Система двс: Двигатель. Классификация, механизмы и системы ДВС

Содержание

Что такое ДВС и как работает двигатель внутреннего сгорания? |

На сегодняшний день двигатель внутреннего сгорания (ДВС) или как его еще называют «атмосферник» — основной тип двигателя, который широко применяется в автомобильной индустрии. Что такое ДВС? Это — многофункциональный тепловой агрегат, который при помощи химических реакций и законов физики преобразует химическую энергию топливной смеси в механическую силу (работу).

Двигатели внутреннего сгорания делятся на:

  1. Поршневой ДВС.
  2. Роторно-поршневой ДВС.
  3. Газотурбинный ДВС.

Поршневой двигатель внутреннего сгорания — самый популярный среди вышеперечисленных двигателей, он завоевал мировое признание и уже много лет лидирует в автоиндустрии. Предлагаю более детально рассмотреть устройство ДВС, а также принцип его работы.

К преимуществам поршневого двигателя внутреннего сгорания можно отнести:

  1. Универсальность (применение на различных транспортных средствах).
  2. Высокий уровень автономной работы.
  3. Компактные размеры.
  4. Приемлемая цена.
  5. Способность к быстрому запуску.
  6. Небольшой вес.
  7. Возможность работы с различными видами топлива.

Кроме «плюсов» имеет двигатель внутреннего сгорания и ряд серьезных недостатков, среди которых:

  1. Высокая частота вращения коленвала.
  2. Большой уровень шума.
  3. Слишком большой уровень токсичности в выхлопных газах.
  4. Маленький КПД (коэффициент полезного действия).
  5. Небольшой ресурс службы.

Двигатели внутреннего сгорания различаются по типу топлива, они бывают:

  1. Бензиновыми.
  2. Дизельными.
  3. А также газовыми и спиртовыми.

Последние два можно назвать альтернативными, поскольку на сегодняшний день они не получили широкого применения.

Спиртовой ДВС работающий на водороде — самый перспективный и экологичный, он не выбрасывает в атмосферу вредный для здоровья «СО2», который содержится в отработанных газах поршневых двигателей внутреннего сгорания.

Поршневой ДВС состоит из следующих подсистем:
  1. Газораспределительный механизм (ГРМ).
  2. Кривошипно-шатунный механизм (КШМ).
  3. Система впуска.
  4. Топливная система.
  5. Система смазки.
  6. Система зажигания (в бензиновых моторах).
  7. Выпускная система.
  8. Система охлаждения.
  9. Система управления.

Корпус двигателя состоит из нескольких частей, в которые входят: блок цилиндров, а также головка блока цилиндров (ГБЦ). Задача КШМ — преобразовать возвратно-поступательные движения поршня во вращательные движения коленвала. Газораспределительный механизм необходим ДВС для обеспечения своевременного впуска в цилиндры топливно-воздушной смеси и такой же своевременный выпуск отработанных газов.

Статья в тему: Причины перегрева двигателя. Как не допустить перегрев двигателя?

Впускная система служит для своевременной подачи воздуха в двигатель, который необходим для образования топливно-воздушной смеси. Топливная система осуществляет подачу в двигатель топлива, в тандеме две этих системы работают над образованием топливно-воздушной смеси после чего она подается посредством системы впрыска в камеру сгорания.

Воспламенение топливно-воздушной смеси происходит благодаря системе зажигания (в бензиновых ДВС), в дизельных моторах воспламенение происходит за счет сжатия смеси и свечей накала.

Система смазки как уже понятно из названия служит для смазки трущихся деталей, снижая тем самым их износ, увеличивая срок их службы и отводя тем самым от их поверхностей температуру. Охлаждение нагревающихся поверхностей и деталей обеспечивает система охлаждения, она отводит температуру при помощи охлаждающей жидкости по своим каналам, которая проходя через радиатор — охлаждается и повторяет цикл. Система выпуска обеспечивает вывод отработанных газов из цилиндров ДВС посредством выхлопной системы, которая входит в состав этой системы, снижает шум сопровождаемый выброс газов и их токсичность.

Система управления двигателем (в современных моделях за это отвечает электронный блок управления (ЭБУ) или бортовой компьютер) необходима для электронного управление всеми вышеописанными системами и обеспечения их синхронности.

Как работает двигатель внутреннего сгорания?

Принцип работы ДВС базируется на эффекте теплового расширения газов, которое возникает во время сгорания топливно-воздушной смеси, за счет чего осуществляется движение поршня в цилиндре. Рабочий цикл двигателя внутреннего сгорания  происходит за два оборота коленвала и состоит из четырех тактов, отсюда и название — четырехтактный двигатель.

  1. Первый такт — впуск.
  2. Второй — сжатие.
  3. Третий — рабочий ход.
  4. Четвертый — выпуск.

Во время первых двух тактов — впуска и рабочего такта, поршень движется вниз, за два других сжатие и выпуск – поршень идет вверх. Рабочий цикл каждого из цилиндров настроен таким образом чтобы не совпадать по фазам, это необходимо для того чтобы обеспечить равномерность работы двигателя внутреннего сгорания. Есть в мире и другие двигатели, рабочий цикл которых происходит всего за два такта – сжатие и рабочий ход, этот двигатель называется двухтактным.

На такте впуска топливная система и впускная образуют топливно-воздушную смесь, которая образуется во впускном коллекторе или непосредственно в камере сгорания (все зависит от типа конструкции). Во впускном коллекторе в случае с центральным и распределенным впрыском бензиновых ДВС. В камере сгорания в случае с непосредственным впрыском в бензиновых и  дизельных моторах. Топливно-воздушная смесь или воздух во время открытия впускных клапанов ГРМ подается в камеру сгорания за счет разряжения, которое возникает во время движения поршня вниз.

Актуально: Как определить состояние дизельного двигателя по выхлопным газам

Впускные клапаны закрываются на такте сжатия, после чего топливно-воздушная смесь в цилиндрах двигателя сжимается. Во время такта «рабочий ход» смесь воспламеняется принудительно или самовоспламеняется. После возгорания в камере возникает большое давление, которое создают газы, это давление воздействует на поршень, которому ничего не остается как начать двигаться вниз. Это движение поршня в тесном контакте с кривошипно-шатунным механизмом приводят в движение коленчатый вал, который в свою очередь образует крутящий момент, приводящий колеса автомобиля в движение.

Такт «выпуск» открывает выпускные клапаны газораспределительного механизма, после чего отработанные газы освобождают камеру сгорания, а после и выпускную систему, уходя охлажденными и частично очищенными в атмосферу.

Короткое резюме

После того как мы рассмотрели принцип работы двигателя внутреннего сгорания можно понять почему ДВС обладает низким КПД, который составляет примерно 40%. В то время как в одном цилиндре происходит полезное действие, остальные цилиндры грубо говоря бездействуют, обеспечивая работу первого тактами: впуск, сжатие, выпуск.

На этом у меня все, надеюсь вам все понятно, после прочтения данной статьи вы легко сможете ответить на вопрос, что такое ДВС и как устроен двигатель внутреннего сгорания. Спасибо за внимание!

Рекомендую посмотреть данное видео в нем вы найдете очень много для себя полезного!

Основные механизмы и системы двигателя — Общее устройство и работа двигателя — Двигатель — Автомобиль

10 июня 2011г.

Двигатель внутреннего сгорания состоит из двух основных механизмов — кривошипно-шатунного и газораспределительного — и систем охлаждения, смазки, питания. У карбюраторных двигателей имеется и система зажигания.

Кривошипно-шатунный механизм воспринимает силу давления газов и преобразует прямолинейное, возвратно-поступательное движение поршня во вращательное движение коленчатого вала.

Газораспределительный механизм
предназначен для своевременного впуска в цилиндр свежей горючей смеси (карбюраторные двигатели) или воздуха (дизели) и выпуска из него отработавших газов.

Система охлаждения
отводит теплоту от нагревающихся деталей двигателя. Она может быть жидкостной (у большинства отечественных двигателей) или воздушной (МеМЗ-968).

Система смазки служит для уменьшения трения между деталями двигателя, охлаждения их и отвода продуктов износа.

Система питания обеспечивает приготовление горючей смеси и подачу ее в цилиндры двигателя (карбюраторные и газовые двигатели) или же раздельную подачу в цилиндры топлива и воздуха (дизели), а также удаление из цилиндров продуктов сгорания.

Система зажигания служит для воспламенения рабочей смеси в цилиндрах двигателя при помощи электрической искры.

Основные данные двигателей, установленных на автомобилях ГАЭ-53А, ГАЗ-51А, ЗИЛ-130, «Москвич-412» и ГАЗ-24 «Волга», приведены в таблице:

Контрольные вопросы

  1. Что называется тактом и из каких тактов состоит рабочий цикл четырехтактного двигателя?
  2. Что называется степенью сжатия и как она влияет на мощность и экономичность работы двигателя?
  3. Назовите величину степени сжатия и литраж изучаемых двигателей.
  4. Какова степень сжатия дизелей и на каком топливе они работают?
  5. Как происходит рабочий цикл четырехтактного дизеля?

«Автомобиль», под. ред. И.П.Плеханова

Устройство двигателя: схема, строение и принцип работы ДВС

На чтение 10 мин. Просмотров 1.3k. Опубликовано Обновлено

Практически все современные автомобили оснащены двигателем внутреннего сгорания, имеющим аббревиатуру ДВС. Несмотря на постоянный прогресс и сегодняшнее стремление автомобильных концернов отказаться от моторов, работающих на нефтепродуктах в пользу более экологичной электроэнергии, львиная доля машин ездит на бензине или дизельном топливе.

Основными принципом ДВС является то, что топливная смесь воспламеняется непосредственно внутри агрегата, а не вне его (как, к примеру, в тепловозах или устаревших паровозах). Такой способ имеет относительно большой коэффициент полезного действия. К тому же, если говорить об альтернативных моторах на электрической тяге, то двигатели внутреннего сгорания обладает рядом неоспоримых преимуществ.

  • большой запас хода на одном баке;
  • быстрая заправка;
  • согласно прогнозам, уже через несколько лет энергосистемы развитых стран не будут в силах погасить потребность в электроэнергии из-за большого количества электрокаров, что может привести к коллапсу.

Классификация двигателей внутреннего сгорания

Непосредственно ДВС отличаются по своему устройству. Все моторы можно разделить на несколько самых популярных категорий в зависимости от принципа работы:

Бензиновые

Наиболее распространенная категория. Работает на главных продуктах нефтепереработки. Основным элементом в таком моторе является цилиндро-поршневая группа или ЦПГ, куда входит: коленвал, шатун, поршень, поршневые кольца и сложный газораспределительный механизм, который обеспечивает своевременное наполнение и продувку цилиндра.

Бензиновые двигатели внутреннего сгорания подразделяются на два типа в зависимости от системы питания:

  1. карбюраторные. Устаревшая в условиях современной реальности модель. Здесь формирование топливно-воздушной смеси осуществляется в карбюраторе, а пропорцию воздуха и бензина определяет набор жиклеров. После этого карбюратор подает ТВС в камеру сгорания. Недостатками такого принципа питания является повышенное потребление топлива и прихотливость всей системы. К тому же она сильно зависит от погоды, температуры и прочих условий.
  2. инжекторные или впрысковые. Принципы работы двигателя с инжектором кардинально противоположны. Здесь смесь впрыскивается непосредственно во впускной коллектор через форсунки, а затем разбавляется нужным количеством воздуха. За исправную работу отвечает электронный блок управления, который самостоятельно высчитывает нужные пропорции.

Дизельные

Устройство двигателя, работающего на дизеле, кардинально отличается от бензинового агрегата. Поджог смеси здесь происходит не благодаря свечам зажигания, дающим искру в определенный момент, а из-за высокой степени сжатия в камере сгорания. Данная технология имеет свои плюсы (больший КПД, меньшие потери мощности из-за большой высоты над уровнем моря, высокий крутящий момент) и минусы (прихотливость ТНВД к качеству топлива, большие выбросы СО2 и сажи).

Роторно-поршневые двигатели Ванкеля

Данный агрегат имеет поршень в виде ротора и три камеры сгорания, к каждой из которых подведена свеча зажигания. Теоретически ротор, движущийся по планетарной траектории, каждый такт совершает рабочий ход. Это позволяет существенно повысить КПД и увеличить мощность двигателя внутреннего сгорания. На практике это сказывается гораздо меньшим ресурсом. На сегодняшний день только автомобильная компания Mazda делает такие агрегаты.

Газотурбинные

Принцип работы ДВС такого типа заключается в том, что тепловая энергия переходит в механическую, а сам процесс обеспечивает вращение ротора, приводящего в движения вал турбины. Подобные технологии используются в авиационном строительстве.

Устройство двигателя внутреннего сгорания

Любой поршневой ДВС (самые распространенные в современных реалиях) имеет обязательный набор деталей. К таким частям относится:

  1. Блок цилиндров, внутри которого двигаются поршни и происходит сам процесс;
  2. ЦПГ: цилиндр, поршни, поршневые кольца;
  3. Кривошипно-шатунный механизм. К нему относится коленвал, шатун, «пальцы» и стопорные кольца;
  4. ГРМ. Механизм с клапанами, распределительными валами или «лепестками» (для 2-х тактных двигателей), который обеспечивает корректную подачу топлива в нужный момент;
  5. Cистемы впуска. О них говорилось выше – к ней относятся карбюраторы, воздушные фильтры, инжекторы, топливный насос, форсунки;
  6. Системы выпуска. Удаляет отработанные газы из камеры сгорания, а также снижает шумность выхлопа;

Принцип работы ДВС

В зависимости от своего устройства, двигатели можно разделить на четырехтактные и двухтактные. Такт – есть движение поршня от своего нижнего положения (мертвая точка НМТ) до верхнего положения (мертвая точка ВМТ). За один цикл двигатель успевает наполнить камеры сгорания топливом, сжать и поджечь его, а также очистить их. Современные ДВС делают это за два или четыре такта.

Принцип работы двухтактного ДВС

Особенностью такого мотора стало то, что весь рабочий цикл происходит всего за два движения поршня. При движении вверх создается разреженное давление, которое засасывает топливную смесь в камеру сгорания. Вблизи ВМТ поршень перекрывает впускной канал, а свеча зажигания поджигает топливо. Вторым тактом следует рабочий ход и продувка. Выпускной канал открывается после прохождения части пути вниз и обеспечивает выход отработанных газов. После этого процесс возобновляется по новой.

Теоретически, преимуществом такого мотора более высокая удельная мощность. Это логично, ведь сгорание топлива и рабочий такт происходит в два раза чаще. Соответственно, мощность такого двигателя может быть в два раза больше. Но эта конструкция имеет массу проблем. Из-за больших потерь при продувке, большого расхода топлива, а также сложностей в расчетах и «норовистой» работе двигателя, эта технология сегодня используется только на малокубатурной технике.

Интересно, что полвека назад активно велись разработки дизельного двухтактного ДВС. Процесс работы практически не отличался от бензинового аналога. Однако, несмотря на преимущества такого мотора, от него отказались из-за ряда недостатков.

Основным минусом стал огромный перерасход масла. Из-за комбинированной системы смазки топливо попадало в камеру сгорания вместе с маслом, которое потом попросту выгорало или удалялось через выпускную систему. Большие тепловые нагрузки также требовали более громоздкой системы охлаждения, что увеличивало габариты мотора. Третьим минусом стал большой расход воздуха, который вел к преждевременному износу воздушных фильтров.

Четырёхтактный ДВС

Мотор, где рабочий цикл занимает четыре хода поршня, называется четырехтактным двигателем.

  1. Первый такт – впуск. Поршень двигается из верхней мертвой точки. В этот момент ГРМ открывает впускной клапан, через который топливно-воздушная смесь поступает в камеру сгорания. В случае с карбюраторными агрегатами поступление может осуществляться за счет разрежения, а инжекторные двигателя впрыскивают топливо под давлением.
  2. Второй такт – сжатие. Далее поршень движется из нижней мертвой точки вверх. К этому моменту впускной клапан закрыт, а смесь постепенно сжимается в полости камеры сгорания. Рабочая температура поднимается до отметки 400 градусов.
  3. Третий такт – рабочий ход поршня. В ВМТ свеча зажигания (или большая степень сжатия, если речь идет о дизеле) поджигает топливо и толкает поршень с коленчатым валом вниз. Это основной такт во всем цикле работы двигателя.
  4. Четвертый такт – выпуск. Поршень снова движется вверх, выпускной клапан открывается, а из камеры сгорания удаляются отработанные газы.

Дополнительные системы ДВС

Независимо от того, из чего состоит двигатель, у него должны быть вспомогательные системы, которые способны обеспечить его исправную работу. К примеру, клапаны должны открываться в нужное время, в камеры поступать нужное количество топлива в определенной пропорции, вовремя подаваться искра и т.д. Ниже рассмотрены основные части, способствующие корректной работе.

Система зажигания

Эта система отвечает за электрическую часть в вопросе воспламенения топлива. К основным элементам относится:

  • Элемент питания. Основным источником питания является аккумулятор. Он обеспечивает вращение стартера на выключенном двигателе. После этого в работу включается генератор, который питает двигатель, а также подзаряжает саму аккумуляторную батарею через реле зарядки.
  • Катушка зажигания. Устройство, которое передает одномоментный заряд непосредственно на свечу зажигания. В современных автомобилях количество катушек равносильно количеству цилиндров, которые работают в двигателе.
  • Коммутатор или распределитель зажигания. Специальной «умное» электронное устройство, которое определяет момент подачи искры.
  • Свеча зажигания. Важный элемент в бензиновом ДВС, который обеспечивает своевременное воспламенение топливно-воздушной смеси. Продвинутые двигатели имеют по две свечи на цилиндр.

Впускная система

Смесь должна вовремя поступать в камеры сгорания. За этот процесс отвечает впускная система. К ней относится:

  • Воздухозаборник. Патрубок, специально выведенный в место, недоступное для воды, пыли или грязи. Через него осуществляется забор воздуха, который потом попадает в двигатель;
  • Воздушный фильтр. Сменная деталь, которая обеспечивает очистку воздуха от грязи и исключает попадание посторонних материалов в камеру сгорания. Как правило, современные автомобили обладают сменными фильтрами из плотной бумаги или промасленного поролона. На более архаичных моторах встречаются масляные воздушные фильтры.
  • Дроссель. Специальная заслонка, которая регулирует количество воздуха, попадающего в впускной коллектор. На современной технике действует посредством электроники. Сначала водитель нажимает на педаль газа, а потом электронная система обрабатывает сигнал и следует команде.
  • Впускной коллектор. Патрубок, который распределяет топливно-воздушную смесь по различным цилиндрам. Вспомогательными элементами в этой системе являются впускные заслонки и усилители.

Топливная систем

Принцип работы любого ДВС подразумевает своевременное поступление топлива и ее бесперебойную подачу. В комплекс также входит несколько основных элементов:

  • Топливный бак. Резервуар, где хранится топливо. Как правило, располагается в максимально безопасном месте, вдали от мотора и сделан из негорючего материала (ударопрочный пластик). В нижней его части установлен бензонасос, который осуществляет забор топлива.
  • Топливопровод. Система шлангов, ведущая от топливного бака непосредственно к двигателю внутреннего сгорания.
  • Прибор образования смеси. Устройство, где смешиваются топливо и воздух. Об этом пункте уже упоминалось выше – за эту функцию может отвечать карбюратор или инжектор. Основным требованием является синхронная и своевременная подача.
  • Головное устройство в инжекторных двигателях, которое определяет качество, количество и пропорции образования смеси.

Выхлопная система

В ходе того, как работает двигатель внутреннего сгорания, образуются выхлопные газы, которые необходимо выводить из мотора. Для правильной работы эта система обязана иметь следующие элементы:

  • Выпускной коллектор. Устройство из тугоплавкого металла с высокой устойчивостью к температурам. Именно в него первоначально поступают выхлопные газы из двигателя.
  • Приемная труба или штаны. Деталь, обеспечивающая транспортировку выхлопных газов далее по тракту.
  • Резонатор. Устройство, снижающее скорость движения выхлопных газов и погашение их температуры.
  • Катализатор. Предмет для очистки газов от СО2 или сажевых частиц. Здесь же располагается лямда-зонд.
  • Глушитель. «Банка», имеющая ряд внутренних элементов, предназначенных для многократного изменения направления выхлопных газов. Это приводит к снижению их шумности.

Система смазки

Работа двигателя внутреннего сгорания будет совсем недолгой, если детали не будут обеспечиваться смазкой. Во всей технике используется специальное высокотемпературное масло, обладающее собственными характеристиками вязкости в зависимости от режимов эксплуатации мотора. Ко всему, масло предотвращает перегрев, обеспечивает удаление нагара и появление коррозии.

Для поддержания исправности системы предназначены следующие элементы:

  • Поддон картера. Именно сюда заливается масло. Это основной резервуар для хранения. Контролировать уровень можно при помощи специального щупа.
  •  Масляный насос. Находится вблизи нижней точки поддона. Обеспечивает циркуляцию жидкости по всему мотору через специальные каналы и его возвращение обратно в картер.
  •  Масляный фильтр. Гарантирует очистку жидкости от пыли, металлической стружки и прочих абразивных веществ, попадающих в масло.
  •  Радиатор. Обеспечивает эффективное охлаждение до положенных температур.

Система охлаждения

Еще один элемент, который необходим для мощных двигателей внутреннего сгорания. Он обеспечивает охлаждение деталей и исключает возможность перегрева. Состоит из следующих деталей:

  • Радиатор. Специальный элемент, имеющий «сотовую» структуру. Является отличным теплообменником и эффективно отдает тепло, гарантируя охлаждение антифриза.
  • Вентилятор. Дополнительный элемент, дующий на радиатор. Включается тогда, когда естественный поток набегающего воздуха уже не может обеспечить эффективное отведение тепла.
  • Помпа. Насос, который помогает жидкости циркулировать по большому или малому кругу системы (в зависимости от ситуации).
  • Термостат. Клапан, который открывает заслонку, пуская жидкость по нужному кругу. Работает совместно с датчиком температуры движка и охлаждающей жидкости.

Заключение

Первый двигатель внутреннего сгорания появился еще очень давно – почти полтора столетия назад. С тех пор было сделано огромное количество разных нововведений или интересных технических решений, которые порой меняли вид мотора до неузнаваемости. Но общий принцип работы двигателя внутреннего сгорания оставался прежним. И даже сейчас, в эпоху борьбы за экологию и постоянно ужесточающийся норм по выбросу СО2, электромобили все еще не в силах составить серьезную конкуренцию машинам с ДВС. Бензиновые автомобили и сейчас живее всех живых, а мы живем в золотую эпоху автомобилестроения.

Ну а для тех, кто готов погрузиться в тему еще глубже, у нас есть отличное видео:

Основные механизмы и системы двигателя — Общее устройство и работа двигателя — Двигатель — Автомобиль

10 июня 2011г.

Двигатель внутреннего сгорания состоит из двух основных механизмов — кривошипно-шатунного и газораспределительного — и систем охлаждения, смазки, питания. У карбюраторных двигателей имеется и система зажигания.

Кривошипно-шатунный механизм воспринимает силу давления газов и преобразует прямолинейное, возвратно-поступательное движение поршня во вращательное движение коленчатого вала.

Газораспределительный механизм
предназначен для своевременного впуска в цилиндр свежей горючей смеси (карбюраторные двигатели) или воздуха (дизели) и выпуска из него отработавших газов.

Система охлаждения
отводит теплоту от нагревающихся деталей двигателя. Она может быть жидкостной (у большинства отечественных двигателей) или воздушной (МеМЗ-968).

Система смазки служит для уменьшения трения между деталями двигателя, охлаждения их и отвода продуктов износа.

Система питания обеспечивает приготовление горючей смеси и подачу ее в цилиндры двигателя (карбюраторные и газовые двигатели) или же раздельную подачу в цилиндры топлива и воздуха (дизели), а также удаление из цилиндров продуктов сгорания.

Система зажигания служит для воспламенения рабочей смеси в цилиндрах двигателя при помощи электрической искры.

Основные данные двигателей, установленных на автомобилях ГАЭ-53А, ГАЗ-51А, ЗИЛ-130, «Москвич-412» и ГАЗ-24 «Волга», приведены в таблице:

Контрольные вопросы

  1. Что называется тактом и из каких тактов состоит рабочий цикл четырехтактного двигателя?
  2. Что называется степенью сжатия и как она влияет на мощность и экономичность работы двигателя?
  3. Назовите величину степени сжатия и литраж изучаемых двигателей.
  4. Какова степень сжатия дизелей и на каком топливе они работают?
  5. Как происходит рабочий цикл четырехтактного дизеля?

«Автомобиль», под. ред. И.П.Плеханова

Устройство двигателя: схема, строение и принцип работы ДВС

На чтение 10 мин. Просмотров 1.3k. Опубликовано Обновлено

Практически все современные автомобили оснащены двигателем внутреннего сгорания, имеющим аббревиатуру ДВС. Несмотря на постоянный прогресс и сегодняшнее стремление автомобильных концернов отказаться от моторов, работающих на нефтепродуктах в пользу более экологичной электроэнергии, львиная доля машин ездит на бензине или дизельном топливе.

Основными принципом ДВС является то, что топливная смесь воспламеняется непосредственно внутри агрегата, а не вне его (как, к примеру, в тепловозах или устаревших паровозах). Такой способ имеет относительно большой коэффициент полезного действия. К тому же, если говорить об альтернативных моторах на электрической тяге, то двигатели внутреннего сгорания обладает рядом неоспоримых преимуществ.

  • большой запас хода на одном баке;
  • быстрая заправка;
  • согласно прогнозам, уже через несколько лет энергосистемы развитых стран не будут в силах погасить потребность в электроэнергии из-за большого количества электрокаров, что может привести к коллапсу.

Классификация двигателей внутреннего сгорания

Непосредственно ДВС отличаются по своему устройству. Все моторы можно разделить на несколько самых популярных категорий в зависимости от принципа работы:

Бензиновые

Наиболее распространенная категория. Работает на главных продуктах нефтепереработки. Основным элементом в таком моторе является цилиндро-поршневая группа или ЦПГ, куда входит: коленвал, шатун, поршень, поршневые кольца и сложный газораспределительный механизм, который обеспечивает своевременное наполнение и продувку цилиндра.

Бензиновые двигатели внутреннего сгорания подразделяются на два типа в зависимости от системы питания:

  1. карбюраторные. Устаревшая в условиях современной реальности модель. Здесь формирование топливно-воздушной смеси осуществляется в карбюраторе, а пропорцию воздуха и бензина определяет набор жиклеров. После этого карбюратор подает ТВС в камеру сгорания. Недостатками такого принципа питания является повышенное потребление топлива и прихотливость всей системы. К тому же она сильно зависит от погоды, температуры и прочих условий.
  2. инжекторные или впрысковые. Принципы работы двигателя с инжектором кардинально противоположны. Здесь смесь впрыскивается непосредственно во впускной коллектор через форсунки, а затем разбавляется нужным количеством воздуха. За исправную работу отвечает электронный блок управления, который самостоятельно высчитывает нужные пропорции.

Дизельные

Устройство двигателя, работающего на дизеле, кардинально отличается от бензинового агрегата. Поджог смеси здесь происходит не благодаря свечам зажигания, дающим искру в определенный момент, а из-за высокой степени сжатия в камере сгорания. Данная технология имеет свои плюсы (больший КПД, меньшие потери мощности из-за большой высоты над уровнем моря, высокий крутящий момент) и минусы (прихотливость ТНВД к качеству топлива, большие выбросы СО2 и сажи).

Роторно-поршневые двигатели Ванкеля

Данный агрегат имеет поршень в виде ротора и три камеры сгорания, к каждой из которых подведена свеча зажигания. Теоретически ротор, движущийся по планетарной траектории, каждый такт совершает рабочий ход. Это позволяет существенно повысить КПД и увеличить мощность двигателя внутреннего сгорания. На практике это сказывается гораздо меньшим ресурсом. На сегодняшний день только автомобильная компания Mazda делает такие агрегаты.

Газотурбинные

Принцип работы ДВС такого типа заключается в том, что тепловая энергия переходит в механическую, а сам процесс обеспечивает вращение ротора, приводящего в движения вал турбины. Подобные технологии используются в авиационном строительстве.

Устройство двигателя внутреннего сгорания

Любой поршневой ДВС (самые распространенные в современных реалиях) имеет обязательный набор деталей. К таким частям относится:

  1. Блок цилиндров, внутри которого двигаются поршни и происходит сам процесс;
  2. ЦПГ: цилиндр, поршни, поршневые кольца;
  3. Кривошипно-шатунный механизм. К нему относится коленвал, шатун, «пальцы» и стопорные кольца;
  4. ГРМ. Механизм с клапанами, распределительными валами или «лепестками» (для 2-х тактных двигателей), который обеспечивает корректную подачу топлива в нужный момент;
  5. Cистемы впуска. О них говорилось выше – к ней относятся карбюраторы, воздушные фильтры, инжекторы, топливный насос, форсунки;
  6. Системы выпуска. Удаляет отработанные газы из камеры сгорания, а также снижает шумность выхлопа;

Принцип работы ДВС

В зависимости от своего устройства, двигатели можно разделить на четырехтактные и двухтактные. Такт – есть движение поршня от своего нижнего положения (мертвая точка НМТ) до верхнего положения (мертвая точка ВМТ). За один цикл двигатель успевает наполнить камеры сгорания топливом, сжать и поджечь его, а также очистить их. Современные ДВС делают это за два или четыре такта.

Принцип работы двухтактного ДВС

Особенностью такого мотора стало то, что весь рабочий цикл происходит всего за два движения поршня. При движении вверх создается разреженное давление, которое засасывает топливную смесь в камеру сгорания. Вблизи ВМТ поршень перекрывает впускной канал, а свеча зажигания поджигает топливо. Вторым тактом следует рабочий ход и продувка. Выпускной канал открывается после прохождения части пути вниз и обеспечивает выход отработанных газов. После этого процесс возобновляется по новой.

Теоретически, преимуществом такого мотора более высокая удельная мощность. Это логично, ведь сгорание топлива и рабочий такт происходит в два раза чаще. Соответственно, мощность такого двигателя может быть в два раза больше. Но эта конструкция имеет массу проблем. Из-за больших потерь при продувке, большого расхода топлива, а также сложностей в расчетах и «норовистой» работе двигателя, эта технология сегодня используется только на малокубатурной технике.

Интересно, что полвека назад активно велись разработки дизельного двухтактного ДВС. Процесс работы практически не отличался от бензинового аналога. Однако, несмотря на преимущества такого мотора, от него отказались из-за ряда недостатков.

Основным минусом стал огромный перерасход масла. Из-за комбинированной системы смазки топливо попадало в камеру сгорания вместе с маслом, которое потом попросту выгорало или удалялось через выпускную систему. Большие тепловые нагрузки также требовали более громоздкой системы охлаждения, что увеличивало габариты мотора. Третьим минусом стал большой расход воздуха, который вел к преждевременному износу воздушных фильтров.

Четырёхтактный ДВС

Мотор, где рабочий цикл занимает четыре хода поршня, называется четырехтактным двигателем.

  1. Первый такт – впуск. Поршень двигается из верхней мертвой точки. В этот момент ГРМ открывает впускной клапан, через который топливно-воздушная смесь поступает в камеру сгорания. В случае с карбюраторными агрегатами поступление может осуществляться за счет разрежения, а инжекторные двигателя впрыскивают топливо под давлением.
  2. Второй такт – сжатие. Далее поршень движется из нижней мертвой точки вверх. К этому моменту впускной клапан закрыт, а смесь постепенно сжимается в полости камеры сгорания. Рабочая температура поднимается до отметки 400 градусов.
  3. Третий такт – рабочий ход поршня. В ВМТ свеча зажигания (или большая степень сжатия, если речь идет о дизеле) поджигает топливо и толкает поршень с коленчатым валом вниз. Это основной такт во всем цикле работы двигателя.
  4. Четвертый такт – выпуск. Поршень снова движется вверх, выпускной клапан открывается, а из камеры сгорания удаляются отработанные газы.

Дополнительные системы ДВС

Независимо от того, из чего состоит двигатель, у него должны быть вспомогательные системы, которые способны обеспечить его исправную работу. К примеру, клапаны должны открываться в нужное время, в камеры поступать нужное количество топлива в определенной пропорции, вовремя подаваться искра и т.д. Ниже рассмотрены основные части, способствующие корректной работе.

Система зажигания

Эта система отвечает за электрическую часть в вопросе воспламенения топлива. К основным элементам относится:

  • Элемент питания. Основным источником питания является аккумулятор. Он обеспечивает вращение стартера на выключенном двигателе. После этого в работу включается генератор, который питает двигатель, а также подзаряжает саму аккумуляторную батарею через реле зарядки.
  • Катушка зажигания. Устройство, которое передает одномоментный заряд непосредственно на свечу зажигания. В современных автомобилях количество катушек равносильно количеству цилиндров, которые работают в двигателе.
  • Коммутатор или распределитель зажигания. Специальной «умное» электронное устройство, которое определяет момент подачи искры.
  • Свеча зажигания. Важный элемент в бензиновом ДВС, который обеспечивает своевременное воспламенение топливно-воздушной смеси. Продвинутые двигатели имеют по две свечи на цилиндр.

Впускная система

Смесь должна вовремя поступать в камеры сгорания. За этот процесс отвечает впускная система. К ней относится:

  • Воздухозаборник. Патрубок, специально выведенный в место, недоступное для воды, пыли или грязи. Через него осуществляется забор воздуха, который потом попадает в двигатель;
  • Воздушный фильтр. Сменная деталь, которая обеспечивает очистку воздуха от грязи и исключает попадание посторонних материалов в камеру сгорания. Как правило, современные автомобили обладают сменными фильтрами из плотной бумаги или промасленного поролона. На более архаичных моторах встречаются масляные воздушные фильтры.
  • Дроссель. Специальная заслонка, которая регулирует количество воздуха, попадающего в впускной коллектор. На современной технике действует посредством электроники. Сначала водитель нажимает на педаль газа, а потом электронная система обрабатывает сигнал и следует команде.
  • Впускной коллектор. Патрубок, который распределяет топливно-воздушную смесь по различным цилиндрам. Вспомогательными элементами в этой системе являются впускные заслонки и усилители.

Топливная систем

Принцип работы любого ДВС подразумевает своевременное поступление топлива и ее бесперебойную подачу. В комплекс также входит несколько основных элементов:

  • Топливный бак. Резервуар, где хранится топливо. Как правило, располагается в максимально безопасном месте, вдали от мотора и сделан из негорючего материала (ударопрочный пластик). В нижней его части установлен бензонасос, который осуществляет забор топлива.
  • Топливопровод. Система шлангов, ведущая от топливного бака непосредственно к двигателю внутреннего сгорания.
  • Прибор образования смеси. Устройство, где смешиваются топливо и воздух. Об этом пункте уже упоминалось выше – за эту функцию может отвечать карбюратор или инжектор. Основным требованием является синхронная и своевременная подача.
  • Головное устройство в инжекторных двигателях, которое определяет качество, количество и пропорции образования смеси.

Выхлопная система

В ходе того, как работает двигатель внутреннего сгорания, образуются выхлопные газы, которые необходимо выводить из мотора. Для правильной работы эта система обязана иметь следующие элементы:

  • Выпускной коллектор. Устройство из тугоплавкого металла с высокой устойчивостью к температурам. Именно в него первоначально поступают выхлопные газы из двигателя.
  • Приемная труба или штаны. Деталь, обеспечивающая транспортировку выхлопных газов далее по тракту.
  • Резонатор. Устройство, снижающее скорость движения выхлопных газов и погашение их температуры.
  • Катализатор. Предмет для очистки газов от СО2 или сажевых частиц. Здесь же располагается лямда-зонд.
  • Глушитель. «Банка», имеющая ряд внутренних элементов, предназначенных для многократного изменения направления выхлопных газов. Это приводит к снижению их шумности.

Система смазки

Работа двигателя внутреннего сгорания будет совсем недолгой, если детали не будут обеспечиваться смазкой. Во всей технике используется специальное высокотемпературное масло, обладающее собственными характеристиками вязкости в зависимости от режимов эксплуатации мотора. Ко всему, масло предотвращает перегрев, обеспечивает удаление нагара и появление коррозии.

Для поддержания исправности системы предназначены следующие элементы:

  • Поддон картера. Именно сюда заливается масло. Это основной резервуар для хранения. Контролировать уровень можно при помощи специального щупа.
  •  Масляный насос. Находится вблизи нижней точки поддона. Обеспечивает циркуляцию жидкости по всему мотору через специальные каналы и его возвращение обратно в картер.
  •  Масляный фильтр. Гарантирует очистку жидкости от пыли, металлической стружки и прочих абразивных веществ, попадающих в масло.
  •  Радиатор. Обеспечивает эффективное охлаждение до положенных температур.

Система охлаждения

Еще один элемент, который необходим для мощных двигателей внутреннего сгорания. Он обеспечивает охлаждение деталей и исключает возможность перегрева. Состоит из следующих деталей:

  • Радиатор. Специальный элемент, имеющий «сотовую» структуру. Является отличным теплообменником и эффективно отдает тепло, гарантируя охлаждение антифриза.
  • Вентилятор. Дополнительный элемент, дующий на радиатор. Включается тогда, когда естественный поток набегающего воздуха уже не может обеспечить эффективное отведение тепла.
  • Помпа. Насос, который помогает жидкости циркулировать по большому или малому кругу системы (в зависимости от ситуации).
  • Термостат. Клапан, который открывает заслонку, пуская жидкость по нужному кругу. Работает совместно с датчиком температуры движка и охлаждающей жидкости.

Заключение

Первый двигатель внутреннего сгорания появился еще очень давно – почти полтора столетия назад. С тех пор было сделано огромное количество разных нововведений или интересных технических решений, которые порой меняли вид мотора до неузнаваемости. Но общий принцип работы двигателя внутреннего сгорания оставался прежним. И даже сейчас, в эпоху борьбы за экологию и постоянно ужесточающийся норм по выбросу СО2, электромобили все еще не в силах составить серьезную конкуренцию машинам с ДВС. Бензиновые автомобили и сейчас живее всех живых, а мы живем в золотую эпоху автомобилестроения.

Ну а для тех, кто готов погрузиться в тему еще глубже, у нас есть отличное видео:

Система охлаждения двигателя внутреннего сгорания

 

ДВС при работе выделяет много тепла и его требуется постоянно отводить, так как перегрев ведет к стопроцентной поломке механизма. Чтобы температура находилась в пределах нормы, почти все двигатели охлаждаются принудительным образом.

 

Для чего нужно охлаждать двигатели.

 

Топливо в двигателе при сгорании выделяет тепло в несколько тысяч градусов, поэтому происходит быстрый нагрев всего механизма. Нагрев опасен прежде всего тем, что все технологические зазоры уменьшаются до критических значений, детали работают на износ и двигатель может просто заклинить. Высокий нагрев камеры сгорания приводит к тому, что топливо начинает детонировать, что приводит к нестабильной работе двигателя.

 

Из-за этих проявлений просто необходимо постоянно отводить лишнее тепло, но до оптимальных значений, так как холодный двигатель не будет выдавать рассчитанной мощности, будет перерасход топлива и нестабильность в работе. Это происходит из-за того, что холодная камера сгорания конденсирует топливо, которое в итоге сгорает не полностью и некоторое его количество может оказаться в поддоне двигателя.

 

Практика использования ДВС показывает то, что оптимальной считается температура в пределах 90°C, и которая не должна быть выше 105°C. Именно с этой задачей должна справляться система охлаждения ДВС. Также СО может выполнять и дополнительные функции, а именно:

 

— подогрев воздуха для системы отопления;

— остужать масло в моторе и АКПП;

— подогрев двигателя при запуске;

— охлаждение выпускных газов;

— охлаждение воздуха для турбокомпрессора.

 

На данный момент система охлаждения способна решить множество задач и сейчас без нее комфортное использование автомобиля в принципе невозможно.

 

Существующие разные типы СО

 

Существующие системы охлаждения зависят от физических принципов работы двигателя и применяемых теплоносителей. Их подразделяют на 3 типа:

— охлаждение при помощи воздуха;

— охлаждение при помощи жидкости;

— смешанная система охлаждения.

 

Воздушное охлаждение, это охлаждение потоком атмосферного воздуха. Жидкостное охлаждение, это охлаждение потоком жидкости с последующим его охлаждением в специальной емкости. Смешанное охлаждение, это охлаждение двигателя при помощи жидкости, после чего сама жидкость охлаждается потоком атмосферного воздуха.

 

Система охлаждения при помощи жидкости в классическом варианте подразумевает то, что жидкость охлаждается в расширительной емкости. Но такая система не смогла оправдать возложенные на нее надежды, и она уступила смешанной системе охлаждения, как наиболее перспективной.

 

Смешанные системы охлаждения классифицируются по некоторым параметрам.

1.Количество охлаждающих контуров.

Есть одноконтурные и двухконтурные системы.

2.Направление тока охлаждающей жидкости.

 

Есть с поперечным направлением потока жидкости, это когда охладитель поступает возле выпускного коллектора, а выходит возле впускного. Продольное направление потока охладителя подразумевает подачу жидкости возле первого цилиндра и ее вывода возле последнего.

 

Как работает СО при помощи воздуха и жидкости

 

Воздушная СО устроена максимально просто, головка цилиндров имеет ребристые пластины, которые расположены так, чтобы встречный поток воздуха свободно проходил через них. Ребра нужны для того, чтобы увеличить площадь соприкосновения с атмосферным воздухом.

 

В этом случае, происходит лучшая отдача тепла. Преимущество воздушной системы в том, что она очень надежна, но недостаток в том, что она малоэффективна, воздух плохо отводит тепло. Поэтому охлаждение воздухом нельзя использовать на двигателях большой мощности. Обычно СО используются на двигателях для мотоциклов, мотороллеров или мопедов.

 

Система для охлаждения жидкостью намного сложнее, так как охладитель нужно подводить непосредственно к нагреваемым деталям. Для этого приходится в двигателе создавать специальные полости для жидкости, которая эффективно отбирает тепло и выводит его за пределы двигателя.

 

Но у классической системы охлаждения при помощи жидкости тоже есть минусы, так как сама жидкость принудительно не охлаждается, а остывает в специальном бачке. Только поэтому смешанная система охлаждения нашло большее применение в двигателях внутреннего сгорания большой мощности.

Система электрического пуска двигателя внутреннего сгорания: устройство и принцип работы

Система запуска двигателя автомобиля осуществляет первичное вращение коленчатого вала ДВС, в результате чего происходит воспламенение топливно-воздушной смеси в цилиндрах и силовой агрегат начинает работать самостоятельно.

Главной задачей системы пуска становится проворачивание коленвала, что позволяет поршню выполнить необходимое для воспламенения заряда сжатие смеси в цилиндрах. Затем горючее воспламеняется (от внешнего источника в бензиновых двигателях, от сильного сжатия и нагрева в дизельных).

Далее коленчатый вал начинает вращаться самостоятельно, то есть  двигатель запускается, обороты коленвала увеличиваются, вращение вала становится возможным благодаря преобразованию тепловой энергии сгорания топлива в механическую работу. Как только обороты коленвала достигают определенной частоты, происходит автоматическое отключение системы запуска.

В этой статье мы рассмотрим, как работает электрическая система пуска двигателя, из каких какие основных элементов она состоит, а также поговорим о том, какие еще бывают системы запуска ДВС, кроме электрических решений.

Содержание статьи

Система пуска двигателя: конструктивные особенности и принцип действия электрического запуска ДВС

Начнем с того, что на раннем этапе двигатели автомобиля запускались вручную. Для этого использовалась особая заводная рукоятка, которая вставлялась в специальное отверстие, после чего водитель самостоятельно проворачивал коленчатый вал.

В дальнейшем появилась система электрического пуска, которая в самом начале была не совсем надежной. По этой причине на многих моделях электрический пуск комбинировали с возможностью ручного запуска, что давало возможность запустить двигатель в случае возникновения проблем с электрозапуском. Затем от такой схемы полностью отказались, так как общая надежность электрических систем значительно возросла.

Итак, система запуска (часто называется стартерная система пуска двигателя) состоит из механических и электрических узлов и агрегатов. Как уже было сказано, главной задачей является проворачивание двигателя для запуска.

Основными элементами в схеме электрического пуска двигателя выступают:

  • стартерная цепь;
  • стартер;
  • аккумулятор;

В двух словах, стартерная цепь фактически является электроцепью, по которой электрический ток подается от АКБ к стартеру. В такую цепь входит провод, который соединяет аккумулятор и стартер, «масса» на кузов автомобиля, а также различные клеммы и соединения, по которым идет пусковой ток.

Что касается аккумулятора, основной задачей является обеспечение необходимого напряжения для работы стартера. Важно, чтобы АКБ имела нужную емкость и уровень заряда не ниже 70%, что позволяет стартеру прокручивать коленвал ДВС с необходимой для запуска частотой.

Стартер представляет собой электромотор. На валу стартера установлена шестерня, которая после подачи напряжения на стартер входит в зацепление с зубчатым венцом на маховике двигателя. Так реализована передача крутящего момента от стартера на коленвал двигателя.

Еще отметим, что стартер потребляет большой пусковой ток. При этом для включения и выключения стартера используется слаботочный переключатель, более известный как  замок зажигания. Данный элемент осуществляет управление специальным реле, а также блокировочными выключателями стартера (при наличии).

Вернемся к общему устройству элементов системы. Как уже говорилось, стартер с тяговым реле представляет собой электродвигатель постоянного тока. Стартер состоит из статора, который является корпусом, ротора (якорь), а также щеток со щеткодержателем, тягового реле и механизма привода.

Тяговое реле обеспечивает питание обмоток стартера, а также позволяет работать механизму привода. Указанное тяговое реле включает в себя обмотку, якорь, контактную пластину. Электрический ток подается на тяговое реле через специальные контактные болты.

Механизм привода нужен для передачи крутящего момента от стартера на коленвал. Основными элементами конструкции является рычаг привода или вилка, которая имеет поводковую муфту,  демпферная пружина, а также обгонная муфта и ведущая шестерня. Указанная шестерня входит в зацепление с зубчатым венцом маховика, который установлен на коленвалу. Замок зажигания после поворота ключа в положение «старт» отвечает за подачу постоянного тока от АКБ на тяговое реле стартера.

Принцип работы системы электрического запуска ДВС

Система  электрического запуска стоит на различных типах двигателей (двухтактные и четырехтактные, бензиновые, дизельные, роторно-поршневые, газовые и т.д.)

Общий принцип работы заключается в следующем:

После того, как водитель поворачивает ключ в замке зажигания, электрический ток от АКБ подается на контакты тягового реле (на втягивающее стартера). В то время, когда ток начинает проходить по обмоткам тягового реле, осуществляется втягивание якоря. Указанный якорь перемещает рычаг механизма привода, в результате осуществляется зацепление ведущей шестерни и зубчатого венца маховика.

Параллельно якорь замыкает контакты реле, благодаря чему реализуется питание электрическим током обмоток статора и якоря. Это позволяет стартеру вращаться, передавая крутящий момент на коленчатый вал.

После запуска двигателя обороты коленвала увеличиваются. В этот момент срабатывает обгонная муфта, отсоединяющая стартер от двигателя, при этом стартер еще продолжает свое вращение. Затем при помощи возвратной пружины тягового реле происходит обратное перемещение якоря. Это позволяет вернуть механизм привода в обратное положение.

Кстати, если говорить о различных штатных блокировках стартера при запуске двигателя, такие решения встречаются, однако не на всех моделях авто. Основной задачей является повышение комфорта эксплуатации и безопасности. Если просто, стартер не будет работать, пока водитель не выжмет сцепление или не включит нейтральную передачу перед запуском двигателя.

Наличие  такой блокировки позволяет избежать рывков и случайного перемещения ТС, что часто случается,  когда водитель начинает заводить двигатель от стартера с включенной передачей.

Система воздушного пуска двигателя

Система воздушного пуска является еще одним решением, которое позволяет прокручивать коленчатый вал ДВС.  Для запуска мотора используется сжатый воздух. При этом такое пневматическое оборудование, как правило, на автомобилях и другой технике не используется, однако пусковые системы данного типа можно встретить на стационарных двигателях внутреннего сгорания.

Если говорить о конструкции, устройство системы воздушного пуска двигателя предполагает наличие следующих элементов:

  • воздушный баллон;
  • электроклапаны;
  • маслоотстойник;
  • обратный клапан;
  • воздухораспределитель;
  • пусковые клапаны;
  • трубопроводы;

Принцип работы системы воздушного запуска ДВС основан на том, что сжатый в воздушном баллоне воздух под давлением подается в коробку-распределитель, далее проходит через фильтры в редуктор и поступает к электропневмоклапану.

Далее необходимо нажать кнопку «пуск», после чего клапан открывается, затем воздух из воздухораспределителя проходит через пусковые клапаны и попадает в цилиндры двигателя, создавая давление и раскручивая коленвал. Когда обороты достигают нужной частоты, двигатель запускается.

Добавим, что такие силовые установки дополнительно оснащены электрической системой пуска от стартера, что позволяет завести агрегат в том случае, если с воздушным пуском, который является основным способом, имеются какие-либо проблемы или произошла поломка.

Советы и рекомендации

Необходимо учитывать, что  электрическая система пуска двигателей обычно предполагает то, что мощность АКБ и стартера будут практически одинаковыми. Это значит, что напряжение аккумулятора в значительной степени меняется с учетом того тока, который потребляет стартер.

Простыми словами, на эффективность и легкость запуска ДВС сильно влияет общее состояние АКБ, температура аккумулятора, уровень заряда, а также исправность стартера и стартерной цепи. Диагностировать некоторые проблемы на раннем этапе позволяют такие признаки, как явное затухание габаритов и подсветки панели приборов в момент пуска двигателя.

Как известно, яркость ламп зависит от напряжения в бортовой сети. При этом нормально работающая система пуска не должна сильно «просаживать» напряжение. Отметим, что в норме допускается снижение яркости приборной панели и, в ряде случаев, перезапуск магнитолы, однако яркость не должна сильно понижаться.

Еще отметим, что в случае проблем с запуском, которые связаны со стартером, некоторые водители привыкли стучать по данному устройству. Дело в том, что такие постукивания на старых моделях стартеров (например, на «классике» ВАЗ) в некоторых случаях позволяли сместить щетки стартера, ротора и т.д. В результате удавалось на короткое время восстановить работоспособность устройства.

При этом важно понимать, что современные стартеры в своем устройстве имеют постоянные магниты. Указанный магниты весьма хрупкие, то есть после удара по стартеру происходит их раскалывание.

В конечном итоге цельный магнит разрушается. Более того, такие магниты на некоторых моделях стартеров могут быть просто приклеены к корпусу.  Соответственно, если ударять по корпусу сильно, отколовшиеся части магнита попадают на ротор или в область установки подшипников, полностью выводя стартер из строя.

Читайте также

Системы пуска двигателя внутреннего сгорания.


Системы пуска двигателя




Система пуска обеспечивает первоначальное проворачивание коленчатого вала при пуске двигателя, поскольку сам двигатель в неподвижном состоянии не создает вращающего момента, и без внешнего источника энергии не запустится.
Для того, чтобы вдохнуть в двигатель жизнь, его коленчатому валу нужно сообщить определенную начальную (пусковую) частоту вращения, после чего начинают протекать газообменные и термодинамические процессы в цилиндрах, а также функционировать основные системы, обеспечивающие работу двигателя – питания, зажигания, смазки. В цилиндры двигателя начинает поступать горючая смесь (у дизелей – чистый воздух), в нужный момент на свечи зажигания подается искрообразующий электрический импульс, либо впрыскивается порция топлива (у дизелей), а система смазки обеспечивает снижение сил трения при работе механизмов двигателя – двигатель запускается и начинает работать самостоятельно.

При первоначальном проворачивании коленчатого вала системе пуска необходимо преодолеть моменты сопротивления следующих составляющих:

  • момент сил трения, возникающих между поверхностями сопряженных деталей двигателя и во вспомогательных механизмах, имеющих привод от коленчатого вала;
  • момент инерционных сил, которые появляются в процессе разгона двигателя, создаваемых движущимися деталями. Основную долю момента инерционных сил составляет момент инерции маховика;
  • момент сопротивления тепловых циклов горючей смеси, определяемый затратами энергии на расширение и сжатие заряда в цилиндрах двигателя. Эта составляющая зависит от величины компрессии в цилиндрах, степени сжатия и рабочего объема двигателя.

Суммарный момент сопротивления зависит, также, от типа и мощности двигателя, а также от его температуры и технического состояния. Так, с понижением температуры увеличивается вязкость масла смазывающей системы, что приводит к увеличению момента сил трения.

Система пуска должна обладать достаточной мощностью, чтобы преодолеть моменты сопротивления, заставив вращаться коленчатый вал с частотой, необходимой для запуска двигателя. За все время существования двигателей внутреннего сгорания изобретатели и конструкторы разработали и испробовали на практике разнообразные способы пуска двигателей. И в современных двигателях можно встретить разные по принципу действия и конструкции пусковые устройства. При этом используемый в двигателе способ пуска во многом определяется назначением и характером работы машины, а также условиями, в которых она эксплуатируется.

***

Классификация систем пуска двигателя

Поршневые двигатели внутреннего сгорания можно запустить, раскручивая коленчатый вал различными способами:

Мускульный пуск

Мускульный пуск осуществляется вручную при помощи пусковой рукоятки (или другого аналогичного устройства), либо проворачиванием вывешенного ведущего колеса, когда второе ведущее колесо заторможено (опирается на дорогу и не вращается благодаря дифференциалу).
В данном способе источником энергии для проворачивания коленчатого вала двигателя является мускульная сила человека.

Мускульный пуск применяется на современных автомобилях только в случае отказа штатной системы пуска. Он достаточно опасен с точки зрения травмирования человека, поэтому требует особой осторожности при применении. Запускать дизельный двигатель при помощи мускульного пуска значительно сложнее и опаснее, чем двигатель с принудительным воспламенением из-за высокой степени сжатия в цилиндрах.
В последние годы на легковых автомобилях производителями не предусматриваются штатные устройства для мускульного пуска двигателя.

Пуск методом буксировки

Методом буксировки двигатель можно запустить при помощи другого транспортного средства либо с использованием мускульной силы группы людей или животных (лошадей, мулов и т. п.).
Буксированием автомобиль разгоняется до некоторой скорости, после чего водитель включает передачу КПП (обычно 3-ю) и плавно включает сцепление, заставляя коленчатый вал крутиться.
Данный метод пуска двигателя не применим для автомобилей, оборудованных автоматической коробкой передач.

Пуск от электродвигателя

Пуск от электрического двигателя постоянного тока — стартера, использующего для своей работы энергию аккумуляторной батареи автомобиля. Этот способ наиболее удобен и практичен, поэтому применяется в подавляющем большинстве систем пуска современных автомобильных двигателей.
Стартер конструктивно объединяет электродвигатель постоянного тока, привод с обгонной муфтой, соединяющий стартер с венцом маховика, и электрическое реле включения электродвигателя.

Пуск с помощью вспомогательного двигателя — «пускача»

Пуск основного двигателя от вспомогательного двигателя внутреннего сгорания малой мощности, который запускается от других источников энергии, в том числе – вручную. Этот способ нередко применяется в тракторных двигателях, поскольку позволяет легко запустить двигатель большой мощности с высокой степенью сжатия, свойственной дизелям, мало зависит от степени заряда аккумуляторной батареи, поэтому применим в любых условиях, в том числе вдали от населенных пунктов.
В качестве пусковых двигателей обычно используют небольшие карбюраторные двигатели, называемые «пускачами».

Пневматический пуск

Пневматический пуск осуществляется с использованием энергии сжатого воздуха, который накапливается в специальных баллонах при работе основного двигателя. Этот способ пуска ДВС в автомобильном транспорте применения не нашел; его чаще используют для запуска судовых и тепловозных двигателей, а также дизелей тяжелой бронетанковой техники.


Инерционный пуск

Инерционный пуск с использованием энергии вращающегося маховика, накопившего энергию во время работы двигателя — может использоваться для запуска двигателя после кратковременной остановки. Впрочем, известны инерционные системы пуска, в которых тяжелый маховик первоначально раскручивался вручную, после чего его энергия использовалась для пуска двигателя и после длительной стоянки.
К инерционному пуску можно отнести пуск двигателя, заглохшего во время движения транспортного средства – включение какой-либо передачи КПП при плавном включении сцепления позволяет раскрутить коленчатый вал от вращающихся колес. Такой способ пуска двигателя иногда еще называют ротационным.

Непосредственный пуск

Непосредственный пуск (Direct Start) – перспективный способ пуска двигателя внутреннего сгорания без применения внешних источников механической энергии, предложенный известной фирмой Bosch.
Оригинальность этого способа пуска заключается в том, что с помощью бортового компьютера определяется, какой из цилиндров двигателя наиболее подходит для выполнения такта рабочего хода (поршень находится чуть за пределами верхней мертвой точки), после чего в него подается и воспламеняется небольшая порция горючей смеси – двигатель начинает работать.
По ряду причин этот способ можно использовать в двигателях с числом цилиндров не менее четырех.

Работы над воплощением этой идеи в настоящее время ведутся, и вполне возможно, электрическую систему пуска заменит более эффективный и удобный непосредственный пуск.

Пиротехнический пуск

Еще один редкий способ запуска двигателя. Пиротехнический пуск — способ с использованием пиротехнических веществ, например, пороха, не получивший применения на автомобилях. Этот способ технологически похож на пневматический пуск, и отличается тем, что не требует запаса сжатого воздуха — давление пуска обеспечивают пороховые газы, образующиеся при сгорании пиропатрона, который можно воспламенить электрической искрой или ударом обыкновенного молотка по капселю.
В настоящее время пиротехнический пуск используется на некоторых моделях снегоходов и моторных судовых шлюпок, поскольку удобен тем, что в некоторых условиях для пуска двигателя другие источники энергии недоступны.

Основное требование, предъявляемое к системам пуска двигателя – обеспечение достаточной частоты вращения коленчатого вала, для чего необходим крутящий момент определенной величины. При этом система пуска должна надежно функционировать в любых условиях эксплуатации двигателя внутреннего сгорания, и минимально расходовать запасы собственных источников энергии транспортного средства.

***

Вспомогательные устройства пуска двигателя

К системе пуска относятся и устройства, облегчающие пуск холодного двигателя, особенно при низких температурах окружающей среды. Такие устройства в момент пуска холодного двигателя позволяют улучшить искрообразование (в двигателях с принудительным воспламенением смеси), обеспечить подачу в цилиндры горючей смеси необходимого качества и количества, выполняют продувку цилиндров, а также предварительный подогрев горючей смеси, смазочного материала, охлаждающей жидкости и деталей основных механизмов двигателя.

Особенно затруднен пуск холодного двигателя, оборудованного газовой и дизельной системой питания в зимнее время. Здесь, наряду с перечисленными выше причинами, имеют место и специфические трудности пуска, обусловленные характеристиками используемого топлива и типом системы питания.
Так, газовое топливо при выходе из баллонов нуждается в подогреве (газообразное) или испарении (жидкий газ). Для того, чтобы подогреватель или испаритель начали функционировать, необходимо изначально запустить и прогреть двигатель, поскольку в подогревателе используются отработавшие газы, а в испарителе — горячая жидкость системы охлаждения. Очевидно, в холодном состоянии системы двигателя не могут обеспечить нормальный подогрев газа перед подачей его в редуктор и смеситель. Поэтому пуск двигателя в газобаллонных автомобилях обычно осуществляется на бензине, а после некоторого прогрева двигателя переключают систему питания на газообразное топливо.

Для дизелей дополнительной причиной затруднения пуска является холодный воздух. Поскольку дизельный двигатель использует для воспламенения горючей смеси сильное сжатие воздуха, то очевидно, что холодный воздух при одной и той же степени сжатия прогреется меньше, чем теплый воздух, и воспламенение смеси будет затруднено или даже невозможно. Кроме того, высокая степень сжатия в дизелях, характеризующаяся значительным компрессионным сопротивлением, создает дополнительное препятствие работе системы пуска (стартера или пускового двигателя), и при запуске трудно раскрутить коленчатый вал до нужной частоты.
Для устранения описанных причин затрудненного пуска дизелей применяются такие конструкторские решения, как предварительный подогрев воздуха во впускном трубопроводе с помощью специальных электронагревательных свечей, а также декомпрессоры — устройства, снижающие компрессию двигателя в момент раскручивания коленчатого вала перед пуском двигателя. Декомпрессоры обычно открывают клапана (впускной, выпускной или оба), что облегчает стартеру раскручивание коленчатого вала до нужной частоты, а после отключения декомпрессора двигатель запускается.
Кроме того, декомпрессор может быть использован для аварийной остановки двигателя в случае необходимости — снижение компрессии в цилиндрах исключает возгорание горючей смеси, и дизель глохнет.
Конструктивно декомпрессор представляет собой систему тяг и рычагов с ручным или электромагнитным приводом, воздействующих на штанги толкателей и открывающих клапаны ГРМ.

В условиях очень низких температур для облегчения пуска двигателя нередко применяют эфиросодержащие жидкости, впрыскиваемые в небольшом количестве во впускной тракт системы питания.

В холодное время года наиболее удобным и надежным средством облегчения пуска двигателей являются предпусковые подогреватели.

***

Автомобильные стартеры


Главная страница


Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

Замена технических жидкостей аппаратным методом QST (АКПП, ГУР, система охлаждения ДВС и тормозная система)

22-23 апреля 2021 года на базе учебной лаборатории компании BrainStorm был проведен двухдневный технический вебинар «Замена технических жидкостей аппаратным методом QST (АКПП, ГУР, система охлаждения ДВС и тормозная система)» с техническим экспертом GrunBaum.

В рамках данного обучения участники изучали устройство, принципы работы систем автомобиля, а именно: системы охлаждения двигателей внутреннего сгорания, принципы работы систем торможения, систем гидроусилителя руля и современных автоматических трансмиссий.
В течение двух дней участники применяли полученные теоретические знания на учебном автомобиле марки Mercedes с использованием установок GrunBaum. Отдельное внимание на техническом вебинаре было уделено процессам аппаратной замены технических жидкостей и их преимуществам.

Участники семинара собственными руками провели аппаратную замену и убедились в простоте, скорости и получении гарантированного результата.

Напоминаем, что пройти обучение в нашей лаборатории бесплатно может каждый, кто приобретет одну из установок GrunBaum АС в период до 31 декабря 2021.

До конца года 2021 при покупке установок GrunBaum АС вы гарантированно получаете в подарок сертификат на прохождение одного из технических семинаров на выбор:

  • Диагностика и обслуживание автомобильных кондиционеров (8 часов)
  • Диагностика и обслуживание топливных систем и системы впуска ДВС (бензин, дизель) (8 часов)
  • Замена технических жидкостей аппаратным методом QST (АКПП, ГУР, система охлаждения ДВС и тормозная система) (16 часов)
  • Диагностика и обслуживание систем Common Rail на автомобиле (8 часов)

В акции участвуют следующие установки:

GrunBaum AC2000N, AC3000N, AC7000S BASIC, AC7000S, AC7500S, AC8000S BUS, AC9000S 1234yf

— GrunBaum INJ6000, INJ4000, INJ3000

— GrunBaum CR150N, CR350, CR550

— GrunBaum ATF3000, ATF5000, CLT3000, BRK3000

Ведущий — известный технический эксперт GrunBaum, Константин Курганов. Позвольте себе покупки установок не откладывая  — ведь в течение года вы можете пройти максимальное количество бесплатных курсов!  С нами вы приобретаете не только современное оснащение СТО, гарантированно способное увеличить производительность и снизить затраты, но также получаете полноценные знания по его максимально эффективному использованию!

Двигатель внутреннего сгорания — New World Encyclopedia

Четырехтактный цикл (или цикл Отто)
1. Впуск
2. Компрессия
3. Мощность
4. Выпуск

Двигатель внутреннего сгорания — это двигатель, в котором сгорание топлива происходит в замкнутом пространстве, называемом камерой сгорания. Эта экзотермическая реакция топлива с окислителем создает газы с высокой температурой и давлением, которые могут расширяться. Отличительной особенностью двигателя внутреннего сгорания является то, что полезная работа выполняется расширяющимися горячими газами, действующими непосредственно, вызывая движение, например, воздействуя на поршни, роторы или даже путем надавливания и перемещения самого двигателя.

Это контрастирует с двигателями внешнего сгорания, такими как паровые двигатели, в которых процесс сгорания используется для нагрева отдельной рабочей жидкости, обычно воды или пара, которые затем, в свою очередь, работают, например, при нажатии на поршень, приводимый в действие паром.

Термин Двигатель внутреннего сгорания (ДВС) почти всегда используется для обозначения поршневых двигателей, двигателей Ванкеля и аналогичных конструкций, в которых сгорание является прерывистым. Однако двигатели непрерывного сгорания, такие как реактивные двигатели, большинство ракет и многие газовые турбины, также являются двигателями внутреннего сгорания.

Двигатели внутреннего сгорания используются в основном на транспорте. Несколько других применений предназначены для любой переносной ситуации, когда вам нужен неэлектрический двигатель. Самым большим применением в этой ситуации будет двигатель внутреннего сгорания, приводящий в действие электрогенератор. Таким образом, вы можете использовать стандартные электроинструменты с приводом от двигателя внутреннего сгорания.

Преимущество этого — портативность. Этот тип двигателя удобнее использовать в транспортных средствах над электричеством.Даже в случае гибридных автомобилей они по-прежнему используют двигатель внутреннего сгорания для зарядки аккумулятора. Недостатком является загрязнение, которое они тушат. Не только очевидное загрязнение воздуха, но и загрязнение сломанными или устаревшими двигателями и отработанными частями, такими как масло или резиновые изделия, которые необходимо выбросить. Еще одним фактором является шумовое загрязнение, многие двигатели внутреннего сгорания очень громкие. Некоторые из них настолько громкие, что людям нужны средства защиты органов слуха, чтобы не повредить уши. Еще один недостаток — размер.Очень непрактично иметь маленькие двигатели, которые могут иметь любую мощность. Электродвигатели для этого гораздо практичнее. Вот почему более вероятно увидеть электрический генератор, работающий на газе, в районе, где нет электричества для питания более мелких предметов.

История

Демонстрация непрямого или всасывающего принципа внутреннего сгорания. Это может не соответствовать определению двигателя, потому что процесс не повторяется. Ранние двигатели внутреннего сгорания использовались для питания сельскохозяйственного оборудования, аналогичного этим моделям.

Первые двигатели внутреннего сгорания не имели компрессии, но работали на той топливно-воздушной смеси, которая могла всасываться или вдуваться во время первой части такта впуска. Наиболее существенное различие между современных двигателей внутреннего сгорания и более ранними конструкциями заключается в использовании сжатия и, в частности, сжатия в цилиндре.

  • 1509: Леонардо да Винчи описал двигатель без сжатия. (Его описание не может подразумевать, что идея была оригинальной или что она действительно была построена.)
  • 1673: Христиан Гюйгенс описал двигатель без сжатия. [1]
  • 1780-е годы: Алессандро Вольта построил игрушечный электрический пистолет, в котором электрическая искра взорвала смесь воздуха и водорода, выпустив пробку из конца пистолета.
  • Семнадцатый век: английский изобретатель сэр Сэмюэл Морланд использовал порох для привода водяных насосов.
  • 1794: Роберт Стрит построил двигатель без сжатия, принцип работы которого будет доминировать почти столетие.
  • 1806: Швейцарский инженер Франсуа Исаак де Риваз построил двигатель внутреннего сгорания, работающий на смеси водорода и кислорода.
  • 1823: Сэмюэл Браун запатентовал первый двигатель внутреннего сгорания для промышленного применения. Он был без сжатия и основан на том, что Харденберг называет «циклом Леонардо», который, как следует из этого названия, к тому времени уже устарел. Как и сегодня, раннее крупное финансирование в области, где стандарты еще не были установлены, досталось лучшим шоуменам раньше, чем лучшим работникам.
  • 1824: Французский физик Сади Карно основал термодинамическую теорию идеализированных тепловых машин. Это научно установило необходимость сжатия для увеличения разницы между верхней и нижней рабочими температурами, но неясно, знали ли конструкторы двигателей об этом до того, как сжатие уже стало широко использоваться. Это могло ввести в заблуждение дизайнеров, пытавшихся подражать циклу Карно бесполезными способами.
  • 1826 г. 1 апреля: американец Сэмюэл Мори получил патент на «газовый или паровой двигатель без сжатия».«
  • 1838: Патент был выдан Уильяму Барнету (англ.). Это было первое зарегистрированное предположение о компрессии в цилиндре. Он, по-видимому, не осознавал его преимуществ, но его цикл стал бы большим достижением, если бы был достаточно развит.
  • 1854: итальянцы Эухенио Барсанти и Феличе Маттеуччи запатентовали первый действующий эффективный двигатель внутреннего сгорания в Лондоне (номер пункта 1072), но не начали его производство. Он был похож по концепции на успешный двигатель непрямого действия Отто Лангена, но не был так хорошо проработан в деталях.
  • 1860: Жан Жозеф Этьен Ленуар (1822-1900) создал газовый двигатель внутреннего сгорания, внешне очень похожий на горизонтальный паровой двигатель двойного действия, с цилиндрами, поршнями, шатунами и маховиком, в которых газ, по существу, поглощал место пара. Это был первый серийный двигатель внутреннего сгорания. Его первый двигатель с компрессией шокировал сам себя.
  • 1862: Николаус Отто разработал двигатель непрямого действия со свободным поршнем без сжатия, более высокая эффективность которого завоевала поддержку Лангена, а затем и большей части рынка, который в то время в основном предназначался для небольших стационарных двигателей, работающих на горючем газе.
  • 1870: В Вене Зигфрид Маркус установил первый мобильный бензиновый двигатель на ручной тележке.
  • 1876: Николаус Отто в сотрудничестве с Готлибом Даймлером и Вильгельмом Майбахом разработал практичный четырехтактный двигатель (цикл Отто). Немецкие суды, однако, не удержали его патент на все двигатели с цилиндрическим компрессором или даже на четырехтактный цикл, и после этого решения внутрицилиндровое сжатие стало универсальным.
  • 1879: Карл Бенц, работавший независимо, получил патент на свой двигатель внутреннего сгорания, надежный двухтактный газовый двигатель, основанный на конструкции четырехтактного двигателя Николауса Отто.Позже Бенц спроектировал и построил свой собственный четырехтактный двигатель, который использовался в его автомобилях, которые стали первыми автомобилями в производстве.
  • 1882: Джеймс Аткинсон изобрел двигатель цикла Аткинсона. Двигатель Аткинсона имел одну фазу мощности на оборот вместе с разными объемами впуска и расширения, что делало его более эффективным, чем цикл Отто.
  • 1891: Герберт Акройд Стюарт передает права аренды нефтяного двигателя Хорнсби, Англия, для производства двигателей. Строят первые двигатели с холодным пуском и воспламенением от сжатия.В 1892 году они устанавливают первые на водонасосной станции. Экспериментальная версия с более высоким давлением производит самоподдерживающееся воспламенение только за счет сжатия в том же году.
  • 1892: Рудольф Дизель разрабатывает двигатель типа теплового двигателя Карно, сжигающий угольную пыль.
  • 1893 23 февраля: Рудольф Дизель получил патент на дизельный двигатель.
  • 1896: Карл Бенц изобрел оппозитный двигатель, также известный как горизонтально расположенный двигатель, в котором соответствующие поршни одновременно достигают верхней мертвой точки, таким образом уравновешивая друг друга по импульсу.
  • 1900: Рудольф Дизель продемонстрировал дизельный двигатель в 1900 году на выставке Exposition Universelle (Всемирная выставка) с использованием арахисового масла (биодизеля).
  • 1900: Вильгельм Майбах разработал двигатель, построенный в Daimler Motoren Gesellschaft — в соответствии со спецификациями Эмиля Еллинека — который требовал, чтобы двигатель был назван Daimler-Mercedes в честь его дочери. В 1902 году автомобили с этим двигателем были запущены в производство компанией DMG.

Приложения

Двигатели внутреннего сгорания чаще всего используются в качестве передвижных двигателей в автомобилях, оборудовании и другом переносном оборудовании.В мобильных сценариях внутреннее сгорание является преимуществом, поскольку оно может обеспечить высокое соотношение мощности к весу вместе с превосходной удельной топливной энергией. Эти двигатели используются почти во всех автомобилях, мотоциклах, лодках, а также в самых разных самолетах и ​​локомотивах. Там, где требуется очень большая мощность, например, реактивные самолеты, вертолеты и большие корабли, они появляются в основном в виде турбин. Они также используются в электрических генераторах и в промышленности.

Операция

Все двигатели внутреннего сгорания серии зависят от экзотермического химического процесса сгорания: реакция топлива, обычно с воздухом, хотя могут использоваться другие окислители, такие как закись азота.

Наиболее распространенное топливо, используемое сегодня, состоит из углеводородов и, в основном, из нефти. К ним относятся виды топлива, известные как дизельное топливо, бензин и нефтяной газ, а также редкое использование пропана. Большинство двигателей внутреннего сгорания, разработанных для бензина, могут работать на природном газе или сжиженном нефтяном газе без значительных модификаций, за исключением компонентов подачи топлива. Также можно использовать жидкое и газообразное биотопливо, такое как этанол и биодизель, форма дизельного топлива, которое производится из сельскохозяйственных культур, которые дают триглицериды, такие как соевое масло.Некоторые также могут работать на водороде.

Все двигатели внутреннего сгорания должны иметь способ зажигания в цилиндрах для создания сгорания. В двигателях используется либо электрический метод, либо система воспламенения от сжатия.

Процесс воспламенения бензина

Электрические / бензиновые системы зажигания (которые также могут работать на других видах топлива, как упоминалось ранее) обычно основаны на сочетании свинцово-кислотной батареи и индукционной катушки для создания высоковольтной электрической искры для воспламенения топливовоздушной смеси в цилиндры двигателя.Эту батарею можно заряжать во время работы с помощью устройства, вырабатывающего электричество, такого как генератор переменного тока или генератор, приводимый в действие двигателем. Бензиновые двигатели впитывают смесь воздуха и бензина и сжимают до менее 170 фунтов на квадратный дюйм и используют свечу зажигания для воспламенения смеси, когда она сжимается головкой поршня в каждом цилиндре.

Процесс зажигания дизельного двигателя

Системы воспламенения от сжатия, такие как дизельный двигатель и двигатели HCCI (гомогенный заряд и воспламенение от сжатия), для воспламенения полагаются исключительно на тепло и давление, создаваемые двигателем в процессе сжатия.Возникающая компрессия обычно более чем в три раза выше, чем в бензиновом двигателе. Дизельные двигатели будут всасывать только воздух, и незадолго до пикового сжатия небольшое количество дизельного топлива впрыскивается в цилиндр через топливную форсунку, которая позволяет топливу мгновенно воспламениться. Двигатели типа HCCI будут потреблять как воздух, так и топливо, но по-прежнему будут полагаться на процесс самовоспламенения без посторонней помощи из-за более высокого давления и тепла. Это также является причиной того, что дизельные двигатели и двигатели HCCI также более подвержены проблемам с холодным запуском, хотя после запуска они также будут работать в холодную погоду.Большинство дизелей также имеют аккумуляторные батареи и системы зарядки, однако эта система является вторичной и добавляется производителями в качестве роскоши для простоты запуска, включения и выключения топлива, что также может быть выполнено с помощью переключателя или механического устройства, а также для запуска вспомогательных электрических компонентов и аксессуаров. . Однако большинство современных дизелей полагаются на электрические системы, которые также управляют процессом сгорания, чтобы повысить эффективность и сократить выбросы.

Энергия

После успешного воспламенения и сгорания продукты сгорания, горячие газы, имеют больше доступной энергии, чем исходная сжатая топливно-воздушная смесь (которая имела более высокую химическую энергию).Доступная энергия проявляется в виде высокой температуры и давления, которые могут быть переведены в работу двигателем. В поршневом двигателе газы продукта высокого давления внутри цилиндров приводят в движение поршни двигателя.

После того, как доступная энергия удалена, оставшиеся горячие газы сбрасываются (часто путем открытия клапана или выхода выхлопных газов), что позволяет поршню вернуться в свое предыдущее положение (верхняя мертвая точка — ВМТ). Затем поршень может перейти к следующей фазе своего цикла, который варьируется в зависимости от двигателя.Любое тепло, не переведенное в работу, обычно считается отходом и удаляется из двигателя с помощью системы воздушного или жидкостного охлаждения.

Детали

Иллюстрация нескольких ключевых компонентов типичного четырехтактного двигателя.

Детали двигателя различаются в зависимости от типа двигателя. Для четырехтактного двигателя ключевыми частями двигателя являются коленчатый вал (фиолетовый), один или несколько распределительных валов (красный и синий) и клапаны. Для двухтактного двигателя вместо клапанной системы могут быть просто выпускной патрубок и впускное отверстие для топлива.В обоих типах двигателей имеется один или несколько цилиндров (серый и зеленый), и для каждого цилиндра есть свеча зажигания (темно-серый), поршень (желтый) и кривошип (фиолетовый). Одиночный ход поршня вверх или вниз известен как ход, а ход вниз, который происходит непосредственно после воспламенения топливовоздушной смеси в цилиндре, известен как рабочий ход.

Двигатель Ванкеля имеет треугольный ротор, вращающийся в эпитрохоидальной камере (в форме фигуры 8) вокруг эксцентрикового вала.Четыре фазы работы (впуск, сжатие, мощность, выпуск) происходят в разных местах, а не в одном месте, как в поршневом двигателе.

В двигателе Бурка используется пара поршней, встроенных в кулисный механизм, который передает возвратно-поступательное усилие через специально разработанный подшипниковый узел для поворота кривошипно-шатунного механизма. Впуск, сжатие, мощность и выпуск — все это происходит при каждом такте вилки.

Классификация

Существует широкий спектр двигателей внутреннего сгорания, соответствующих их многочисленным применениям.Аналогичным образом существует множество способов классификации двигателей внутреннего сгорания, некоторые из которых перечислены ниже.

Хотя термины иногда вызывают путаницу, реальной разницы между «двигателем» и «мотором» нет. Когда-то слово «двигатель» (от латинского, через старофранцузское, ingenium, «способность») означало любую часть механизма. «Мотор» (от лат. мотор, «движитель») — это любая машина, производящая механическую энергию. Традиционно электродвигатели не называют двигателями, но двигатели внутреннего сгорания часто называют двигателями.»(Электродвигатель относится к локомотиву, работающему от электричества.)

С учетом сказанного, нужно понимать, что обычное использование часто требует определений. Многие люди рассматривают двигатели как те объекты, которые генерируют энергию изнутри, а двигатели — как требующие внешнего источника энергии для выполнения своей работы. Очевидно, корни слов действительно указывают на настоящую разницу. Кроме того, как и во многих определениях, корневое слово объясняет только начало слова, а не его текущее использование.Конечно, можно утверждать, что так обстоит дело со словами мотор и двигатель.

Принципы работы

Поршневой:

  • Двигатель на сырой нефти
  • Двухтактный цикл
  • Четырехтактный цикл
  • Двигатель с горячей лампой
  • Тарельчатые клапаны
  • Рукавный клапан
  • Цикл Аткинсона
  • Предлагаемый
  • Улучшения
  • Двигатель внутреннего сгорания

Поворотный:

  • Продемонстрировано:
  • Предложено:
    • Орбитальный двигатель
    • Квазитурбина
    • Роторный двигатель цикла Аткинсона
    • Тороидальный двигатель

Непрерывное сгорание:

  • Газовая турбина
  • Реактивный двигатель
  • Ракетный двигатель

Цикл двигателя

Двухтактный

Двигатели, основанные на двухтактном цикле, используют два хода (один вверх, один вниз) для каждого рабочего хода.Поскольку нет специальных тактов впуска или выпуска, необходимо использовать альтернативные методы очистки цилиндров. Наиболее распространенный метод двухтактных двигателей с искровым зажиганием заключается в использовании движения поршня вниз для создания давления свежего заряда в картере, который затем продувается через цилиндр через отверстия в стенках цилиндра. Двухтактные двигатели с искровым зажиганием маленькие и легкие (для их выходной мощности) и очень просты в механическом отношении. Общие области применения включают снегоходы, газонокосилки, средства для удаления сорняков, цепные пилы, водные мотоциклы, мопеды, подвесные моторы и некоторые мотоциклы.К сожалению, они также, как правило, громче, менее эффективны и гораздо более загрязняют окружающую среду, чем их четырехтактные аналоги, и они плохо масштабируются до больших размеров. Интересно, что самые большие двигатели с воспламенением от сжатия являются двухтактными и используются в некоторых локомотивах и больших кораблях. Эти двигатели используют принудительную индукцию для продувки цилиндров. Двухтактные двигатели менее экономичны, чем другие типы двигателей, потому что неизрасходованное топливо, распыляемое в камеру сгорания, иногда может выходить из выхлопного тракта вместе с ранее отработанным топливом.Без специальной обработки выхлопных газов это также приведет к очень высокому уровню загрязнения, требуя, чтобы во многих областях применения небольших двигателей, таких как газонокосилки, использовались четырехтактные двигатели, и в некоторых странах с двухтактными двигателями меньшего размера, оснащенными каталитическими нейтрализаторами.

Четырехтактный

Двигатели, основанные на четырехтактном цикле или цикле Отто, имеют один рабочий ход на каждые четыре хода (вверх-вниз-вверх-вниз) и используются в автомобилях, больших лодках и многих легких самолетах. Как правило, они тише, эффективнее и крупнее своих двухтактных собратьев.Есть несколько разновидностей этих циклов, в первую очередь циклы Аткинсона и Миллера. В большинстве дизельных двигателей грузовиков и автомобилей используется четырехтактный цикл, но с системой зажигания с подогревом от сжатия. Этот вариант называется дизельным циклом.

Пятитактный

Двигатели, основанные на пятитактном цикле, представляют собой вариант четырехтактного цикла. Обычно четыре цикла — это впуск, сжатие, сгорание и выпуск. Пятый цикл, добавленный Delautour [2] , — это охлаждение.Двигатели, работающие с пятитактным циклом, на 30 процентов эффективнее, чем эквивалентный четырехтактный двигатель.

Двигатель Бурка

В этом двигателе два диаметрально противоположных цилиндра соединены с кривошипом шатунным штифтом, проходящим через общую вилку. Цилиндры и поршни сконструированы таким образом, что, как и в обычном двухтактном цикле, происходит два рабочих хода на оборот. Однако, в отличие от обычного двухтактного двигателя, отработавшие газы и поступающий свежий воздух не смешиваются в цилиндрах, что способствует более чистой и эффективной работе.Механизм с кулисой также имеет низкую боковую тягу и, таким образом, значительно снижает трение между поршнями и стенками цилиндров. Фаза сгорания двигателя Бурка более точно соответствует сгоранию с постоянным объемом, чем четырехтактный или двухтактный цикл. В нем также используется меньше движущихся частей, поэтому необходимо преодолевать меньшее трение, чем в двух других типах возвратно-поступательного движения. Кроме того, его более высокий коэффициент расширения также означает, что используется больше тепла от его фазы сгорания, чем используется в четырехтактных или двухтактных циклах.

Двигатель с регулируемым сгоранием

Это также цилиндрические двигатели, которые могут быть одно- или двухтактными, но в них вместо коленчатого вала и поршневых штоков используются два соединенных зубчатых колеса концентрических кулачка, вращающихся в противоположных направлениях, для преобразования возвратно-поступательного движения во вращательное движение. Эти кулачки практически нейтрализуют боковые силы, которые в противном случае оказывались бы на цилиндры поршнями, значительно повышая механический КПД. Профили кулачков (которые всегда нечетные и по крайней мере три) определяют ход поршня в зависимости от передаваемого крутящего момента.В этом двигателе есть два цилиндра, которые разнесены на 180 градусов для каждой пары кулачков встречного вращения. Для одноходовых версий существует такое же количество циклов на пару цилиндров, как и кулачков на каждом кулачке, в два раза больше для двухтактных агрегатов.

Ванкель

Двигатель Ванкеля работает с тем же разделением фаз, что и четырехтактный двигатель (но без ходов поршня, правильнее было бы назвать четырехфазным двигателем), поскольку фазы находятся в разных местах двигателя.Этот двигатель обеспечивает три рабочих хода на оборот на ротор, что в среднем дает ему большее отношение мощности к массе, чем поршневые двигатели. Этот тип двигателя используется в нынешних моделях Mazda RX8 и RX7 ранее, а также в других моделях.

Газовая турбина

В газотурбинных циклах (особенно реактивных двигателях) вместо использования одного и того же поршня для сжатия и последующего расширения газов используются отдельные компрессоры и газовые турбины; давая постоянную мощность. По сути, всасываемый газ (обычно воздух) сжимается, а затем сжигается с топливом, что значительно повышает температуру и объем.Затем больший объем горячего газа из камеры сгорания подается через газовую турбину, которая затем легко может приводить в действие компрессор.

Вышедшие из употребления методы

В некоторых старых двигателях внутреннего сгорания без сжатия: В первой части хода поршня вниз была засасана или вдувалась топливно-воздушная смесь. В остальной части хода поршня вниз впускной клапан закрылся, и топливно-воздушная смесь сгорела. При ходе поршня вверх выпускной клапан был открыт. Это была попытка имитации работы поршневого парового двигателя.

Виды топлива и окислителя

Используемые виды топлива включают нефтяной спирт (североамериканский термин: бензин, британский термин: бензин), автогаз (сжиженный нефтяной газ), сжатый природный газ, водород, дизельное топливо, реактивное топливо, свалочный газ, биодизель, биобутанол, арахисовое масло и другие растительные масла. , биоэтанол, биометанол (метиловый или древесный спирт) и другие виды биотоплива. Даже псевдоожиженные металлические порошки и взрывчатые вещества нашли применение. Двигатели, в которых в качестве топлива используются газы, называются газовыми двигателями, а двигатели, в которых используются жидкие углеводороды, называются масляными двигателями.Однако, к сожалению, бензиновые двигатели также часто называют «газовыми двигателями».

Основные ограничения для топлива заключаются в том, что топливо должно легко транспортироваться через топливную систему в камеру сгорания, и что топливо выделяет достаточно энергии в виде тепла при сгорании, чтобы можно было использовать двигатель на практике.

Окислителем обычно является воздух, и его преимущество заключается в том, что он не хранится в транспортном средстве, что увеличивает удельную мощность.Однако воздух можно сжимать и переносить на борту транспортного средства. Некоторые подводные лодки предназначены для перевозки чистого кислорода или перекиси водорода, что делает их независимыми от воздуха. Некоторые гоночные автомобили содержат закись азота в качестве окислителя. Другие химические вещества, такие как хлор или фтор, нашли экспериментальное применение; но большинство из них непрактично.

Дизельные двигатели обычно тяжелее, шумнее и мощнее на более низких оборотах, чем бензиновые двигатели. Они также более экономичны в большинстве случаев и используются в тяжелых дорожных транспортных средствах, некоторых автомобилях (в большей степени из-за их более высокой топливной эффективности по сравнению с бензиновыми двигателями), кораблях, железнодорожных локомотивах и легких самолетах.Бензиновые двигатели используются в большинстве других дорожных транспортных средств, включая большинство автомобилей, мотоциклов и мопедов. Обратите внимание, что в Европе сложные автомобили с дизельным двигателем стали довольно распространенными с 1990-х годов, составляя около 40 процентов рынка. И бензиновые, и дизельные двигатели производят значительные выбросы. Есть также двигатели, работающие на водороде, метаноле, этаноле, сжиженном нефтяном газе (СНГ) и биодизеле. Парафиновые и тракторные двигатели с испарительным маслом (TVO) больше не встречаются.

Водород

Некоторые предполагают, что в будущем водород может заменить такое топливо.Кроме того, с внедрением технологии водородных топливных элементов использование двигателей внутреннего сгорания может быть прекращено. Преимущество водорода в том, что при его сгорании образуется только вода. Это не похоже на сжигание ископаемого топлива, которое производит двуокись углерода, главную причину глобального потепления, окись углерода в результате неполного сгорания и другие местные и атмосферные загрязнители, такие как двуокись серы и окислы азота, которые вызывают проблемы с дыханием в городах, кислотные дожди. , и проблемы с газом озоном.Однако свободный водород для топлива не возникает в природе, при его сжигании выделяется меньше энергии, чем требуется для получения водорода, в первую очередь, самым простым и распространенным методом — электролизом. Хотя существует несколько способов производства свободного водорода, они требуют преобразования горючих молекул в водород, поэтому водород не решает никаких энергетических кризисов, более того, он решает только проблему переносимости и некоторые проблемы загрязнения. Большим недостатком водорода во многих ситуациях является его хранение.Жидкий водород имеет чрезвычайно низкую плотность — в 14 раз меньше, чем вода, и требует обширной изоляции, в то время как газообразный водород требует очень тяжелых резервуаров. Хотя водород имеет более высокую удельную энергию, объемный запас энергии все еще примерно в пять раз ниже, чем у бензина, даже в сжиженном состоянии. (Процесс «Водород по запросу», разработанный Стивеном Амендола, создает водород по мере необходимости, но здесь есть и другие проблемы, такие как относительно дорогое сырье.) К другим видам топлива, более благоприятным для окружающей среды, относится биотопливо.Они не могут дать чистого прироста углекислого газа.

Одноцилиндровый бензиновый двигатель (ок. 1910 г.).

Цилиндры

Двигатели внутреннего сгорания могут содержать любое количество цилиндров с обычными номерами от одного до двенадцати, хотя было использовано до 36 (Lycoming R-7755). Наличие большего количества цилиндров в двигателе дает два потенциальных преимущества: во-первых, двигатель может иметь больший рабочий объем с меньшими индивидуальными возвратно-поступательными массами (то есть масса каждого поршня может быть меньше), что обеспечивает более плавную работу двигателя (поскольку двигатель имеет тенденцию к вибрировать в результате движения поршней вверх и вниз).Во-вторых, с большим рабочим объемом и большим количеством поршней может быть сожжено больше топлива, и может быть больше событий сгорания (то есть больше рабочих ходов) в заданный период времени, что означает, что такой двигатель может генерировать больший крутящий момент, чем аналогичный двигатель. с меньшим количеством цилиндров. Недостатком большего количества поршней является то, что в целом двигатель будет иметь больший вес и иметь тенденцию создавать большее внутреннее трение, поскольку большее количество поршней трутся о внутреннюю часть их цилиндров. Это имеет тенденцию к снижению топливной экономичности и лишению двигателя части его мощности.Для высокоэффективных бензиновых двигателей, использующих современные материалы и технологии (например, двигатели, используемые в современных автомобилях), кажется, что существует точка разрыва около 10 или 12 цилиндров, после чего добавление цилиндров становится общим ущербом для производительности и эффективности, хотя есть исключения. например двигатель W16 от Volkswagen существуют.

  • Большинство автомобильных двигателей имеют от четырех до восьми цилиндров, некоторые высокопроизводительные автомобили имеют десять, двенадцать или даже шестнадцать, а некоторые очень маленькие легковые и грузовые автомобили имеют два или три цилиндра.В предыдущие годы некоторые довольно большие автомобили, такие как DKW и Saab 92, имели двухцилиндровые двухтактные двигатели.
  • Радиальные авиационные двигатели, ныне устаревшие, имели от трех до 28 цилиндров, такие как Pratt & Whitney R-4360. Строка содержит нечетное количество цилиндров, поэтому четное число указывает на двух- или четырехрядный двигатель. Самым большим из них был Lycoming R-7755 с 36 цилиндрами (четыре ряда по девять цилиндров), но он так и не был запущен в производство.
  • Мотоциклы обычно имеют от одного до четырех цилиндров, а в некоторых высокопроизводительных моделях их шесть (хотя существуют «новинки» с 8, 10 и 12).
  • Снегоходы обычно имеют два цилиндра. У некоторых более крупных (не обязательно высокопроизводительных, но тоже туристических машин) их четыре.
  • Небольшие портативные приборы, такие как бензопилы, генераторы и бытовые газонокосилки, чаще всего имеют один цилиндр, хотя существуют и двухцилиндровые бензопилы.

Система зажигания

Двигатели внутреннего сгорания можно классифицировать по системе зажигания. Точка цикла, в которой воспламеняется смесь топлива и окислителя, напрямую влияет на КПД и мощность ДВС.Для типичного 4-тактного автомобильного двигателя горящая смесь должна достичь максимального давления, когда коленчатый вал находится под углом 90 градусов после ВМТ (верхней мертвой точки). Скорость фронта пламени напрямую зависит от степени сжатия, температуры топливной смеси и октанового или цетанового числа топлива. Современные системы зажигания предназначены для зажигания смеси в нужное время, чтобы фронт пламени не касался опускающейся головки поршня. Если фронт пламени касается поршня, это приводит к появлению детонации или детонации.Более бедные смеси и смеси с более низким давлением горят медленнее, что требует более точного момента зажигания. Сегодня в большинстве двигателей для зажигания используется электрическая или компрессионная система нагрева. Однако исторически использовались системы с внешним пламенем и горячими трубками. Никола Тесла получил один из первых патентов на механическую систему зажигания — патент США 609250 (PDF) «Электрический воспламенитель для газовых двигателей» 16 августа 1898 года.

Топливные системы

Топливо сгорает быстрее и полнее, если большая площадь его поверхности контактирует с кислородом.Чтобы двигатель работал эффективно, топливо должно испаряться в поступающий воздух в виде того, что обычно называется топливно-воздушной смесью. Обычно используются два метода испарения топлива в воздух: карбюраторный и впрыск топлива.

Часто в более простых поршневых двигателях для подачи топлива в цилиндр используется карбюратор. Однако точный контроль количества топлива, подаваемого в двигатель, невозможно. Карбюраторы — это самые распространенные в настоящее время устройства для смешивания топлива, используемые в газонокосилках и других двигателях малой мощности.До середины 1980-х карбюраторы также были распространены в автомобилях.

Более крупные бензиновые двигатели, такие как используемые в автомобилях, в основном перешли на системы впрыска топлива. В дизельных двигателях всегда используется впрыск топлива.

Автогазовые двигатели (LPG) используют либо системы впрыска топлива, либо карбюраторы с открытым или закрытым контуром.

В других двигателях внутреннего сгорания, таких как реактивные двигатели, используются горелки, а в ракетных двигателях используются различные идеи, включая ударные струи, сдвиг газа / жидкости, форсажные камеры и многие другие идеи.

Конфигурация двигателя

Двигатели внутреннего сгорания можно классифицировать по их конфигурации, которая влияет на их физические размеры и плавность хода (более плавные двигатели производят меньшую вибрацию). Общие конфигурации включают прямую или линейную конфигурацию, более компактную V-образную конфигурацию и более широкую, но более гладкую плоскую или боксерскую конфигурацию. Авиационные двигатели также могут иметь радиальную конфигурацию, которая обеспечивает более эффективное охлаждение. Также использовались более необычные конфигурации, такие как «H», «U», «X» или «W».

Конфигурации с несколькими коленчатыми валами вовсе не обязательно нуждаются в головке блока цилиндров, но вместо этого могут иметь поршень на каждом конце цилиндра, что называется конструкцией с оппозитным поршнем. Эта конструкция использовалась в дизельном авиационном двигателе Junkers Jumo 205 с двумя коленчатыми валами, по одному на обоих концах одного ряда цилиндров, и, что наиболее заметно, в дизельных двигателях Napier Deltic, в которых использовались три коленчатых вала для обслуживания трех групп двусторонних цилиндров. цилиндры расположены в равностороннем треугольнике с коленчатыми валами по углам.Он также использовался в одноблочных локомотивных двигателях и продолжает использоваться для судовых двигателей, как для тяги, так и для вспомогательных генераторов. Двигатель Gnome Rotary, использовавшийся в нескольких ранних самолетах, имел неподвижный коленчатый вал и ряд радиально расположенных цилиндров, вращающихся вокруг него.

Объем двигателя

Рабочий объем двигателя — это рабочий объем поршня двигателя. Обычно он измеряется в литрах (л) или кубических дюймах ( или дюйм3) для двигателей большего размера и кубических сантиметрах (сокращенно см) для двигателей меньшего размера.Двигатели с большей мощностью обычно более мощные и обеспечивают больший крутящий момент на более низких оборотах, но при этом потребляют больше топлива.

Помимо разработки двигателя с большим количеством цилиндров, есть два способа увеличения мощности двигателя. Первый — удлинить ход, второй — увеличить диаметр поршня. В любом случае может потребоваться дополнительная регулировка подачи топлива в двигатель, чтобы обеспечить оптимальную производительность.

Заявленная мощность двигателя может быть больше вопросом маркетинга, чем инженерии.Morris Minor 1000, Morris 1100 и Austin-Healey Sprite Mark II были оснащены двигателем BMC серии A с одинаковым ходом и диаметром цилиндра в соответствии с их спецификациями и были от одного производителя. Однако в торговой литературе и на значках транспортных средств объем двигателя был указан как 1000 куб. См, 1100 куб. См и 1098 куб. См соответственно.

Смазочные системы

Используется несколько различных типов систем смазки. Простые двухтактные двигатели смазываются маслом, смешанным с топливом или впрыскиваемым в впускной поток в виде спрея.Ранние тихоходные стационарные и судовые двигатели смазывались под действием силы тяжести из небольших камер, подобных тем, которые использовались в паровых двигателях в то время, с тендером, заполняющим их по мере необходимости. Поскольку двигатели были адаптированы для использования в автомобилях и самолетах, потребность в высоком соотношении мощности к массе привела к увеличению скорости вращения, повышению температуры и большему давлению на подшипники, что, в свою очередь, требовало смазки под давлением для шатунных подшипников и шейки шатуна, при условии, что либо за счет прямой смазки от насоса, либо косвенно посредством струи масла, направляемой на приемные чашки на концах шатуна, что давало преимущество в обеспечении более высоких давлений при увеличении частоты вращения двигателя.

Загрязнение двигателя

Обычно двигатели внутреннего сгорания, особенно поршневые двигатели внутреннего сгорания, производят умеренно высокие уровни загрязнения из-за неполного сгорания углеродсодержащего топлива, что приводит к образованию оксида углерода и некоторого количества сажи, а также оксидов азота и серы и некоторых несгоревших углеводородов в зависимости от условий эксплуатации и соотношение топливо / воздух. Основными причинами этого являются необходимость работы бензиновых двигателей со стехиометрическим соотношением для достижения сгорания (топливо сгорает более полно в избытке воздуха) и «гашение» пламени относительно холодными стенками цилиндра.

Дизельные двигатели выделяют широкий спектр загрязняющих веществ, включая аэрозоли многих мелких частиц (PM10), которые, как считается, глубоко проникают в легкие человека. Двигатели, работающие на сжиженном нефтяном газе (LPG), имеют очень низкий уровень выбросов, поскольку LPG горит очень чисто и не содержит серы или свинца.

  • Многие виды топлива содержат серу, что приводит к образованию оксидов серы (SOx) в выхлопных газах, что способствует кислотным дождям.
  • Высокая температура горения создает большую долю оксидов азота (NOx), которые, как доказано, опасны как для здоровья растений, так и для животных.
  • Чистое производство двуокиси углерода не является обязательной характеристикой двигателей, но, поскольку большинство двигателей работают на ископаемом топливе, это обычно происходит. Если двигатели работают на биомассе, то чистый углекислый газ не образуется, поскольку растущие растения поглощают столько же или больше углекислого газа во время роста.
  • Водородные двигатели должны производить только воду, но при использовании воздуха в качестве окислителя также образуются оксиды азота.

КПД двигателя внутреннего сгорания

КПД различных типов двигателей внутреннего сгорания различается.Принято считать, что большинство двигателей внутреннего сгорания, работающих на бензине, даже при использовании турбонагнетателей и вспомогательных средств повышения эффективности имеют механический КПД около 20 процентов. Большинство двигателей внутреннего сгорания тратят около 36 процентов энергии бензина в виде тепла, теряемого в системе охлаждения, и еще 38 процентов через выхлопные газы. Остальное, около шести процентов, теряется из-за трения. Большинству инженеров не удавалось успешно использовать потраченную впустую энергию для каких-либо значимых целей, хотя существуют различные дополнительные устройства и системы, которые могут значительно повысить эффективность сгорания.

Впрыск водородного топлива или HFI — это дополнительная система двигателя, которая, как известно, улучшает топливную экономичность двигателей внутреннего сгорания за счет впрыска водорода в качестве улучшения сгорания во впускной коллектор. Можно увидеть рост экономии топлива от 15 до 50 процентов. Небольшое количество водорода, добавляемого к всасываемому воздушно-топливному заряду, увеличивает октановое число комбинированного топливного заряда и увеличивает скорость пламени, тем самым позволяя двигателю работать с более продвинутой синхронизацией зажигания, более высокой степенью сжатия и более бедной воздушно-топливной смесью. к топливной смеси, чем это возможно в противном случае.В результате снижается уровень загрязнения, увеличивается мощность и эффективность. Некоторые системы HFI используют бортовой электролизер для выработки используемого водорода. Также можно использовать небольшой резервуар с водородом под давлением, но этот метод требует повторного заполнения.

Также обсуждались новые типы двигателей внутреннего сгорания, такие как Scuderi Split Cycle Engine, которые используют высокое давление сжатия, превышающее 2000 фунтов на квадратный дюйм, и сгорают после верхней мертвой точки (самая высокая и самая сжатая точка в ход поршня внутреннего сгорания).Ожидается, что такие двигатели будут иметь КПД 50-55%.

Банкноты

Список литературы

  • Харденберг, Хорст О. 1999. Средние века двигателя внутреннего сгорания . Варрендейл, Пенсильвания: Международное издательство SAE. ISBN 0768003911.
  • Хейвуд, Джон. 1988. Основы двигателя внутреннего сгорания. Нью-Йорк: McGraw-Hill Science / Engineering / Math. ISBN 007028637X.
  • Стоун, Ричард. 1999. Введение в двигатели внутреннего сгорания .Варрендейл, Пенсильвания: Международное издательство SAE. ISBN 0768004950.
  • Тейлор, Чарльз Фейет. 1985. Двигатель внутреннего сгорания в теории и практике . Кембридж, Массачусетс: MIT Press. ISBN 0262700263.

Внешние ссылки

Все ссылки получены 4 марта 2018 г.

  • Знакомство с автомобильными двигателями — изображения в разрезе и хороший обзор двигателя внутреннего сгорания
  • Библия по топливу и двигателям — хороший ресурс по различным типам двигателей и топливам
  • youtube — Анимация компонентов 4-цилиндрового двигателя
  • youtube — Анимация внутренних движущихся частей 4-цилиндрового двигателя

Кредиты

Энциклопедия Нового Света писателей и редакторов переписали и завершили статью Википедия в соответствии со стандартами New World Encyclopedia .Эта статья соответствует условиям лицензии Creative Commons CC-by-sa 3.0 (CC-by-sa), которая может использоваться и распространяться с указанием авторства. Кредит предоставляется в соответствии с условиями этой лицензии, которая может ссылаться как на участников Энциклопедии Нового Света, , так и на самоотверженных добровольцев Фонда Викимедиа. Чтобы процитировать эту статью, щелкните здесь, чтобы просмотреть список допустимых форматов цитирования. История более ранних публикаций википедистов доступна исследователям здесь:

История этой статьи с момента ее импорта в Энциклопедия Нового Света :

Примечание. Некоторые ограничения могут применяться к использованию отдельных изображений, на которые распространяется отдельная лицензия.

Несколько японских производителей автомобилей расширяют использование водородных двигателей внутреннего сгорания.

Subaru, Mazda, Toyota, Kawasaki и Yamaha недавно объявили о совместных усилиях по расширению использования альтернативных топливных технологий, включая водородные двигатели внутреннего сгорания.

Работа основана на использовании Toyota водородных двигателей в гонках. Ранее автопроизводитель представил хэтчбек Corolla Sport с водородным двигателем (разработанный с помощью Yamaha) в японской серии Super Taikyu.Согласно пресс-релизу, водород будет поставляться с нового завода в городе Фукуока, Япония, который будет производить водород из биогаза сточных вод.

К водородным гоночным автомобилям скоро присоединятся другие, использующие другое топливо. Mazda представит хэтчбек Demio, работающий на биодизельном топливе, а модифицированные версии близнецов спортивных автомобилей Subaru BRZ и Toyota GR 86 будут использовать синтетическое топливо, полученное из биомассы.

Город Фукуока, Япония, водородный завод

Между тем, Kawasaki и Yamaha займутся совместными исследованиями водородных двигателей внутреннего сгорания как для двухколесных, так и для четырехколесных транспортных средств.Эти две компании, наряду с Honda и Suzuki, уже объединились для замены аккумуляторных батарей электрических мотоциклов.

Honda заметно не участвует в этом соглашении, хотя она является основным сторонником легковых автомобилей на водородных топливных элементах. Nissan и его союзник Mitsubishi также отсутствуют, хотя ни один из автопроизводителей не проявил особого интереса к водороду ни для топливных элементов, ни для двигателей внутреннего сгорания.

Сжигание водорода в двигателе внутреннего сгорания вместо бензина или дизельного топлива — не новая идея.BMW когда-то производила Hydrogen 7, версию своего флагмана 7-й серии с двигателем внутреннего сгорания V-12, работающим на водороде. Но в последнее время эта идея, похоже, вызывает больший интерес.

Водородный двигатель Toyota

Китайский автопроизводитель GAC также недавно объявил о тестировании водородного двигателя внутреннего сгорания, хотя пока неясно, поступит ли двигатель в серийное производство. Даже если это произойдет, ранее обсуждавшиеся планы GAC по выходу на рынок США были отложены на неопределенный срок.

Стоит отметить, что внутреннее сгорание водорода сопряжено со многими проблемами, в том числе с хранением достаточного количества водорода на борту автомобиля для достижения достаточной дальности. Сжигание водорода по-прежнему приводит к выбросам из выхлопных труб, и автопроизводители сталкиваются с теми же проблемами инфраструктуры, что и автомобили на топливных элементах.

Водородные двигатели внутреннего сгорания также могут оказаться менее эффективными, чем силовые агрегаты на топливных элементах. Согласно отчету Калифорнийской энергетической комиссии 2020 года, эффективность топливных элементов является таким преимуществом, что к 2025 году они могут достичь паритета цен на бензин.

Германия планирует постепенно отказаться от продажи автомобилей с двигателями внутреннего сгорания, чтобы помочь достичь своей амбициозной цели — к 2030 году использовать 15 миллионов электромобилей

Бетани Бирон

По мере роста спроса на электромобили будет не хватать лития. Брендон Торн / Getty Images
  • Правительственная коалиция Германии обязалась довести до 2030 года 15 миллионов электромобилей.
  • В настоящее время в стране эксплуатируется всего 570 000 автомобилей с батарейным питанием, и им придется увеличивать использование на 33% в год.
  • Выбор времени для достижения высокой цели ставит Германию впереди более крупных усилий Европейского Союза по поэтапному отказу от автомобилей с двигателями внутреннего сгорания к 2035 году.

Обязательство Германии расширить использование электромобилей и усилить усилия по защите климата может в конечном итоге привести к запрету на автомобили с двигателями внутреннего сгорания в стране в ближайшем будущем.

Согласно пакту, опубликованному следующим правительством Германии, состоящим из социал-демократов, зеленых и свободных демократов, страна взяла на себя обязательство прекратить продажу автомобилей с двигателями внутреннего сгорания, поставив перед собой амбициозную цель — поставить не менее 15 миллионов автомобилей с батарейным питанием. дорога к концу десятилетия.

Чтобы соответствовать этому количеству, стране потребуется быстро увеличить производство электромобилей, при этом, вероятно, в ближайшие несколько лет будет прекращено производство автомобилей, работающих на бензине и дизельном топливе.

«Это может быть достигнуто только в том случае, если новые автомобили с двигателями внутреннего сгорания больше не будут регистрироваться до 2030 года», — сказал Bloomberg Фолькер Квашнинг, профессор систем возобновляемой энергии в Университете прикладных наук в Берлине. «Есть смысл прекратить регистрацию бензиновых и дизельных автомобилей примерно к 2028 году.”

По данным Bloomberg, в настоящее время в Германии зарегистрировано около 570 000 автомобилей с батарейным питанием, что составляет всего 1% парка страны. Для достижения своей цели стране необходимо будет увеличивать производство и продажи электромобилей на 33% в год до 2030 года — усилия, в которых Германия добилась прогресса за последний год благодаря стимулам и финансированию, которые помогли двойной регистрации.

Тем не менее, страна уже изо всех сил пытается достичь первых целей, касающихся использования электромобилей, включая невыполнение обещания уходящего канцлера Ангелы Меркель поставить на дороги 1 миллион автомобилей с батарейным питанием к 2020 году.Германии также предстоит преодолеть препятствия в повышении осведомленности и доступности потребителей, которые, по мнению некоторых экспертов, могут сопротивляться таким усилиям.

«В коалиционном соглашении нет особого смысла, когда речь идет о достижении такого высокого уровня продаж электромобилей на практике», — сказал Bloomberg Джулио Маттиоли, исследователь из отдела транспортного планирования Технического университета Дортмунда. «Потребители потребуют некоторого убеждения».

Тем не менее, если устремления Германии будут реализованы, ее график поставит ее впереди более крупных целей Европейского Союза по поэтапному отказу от автомобилей с двигателями внутреннего сгорания к 2035 году.

«Согласно предложениям Европейской комиссии, в транспортном секторе Европы в 2035 году будут разрешены только автомобили с нейтральным выбросом СО2 — это будет иметь более ранний эффект в Германии», — говорится в коалиционном документе Германии. «Помимо существующей системы стандартов выбросов для автопарков, мы выступаем за регистрацию только транспортных средств, которые могут заправляться электронным топливом».

Об авторе

Японская команда под руководством Toyota стремится спасти двигатель внутреннего сгорания

Принятие Toyota двигателя внутреннего сгорания и водорода превратилось из возвышенного в нелепое.Во главе с упрямыми выходками Акио Тойоды, Toyota отмечает тот факт, что на прошлой неделе она отказалась подписать обязательство по ликвидации адских двигателей внутреннего сгорания в Глазго, сформировав Team Japan. Наряду с Mazda, Subaru, Yamaha и Kawasaki, Team Japan приложит все усилия, чтобы наши внуки смогли узнать и полюбить поршневую силу.

План, как он есть, предлагает разработку «зеленого топлива», полученного из биомассы, чтобы поддерживать работу всех этих поршней, вращения коленчатых валов, открытия и закрытия клапанов и многоскоростных трансмиссий, чтобы японские рабочие продолжали получать рабочие места. все это оборудование вместе.Бог никогда не предназначал Японии для упрощения трансмиссии автомобилей. Сама эта идея — оскорбление японской гордости, по крайней мере, так думает Тойода-сан. [Это также атака на прибыльность таких корпораций, как Toyota, но мы предполагаем, что Акио Тойода не стал бы ставить личное богатство выше потребностей окружающей среды… не так ли?]

«Продвигая дальнейшее сотрудничество в производстве, транспортировке и использовании топлива в сочетании с двигателями внутреннего сгорания, пять компаний стремятся предоставить клиентам больший выбор», — говорится в пресс-релизе компаний.Согласно Automotive News , о создании Team Japan было объявлено во время совместной пресс-конференции на гоночной трассе Okayama International Circuit в западной Японии, где Toyoda должна была управлять гоночным автомобилем Toyota Corolla, оснащенным двигателем на водороде, разработанным совместно с Yamaha. в гонке на выносливость серии Супер Тайкю.

Пять компаний заявили, что будут:

  • Участвуйте в гонках на углеродно-нейтральном топливе
  • Изучить использование водородных двигателей в двухколесных и других транспортных средствах
  • Продолжить гонку на водородных двигателях.

Mazda и Toyota будут сотрудничать в гонках, представив 1,5-литровый двигатель Skyactiv-D, работающий на биодизеле нового поколения. Subaru и Toyota будут работать вместе над разработкой синтетического топлива, полученного из биомассы, в сезон гонок на выносливость серии Super Taikyu в следующем году в Японии. Наконец, Kawasaki и Yamaha рассмотрят возможность совместных исследований в области разработки водородных двигателей для мотоциклов. Yamaha — одна из компаний, работающих над производством сменных аккумуляторов для двухколесных транспортных средств, что, похоже, намного лучше использует свое время.

Водород, водород везде и ни капли не сгореть

Акио Тойода получил водород в мозгу. Что с этим? Как подробно рассказал Чарльз Моррис в недавней публикации CleanTechnica , Toyota начала экспериментировать с водородной энергией задолго до того, как началась нынешняя эра электромобилей. Водород манит. Он горит чисто, не оставляя ничего, кроме водяного пара. Так в чем проблема?

Именно это. Водород — самый реактивный из всех элементов.Он свободно сочетается почти со всеми другими элементами и образует прочные химические связи, разрушение которых требует огромного количества энергии. После изоляции требуется еще больше энергии для сжатия или разжижения. Танки, необходимые для его хранения, громоздкие и тяжелые. Трудно транспортировать. А во многих частях мира водородных заправок так же мало, как и честных политиков.

Но это еще не самое худшее. В настоящее время большая часть водорода получается из ископаемого топлива, такого как уголь или метан — именно те вещества, которые сегодня помогают разрушать окружающую среду.Так почему же любой здравомыслящий человек захочет использовать их для производства водорода для автомобилей и мотоциклов? Ответ: нет.

Теоретически «зеленый» водород можно получить путем электролиза воды, но для этого требуется огромное количество электроэнергии. Сторонники водорода беззаботно заявляют, что нам просто нужно построить достаточно солнечных и ветровых установок, чтобы не было лишнего электричества, и нет ничего лучше, чем превращать воду в ее составные части — водород и кислород.И это может случиться когда-нибудь в далеком далеком будущем. Но прямо сейчас возобновляемых источников энергии не хватает для удовлетворения мировых потребностей, и худшая идея — взять часть того, что доступно, и направить ее на задачу электролиза воды.

Водород играет важную роль в сокращении выбросов углерода от промышленных предприятий, таких как производство стали и цемента. Разве не лучше использовать его там, где он лучше всего? Как указывает Майкл Барнард, у водорода и электричества есть свои применения, но в случае с водородом личный транспорт не входит в их число.

Чарльз Моррис приходит к выводу, что зацикленность Акио Тойоды на водороде больше связана со спасением лица, чем с чем-либо еще. В Team Japan он вывел свою личную манию на совершенно новый уровень. Биотопливо — неплохая идея, но ставить на карту состояние одного из крупнейших мировых автопроизводителей — а возможно, и целой нации — зацикленность одного человека на спасении лица — это «ошеломляющая глупость», как сказал бы Илон Маск.

Единственная хорошая новость об объявлении Team Japan заключается в том, что нигде не упоминаются автомобили, работающие на топливных элементах.Возможно, наконец, Тойода и компания, которую он возглавляет, отходят от этой идеи.

Цените оригинальность CleanTechnica? Подумайте о том, чтобы стать участником, сторонником, техническим специалистом или представителем CleanTechnica — или покровителем Patreon.


Реклама
У вас есть совет для CleanTechnica, вы хотите разместить рекламу или предложить гостя для нашего подкаста CleanTech Talk? Свяжитесь с нами здесь.

Что такое водородный двигатель внутреннего сгорания и может ли он быть реальной альтернативой аккумуляторным электромобилям? — Новости технологий, Firstpost

Амаан Ахмед 7 ноября 2021 г. 04:23:19 IST

В мире, столкнувшемся с еще больше неопределенности, чем когда-либо, единственная документально подтвержденная уверенность заключается в том, что в ближайшее время ископаемое топливо будет отказано в пользу альтернативных источников энергии для мобильных приложений во всем мире. Большинство автопроизводителей уже поднялись на борт многообещающего электромобиля и работают над переходом от автомобилей с двигателями внутреннего сгорания (ДВС) к автомобилям с литий-ионными батареями.Однако не каждый игрок хочет идти по этому пути, и некоторые известные имена оценивают другие формы источников энергии для будущих автомобилей, в том числе использование водорода в качестве топлива в автомобиле с ДВС.

Были ли автомобили на водороде уже много лет?

Да, за последние несколько десятилетий мир видел множество электромобилей на водородных топливных элементах (FCEV) — как в концептуальной, так и в производственной форме. Однако, несмотря на несколько попыток, ни одному автомобилестроителю не удалось привлечь внимание к FCEV, и поэтому они продолжают оставаться редкостью.В настоящее время производятся только кроссоверы Hyundai Nexo и Toyota Mirai, а недавно Honda отключила Clarity FCEV. И Hyundai, и Toyota используют водород для питания топливного элемента, который посредством химической реакции превращает энергию в электричество и приводит в действие электродвигатель, приводящий в движение транспортное средство.

Toyota Mirai — один из двух автомобилей с водородными топливными элементами, которые продаются в настоящее время. Изображение: Toyota

Но это сложный процесс, и приложение стоит дорого.Теперь Toyota предлагает более прямое (и почти такое же чистое) решение в виде двигателя внутреннего сгорания, работающего на водороде.

Чем отличается водородный двигатель внутреннего сгорания? Приносит ли это пользу?

При использовании FCEV нужно многое учитывать — автомобиль несет водородные баки, топливный элемент, а также электродвигатель или двигатели (в зависимости от конфигурации автомобиля), все они объединены в одно связное целое. Он также использует платину, редкий ингредиент, который также довольно дорогой, для реакции восстановления кислорода в топливном элементе.

Водородный двигатель внутреннего сгорания может быть произведен простым внесением ряда модификаций в существующие бензиновые и дизельные двигатели. Изображение: Toyota

Водородный ДВС, как следует из названия, упрощает аппаратное обеспечение, поскольку по сути это старый добрый двигатель внутреннего сгорания, преобразованный для работы на h3. Существующие двигатели можно адаптировать, изменив определенные компоненты, такие как система подачи топлива и свечи зажигания, для использования водорода вместо бензина или дизельного топлива, что означает, что у автопроизводителей есть проверенная, проверенная временем база для развития и доработки для дальнейшего соответствия водородным приложениям. , без больших вложений в электрические силовые агрегаты.

Основная цель использования водорода — превратить автомобиль в автомобиль со сверхнизким уровнем выбросов. При сжигании водорода автомобиль будет в основном выделять только водяной пар. Причина, по которой это не приложение с нулевым уровнем выбросов, заключается в том, что небольшое количество углекислого газа (CO2) также выделяется из-за сжигания моторного масла, а процесс сгорания в h3 ICE приводит к выбросу оксидов азота ( NOx). Хотя эти выбросы значительно ниже, чем у автомобилей с бензиновым / дизельным двигателем, FCEV лучше в этом отношении ДВС h3, поскольку они являются автомобилями с истинным нулевым уровнем выбросов.

Что сделала Toyota для развития водородного двигателя внутреннего сгорания?

Ранее в этом году Toyota преобразовала 1,6-литровый трехцилиндровый турбобензиновый двигатель от хэтчбека Toyota GR Yaris для использования сжатого водорода и поставила его на гоночный хэтчбек Corolla.

Motorsport, по словам Тойоты, будет лучшим местом, чтобы испытать водородный двигатель внутреннего сгорания, поскольку опыт, полученный на гоночной трассе, ускорит процесс разработки и поможет реализовать массовое внедрение трансмиссии гораздо быстрее.Японский автогигант сразу же бросил водородную Corolla в самое сложное испытание, приняв участие в 24-часовой гонке на выносливость Super Tec на трассе Fuji Speedway в мае.

Toyota поместила 1,6-литровый трехцилиндровый турбобензиновый двигатель GR Yaris, модифицированный для работы на водороде, в гоночный автомобиль Corolla и участвовал в 24-часовой гонке на выносливость на Fuji Speedway. Изображение: Toyota

Замечательно то, что Corolla, управляемая бывшим гонщиком Формулы-1 Камуи Кобаяши и главой Toyota Motor Corporation Акио Тойода, сумела финишировать в целости и сохранности.Тем не менее, это было не так быстро — за 24 часа Corolla h3 смогла проехать только 358 кругов по трассе Fuji Speedway, что почти вдвое меньше, чем у других автомобилей с традиционным двигателем на трассе. Corolla, показавшая невысокую среднюю скорость 68 км / ч, также делала больше остановок для дозаправки (всего 35) по сравнению со средним числом 20 для других участников, и каждая заправочная остановка также занимала больше времени (около шести-семи минут), что означает должен был останавливаться для заправки примерно каждые 42 минуты, а из 24 часов потратил почти четыре часа на заправку.

В более многообещающих показаниях Corolla h3 с тех пор участвовала в пятичасовых гонках на выносливость Super Taikyu в Autopolis и Suzuka, при этом Toyota утверждает, что водородный гоночный автомобиль теперь такой же мощный, как гоночный с бензиновым двигателем (чего не было). случай ранее), с ускорением, увеличенным на 10 процентов, и увеличенным расходом топлива, чтобы сократить время дозаправки до двух минут. Говорят, что производительность значительно улучшилась, и энтузиастам понравится тот факт, что он звучит более или менее как обычный гоночный автомобиль, что является освежающим изменением от сверхбыстрых, но бесшумных электромобилей.При этом в значительной степени выделяется водяной пар.

Звучит великолепно, но ведь здесь же должна быть загвоздка?

Тут не просто загвоздка — их много, как сейчас.

Причина, по которой Corolla h3 должна была сделать столько остановок для дозаправки, как это было во время 24-часового пробега, заключалась в меньшей эффективности водородного топлива по сравнению с бензином. Хранящийся в резервуарах высокого давления в газообразной форме водород, который не такой плотный, как бензин, страдает объемной неэффективностью и требует более высоких объемов хранения и емкости сгорания, чем обычное жидкое топливо.Задние сиденья Corolla были выброшены, чтобы освободить место для резервуаров с водородом, которые были сложены штабелями на крыше, полностью закрывая обзор через заднее ветровое стекло. В дорожном транспортном средстве необходимое хранилище для резервуаров с водородом, которое обеспечило бы транспортному средству приемлемый диапазон движения, съело бы массу внутреннего пространства, делая транспортное средство в значительной степени непрактичным.

Видимость сзади в гоночном автомобиле Corolla была нулевой из-за того, что задняя часть сиденья была полностью занята большими резервуарами для хранения водорода, без которых автомобиль просто не имел бы требуемого диапазона.Изображение: Toyota

По сравнению с ДВС с традиционным приводом, водородные ДВС обеспечивают КПД только между 20-25%, выходная мощность зависит от плотности энергии водородно-воздушной смеси, а водородные ДВС также склонны к детонации, что может отрицательно сказаться на долговечности двигателя, а также эффективность топлива. Однако последнюю проблему можно решить с помощью системы рециркуляции выхлопных газов.

Еще есть чистота самого водородного топлива. В настоящее время процесс создания водорода в основном включает использование ископаемого топлива, которое в значительной степени способствует выбросам CO2.Это контрпродуктивное решение, и идеальная и самая чистая альтернатива, зеленый водород (производимый за счет использования возобновляемых ресурсов), значительно дороже и стоит от 3,5 до 6 долларов за кг. Маловероятно, что до конца этого десятилетия произойдет какое-либо существенное падение цен на зеленый водород. Пока этого не произошло, использование водородного транспортного средства — на любом другом водороде — может быть хуже для окружающей среды, чем использование транспортного средства, работающего на ископаемом топливе.

Количество водородных заправочных станций в большинстве стран ничтожно мало по сравнению с количеством зарядных станций для электромобилей.Изображение: Mercedes-Benz

А еще есть инфраструктура водородного топлива. В то время как зарядные станции для аккумуляторных электромобилей устанавливаются почти каждый день по всему миру, в крупных странах существует лишь несколько водородных заправочных станций, а это означает, что движение на водородном транспортном средстве чрезвычайно ограничено. Стоимость установки водородной станции — которая, как говорят, колеблется от 2 до 3,2 млн долларов в зависимости от типа станции — непомерно высока на большинстве рынков, и, поскольку в продаже почти нет водородных транспортных средств, инвестирование в них не приносит результатов. много бизнес-смысла на этом этапе.

Еще больше усложняет ситуацию то, что заправка водородного автомобиля занимает всего несколько минут, на станции все равно придется ждать — ожидание до 20 минут, поскольку в резервуаре для хранения должно быть достаточное давление, чтобы иметь возможность подавать водород в бак автомобиля, который в противном случае не может быть заполнен полностью. В случае массового усыновления очереди на станциях будут извилистыми, и не у каждого водителя будет время сэкономить.

Даже недавно представленный Hyundai прототип Vision FK водородный FCEV может разгоняться от 0 до 100 км / ч менее чем за четыре секунды, что заметно медленнее, чем у большинства современных высокопроизводительных электромобилей, и сама компания признает, что упаковка этого прототипа «чрезвычайно сложна». .Изображение: Hyundai

Безопасность также остается проблемой для хранилищ водорода. Взрывы высокой интенсивности на объектах для заправки и хранения водорода в Норвегии и Южной Корее в прошлом вызвали вопросы о том, насколько безопасен водород, который является легковоспламеняющимся, для массового потребления, а также привели к тому, что группы жителей выступили против создания новой заправки водородом. станции и производственные мощности в их окрестностях.

Наконец, автомобили на водороде остались далеко позади BEV почти на всех фронтах.Беспокойство о запасе хода быстро уходит в прошлое благодаря BEV с более крупными и эффективными аккумуляторными батареями, а электромобили всегда будут использовать водородные автомобили, когда дело доходит до производительности. Время зарядки продолжает сокращаться с каждым годом, и быстрое и постоянное развитие аккумуляторных технологий почти наверняка приведет к тому, что для полной зарядки аккумуляторам потребуется ровно столько времени, сколько необходимо для заполнения топливного бака автомобиля с ДВС.

Достигает ли Индия прогресса в области производства зеленого водорода?

Погоня за зеленым водородом набирает обороты в Индии.Государственная компания GAIL India Ltd недавно объявила о создании в течение следующих 12-14 месяцев крупнейшей в стране установки по производству зеленого водорода мощностью 10 МВт. Глава Reliance Industries Мукеш Амбани сказал, что компания, как часть своего бизнеса в области экологически чистой энергии, стремится к концу этого десятилетия снизить стоимость зеленого водорода до 1 доллара за килограмм.

Правительство Индии уже определило стандарты безопасности для производства зеленого водорода, а министр профсоюзов Нитин Гадкари неоднократно выступал за использование водорода в качестве автомобильного и промышленного топлива, принятие которого поможет сократить импорт топлива в страну. счет существенно.

Найдут ли водородные двигатели где-нибудь применение — или даже станут реальной концепцией?

Действительно, существует вариант использования водородных двигателей внутреннего сгорания — особенно на стороне коммерческого транспорта. Транспортные средства, у которых время безотказной работы значительно выше, чем у автомобилей личного пользования, такие как тяжелые грузовики, автобусы и тяжелая техника, идеально подходят для водородных ДВС, поскольку они должны работать в течение определенного количества часов (и не могут позволить себе останавливаться надолго. время для зарядки своих батарей), имеют фиксированные точки поездки и будут бороться с дополнительным весом чрезвычайно больших аккумуляторных блоков.В контролируемой среде и с небольшим количеством водородных заправочных станций такие автомобили могут легко перейти на h3, и ряд производителей, в том числе JCB, специализирующаяся на тяжелом машиностроении, приступают к внедрению водородного ДВС для своих коммерческих автомобилей.

Водород лучше подходит для грузовых автомобилей и тяжелой техники. Изображение: Mercedes-Benz

Также потенциально можно использовать водород в автоспорте. Гонки проводятся в контролируемой среде, где водородное топливо может быть доступно по мере необходимости, затраты не будут такой большой проблемой, и зрители будут рады снова услышать звук двигателей внутреннего сгорания, в отличие от серии гонок Формулы E на чисто электрических автомобилях. , считается скучным из-за отсутствия звука гоночных автомобилей.

Toyota и Hyundai — два основных автопроизводителя, которые продолжают продвигать свою идею общества, работающего на водороде, но для того, чтобы водородный двигатель внутреннего сгорания добился большого успеха, потребуются некоторые фундаментальные технологические прорывы, которые изменят правила игры, и даже если они действительно произойдут в ближайшие годы, BEV, вероятно, уже вывели игру за пределы досягаемости h3.

Firstpost входит в группу Network18. Network18 контролируется Independent Media Trust, единственным бенефициаром которой является Reliance Industries.

Почему двигатель внутреннего сгорания не может выйти из строя, несмотря на климатический кризис

Акио Тойода, президент крупнейшего в мире производителя автомобилей Toyota, провел выходные, объезжая гоночную трассу в западной Японии на автомобиле Corolla.

Но это не обычная версия самого продаваемого автомобиля. Тойода управляла версией, специально оснащенной новым водородным двигателем собственного производства Toyota, который приводит в движение автомобиль за счет сжигания топлива так же, как в традиционных двигателях используется бензин или дизельное топливо.

Акио Тойода, президент Toyota, на гонке Super Taikyu Race на международной трассе Окаяма в Мимасаке, где компания продемонстрировала свою углеродно-нейтральную технологию. Кредит: Bloomberg

Наряду с Mazda, Toyota продемонстрировала автомобили, работающие на углеродно-нейтральном топливе, в трехчасовой гонке в Окаяме.

Автомобиль Toyota с водородным двигателем подчеркивает уверенность компании в том, что широкий спектр типов транспортных средств, включая гибриды, автомобили с водородным двигателем и электрические (электромобили), будут играть роль в декарбонизации ее автопарка в ближайшие десятилетия.Это ставит компанию в противоречие с другими компаниями, такими как General Motors, Jaguar Land Rover и Volvo, которые заявляют, что через два десятилетия будут продавать только электромобили.

«Враг — углерод, а не двигатели внутреннего сгорания», — сказал Тойода в субботу. «Нам нужны разнообразные решения — это путь к проблеме углеродной нейтральности».

Концепт-кар Toyota Corolla Sport h3, оснащенный водородным двигателем. Кредит: Bloomberg

Toyota утверждает, что для разных регионов мира необходимы различные автомобильные технологии, снижающие выбросы.Электромобили — хороший вариант для таких мест, как Европа, где батареи можно заряжать электричеством, полученным в основном из возобновляемых источников. Другие варианты, такие как водород или гибриды, могут быть лучше подходят для других регионов.

Эта технология отличается от другой большой ставки компании на водород — водородных топливных элементов, таких как те, которые используются в легковых автомобилях Mirai. В то время как топливные элементы используют химическую реакцию между водородом и кислородом для выработки электричества, которое, в свою очередь, приводит в действие двигатель, водородный двигатель сжигает элемент так же, как бензин или дизельное топливо.

Традиционные двигатели нужно настраивать лишь незначительно, например, заменяя системы подачи топлива и впрыска, чтобы они могли работать на водороде, заявил в прошлом месяце главный инженер Toyota Наоюки Сакамото.

Краткая история двигателя внутреннего сгорания — _ памятует

18 апреля 2019 г.

Вы можете ходить пешком, верхом на лошади или путешествовать в экипаже — после изобретения колеса человечеству стали доступны возможности для путешествий по суше почти не эволюционировал в течение 4000 лет.Это не изменилось до появления новаторов и изобретателей в конце 19 века. После того, как железная дорога позволила перевозить большое количество людей и товаров в отличном стиле, именно двигатель внутреннего сгорания коренным образом изменил индивидуальную мобильность. Наша краткая история двигателя внутреннего сгорания связана с рассказом о том, как он был изобретен, как он стал использоваться в первых автомобилях и что было сделано для снижения рисков, связанных с этой инновацией в области высокоскоростной мобильной связи.

Однажды в августе 1888 года жители Вислоха, Брухзаля и Дурлаха имели все основания удивляться: трехколесная повозка, напоминавшая нечто среднее между конной повозкой и велосипедом, катилась по улицам их городов. . За исключением того, что лошадей поблизости не было. И трое пассажиров, женщина и двое молодых людей, похоже, не крутили педали. Транспортное средство, по-видимому, двигалось на собственном ходу, управляемом рукояткой, которую женщина держала.Женщину звали Берта Бенц, подростками — ее сыновья Ричард и Ойген, а транспортным средством — запатентованный Бенц автомобиль № 3.

Карл Бенц, муж Берты, запатентовал первую версию автомобиля еще в 1886 году и представил автомобиль широкой публике в июле того же года во время тест-драйва в Мангейме. «Не может быть никаких сомнений в том, что этот моторизованный велосипед скоро обретет множество друзей», — таково было эйфорическое заявление Neue Badische Landeszeitung 4 июня 1886 года.И все же первоначальные попытки найти покупателей, готовых вложить деньги в этот «бензиновый вагон», не увенчались успехом, а экономический успех оказался недостижимым. Чтобы оживить упавшее настроение мужа и убедить современников в практичности нового транспортного средства, Берта Бенц решила провести тщательный тест-драйв, хотя и не предупредив своего колеблющегося мужа заранее. Утром она и ее сыновья выехали на 104-километровую дорогу из Мангейма в свой родной город Пфорцхайм, куда они благополучно доехали через 12 часов 57 минут.

Эта поездка считается первой поездкой на дальние расстояния в истории автомобилестроения и по сей день отмечается как «Маршрут памяти Берты Бенц». Насколько велико было в то время рекламное воздействие, все еще остается предметом споров среди исследователей. Одно можно сказать наверняка: после этого запатентованный автомобиль Benz начал свой медленный, но верный путь в гору к коммерческому успеху. К 1893 году было продано 69 машин, в основном в США, Англии и особенно во Франции, где благодаря хорошим дорогам первые автолюбители не были так сильно потрясены.На рубеже веков Benz & Cie. Уже поставила 1709 экземпляров своих автомобилей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *