Схема выпрямителя на 12 вольт: Выпрямитель тока на 12 вольт

Содержание

Выпрямитель тока на 12 вольт

Делаем простой выпрямитель тока на 12 вольт, для заряда аккумуляторов авто. Всё началось с того, что привезли мне на роботу нерабочий блок питания на 22В и 110В. Решил из него сделать зарядное устройство для своей машины для аккумулятора. Аккумулятор естественно на 12В. Сначала разобрал блок питания и посмотрел что там есть внутри. Как оказалось, кроме трансформатора ничего и не было. Не работал БП из-за того, что один провод на подачу электроэнергии просто каким-то образом отвалился. Все же прибор советских времен и со временем поизносился. Корпус и все провода решил выкинуть и смастерить все заново. 

Достал из прибора трансформатор. Там было две вторичные обмотки. Одна была на 22В, вторая — 110В. Но этот вольтаж мне не подходил для зарядки аккумулятора.

Разобрал трансформатор, достал все пластины, размотал вторичную обмотку на 22 В. Намотал новым, более толстым, проводом новую обмотку на 12В. Она содержала наполовину меньше витков чем прежняя, но так как сечение провода увеличил, заполнило окно полностью.

Все аккуратно собрал и проверил. На выходе оказалось 13.4В. Это отлично подходило для АКБ.

Схема выпрямителя тока на 12 вольт

Далее решил не усложнять дело всякими хитроумными зарядными на микросхемах, а собрать простой и надежный выпрямитель на диодах. Взял диоды Д242. Они очень надежные, но немного греются, следует установить на радиаторы.

Спаял по стандартной схеме диодного моста. Подключил — все отлично работало, на выходе теперь было 13.7В. Как и должно быть, немного увеличилось напряжение после выпрямления. Но ничего страшного. Для аккумуляторов ведь надо не строго 12, а примерно 14 вольт для нормального заряда.

Все аккуратно вместил в новый корпус. Сделал выход на выпрямитель. Подключаю и с удовольствием пользуюсь. Сделал еще индикатор наличия электроэнергии — просто подключил к сети 220В обычный светодиод через резистор. Получился простой и надёжный выпрямитель для ЗУ на 12 вольт .

Схема зарядного на 12 вольт

Представляем новую простую схему зарядного устройства для обычного автоаккумулятора на 12 В, которая по силам для самостоятельной сборки даже не слишком опытным радиолюбителем. Зарядное собрано на основе силового трансформатора 16-20 В 5 А, выпрямителя, системы слежения за напряжением аккумулятора и ключевым элементом — тиристором.

Постоянное напряжение с выпрямителя на диодах подаётся на заряжаемый аккумулятор через амперметр на 5 А и тиристор. Этот тиристор управляется другим, более слабым тиристором Q2, который отслеживает напряжение на заряжаемом АКБ. Оно снимается с резисторного делителя и стабилитрона. Как только напряжение полностью зарядившегося аккумулятора превысит порог открывания тиристора — он откроется и зажгётся зелёный светодиод «аккумулятор заряжен». Одновременно тиристор Q1 закроется и зарядка прекратится.

Работа с зарядным устройством

  1. После сборки схемы выведите движок переменного резистора в нулевое положение. Прежде всего убедитесь, что без аккумулятора оба светодиода светятся.
  2. Подключите батарею и проследите, чтоб светодиод LED2 погас. Это значит пошёл заряд.
  3. Вращайте движок резистора вверх до тех пор, пока светодиод LED2 не засветится. Этим резистором выставляется порог отключения АКБ от зарядки, по мере достижения на аккумуляторе полного напряжения (около 14В).

Детали зарядного устройства на 12В

R1= 1 кОм 

R2= 1.2 кОм
R3= 470 Ом
R4= 470 Ом


R5= 10 кОм
D1= 1N4001
D2= 6.8V 0.5W стабилитрон
LD1= зелёный светодиод
TR1= 4.7 кОм переменник
LD2= красный светодиод
Q1= BTY79 или похожий на 10A
M1= 0-5A амперметр
Q2= тиристор C106D
C1= 10мкФ 25V
GR1= 50V 6A диодный мост
F= 5A предохранитель

Тиристоры можно ставить типа BT138-600, КУ202, Т122-10 (Q1) и любой маломощный на ток до 0,3А вместо Q2. Резисторы на 0,25 ватт. Диодный мост готовый, или составленный из 4-х диодов КД202, Д242, Д245. Конденсатор — 5-50 микрофарад. При всей своей простоте, эта схема ЗУ используется даже в некоторых промышленных зарядках. Но всё равно, обязательно ставьте предохранитель, так как от нештатных ситуаций (пробоя диодов или тиристора) никто не застрахован!

https://blogun.ru/cheerlessgdeje.html

Выпрямитель для зарядки аккумуляторов 12/24 В

Знакомые с автобазы маршрутных микроавтобусов попросили сделать зарядное устройство для зарядки аккумуляторов 12 В и 24 В. Поскольку пользоваться им будут абсолютно неподготовленные люди, решено сделать его устойчивой к ошибкам от далёких от электроники юзерам.

Просмотрев несколько разных схем с сайта 2Схемы обнаружилось, что бессмысленно делать какую-то автоматику и электронику. Выпрямитель должен просто давать правильное напряжение и, при необходимости, оптимальный ток. Что как раз нужно автомобильным аккумуляторам.

Схема выпрямителя для АКБ на 12 и 24 В

В общем конструкция тривиальна. Трансформатор, выключатель, диодный мост, светодиоды, амперметр, реле, кнопка. Вот и всё.

Как действует зарядное устройство

Нажмите кнопку СТАРТ, чтобы подать напряжение на трансформатор. Это приводит в действие реле Pk, которое соединит контакты, подключенные параллельно кнопке START. Цепь зафиксируется и проводит до тех пор, пока на катушке реле есть напряжение.

Реле действует как «защита от дурака», такая как случайное замыкание и постоянная перегрузка выпрямителя. Короткое замыкание или большой ток вызывают падение напряжения и реле размыкается, отключая источник питания трансформатор и защищая выпрямитель от повреждения.

Далее тут есть переключатель напряжения в сочетании со светодиодами, которые информируют о текущем напряжении на выходе. Можно было соединить две обмотки параллельно и тогда выходной ток был бы больше, но в наличии был переключатель только однополюсный. Конечно вы можете сделать такую модификацию либо использовать другой трансформатор и получать разные напряжения, например 6 В и 12 В. Нужно только впаять другое реле и светодиоды.

Выходные напряжения 14 В и 28 В. Ток — 3,5 А или чуть выше. Понадобилось всего 5 часов, чтобы собрать и запустить его (с перерывом на обед). Передняя панель напечатана на белой клейкой бумаге для струйной печати.

Аккумулятор должен заряжаться током 1/10 от его емкости, то есть 45 Ач — 4,5 А. Что подразумевает полное время зарядки 10 часов. Полная разрядка кислотной батареи окажет большое влияние на ее работу.

Конечно ошибкой является отсутствие предохранителя на выходе выпрямителя, который защитил бы АКБ в случае пробоя моста. Кроме того, сетевой предохранитель следует обязательно размещать на обмотке.

Что касается отсутствия регулирования тока. Вероятно оно и не нужно при такой текущей эффективности. Максимальный ток составляет 3,5 А, то есть можете легко зарядить авто аккумулятор 36 Ач и выше.

Перегрузка тоже не угроза, потому что напряжение низкое и ток будет падать с ростом напряжения. Естественно заряжая аккумулятор не забывайте, что он подключен (автомата тут нет).

Понятно что в идеале зарядный ток должен быть установлен на уровне 10% емкости аккумулятора (например 100 Ач — это 10 A зарядный ток или 50 Ач — это зарядный ток 5 А), после этого зарядное напряжение не должно превышать 13,8 В во время обычной зарядки, а на ускоренном третьем напряжении 15 В должен быть автоматический выключатель зарядки, когда зарядный ток достигает небольшого значения на конечной стадии зарядки и зависит от емкости аккумулятора и его температуры, ну и должно быть защищено от короткого замыкания и перегрузки, но это всё уже из области совсем других ЗУ.

Если трансформатор на напряжение 20 В, то будет ток намного больше, чем 10 А, а если 10 В, ток, вероятно, вообще не будет течь. Для зарядки батареи обычно достаточно 5 А. Помните еще одну вещь: чем больше ток, который заряжаете АКБ, тем быстрее придётся заменить его новым!

Схема защиты зарядного

Самая простая система защиты может быть выполнена на нескольких радиоэлементах. Реле с контактным током, превышающим зарядный ток (например 16 А) — катушка на 5-9 В постоянного тока. Диод — 1 А, резистор Р — в 5 раз больше, чем сопротивление катушки реле. Конденсатор С — например 220 мкФ 25 В. Конечно у схемы есть недостаток — после отсоединения аккумулятора реле продолжает работать, пока не отключится электропитание.

Можно использовать два решения. Сначала установите дополнительный выпрямительный диод в направлении противоположном «стабилитрону» в цепи катушки реле. Второе решение состоит в том, чтобы поставить выпрямительный диод в противоположном направлении вместо «стабилитрона», а светодиод также обратно плюс резистор и использовать его как знак обратного подключения батареи.

Также советую использовать диоды Шотки, например, от блока питания компьютера. Эти диоды выделяют меньше тепла чем обычные. Дальнейшее снижение потерь мощности в выпрямителе может быть достигнуто с помощью трансформатора с симметричной (двойной) вторичной обмоткой. Трансформатор тут на 50 Вт, нельзя ожидать от него многого, но он всё-же делает свою работу уже долгое время.

Как сделать блок питания 12В своими руками

Блок питания постоянного напряжения 12 вольт состоит из трех основных частей:

  • Понижающий трансформатор с обычного входного переменного напряжения 220 В. На его выходе будет такое же синусоидальное напряжение, только пониженное до примерно 16 вольт по холостому ходу – без нагрузки.
  • Выпрямитель в виде диодного моста. Он «срезает» нижние полусинусоиды и кладет их вверх, то есть получается напряжение, меняющееся от 0 до тех же 16 вольт, но в положительной области.
  • Электролитический конденсатор большой емкости, который сглаживает полусинусоиды напряжения, делая их приближающимися к прямой линии на уровне в 16 вольт. Это сглаживание тем лучше, чем больше емкость конденсатора.

Самое простое, что нужно для получения постоянного напряжения, способного питать приборы, рассчитанные на 12 вольт – лампочки, светодиодные ленты и другое низковольтное оборудование.

Понижающий трансформатор можно взять из старого блока питания компьютера или просто купить в магазине, чтобы не заморачиваться с обмотками и перемотками. Однако чтобы выйти в конечном счете на искомые 12 вольт напряжения при работающей нагрузке, нужно взять трансформатор, понижающий вольт до 16.

Для моста можно взять четыре выпрямительных диода 1N4001, рассчитанных на нужный нам диапазон напряжений или аналогичные.

Конденсатор должен быть емкостью не менее 480 мкФ. Для хорошего качества выходного напряжения можно и больше, 1 000 мкФ или выше, но для питания осветительных приборов это совсем не обязательно. Диапазон рабочих напряжений конденсатора нужен, скажем, вольт до 25.

Компоновка прибора

Если мы хотим сделать приличный прибор, который не стыдно будет потом приделать в качестве постоянного блока питания, допустим, для цепочки светодиодов, нужно начать с трансформатора, платы для монтажа электронных компонентов и коробки, где все это будет закреплено и подключено. При выборе коробки важно учесть, что электрические схемы при работе разогреваются. Поэтому коробку хорошо найти подходящую по размерам и с отверстиями для вентиляции. Можно купить в магазине или взять корпус от блока питания компьютера. Последний вариант может оказаться громоздким, но в нем как упрощение можно оставить уже имеющийся трансформатор, даже вместе с вентилятором охлаждения.

Корпус блока питанияКорпус блока питания

На трансформаторе нас интересует низковольтная обмотка. Если она дает понижение напряжения с 220 В до 16 В – это идеальный случай. Если нет, придется ее перемотать. После перемотки и проверки напряжения на выходе трансформатора его можно закрепить на монтажной плате. И сразу продумать, как монтажная плата будет крепиться внутри коробки. У нее для этого имеются посадочные отверстия.

Низковольтная обмоткаМонтажная плата

Дальнейшие действия по монтажу будут проходить на этой монтажной плате, значит, она должна быть достаточной по площади, длине и допускать возможную установку радиаторов на диоды, транзисторы или микросхему, которые должны еще поместиться в выбранную коробку.

Диодный мост

Диодный мост собираем на монтажной плате, должен получиться такой ромбик из четырех диодов. Причем левая и правая пары состоят одинаково из диодов, подключенных последовательно, а обе пары параллельны друг другу. Один конец каждого диода маркирован полоской – это обозначен плюс. Сначала паяем диоды в парах друг к другу. Последовательно – это значит плюс первого соединен с минусом второго. Свободные концы пары тоже получатся – плюс и минус. Параллельно соединить пары – значит спаять оба плюса пар и оба минуса. Вот теперь имеем выходные контакты моста – плюс и минус. Или их можно назвать полюсами – верхним и нижним.

Схема диодного моста

Остальные два полюса – левый и правый – используются как входные контакты, на них подается переменное напряжение с вторичной обмотки понижающего трансформатора. А на выходы моста диоды подадут пульсирующее знакопостоянное напряжение.

Если теперь подключить параллельно с выходом моста конденсатор, соблюдая полярность – к плюсу моста – плюс конденсатора, он напряжение начнет сглаживать, причем настолько хорошо, насколько велика у него емкость. 1 000 мкФ будет достаточно, и даже ставят 470 мкФ.

Внимание! Электролитический конденсатор – прибор небезопасный. При неверном подключении, при подаче на него напряжения вне рабочего диапазона или при большом перегреве он может взорваться. При этом разлетается по округе все его внутреннее содержимое – лохмотья корпуса, металлической фольги и брызги электролита. Что весьма опасно.

Ну вот и получился у нас самый простой (если не сказать, примитивный) блок питания для приборов напряжением 12 V DC, то есть постоянного тока.

Проблемы простого блока питания с нагрузкой

Сопротивление, нарисованное на схеме – это эквивалент нагрузки. Нагрузка должна быть такова, чтобы ток, ее питающий, при подаваемом напряжении в 12 В не превысил 1 А. Можно рассчитать мощность нагрузки и сопротивление по формулам.

Откуда сопротивление R = 12 Ом, а мощность P = 12 ватт. Это значит, что если мощность будет больше 12 ватт, а сопротивление меньше 12 Ом, то наша схема начнет работать с перегрузкой, будет сильно греться и быстро сгорит. Решить проблему можно несколькими способами:

  1. Стабилизировать выходное напряжение так, чтобы при изменяющемся сопротивлении нагрузки ток не превышал максимально допустимого значения или при внезапных скачках тока в сети нагрузки – например, в момент включения некоторых приборов – пиковые значения тока срезались до номинала. Такие явления бывают, когда блок питания запитывает радиоэлектронные устройства – радиоприемники, и пр.
  2. Использовать специальные схемы защиты, которые бы отключали блок питания при превышении тока на нагрузке.
  3. Использовать более мощные блоки питания или блоки питания с большим запасом мощности.

Блок питания со стабилизатором на микросхеме

На рисунке ниже представлено развитие предыдущей простой схемы включением на выходе микросхемы 12-вольтового стабилизатора LM7812.

Блок питания со стабилизатором на микросхеме

Это уже лучше, но максимальный ток в нагрузке такого блока стабилизированного питания по-прежнему не должен превышать 1 А.

Блок питания повышенной мощности

Более мощным блок питания можно сделать, добавив в схему несколько мощных каскадов на транзисторах Дарлингтона типа TIP2955. Один каскад даст прибавку нагрузочного тока в 5 А, шесть составных транзисторов, подключенных параллельно, обеспечат нагрузочный ток в 30 А.

Транзисторы Дарлингтона типа TIP2955

Схема, обладающая такой выходной мощностью, требует соответствующего охлаждения. Транзисторы должны быть обеспечены радиаторами. Возможно, понадобится и дополнительный вентилятор охлаждения. Кроме того, можно защититься еще плавкими предохранителями (на схеме не показано).

На рисунке показано подключение одного составного транзистора Дарлингтона, дающего возможность увеличения выходного тока до 5 ампер. Можно увеличивать и дальше, подключая новые каскады параллельно с указанным.

Подключение одного составного транзистора Дарлингтона

Внимание! Одним из главных бедствий в электрических цепях является внезапное короткое замыкание в нагрузке. При этом, как правило, возникает ток гигантской силы, который сжигает все на своем пути. В этом случае сложно придумать такой мощный блок питания, который способен это выдержать. Тогда применяют схемы защиты, начиная от плавких предохранителей и кончая сложными схемами с автоматическим отключением на интегральных микросхемах.

Как сделать простой блок питания на 12 вольт из трансформатора, выпрямителя, конденсатора.

 

 

 

Тема: как можно спаять источник питания на 12 вольт своими руками (схема).

 

Если вам нужен источник постоянного питания с напряжением 12 вольт, а его нет под рукой, то его можно и купить. Если брать дешёвый блок питания, то его качество будет оставлять желать лучшего. Обычно такие недорогие БП хороши только с виду. Когда их открываешь, то оказывается, что его характеристики (указанные на корпусе) по току завышены. В реальности он не способен обеспечить в полной мере ту мощность, что заявлена производителем (как правило). Можно купить и более дорогостоящий блок питания на 12 вольт, но собрать своими руками по частям выйдет гораздо дешевле, а по качеству ничуть не хуже.

 

 

Итак, как сделать хороший и простой блок питания на 12 вольт своими руками, что для этого нам понадобится? Нужен понижающий силовой трансформатор, выпрямительный диодный мост и фильтрующий конденсатор электролит. Трансформатор будет понижать сетевое напряжение (220 В) до нужного, а именно до 10 вольт. Почему до 10, а не 12. Потому, что есть такой эффект — переменное напряжение после диодного моста (имеющего конденсатор достаточной емкости) станет процентов примерно на 18 больше, чем без конденсатора. Это стоит учитывать при сборке любого блока питания.

 

Трансформатор нужен той мощности, которая вам нужна. То есть, изначально вы должны знать, какой именно максимальный ток должен выдавать данный блок питания. Зная ток и выходное напряжение можно найти электрическую мощность. Нужно просто ток (к примеру 3 ампера) перемножить на напряжение выхода (в нашем случае это 12 вольт). Стоит ещё добавить небольшой запас по мощности процентов 25. В итоге получим, что нужен трансформатор мощностью около 50 Вт.

 

 

 

 

С размерами (мощностью) трансформатора определились. Исходя из этого вторичная обмотка транса должна иметь нужное сечение, чтобы обеспечить нужную силу тока. Для 3 ампер (максимальное значение) на выходе нашего самодельного блока питания сечение вторичной обмотки трансформатора должно быть около 1,3 мм. Если на магнитопроводе достаточно места, то можно намотать провод большего диаметра (это только увеличит максимальную силу тока источника питания).

 

Итак, наш трансформатор на выходе вторичной обмотки будет выдавать переменное напряжение величиной 10 вольт. Это напряжение имеет форму синусоиды, которая меняет свои полюса с частотой 50 герц. Нам же нужен постоянный ток, который не имел этого периодического изменения полюсов. Для этого используется выпрямительный диодный мост. Его задача сводится к тому, что он все полупериоды делает однополюсными, хотя и скачкообразными (плавно возрастающими и убывающими). Диодный мост можно купить готовым, хотя его можно спаять и самому из 4х одинаковых диодов, которые должны быть также рассчитаны на нужный выходной ток. Для нашего самодельного блока питания с 3 амперами нужно взять диоды, рассчитанные на ток в 6 А (берём с учётом запаса).

 

Поскольку после диодов напряжение имеет скачкообразный вид, его нужно отфильтровать. Это делается обычным электролитическим конденсатором, соответствующей емкости. Значит достаем еще и конденсатор, рассчитанный на напряжение 25 вольт, с емкостью 2200 мкф (чем больше, тем лучше фильтрация, но при этом и размеры конденсатора будут увеличиваться). Вот и всё, теперь эти элементы нужно просто спаять между собой (трансформатор, выпрямительный диодный мост и конденсатор электролит).

 

 

P.S. Учтите, что ёмкость конденсатора электролита имеет полярность (плюс и минус), которую нужно соблюдать при подключении его к схеме нашего самодельного блока питания. В противном случае может произойти так, что конденсатор просто у вас взорвется, либо просто выйти из строя. Ну, а в целом, данная схема БП является наиболее простой. Она не имеет стабилизации, рассчитана на питания электроприборов, не нуждающихся в большой точности и стабильности напряжения.

 

Мощный линейный блок питания своими руками

Здравствуйте, сегодня мы рассмотрим довольно хорошую схему регулируемого блока питания на популярной микросхеме LM317 с дополнительным мощным транзистором. Данный вариант может выдать в районе 10-12 А.


Ниже предоставлена принципиальная схема блока питания.



Она хороша тем, что не требует никаких наладок и работает сразу. Её сможет собрать даже начинающий радиолюбитель. Минусом схемы есть то, что нет защиты от короткого замыкания. В самой микросхеме она есть, но вот транзистор скорее всего сгорит при кз. Так что на выход желательно поставить обычный предохранитель на нужный ток. Хоть какая-то защита уже будет.

ВНИМАНИЕ: В СХЕМЕ Я ЗАБЫЛ ДОРИСОВАТЬ РЕЗИСТОР НА 10 КИЛООМ 0.25Вт ЕГО НАДО ПОДКЛЮЧИТЬ ПОРАЛЕЛЬНО К ВЫХОДНОМУ КОНДЕНСАТОРУ

Также у меня есть видеоролик на ютуб канале про данную схему кому интересно можете посмотреть.



Для начала давайте найдём диодный мост я использовал сборку GBJ1506, его максимальный ток 15А, желательно взять с запасом. Вы также можете сделать его самостоятельно из четырёх мощных диодов. Но мне было более удобно использовать сборку.

Чтобы снизить пульсации на выходе диодного моста желательно применять конденсаторы разных видов, а именно ЭЛЕКТРОЛИТЫ и КЕРАМИЧЕСКИЕ или ПЛЁНКУ.

Сердцем схемы у нас будет, как не странно, ЛМ317, но максимальный ток на выходе 1.5 А, а если микросхема еще и поддельная то максимальный ток будет около 800 мА.

Чтобы усилить максимальный ток нам просто нужно взять транзистор, я использовал 2SC5200 транзистор уже рассчитан на довольно большой ток, а именно 15 А.

Не желательно применять транзисторы в корпусе ТО220 — работать будет, но вот с тепло отдачей будут большие проблемы. Транзистор попросту не успеет отдать свое тепло и сгорит. Наиболее подходят транзисторы в металлическом корпусе ТО-3. Я бы посоветовал составной транзистор КТ827 он подойдёт сюда идеально.

На схеме также присутствует защитный диод его можно не использовать, но всё же лучше поставить. Он защищает силовой транзистор от обратных импульсов.

Дальше собираем схему я решил спаять на макетной плате, но вы также можете спаять всё навесным монтажом или спаять на печатной плате на работоспособность это не влияет, чисто эстетика.

Если вы паяли активным флюсом, то его надо будет обязательно отмыть, хорошо подходит спирт. В наше время его не тяжело найти.

В итоге у нас получается вот такая красота, ну красота красотой главное чтобы работало хорошо.

При работе схема будет греться поэтому хотим мы этого или нет, но нам придётся прикрутить радиатор. Идеально подходит радиатор от процессора вместе с вентилятором.

Для лучшего контакта с радиатором на транзистор и диодный мост мажем немного термопасты

Дальше схему нам потребуется подключить к понижающему трансформатору, я буду использовать вот такого самодельного ёжика, он спокойно может отдать 10А и даже не греется.

Если на входе диодного моста будет 20В, то на выходе максимальное напряжение без просадки будет 18В. Но на холостом ходу схему выдаёт 23.5 В, связано это с тем, что конденсаторы заряжаются до амплитудного напряжения.

Схема хорошо работает, но есть один большой минус — это нагрев транзистора. Если на входе 20В, а на выходе допустим 7В и ток 6 А, то радиатор превращается в кипятильник. Ну с этим ничего не поделаешь — ЛИНЕЙНЫЙ РЕЖИМ. Конечно проблему можно решить если сделать схему переключения обмоток трансформатора нагрев будет, но уже намного меньше. Пульсации на выходе около 50 мВ при токе 1 А и напряжении 13.87 В.

На этом моя статья заканчивается, пишите своё мнение на счет данной схемы, интересно выслушать ваше внимание.

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Блок питания (12 вольт) своими руками. Схема питания на 12 вольт

Блок питания на 12 вольт позволит питать практически любую бытовую технику, включая даже ноутбук. Обратите внимание, что входное напряжение ноутбука составляет 19 вольт. Но нормально будет работать, если мыть будем проводить с 12. Правда ток максимальный 10 Ампер. Только до такого значения потребление бывает очень редко, в среднем держится на уровне 2-4 Ампера. Единственное, что следует учесть, это то, что при замене штатного источника питания на самодельный у вас не получится использовать встроенный аккумулятор.Но все равно блок питания на 12 вольт идеален даже для такого устройства.

Параметры блока питания

Наиболее важные параметры любого блока питания — это выходное напряжение и ток. Их значения зависят от одного — от используемого провода во вторичной обмотке трансформатора. О том, как его выбрать, будет рассказано чуть ниже. Для себя необходимо заранее определиться, для каких целей вы планируете использовать блок питания на 12 вольт. Если вам нужно запитать маломощную технику — навигаторы, светодиоды и так далее, то вполне достаточно на выходе 2-3 Ампера.И тогда этого будет много.

Но если вы планируете использовать его более серьезные действия — например, для зарядки аккумулятора автомобиля, то потребуется на выходе 6-8 Ампер. Зарядный ток должен быть в десять раз меньше емкости аккумулятора — это требование обязательно учитывается. Если возникает необходимость подключения устройств, напряжение питания которых существенно отличается от 12 вольт, то разумнее установить регулировку.

Как выбрать трансформатор

Первый элемент — это преобразователь напряжения.Трансформатор обеспечивает преобразование переменного напряжения 220 вольт в такое же по амплитуде, только с гораздо меньшей величиной. По крайней мере, вам нужно меньше ценности. Для мощных блоков питания за основу может быть использован трансформатор типа ТС-270. У него большая мощность, даже есть 4 обмотки, выдающие 6,3 вольта каждая. Они использовались для питания радиолампы. Из него без особого труда можно сделать блок питания 12 В 12 А, которым можно заряжать даже автомобильный аккумулятор.

Но если вас не совсем устраивают его обмотки, то можно убрать все вторичные, оставив только сетевую.И наматываем проволоку. Проблема в том, как рассчитать необходимое количество витков. Для этого можно использовать простую схему расчета — посчитайте, сколько витков содержит вторичная обмотка, выдающая 6,3 Вольт. Теперь просто разделите 6,3 на количество витков. И вы получите значение напряжения, которое можно снять с одного витка провода. Осталось только посчитать, сколько намотать витки, чтобы получить на выходе 12,5-13 вольт. Будет еще лучше, если на выходе будет напряжение на 1-2 вольта выше требуемого.

Производство выпрямителя

Что такое выпрямитель и для чего он нужен? В основе этого устройства лежат полупроводниковые диоды, которые представляют собой преобразователь.С его помощью переменный ток становится постоянным. Для анализа работы выпрямительного каскада лучше использовать осциллограф. Если перед диодами вы видите синусоиду, то после них будет практически ровная линия. Но небольшие кусочки синусоиды все равно останутся. После этого избавьтесь от них.

Выбор диодов следует брать из максимальной серьезности. Если в качестве зарядного устройства для аккумуляторов используется источник питания на 12 В, то потребуются предметы с обратным током до 10 ампер.Если собираются питать низковольтных потребителей, то достаточно будет построить мостовой узел. Здесь стоит поселиться. Предпочтение отдается выпрямительной схеме, собранной по мостовому типу — из четырех диодов. Если применить к одиночному полупроводнику (полуволновая цепь), то КПД блока питания снижается почти вдвое.

Блок фильтров

Теперь, когда на выходе постоянное напряжение, необходимо немного улучшить схему блока питания 12 В.Для этого нужно использовать фильтры. Для питания бытовой техники достаточно LC-цепи. Об этом стоит поговорить подробнее. К положительному выходу выпрямительного каскада подключена индуктивность — дроссель. По нему должен проходить ток, это первая ступень фильтрации. Далее идет второй — электролитический конденсатор большой емкости (несколько тысяч микрофарад).

После дроссельной заслонки к плюсу подключается электролитический конденсатор. Второй его вывод подключен к общему проводу (минус).Суть работы электролитического конденсатора в том, что он позволяет избавиться от всей переменной составляющей тока. Помните, на выходе выпрямителя были небольшие кусочки синусоиды? Вот и все, надо от него избавиться, иначе блок питания 12 В 12 ампер будет мешать подключенному к нему устройству. Например, радио или радиоприемник будет издавать сильное гудение.

Стабилизация выходного напряжения

Для стабилизации выходного напряжения можно использовать только один полупроводниковый элемент.Это может быть как стабилитрон с рабочим напряжением 12 вольт, так и более современные и совершенные сборки типа LM317, LM7812. Последние предназначены для стабилизации напряжения на уровне 12 вольт. Следовательно, даже если на выходе выпрямительного каскада будет 15 вольт, после стабилизации их будет только 12. Все остальное уйдет в нагрев. А это значит, что установка стабилизатора на радиатор крайне важна.

Регулировка напряжения 0-12 Вольт

Для большей универсальности устройства используется простая схема, которую можно построить за несколько минут.Это можно реализовать с помощью упомянутой ранее сборки LM317. Только разница от схемы включения в режиме стабилизации будет небольшой. В обрыве провода, уходящем в минус, включается переменный резистор 5 кОм. Между выходом

Что такое схема выпрямителя?

Что такое схема выпрямителя?
Далее: Задачи Up: lab8b Предыдущий: Что такое трансформатор?

Теперь, когда мы на понизили напряжение переменного тока на до уровень, который больше соответствует требованиям напряжения Stamp11, остаётся проблема преобразование 12-вольтового сигнала переменного тока в желаемый 5-вольтовый постоянный ток источник питания.Мы подойдем к этому в два этапа. Первый преобразуем переменное напряжение в постоянное через процесс, известный как ректификации . Тогда мы уйдем это 12-вольтное напряжение постоянного тока до 5 вольт с помощью регулятор напряжения . В этом разделе кратко рассказывается о процесс исправления.

Простейшая возможная схема преобразования переменного тока в постоянный — это однополупериодный выпрямитель . Эта схема состоит из один диод, который пропускает ток только через один направление. Возможная схема показана ниже на рисунке 4. На этом рисунке вы найдете мощность переменного тока. источник подключен к первичной обмотке трансформатора. Запись символ, который мы используем для трансформатора. Вторичный клеммы этого трансформатора затем подключаются к диоду и резистор последовательно.

Рисунок 4: Однополупериодный выпрямитель

Работа этой схемы проста. когда находится в положительной части своего цикла, положительный напряжение создается на вторичной стороне трансформатор.Это напряжение смещает диод в прямом направлении и диод начинает пропускать ток. В результате большая часть падение напряжения на нагрузке. Когда отрицательно, тогда вторичная сторона также имеет отрицательное напряжение. В Затем диод смещается в обратном направлении и перестает пропускать ток. В виде в результате падение напряжения на нагрузке равно нулю. В осциллограмма напряжения на нагрузочном резисторе выглядит как показано на рисунке 4. Только положительная сторона синусоидального цикла присутствует и отрицательная сторона был зажат диодом.

Глядя на выходное напряжение, следует отметить что он похож на выход батареи тем, что всегда позитивный. К сожалению, этот положительный сигнал довольно «ухабистая», и нам нужно найти способ сгладить ее. RC Схема, показанная на рисунке 5, используется для сгладьте эти неровности. В этой схеме мы добавили большой конденсатор, включенный параллельно с сопротивлением нагрузки. В конденсатор может накапливать энергию в то время, когда напряжение на нагрузке положительное.Когда напряжение нагрузки зажимается до нуля, наш конденсатор может медленно отпустить накопленная энергия, тем самым сглаживая напряжение Загрузка.

Рисунок 5: Однополупериодный выпрямитель с конденсатором

Что происходит в этой схеме, так это то, что диод включается при напряжении на крышке около 0,7 вольт ( пороговое напряжение для диода) ниже выходящего из трансформатор. Между тем загрузка разгружает крышку с нашей стандартной постоянной времени RC.Схема должна быть тщательно спроектирован так, чтобы постоянная времени была намного больше чем время цикла переменного тока. Даже в этом случае шапка, вероятно, будет теряют некоторое напряжение во время простоя между импульсами и эта потеря приведет к пульсации напряжения . В результирующие формы сигналов показаны ниже на рисунке 5.

В этой схеме есть еще кое-что новое. Обратите внимание, как нижняя пластина конденсатора показана кривой и верхняя пластина отмечена знаком плюс.Это потому что для получения большой емкости требуются специальные конденсаторы в небольшом пространстве. В частности, вы будете использовать конденсаторы электролитические . Такие конденсаторы построены с помощью бумаги, смоченной электролитом. Эта фабрикация метод дает огромные емкости в очень маленьком объеме. Но это также приводит к тому, что конденсатор имеет поляризацию . Другими словами, конденсатор работает только с одной полярностью. напряжения. Если поменять полярность, водород может отсоединяется от внутреннего анода конденсатора и этот водород может взорваться.Электролитические конденсаторы всегда имеют четко обозначенную полярность, часто с множеством отрицательные знаки указывали на отрицательную клемму. Вы должен иметь конденсатор 1000 Ф в ваших наборах деталей, которые вы можете использовать в своей цепи питания.

Хотя однополупериодный выпрямитель отличается простотой, ему не хватает эффективности, потому что мы выбрасываем отрицательная сторона формы волны. Лучшим решением было бы для использования мощности на обеих сторонах сигнала.Схемы которые делают это, называются двухполупериодными выпрямителями . В в частности, вы можете использовать следующую схему, показанную на рисунок 6 для построения двухполупериодного выпрямителя. Левая часть этой схемы — это двухполупериодный мост. Эта часть схемы состоит из четырех специально устроили диоды. Выход двухполупериодного выпрямителя По сути, это источник постоянного тока на 12 В. Будет небольшой рябь на этом источнике, но вы действительно не сможете заметьте это, даже если вы посмотрите на сигнал с помощью осциллограф.

Рисунок 6: Двухполупериодный выпрямитель

Схема, показанная на рисунке 6, генерирует постоянный ток. напряжение 12 В и заземление на двух выводах отмечены и. Однако ваш MicroStamp11 требуется питание 5 вольт. Мы можем понизить это напряжение 12 напряжение до напряжения 5 вольт несколькими способами. Один метод заключается в использовании стабилитрона для ограничения напряжения на уровне 5 вольт. А стабилитрон — это диод, напряжение пробоя которого было рассчитан на определенный уровень напряжения.Схема показанный на рисунке 7 выполняет это функция. Резистор, включенный последовательно с диодом, используется для ограничить выходной ток, типовые значения указаны в заказе 100-500 Ом.

стабилизатора напряжения
Рисунок 7: Стабилитрон

Еще один способ понизить напряжение питания 12 — использовать специальное трехконтактное устройство под названием регулятор напряжения . Регулятор напряжения — это особый полупроводниковое устройство, специально разработанное для действовать как идеальный аккумулятор.Подключения регулятора напряжения показаны в правой части рисунка 8. Как видите, регулятор напряжения имеет 3 контакта. Пин 3 (VIN) подключен к положительной клемме аккумулятора. Контакт 2 (GND) подключен к земле (отрицательная клемма вашего аккумулятор), а контакт 1 — это регулируемый выход на 5 В. В вашем В лабораторном комплекте вы найдете регулятор напряжения LM7805. Вы можете используйте это для создания источника питания с регулируемым приводом для ваша система.

При подключении регулятора напряжения обязательно ставьте 0.1 Конденсатор F на выходе вашего источника питания. Этот конденсатор помогает устранить скачки напряжения в вашей сети. питания, поскольку если у вас есть ступенчатое изменение напряжения, конденсатор действует как короткое замыкание на землю.

Рисунок 8: LM7805 Цепь регулирования Votlage


Далее: Задачи Up: lab8b Предыдущий: Что такое трансформатор?
Майкл Леммон 2009-02-01
Электропроводка

, технические характеристики, как использовать

Описание клеммы трансформатора

Номер:

Название терминала

Описание

1

I1 и I2

Это входные провода для трансформатора, он подключен к фазе и нейтрали сети переменного тока

2

Т1 и Т3

Имеются выходные клеммы трансформатора, напряжение на них будет 24 В переменного тока

3

Т2

Это центральный отводной провод трансформатора; этот провод можно комбинировать с T1 или T3, чтобы получить через него 12 В переменного тока. Это очень полезно для выпрямительных схем

12-0-12 Технические характеристики трансформатора с центральным отводом

  • Понижающий трансформатор с центральным ответвлением
  • Входное напряжение: 220 В переменного тока при 50 Гц
  • Выходное напряжение: 24 В, 12 В или 0 В
  • Выходной ток: 1 А
  • Вертикальное крепление типа
  • Низкая стоимость и небольшая упаковка

Другие трансформаторы с центральным ответвлением

12-0-12 (2A, 3A, 5A), 6-0-6 (1A, 2A, 3A, 5A), 24-0-24 (1A, 2A, 3A, 5A), 18-0-18 ( 1А, 2А, 3А, 5А)

Другие трансформаторы

Повышающие трансформаторы, вторичные трансформаторы, импульсные трансформаторы, автотрансформатор

Где использовать Трансформатор с центральным отводом

Трансформатор с центральным отводом , также известный как двухфазный трехпроводной трансформатор , обычно используется для выпрямительных цепей. Когда цифровой проект должен работать с сетью переменного тока, используется трансформатор для понижения напряжения (в нашем случае до 24 В или 12 В), а затем преобразования его в постоянный ток с помощью схемы выпрямителя. В трансформаторе с центральным ответвлением пиковое обратное напряжение в два раза больше, чем в мостовом выпрямителе, поэтому этот трансформатор обычно используется в схемах двухполупериодного выпрямителя.

Как использовать трансформатор с центральным отводом

Принцип действия и принцип работы трансформатора с центральным ответвлением очень похож на обычный вторичный трансформатор.Первичное напряжение будет индуцировано в первичной катушке (I1 и I3), и из-за магнитной индукции напряжение будет передаваться на вторичную катушку. Здесь, во вторичной катушке трансформатора с центральным ответвлением, будет дополнительный провод (T2), который будет размещен точно в центре вторичной катушки, поэтому напряжение здесь всегда будет нулевым.

Если мы объединим этот провод нулевого потенциала (T2) с T1 или T2, мы получим напряжение 12 В переменного тока. Если игнорировать этот провод и учитывать напряжение на T1 и T2, то мы получим напряжение 24 В переменного тока.Эта функция очень полезна для функции двухполупериодного выпрямителя.

Давайте рассмотрим напряжение, создаваемое первой половиной вторичной катушки, как Va, а напряжение на второй половине вторичной катушки, как Vb, как показано на диаграмме ниже

Как мы знаем, напряжение на катушке зависит от количества витков первичной и вторичной катушек. Используя формулы коэффициента трансформации, мы можем рассчитать вторичное напряжение как:

Va = (Na / Np) * Vp
Vb = (Nb / Np) * Вп

Где,
Va = напряжение на первой половине вторичной обмотки
Vb = напряжение на второй половине вторичной катушки
Vp = напряжение на первичной катушке
Na = количество витков в первой половине вторичной обмотки
Nb = количество витков во второй половине вторичной обмотки
Np = количество витков в первичной катушке
 

Приложения

  • Выпрямительные схемы
  • AC-AC понижающий
  • Двухполупериодные выпрямители
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *