволила бы схеме работать даже при более низких напряжениях. Мы включаем только два светодиода в серию мощностью 0,06 Вт.
Теперь нужно соединить желаемое количество цепочек по два светодиода в параллель, пока все 64 лампочки не будут включены в цепь.
Однако параллельное соединение означало бы умножение тока. Поскольку у нас 32 параллельных соединения, это означает, что общее потребление теперь станет 32 * 0,06 = 1,92 Вт, что все еще довольно разумно.
Принципиальная схема светодиодного фонаря
Детали подключения можно легко проследить по данной схеме.
Ваш простой светодиодный фонарь готов, и его можно брать с собой куда угодно на улицу, возможно, во время ночных прогулок.
Pats List
Все резисторы = 470 Ом, 1,4 Вт,
Все светодиоды = белые, 5 мм, с высокой эффективностью
Правильное освещение создает настроение интерьеру вашего автофургона. Яркий белый свет может сделать ваш фургон стерильным. Теплый свет может быть менее вредным для глаз. Регулируемое или дополнительное освещение делает чтение более приятным в ночное время.
Когда мы построили наш фургон, у нас была отличная встроенная система светодиодных лент, но мы забыли о том, что их нельзя затемнить. Во время нашей следующей поездки в Walmart мы купили небольшие кнопочные светильники с батарейным питанием. Они отлично подходят для ночей, но, безусловно, кое-что, что мы могли бы включить в сборку, если бы лучше спланировали.
Почему выбирают светодиоды?
Светодиодные фонаринедороги и с ними легко работать. Они потребляют очень мало энергии и не нагреваются на ощупь.Когда дело доходит до светодиодных технологий, здесь нет конкурентов.
Самые популярные типы верхнего освещения: :
- Светодиодные полосы 12 В
- Встраиваемые светодиодные светильники 12 В
- Сказочные огни
- Светильники с питанием от батарей
- Солнечные фонари
НАРУЖНЫЕ ВЕРЕВОЧНЫЕ ФОНАРИ
Светодиодные ленты
Светодиодные лентылегкие и универсальные. Вы можете обрезать их по размеру и запускать практически где угодно.Они бывают разных цветов, и их легко подключить к вашему фургону.
Легкие ленты настолько невесомы, что их можно прикрепить с помощью прочной двойной липкой ленты, стяжек, суперклея или любого другого креативного решения. Их можно использовать в качестве основных источников света или хороших дополнительных источников света, например, в качестве фартука для раковины.
Советы по покупке светодиодной ленты
- Обязательно приобретите гирлянду на 12 вольт с питанием от постоянного тока
- Выберите подходящий оттенок света: ярко-белый, естественный белый или теплый белый, чтобы изменить настроение.
- Получите желаемую длину. Выберите светлую полоску, которую можно обрезать по размеру. Если сомневаетесь, покупайте дольше. Их всегда можно использовать в дополнительных частях сборки.
- На обратной стороне некоторых легких полосок имеется отслаивающийся и наклеивающийся клей.
Как отрезать световую полосу
Пряди часто бывают с линиями разреза, предварительно отмеченными в местах, которые можно отрезать обычными ножницами. После этого у вас останутся металлические контакты. Эти контакты могут быть либо спаяны вместе, либо соединены с помощью какой-либо светодиодной обжимки на разъемах.
ВТОРИЧНЫЕ ФОНАРИ
Встраиваемое светодиодное освещение, 12 В
Мне жаль, что я не знал об этих маленьких встроенных светильниках, прежде чем я начал строить свой фургон. Они разработаны для жилых автофургонов и лодок, поэтому они довольно малы и действительно делают фургон роскошным. Процесс монтажа встраиваемого освещения такой же, как и для любой световой ленты на 12 В. Читайте ниже инструкции.
Советы по покупке встраиваемого освещения
Как и в случае с светодиодными лентами, цвет света играет большую роль.Выбирайте между теплыми или холодными светлыми тонами. Также учитывайте внешний цвет света.
Их часто можно купить с белой или серебристой отделкой, чтобы они соответствовали интерьеру вашего фургона. Некоторые (но не все) встраиваемые светильники поставляются с пружинными зажимами для облегчения установки.
Мы рекомендуем покупать этот тип, потому что он будет наиболее простым в установке.
Как установить встраиваемые морские фонари
Чтобы установить встраиваемые светильники с пружинными зажимами, сделайте круглый вырез размером с внутреннее кольцо.Затем вставьте светильник, и пружинные зажимы будут удерживать его на месте. Это простой процесс, не требующий дополнительных инструментов или клея! Не забудьте оставить место для проводов и спланировать проводку, прежде чем закончить сборку потолка.
@roaminginavanКак подключить свет 12 В:
Независимо от того, используете ли вы ленточное или утопленное освещение, процесс подключения к любой системе освещения 12 В будет одинаковым. Поскольку светодиоды потребляют очень мало энергии, обычно вы можете соединить вместе столько светодиодов, сколько захотите.Предполагается, что для установки освещения у вас уже есть блок предохранителей и шина, готовые к работе и прикрепленные к вашей батарее. Если вы не знаете, что это такое, прочтите этот пост, чтобы получить обзор всей электрической системы.
Первый шаг перед подключением всего — убедиться, что все у вас отключено! В том месте, где вы будете использовать, не должно быть предохранителей. Вставляйте предохранитель только в конце процесса или если вам нужно убедиться, что огни работают, прежде чем устанавливать их на более длительный срок.
1. Соедините вместе несколько полос света
Начните с соединения всех полос или цепочек огней вместе. Фары будут иметь пару красных и черных проводов, идущих от них. Поскольку все уже на 12 В, вы хотите подключить их параллельно. Это означает, что все красные провода будут соединены вместе, чтобы перейти к переключателю. Все черные провода будут соединены вместе, чтобы перейти к шине.
Если вы хотите выложиться по полной, то для подключения проводов можно использовать набор для пайки.Это хорошее видео о том, как припаять провода, если вы не знаете, как. Если нет, вы можете скрутить провода вместе и соединить их стыковым соединением или в месте, где будет использоваться концевой соединитель. Вот хорошее видео на Youtube о том, как правильно обжимать провода.
Общие советы
- Используйте многожильный провод. Сплошной медный бытовой провод не предназначен для выдерживания вибраций. теснота и трение металла в фургоне.
- Не используйте скрученные соединители для соединения проводов. Это по той же причине, что и выше.
- Проверьте свое оборудование перед его установкой (выключатели и освещение). Намного легче диагностировать и устранять проблемы, когда они находятся прямо перед вами.
- При прокладке троса проложите немного больше (6 дюймов или около того). Это сделано для того, чтобы, если вы сделаете ошибку при соединении или вам понадобится немного места для маневра, у вас будет немного свободного места.
- Разместите сварку в шахматном порядке, если у вас несколько проводов, соединенных вместе. Это позволяет избежать скопления большого количества разъемов в одном месте.
2. Подключите световые нити к выключателю
Один провод идет от блока предохранителей к выключателю света.Если вы используете фонари мощностью 100 Вт или меньше, этот провод должен быть 14 AWG. Если ваш коммутатор имеет плоские клеммы, используйте плоский разъем. Если от него просто идут провода, используйте стыковой соединитель, чтобы присоединить его к проводу.
Второй провод пойдет к вашим фарам.
Диммерные переключатели
Диммерные переключатели имеют третий провод. Этот провод обычно черный, и его следует использовать для заземления шины. В этом случае провод, идущий к вашим фарам, будет белым.
Альтернативы световым полосам на 12 В
Сказочные огни
У каждого известного инстаграммера #vanlife есть две общие черты — это позирование модели и волшебные огни.К счастью, их легко добавить, если хотите. Ну фары все равно есть! Сказочные огни можно купить с питанием от источника постоянного тока 12 В и установить так же, как и в вариантах со светодиодами, указанными выше. Вы также можете купить сказочные огни на батарейках для периодического использования и большей гибкости.
Мы не рекомендуем покупать гирлянды с питанием от сети переменного тока (такие, которые подключаются к бытовой розетке). Причина этого в том, что вам придется запускать инвертор каждый раз, когда горит свет, что неэффективно.
@the_wayward_blondeФонари на батарейках
Фонари с батарейным питанием — это наши современные простые и недорогие устройства.Если вас пугает электричество (или вы просто ленивы), не нужно ничего встраивать в свой фургон. Вы можете прекрасно обойтись недорогими кнопочными фонарями, фонариками или налобными фонарями.
Покупайте солнечные фонари на Amazon.comСолнечные фонари
Солнечные фонари становятся все более популярными, поскольку батареи и солнечные элементы становятся все более доступными.
Солнечные фонари заряжаются на солнце днем, а затем готовы к работе ночью. Goal Zero, Luci Lights и Biolite предлагают решения по цене от 20 до 120 долларов.
Это хорошо для тех, кто находится в дороге в течение длительного времени и не требует установки вспомогательной батареи.
Обратной стороной солнечного света является то, что вы должны заряжать его каждый день. Это легкая привычка, но она может быть неудобной.
Освещениене обязательно должно быть дорогим, и при правильной установке оно может сделать вид фургона намного более классным. При этом не стоит недооценивать мощность налобных фонарей, светодиодных фонарей или фонарей с батарейным питанием. Чтобы воспользоваться подходящим освещением, не нужно быть электриком.
Как установить светодиодный светильник
Это второй в серии статей, посвященных основам 12-вольтной проводки. В первом мы установили вилку прикуривателя. Это было настолько просто, что все, что мы делали, — это зачищали и обжимали провод. Возможно, вы захотите вернуться и просмотреть его, прежде чем пробовать эту установку. Найдите его здесь: https://cheaprvliving.com/blog/how-to-install-a-cigarette-lighter-plug-strip-and-crimp-12-volt-wire/ В этом посте мы собираемся переместить на ступеньку выше по сложности и установить светодиодный светильник.Я купил этот светодиодный светильник на Amazon.com и очень им доволен. Он имеет яркость 230 люмен и оснащен диммером. На полной яркости я легко могу читать по нему, но на самом низком уровне он отлично подходит для просмотра телевизора. Лучше всего он потребляет всего 3 Вт, что невероятно мало. Это 0,25 (одна четверть) усилителя. Всего за 15 долларов я очень рекомендую это !! Его можно найти здесь: Светодиодный купольный светильник Gold Stars, 230 люмен, 12 В, с диммером (у меня выключен объектив, поэтому вы можете видеть светодиоды внутри)
Светодиодный светильник на 230 люмен с переключателем яркостиКак и почти все 12-вольтовые приборы, светильник, с которым мы работаем, поставляется только с двумя короткими проводами.Прибор, который у меня был, с двумя белыми проводами, которые меня сбили с толку, поэтому я провел небольшое исследование и выяснил, что это означает, что полярность нейтральна, поэтому я мог подключить любой провод к положительной или отрицательной клемме батареи. Это упростило. Но другие приспособления будут поставляться с обычными красными или черными проводами, и это также просто, потому что вы просто подключаете черный провод к черному проводу, а красный провод к красному проводу, красный идет к положительному выводу, а черный — к отрицательному выводу. аккумулятор. Это просто соответствует обычным 12-вольтным автомобильным цветовым соглашениям.
Я поместил красную стрелку, указывающую на то, что он потребляет 3 Вт при 12 В. Обратите внимание на 2 белых провода.Иногда прибор на 12 В поставляется с черными и белыми проводами, и это создает проблему для большинства из нас: какой из них положительный, а какой отрицательный? В подобных случаях они следуют кодексу NEC, в котором используются цветовые коды проводов на 110 вольт. В этом случае черный является положительным, а белый — отрицательным (нейтраль в терминологии 110 вольт). Таким образом, вы должны подключить красный провод к черному проводу, выходящему из приспособления, и черный провод к белому проводу, выходящему из приспособления, и черный провод будет перейдите к отрицательному столбу, а красный провод пойдет к положительному столбу.Вот диаграмма, чтобы прояснить это:
Схема, показывающая, какой цвет провода использовать.Следующее, что нам нужно сделать, это выбрать размер провода. Но я не хочу сейчас слишком увлекаться размерами проводов, поэтому достаточно сказать, что на основе моего опыта я знал, что провод 18 калибра будет достаточно большим, и подтвердил это с помощью калькулятора проводов. В одном из следующих постов я расскажу о размерах проводов и использовании такого калькулятора размеров проводов, как этот: http://circuitwizard.bluesea.com/#for . Тогда я объясню размеры проводов и как пользоваться калькулятором. .Как правило, большинство приборов на 12 В, которые вы используете, подойдут для датчиков 14 или 10. Большинство вещей, которым нужен провод большего размера, поставляется вместе с проводом или с инструкциями в руководстве по выбору провода. Я обычно использую немного более тяжелый провод, чем требуется, и у меня под рукой много провода калибра 14 (я все время ношу с собой провода калибра 14, 10 и 6, и, если сомневаетесь, я перехожу к большему проводу) так что это то, что мы будем использовать.
Перед тем, как мы начнем установку, я хочу, чтобы вы увидели схему всех частей, не связанных (разобранных), чтобы вы получили визуальное представление всего проекта:
Покомпонентное изображение всех частей и деталей до их соединения.Далее мы собираемся использовать базовые навыки зачистки и опрессовки, которые мы изучили на прошлом уроке.
Шаг 1: Зачистите и обожмите стыковой соединитель на каждом проводе, отходящем от осветительной арматуры. Затем зачистите и обожмите черный провод к одному, а красный — к другому. Поскольку этот прибор имеет нейтральную полярность, не имеет значения, какая именно. В противном случае вы использовали бы цветовые коды, которые я дал вам выше.
Соединители встык обжаты на двух белых проводах, выходящих из приспособления.Шаг 2: Поместите приспособление туда, где вы собираетесь его установить, а затем проложите провод, но вы протягиваете его обратно к батарее.Я покупаю меньший провод в рулонах длиной не менее 30 футов (у Walmart в разделе автоэлектрооборудования), а в фургоне большинство пробегов составляет около 8-15 футов (или меньше), поэтому у меня всегда остаются обрезки. Вот что я использовал для этой работы.
Обжим стыкового соединителя.Шаг 3: Зачистите кольцевой разъем и обожмите его на черном (отрицательном) проводе.
Обжим кольцевого разъема. После того, как вы закончите, потяните все свои зажимы, чтобы проверить их и убедиться, что они надежно закреплены.Шаг 4: На этот раз мы добавляем новый поворот, и мы собираемся добавить линейный предохранитель на красный положительный провод.Обычно они идут с полным кругом проволоки, поэтому первым делом нужно разрезать ее пополам. Затем зачистите и обожмите стыковой соединитель на одном конце и кольцевой соединитель на другом конце линейного предохранителя. Затем зачистите и обожмите стыковой соединитель, идущий от линейного предохранителя, к красному положительному проводу, идущему от приспособления. Последнее; вставьте стандартный плавкий предохранитель на 5 А или 7,5 А в патрон. Вот патрон предохранителя калибра 16 с Amazon.com: Встроенный патрон предохранителя ATO / ATC 16 AWG
Встроенный предохранитель после того, как это будет сделано.Стыковый соединитель прикрепляет его к красному проводу, идущему от осветительной арматуры, а кольцевой соединитель готов прикрепить его к положительному полюсу батареи. Осталось только вставить предохранитель на 5 ампер в держатель.Шаг 5: Оберните все соединения, которые вы только что сделали, изолентой.
Оберните все соединения изолентой.Шаг 6: Снимите гайки с клемм аккумулятора и подключите черный провод к отрицательной (-) клемме, а красный провод к положительной (+) клемме.
Встроенный предохранитель (и красный провод обратно к осветительной арматуре) прикреплен к полюсу батареи.Шаг 7: Включите новый свет и наслаждайтесь!
Одна вещь, которую вы скоро заметите, — это то, что ваши клеммы аккумулятора будут очень загромождены проводами от всего, что вы добавляете. В следующий раз мы посмотрим, как добавить блок предохранителей, чтобы устранить большую часть этой проблемы.
Проводка какого размера мне следует использовать для светодиодного освещения | 12VMonster
Светодиодные системы освещения не сложны. Фактически, из-за небольшого количества потребляемого ими электричества или тока вы можете использовать практически любой провод, который сможете найти.Конечно, вы должны учесть несколько моментов, чтобы подобрать проводку правильного размера для светодиодного освещения 12 В.
Что лучше: одножильный или многожильный?
Есть два вида проводов: одножильные и многожильные. Сплошной сердечник содержит один сплошной проводник, обычно медный, и пластиковая изолирующая оболочка оборачивает этот провод. С другой стороны, многожильный провод обычно содержит несколько проводников в жгуте, а все вокруг покрыто изоляционной оболочкой.
Многожильный провод гибкий, но работать с ним бывает непросто. Требуется пайка, чтобы придать ему жесткость, чтобы вы могли вставить его в соединение. С другой стороны, сплошной сердечник немного более гибкий, и с помощью этого провода легче выполнять соединения. Оба провода будут работать с вашим светодиодным освещением, но проще использовать твердый сердечник.
Какой калибр правильный?
Вам нужно знать и правильно выбрать калибр для вашей системы проводов — чем больше, тем лучше.Проблема с большими проводами заключается в том, что их немного сложно подключить, и они не такие гибкие, как более тонкие. К счастью, светодиодные фонари не потребляют много тока, поэтому вам не нужно использовать большие провода.
Когда дело доходит до выбора проводов, нужно искать обозначение AWG. AWG — это американский калибр проводов. Это рейтинг для проводных работ. Любопытно, что цифра указывает на размер провода — чем меньше цифра, тем больше проволока. Таким образом, провод 18-го калибра меньше, чем провод 16-го калибра.
Что следует учитывать при выборе провода?
При выборе провода для светодиодной системы необходимо учитывать две вещи: падение напряжения и допустимую нагрузку на провод.
Медь — отличный проводник электричества, но у нее есть некоторые присущие ей проблемы. Чем длиннее кабель, тем больше сопротивление в цепи. Это сопротивление измеряется в Ом. Сопротивление также увеличивается с уменьшением диаметра провода. Это связано с гораздо меньшей площадью, через которую могут проходить электроны.
Можно ожидать, что напряжение упадет при увеличении сопротивления. Если у вас есть небольшой провод, который довольно длинный, вы можете ожидать, что напряжение 36, которое должен выдавать ваш драйвер, упадет примерно до 35 вольт. Это падение может привести к постоянным изменениям в вашей системе напряжения, что непреднамеренно приведет к большому потреблению тока. Итак, научитесь определять правильный калибр проволоки, прежде чем выбирать какой-либо размер и длину.
Еще одно соображение — допустимая нагрузка на провод.Вы должны убедиться, что выбранный вами провод может выдерживать количество электричества, которое будет проходить через него. Небольшой провод может легко нагреться из-за сопротивления, и это может быть довольно опасно. Это может расплавить оболочку проволоки. В худшем случае это может вызвать пожар.
Большинство светодиодных установок в домах имеют короткие проводки. Они также соединены последовательно с небольшим током. Вы можете обойтись без небольшого провода, но если вы пытаетесь установить несколько фонарей, сильно подключая их параллельно, вам следует дважды подумать об использовании небольшого провода.Вы можете получить большой ток, который должен пройти через ваш провод. Проверьте возможности обращения с проволокой разного калибра.
Пошаговое руководство по определению правильного калибра провода
1. Вычислите общую длину провода, необходимую для подключения, например, для светодиодной ленты.
2. Вычислите величину тока, который может протекать по проводу. Для этого вычислите общую длину светодиодных лент, подключенных к источнику питания, а затем умножьте это число на мощность на фут.Так, например, светодиодный светильник потребляет около 4,4 Вт на фут. Если вы собираетесь использовать около 16 футов, вы умножаете 4,4 на 16, и вы получаете 70,4 Вт.
3. Разделите общую мощность, вычисленную на предыдущем шаге, на 12, чтобы получить общий ток в амперах. Таким образом, получается 70,4 Вт, разделенные на 12, и получается 5,87 ампер.
4. Обратитесь к таблице ниже, чтобы найти правильный калибр провода. Он находится на пересечении усилителей и ножек. Итак, для 50 футов и 5 ампер правильный калибр провода — 10.Помните, что сам провод потребляет ток, поэтому, если вы используете более длинный провод, обязательно используйте толстый. На шкале ниже чем меньше цифра, тем толще проволока.
Калибры и калибры проводов
Для большинства бытовых осветительных приборов, а также для многих других приборов требуется провод калибра 12 или 14. Обычно это обозначается цифрой, тире, а затем еще одной цифрой. Например, 12-2 или 12/2.
Первое число, 12, указывает диаметр провода, а второе число определяет количество проводов, содержащихся в кабеле.Под кабелем понимаются жгуты проводов в оболочке, которые обычно имеют пластиковую изоляцию.
Цветовая кодировка проводов
Другой тип стандарта проводки, который необходимо учитывать, — это цвет оболочки или изоляции, окружающей провода или кабели. Цвет часто указывает на то, какой вид провода заключен внутри.
Черная или красная изоляция указывает на то, что внутри находится провод под напряжением или под напряжением. Белая или коричневая крышка указывает на то, что внутри находится нейтральный кабель или провод.Желтая или желто-зеленая крышка означает, что внутри есть заземляющий провод.
Помните, что ток или электричество также могут проходить через нейтральный провод, поэтому обязательно соблюдайте меры безопасности при обращении с проводами. Выключите автоматический выключатель или выключатель света перед работой с любыми установками.
Большинство людей, вероятно, порекомендуют использовать одножильный провод 18 калибра для светодиодных фонарей. Разница в стоимости между этим размером провода и кабелем гораздо меньшего размера незначительна, а калибр 18 — это настолько большой размер, на который вы можете пойти, если хотите, чтобы ваши провода подходили к большинству держателей или клемм.Этот размер провода способен обрабатывать намного больше, чем ваша средняя система.
Если вы собираетесь установить несколько 12-вольтовых светодиодных осветительных приборов с возможностью затемнения, возможно, вы захотите воспользоваться соединителями для проводов, которые могут помочь вам с подключением. Простое и безопасное подключение с помощью разъемов постоянного тока 12VMonster, которые подходят для всех подключений низковольтной проводки постоянного тока. Эти разъемы имеют двухпроводные клеммы, как положительные, так и отрицательные. Они могут облегчить монтаж проводки, и их можно использовать для рыбацких лодок, домов на колесах, жилых автофургонов, автобусов, автомобильных систем, солнечных и ветровых систем.С помощью этих разъемов вы можете раз и навсегда избавиться от беспорядочной проводки.
Для получения еще более мощного руководства по всем вопросам электромонтажа — ознакомьтесь с этим полным руководством: Электромонтаж, 8-е обновленное издание (Creative Homeowner) Домашний электрический монтаж и ремонт от новых переключателей до внутреннего и наружного освещения с пошаговыми фотографиями ( Ultimate Guides)
Комментарии будут одобрены перед появлением.
Quickar Electronics КАК ПОДКЛЮЧИТЬ светодиоды
Quickar Electronics КАК ПОДКЛЮЧИТЬ светодиоды — выбор правильной схемы подключения, правильные токоограничивающие резисторы и проверка работоспособностиКАК ПОДКЛЮЧИТЬ СВЕТОДИОДЫ — НАДЛЕЖАЩАЯ ПОДКЛЮЧЕНИЕ СВЕТОДИОДОВ — выбор правильного токоограничивающего резистора и проверка рабочих характеристик
Copyright © 1995-2010 Quickar Electronics, Inc — щелкните здесь, чтобы вернуться на наш веб-сайт
Основной принцип состоит в том, чтобы выбрать правильные компоненты и проводку на основе наиболее точной имеющейся информации, а затем, используя простой и недорогой измеритель, измерить и проверить производительность и внести необходимые корректировки для достижения 100% производительности в соответствии с руководящими принципами производителя. .
Практически во всех случаях для светодиодов потребуется токоограничивающий резистор , чтобы они не взорвались Чтобы случайно не взорвать светодиоды НАЖМИТЕ ЗДЕСЬ ДЛЯ КАЛЬКУЛЯТОРА ОГРАНИЧИТЕЛЬНОГО РЕЗИСТОРА ТОКА для светодиодов *********************************************** ************************************************ ********************* СВЕТОДИОДОВ, КАК ВСЕ ДРУГИЕ ЭЛЕКТРОННЫЕ КОМПОНЕНТЫ, ИМЕЮТ СОБСТВЕННЫЕ ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА, РЕГУЛИРУЕМЫЕ НАБОРОМ МАТЕМАТИЧЕСКИХ ФОРМУЛ, ИЗВЕСТНЫХ В ЗАКОНЕ ОМС. ЗаконОм регулирует соотношение между НАПРЯЖЕНИЕМ (В) — ТОК (A) для усилителей — ВАТТ ИЛИ МОЩНОСТЬ (Вт) — И СОПРОТИВЛЕНИЕ (R), измеренное в омах и ваттах НАЖМИТЕ ЗДЕСЬ ДЛЯ СТРАНИЦЫ ЗАКОНА OHMS |
Хотя вам не нужно ПОЛНОСТЬЮ знать и понимать закон сопротивления, поскольку на нашем веб-сайте есть формулы, которые помогут вам с математикой, вы должны понимать, что закон сопротивления поможет вам выбрать правильные компоненты значений. необходимо для безопасного управления вашими ребятами; в частности, необходимы резисторы, ограничивающие ток.
ОСНОВНЫЕ СВЕТОДИОДЫ:
На большинстве светодиодов с выводами более длинный вывод является положительным.
Светодиодыявляются чувствительными к току устройствами, а это означает, что если ток через светодиод не ограничен, светодиод перегорит.
Обычно это предотвращается с помощью резистора для ограничения тока через светодиод.
Светодиодытакже чувствительны к полярности, это означает, что правильный провод должен быть на плюсе, а правильный провод — на отрицательном выводе светодиода, иначе он не будет работать. Мы предлагаем вам сначала добавить правильный токоограничивающий резистор, если вы не знаете, какие положительные и отрицательные провода на вашем источнике питания…. резистор предотвратит возгорание светодиода, если его сначала подключить в обратном направлении.
Поскольку светодиоды являются полупроводниками, вы должны приложить определенное напряжение (называемое прямым падением напряжения), прежде чем светодиод будет полностью включен, но когда вы достигнете этого прямого падения напряжения, вы должны затем убедиться, что ток ограничен максимумом, установленным производителем. рейтинг или ниже.
Когда вы покупаете у нас светодиоды, мы сообщаем вам падение напряжения в прямом направлении и максимальный ток. Затем вы можете использовать наш калькулятор токоограничивающего резистора, чтобы рассчитать правильный резистор в зависимости от напряжения вашего источника питания.
НАЖМИТЕ ЗДЕСЬ ДЛЯ КАЛЬКУЛЯТОРА ОГРАНИЧИТЕЛЬНОГО РЕЗИСТОРА ТОКА для светодиодов
Еще одна важная часть правильной проводки светодиодов — это, прежде всего, проверка фактического выходного напряжения и допустимого тока вашего источника питания.
Используя свой недорогой измеритель, настройте его на показания VOLTS DC, подключите красный (положительный) провод к положительному выводу источника питания, а черный (отрицательный) провод — к отрицательному полюсу источника питания, и измерьте напряжение. вашего источника питания.
Когда вы знаете напряжение источника питания, вы затем производите свои расчеты на основе информации светодиодов, предоставленной производителем (падение напряжения и максимальный ток).
После подключения светодиодов к соответствующим токоограничивающим резисторам, затем с помощью того же простого и недорогого измерителя вы измеряете ток, устанавливаете для него настройку MILLIAMPS или AMPS и устанавливаете измеритель в линию (в серии) с помощью светодиодов, измерьте ток, чтобы убедиться, что он находится в пределах максимального рабочего тока светодиодов.Если показание слишком высокое или слишком низкое, вы можете либо отрегулировать напряжение источника питания, либо отрегулировать значение сопротивления вашего ограничивающего резистора (резисторов), пока не достигнете желаемого значения.
Обратите внимание: если ваш счетчик идет не так — поменяйте местами провода.
СЕРИЯПРОТИВ ПАРАЛЛЕЛЬНОЙ ПРОВОДКИ
светодиода могут быть подключены последовательно: где электричество течет от положительного к отрицательному через каждый светодиод по одному в ряду
(вам не нужно, чтобы слишком много светодиодов последовательно, потому что падения напряжения складываются последовательно, а при слишком большом количестве светодиодов необходимое напряжение будет слишком высоким, чтобы быть практичным)
При последовательном подключении прямые падения напряжения складываются, но требования по току остаются неизменными………. например, если каждый красный светодиод имеет прямое падение напряжения 2 В и максимум 20 мА, и вы подключаете 2 последовательно, тогда вам понадобится 4 В при 20 мА, чтобы светодиоды максимальная яркость …….. Если у вас было 6 красных светодиодов последовательно, то требуется 12 вольт на 20 миллиампер
или параллельное подключение: когда каждый светодиод получает одинаковую мощность одновременно
(не лучший вариант для нескольких светодиодов из-за незначительных различий между светодиодами, некоторые из них получают слишком большую мощность, а некоторые — недостаточно)
При параллельном подключении требования по току складываются, но падение напряжения остается неизменным; Например, если каждый красный светодиод имеет прямое падение напряжения 2 В и максимальное значение 20 мА, и вы подключаете 2 параллельно, тогда вам потребуется 2 В при 40 мА для приведения светодиодов к максимальной яркости…….. Если у вас было параллельно 6 красных светодиодов то требуется 2 вольта на 120 миллиампер
НАЖМИТЕ ЗДЕСЬ ДЛЯ КАЛЬКУЛЯТОРА ОГРАНИЧИТЕЛЬНОГО РЕЗИСТОРА ТОКА попробуйте сами произвести расчеты
Цель состоит в том, чтобы найти, какой метод или комбинация методов определяет ваши требования к питанию в схеме подключения светодиодов, чтобы точно соответствовать источнику питания.
Наличие напряжения, намного превышающего необходимое, приводит к необходимости в очень больших, дорогих, труднодоступных и неэффективных токоограничивающих резисторах, которые тратят энергию, сильно нагреваясь.
Использование источника питания с чуть более высоким напряжением, чем необходимо, или последовательное включение светодиодов приведет к более эффективной конструкции, а необходимые токоограничивающие резисторы будут намного меньше, дешевле и их будет легко найти.
Если вам нужно подключить много светодиодов Правильный способ — это разместить несколько светодиодов последовательно, а затем несколько последовательных цепочек параллельно друг другу, тем самым не требуя ни высокого напряжения, необходимого для последовательного подключения, ни необходимого большого тока со всей параллельной разводкой.
OSRAM OPTOELECTRONICS опубликовала отличную статью об этом и более подробно — нажмите здесь, чтобы просмотреть статью OSRAM
ПРИМЕЧАНИЕ ПО ИСПОЛЬЗОВАНИЮ СВЕТОДИОДОВ В АВТОМОБИЛЬНЫХ ПРИЛОЖЕНИЯХ: Напряжение в автомобилях колеблется от менее 12 В постоянного тока до 14,8 В постоянного тока. Мы предлагаем использовать токоограничивающие резисторы на основе максимального значения заряда батареи при работающем на полную мощность генераторе. Светодиоды не будут такими яркими, когда машина не работает, но вы не взорвете их. В качестве альтернативы вы можете использовать ИС в качестве понижающего регулятора, установить уставку на 12 В постоянного тока и рассчитать резисторы на основе 12 В.
Нажмите здесь, чтобы вернуться на наш веб-сайт QUICKAR ELECTRONICS ТОРГОВАЯ КОРЗИНА
МОДЕЛЬ RAILROADERS — НОВИНКА — НАЖМИТЕ ЗДЕСЬ, ЧТОБЫ УЗНАТЬ, КАК ПОДКЛЮЧИТЬ СВЕТОДИОДЫ В КАЧЕСТВЕ ИНДИКАТОРОВ ПОЛОЖЕНИЯ ПОВОРОТА (ПЕРЕКЛЮЧЕНИЯ)
НИЖЕ НЕКОТОРЫЕ ОБЩИЕ ЦЕПИ, КОТОРЫЕ ВЫ МОЖЕТЕ ВСТРЕТИВАТЬСЯ:
————————————————- ————————————————— —————
————————————————- ————————————————— ——————-
————————————————- ————————————————— —————————————-
————————————————- ————————————————— ————————————————— ———
Правильный способ подключения нескольких светодиодов — каждый из них со своим собственным токоограничивающим резистором
или посмотрите картинку ниже, чтобы увидеть другую безопасную альтернативу
————————————————- ————————————————— ——————————————
вместо того, чтобы подключать каждый светодиод параллельно с его собственными токоограничивающими резисторами, как показано выше, вы можете использовать
Матрица последовательной / параллельной цепи, показанная ниже, использует резисторы 120 Ом 1/8 Вт для схемы ниже с белыми светодиодами и источником питания постоянного тока 12 В
Щелкните здесь, чтобы увидеть интересную статью, опубликованную osram optoelectronics, в которой подробно описаны группы проводки светодиодов вместе
================================================= ======================================
светодиоды для моделей железнодорожных
*********************************************** **********************
*********************************************** ****************
для освещения ЗДАНИЙ В МАСШТАБЕ HO
ИСПОЛЬЗОВАНИЕ БЕЛЫХ СВЕТОДИОДОВ с перевернутым конусом
********************************************** ************************************************ *******
для освещения ЗДАНИЙ В МАСШТАБЕ HO
ИСПОЛЬЗОВАНИЕ СВЕТОДИОДОВ SUPERFLUX (ТАКЖЕ ИЗВЕСТНО, КАК PIRANHA)
********************************************** ************************************************* *******
================================================= ======================================
СВЕТОДИОДЫ С ШИМ (широтно-импульсной модуляцией)
Хотя вы можете использовать потенциометр или реостат или использовать транзистор в качестве переменного резистора для увеличения яркости и затемнения светодиодов, оба метода имеют серьезные недостатки.Во всех вышеперечисленных случаях детали могут сильно нагреваться, схема очень неэффективна, а с батареями это может привести к серьезному сокращению срока службы батарей, а в некоторых случаях на ограничение тока тратится больше энергии, чем на сами светодиоды.
, не вдаваясь в технические подробности
pwm берет чистый постоянный ток и прерывает его на серию импульсов, в которых продолжительность между импульсами может быть изменена с помощью потенциометра из комплекта pwm. Некоторые люди также называют схемы ШИМ контроллерами рабочего цикла
., варьируя ширину импульсов, мы можем изменять яркость светодиодов
путем изменения импульсов, это приводит к увеличению или уменьшению среднего тока, подаваемого на светодиоды (делая светодиоды ярче или тусклее). Это можно измерить достаточно точно с помощью простого измерителя VOM, установленного для считывания миллиампер — убедитесь, что вы этого не сделаете. превышайте рекомендации производителя по управлению вашими светодиодами — ПОЖАЛУЙСТА, ОБРАТИТЕ ВНИМАНИЕ, что ШИМ НЕ ЯВЛЯЕТСЯ ОГРАНИЧИТЕЛЕМ ТОКА СВЕТОДИОДОВ — ШИМ ИЛИ НЕТ, ВЫ ДОЛЖНЫ ОГРАНИЧИТЬ ТОК НА СВЕТОДИОДЫ ДО МАКСИМАЛЬНОГО РЕЙТИНГА ПРОИЗВОДИТЕЛЯ
Преимущество ШИМ над Pure DC заключается в том, что он намного более эффективен, что приводит к более низкому энергопотреблению, большему сроку службы батареи, меньшему нагреву в цепи ШИМ по сравнению с другими упомянутыми схемами, меньшему нагреву светодиодов, меньшие радиаторы могут использоваться на деталях, требующих радиатор
для электрических расчетов токоограничивающих резисторов для ваших светодиодов, вы можете рассматривать схему ШИМ, как если бы ее даже не было, поскольку вам все равно нужно выбрать и использовать правильный источник питания и / или токоограничивающие резисторы, чтобы вы не взорвались ваши светодиоды вверх.
см. Схему ниже:
Одна интересная вещь, которую может сделать pwm, происходит из-за неспособности человеческого глаза видеть эти быстрые от 235 до 2000 вспышек в секунду, так что, используя меньшее, чем обычно, количество тока, ваши глаза могут быть обмануты, думая, что это так же яркий, как чистый постоянный ток.
Вот как они заставляют подсветку сотовых телефонов быть такой яркой и работать так долго, что они освещают заднюю часть ЖК-дисплеев и клавиатур с помощью светодиодов с ШИМ-управлением!
================================================== ============
Пример расчета падающего резистора ниже,
основан на питании 5 В и 1.7 В, красный светодиод с питанием от 10 мА
Большинство светодиодов работают при напряжении 1,7–3,6 В, хотя это не всегда так, и рекомендуется проверить. Понижающий резистор — это просто сеть из напряжения питания минус напряжение светодиода, затем деленное на ток яркости светодиода, выраженный в «амперах» (закон Ома). Обратите внимание на ориентацию катода (отрицательный) и анод (положительный) относительно заземляющего конца и конца питания. Обычно у светодиода более длинный вывод является анодом. (положительный)
ЗДЕСЬ ОТЛИЧНАЯ СТАТЬЯ ОТ OSRAM OPTO ELECTRONICS, КОТОРАЯ ОБЪЯСНЯЕТ, КАК ВЫ ПОДКЛЮЧАЕТЕ БОЛЬШИЕ ГРУППЫ СВЕТОДИОДОВ
ПРАВИЛЬНЫЙ ПУТЬ https: // www.quickar.com/ledstherightway.pdf
ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ:
НА ТО, ЧТО ДАННАЯ ИНФОРМАЦИЯ БЕЗОПАСНА И ПРАВИЛЬНА, МЫ НЕ НЕСЕМ ОТВЕТСТВЕННОСТИ ЗА ЕЕ ИСПОЛЬЗОВАНИЕ
ПЕРЕД ИСПОЛЬЗОВАНИЕМ ЛЮБОЙ ИНФОРМАЦИИ, СОДЕРЖАЩЕЙСЯ ЗДЕСЬ, НАЖМИТЕ ЗДЕСЬ, ЧТОБЫ ПРОЧИТАТЬ ПОЛНУЮ ГАРАНТИЮ, ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ И УСЛОВИЯ ПРОДАЖИ
ПОДКЛЮЧЕНИЕ СВЕТОДИОДОВ — выбор правильной схемы подключения, подходящие токоограничивающие резисторы и проверка работоспособности
Copyright © 1995-2010 Quickar Electronics, Inc — щелкните здесь, чтобы вернуться на наш веб-сайт
Основные способы использования светодиодной схемы
Мой сын очень заинтересован в светодиодах.Он хочет создать простую схему светодиодного мигающего сигнала. Но мы должны изучить принципы работы светодиода раньше. В электронных схемах используется множество светодиодов.
Что такое светодиод?
Светодиод представляет собой светоизлучающий диод. Это более сложный электронный компонент, чем лампа или лампа накаливания. Светодиоды имеют много цветов для использования. Что важно, они используют очень небольшой ток, 10 мА.
В обычных магазинах электроники есть много типов светодиодов. Но теперь мне нравится использовать в своих проектах электронных схем стандартные светодиоды диаметром 3 мм и 5 мм.Потому что они такие дешевые.
Распиновка светодиода
Это изображение крупным планом 3 мм светодиода и его распиновка. Имеет полярность как диод. Значит, мы должны связать это правильно или предвзято. Он не загорится при неправильном подключении или обратном смещении.
Когда мы нашли крупный план светодиода. Во-первых, более длинный вывод является положительным (+) или анодным (A). Другой вывод короче, отрицательный (-) или катодный (K).
Но иногда это один и тот же отрывок. Нам нужно смотреть на плоскую сторону светодиода.Он всегда указывает катод (К) или отрицательный (-). Значит, другой положительный (+) или анодный (A).
Затем посмотрите на символ светодиода по сравнению с обычным диодом.
Зачем нужны символы? Если вы рисуете схему, если на это уходит много времени, следует использовать символы.
Похоже на диод. Большая треугольная стрелка указывает направление протекающего тока. Маленькие стрелки на схеме указывают излучаемый свет.
В целом, на диаграмме не отображаются знаки «+» или «-».На нем отображается только буква «К», обозначающая катод, и буква «А», обозначающая анод.
А, мы часто используем светодиод с ограничивающим резистором.
Примечание: Я думаю, нам не нужно разбираться в устройстве светодиода. На нашем уровне достаточно просто использовать.
Как проверить светодиод
Для начала, какое напряжение использует светодиод?
Детали, которые вам понадобятся
- Красный светодиод 3 мм
- Источник питания
- Вольтметр в мультиметре
У моего сына на макете красный светодиод 3 мм.Потому что для этого не нужен электрический паяльник. Идеально для него.
Затем он пытается использовать регулируемый источник питания постоянного тока от 1,25 В до 25 В 1 А. Для питания светодиода. Осторожность! Для начала только с 1,25 В.
- Теперь светодиод гаснет.
- Затем отрегулируйте напряжение до 1,5 В. Но светодиод все равно гаснет (не горит).
- Светодиод загорается при напряжении 1,7 В.
- Когда он добавляет напряжение до 2,2В, то очень сильно нагревается.
- При 1,8 В светодиоды имеют наилучшее освещение и нормальную температуру
Узнайте: соотношение между током и напряжением
Напряжение светодиода
Обычно все светодиоды требуют тока через резистор около 10 мА для небольшого размера ( 3 мм) и 20 мА для 5 мм.Но для каждого цвета требуется разное напряжение.
- Красный светодиод: 1,7 В
- Зеленый светодиод: 2,3 В
- Желтый светодиод: 2,3 В
- Оранжевый светодиод: 2,1 В
- Синий светодиод: 3,3 В
- Белый светодиод: 3,6 В
Это хорошо падение напряжения символа. Потому что это постоянное напряжение.
На блок-схеме ниже. Я покажу вам, как использовать светодиод с батареей 3 В через ограничительный резистор четырех цветов: красный, зеленый, желтый и оранжевый.Они используют разное сопротивление.
Примечание: Вот как найти резистор ограничения тока .
Почему светодиод не светится?
Если подключить светодиод в цепь. Но это не работает. Почему не светится?
Например, две схемы ниже.
- Сначала красный светодиод подключен с обратным смещением или неправильным образом.
- Во-вторых, для белого светодиода требуется питание 3,6 В. Но теперь у него всего 3 батареи.
Как использовать белый светодиод
Добавляем еще один 1.Аккумулятор 5В на цепь. Теперь у нас есть батарея на 4,5 В. Таким образом, мы можем использовать их для белых и синих светодиодов.
Как использовать сине-белый светодиод с батареей 4,5 В или 5 В.
Это просто основные принципы использования светодиода. Когда ты делаешь реальные проекты. Это могут быть хорошие идеи для вас.
Пример реального использования LED
При работе мы, вероятно, разбираемся в электронике больше.
DIY простой светодиодный светильник 12В
Светодиодная лампа пользуется большей популярностью, чем обычная лампочка.Потому что он имеет высокий КПД, низкое энергопотребление и, следовательно, термостойкость.
Я покупаю светодиодную лампу 12 В Для использования в автомобилях и для общего использования
Затем я попытался измерить ток, протекающий через нее, всего около 20 мА.
Но иногда нам нужно что-то доработать поблизости. Чтобы использовать возобновляемые, экономичные, не нужно покупать дополнительные, лучше удалить использованные старые.
Я пытаюсь использовать другую сверхяркую светодиодную схему.
Как обычно, потребуется напряжение около 1.8V-4V и ток около 10mA. Когда мы хотим сохранить низкое энергопотребление. Так же использовали серию или приводим 3 светодиода последовательно.