Такты работы четырехтактного двигателя: Рабочий цикл четырехтактного и двухтактного двигателей: описание и принцип работы

Содержание

Такты работы четырехтактного двигателя — Яхт клуб Ост-Вест

Поршневые двигатели внутреннего сгорания (ДВС) широко используются в разных сферах человеческой жизни. Однако не все они работают одинаково. Между ними есть одно принципиальное отличие. В зависимости от конструкции рабочий цикл двигателя может состоять из двух или четырёх тактов. Поэтому и называется он соответственно двухтактным двигателем или четырехтактным. Это справедливо как для бензинового мотора, так и для дизеля.

Основные термины и определения

Принцип работы всех поршневых двигателей заключается в превращении энергии сгорания топлива в механическую энергию. Передаточным звеном является кривошипно-шатунный механизм. Для описания их работы используются следующие понятия:

  • Рабочий цикл — это определённая последовательность взаимосвязанных событий, вследствие которых происходит преобразование энергии теплового расширения сгорающего топлива в механическую энергию перемещения поршня и поворота коленчатого вала.
  • Такт — последовательность изменения состояния узлов и механизмов, происходящая в течение одного хода поршня.
  • Ход поршня — это расстояние, которое проходит поршень внутри цилиндра между его крайними точками.
  • Верхняя мёртвая точка (ВМТ) — это наивысшее положение поршня в цилиндре, при этом объем камера сгорания имеет минимальный объем.
  • Нижняя мёртвая точка (НМТ) — максимально удалённое от ВМТ положение поршня.
  • Впуск — заполнение цилиндра топливовоздушной смесью.
  • Сжатие — уменьшение объёма смеси и сжатие её под давлением поршня.
  • Рабочий ход — перемещение поршня под давлением газов сгорающего топлива.
  • Выпуск — выталкивание из цилиндра продуктов горения топлива.

Принцип работы четырехтактного двигателя

Четырехтактным называется такой поршневой двигатель, в котором один рабочий цикл состоит из четырёх тактов. Они имеют следующие названия:

За один цикл поршень два раза двигается от ВМТ к НМТ и обратно, а коленчатый вал проворачивается на два полных оборота. События, которые происходят за это время в двигателе, имеют чётко определённую последовательность.

Впуск. Поршень перемещается вниз, к НМТ. Под ним образуется разрежение, благодаря которому через открытую тарелку впускного клапана из впускного коллектора в цилиндр затягивается топливо, смешанное с воздухом. Поршень проходит нижнюю мёртвую точку, после чего впускной клапан закрывает впускной коллектор.

Такт сжатия. Продолжающий двигаться вверх поршень сжимает воздушную смесь.

В верхней мёртвой точке над поршнем происходит поджог горючей смеси. Сгорая, оно вызывает значительное увеличение давления на поршень. Начинается такт рабочего хода. Под действием давления сгорающих газов поршень снова движется к НМТ, выполняя при этом полезную работу.

После прохождения поршнем НМТ открывается тарелка выпускной клапан. Поршень, двигаясь к ВМТ, выталкивает выхлопные газы в выпускной коллектор. Это такт выпуска.

Затем снова начинается такт впуска и так бесконечно.

Рабочий цикл из двух тактов

Одноцилиндровый двухтактный двигатель работает по-другому. Здесь все четыре действия происходят за один полный оборот коленвала. При этом поршень делает только два такта (расширения и сжатия), двигаясь от ВМТ к НМТ и обратно. А впуск и выпуск являются частью этих двух тактов. Подробней принцип работы двухтактного двигателя внутреннего сгорания можно описать следующим образом.

Газы от сгорания топливной смеси толкают поршень вниз от ВМТ. Примерно на середине хода поршня в гильзе цилиндра открывается выпускное отверстие, через которое часть газов выбрасывается в патрубок глушителя. Продолжая двигаться вниз, поршень создаёт давление, благодаря которому в цилиндр поступает новая порция топлива, одновременно продувая его от остатков сгоревших газов. Подходя к ВМТ, поршень сжимает смесь и система зажигания воспламеняет её. Снова начинается такт расширения.

В авиамоделестроении широко используется двухтактный дизельный двигатель, его принцип работы тот же, что и у бензинового. Разница в том, что смесь топлива с воздухом самостоятельно воспламеняется в конце цикла сжатия. Горючим для таких моторов служит смесь эфира с авиационным керосином. Воспламенение этого горючего происходит при гораздо меньшей степени сжатия, чем у двигателей на традиционном дизельном топливе.

Конструктивные особенности и различия

Двухтактный двигатель отличается от четырехтактного не только тем, за сколько тактов работы происходит газообмен.

Четырехтактный требует наличия системы газораспределения (впускные и выпускные клапаны, распределительный вал с кулачковым механизмом и т. д. ). В двухтактном такой системы нет, благодаря этому он гораздо проще.

Двигатель с четырьмя тактами работы требует полноценной системы смазки из-за большого количества движущихся и трущихся частей. Для смазки двигателя с двумя тактами работы можно использовать масло просто разводя его вместе с топливом.

Эксплуатационные показатели в сравнении

Сопоставляя двухтактный двигатель и четырехтактный двигатель, разницу между ними можно заметить не только в устройстве, но и в эксплуатационных характеристиках. Сравнивать их можно по следующим показателям:

  • литровая мощность;
  • удельная мощность;
  • экономичность;
  • экологичность;
  • шумность;
  • ресурс работы;
  • простота обслуживания;
  • вес;
  • цена.

Литровой называется мощность, снимаемая с литра объёма цилиндра. Теоретически она должна быть в два раза больше у двухтактного. Однако на деле этот показатель составляет 1,5−1,8. Сказывается неполное использование рабочего хода газов, затраты энергии на продувку, неполное сгорание и потери топлива.

Удельная мощность представляет собой величину отношения мощности мотора к его весу. Она также выше у двухтактных. Для них нужен менее тяжёлый маховик и не нужны дополнительные системы (газораспределения и смазки), утяжеляющие конструкцию. КПД у них также выше.

Экономичность (расход топлива на единицу мощности) выше у четырехтактных. Двигатели с двумя тактами часть топлива теряют впустую при продувке цилиндра.

Экологичность двухтактных ниже, опять-таки из-за потери несгоревшего топлива и масла. Убедиться в этом можно на примере двухтактного лодочного мотора. Он всегда оставляет на воде тонкую плёнку из несгоревшего топлива.

Шумность выше у двухтактных. Это связано с тем, что выхлопные газы из цилиндра вырываются с большой скоростью.

Ресурс работы выше у четырехтактных. Отдельная система смазки и меньшая оборотистость двигателя положительно сказываются на сроке его службы.

Проще обслуживать, безусловно, двухтактные моторы из-за меньшего количества вспомогательных систем. Масса больше у четырехтактных. Двухтактные дешевле.

В некоторых механизмах применение двухтактных двигателей является однозначным. Это, например, бензопилы. Высокая удельная мощность, маленький вес и простота делают его здесь безусловным фаворитом.

Двухтактные двигатели используются также в мототехнике, лодочных моторах, газонокосилках, скутерах, авиамоделировании. В большинстве самодельных машин и механизмов умельцы также используют двухтактный мотор.

Однотактные и трехтактные силовые агрегаты

Существуют также одно- и трехтактные двигатели. Однотактные двигатели делают с внешней камерой сгорания. Такая схема реализует все четыре такта за один ход поршня. Трехтактный двигатель Ванкеля является роторно-поршневым. Из-за сложности конструкции и чрезвычайной требовательности к качеству обработки поверхностей такие моторы не получили широкого распространения.

Дорогой друг, сегодня поговорим о том, что значит четырехтактный двигатель. О истории его изобретения, принципе работы, особенностях, технических характеристиках и сферах применения.

Конечно, если у вас есть водительское удостоверение, то вы по крайней мере слышали этот термин, когда учились в автошколе. Но вряд ли тогда стали вникать во все тонкости, поэтому сейчас самое время разобраться, что же там происходит под капотом вашего железного коня.

Как всё начиналось

В 19 веке уже были двигатели, но это были в основном большие механизмы, работающие на пару. Они конечно частично обеспечивали развивающуюся промышленность, но имели много недостатков.

Были тяжелые, имели низкий КПД, большие габариты, требовалось много времени на запуск и остановку, для эксплуатации нужны были квалифицированные рабочие.

Промышленникам нужен был новый агрегат без перечисленных недостатков они уже поняли что значит четырехтактный двигатель. И как при определенных условиях с его помощью можно повысить прибыль.

Его и разработал изобретатель Эжен-Альфонс Бо де Роша, а в 1867 году воплотил в металл Николаус Август Отто.

В то время это было чудо техники. Двигатель внутреннего сгорания отличался низкими эксплуатационными расходами, небольшими размерами и не требовал постоянного присутствия обслуживающего персонала.

Работало устройство по особому алгоритму, который и сейчас называют «цикл Отто». Спустя 8 лет, после запуска первого экземпляра, компания Отто выпускала уже более 600 силовых установок в год.

Очень быстро, из-за автономности и компактности, двигатели внутреннего сгорания получили широкое распространение.

Из чего состоит двигатель

Чтобы понять принцип работы, познакомимся с основными составляющими движка:

  • блок цилиндров;
  • кривошипно-шатунный механизм (включает коленвал, поршни, шатуны) ‒ он необходим для преобразования поступательно-возвратных движений поршня во вращательное движение коленвала;
  • головка блока вместе с газораспределительным механизмом, который открывает впускные и выпускные клапаны, для того чтобы поступала рабочая смесь и выходили отработавшие газы. ГРМ может включать один или более распредвалов, которые состоят из кулачков для толкания клапанов, самих клапанов и клапанных пружин. Для стабильной работы четырехтактного движка существует ряд вспомогательных систем:
  • система зажигания ‒ для поджига горючей смеси в цилиндрах;
  • впускная система ‒ для подачи воздуха и рабочей смеси в цилиндр;
  • топливная система ‒ для непрерывной подачи топлива, получения смеси воздуха и горючего;
  • система смазки – для смазки трущихся деталей, а также одновременного удаления продуктов износа;
  • выхлопная система – для удаления отработанных газов из цилиндров, снижения токсичности выхлопа;
  • система охлаждения – для поддержки оптимальной температуры движка.

Что значит четырехтактный двигатель и почему четыре такта

  1. Теперь, когда вы более-менее представляете устройство четырехтактного двигателя, можно рассмотреть рабочий процесс.
    Он состоит из следующих этапов:впуск – поршень движется вниз, цилиндр заполняется горючей смесью из карбюратора через впускной клапан, который открываются кулачком распределительного вала.При движении поршня вниз, создается отрицательное давление в цилиндре, тем самым происходит всасывание рабочей смеси, а именно воздуха с парами топлива. Впуск продолжается пока поршень не достигнет НМТ (нижняя мертвая точка). В этот момент закрывается впускной клапан;
  2. сжатие или компрессия – после того как будет достигнута НМТ поршень начинает двигаться вверх к ВМТ (верхняя мертвая точка). При движении поршня вверх происходит сжатие, рабочая топливо-воздушная смесь сжимается, давление внутри цилиндра возрастает. Впускной и выпускной клапан закрыты;
  3. рабочий ход или расширение – в конце цикла сжатия (в ВМТ), рабочая смесь воспламеняется от искры в свече зажигания. Поршень от микровзрыва устремляется к НМТ.В процессе движения поршня от ВМТ к НМТ смесь сгорает, а увеличивающиеся в объеме газы толкают поршень, выполняя полезную работу. Именно по этой причине движение поршня в этом такте назвали рабочий ход. Впускной и выпускной клапан закрыты;
  4. выпуск выхлопных газов – в заключительном четвертом такте открывается выпускной клапан, поршень поднимается в верхнюю точку и выталкивает продукты сгорания из цилиндра в выхлопную систему, пройдя через глушитель, они попадают в атмосферу. После достижения поршнем ВМТ выпускной клапан закрывается, затем цикл повторяется. Эти четыре такта представляют собой рабочий цикл мотора. Тактом же именуется движение поршня вверх или вниз. Один оборот коленчатого вала соответствует двум тактам, а два оборота – 4 тактам. Отсюда пошло название четырёхтактного двигателя.

От чего зависит мощность четырехтактного ДВС

Тут вроде бы всё ясно — мощность поршневого двигателя в основном определяется:

  1. объёмом цилиндров;
  2. степенью сжатия рабочей смеси;
  3. частотой вращения.

Поднять мощность четырехтактного двигателя также можно повысив пропускную способность тактов всасывания и выхлопа, увеличив диаметр клапанов (особенно впускных).

Так же максимальная мощность получается при максимальном заполнении цилиндров, для этого используют турбины принудительной подкачки воздуха в цилиндр. В следствии чего повышается давление в цилиндре и соответственно КПД двигателя значительно возрастает.

Применение в настоящее время

Четырёхтактные двигатели бывают бензиновыми и дизельными. Применяются эти двигатели на транспортных или стационарных энергоустановках. Использовать такой двигатель рекомендуется в случаях, когда есть возможность регулировать соотношение оборотов, мощности и крутящего момента.

Например, если двигатель, работает в паре с электрогенератором, то нужно выдерживать нужный диапазон оборотов. А при использование промежуточных передач, четырёхтактный двигатель можно адаптировать к нагрузкам в достаточно широких пределах. То есть использовать в автомобилях.

Вернёмся к истокам его создания. В группе изобретателя Отто работал очень талантливый инженер Готлиб Даймлер, он понял что значит четырехтактный двигатель, его перспективы развития, и предложил на базе четырёхтактного двигателя построить автомобиль. Но шеф не посчитал нужным что-то менять в двигателе, и Даймлер, увлеченный своей идеей, покинул мэтра.

И через некоторое время, вместе с другим энтузиастом Карлом Бенцом в 1889 году создали автомобиль, который приводился в движение именно бензиновым четырехтактным двигателем внутреннего сгорания изобретателя Отто.

Эта технология с успехом используется и сегодня. В случаях, когда силовая установка работает на переходных режимах или режимах со снятием частичной мощности ‒ она незаменима, так как обеспечивает стабильную устойчивость процесса.

Теперь, дорогой друг, ты в общих чертах знаешь что значит четырехтактный двигатель, где он используется. Теперь ты стал на голову выше. Но не скупись полученой информацией, поделись с друзьями. К твоим услугам кнопки социальных сетей.

Да и подписаться можно на наш блог, чтобы всегда быть в курсе интересного материала, а его всегда много и будет еще больше.

Рабочий цикл карбюраторного четырехтактного двигателя

Рассмотрим подробно каждый такт цикла.

Такт впуска

Поршень 4 движется от в.м.т. к н.м.т. Над ним в полости цилиндра 1 создается разрежение. Впускной клапан 6 при этом открыт, цилиндр через впускную трубу 7 и карбюратор 8 сообщается с атмосферой. Под влиянием разности давлений воздух устремляется в цилиндр. Проходя через карбюратор, воздух распыливает топливо и, смешиваясь с ним, образует горючую смесь, которая поступает в цилиндр. Заполнение цилиндра 1 горючей смесью продолжается до прихода поршня в н.м.т. К этому времени впускной клапан закрывается.

Такт сжатия

При дальнейшем повороте коленчатого вала 10 поршень движется от н.м.т. к в.м.т. В это время впускной 6 и выпускной 3 клапаны закрыты, поэтому поршень сжимает находящуюся в цилиндре рабочую смесь. В такте сжатия составные части рабочей смеси хорошо перемешиваются и нагреваются. В конце такта сжатия между электродами свечи 5 возникает электрическая искра, от которой рабочая смесь воспламеняется. В процессе сгорания топлива выделяется большое количество теплоты, давление и температура газов повышаются.

Такт расширения

Оба клапана закрыты. Под давлением расширяющихся газов поршень движется от в.м.т. к н.м.т. (рисунок в) и при помощи шатуна 9 вращает коленчатый вал 10, совершая полезную работу.

Такт выпуска

Когда поршень подходит к н.м.т., открывается выпускной клапан 3 и отработавшие газы под действием избыточного давления начинают выходить из цилиндра в атмосферу через выпускную трубу 2. Далее поршень движется от н.м.т. к в.м.т. (рисунок г) и выталкивает из цилиндра отработавшие газы.

Далее рабочий цикл повторяется.

Рисунок. Рабочий цикл одноцилиндрового четырехтактного карбюраторного двигателя:
а — такт впуска; б — такт сжатия; в — такт расширения; г — такт выпуска; 1 — цилиндр, 2 — выпускная труба; 3 — выпускной клапан; 4 — поршень; 5 — искровая зажигательная свеча; 6 — впускной клапан; 7 — впускная труба; 8 — карбюратор; 9 — шатун; 10 — коленчатый вал.

Рабочий цикл четырехтактного дизеля

В отличие от карбюраторного двигателя в цилиндр дизеля воздух и топливо вводятся раздельно.

Такт впуска

Поршень движется от в.м.т. к н.м.т. (рисунок а), впускной клапан открыт, в цилиндр поступает воздух.

Такт сжатия

Оба клапана закрыты. Поршень движется от н.м.т. к в.м.т. (рисунок б) и сжимает воздух. Вследствие большой степени сжатия (порядка 14…18) температура воздуха становится выше температуры самовоспламенения топлива.

Рисунок. Рабочий цикл одноцилиндрового четырехтактного дизеля: а — такт впуска; б — такт сжатия; в — такт расширения; г — такт выпуска

В конце такта сжатия при положении поршня, близком к в.м.т., в цилиндр через форсунку начинает впрыскиваться жидкое топливо. Устройство форсунки обеспечивает тонкое распыливание топлива в сжатом воздухе.

Топливо, впрыснутое в цилиндр, смешивается с нагретым воздухом и оставшимися газами, образуется рабочая смесь. Большая часть топлива воспламеняется и сгорает, давление и температура газов повышаются.

Такт расширения

Оба клапана закрыты. Поршень движется от в.м.т. к н.м.т. (рисунок в). В начале такта расширения сгорает остальная часть топлива.

Такт выпуска

Выпускной клапан открывается. Поршень движется от н.м.т. к в.м.т. (рисунок г) и через открытый клапан выталкивает отработавшие газы в атмосферу.

Далее рабочий цикл повторяется.

У описанных двигателей в течение рабочего цикла только в такте расширения поршень перемещается под давлением газов и посредством шатуна приводит коленчатый вал во вращательное движение. При выполнении остальных тактов — выпуске, впуске и сжатии — нужно перемещать поршень, вращая коленчатый вал. Эти такты являются подготовительными и осуществляются за счет кинетической энергии, накопленной маховиком в такте расширения. Маховик, обладающий значительной массой, крепят на конце коленчатого вала.

Дизель по сравнению с карбюраторным двигателем имеет следующие основные преимущества:

  • на единицу произведенной работы расходуется в среднем на 20…25 % (по массе) меньше топлива
  • работа на более дешевом топливе, которое менее пожароопасно

Недостатки дизеля:

  • более высокое давление газов в цилиндре требует повышенной прочности деталей, а это приводит к увеличению размеров и массы дизеля
  • пуск его затруднен, особенно в зимнее время

Хорошие экономические показатели дизелей обусловили их широкое применение в качестве двигателей для тракторов, грузовых и легковых автомобилей.

Четырехтактный двигатель. Работа четырехтактного двигателя

В цилиндре четырехтактного поршневого двигателя циклическая последовательность энергетических преобразований начинается с реакции горения ТВ-заряда, когда поршень находится в ВМТ. В результате сгорания химическая энергия топлива переходит в тепловую энергию сильно сжатых газов.

Так в камере сгорания образуется газообразное рабочее тело теплового двигателя. Далее тепловая энергия рабочего тела за счет его интенсивного расширения переходит в механическую работу по перемещению поршня из ВМТ в НМТ. Следующим этапом преобразований является кинематическое превращение линейного перемещения поршня в возвратно-поступательное его движение и получение вращательного движения на выходном валу двигателя. Это преобразование реализуется с помощью кривошипно-шатунного механизма, коленчатого вала и его маховика. При этом сам коленчатый вал и навешенные на него детали (массы) получают значительный импульс движения, за счет которого совершается полезная работа двигателя, а поршень переходит через НМТ и начинает обратное движение к ВМТ.

Эта часть энергетического цикла соответствует рабочему такту двигателя «рабочий ход» и заканчивается в НМТ. С этого момента (от нижней мертвой точки) на полезную нагрузку одноцилиндрового двигателя и на последующие вспомогательные процессы энергетических преобразований начинает работать кинетическая энергия инерционных масс коленчатого вала, ранее разогнанных рабочим ходом поршня. Вслед за процессом «рабочий ход» в любом поршневом двигателе должны быть выполнены два насосных процесса: выпуск отработавших газов и впуск свежего топливовоздушного заряда.

В четырехтактном одноцилиндровом двигателе такты выпуска, впуска и сжатия реализуются инерционным вращением коленвала с массивным маховиком (тремя ходами поршня между НМТ и ВМТ). В многоцилиндровом двигателе поршни поочередно работают на один общий коленвал, и процессы выпуска, впуска и сжатия в цилиндре реализуются не только инерционным вращением коленвала, но и рабочими ходами поршней в других цилиндрах, на выполнение насосных процессов затрачивается часть энергии рабочего хода.

Чем продолжительнее насосные процессы в общей продолжительности рабочего цикла, тем ниже КПД двигателя. Именно поэтому двухтактные двигатели эффективнее четырехтактных, а четырехтактные — эффективнее шеститактных.

После завершения насосных процессов, сразу вслед за впуском, в цилиндре четырехтактного двигателя начинается энергетический процесс сжатия. Этот процесс реализуется четвертым (последним) в данном цикле ходом поршня (вверх).

Рассмотрев последовательность основных процессов энергетического преобразования и сопутствующие им вспомогательные процессы в четырехтактном двигателе, можно перейти к рассмотрению рабочих тактов в четырехтактном цикле.

Четырехтактным циклом называется последовательность из четырех рабочих тактов двигателя: впуск, сжатие, рабочий ход, выпуск. За начало цикла обычно принимают такт впуска.

Следует предварительно заметить, что хотя по определению рабочий такт включает в себя несколько рабочих процессов, приходящихся на один ход поршня, в четырехтактном двигателе каждому такту присваивается наименование только одного (основного) рабочего процесса. Например, рабочий такт «сжатие» (ход поршня из НМТ в ВМТ после впуска) включает в себя не только само сжатие, но и внутреннее перемешивание ТВ-смеси, формирование ТВ-заряда, воспламенение ТВ-заряда перед его сгоранием, начало формирования газообразного рабочего тела. Но называется данный такт — тактом сжатия.

То же самое можно показать на примерах других тактов. Но главное здесь то, что довольно продолжительная последовательность различных процессов, имеющих место в каждом такте, в целях упрощения «раскладывается» только на четыре рабочих такта. Эти такты: ВПУСК, СЖАТИЕ, РАБОЧИЙ ХОД, ВЫПУСК Таким образом, для четырехтактного двигателя рабочим циклом можно считать не совокупность рабочих процессов, приходящихся на один акт сгорания ТВ-заряда, а последовательность четырех конкретных рабочих тактов.


Рассмотрение четырехтактного цикла удобнее проводить с помощью индикаторной диаграммы, которая отображает изменение давления в цилиндре по ходу поршня за рабочий цикл.

Индикаторная диаграмма состоит из четырех характерных участков:
1. Участок (71) — впуск ТВ-смеси под разрежением от всасывания (Р = 0,8 атм). Температура ТВ-смеси в конце впуска Ti = 10О°С. Имеет место вентиляционное охлаждение цилиндра.
2. Участок (123) — сжатие. При степени сжатия еа = 10 (для бензинового ДВС) давление в конце сжатия Рс = 15 атм, температура Тс = 500°С.
3. Участок (3456) — сгорание ТВ-заряда и расширение (рабочий ход). Воспламенение ТВ-зарядв в точке 2. Окончание процесса сгорания ТВ-заряда в точке 3. Дааление газов Р4 = 40 атм, температура Т4 & 2800°С. К концу расширения (точка 5) давление Р5 = 4 атм, Т5 = 1000°С. В точке 6 давление Р6 = 1,3 атм (остаточное давление газов), Т6 = 800°С.
4. Участок (67) — выпуск отработавших газов. Выпускной клапан открывается в точке 5.

Процесс выпуска протекает при даалении, которое превышает атмосферное. К концу выпуска температура падает до Т7 = 700°С, и далее там. Здесь же показаны схемы текущего положения порш-при впуске — до Т± = 100°С. ня в четырехтактном двигателе.
Управление клапанами в поршневых двигателях осуществляется от специального вала, который называется распределительным. Распределительный вал механически жестко сочленен с коленчатым валом через цепную, шестеренчатую или зубчатую ременную передачу. В двигателях с четырехтактным рабочим циклом передвточное отношение такой передачи равно один к двум. То есть за два оборота коленчатого вала распределительный вал делает один оборот.

Третьим рабочим тактом поршневого двигателя является такт рабочий ход. Он начинается сразу после того, как поршень 6 начнет перемещаться из верхней мертвой точки снова вниз. Такт «рабочий ход» наиболее важный в работе двигателя. Именно в этом такте происходит главное энергетическое преобразование ДВС — превращение тепловой энергии сгоревшего топливовоздушного заряда в механическую работу.

В бензиновых поршневых ДВС этот такт происходит следующим образом. В зоне, близкой к ВМТ, еще в такте сжатия топливовоздушный заряд принудительно воспламеняется от электрической искры в свече 13 зажигания. Топливовоздушный заряд быстро сгорает, и к началу такта рабочий ход давление в образовавшихся газах достигает максимального значения (точка Z). Газы, образовавшиеся в результате сгорания топливовоздушного заряда, с этого момента выполняют роль сильно разогретого рабочего тела, сжатого в объеме камеры сгорания. Как только поршень за ВМТ начинает перемещаться вниз, рабочее тело, интенсивно расширяясь, высвобождает приобретенную тепловую энергию, которая превращается в механическую работу в виде движения поршня вниз под действием расширения газов.

Последний (четвертый) рабочий такт поршневого двигателя называется тактом выпуска, так как в нем осуществляется эвакуация из объема цилиндра отработавших газов.

Важно понимать, что из всех четырех тактов четырехтактного двигателя только такт «рабочий ход» полезно работает на нагрузку ДВС, так как только в нем коленчатый вал 10 получает от поршня 6 через шатун 7 и кривошип 8 разгонное механическое усилие. Во всех остальных рабочих тактах двигатель не вырабатывает, а потребляет часть механической энергии от коленчатого вала.


Описанные четыре рабочих такта во время работы ДВС чередуются друг за другом и образуют полный четырехтактный рабочий цикл двигателя.

Следует иметь в виду, что строгого соответствия между рабочими тактами (ходами поршня) и тактовыми рабочими процессами в четырехтактных (так же, как и в двухтактных) поршневых двигателях нет. Это объясняется тем, что при работе двигателя фазы клапанного газораспределения и фазовые состояния клапанов накладываются на рабочие ходы поршня в разных конструкциях двигателей по-разному.

Работа многоцилиндровых ДВС происходит по цилиндрам последовательно, в каждом из которых рабочие процессы протекают так же, как и в вышеописанном одноцилиндровом двигателе. Все цилиндры в многоцилиндровом ДВС работают на один коленчатый вал, который воспринимает рабочие усилия от разных цилиндров через заданный числом цилиндров угол поворота.

Чередование срабатываний цилиндров в многоцилиндровых двигателях носит наименование — порядок работы.

Порядок работы ДВС задается конструктивно соответствующим исполнением распределительного и коленчатого валов и не может быть изменен в процессе эксплуатации.

Реализуется порядок работы ДВС чередованием искр зажигания, поступающих на свечи цилиндров от системы зажигания. К примеру, порядок работы четырехцилиндровых двигателей может быть либо 1342, либо 1243

Газораспределительные механизмы в современных поршневых двигателях

При различных режимах работы двигателя газообмен в его цилиндрах происходит по-разному. На оборотах холостого хода, когда скорость движения газообразных масс в двигателе низкая, отработавшие газы не успевают эвакуироваться из цилиндров и двигатель, «задыхаясь», может остановиться. Чтобы этого не произошло, горючую смесь обогащают, что приводит к дополнительному расходу топлива и повышенному образованию СО в отработавших газах. Оптимальные условия работы двигателя нарушаются. Однако эффект задымления цилиндров на холостом ходу можно свести к минимуму более ранним открытием выпускного клапана в такте «рабочий ход». Тогда часть энергии расширения рабочего тела будет затрачиваться на принудительную и интенсивную эвакуацию отработавших газов. Мо при высоких оборотах двигателя под большой нагрузкой раннее открытие выпускного клапана приводит к значительной потере развиваемой двигателем мощности. Получается так: фазу начала открытия выпускного клапана желательно иметь разной, а жесткий распредвал этого не обеспечивает.

Другой пример. Когда двигатель работает на очень высоких оборотах, скорость движения топливовоздушной смеси на входе цилиндра и выхлопных газов на его выходе тоже очень высокая. Это придает газовым потокам значительную дополнительную энергию движения за счет инерции. Поэтому одновременное открытие впускного и выпускного клапанов (перекрытие клапанов) в цилиндрах в конце выпуска и в начале впуска является крайне желательным явлением.

Фаза перекрытия клапанов в таком случае должна быть расширена по сравнению с режимами работы двигателя в менее скоростных режимах, так как это способствует дополнительной продувке цилиндра под напором быстрых впускных газов и под сильным разрежением быстро вылетающих отработавших газов. Однако подобное расширение фазы перекрытия клапанов в режиме холостого хода недопустимо, т.к. приводит к нарушению процесса внешнего смесеобразования из-за обратного выхлопа части отработавших газов во впускной коллектор. Из этого примера следует, что и фазу перекрытия клапанов жесткий распредвал формирует неоптимально.

Ясно, что каждому виду фазовой диаграммы соответствует определенная форма кулачков на распредвале. Так, для впускного и выпускного клапанов в идеальном двигателе кулачки симметричные, с идеальным профилем; у двигателя ЗИЛ кулачки гармонические, впускной с разворотом в сторону опережения, выпускной — почти симметричный; двигатель оптимальный по холостому ходу имеет тангенциальные кулачки — выпускной кулачок со значительным разворотом в сторону отставания, а впускной — в сторону опережения; у двигателя, работающего в форсированном режиме с расширенной фазой перекрытия клапанов, впускной кулачок гармонический и должен давать опережение по открытию клапана, а выпускной тангенциальный — отставание по закрытию.

Опережение или отставание фазовых состояний клапана определяется и формируется разворотом кулачка против вращения распредвала (отставание) или по направлению (опережение). Важно также заметить, что в реальных двигателях с жестким распредвалом фазы впуска и выпуска почти никогда не бывают симметричными (их середина сдвинута относительно середины рабочего такта — хода поршня от одной мертвой точки к другой).

• Из рассмотрения диаграмм ясно, что жесткая привязка фаз газораспределения к вращению коленчатого вала, даже при их расширении и (или) смещении относительно рабочих тактов двигателя, не является оптимальным способом формирования процессов газораспределения в реальных ДВС. Получается так: изменился режим работы двигателя, надо бы соответственно изменить и фазы газораспределения. Но газораспределительный механизм с жесткими кинематическими связями не позволяет этого сделать. Приходится искать «золотую середину». Компромиссное среднее положение фаз газораспределения относительно нижней и верхней мертвых точек для каждого конкретного двигателя определяется опытным путем на специальном экспериментальном стенде. Найденные таким способом фазы газораспределения называются установочными. До недавнего времени опытный подбор установочных фаз был единственной возможностью подогнать жесткий распредвал под реальные процессы газообмена в ДВС на различных режимах его работы.

При подборе установочных фаз имеют в виду следующие соображения. Фазы, раскрыв угла которых более 180°, могут быть сдвинуты относительно мертвых точек, а также относительно друг друга. Манипулируя шириной фаз впуска и выпуска и их сдвигом, можно подгонять рабочие параметры двигателя под заданные условия эксплуатации. Такая возможность обусловлена тем, что эффективность газообмена в цилиндрах ДВС определяется степенью их наполнения свежим зарядом и степенью их очистки от отработавших газов. А наполнение и очистка цилиндров непосредственно зависят от продолжительности фаз впуска и выпуска, и от фазы их взаимного наложения друг на друга (фаза перекрытия клапанов).
Можно детально объяснить, почему так происходит, но здесь ограничимся тем, что укажем на три основных момента:
1. В высокоскоростном двигателе наполнение цилиндра свежим зарядом несколько увеличивается (примерно на 10…15%) за счет напора газов со стороны впускного коллектора, если впускной клапан остается открытым на некоторое время после НМТ (50е…80° по углу поворота KB).

2. При раннем открытии выпускного клапана (за 40°…70° до НМТ, в такте «рабочий ход») большая часть отработавших газов (до 60%) эвакуируется из цилиндра достаточно высоким (4…5 атм) давлением газов. (Поршень в такте выпуска вытесняет из цилиндра всего 40…50% отработавших газов.)

3. Одновременное открытие выпускного и впускного клапанов (перекрытие клапанов) в конце такта выпуска (за 20…30° до ВМТ) и в начале такта впуска (20…50° после ВМТ) способствует продувке камеры сгорания, из которой вытесняются остаточные отработавшие газы. Продувка происходит за счет инерционного движения газовых потоков во впускном и выпускном коллекторах.
Используя эти три фактора воздействия на эффективность газообмена, можно создавать двигатели с различными рабочими характеристиками. Для двигателей обычного назначения фазы газораспределения устанавливаются таким образом, чтобы они наиболее оптимально соответствовали применяемому на данном двигателе способу смесеобразования и конструкции газопропускных каналов и тем самым обеспечивали устойчивую работу двигателя при всех возможных режимах его работы.

Однако усредненный подбор фаз газораспределения не является единственным способом улучшения характеристик двигателя внутреннего сгорания с жестким распредвалом. Так, современные двигатели теперь стали оборудовать многоклапанным газораспределительным механизмом, в котором на один цилиндр приходится до четырех и даже до пяти клапанов. Клапаны приводятся в действие от двух распределительных валов группами по два или три клапана.

Такая конструкция газораспределительного механизма дает возможность значительно увеличивать суммарную площадь пропускных щелей клапанов во время одновременного их открытия сравнительно небольшим ходом.

Таким образом, многоклапанная система позволяет реализовать более эффективный газообмен в цилиндрах ДВС при высокой степени сжатия и при высоких оборотах без применения искусственного наддува цилиндров свежей порцией воздуха и без значительного расширения фаз. Это существенно повышает выход мощности ДВС с единицы его конструктивного объема. Как следствие, многоклапанные двигатели меньше по весу и габаритам в сравнении с классическими моделями ДВС.

Четырехцилиндровый двигатель

«Audi-A4» с двадцатью клапанами работает без наддува и развивает мощность в 125 л.с. уже при 5800 об/мин. Он имеет плавный ход за счет «длинной полочки» в характеристике крутящего момента (крутящий момент в 165 Нм развивается на 3500 об/мин и в 173 Нм — на 3950 об/мин). Три впускных и два выпускных клапана своим коротким ходом и малой длительностью открытия позволяют приблизить продолжительность и место нахождения фаз газораспределения к их соответствию с рабочими тактами идеального теоретического двигателя. Перекрытие клапанов в такой конструкции минимальное. Это значительно улучшает такие показатели работы ДВС, как бесшумность и плавность хода, динамичность и расход топлива. Вращение коленчатого вала вначале передается зубчатым ремнем на выпускной распределительный вал (в передней части двигателя), а с него — на впускной распределительный вал цепной передачей (сзади двигателя).

В настоящее время многоклапанные системы находят широкое применение на ДВС для современных легковых автомобилей.

Еще одно новшество в современном механизме газораспределения — это гидравлические толкатели. Существуют две разновидности гидравлических толкателей: с подачей масла под давлением от системы смазки и с герметичной масляной подушкой, находящейся под давлением пружины или сжатого газа. Такие толкатели передают усилие от распределительных валов непосредственно на клапаны без промежуточных коромысел, что исключает необходимость регулировки клапанов в процессе эксплуатации ДВС.
Но самым перспективным направлением в повышении эффективности работы газораспределительного механизма является гибкое программное управление работой клапанов, что может быть реализовано несколькими способами: поворотом составного распредвала относительно коленчатого вала на соответствующий угол, создавая тем самым опережение или отставание распредвала с одновременным расширением вершин кулачков; изменением профиля кулачка по заданному закону управления: или, например, сделать кулачок вращающимся на распредвалу с жесткой его фиксацией в нужный момент от электронной автоматики.
Наиболее активно и плодотворно в направлении внедрения электроники в управление механизмом газораспределения работали японские автомобилестроители. Так, в 1992 году две японские фирмы «Honda» и «Mitsubishi» объявили о своих намерениях выпустить двигатель с автотронной системой управления клапанами. С 1993 года фирма «Honda» действительно освоила серий ный выпуск таких двигателей, на которых получила широкую и выпуклую характеристику для крутящего момента и значительную удельную мощность — 75 кВт/л. Не менее интересны достижения фирмы «Mitsubishi». Эта фирма оснастила автотронной системой «Mivec» двигатель автомобиля «Lanser». Этот двигатель объемом 1600 см3 до модернизации развивал мощность 83 кВт при 6000 об/мин и максимальный крутящий момент 137 Нм. После замены обычной головки блока цилиндров на головку с автотронным управлением клапанами двигатель стал мощнее на 40 кВт, а максимальный крутящий момент достиг значения в 167 Нм.

С этим же двигателем более легкий автомобиль «Mit-Colt» показал расход топлива 3,75 л/100 км при постоянной скорости движения 60 км/ч. Такие показатели получены за счет применения в автотронной системе управления клапанами, в системе впрыска топлива и в системе цифрового зажигания единой гибко интегрированной программы управления, заложенной в память центрального бортового компьютера, тем самым достигнута высокая точность срабатывания всех систем.

В этом механизме два верхних распредвала впускной и выпускной. На каждую пару одноименных клапанов работают не два одинаковых, а два разнопрофильных кулачка: один пологий, другой острый. Толкающие действия клапанам могут сообщаться или от острого, или от пологого кулачка попеременно или от обоих кулачков сразу. Режимы работы кулачков, зависящие от режима работы двигателя, заложены в программу бортового компьютера и реализуются с помощью электрогидраалического или электромагнитного управления системой передаточных коромысел. Такой работой механизма реализуется автоматическое управление фазами и высотой хода клапанов.

Функциональная модель узла с электронным упраалением механизмом газораспределения работает следующим образом. Если по программе требуется, чтобы клапан открывался и закрывался по синусоидальному закону, в работу включается гармонический (пологий) кулачок. Для этого сигнал управления от ЭБУ подается на соленоид 2, который выталкивает шток 3, а тот в свою очередь надавливает на фиксатор 4. Происходит жесткая фиксация толкателя 6 на промежуточном валу 5, который одновременно является поворотной осью для Т-образного коромысла 8. Пологий кулачок 13 набегает на левый ролик 9, и спаренные клапаны 7 открываются наклоном Т-образного коромысла. Так как в это время правый толкатель 6 не зафиксирован на оси 5, то он никакого действия на коромысло 8 не оказывает. Аналогично работает и острый кулачок 11 или оба кулачка сразу.

В последнем случае может быть получена сколько угодно сложная форма управления клапанами. Достоинством системы является возможность выключения клапанов. Недостатки — конструктивная сложность и низкая надежность механизма фиксации толкателя 6 на оси 5. Сравнительно быстрый износ фиксаторов приводит не только к нарушению программы работы двигателя, но и к полной его остановке. Возможны и другие варианты исполнения фиксаторов, например с электромагнитным гидрофиксатором.

Однако идеальный по газораспределению двигатель внутреннего сгорания пока еще не создан, хотя изобретен профессором МАДИ В.М. Архангельским еще в пятидесятых годах XX века. По идее Архангельского идеальный двигатель должен управляться не механическими клапанами с приводом от распределительного вала, а электромагнитными клапанами с электрическим управлением процессами их открывания и закрывания. Ясно, что если клапаны будут включаться и выключаться по электрическим сигналам, то можно будет создать программу идеального газораспределения и управления клапанами так, как это делается в современных системах зажигания при формировании момента новообразования.

Главной проблемой реализации идеи электромагнитного управления газораспределительными клапанами является пока непреодолимая сложность создания малогабаритных, мощных и быстродействующих электрических клапанов с тихой работой. Когда это станет возможным, процессы газораспределения в поршневом ДВС будут осуществляться не газораспределительным механизмом с распредвалом, а электромагнитными клапанами с управлением от электронной автоматики или от центрального бортового компьютера.

Порядок работы рядного 4 цилиндрового двигателя

Порядок работы 4 цилиндрового двигателя обозначается как Х―Х―Х―Х где Х ― номера цилиндров. Это обозначение показывает последовательность чередования тактов цикла в цилиндрах.

Порядок работы цилиндров зависит от углов между кривошипами коленчатого вала, от конструкции механизма газораспределения, и системы зажигания бензинового силового агрегата. У дизельного место системы зажигания в этой последовательности занимает ТНВД.

Для управления автомобилем это знать, конечно, необязательно.

Порядок работы цилиндров необходимо знать, регулируя зазоры клапанов, меняя ремень ГРМ либо выставляя зажигание. Да и при замене проводов высокого напряжения понятие порядка рабочих тактов не будет лишним.

Рабочий цикл

В зависимости от числа тактов, составляющих рабочей цикл, ДВС делятся на двухтактные и четырехтактные. Двухтактные двигатели не ставят на современные автомобили, они используются лишь на мотоциклах и в качестве пускателей тракторных силовых агрегатов. Цикл четырехтактного бензинового двигателя внутреннего сгорания включает в себя следующие такты:

  1. Впуск ― выпускной клапан закрыт, впускной открыт, поршень движется вниз, производится всасывание воздушно-топливной смеси.
  2. Сжатие ― все клапаны закрыты поршень движется вверх, сжимая воздушно-топливную смесь.
  3. Рабочий ход ― клапаны остаются закрыты, по окончании предыдущего такта искра поджигает сжатую смесь. Поршень под действием давления газов, сгоревшей смеси, идет вниз вращая коленвал.
  4. Выпуск ― по окончании предыдущего такта открывается выпускной клапан. Поршень, толкаемый коленвалом, движется вверх и вытесняет продукты горения в выхлопной коллектор.

Цикл дизеля отличается тем что при впуске всасывается только воздух. Топливо же впрыскивается под давлением после сжатия воздуха, а воспламенение происходит от контакта дизеля с разогретым от сжатия воздухом.

Нумерация

Нумерация цилиндров рядного двигателя начинается с наиболее удаленного от коробки перемены передач. Иными словами, со стороны ремня ГРМ либо цепи.

Очередность работы

У коленвала рядного 4-х цилиндрового ДВС кривошипы первого и последнего цилиндра располагаются под углом 180° друг к другу. И под углом 90° к кривошипам средних цилиндров. Поэтому для обеспечения оптимального угла приложения движущих сил к кривошипам такого коленвала, порядок работы цилиндров бывает 1―3―4―2, как у вазовских и москвичевских ДВС либо 1―2―4―3, как у газовских моторов.

Чередование тактов 1-3-4-2

Угадать порядок работы цилиндров двигателя по внешнем признакам нельзя. Об этом следует читать в мануалах производителя. Порядок работы цилиндров двигателя проще всего узнать в инструкции по ремонту вашей машины.

Кривошипно-шатунный механизм

  • Маховик поддерживает инерцию коленвала для вывода поршней из верхних или нижних крайних положений, а также для более равномерного его вращения.
  • Коленчатый вал преобразует линейное движение поршней во вращение и передает его через механизм сцепления на первичный вал КПП.
  • Шатун передает усилие, прикладываемое к поршню на коленчатый вал.
  • Поршневой палец создает шарнирное соединение шатуна с поршнем. Изготавливается из легированной высокоуглеродистой стали с цементацией поверхности. По сути является толстостенной трубкой со шлифованной наружной поверхностью. Бывает двух видов: плавающий или закрепленный. Плавающие свободно перемещаются в бобышках поршней и во втулке, запрессованной в головку шатуна. Не выпадает палец из этой конструкции благодаря стопорным кольцам, устанавливающимся в пазы бобышек. Закрепленные удерживаются в головке шатуна за счет горячей посадки, а в бобышках вращаются свободно.

Такты работы четырехтактного двигателя

Четырехтактный двигатель – самый распространенный тип ДВС современного легкового автомобиля
Двигатель внутреннего сгорания должен был стать альтернативой промышленной паровой машины, но изобретатели-энтузиасты сразу почувствовали его потенциал. Им удалось найти способ увеличить мощность двигателя, не увеличивая его массу. Ключевую роль в этом сыграл Николаус Отто, создавший первый в истории четырехтактный двигатель.

История разработки двигателя Отто

Мотор, разработанный изобретателем Альфонсом Бо де Роша и воплощенный в металле немцем Николаусом Отто в 1867 году, по тем временам был верхом совершенства. Он был дешев в эксплуатации, компактен и не требовал постоянного контроля. Двигатель работал по особому алгоритму, широко известному в наши дни как «цикл Отто». В 1875 году компания Отто производила боле 600 двигателей в год.
Именно Готлиб Даймлер и его товарищи-инженеры привлекли внимание Николауса Отто к преимуществам четырехтактного двигателя
В команде Отто работал талантливый инженер по имени Готлиб Даймлер, загоревшийся идеей постройки автомобиля. Николаус Отто не считал нужным улучшать имевшийся двигатель, и Даймлеру, понявшему, как можно использовать мотор в конструкции автомобиля, пришлось уйти. Вместе с единомышленником по имени Карл Бенц, в 1889 году Даймлеру удалось создать первый автомобиль с бензиновым четырехтактным двигателем внутреннего сгорания, работающим по циклу Отто.

Что такое «такты» двигателя

Четырехтактный двигатель отличается от двухтактного тем, что газораспределение имеет отдельные фазы впуска и выпуска. Ими заведуют расположенные в головке блока цилиндров впускной и выпускной клапаны соответственно. Они открываются при помощи распредвала, приводимого в действие от коленчатого вала двигателя.

Первый такт называется «впуск». В этот момент поршень начинает двигаться вниз из верхней мертвой точки, создавая разряжение. В это же время открывается впускной клапан, и топливовоздушная смесь засасывается в цилиндр. Когда поршень доходит до нижней мертвой точки, клапан закрывается, и фаза впуска завершается.

Впрыск топлива одной порцией в строго определенный момент на современной стадии развития четырехтактных двигателей перестал быть догмой
Второй такт называется «сжатие». Поршень начинает движение вверх, оба клапана закрыты. В этот момент топливовоздушная смесь сжимается, при этом нагреваясь. Это необходимо для более полного и эффективного сгорания топлива.

Третий такт – «рабочий ход». Немного не доходя до верхней мертвой точки, при помощи искры от свечи зажигания (или за счет сжатия, если речь идет о дизельном двигателе) происходит воспламенение топливовоздушной смеси. В этот момент газы резко расширяются, толкая поршень вниз, тем самым совершая полезную работу.

Четвертый такт называется «выпуск». Когда поршень совершил рабочий ход и находится в нижней мертвой точке, и необходимо удалить отработавшие газы из цилиндра, открывается выпускной клапан. Через него поршнем, начинающим движение вверх, выталкиваются отработавшие газы.

Порядок работы дизельного двигателя отличается лишь тем, что на такте сжатия в цилиндр поступает только воздух, а топливо впрыскивается в камеру сгорания в конце такта сжатия при помощи форсунки.

Новые механизмы — старый принцип

С момента изобретения и до наших дней инженеры постоянно совершенствовали четырехтактный двигатель. Большинство нововведений приходились на долю газораспределительного механизма. Например, если раньше на цилиндр приходилось всего два клапана, то на современных моторах их число доходит до пяти. Кроме того, многие производители используют системы изменения фаз газораспределения. Самые известные — это VVT-i от Toyota и Valvetronic от BMW. Система изменяемых фаз позволяет менять время и высоту подъема клапанов в зависимости от режимов работы двигателя.
Спустя 150 лет принцип, названный циклом Отто, остается актуальным. Физики утверждают, что для дальнейшего прогресса необходим новый вид топлива
Изменилась и система питания. Практически на всех современных моторах карбюратор уступил место распределенному впрыску топлива. Зажиганием, дозировкой и подачей горючего теперь заведует электроника.

Для лучшего наполнения цилиндров все чаще применяется наддув поступающего воздуха. Увеличение плотности воздуха в цилиндре позволяет получить мощный мотор при сравнительно небольшом объеме двигателя и уменьшить расход топлива. Например, двигатель 1,4 TFSI от Volkswagen с двойным турбонаддувом «выдает» 185 л.с.

В последние два десятилетия небывалую популярность получили дизельные автомобили. Если раньше моторы на тяжелом топливе были прерогативой исключительно грузовиков и автобусов, то сейчас более 50% продающихся в Европе легковушек ездят на «солярке». Дизели экономичнее своих бензиновых собратьев и при равных объемах двигателя имеют гораздо больший крутящий момент и наделяют автомобиль приличной динамикой. На сегодняшний день практически все дизельные двигатели имеют турбонаддув.

Достоинства и недостатки четырехтактных двигателей

Самый главный плюс двигателей, работающих по циклу Отто – экономичность. Кроме того, четырехтактные двигатели относительно бесшумны, а использование каталитических нейтрализаторов делает их еще и наболее экологичными.

Неоспоримым преимуществом является надежность четырехтактных моторов. Ресурс легковых двигателей доходит до полумиллиона километров, и это еще не предел.

Недостатки современных моторов кроются в их сложном техническом устройстве. Они дороги в производстве, а в эксплуатации весьма требовательны к качеству топлива и масла. Ремонт своими силами в полевых условиях, без специального инструмента и навыков, практически невозможен.

Эксплуатация четырехтактных двигателей

В первую очередь следует тщательнее выбирать АЗС. Топливные системы, в особенности дизельных автомобилей, плохо «переваривают» некачественное топливо. Более того, всего одна заправка «левым» горючим может вывести из строя катализатор. А его замена может вылиться в «копеечку».

Развитие микропроцессорного управления процессами, происходящими в четырехтактном двигателе, привело к тому, что вмешательство человека не требуется годами
Большинство неисправностей современных двигателей не связаны непосредственно с механическими деталями. Неисправности, как правило, возникают в «слабых местах», в системе подачи воздуха или в электрооборудовании. По причине сложности и развития микропроцессорных систем управления, выявить поломку без подключения диагностического компьютера выяснить причину неисправности практически невозможно.

Двигатель — основная и самая дорогая часть автомобиля. Поэтому в случае поломки ремонт лучше доверить сервисному центру, избегая «гаражных» специалистов.

Процессы, протекающие в цилиндрах двигателя при его работе, повторяются циклично. Одним таким рабочим циклом считается совокупность тактов (впуск топливовоздушной смеси, сжатие, воспламенение и расширение газов, а также выпуск продуктов сгорания), обеспечивающая переход тепловой энергии, выделяемой при воспламенении одной порции смеси, непосредственно в работу. О том, что представляют собой рабочие циклы поршневых двигателей внутреннего сгорания, пойдет речь далее.

Что такое мертвые точки и такты ДВС

Количество этапов, входящих в один рабочий цикл ДВС (двигателя внутреннего сгорания), принято считать исходя из числа ходов поршня в цилиндре. Такие этапы получили название такты двигателя. Непосредственно ход поршня определяется его перемещением из одной крайней точки в другую. Они получили наименование мертвые, поскольку если в такой точке произойдет остановка поршня, он не сможет начать движение без внешнего воздействия. Простыми словами мертвые точки — это позиции, при которых движение в текущем направлении поршня прекращается и он начинает обратный ход.

Мертвые точки и ход поршня ДВС

Существуют две мертвые точки:

  • Нижняя (НМТ) — положение, при котором расстояние между поршнем и осью вращения коленвала минимально.
  • Верхняя (ВМТ) — положение, при котором цилиндр находится на максимальном удалении от оси вращения коленвала двигателя.

В англоязычной документации ВМТ обозначается как TDC (Top Dead Centre), А НМТ — BDC (Bottom Dead Centre).

Существуют двигатели, рабочий цикл которых может состоять из двух, а также из четырех тактов. Исходя из этого их разделяют на двухтактные и четырехтактные моторы.

Как работает четырехтактный двигатель

Конструктивно рабочий цикл типового четырехтактного агрегата обеспечивается работой следующих элементов:

  • цилиндр;
  • поршень — выполняет возвратно-поступательные движения внутри цилиндра;
  • клапан впуска — управляет процессом подачи топливовоздушной смеси в камеру сгорания;
  • клапан выпуска — управляет процессом выброса отработавших газов из цилиндра;
  • свеча зажигания — осуществляет воспламенение образовавшейся топливовоздушной смеси;
  • коленчатый вал;
  • распределительный вал — управляет открытием и закрытием клапанов;
  • ременной или цепной привод;
  • кривошипно-шатунный механизм — переводит движение поршня во вращение коленчатого вала.

Рабочий цикл четырехтактного двигателя

Рабочий цикл такого механизма состоит из четырех тактов, в ходе которых реализуются следующие процессы:

  1. Впуск (нагнетание топлива и воздуха). В начале цикла поршень находится в ВМТ. В момент, когда коленвал начинает вращаться, он воздействует на поршень и переводит его в НМТ. Это приводит к образованию разрежения в камере цилиндра. Распредвал воздействует на клапан впуска, постепенно открывая его. Когда поршень оказывается в крайнем положении клапан полностью открыт, в результате чего происходит интенсивное нагнетание топлива и воздуха в камеру цилиндра.
  2. Сжатие (увеличение давления горючей смеси). На втором этапе поршень начинает обратное перемещение к верхней мертвой точке такта сжатия. Коленвал совершает еще один поворот, а оба клапана полностью закрыты. Внутреннее давление увеличивается до величины 1,8 МПа и повышается температура горючей смеси до 600 С°.
  3. Расширение (рабочий ход). При достижении верхней позиции поршнем в камере сгорания устанавливается максимальная компрессия до 5 МПа и срабатывает свеча зажигания. Это приводит к возгоранию смеси и увеличению температуры до 2500 С°. Давление и температура приводят к интенсивному воздействию на поршень, и он начинает вновь перемещаться к НМТ. Коленвал совершает еще поворот, и таким образом, тепловая энергия переходит в полезную работу. Распредвал открывает выпускной клапан, и при достижении поршнем НМТ он полностью раскрыт. В результате отработавшие газы начинают постепенно выходить из камеры, а давление и температура снижаются.
  4. Выпуск (удаление отработавших газов). Коленвал двигателя поворачивается, и поршень начинает движение в верхнюю точку. Это приводит к выталкиванию отработавших газов и еще большему снижению температуры и уменьшению давления до 0,1 МПа. Далее, начинается новый цикл, в ходе которого указанные процессы вновь повторяются.

В ходе каждого такта коленчатый вал двигателя совершает поворот на 180°. За полный рабочий цикл коленвал поворачивается на 720°.

Четырехтактный двигатель получил широкое распространение. Он может работать как с бензином, так и с дизельным топливом. Отличием рабочего цикла для дизеля является то, что воспламенение топливовоздушной смеси происходит не от искры, а от высокого давления и температуры в конечной точке такта сжатия.

Особенности работы двухтактных моторов

Основой того, чем отличается двухтактный двигатель от четырехтактного, можно назвать тот факт, что в первом за один рабочий цикл коленвал совершает два оборота, а во втором весь рабочий цикл укладывается в один оборот коленвала (360°). Поршень при этом совершает лишь два хода. Процессы, происходящие в камере сгорания в течение рабочего цикла у двухтактного мотора, не отличаются от четырехтактных, но впуск горючей смеси и выпуск отработавших газов выполняются одновременно с тактами сжатия и расширения.

Процесс одновременного удаления отработавших газов и нагнетания в цилиндр свежего заряда, происходящий в двухтактном двигателе, получил название продувка.

Принцип работы простейшего двухтактного двигателя заключается в следующем:

  1. Такт сжатия. В начале цикла поршень находится в НМТ и движется в положение ВМТ такта сжатия. При этом происходит перекрытие окна продувки (впуска), а затем канала выпуска. В момент, когда поршень закрывает окно выпуска, начинается сжатие горючей смеси, и в пространстве под поршнем возникает разрежение. Это обеспечивает нагнетание топлива в камеру через приоткрытый клапан впуска.
  2. Такт расширения (рабочего хода). Когда поршень приближается к ВМТ, происходит срабатывание свечи зажигания, и горючая смесь воспламеняется. Это провоцирует резкое повышение давления и температуры, в результате чего поршень начинает движение вниз. Таким образом, газы совершают полезную работу, а поршень при движении к НМТ увеличивает компрессию топливовоздушной смеси. С ростом давления клапан начинает закрываться и препятствует попаданию горючей смеси во впускной коллектор. При достижении поршнем выпускного окна, происходит открытие последнего, и отработавшие газы удаляются в систему выхлопа. Давление в камере снижается, а дальнейшее движение поршня открывает канал продувки и топливовоздушная смесь подается в камеру, вытесняя отработавшие газы.

В зависимости от того, как реализована система продувки в устройстве двухтактного двигателя, их разделяют на разные типы:

  • С контурной кривошипно-камерной продувкой. Горючая смесь подается в камеру цилиндра напрямую из картера двигателя. При этом она всасывается в момент движения поршня к ВМТ, а при движении поршня к НМТ обеспечивается продувка за счет избыточного давления.
  • С клапанно-щелевой продувкой. Применяется для одноцилиндровых двигателей. Газораспределение реализуется путем перекрытия окон, выполненных в стенке цилиндра.
  • С прямоточной продувкой. В такой конструкции впуск выполняется через специальные продувочные окна, выполненные по окружности цилиндра в его нижней части. В свою очередь, выпуск реализуется через выхлопной клапан.
  • С использованием продувочных насосов. Применяется на многоцилиндровых двухтактных двигателях. При этом воздух для продувки сжимается специальным компрессором.

В отличие от четырехтактного, двухтактный двигатель не имеет системы газораспределения. Не требуют такие конструкции и организации сложной системы смазки. С другой стороны, четырехтактные моторы более экономичны по расходу топлива, а также меньше подвержены вибрации и обеспечивают более чистый выхлоп.

Четырехтактный двигатель представляет собой поршневой мотор внутреннего сгорания. Рабочий процесс всех цилиндров в этих агрегатах занимает 2 кругооборота коленчатого вала или четыре поршневых такта. С середины ХХ века 4 тактный двигатель — самый распространенный вид поршневых моторов.

Принцип работы и основная характеристика

Рабочий цикл ДВС (двигателя внутреннего сгорания) состоит из ряда процессов, при которых усиливается мощность двигателя, воздействующего на коленчатый вал. Состоит рабочий цикл из нескольких этапов:

  • цилиндр заполняется топливной смесью;
  • смесь сжимается;
  • топливная смесь воспламеняется;
  • газы расширяются и цилиндр очищается.

В ДВС поршень двигается в одном направлении (вниз или вверх). Коленчатый вал совершает один оборот в два такта. Рабочим ходом поршня называют тот, при котором совершается полезная работа, и расширяются сгоревшие газы.

Двухтактными называют двигатели, в которых цикл совершается в один оборот коленчатого вала или за два такта. Четырехтактные агрегаты характеризуются совершением рабочего цикла за два оборота коленвала или за четыре такта.

Основные характерные показатели 4 тактного двигателя:

  1. За счет движения рабочего поршня происходит обмен газов.
  2. Агрегат оснащен газораспределительным механизмом, позволяющим цилиндровую полость переключать на впуск и выпуск.
  3. Происходит обмен газов в момент отдельного полуоборота коленвала.
  4. Шестерные редукторы и ременная цепная передача дают возможность изменить моменты впрыскивания бензина, зажигания и привода газораспределительного механизма по отношению к частоте вращения коленвала.

История

Приблизительно в 1854—1857 годах итальянцами Феличче Матоци и Евгением Барсанти было создано устройство, которое по имеющимся сегодня сведениям было похоже на четырехтактный мотор. Изобретение итальянцев было утеряно и только в 1861 году. Алфоном де Роше был запатентован двигатель такого типа.

Впервые пригодный к работе четырехтактный мотор создал немецкий инженер Николаус Отто. В его честь был назван четырехтактный цикл работы циклом Отто, а 4-тактный мотор, применяющий свечи зажигания, называют двигателем Отто.

Особенности работы 4-х тактного двигателя

В двухтактном моторе смазывание поршневых и цилиндровых пальцев, коленвала, поршня, подшипника и компрессорных колец проводят, заливая масло в бензин. Коленчатый вал 4тактного мотора располагается в масляной ванне, что является существенным отличием. Именно поэтому отсутствует необходимость смешивать топливо и добавлять масло. Все, что необходимо сделать владельцу автомобиля — наполнить бензином топливный бак.

Автовладельцу, таким образом, незачем приобретать специальное масло, без которого не может функционировать двухтактный мотор. Кроме того, при наличии четырехтактного мотора на поршневом зеркале и на стенах глушителя уменьшается количество нагара. Еще одно важное отличие — в двухтактном моторе в выхлопную трубу выплескивается горючая смесь, что обусловлено его устройством.

Следует признать, что у четырехтактных двигателей также имеются небольшие недостатки. Например, у них не особо качественными являются рабочие моменты по регулированию теплового клапанного зазора.

Конструкция агрегата

Распредвал четырехтактного мотора размещается в крышке цилиндра. Он приводится в действие ведущим колесом, вмонтированном в коленчатый вал. Распределительный вал открывает и закрывает один из клапанов: выпускной или впускной, в зависимости от расположения поршня. На распределительном вале также расположены кулачки, которые приводят в действие клапанные коромысла.

Коромысла после срабатывания, начинают воздействовать на определенный клапан и открывают его. Важно, что между регулировочным винтом и клапаном должен быть тепловой зазор (узкий промежуток). При нагреве металл расширяется, поэтому, если зазор слишком маленький или его нет вообще, клапаны не могут закрыть полностью каналы выпуска и впуска.

У клапана впуска зазор должен быть меньше, чем у клапана выпуска, потому как газы выхлопа горячее, чем смесь. Соответственно клапан впуска нагревается меньше, чем клапаны выпуска.

Работа двигателя

Как уже было отмечено работа четырехтактного мотора состоит из четырех тактов поршня или из двух оборотов коленвала.

  1. Впуск. Поршень движется в нижнюю сторону, открывая клапан впуска. Из карбюратора горючая смесь поступает в цилиндр. Когда поршень достигает нижнего положения, клапан впуска закрывается.
  2. Сжатие. Поршень движется вверх, провоцируя сживание горючей смеси. Когда он приближается к верхней точке, сжатый бензин возгорается.
  3. Расширение. Бензин возгорается и сгорает. В результате чего происходит растяжение горючих газов, и поршень движется вниз. При этом два клапана оказываются закрытыми.
  4. Выпуск. Коленчатый вал по инерции продолжает двигаться вокруг своей оси, а поршень движется вверх. Вместе с этим открывается клапан выпуска, и выхлопные газы поступают в трубу. При прохождении клапаном мертвой точки, клапан впуска закрывается.

Конструктивные и эксплуатационные отличия четырехтактных двухтактных бензиновых двигателей

Главное отличие четырехтактного двигателя от двухтактного обусловлено разными механизмами газообмена, а именно: удалением отработанных газов и подачей топливно-воздушной смеси в цилиндр.

Процессы заполнения цилиндра и его очистки в четырехтактном двигателе происходят с помощью газораспределительного специального механизма, который в определенное время открывает и закрывает рабочий цикл.

Очистка цилиндра и его заполнение в двухтактном двигателе выполняется в одно время с с расширением и сжатием при нахождении поршня поблизости мертвой нижней точки. В стенках цилиндра для этого имеется два отверстия: продувочное или впускное и выпускное. Через выпускное отверстие поступает топливная смесь, и выходят отработанные газы.

Основные отличия двухтактных и четырехтактных двигателей:

  1. Литровая мощность. В четырехтактном двигателе на два оборота коленчатого вала приходится один рабочий ход. Поэтому теоретически двухтактный двигатель должен иметь литровую мощность вдвое больше, чем четырехтактный. Но на практике превышение составляет около 1,8 раза, благодаря использованию поршня при расширении хода, а также наличия худшего механизма освобождения цилиндра от отработанных газов и больших затрат на продувку части мощности.
  2. Потребление топлива. Двухтактный двигатель превосходит четырехтактный в удельной и литровой мощности, но уступает в экономичности. Отработанные газы вытесняются воздушно — топливной смесью, которая поступает в цилиндр из шатунно-кривошипной камеры. Часть топливной смеси при этом поступает в выхлопные каналы и удаляется с отработанными газами.
  3. У двухтактного и четырехтактного двигателей принцип смазки двигателя существенно отличается. Двухтактные модели характеризуются необходимостью смешивания бензина с моторным маслом в определенных пропорциях. Масляная воздушно-топливная смесь циркулирует в поршневой и кривошипной камерах, смазывая подшипники коленчатого вала и шатуна. Мельчайшие капли масла при возгорании топливной смеси сгорают вместе с бензином. Продукты сгорания уходят вместе с отработанными газами.

Смешивают бензин с маслом двумя способами. Это может быть простое перемешивание, которое проводится перед тем, как залить в бак топливо и раздельная передача. Во втором случае масляно-топливная смесь образуется во впускном патрубке, расположенном между цилиндром и карбюратором.

Двигатель в последнем случае оснащен масляным бачком с трубопроводом, соединенным с плунжерным насосом. Насос подает масло во впускной патрубок в том количестве, которое необходимо. Производительность насоса зависит от того, как расположена ручка подачи «газа». Поступление масла тем больше, чем больше подается топливо. Более совершенной является раздельная система смазки двухтактного двигателя. Отношение бензина к маслу при ней может достигать 200:1. Это приводит к снижению расхода масла и к уменьшению дымности. Такую систему используют, например, на современных скутерах.

В четырехтактных двигателях бензин с маслом не смешивают, а подают отдельно, для чего двигатели имеют классическую систему смазки, которая состоит из фильтра, масляного насоса, трубопроводной магистрали и клапанов. В качестве масляного бачка может выступать картер двигателя (смазка с «мокрым «картером) либо отдельный бачок («сухой» картер).

В первом случае насос всасывает из поддона масло, направляет его во входную полость, а затем по каналам -к деталям шатунно-кривошипной группы, к подшипникам коленвала и газораспределительному механизму.

В случае смазки с «сухим» картером масло заливают в бочок. Оттуда оно при помощи насоса попадает к трущимся поверхностям. Стекающую в картер часть масла откачивают дополнительным насосом и возвращают в бачок.

Для очищения масла от разных продуктов износа двигатель имеет фильтр. Кроме того при необходимости устанавливают охлаждающие фильтра, потому как температура масла в процессе работы может очень сильно подниматься.

Одноцилиндровый четырехтактный бензиновый двигатель принцип работы.

Одноцилиндровый четырехтактный бензиновый двигатель принцип работы.

Подробности

В наше время на автомобилях используются четырехтактные многоцилиндровые двигатели. Для того, чтобы вы могли самостоятельно ремонтировать двигатель и определять характер неисправности, вначале необходимо узнать его устройство и принцип работы. Для того чтобы представить как же он все таки работает, рассмотрим принцип работы одноцилиндрового четырехтактного бензинового двигателя. Отличие у них только в количестве цилиндров.

Рис 1 – Одноцилиндровый четырехтактный бензиновый двигатель в разрезе.

1 – глушитель. 2 – пружина клапана. 3 – карбюратор. 4 – впускной клапан. 5 – поршень. 6 — свеча зажигания. 7 – выпускной клапан. 8 – шатун. 9 – маховик. 10 – распределительный вал. 11 – коленчатый вал.

    Принцип работы одноцилиндрового четырехтактного двигателя следующий:
  1. Такт впуска.  Такт – это процесс, происходящий в цилиндре за один ход поршня.

    Рис 2 – Такт впуска.

    1 – впускной клапан. 2 – свеча зажигания. 3 – выпускной клапан. 4 – шатун.

    Направление вращения коленчатого вала происходит по часовой стрелке. Вначале поршень у нас находится в верхней мертвой точке ВМТ. За первый такт коленчатый вал совершает пол оборота (180 градусов), тем самым перемещая поршень из ВМТ в нижнюю мертвую точку НМТ. Когда поршень перемещается вниз, у нас в цилиндре создается разряжение. Одновременно с перемещением поршня открывается впускной клапан 1, в конце первого такта клапан откроется полностью. Благодаря создавшемуся разряжению в цилиндре засасывается горючая смесь, которая представляет собой смешанные пары бензина с воздухом. Не забываем, что в цилиндре у нас еще присутствуют продукты сгорания от предыдущего цикла. В итоге это все смешивается и у нас получается рабочая смесь. Подробнее о такте впуска.
  2. Такт сжатия.

    Рис 3 — Такт сжатия.

    Следующий оборот на 180 градусов приводит перемещение из НМТ в ВМТ. В этом такте оба клапана у нас закрыты, что приводит рабочую смесь к сжатию и повышению давления до 1.8 МПа и температуры 600 градусов Цельсия. Подробнее о такте сжатия.
  3. Такт расширение. Рабочий ход.

    Рис 4 — Такт расширение. Рабочий ход.

    По окончанию сжатия происходит воспламенение рабочей смеси от искры создаваемой свечей 2 и ее сгорание. Что приводит к увеличению температуры до 2500 градусов Цельсия и давления до 5 МПа. За счет резкого повышения давления, поршень начинает перемещаться вниз, толкая шатун 4, который в свою очередь совершает вращательное действие на коленчатый вал. В этом такте совершается полезная работа, тепловая энергия преобразуется в механическую. При подходе поршня к НМТ начинает открываться выпускной клапан 3, через который отводятся отработанные газы. В результате температура у нас падает до 1200 градусов, а давление до 0.65 МПа. Подробнее о такте рабочего хода.
  4. Такт выпуска.

    Рис 5 – Такт выпуска.

    В этом такте у нас полностью открывается выпускной клапан 3. Поршень перемещается из нижней мертвой точки в высшую, выталкивая отработанные газы. Далее газы попадают в выпускной коллектор, затем пройдя через глушитель в атмосферу. В конце такта температура в цилиндре падает до 500 градусов, а давление до 0.1 МПа. Полностью цилиндр от отработанных газов не освобождается, какой-то их процент остается и участвует в последующем такте. Подробнее о такте выпуска.

В процессе работы двигателя все перечисленные такты повторяются циклически. При 3 такте, где совершается рабочий ход поршня, механическая энергия от коленвала передается маховику, которую он накапливает и использует ее в последующих тактах. Благодаря маховику работа двигателя становится ровной и устойчивой.

Что называется тактом в работе двигателя?

Устройство двухтактного двигателя и принцип его работы

Поршневые двигатели внутреннего сгорания (ДВС) широко используются в разных сферах человеческой жизни. Однако не все они работают одинаково. Между ними есть одно принципиальное отличие. В зависимости от конструкции рабочий цикл двигателя может состоять из двух или четырёх тактов. Поэтому и называется он соответственно двухтактным двигателем или четырехтактным. Это справедливо как для бензинового мотора, так и для дизеля.

Основные термины и определения

Принцип работы всех поршневых двигателей заключается в превращении энергии сгорания топлива в механическую энергию. Передаточным звеном является кривошипно-шатунный механизм. Для описания их работы используются следующие понятия:

  • Рабочий цикл — это определённая последовательность взаимосвязанных событий, вследствие которых происходит преобразование энергии теплового расширения сгорающего топлива в механическую энергию перемещения поршня и поворота коленчатого вала.
  • Такт — последовательность изменения состояния узлов и механизмов, происходящая в течение одного хода поршня.
  • Ход поршня — это расстояние, которое проходит поршень внутри цилиндра между его крайними точками.
  • Верхняя мёртвая точка (ВМТ) — это наивысшее положение поршня в цилиндре, при этом объем камера сгорания имеет минимальный объем.
  • Нижняя мёртвая точка (НМТ) — максимально удалённое от ВМТ положение поршня.
  • Впуск — заполнение цилиндра топливовоздушной смесью.
  • Сжатие — уменьшение объёма смеси и сжатие её под давлением поршня.
  • Рабочий ход — перемещение поршня под давлением газов сгорающего топлива.
  • Выпуск — выталкивание из цилиндра продуктов горения топлива.

Принцип работы четырехтактного двигателя

Четырехтактным называется такой поршневой двигатель, в котором один рабочий цикл состоит из четырёх тактов. Они имеют следующие названия:

За один цикл поршень два раза двигается от ВМТ к НМТ и обратно, а коленчатый вал проворачивается на два полных оборота. События, которые происходят за это время в двигателе, имеют чётко определённую последовательность.

Впуск. Поршень перемещается вниз, к НМТ. Под ним образуется разрежение, благодаря которому через открытую тарелку впускного клапана из впускного коллектора в цилиндр затягивается топливо, смешанное с воздухом. Поршень проходит нижнюю мёртвую точку, после чего впускной клапан закрывает впускной коллектор.

Такт сжатия. Продолжающий двигаться вверх поршень сжимает воздушную смесь.

В верхней мёртвой точке над поршнем происходит поджог горючей смеси. Сгорая, оно вызывает значительное увеличение давления на поршень. Начинается такт рабочего хода. Под действием давления сгорающих газов поршень снова движется к НМТ, выполняя при этом полезную работу.

После прохождения поршнем НМТ открывается тарелка выпускной клапан. Поршень, двигаясь к ВМТ, выталкивает выхлопные газы в выпускной коллектор. Это такт выпуска.

Затем снова начинается такт впуска и так бесконечно.

Рабочий цикл из двух тактов

Одноцилиндровый двухтактный двигатель работает по-другому. Здесь все четыре действия происходят за один полный оборот коленвала. При этом поршень делает только два такта (расширения и сжатия), двигаясь от ВМТ к НМТ и обратно. А впуск и выпуск являются частью этих двух тактов. Подробней принцип работы двухтактного двигателя внутреннего сгорания можно описать следующим образом.

Газы от сгорания топливной смеси толкают поршень вниз от ВМТ. Примерно на середине хода поршня в гильзе цилиндра открывается выпускное отверстие, через которое часть газов выбрасывается в патрубок глушителя. Продолжая двигаться вниз, поршень создаёт давление, благодаря которому в цилиндр поступает новая порция топлива, одновременно продувая его от остатков сгоревших газов. Подходя к ВМТ, поршень сжимает смесь и система зажигания воспламеняет её. Снова начинается такт расширения.

В авиамоделестроении широко используется двухтактный дизельный двигатель, его принцип работы тот же, что и у бензинового. Разница в том, что смесь топлива с воздухом самостоятельно воспламеняется в конце цикла сжатия. Горючим для таких моторов служит смесь эфира с авиационным керосином. Воспламенение этого горючего происходит при гораздо меньшей степени сжатия, чем у двигателей на традиционном дизельном топливе.

Конструктивные особенности и различия

Двухтактный двигатель отличается от четырехтактного не только тем, за сколько тактов работы происходит газообмен.

Четырехтактный требует наличия системы газораспределения (впускные и выпускные клапаны, распределительный вал с кулачковым механизмом и т. д. ). В двухтактном такой системы нет, благодаря этому он гораздо проще.

Двигатель с четырьмя тактами работы требует полноценной системы смазки из-за большого количества движущихся и трущихся частей. Для смазки двигателя с двумя тактами работы можно использовать масло просто разводя его вместе с топливом.

Эксплуатационные показатели в сравнении

Сопоставляя двухтактный двигатель и четырехтактный двигатель, разницу между ними можно заметить не только в устройстве, но и в эксплуатационных характеристиках. Сравнивать их можно по следующим показателям:

  • литровая мощность;
  • удельная мощность;
  • экономичность;
  • экологичность;
  • шумность;
  • ресурс работы;
  • простота обслуживания;
  • вес;
  • цена.

Литровой называется мощность, снимаемая с литра объёма цилиндра. Теоретически она должна быть в два раза больше у двухтактного. Однако на деле этот показатель составляет 1,5−1,8. Сказывается неполное использование рабочего хода газов, затраты энергии на продувку, неполное сгорание и потери топлива.

Удельная мощность представляет собой величину отношения мощности мотора к его весу. Она также выше у двухтактных. Для них нужен менее тяжёлый маховик и не нужны дополнительные системы (газораспределения и смазки), утяжеляющие конструкцию. КПД у них также выше.

Экономичность (расход топлива на единицу мощности) выше у четырехтактных. Двигатели с двумя тактами часть топлива теряют впустую при продувке цилиндра.

Экологичность двухтактных ниже, опять-таки из-за потери несгоревшего топлива и масла. Убедиться в этом можно на примере двухтактного лодочного мотора. Он всегда оставляет на воде тонкую плёнку из несгоревшего топлива.

Шумность выше у двухтактных. Это связано с тем, что выхлопные газы из цилиндра вырываются с большой скоростью.

Ресурс работы выше у четырехтактных. Отдельная система смазки и меньшая оборотистость двигателя положительно сказываются на сроке его службы.

Проще обслуживать, безусловно, двухтактные моторы из-за меньшего количества вспомогательных систем. Масса больше у четырехтактных. Двухтактные дешевле.

В некоторых механизмах применение двухтактных двигателей является однозначным. Это, например, бензопилы. Высокая удельная мощность, маленький вес и простота делают его здесь безусловным фаворитом.

Двухтактные двигатели используются также в мототехнике, лодочных моторах, газонокосилках, скутерах, авиамоделировании. В большинстве самодельных машин и механизмов умельцы также используют двухтактный мотор.

Однотактные и трехтактные силовые агрегаты

Существуют также одно- и трехтактные двигатели. Однотактные двигатели делают с внешней камерой сгорания. Такая схема реализует все четыре такта за один ход поршня. Трехтактный двигатель Ванкеля является роторно-поршневым. Из-за сложности конструкции и чрезвычайной требовательности к качеству обработки поверхностей такие моторы не получили широкого распространения.

Четырехтактный двигатель

Четырехтактный двигатель состоит из цилиндров, установленных на картере и закрытых сверху головкой. Снизу к картеру крепится поддон. В головке цилиндров установлены клапаны — впускные и выпускные — и свечи зажигания (в бензиновых) или форсунки для впрыска топлива (в дизелях). Внутри цилиндра возвратно-поступательно перемещается поршень, который через поршневой палец соединен с верхней головкой шатуна. Нижняя головка шатуна охватывает шатунную шейку коленчатого вала, коренные шейки которого установлены на подшипниках в картере двигателя. Поршень уплотняется в цилиндре посредством поршневых колец. На конце коленчатого вала закреплен маховик. Положение, которое занимает поршень в конце его хода вверх, называется верхней мертвой точкой (ВМТ), а положение в конце хода вниз — нижней мертвой точкой (НМТ). Перемещение поршня от одной мертвой точки до другой при работе двигателя называется тактом. Объем, который образуется над поршнем при нахождении его в ВМТ, называется объемом камеры сгорания. Объем, который освобождает поршень при его движении от ВМТ к НМТ, называется рабочим объемом или литражом двигателя. Сумма объема камеры сгорания и рабочего объема называется полным объемом цилиндра.
Очень важным параметром поршневого двигателя является степень сжатия, которая определяется как отношение полного объема цилиндра к объему камеры сгорания. Степень сжатия современных автомобильных двигателей с искровым зажиганием равна примерно 10. Автомобильные четырехтактные дизели имеют более высокую степень сжатия, не менее 20.

1 — подводящая труба насоса охлаждающей жидкости;
2 — блок цилиндров;
3 — термостат;
4 — датчик температуры охлаждающей жидкости системы управления двигателем;
5 — выпускной патрубок охлаждающей жидкости;
6 — заглушка головки блока цилиндров;
7 — крышка головки блока цилиндров;
8 — регулятор давления топлива;
9 — крышка маслозаливной горловины;
10 — трос привода дроссельной заслонки;
11 — дроссельный узел;
12 — регулятор холостого хода;
13 — датчик положения дроссельной заслонки;
14 — ресивер;
15 — задняя крышка привода распределительного вала;
16 — передняя крышка привода распределительного вала;
17 — форсунка;
18 — пробка штуцера топливной рампы;
19 — топливная рампа;
20 — впускной коллектор;
21 — правый опорный кронштейн впускного коллектора;
22 — шкив привода генератора;
23 — масляный фильтр;
24 — датчик положения коленчатого вала;
25 — поддон картера;
26 — выпускной коллектор;
27 — шатун;
28 — коленчатый вал;
29 — левый опорный крон штейн выпускного коллектора;
30 — маховик

Поперечный разрез двигателя ВАЗ-2111:

1 — пробка сливного отверстия поддона картера;
2 — поддон картера;
3 — масляный фильтр;
4 — насос охлаждающей жидкости;
5 — выпускной коллектор;
6 — впускной коллектор;
7 — форсунка;
8 — топливная рампа;
9 — ресивер;
10 — крышка головки блока цилиндров;
11 — крышка подшипников распределительного вала;
12 — распределительный вал;
13 — шланг вентиляции картера;
14 — регулировочная шайба клапана;
15 — сухари клапана;
16 — толкатель;
17 — пружины клапана;
18 — маслосъемный колпачок;
19 — направляющая втулка клапана;
20 — клапан;
21 — свеча зажигания;
22 — головка блока цилин дров;
23 — поршень;
24 — компрессионные кольца;
25 — маслосъемное кольцо;
26 — поршневой палец;
27 — блок цилиндров;
28 — шатун;
29 — коленчатый вал;
30 — крышка шатуна;
31 — указатель уровня масла;
32 — приемник масляного насоса

Четырехтактный цикл последовательно включает в себя следующие такты: впуск, сжатие, рабочий ход и выпуск:

Четырехтактный цикл:
а — впуск;
б — сжатие;
в — рабочий ход;
г — выпуск

При работе бензинового двигателя в начале такта впуска открывается впускной клапан, а поршень перемещается от ВМТ. По мере перемещения поршня по направлению к НМТ в цилиндре образуется разрежение и в него поступает смесь паров бензина и воздуха, которую принято называть топливно-воздушной смесью или горючей смесью. После прохода поршнем НМТ он за счет вращения коленчатого вала начнет подниматься к ВМТ, что является началом такта сжатия. В начале такта сжатия закрывается впускной клапан и оба клапана остаются закрытыми в течение всего такта. При перемещении поршня к ВМТ горючая смесь, находящаяся в цилиндре, сжимается, ее давление и температура возрастают. Максимальное значение давления сжатия возникает, когда поршень достигает ВМТ. Но поскольку процесс сгорания топлива занимает определенное время, горючую смесь необходимо поджечь заранее, до того, как поршень дойдет до ВМТ в такте сжатия. Смесь воспламеняется с помощью электрической искры, проскакивающей между электродами свечи зажигания. Угол поворота коленчатого вала от момента появления искры до ВМТ называется углом опережения зажигания. При сгорании топлива выделяется большое количество энергоемких газов, которые давят на поршень, заставляя его в следующем такте совершать рабочий ход, который происходит при закрытых клапанах, когда поршень движется по направлению от ВМТ к НМТ. После рабочего хода начинается такт выпуска. При этом открывается выпускной клапан, а поршень движется по направлению к ВМТ, вытесняя отработавшие газы в атмосферу. Затем цикл повторяется в той же последовательности.

Устройство автомобилей

Рабочие циклы двигателей

Рабочий цикл четырехтактного карбюраторного двигателя

Работа двигателя внутреннего сгорания может быть представлена в виде систематически повторяющихся процессов, которые принято называть рабочими циклами. Рабочим циклом двигателя называется ряд последовательных, периодических повторяющихся процессов в цилиндрах, в результате которых тепловая энергия топлива преобразуется в механическую работу. При этом каждый полный рабочий цикл может быть разделен на одинаковые (повторяющиеся) части – такты.

Часть рабочего цикла, совершаемого за время движения поршня от одной мертвой точки до другой, т. е. за один ход поршня, называется тактом . Двигатели, рабочий цикл которых совершается за четыре хода поршня (два оборота коленчатого вала), называются четырехтактными.
В головке блока цилиндров, над камерой сгорания (рис. 1) карбюраторного двигателя устанавливаются впускной 4 и выпускной 6 клапаны, управляемые газораспределительным механизмом, а также свеча зажигания 5.

Рабочий цикл карбюраторного четырехтактного двигателя состоит из последовательных тактов впуска, сжатия, расширения и выпуска.

Такт впуска

В результате вращения коленчатого вала при пуске двигателя (вручную или с помощью специального устройства — например, заводной рукоятки или электродвигателя — стартера) поршень совершает движение от верхней мертвой точки (ВМТ) к нижней мертвой точке (НМТ). При этом впускной клапан 4 открыт, а выпускной клапан 6 закрыт.
Так как объем цилиндра при движении поршня вниз (к НМТ) быстро увеличивается, давление над поршнем уменьшается до 0,07. 0,09 МПа, т. е. внутри цилиндра создается вакуум – избыточное разрежение.
Впускной клапан 3 сообщается со специальным устройством – карбюратором, который приготавливает горючую смесь из топлива и воздуха. Вследствие разности давлений в карбюраторе и цилиндре горючая смесь всасывается через открытый впускной клапан в цилиндр двигателя.

Если двигатель уже работает, то горючая смесь, попадая в цилиндр из карбюратора, смешивается с остаточными продуктами сгорания от предыдущего цикла, и образует рабочую смесь. Смешиваясь с остаточными продуктами сгорания и соприкасаясь с нагретыми деталями цилиндра, рабочая смесь нагревается до температуры 75. 125 ˚С.

Такт сжатия

При подходе поршня к НМТ впускной клапан закрывается. Далее поршень начинает перемещаться вверх (к ВМТ), сжимая смесь воздуха, топлива и остаточных продуктов сгорания, которые не были удалены из цилиндра при выпуске. При движении поршня от НМТ к ВМТ вследствие сокращения объема цилиндра при закрытых клапанах повышаются давление, при этом возрастает температура рабочей смеси (в соответствии с законом Гей-Люссака).
В конце такта сжатия давление внутри цилиндра повышается до 0,9…1,5 МПа, а температура смеси достигает 270-480 ˚С.
В этот момент к электродам свечи зажигания 5 подводится высокое напряжение, которые вызывает между ними искровой разряд, результате чего рабочая смесь воспламеняется и сгорает.
В процессе сгорания топлива выделяется большое количество теплоты, из-за чего температура газов (продуктов сгорания) повышается до 2200-2500 ˚С, и давление внутри цилиндра достигает 3,0…4,5 МПа. Газы начинают расширяться, перемещая поршень вниз, к НМТ.

Такт расширения (рабочий ход)

Под давлением расширяющихся газов поршень движется от ВМТ к НМТ (при этом оба клапана закрыты). В этот промежуток времени (такт) происходит преобразование тепловой энергии в полезную работу, поэтому ход поршня в такте расширения называют рабочим ходом.
При движении поршня к НМТ объем цилиндра увеличивается, вследствие чего давление уменьшается до 0,3…0,4 МПа, а температура газов снижается до 900…1200 ˚С.

Такт выпуска

При подходе поршня к НМТ открывается выпускной клапан 6, в результате чего продукты сгорания рабочей смеси вырываются наружу из цилиндра.
При дальнейшем вращении коленчатого вала поршень начинает перемещаться от НМТ к ВМТ. Выталкивая отработавшие газы через открытый выпускной клапан, выпускной канал 7 и выпускную трубу в окружающую среду. К концу такта выпуска давление в цилиндре составляет 0,11…0,12 МПа, а температура – 600…900 ˚С.

При подходе поршня к ВМТ выпускной клапан закрывается, впускной открывается и начинается такт впуска, дающий начало новому рабочему циклу.

Рабочий цикл четырехтактного дизеля

Рабочий цикл дизельного двигателя принципиально отличается от цикла карбюраторного двигателя тем, что рабочая смесь (смесь топлива, воздуха и остаточных продуктов сгорания) приготовляется внутри цилиндра, поскольку воздух подается в цилиндр отдельно, а топливо отдельно – через форсунку. В дизельном двигателе нет специального устройства для поджигания рабочей смеси – она самовозгорается в результате высокой степени сжатия.
Т. е. в дизеле, в отличие от карбюраторного двигателя, через впускной клапан подается не горючая смесь, а атмосферный воздух, а топливо впрыскивается через форсунку в конце такта сжатия. В цилиндре, как и в случае с карбюраторным двигателем, остаются продукты сгорания рабочей смеси, которые не удалось удалить продувкой.
Смесеобразование (перемешивание воздуха, топлива и остаточных продуктов сгорания) в дизеле протекает внутри цилиндра, что и обуславливает основные отличия череды тактов, составляющих рабочий цикл.

Высокая степень сжатия приводит к тому, что поступивший в цилиндр через впускной клапан воздух, смешивается с остаточными газами и раскаляется (в буквальном смысле этого слова) до высоких температур. И в это время в цилиндр впрыскивается топливо, которое вспыхивает и начинает гореть.

Рабочие процессы в дизельном двигателе протекают в следующей последовательности (рис. 2) :

Такт впуска

В период такта впуска поршень 2 движется от НМТ к ВМТ. При этом впускной клапан 5 открыт, выпускной клапан 6 закрыт. В цилиндре 7 из-за разности давлений в окружающей среде и в цилиндре в конце такта впуска возникает разрежение 0,08. 0,09 МПа, при этом температура внутри цилиндра не превышает 40…70 ˚С.

Такт сжатия

В процессе такта сжатия оба клапана закрыты. Поршень 2 движется от НМТ к ВМТ, сжимая смесь воздуха и отработавших газов. Давление в конце такта сжатия достигает 3…6 МПа, а температура – 450…650 ˚С (превышает температуру самовоспламенения топлива).

При подходе поршня к ВМТ, в цилиндр через форсунку 3 впрыскивается распыленное жидкое топливо. Топливо подается к форсунке (через трубку высокого давления) топливным насосом 1 высокого давления (ТНВД). Форсунка обеспечивает тонкое распыление топлива в сжатом воздухе. Распыленное топливо самовоспламеняется и сгорает. В результате сгорания температура в цилиндре достигает 1600…1900 ˚С, давление – 6…9 МПа.

Такт расширения (рабочий ход)
Такт выпуска

При подходе к нижней мертвой точке (НМТ) выпускной клапан 6 открывается и большая часть отработавших газов под воздействием высокого давления вырывается из цилиндра в атмосферу. Поршень начинает перемещение от НМТ к ВМТ и через открытый выпускной клапан выталкивает оставшиеся в цилиндре отработавшие газы в окружающую среду. К концу такта давление газов в цилиндре составляет 0,11…0,12 МПа, а температура – 600. 700 ˚С.
Далее рабочий цикл повторяется.

Таким образом, в четырехтактном двигателе только один такт – рабочий ход является полезным с точки зрения совершения полезной работы, остальные три вспомогательные, они осуществляются за счет кинетической энергии маховика, закрепленного на конце коленчатого вала.

Рабочий цикл двухтактного двигателя

В двухтактных ДВС рабочий цикл осуществляется за один оборот коленчатого вала.
Схема двухтактного дизеля представлена на рис. 3 .
Воздух насосом 3 нагнетается через впускное (продувочное) окно 4 в цилиндр. В нижней части цилиндра напротив впускного окна имеется выпускное окно 7. В головке 5 блока цилиндра установлены форсунки 6.

Первый такт (рис. 3, а) совершается при движении поршня от НМТ к ВМТ за счет кинетической энергии маховика двигателя. Оба окна открыты. Нагнетаемый через впускное окно 4 воздух вытесняет из цилиндра оставшиеся в нем отработавшие газы, которые выходят через выпускное окно 7. Таким образом происходит очистка цилиндра от отработавших газов (продувка) и заполнение его свежим зарядом.

Движущийся вверх поршень 8 сначала закрывает впускное окно, а затем выпускное окно. С этого момента начинается процесс сжатия, в конце которого через форсунку 6 впрыскивается топливо.
Таким образом, за первую половину оборота коленчатого вала совершаются процессы наполнения и сжатия, и начинается сгорание топлива.

Второй такт (рис. 3. б) происходит при движении поршня ВМТ к НМТ. В результате выделения теплоты при сгорании топлива повышается температура и давление внутри цилиндра. Поршень перемещается вниз, совершая полезную работу.
Как только поршень открывает выпускное окно, отработавшие газы под давлением начинают выходить в окружающую среду. К моменту открытия впускного окна давление внутри цилиндра снижается на столько, что возможна очистка цилиндра путем вытеснения отработавших газов свежим зарядом воздуха, подаваемым в цилиндр насосом 3.
Этот процесс называется продувкой цилиндра. При этом одновременно с вытеснением отработавших газов происходит наполнение цилиндра свежим зарядом. Далее все процессы повторяются в той же последовательности.

Рабочий цикл двухтактного карбюраторного двигателя аналогичен рабочему циклу двухтактного дизеля. Отличие состоит в том, что в цилиндр поступает не чистый воздух, а горючая смесь, и в конце процесса сжатия в цилиндре посредством свечи зажигания подается искра, в результате чего происходит воспламенение горючей смеси.

Одним из преимуществ двухтактного двигателя по сравнению с четырехтактным является то, что каждый рабочий ход здесь протекает в период одного оборота коленчатого вала, а не двух. Очевидно, что снижение количества тактов должно привести к повышению КПД из-за уменьшения паразитических процессов . А поскольку в четырехтактном двигателе за два оборота коленчатого вала протекают четыре такта, из которых полезным является лишь такт рабочего хода (т. е. остальные три такта являются паразитическими), то естественно предположить, что КПД четырехтактного двигателя должен быть ниже, чем КПД четырехтактного двигателя.

Существенными недостатками двухтактных двигателей является их низкая топливная экономичность и меньший срок службы по сравнению с четырёхтактными двигателями. Объясняется этот недостаток тем, что при продувке цилиндра (или цилиндров) свежая горючая смесь частично удаляется вместе с отработавшими газами, поскольку, в отличие от четырехтактного двигателя, выпуск и впуск газов протекает одновременно.
Этими недостатками, а также большей токсичностью отработавших газов объясняется ограниченное применение двухтактных двигателей на автомобилях.

Что такое рабочий цикл двигателя автомобиля

Существует несколько различных типов двигателей, при этом на колесном, гусеничном, водном и даже иногда воздушном транспорте (грузовые и легковые авто, спецтехника, моторные лодки, самолеты и т.п.), нередко можно встретить двигатель внутреннего сгорания (ДВС).

Так или иначе, широкое распространение силовой агрегат данного типа получил благодаря своей автономности, универсальности, а также целому ряду других преимуществ. При этом агрегаты имеют много различных параметров и характеристик, среди которых стоит отдельно выделить рабочий цикл. Далее мы поговорим о том, что означает рабочий цикл автомобильного двигателя внутреннего сгорания.

Читайте в этой статье

Рабочий цикл ДВС: что нужно знать

Если рассматривать принцип работы двигателя внутреннего сгорания, топливо в таких агрегатах сгорает в закрытой камере (камера сгорания), куда подается готовая топливно-воздушная смесь или воздух и топливо по отдельности (дизельные агрегаты и моторы с прямым впрыском).

Работа такого мотора основана на том, что во время сгорания топлива происходит расширение газов. Указанные газы становятся причиной роста давления в цилиндре, благодаря чему поршень получает «толчок». Затем энергия, переданная на поршень, преобразуется в механическую работу. Давайте рассмотрим принцип работы двигателя, а также рабочие циклы более подробно.

Двигатели, которые устанавливаются на автомобили, обычно работают по четырехтактному циклу (четырехтактный двигатель). Это значит, рабочий цикл совершается за два оборота коленвала и четыре хода поршня. Работу такого ДВС можно разделить на такты: такт впуска, такт сжатия, такт рабочего хода, такт выпуска.

Как работает четырехтактный бензиновый двигатель

Чтобы было понятнее, начнем с того, что когда поршень в цилиндре во время работы ДВС начинает занимать крайние положения (максимально приближен или удален по отношению к оси коленчатого вала), эти положения принято называть ВМТ и НМТ. ВМТ означает верхняя мертвая точка, тогда как НМТ значит нижняя мертвая точка. Теперь вернемся к тактам.

  • На такте впуска коленчатый вал двигателя делает первую половину оборота, при этом поршень из ВМТ движется в НМТ. В этот момент открыт впускной клапан, а выпускной клапан закрыт. При движении поршня вниз в цилиндре образуется разрежение, в результате чего в цилиндр «засасывается» топливно-воздушная смесь через открытый впускной клапан. Рабочая смесь состоит из воздуха и распыленного топлива (в некоторых двигателях на такте впуска поступает только воздух).
  • Следующим тактом является сжатие. После того, как произойдет наполнение цилиндра топливно-воздушной смесью, коленвал начинает совершать вторую половину оборота. В этот момент поршень начинает подниматься из НМТ в ВМТ. При этом впускной клапан уже закрыт. Далее поршень сжимает смесь в герметично закрытом цилиндре. Чем больше уменьшается объем цилиндра, тем сильнее сжимается смесь. Результатом такого сжатия является повышение температуры смеси.
  • К тому времени, когда поршень подойдет к концу такта сжатия (практически дойдет до ВМТ), смесь в бензиновых двигателях воспламеняется от внешнего источника (электрическая искра на свече зажигания). Затем топливный заряд сгорает, в результате в цилиндре резко повышается температура и давление. В этот момент поршень уже перемещается обратно из ВМТ в нижнюю мертвую точку, принимая на себя энергию расширяющихся газов.
  • После того, как поршень почти дойдет до НМТ в конце рабочего хода, происходит открытие выпускного клапана. После этого давление в цилиндре снижается, несколько падает и температура. Затем начинается такт выпуска. В это время коленчатый вал совершает последний полуоборот, при этом поршень снова поднимается из НМТ в ВМТ, буквально «выталкивая» отработавшие газы из цилиндра через открытый выпускной клапан в выпускной коллектор.

Работа четырехтактного дизельного ДВС

Хотя дизель конструктивно похож на бензиновый мотор, в дизельных двигателях изначально сжимается только воздух, после чего прямо в камеру сгорания впрыскивается дизтопливо. При этом воспламенение такой смеси происходит самостоятельно (под большим давлением, а также в результате контакта с нагретым от сильного сжатия воздухом).

Простыми словами, воздух сначала сжимается и нагревается, в среднем, до 650 градусов по Цельсию. В самом конце такта сжатия в камеру сгорания топливная форсунка впрыскивает солярку, затем смесь дизтоплива и воздуха самовоспламеняется.

С учетом данной особенности на такте впуска (поршень движется из ВМТ в НМТ), за счет разряжения в цилиндр подается воздух через открытый впускной клапан. Давление и температура воздуха в этот момент имеют низкие показатели.

Затем начинается сжатие, поршень поднимается из НМТ в верхнюю мертвую точку. Как и в случае с бензиновым мотором, впускной и выпускной клапаны полностью закрыты, что позволяет поршню сильно сжать воздух.

Если учесть, что давление воздуха в цилиндре высокое (необходимо для его нагрева), дизельное топливо в момент впрыска должно также подаваться под очень высоким давлением. Фактически, форсунке нужно «продавить» солярку в камеру сгорания, в которой уже находится сильно сжатый поршнем и горячий воздух.

Для решения этой задачи многие системы питания дизельного двигателя имеют ТНВД (топливный насос высокого давления). Также в схеме могут быть использованы насос-форсунки (форсунка и насос объединены в одно устройство). Еще существуют варианты, когда питание двигателя реализовано при помощи так называемого «аккумулятора» высокого давления. Речь идет о системах Common Rail.

После воспламенения заряда происходит расширение газов и начинается рабочий ход поршня. Температура в результате горения смеси повышается, происходит увеличение давления. Указанное давление газов «толкает» поршень, происходит рабочий ход. Завершающим этапом становится выпуск, когда поршень после совершения рабочего хода снова поднимается из НМТ в ВМТ. Затем весь описанный выше процесс (рабочий цикл двигателя) повторяется.

Синхронная работа нескольких цилиндров

Выше были описан принцип работы ДВС, при этом рассматривались процессы в одном цилиндре. Однако, как известно, большинство двигателей являются многоцилиндровыми. Для того чтобы добиться ровной и синхронной работы всех цилиндров, рабочий ход поршня в каждом отдельном цилиндре должен происходить через равный промежуток времени (одинаковые углы поворота коленвала).

В зависимости от компоновки двигателя и его конструктивных особенностей последовательность (порядок работы) может быть разной. Дело в том, что двигатели бывают не только рядными, но и V-образными.

Во втором случае такая компоновка позволяет разместить цилиндры под углом, при этом становится возможным увеличить общее количество цилиндров без увеличения самой длины блока цилиндра двигателя. Такое решение позволяет разместить мощный многоцилиндровый ДВС под капотом не только большого внедорожника или грузовика, но и легкового авто.

Обороты и мотресурс двигателя. Недостатки езды на низких и высоких оборотах. На каком количестве оборотов мотора ездить лучше всего. Советы и рекомендации.

Зависимость мощности и крутящего момента двигателя от числа оборотов коленвала. Крутящий момент бензинового и дизельного ДВС, полка момента, эластичность.

Что означает понятие объем двигателя. Определение рабочего объема мотора. Классы авто в зависимости от объема ДВС, плюсы и минусы большого объема двигателя.

Почему дизельный мотор имеет больший коэффициент полезного действия по сравнению с двигателями на бензине. Крутящий момент и обороты, энергия дизтоплива.

Виды двигателей внутреннего сгорания, отличия различных типов ДВС. Особенности компоновки, объем двигателя, мощность, крутящий момент и другие параметры.

Что нужно знать об электромобилях. Устройство машин с электродвигателем, основные характеристики. Эксплуатация и обслуживание в теории и на практике.

Рабочие циклы четырехтактных двигателей и показатели их работы

Категория:

   Техническое обслуживание автомобилей

Публикация:

   Рабочие циклы четырехтактных двигателей и показатели их работы

Читать далее:



Рабочие циклы четырехтактных двигателей и показатели их работы

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу.

Если рабочий цикл совершается за два хода поршня, т. е. за один оборот коленчатого вала, то такой двигатель называется двухтактным. В настоящее время двухтактные двигатели на автомобилях не применяют, а используют лишь на мотоциклах и как пусковые двигатели на тракторах. Это связано прежде всего с тем, что они имеют сравнительно высокий расход топлива и недостаточное наполнение горючей смеси из-за плохой очистки цилиндров от отработавших газов.

Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения и выпуска.

Рекламные предложения на основе ваших интересов:

В карбюраторном четырехтактном одноцилиндровом двигателе (рис. 1.3) рабочий цикл происходит следующим образом.

Рис. 1. Рабочий цикл четырехтактного одноцилиндрового карбюраторного двигателя

Такт впуска. Поршень находится в в.м.т. и по мере вращения коленчатого вала (за один его полуоборот) перемещается от в.м.т. к н.м.т. При этом впускной клапан открыт, а выпускной клапан закрыт. При движении поршня вниз объем над ним увеличивается, поэтому в цилиндре создается разряжение, равное 0,07—0,095 МПа, в результате чего свежий заряд горючей смеси, состоящей из паров бензина и воздуха, засасывается через впускной трубопровод в цилиндр.

От соприкосновения свежего заряда с нагретыми деталями в конце такта впуска он имеет температуру 75—125 °С.

Степень заполнения цилиндра свежим зарядом характеризуется коэффициентом наполнения, который для высокооборотных карбюраторных двигателей находится в пределах 0,65—0,75. Чем выше коэффициент наполнения, тем большую мощность развивает двигатель.

Такт сжатия. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала поршень перемещается от н.м.т. к в.м.т. Впускной клапан 4 закрывается, а выпускной 6 закрыт. По мере сжатия горючей смеси температура и давление ее повышаются. В зависимости от степени сжатия давление в конце такта сжатия может составлять 0,8—1,5 МПа, а температура газов 300— 450 °С.

Такт расширения, или рабочий ход. В конце такта сжатия горючая смесь воспламеняется от электрической искры, возникающей между электродами свечи, и быстро сгорает, в результате чего температура и давление образующихся газов резко возрастают, поршень при этом перемещается от в.м.т. к н.м.т. Максимальное давление газов на поршень при сгорании для карбюраторных двигателей находится в пределах 3,5—5 МПа, а температура газов 2100—2400 °С.

При такте расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип передает вращение коленчатому валу. При расширении газы совершают полезную работу, поэтому ход поршня при этом такте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня давление в цилиндре снижается до 0,3—0,75 МПа, а температура — до 900—1200 °С.

Такт выпуска. Коленчатый вал через шатун перемещает поршень от н.м.т. к в.м.т. При этом выпускной клапан открыт и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной трубопровод. В начале процесса выпуска продуктов сгорания давление в цилиндре значительно выше атмосферного, но к концу такта оно падает до 0,105—0,120 МПа, а температура газов в начале такта выпуска составляет 750— 900 °С, понижаясь к его концу до 500—600 °С. Полностью очистить цилиндры двигателя от продуктов сгорания практически невозможно (слишком мало времени), поэтому при последующем впуске свежей горючей смеси она перемешивается с остаточными отработавшими газами и называется рабочей смесью.

Коэффициент остаточных газов характеризует степень загрязнения свежего заряда отработавшими газами и представляет собой отношение массы продуктов сгорания, оставшихся в цилиндре, к массе свежей горючей смеси. Для современных карбюраторных двигателей коэффициент остаточных газов находится в пределах 0,06—0,12.

По отношению к рабочему ходу такты впуска, сжатия и выпуска являются вспомогательными.

Рабочие циклы четырехтактного дизеля и карбюраторного двигателя существенно различаются по способу смесеобразования и воспламенения рабочей смеси. Основное отличие состоит в том, что в цилиндр дизеля при такте впуска поступает не горючая смесь, а воздух, который из-за большой степени сжатия нагревается до высокой температуры, а затем в него впрыскивается мелкораспыленное топливо, которое под действием высокой температуры воздуха самовоспламеняется.

В четырехтактном дизеле рабочие процессы происходят следующим образом.

Такт впуска. При движении поршня от в.м.т. к н.м.т. вследствие образующегося разряжения из воздухоочистителя в полость цилиндра через открытый впускной клапан 5 поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0,08—0,95 МПа, а температура 40—60 °С.

Такт сжатия. Поршень движется от н.м.т. к в.м.т. Впускной 5 и выпускной 6 клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает имеющийся в цилиндре воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. Из-за высокой степени сжатия температура воздуха достигает 550—700 °С при давлении воздуха внутри цилиндра 4,0—5,0 МПа.

Такт расширения, или рабочий ход. При подходе поршня к в.м.т. в цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом. Впрыснутое топливо, перемешиваясь с нагретым воздухом, самовоспламеняется и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6—9 МПа, а температура 1800-2000 °С. Под действием давления газов поршень перемещается от в.м.т. к н.м.т. Происходит рабочий ход. Около н.м.т. давление снижается до 0,3—0,5 МПа, а температура—до 700—900 °С.

Такт выпуска. Поршень перемещается от н.м.т. к в.м.т. и через открытый выпускной клапан 6 отработавшие газы выталкиваются из цилиндра. Давление газа снижается до 0,11—0,12 МПа, а температура — до 500—700 °С. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

Показатели работы двигателя. Работа, совершаемая газами в единицу времени внутри цилиндра двигателя, называется индикаторной мощностью.

Рис. 2. Рабочий цикл четырехтактного дизеля

Мощность, получаемая на коленчатом валу двигателя, называется эффективной мощностью. Она меньше индикаторной на значение мощности, затрачиваемой на насосные потери и на трение в криво-шипно-шатунном и газораспределительном механизмах двигателя, а также на приведение в действие вентилятора, жидкостного насоса и других вспомогательных устройств.

Таким образом, эффективная мощность меньше, чем индикаторная мощность, из-за механических потерь, расходуемых в механизмах и системах двигателя. На основании этого механическим к.п.д. (коэффициентом полезного действия) двигателя называют отношение эффективной мощности к индикаторной.

Механический к.п.д. карбюраторных двигателей составляет 0,70— 0,85, а дизелей — 0,73—0,87.

Мощностные показатели двигателя в значительной мере определяются количеством теплоты, превращенным в полезную работу. Степень использования теплоты, введенной в двигатель с топливом, оценивают эффективным к.п.д., который представляет собой отношение количества теплоты Qe, превращенной в эффективную работу, к количеству теплоты Qt, выделившейся в результате сгорания

Рис. 3. Схемы компоновки цилиндров двигателей

Дизель. Рассмотрим процесс протекания каждого такта в цилиндре дизеля (рис. 7).

Первый такт — впуск. Цилиндр заполняется воздухом, кислород которого обеспечивает сгорание топлива. Чем больше воздуха поступает в цилиндр, тем большее количество топлива можно сжечь в нем и тем выше будет давление газов на поршень при рабочем ходе (увеличивается мощность).

Во время впуска поршень движется вниз, впускной клапан открыт, а выпускной закрыт. Воздух, поступающий в цилиндр, нагревается при смешивании с горячими остаточными газами и от нагретых деталей работающего дизеля.

К концу первого такта температура воздуха достигает 40… 60 °С, и его плотность уменьшается. Кроме того, при движении он встречает сопротивление во впускных каналах дизеля. По этим причинам давление в цилиндре оказывается ниже атмосферного (0,08… 0,09 МПа).

Второй такт — сжатие. Поршень перемещается вверх, оба клапана закрыты. Под действием поршня воздух сжимается в 15…17 раз (степень сжатия е=15… 17) и при этом нагревается. Давление в конце сжатия доходит до 3…4 МПа, а температура — до 550…600 °С, что значительно превышает температуру самовоспламенения топлива.

Рис. 4. Схема рабочего цикла одноцилиндрового четырехтактного дизеля: 1 — форсунка; 2 — топливный насос.

Третий такт — расширение. Перед самым окончанием такта сжатия, когда поршень почти дошел до в. м.т., в цилиндр через форсунку впрыскивается порция топлива. Большая часть его сразу же воспламеняется и сгорает. Температура газов повышается до 2000…2100 °С, а давление — до 5,5…8,0 МПа. Под таким давлением расширяющихся газов поршень перемещается вниз и через шатун проворачивает коленчатый вал. В процессе расширения сгорает остальная часть впрыснутого топлива. По мере перемещения поршня давление газов в цилиндре падает, а температура уменьшается. К концу третьего такта давление снижается до 0,2…0,3 МПа, а температура — до 600…650 °С.

Четвертый такт — выпуск. Впускной клапан закрыт, а выпускной открыт. Из цилиндра выталкиваются отработавшие газы. Давление оставшихся газов падает до 0,11…0,12 МПа. Температура отработавших газов в месте выхода из цилиндра составляет 400…500 °С.

Далее рабочий цикл повторяется.

Карбюраторный двигатель. Подобным образом рассмотрим рабочий цикл четырехтактного карбюраторного двигателя.

Такт впуска. Выпускной клапан закрыт, а впускной открыт. При движении поршня от в. м. т. вниз цилиндр заполняется смесью топлива с воздухом. Такая смесь приготовляется в специальном приборе — карбюраторе и называется горючей смесью. Поступая в цилиндр, она перемешивается с остаточными газами, в результате чего образуется рабочая смесь.

Давление рабочей смеси в цилиндре при такте впуска из-за сопротивления в карбюраторе ниже, чем в цилиндре дизеля, и составляет 0,07…0,08 МПа. Температура рабочей смеси повышается 60…120 °С в основном за счет высокой температуры остаточных газов.

Такт сжатия. При этом такте, как и в дизеле, рабочая смесь, сжимаясь, нагревается. С увеличением степени сжатия растет давление и температура смеси, а также скорость ее сгорания. В результате повышается экономичность и мощность двигателя. Но при повышенной температуре возникает опасность преждевременного воспламенения (самовоспламенения) смеси. Чтобы избежать этого, рабочую смесь сжимают незначительно (е=4…8). Давление в цилиндре в конце такта сжатия — 0,9…1,2 МПа, а температура не превышает температуры самовоспламенения, доходя лишь до 330 °С.

Такт расширения. Перед окончанием такта сжатия между электродами искровой свечи зажигания проскакивает электрический заряд. Искра воспламеняет рабочую смесь. Температура горящих газов доходит до 2500 °С, а давление повышается до 3,0…4,5 МПа. Под действием силы давления газов поршень перемещается вниз. К концу . третьего такта давление снижается до 0,3…0,4 МПа, а температура — до 900…1200 °С.

Такт выпуска происходит так же, как в дизеле, но при несколько более высокой температуре газов.

Сравнительная оценка дизеля и карбюраторного двигателя.

По сравнению с карбюраторным (бензиновым) двигателем дизель имеет следующие преимущества:
— дизель экономичнее: на единицу выполненной работы вследствие высокой степени сжатия он расходует на 25% меньше топлива;
— топливо, на котором работает дизель, менее опасно в пожарном отношении и оказывает меньшее коррозионное действие на детали, чем бензин.

Недостатки дизеля:
— из-за высокого давления газов в цилиндрах, корпус и другие детали, работающие со значительными нагрузками, тяжелее и имеют большие размеры;
— для пуска дизеля требуется более мощный стартер или специальный карбюраторный пусковой двигатель;
— дизель работает со значительным избытком воздуха, поэтому размеры цилиндров и других деталей и сборочных единиц увеличены.

Рекламные предложения:


Читать далее: Блок и головка цилиндров

Категория: — Техническое обслуживание автомобилей

Главная → Справочник → Статьи → Форум


4-тактный двигатель

| Как работает четырехтактный двигатель?

Двигатели наиболее широко используются во всем мире для многочисленных приложений . Они используются в различных транспортных средствах, таких как автобусы, грузовики, фургоны, мотоциклы и т. Д. Существуют различные типы двигателей, и 4-тактный двигатель является одним из них. По количеству ходов поршня двигатели имеют два основных типа :

  1. Двухтактный двигатель
  2. 4-тактный двигатель

В предыдущей статье мы обсуждали двухтактный двигатель.Поэтому в этой статье в основном речь пойдет о четырехтактном двигателе.

Что такое 4-тактный двигатель?

4-тактный двигатель — это двигатель внутреннего сгорания, в котором для завершения рабочего цикла используется четыре хода поршня. Он преобразует тепловой энергии топлива в полезную механическую работу за счет движения вверх и вниз поршня . Следовательно, он относится к категории поршневых двигателей .

Четырехтактный двигатель завершает энергетический цикл после завершения двух оборотов коленчатого вала и четырех тактов поршня. Эти двигатели наиболее широко используются в различных транспортных средствах, таких как легкие грузовики, автобусы, фургоны, легковые автомобили и т. Д.

В этом поршневом двигателе процесс сжатия происходит из-за движения поршня вверх и вниз.

Основное отличие между 2-тактными двигателями и 4-тактными заключается в том, что 2-тактный двигатель завершает рабочий цикл всего за , два такта , в то время как четырехтактный двигатель завершает рабочий цикл за четыре хода поршня .Двухтактный двигатель производит меньше загрязнений по сравнению с двухтактным двигателем.

Читайте также: Двигатели разные

Как работает 4-тактный двигатель?

Четырехтактный двигатель работает в следующих этапах:

  1. Процесс всасывания
  2. Процесс сжатия
  3. Энергетический процесс
  4. Выхлоп
Рабочий цикл 4-тактного двигателя

1) Ход впуска

  • Когда поршень совершает возвратно-поступательное движение в направлении BCD от ВМТ (вниз), внутри камеры сжатия (цилиндра) начинает образовываться разрежение.
  • Когда внутри камеры сжатия создается разрежение, выпускной клапан закрывается, а впускной клапан открывается.
  • При открытии впускного клапана топливовоздушная смесь начинает поступать в камеру сжатия.

2) Ход сжатия

  • Когда внутреннее давление камеры сжатия становится равным внешнему давлению, впускной клапан закрывается и начинается такт сжатия.
  • При движении поршня вверх (от BCD к ВМТ) он сжимает топливовоздушную смесь внутри камеры сжатия и увеличивает температуру и давление топливовоздушной смеси.

3) Рабочий ход

  • Рабочий ход также известен как ход сгорания.
  • Когда такт сжатия почти завершен, свеча зажигания сжигает сжатую топливовоздушную смесь.
  • Когда топливо воспламеняется, генерируется энергия, так что поршень перемещается из ВМТ в НМТ за счет расширения химической реакции. Поэтому этот ход называется СИЛОВЫМ ХОДОМ.
  • Из-за этого процесса горения температура и давление смеси становятся очень высокими.Из-за увеличения давления топливовоздушная смесь толкает поршень вниз (в направлении BCD от ВМТ) и приводит в движение коленчатый вал, который дополнительно перемещает автомобиль.
  • Во время этого процесса впускной и выпускной клапаны остаются закрытыми.

4) Ход выпуска

  • После завершения рабочего такта начинается такт выпуска.
  • В такте выпуска поршень снова движется вверх (из НМТ в ВМТ).
  • Во время этого хода впускной клапан закрывается, а выпускной открывается.Поршень выталкивает выхлопные газы из камеры сгорания.
  • После завершения такта выпуска поршень снова движется вниз (из ВМТ в НМТ), всасывает топливовоздушную смесь и весь цикл повторяется. Этот последний ход вытесняет отработанные газы / выхлопные газы из цилиндра.

Фотоэлектрическая диаграмма четырехтактного двигателя

Следующая диаграмма PV представляет рабочий цикл 4-тактного двигателя. Четырехтактный двигатель выполняет рабочий цикл в следующих этапах:

Четырехтактный цикл
  • Изобарический процесс (от 0 до 1): В изобарическом процессе поршень движется вниз и создает вакуум внутри камеры сгорания.Во время создания вакуума возникает перепад давления между атмосферным давлением и внутренним давлением камеры. За счет этого перепада давления открывается впускной клапан, и топливовоздушная смесь попадает в камеру сгорания.
  • Адиабатический процесс (от 1 до 2): После завершения изобарного процесса впускной клапан закрывается, а поршень движется вверх и создает давление в топливовоздушной смеси. Во время этого процесса поршень повышает температуру и давление смеси, но его тепло не меняется.
  • Изохорный процесс (от 2 до 3): Свеча зажигания воспламеняет топливовоздушную смесь в конце такта сжатия (адиабатический процесс). Этот процесс увеличивает температуру и давление топливовоздушной смеси и превращает ее в смесь с высокой температурой и давлением. Этот процесс воспламенения также увеличивает энтропию (тепло) топливовоздушной смеси.
  • Рабочий ход (процесс с 3 по 4): В этом такте тепло, выделяемое в процессе зажигания, используется для того, чтобы толкать поршень вниз, что дополнительно перемещает коленчатый вал.Движение коленчатого вала приводит в движение автомобиль. Поэтому этот процесс называется силовым ходом.
  • Фаза выпуска отработавших газов (от 4 до 1): На этой фазе поршень снова перемещается вверх и открывается выпускной клапан, который отводит отработанное тепло из камеры сгорания. Из-за отвода ненужного тепла кинетическая энергия молекул топливовоздушной смеси уменьшается. Опять же, разница давления возникает между атмосферным давлением и внутренним давлением камеры, и весь цикл повторяется.

История

Цикл Аткинсона
  • В 1882 году Джеймс Аткинсон сконструировал двигатель цикла Аткинсона. Это был однотактный двигатель внутреннего сгорания.
  • Этот цикл был изобретен для обеспечения эффективности за счет удельной мощности. В настоящее время двигатель цикла Аткинсона используется в некоторых новейших гибридных электрических системах.
  • Оригинальный 4-тактный поршневой двигатель с циклом Аткинсона допускал такт впуска, такта сжатия, рабочего хода и такта выпуска за один оборот коленчатого вала, чтобы предотвратить нарушение определенных патентов, касающихся двигателя Отто.
  • Уникальная конструкция коленчатого вала двигателя
  • Atkinson может приводить к различным степеням сжатия и расширения. Рабочий ход длиннее, чем такт сжатия, что дает двигателю большую энтальпию (тепловой КПД), чем у обычных поршневых двигателей.
  • Первоначальная конструкция двигателя Аткинсона — не более чем историческая диковинка. Некоторые новейшие двигатели имеют нетрадиционные фазы газораспределения для создания более длинного рабочего хода или более короткого хода сжатия, что обеспечивает улучшение экономии топлива.

Дизельный цикл
  • Дизельный двигатель — это практическое усовершенствование двигателя Отто 1876 года.
  • В 1861 году Отто почувствовал, что производительность двигателя можно повысить, сжав топливно-воздушную смесь перед зажиганием, и Рудольф Дизель захотел создать более эффективный двигатель, способный работать на более тяжелых видах топлива.
  • По тем же причинам, что и Отто, Дизель захотела разработать двигатель, который мог бы снабжать небольшие промышленные компании своей собственной энергией, чтобы они могли конкурировать с крупными компаниями, такими как Отто, и снижать потребности населения в топливе.Как и Отто, ему потребовалось много времени, чтобы построить двигатель с высокой степенью сжатия, который мог бы самопроизвольно воспламенять впрыскиваемое в цилиндр топливо. Дизель использовал смесь воздуха и топлива в своем первом двигателе.
  • В 1893 году двигатель Diesel был разработан как успешный двигатель. Двигатели с высокой степенью сжатия, которые воспламеняют топливо из-за высокого сжатия воздушно-топливной компрессии, известны как дизельные двигатели. Дизельный двигатель доступен как в четырехтактном, так и в двухтактном исполнении.
  • 4-тактные дизельные двигатели
  • используются в большинстве тяжелых грузовых автомобилей, таких как грузовые автомобили, автобусы, фургоны и т. Д.В этом двигателе используется мазут, который содержит больше энергии и требует меньше переработки для производства.

Четырехтактный двигатель Ограничения выходной мощности

Выходная мощность двигателя зависит от количества воздуха, всасываемого в . Производительность поршневого двигателя (будь то 4-тактный двигатель или 2-тактный двигатель) зависит от скорости (об / мин), теплотворной способности топлива, потерь, воздушно-топливного отношения, объемного КПД, содержания кислорода в топливно-воздушная смесь и размер камеры сгорания.В конечном итоге скорость двигателя регулируется смазкой и прочностью материала.

Шатун , поршень и клапан стороны двигателя сильные силы ускорения . Высокие обороты двигателя могут привести к повреждению двигателя, потере мощности, дрожанию поршневых колец или другим физическим повреждениям. Когда поршневое кольцо вибрирует вертикально в канавке поршня, в которой находится поршневое кольцо, поршневое кольцо колеблется.

Цель флаттера кольца — установить уплотнение между стенкой цилиндра и кольцом, что приводит к потере мощности и давления в цилиндре.

Если двигатель вращается слишком быстро, пружина клапана не сможет закрыть клапан достаточно быстро. Это часто называют «поплавком клапана», когда поршень ударяется о клапан и вызывает серьезную поломку двигателя.

На высоких оборотах смазка поверхности сопряжения поршень-цилиндр имеет тенденцию к повреждению. Поэтому скорость поршня промышленного двигателя ограничена до 10 м / с.

Детали 4-тактного дизельного двигателя

Четырехтактный двигатель состоит из следующих основных компонентов:

  1. Форсунка
  2. Поршень
  3. Впускной клапан
  4. Выпускной клапан
  5. Коленчатый вал
  6. Шатун
  7. Блок двигателя
  8. Маховик

1) Поршень и поршневое кольцо

Поршень 4-тактного дизельного двигателя совершает возвратно-поступательное движение.Он соединяется с коленчатым валом через шатун. Он передает свое движение на коленчатый вал через шатун. Поршень движется вниз и вверх внутри цилиндра двигателя.

Когда поршень движется вверх, он всасывает воздух внутри цилиндра, в то время как он сжимает воздух, когда движется вниз. Из-за этого движения поршня температура и давление топливовоздушной смеси внутри цилиндра повышаются.

Поршень двигателя имеет сложную конструкцию со стальной головкой и юбкой из высокопрочного чугуна.В этой юбке используется смазка под давлением, чтобы обеспечить подачу масла к гильзе цилиндра при каждой рабочей ситуации. Масло поступает в охлаждающий канал в верхней части поршня через шатуны. Все поршневые кольца хромированы для предотвращения износа. Поршневое кольцо содержит пружинное маслоуправляемое кольцо и 2 направляющих компрессионных кольца. Канавка поршневого кольца имеет отличную износостойкость и стабилизируется.

2) Цилиндр линейный

Этот компонент четырехтактного двигателя имеет высокую жесткую манжету для уменьшения деформации.Этот линейный материал представляет собой сплав серого чугуна с высокой прочностью и отличной износостойкостью. Точно расположенные вертикальные отверстия для охлаждающей воды обеспечивают точный контроль температуры. Чтобы избежать риска полировки отверстия, линейка оснащена защитным полировальным кольцом.

Пространство между гильзой цилиндра и уплотнениями блока цилиндров уплотняется двойным уплотнительным кольцом. Верхний конец линейки оборудован антиполированным кольцом, которое предотвращает полировку внутренних отверстий и снижает расход смазочного масла.

3) Подшипники шатуна и коренные подшипники

Подшипник шатуна представляет собой футеровку из свинцовой бронзы с задними частями из трехметаллической стали и толстым плавным слоем. Биметаллический подшипник, а также трехметаллический подшипник истощены как основные подшипники.

4) Шатун

Основная статья: Шатун

Этот компонент 4-тактного дизельного двигателя соединяет коленчатый вал двигателя и поршень. Он изготовлен из легированной стали и выкован цельно.Шатун имеет круглое поперечное сечение. Нижняя сторона шатуна раскалывается в горизонтальном направлении, так что шатун и поршень можно снять с гильзы цилиндра. Подшипник поршневого пальца состоит из трехметалла.

Все болты шатуна затянуты гидравлически. Отверстия в шатуне направляют масло к поршням и подшипнику поршневого пальца. Этот компонент двигателя передает движение поршня на коленчатый вал, который затем перемещается к колесу автомобиля.

5) Коленчатый вал

Коленчатый вал преобразует возвратно-поступательное движение поршня двигателя во вращательное движение. Это важный компонент для всех двигателей. Эта часть передает конечную мощность в виде кинетической энергии. Он выполнен в виде цельного куска. Шатун образует связь между коленчатым валом и поршнем двигателя.

6) Блок двигателя

Эта часть двигателя изготовлена ​​из высокопрочного чугуна и подходит для всех цилиндров.Крышки основных подшипников крепятся снизу двумя гидравлическими натяжными винтами. Эти колпачки направлены снизу и сверху по бокам блока цилиндров. Горизонтальный боковой винт с гидравлической затяжкой поддерживает крышку коренного подшипника.

7) Распределительный вал

Используется для открытия и закрытия впускных и выпускных клапанов, а также для управления топливным насосом в дизельном двигателе с высоким давлением.

8) Свеча зажигания

Используется в бензиновых двигателях или двигателях SI.Он использует искру для воспламенения топливовоздушной смеси.

9) Топливная форсунка

Используется для впрыска топлива в цилиндры двигателя.

10) Маховик

Деталь четырехтактного бензинового двигателя, установленного на чугунной опоре. Он хранит энергию в виде инерции.

Преимущества и недостатки 4-тактных двигателей

Четырехтактный двигатель имеет следующие достоинства и недостатки:

Преимущества четырехтактного двигателя
  1. Надежность: Эти типы дизельных двигателей более надежны и эффективны.
  2. Долговечность: Эти двигатели обладают большей долговечностью, чем двухтактные.
  3. Экологичность: Эти двигатели безвредны для окружающей среды, поскольку 4-тактный двигатель выделяет меньше опасных паров, чем 2-тактный двигатель.
  4. Эти двигатели лучше всего подходят для тяжелых грузов и тяжелых транспортных средств.
  5. Топливная эффективность: Эти двигатели имеют более высокую топливную эффективность, чем двухтактные двигатели.
  6. Шум: Они работают тише, чем двухтактные двигатели
  7. Больше крутящего момента: На низких оборотах четырехтактные двигатели развивают больший крутящий момент, чем двухтактные.
  8. Больше топливной экономичности: Этот тип двигателя внутреннего сгорания имеет более высокую топливную эффективность, чем двухтактный двигатель.
  9. Дополнительного масла не требуется: Этот двигатель не требует дополнительной смазки или масла для добавления топлива. Промежуточно требуется смазка только для токарных деталей.
  1. Эти дизельные двигатели производят наименьших NO X .

Недостатки четырехтактного двигателя
  1. Мощность: Этот двигатель имеет меньшую мощность, чем двухтактный двигатель.
  2. Дорого: Четырехтактный двигатель состоит из множества деталей. Следовательно, он имеет большую стоимость, чем двухтактный двигатель.
  3. Масса: Эти двигатели имеют больший вес, чем 2-тактные двигатели
  4. Требуемая площадь: Требуется большая площадь для установки.
  5. Ход поршня: Требуется большее количество ходов поршня для завершения энергетического цикла.
  6. Конструкция: Эти двигатели имеют сложную конструкцию.

В чем разница между 4-тактным дизельным двигателем и 4-тактным бензиновым двигателем?
Бензиновый двигатель Дизельный двигатель
Этот двигатель работает на основе цикла Отто. Работает на базе дизельного двигателя.
В этом двигателе процесс воспламенения происходит за счет искры, создаваемой свечой зажигания. В этом двигателе воспламенение происходит из-за сильного сжатия топливовоздушной смеси.
В качестве рабочей жидкости используется бензин или бензин. Используется дизельное топливо.
Этот двигатель менее эффективен. Наиболее производительный.
Имеет низкую степень сжатия. Этот двигатель имеет высокую степень сжатия.
Используется меньше топлива. Используется мало топлива.
Эти двигатели в основном используются в небольших приложениях, таких как велосипеды, мотоциклы, генераторы и т. Д. Эти двигатели в основном используются в тяжелых условиях, таких как автобусы, грузовики, фургоны и т. Д.

FAQ Раздел

Что подразумевается под четырехтактным двигателем?

Двигатель, который совершает рабочий ход за четыре хода поршня, известен как 4-тактный двигатель.

Какие примеры четырехтактных двигателей?

Четырехтактные двигатели чаще всего используются в тяжелых грузовиках, автобусах, внедорожниках , фургонах , тракторах и других тяжелых транспортных средствах.

Какой двигатель производит меньше загрязнения, 2-тактный или 4-тактный?

Двухтактный двигатель производит больше загрязнения, чем четырехтактный. Это связано с тем, что в двухтактном двигателе используются отверстия для всасывания и выпуска топлива.

Что быстрее: 2-тактный или 4-тактный?

2-тактный двигатель имеет более низкие части, чем 4-тактный двигатель.Для сравнения, двухтактный двигатель завершает рабочий цикл (всего за 2 хода поршня) быстрее, чем четырехтактный двигатель. Следовательно, двухтактный двигатель быстрее четырехтактного.

Есть шестицилиндровый двигатель?

6-тактный двигатель — это самая современная версия двигателя внутреннего сгорания, основанная на конструкции 4-тактного двигателя, но этот двигатель имеет два дополнительных электрических такта для уменьшения выбросов и повышения эффективности. 6-тактный двигатель использует свежий воздух (чистый воздух из атмосферы) для всасывания 5 -го ходов всасывания 2 и .

Объяснение цикла четырехтактного двигателя (анимация)

Введение

Четырехтактные двигатели внутреннего сгорания (IC) используются более 100 лет, и их конструкция с тех пор существенно не изменилась. Каждый из четырехтактных двигателей тактов используется для одной стадии цикла сгорания , т.е. есть один ход для каждой из стадий всасывания, сжатия, мощности и выпуска.

Анимация четырехтактного двигателя

По сравнению с двухтактными двигателями четырехтактные двигатели имеют больше компонентов и больше веса, но более эффективны.Четырехтактные двигатели могут работать на различных видах топлива, включая бензин / бензин , дизель , газ ( метан ) и биомасло (чтобы назвать несколько типов топлива).

Компоненты четырехтактного двигателя

Конструкции четырехтактных двигателей различаются, поэтому количество и типы компонентов, используемых в каждой конструкции, также различаются. Например, в двигателях Common Rail используются другие детали двигателя по сравнению с двигателями без Common Rail.

Компоненты четырехтактного двигателя

Общие четыре компонента двигателя -тактного включают:

  1. Поршень
  2. Шатун (Шатун)
  3. Подшипники скольжения
  4. Коленчатый вал
  5. Распредвал
  6. Камера сгорания (гильза цилиндра)
  7. Впускные клапаны и выпускные клапаны
  8. Толкатели
  9. Коромысла
  10. Топливные форсунки

Получите доступ к представленной ниже 3D-модели, если вы хотите изучить все основные компоненты двигателя и некоторую терминологию двигателя.

Компоненты двигателя и терминология

Примечание: Тип двигателя, показанный на этой 3D-модели, использует непосредственный впрыск топлива с топливными форсунками common rail .

Видео ниже представляет собой отрывок из нашего онлайн-курса «Основы двигателя внутреннего сгорания» .

Как работают четырехтактные двигатели

Четырехтактному двигателю требуется четырехтактных двигателей для завершения одного цикла сгорания .Штрихи:

  1. Всасывание (Впуск)
  2. Сжатие
  3. Мощность (зажигание)
  4. Выхлоп

Другой способ запомнить штрихи и их порядок — изменить формулировку на:

Ход 1 = Всасывание (всасывание) Ход 2 = Сжатие (сжатие) Ход 3 = Мощность (удар!) Ход 4 = Выпуск (удар)

Ход всасывания

Ход всасывания втягивает воздух в гильзу цилиндра (пространство сгорания), когда поршень движется вниз к нижней мертвой точке (НМТ) .Когда поршень достигает BDC , впускные клапаны закрываются, и поршень перемещается обратно вверх к верхней мертвой точке (ВМТ) ; это такт сжатия .

Четырехтактный двигатель с указанием ВМТ и НМТ

Ход сжатия

По мере того, как поршень движется к ВМТ , воздух в цилиндре сжимается ( объем уменьшается), и его температура и давление повышаются.Незадолго до ВМТ в камеру сгорания впрыскивается топливо. Топливо воспламеняется и происходит управляемый взрыв .

График давления и объема

Рабочий ход

После зажигания начинается рабочий ход . Повышение давления и температуры, создаваемое сгоранием , толкает поршень в направлении НМТ. После достижения НМТ все топливо в камере сгорания сгорело, и последний такт двигателя готов к началу.

Ход выхлопа

Такт выпуска — четвертый и последний ход. Поршень перемещается из НМТ в ВМТ и вытесняет выхлопные газы из камеры сгорания через клапаны выхлопных газов. Как только поршень достигает ВМТ, впускные воздушные клапаны открываются, а выпускные клапаны закрываются через короткое время (примерно клапана перекрывают , чтобы гарантировать удаление всего выхлопного газа из пространства сгорания). Цикл сгорания теперь завершен, так как все четыре такта выполнены.

Двигатели с искровым и компрессионным зажиганием

Бензиновые / бензиновые двигатели используют свечи зажигания для зажигания, в то время как дизельные двигатели используют только тепло, выделяемое за счет сжатия. По этой причине бензиновые двигатели известны как двигатели с искровым зажиганием , а дизельные двигатели известны как двигатели с воспламенением от сжатия .

Детали 3D-модели

Эта 3D-модель показывает каждую стадию цикла четырехтактного двигателя . Синий указывает на всасывание и сжатие, а красный указывает на расширение (мощность) и выпуск. Все клапаны и другие компоненты правильно рассчитаны, чтобы показать весь четырехтактный процесс.

Дополнительные ресурсы

http://www.animatedengines.com/otto.html

https://en.wikipedia.org/wiki/Four-stroke_engine

Поставщики и ресурсы беспроводной связи RF

О мире беспроводной связи RF

Веб-сайт RF Wireless World является домом для поставщиков и ресурсов радиочастотной и беспроводной связи.На сайте представлены статьи, руководства, поставщики, терминология, исходный код (VHDL, Verilog, MATLAB, Labview), тестирование и измерения, калькуляторы, новости, книги, загрузки и многое другое.

Сайт RF Wireless World охватывает ресурсы по различным темам, таким как RF, беспроводная связь, vsat, спутник, радар, волоконная оптика, микроволновая печь, wimax, wlan, zigbee, LTE, 5G NR, GSM, GPRS, GPS, WCDMA, UMTS, TDSCDMA, Bluetooth, Lightwave RF, z-wave, Интернет вещей (IoT), M2M, Ethernet и т. Д. Эти ресурсы основаны на стандартах IEEE и 3GPP.Он также имеет академический раздел, который охватывает колледжи и университеты по инженерным дисциплинам и MBA.

Статьи о системах на основе Интернета вещей

Система обнаружения падений для пожилых людей на основе Интернета вещей : В статье рассматривается архитектура системы обнаружения падений, используемой для пожилых людей. В нем упоминаются преимущества или преимущества системы обнаружения падений Интернета вещей. Читать дальше➤
Также обратитесь к другим статьям о системах на основе Интернета вещей следующим образом:
• Система очистки туалетов самолета. • Система измерения столкновений • Система отслеживания скоропортящихся продуктов и овощей • Система помощи водителю • Система умной торговли • Система мониторинга качества воды. • Система Smart Grid • Система умного освещения на базе Zigbee • Умная парковка на базе Zigbee • Система умной парковки на основе LoRaWAN


Статьи о беспроводной радиосвязи

В этом разделе статей представлены статьи о физическом уровне (PHY), уровне MAC, стеке протоколов и сетевой архитектуре на основе WLAN, WiMAX, zigbee, GSM, GPRS, TD-SCDMA, LTE, 5G NR, VSAT, Gigabit Ethernet на основе IEEE / 3GPP и т. Д. .стандарты. Он также охватывает статьи, относящиеся к испытаниям и измерениям, по тестированию на соответствие, используемым для испытаний устройств на соответствие RF / PHY. СПРАВОЧНЫЕ СТАТЬИ УКАЗАТЕЛЬ >>.


Физический уровень 5G NR : Обработка физического уровня для канала 5G NR PDSCH и канала 5G NR PUSCH рассмотрена поэтапно. Это описание физического уровня 5G соответствует спецификациям физического уровня 3GPP. Читать дальше➤


Основы повторителей и типы повторителей : В нем объясняются функции различных типов ретрансляторов, используемых в беспроводных технологиях.Читать дальше➤


Основы и типы замирания : В этой статье рассматриваются мелкомасштабные замирания, крупномасштабные замирания, медленные, быстрые замирания и т. Д., Которые используются в беспроводной связи. Читать дальше➤


Архитектура сотового телефона 5G : В этой статье рассматривается блок-схема сотового телефона 5G с внутренними модулями 5G. Архитектура сотового телефона. Читать дальше➤


Основы помех и типы помех: В этой статье рассматриваются помехи по соседнему каналу, помехи в совмещенном канале, Электромагнитные помехи, ICI, ISI, световые помехи, звуковые помехи и т. Д.Читать дальше➤


5G NR Раздел

В этом разделе рассматриваются функции 5G NR (New Radio), нумерология, диапазоны, архитектура, развертывание, стек протоколов (PHY, MAC, RLC, PDCP, RRC) и т. Д. 5G NR Краткий указатель ссылок >>
• Мини-слот 5G NR • Часть полосы пропускания 5G NR • 5G NR CORESET • Форматы DCI 5G NR • 5G NR UCI • Форматы слотов 5G NR • IE 5G NR RRC • 5G NR SSB, SS, PBCH • 5G NR PRACH • 5G NR PDCCH • 5G NR PUCCH • Эталонные сигналы 5G NR • 5G NR m-последовательность • Золотая последовательность 5G NR • 5G NR Zadoff Chu Sequence • Физический уровень 5G NR • Уровень MAC 5G NR • Уровень 5G NR RLC • Уровень 5G NR PDCP


Учебные пособия по беспроводным технологиям

В этом разделе рассматриваются учебные пособия по радиочастотам и беспроводной связи.Он охватывает учебные пособия по таким темам, как сотовая связь, WLAN (11ac, 11ad), wimax, bluetooth, zigbee, zwave, LTE, DSP, GSM, GPRS, GPS, UMTS, CDMA, UWB, RFID, радар, VSAT, спутник, WLAN, волновод, антенна, фемтосота, тестирование и измерения, IoT и т. Д. См. УКАЗАТЕЛЬ Учебников >>


Учебное пособие по 5G — В этом учебном пособии по 5G также рассматриваются следующие подтемы по технологии 5G:
Учебное пособие по основам 5G Частотные диапазоны Учебник по миллиметровым волнам Волновая рама 5G мм Зондирование волнового канала 5G мм 4G против 5G Испытательное оборудование 5G Сетевая архитектура 5G Сетевые интерфейсы 5G NR канальное зондирование Типы каналов 5G FDD против TDD Разделение сети 5G NR Что такое 5G NR Режимы развертывания 5G NR Что такое 5G TF


Этот учебник GSM охватывает основы GSM, архитектуру сети, элементы сети, системные спецификации, приложения, Типы пакетов GSM, структура или иерархия кадров GSM, логические каналы, физические каналы, Физический уровень GSM или обработка речи, вход в сеть мобильного телефона GSM, установка вызова или процедура включения питания, MO-вызов, MT-вызов, VAMOS, AMR, MSK, модуляция GMSK, физический уровень, стек протоколов, основы работы с мобильным телефоном, Планирование RF, нисходящая линия связи PS-вызовов и восходящая линия связи PS-вызовов.
➤Подробнее.

LTE Tutorial , охватывающий архитектуру системы LTE, охватывающий основы LTE EUTRAN и LTE Evolved Packet Core (EPC). Он обеспечивает связь с обзором системы LTE, радиоинтерфейсом LTE, терминологией LTE, категориями LTE UE, структурой кадра LTE, физическим уровнем LTE, Стек протоколов LTE, каналы LTE (логические, транспортные, физические), пропускная способность LTE, агрегация несущих LTE, передача голоса по LTE, расширенный LTE, Поставщики LTE и LTE vs LTE продвинутые.➤Подробнее.


RF Technology Stuff

Эта страница мира беспроводной радиосвязи описывает пошаговое проектирование преобразователя частоты RF на примере преобразователя RF UP от 70 МГц до диапазона C. для микрополосковой платы с использованием дискретных радиочастотных компонентов, а именно. Смесители, гетеродин, MMIC, синтезатор, опорный генератор OCXO, колодки аттенюатора. ➤Подробнее.
➤Проектирование и разработка радиочастотного трансивера ➤Конструкция RF-фильтра ➤Система VSAT ➤Типы и основы микрополосковой печати ➤ОсновыWaveguide


Секция испытаний и измерений

В этом разделе рассматриваются контрольно-измерительные ресурсы, испытательное и измерительное оборудование для тестирования ИУ на основе Стандарты WLAN, WiMAX, Zigbee, Bluetooth, GSM, UMTS, LTE.ИНДЕКС испытаний и измерений >>
➤Система PXI для T&M. ➤ Генерация и анализ сигналов ➤Измерения слоя PHY ➤Тест на соответствие устройства WiMAX ➤ Тест на соответствие Zigbee ➤ Тест на соответствие LTE UE ➤Тест на соответствие TD-SCDMA


Волоконно-оптическая технология

Оптоволоконный компонент , основы, включая детектор, оптический соединитель, изолятор, циркулятор, переключатели, усилитель, фильтр, эквалайзер, мультиплексор, разъемы, демультиплексор и т. д.Эти компоненты используются в оптоволоконной связи. Оптические компоненты INDEX >>
➤Учебное пособие по оптоволоконной связи ➤APS в SDH ➤SONET основы ➤SDH Каркасная конструкция ➤SONET против SDH


Поставщики, производители радиочастотной беспроводной связи

Сайт RF Wireless World охватывает производителей и поставщиков различных радиочастотных компонентов, систем и подсистем для ярких приложений, см. ИНДЕКС поставщиков >>.

Поставщики радиочастотных компонентов, включая радиочастотный изолятор, радиочастотный циркулятор, радиочастотный смеситель, радиочастотный усилитель, радиочастотный адаптер, радиочастотный разъем, радиочастотный модулятор, радиочастотный трансивер, PLL, VCO, синтезатор, антенну, генератор, делитель мощности, сумматор мощности, фильтр, аттенюатор, диплексор, дуплексер, микросхема резистора, микросхема конденсатора, индуктор микросхемы, ответвитель, оборудование ЭМС, программное обеспечение для проектирования радиочастот, диэлектрический материал, диод и т. д.Производители RF компонентов >>
➤Базовая станция LTE ➤RF Циркулятор ➤RF Изолятор ➤Кристаллический осциллятор


MATLAB, Labview, встроенные исходные коды

Раздел исходного кода RF Wireless World охватывает коды, связанные с языками программирования MATLAB, VHDL, VERILOG и LABVIEW. Эти коды полезны для новичков в этих языках. ИНДЕКС ИСХОДНОГО КОДА >>
➤3-8 декодер кода VHDL ➤Код MATLAB для дескремблера ➤32-битный код ALU Verilog ➤T, D, JK, SR триггеры labview коды


* Общая информация о здравоохранении *

Выполните эти пять простых действий, чтобы остановить коронавирус (COVID-19).
СДЕЛАЙТЕ ПЯТЬ
1. РУКИ: часто мойте их
2. КОЛЕНО: Откашляйтесь
3. ЛИЦО: Не трогай его
4. НОГИ: держитесь на расстоянии более 3 футов (1 м) друг от друга
5. ЧУВСТВОВАТЬ: Болен? Оставайся дома

Используйте технологию отслеживания контактов >>, соблюдайте >> рекомендации по социальному дистанцированию и установить систему видеонаблюдения >> чтобы спасти сотни жизней. Использование концепции телемедицины стало очень популярным в таким странам, как США и Китай, чтобы остановить распространение COVID-19, поскольку это заразное заболевание.


RF Беспроводные калькуляторы и преобразователи

Раздел «Калькуляторы и преобразователи» охватывает ВЧ-калькуляторы, беспроводные калькуляторы, а также преобразователи единиц. Сюда входят такие беспроводные технологии, как GSM, UMTS, LTE, 5G NR и т. Д. СПРАВОЧНЫЕ КАЛЬКУЛЯТОРЫ Указатель >>.
➤ Калькулятор пропускной способности 5G NR ➤5G NR ARFCN против преобразования частоты ➤Калькулятор скорости передачи данных LoRa ➤LTE EARFCN для преобразования частоты ➤ Калькулятор антенн Яги ➤ Калькулятор времени выборки 5G NR


IoT-Интернет вещей Беспроводные технологии

Раздел IoT охватывает беспроводные технологии Интернета вещей, такие как WLAN, WiMAX, Zigbee, Z-wave, UMTS, LTE, GSM, GPRS, THREAD, EnOcean, LoRa, SIGFOX, WHDI, Ethernet, 6LoWPAN, RF4CE, Bluetooth, Bluetooth Low Power (BLE), NFC, RFID, INSTEON, X10, KNX, ANT +, Wavenis, Dash7, HomePlug и другие.Он также охватывает датчики Интернета вещей, компоненты Интернета вещей и компании Интернета вещей.
См. Главную страницу IoT >> и следующие ссылки.
➤ НИТЬ ➤EnOcean ➤Учебник по LoRa ➤Учебник по SIGFOX ➤WHDI ➤6LoWPAN ➤Zigbee RF4CE ➤NFC ➤Lonworks ➤CEBus ➤UPB



СВЯЗАННЫЕ ЗАПИСИ


RF Wireless Учебники



Датчики разных типов


Поделиться страницей

Перевести страницу

Четырехтактный бензиновый или дизельный двигатель: как это работает, анимация

Главная> Уход за автомобилем> Четырехтактный двигатель: как это работает, анимация

Обновлено: 16 марта 2020 г.

Современные автомобили имеют четырехтактный двигатель.Ход — это движение поршня в цилиндре вверх или вниз между верхним и нижним положениями. Один оборот коленчатого вала равен двум ходам. В четырехтактном двигателе каждый цилиндр «срабатывает» при каждом втором обороте коленчатого вала. Полный цикл сгорания состоит из двух оборотов коленчатого вала и четырех тактов:
1. Такт всасывания
2. Такт сжатия
3. Рабочий ход
4. Такт выпуска.

Для иллюстрации мы создали эти две анимации четырехтактного бензинового и дизельного двигателей с прямым впрыском.Мы выбрали двигатель с прямым впрыском, потому что более половины новых автомобилей с бензиновым двигателем имеют непосредственный впрыск. См. Анимацию четырехтактного дизельного двигателя ниже.

Прямой впрыск бензина отличается от обычного впрыска топлива расположением форсунки: при обычном впрыске топлива форсунка устанавливается во впускном отверстии над впускным клапаном. В бензиновом двигателе с прямым впрыском сопло форсунки выступает в камеру сгорания. Топливо распыляется под очень высоким давлением прямо в камеру сгорания.

1. Ход всасывания

Впускной ход. Коленчатый вал двигателя продолжает вращаться по инерции от предыдущего рабочего такта. Такт впуска всегда считается первым в последовательности. Во время такта впуска поршень движется вниз, создавая над ним вакуум. Распределительный вал открывает впускной (ые) клапан (ы), вытягивая воздух из впускного коллектора. Впускной клапан начинает открываться в конце такта выпуска предыдущего цикла. Когда поршень движется вниз, воздух заполняет цилиндр. Вскоре после того, как поршень достигает нижнего положения, впускной клапан закрывается.Выпускной клапан закрыт во время такта впуска.

2. Ход сжатия

Ход сжатия. Во время такта сжатия впускной и выпускной клапаны закрыты. Когда поршень движется вверх, он сжимает воздух, захваченный в цилиндре. Форсунка прямого впрыска впрыскивает бензин под очень высоким давлением в цилиндр во время такта сжатия, когда поршень находится ближе к верху. Непосредственно перед тем, как поршень достигает верхнего положения, искра между электродами свечи зажигания воспламеняет топливно-воздушную смесь.Самое верхнее положение поршня называется верхней мертвой точкой или ВМТ. Сгорание происходит в камере сгорания, которая представляет собой пространство между верхней частью поршня и головкой блока цилиндров.

3. Рабочий ход

Рабочий ход. В рабочем такте давление горячих газов, создаваемое во время сгорания, толкает поршень вниз с большой силой. Рабочий ход обеспечивает энергию для поворота колес автомобиля. После рабочего хода коленчатый вал продолжает вращаться из-за инерции тяжелых компонентов, прикрепленных к коленчатому валу.В автомобилях с механической коробкой передач это маховик. В автомобилях с автоматической коробкой передач это гидротрансформатор. Во время рабочего такта впускные и выпускные клапаны по-прежнему закрыты. Когда поршень приближается к нижнему положению рабочего такта, выпускной клапан начинает открываться, позволяя выходить горячим выхлопным газам. В некоторой литературе рабочий ход называется тактом расширения или тактом сгорания.

4. Ход выхлопа

Ход выхлопа. Во время такта выпуска выпускной клапан открыт, а впускной клапан закрыт.Поршень движется вверх, выталкивая оставшиеся выхлопные газы из цилиндра в выпускной коллектор. Такт выпуска — это последний ход цикла. Когда поршень приближается к верхнему положению (ВМТ), впускной клапан начинает открываться для такта впуска следующего цикла сгорания. Выпускной клапан закрывается сразу после достижения поршнем ВМТ.

Как работает четырехтактный дизельный двигатель:

Анимация четырехтактного дизельного двигателя. Дизельный четырехтактный двигатель работает так же, но в дизельном двигателе нет свечи зажигания.Дизельное топливо воспламеняется из-за высокой температуры сжатого воздуха. По этой причине у дизельного двигателя более высокая степень сжатия достигается за счет уменьшения размера камеры сгорания. Форсунка дизельного топлива впрыскивает топливо под очень высоким давлением в конце такта сжатия. Когда двигатель холодный, электрическая свеча накаливания нагревается, помогая воспламенить дизельное топливо. В дизельном двигателе поршень и другие компоненты сделаны более мощными, чтобы выдерживать более высокую степень сжатия.

Цикл четырехтактного двигателя

Большинство двигателей внутреннего сгорания работают по одному из двух принципов работы: двухтактный или четырехтактный.Четырехтактные двигатели являются преобладающим типом в авиации общего назначения и составляют тему этого поста.

Циклы поршневого двигателя

Поршневые двигатели классифицируются по количеству отдельных шагов, которые двигатель выполняет за один полный цикл двигателя. Двухтактные двигатели совершают цикл за один оборот коленчатого вала с двумя движениями; ход поршня вверх и вниз, который включает впуск, сжатие, сгорание и выпуск. Двухтактные двигатели распространены на легких легких самолетах и ​​некоторых небольших сверхлегких самолетах, поскольку эти двигатели имеют меньшее количество деталей, что делает их более простыми в эксплуатации и более дешевыми в приобретении и обслуживании.

Четырехтактные двигатели являются наиболее распространенным типом двигателей, используемых в авиастроении общего назначения, и именно этот тип двигателя мы будем изучать далее. Четырехтактному двигателю требуется два оборота коленчатого вала для завершения одного цикла двигателя, при этом поршень перемещается на 180 ° для завершения каждого этапа цикла. Четырехтактный цикл включает в себя этап впуска и сжатия (один оборот коленчатого вала) и этап мощности и выпуска (один оборот коленчатого вала).

Номенклатура циклов

Есть ряд определений, которые следует хорошо понять, прежде чем переходить к деталям четырехтактного цикла.См. Изображение ниже и определения под изображением.

Рисунок 1: Диаметр цилиндра и ход поршня, движущегося в цилиндре

Верхняя мертвая точка (ВМТ) — это относится к положению поршня, когда он находится в верхней части своего хода. Поршень расположен в верхней части головки блока цилиндров, а шатунная шейка находится в крайнем верхнем положении.

Нижняя мертвая точка (BDC) — это точка цикла, когда поршень находится в нижней части своего хода, а шатунная шейка находится в самом нижнем положении.

Ход — ход двигателя — это возвратно-поступательное расстояние, на которое поршень перемещается в цилиндре от НМТ до ВМТ.

Диаметр цилиндра — это внутренний диаметр цилиндра.

Степень сжатия — объем пространства в цилиндре может быть определен поршнем в НМТ и ВМТ. Соотношение между ними дает степень сжатия. Например, двигатель со степенью сжатия, равной 9, имеет объем в цилиндре в девять раз больше при поршне в НМТ, чем в ВМТ.2} {4} \ times Ход
$$
Где:
\ (D: \) Диаметр цилиндра
\ (S.V .: \) Рабочий объем

Четырехтактный цикл

Пока двигатель работает, он будет продолжать непрерывно повторять четыре шага в четырехтактном цикле. Каждый этап цикла представляет собой поворот поршня на 180 °, что соответствует половине оборота коленчатого вала. Поскольку для завершения одного четырехтактного цикла требуется два оборота коленчатого вала, полный цикл будет завершен при половине оборотов двигателя e.Двигатель g, работающий на 3000 об / мин, выполнит 1500 полных циклов за одну минуту.

Двигатель всегда завершает цикл в одном и том же порядке:

Рисунок 2: Элементы четырехтактного цикла

Впускной или индукционный

Целью такта впуска или впуска является втягивание смеси воздуха и топлива в цилиндр. Этот ход происходит при перемещении поршня из ВМТ в НМТ. Впускной клапан должен быть открыт, чтобы топливовоздушная смесь попала в цилиндр, в то время как выпускной клапан остается закрытым.Движение поршня вниз вызывает падение давления в цилиндре, в результате чего смесь засасывается в полость, оставленную движением поршня.

Рисунок 3: Такт впуска или впуска

Сжатие

Как следует из названия, такт сжатия предназначен для сжатия топливовоздушной смеси, которая всасывается в головку блока цилиндров перед воспламенением. Это достигается перемещением поршня вверх от НМТ к ВМТ. Движение поршня уменьшает объем, занимаемый смесью, вызывая повышение давления и температуры внутри цилиндра.Впускной и выпускной клапаны остаются закрытыми на протяжении большей части хода (впускной клапан остается открытым примерно на 50 ° после НМТ, чтобы обеспечить поступление оптимального количества смеси в цилиндр). Когда поршень приближается к ВМТ, свеча зажигания загорается, воспламеняя смесь. Искра рассчитана таким образом, что инерция движущегося вверх поршня не замедляется зажиганием, а продолжается до ВМТ, где ход заканчивается.

Рисунок 4: Такт сжатия

Мощность

Быстро расширяющийся газ, воспламеняемый свечой зажигания, вызывает скачок давления внутри цилиндра, заставляя поршень вернуться из ВМТ в НМТ.По мере того, как поршень движется вниз, увеличивающийся объем вызывает снижение давления и температуры в цилиндре. Именно этот рабочий ход заставляет коленчатый вал вращаться, что в конечном итоге приводит в движение гребной винт и создает тягу. Впускной и выпускной клапаны остаются закрытыми на протяжении большей части рабочего хода, при этом выпускной клапан открывается непосредственно перед тем, как поршень достигает НМТ. Время открытия клапана устанавливается таким образом, чтобы обеспечить выработку максимальной мощности и в то же время обеспечить наиболее эффективное удаление сгоревшего газа во время такта выпуска.

Рисунок 5: Рабочий ход

Выхлоп

Выпускной клапан открывается непосредственно перед завершением рабочего хода и остается открытым во время движения поршня из НМТ в ВМТ. Движение поршня вытесняет выхлопные газы через открытый выпускной клапан, очищая цилиндр до начала такта впуска. На этом цикл завершается, и поршень снова начинает двигаться вниз по мере повторения шага индукции.

Рисунок 6: Такт выпуска

, полный четырехтактный цикл

Полный цикл показан на изображении ниже.

Рисунок 7: Полный четырехтактный цикл

Работа клапана

Одно из фундаментальных свойств всей материи — то, что она обладает массой и, следовательно, инерцией. Это означает, что, как и твердое тело, топливно-воздушная смесь подчиняется законам Ньютона и требует силы для преодоления ее инерции и ускорения в цилиндре. Эта сила возникает из-за падения давления в цилиндре при движении поршня вниз, но движение газа не происходит мгновенно. Следовательно, открытие впускного и выпускного клапанов в ВМТ и НМТ соответственно не приведет к максимальной мощности, вырабатываемой двигателем из-за инерции газа.В результате впускные и выпускные клапаны открываются и закрываются не в ВМТ или НМТ, а скорее по обе стороны от этих положений, чтобы обеспечить оптимальную производительность. Важно помнить, что во время нормальной работы двигателя поршни двигаются с очень высокими оборотами, что очень затрудняет отслеживание газом движения поршня.

Вывод клапана — клапан открывается преждевременно (до ВМТ или НМТ) для оптимальной работы двигателя.

Задержка клапана — закрытие клапана задерживается (после ВМТ или НМТ) для улучшения характеристик двигателя.

Вывод клапана Задержка клапана
Впускной клапан Впускной клапан открывается до достижения ВМТ во время такта выпуска, чтобы подготовить цилиндр к приему топливно-воздушной смеси в начале такта впуска. Впускной клапан не закрывается, поскольку НМТ достигается во время такта впуска, а скорее задерживается до тех пор, пока поршень не пройдет мимо НМТ и не начнет такт сжатия.
Выпускной клапан Выпускной клапан открывается в конце рабочего хода непосредственно перед достижением НМТ.Это позволяет наиболее эффективно отводить газ во время такта выпуска. Выпускной клапан немного закрывается после ВМТ сразу после начала такта впуска. Это помогает удалить весь выхлопной газ, поскольку свежая смесь, поступающая в цилиндр, вытесняет последний оставшийся газ.

Опережение клапана и запаздывание приводят к периоду около ВМТ и НМТ, когда впускной и выпускной клапаны открыты одновременно. Этот период определяется как перекрытие клапана .На изображении ниже представлено графическое представление цикла четырехтактного двигателя, где периоды перекрытия клапанов можно увидеть по перекрытию двух цветных дуг.

Рисунок 8: Области перекрытия клапанов в цикле четырехтактного двигателя

Цикл Отто

Четырехтактный цикл, описанный выше, приводит к изменениям давления и объема газа внутри цилиндра, когда поршень перемещается вверх и вниз во время различных ходов цикла. Термодинамическое представление этого цикла упоминается как цикл Отто, названный в честь немецкого инженера Николауса Отто ; первый человек, построивший рабочий четырехтактный двигатель в 1860-х годах.

Цикл Отто может быть представлен на графике с объемом по оси x и давлением по оси y и описывает четырехтактный цикл следующим образом:

Рисунок 9: Цикл Отто

Процесс 0–1: газообразная топливно-воздушная смесь (заряд) фиксированной массы втягивается в цилиндр при постоянном давлении (ход впуска).

Процесс 1–2: заряд сжимается адиабатически (предполагается, что нет потерь тепла в окружающую среду), когда поршень перемещается из НМТ в ВМТ (ход сжатия).

Процесс 2–3: заряд воспламеняется свечой зажигания, что приводит к быстрому увеличению давления в цилиндре. Это происходит при постоянном объеме и представляет собой момент, когда поршень находится в ВМТ перед движением вниз для завершения рабочего хода.

Процесс 3–4: Воспламеняющийся заряд заставляет поршень двигаться вниз, что приводит к адиабатическому (изэнтропическому) расширению газа (рабочий ход).

Процесс 4–1: Вся энергия (тепло), выделяемая при сгорании заряда, была преобразована в движение цилиндра вниз, и тепло рассеивается в процессе постоянного объема, пока поршень находится в НМТ.

Процесс 1–0: масса воздуха и любого остаточного топлива, которое остается после сгорания, выбрасывается в атмосферу через открытый выпускной клапан в процессе постоянного давления (такт выпуска).

Нумерация цилиндров и порядок зажигания

Важно понимать, что не все цилиндры в любом двигателе одновременно выполняют одну и ту же часть цикла; скорее, каждый из них срабатывает в определенной последовательности, предназначенной для обеспечения плавной работы двигателя и передачи постоянной мощности на винт.Производители авиационных двигателей всегда маркируют каждый цилиндр двигателя и публикуют порядок запуска двигателя.

Порядок зажигания разработан для максимального уравновешивания двигателя путем обеспечения (в случае горизонтально расположенного двигателя) того, что противоположные поршни перемещаются в одном направлении. В четырехтактном четырехцилиндровом двигателе каждый цилиндр должен одновременно совершать один из четырех тактов.

Предварительное зажигание и детонация

Предварительное зажигание и детонация — это два отдельных, но схожих явления, которые приводят к преждевременному воспламенению топливно-воздушного заряда, вызывая повреждение поршней и потерю мощности.

Предварительное зажигание: относится к воспламенению топливно-воздушной смеси перед воспламенением свечи зажигания и вызывается любым источником в цилиндре, достаточно горячим, чтобы вызвать воспламенение. Распространенными причинами преждевременного зажигания являются горячие точки в камере сгорания, горячий выпускной клапан, перегретая свеча зажигания или раскаленные частицы углерода, отложившиеся в цилиндре. Предварительное зажигание обычно происходит в одном цилиндре (самом горячем цилиндре), тогда как детонация происходит во всех цилиндрах одновременно.

Детонация (детонация): во время такта сжатия топливно-воздушный заряд подвергается быстро возрастающему давлению и температуре по мере уменьшения объема. Чем выше степень сжатия двигателя, тем горячее становится заряд. При очень высоких степенях сжатия может возникнуть ситуация, когда заряд мгновенно воспламенится (взорвется) до назначенного момента возгорания. Это называется детонацией и вызывает удар, похожий на молоток, по поршню вместо контролируемого плавного толчка во время рабочего хода.При использовании топлива с неправильным октановым числом может возникнуть детонация. Топливо с более высоким октановым числом способно выдерживать большее сжатие перед воспламенением; поэтому крайне важно использовать топливо с правильным октановым числом для конкретного двигателя. Если топливо с рекомендованным октановым числом недоступно, следует использовать топливо с самым высоким октановым числом. Использование топлива с октановым числом ниже рекомендованного может сделать человека уязвимым для детонации.

Детонация все еще может происходить, даже если используется топливо с правильным октановым числом.Следующие элементы также могут вызвать детонацию, если не устранить их во время полета:

  • Полет с более высоким давлением в коллекторе, чем рекомендуется — это приведет к повышению температуры и давления головки цилиндров за пределы нормальных рабочих пределов.
  • Полеты на слишком бедной смеси — более бедная смесь увеличивает температуру головки блока цилиндров. Детонация может произойти при добавлении мощности, но без предварительного обогащения смеси.
  • Допускает повышение температуры головки цилиндров сверх нормальных рабочих пределов из-за отсутствия аэродинамического охлаждения.Авиационные двигатели с воздушным охлаждением могут перегреться во время набора высоты, если за ними не следить. В случаях, когда температура головки блока цилиндров приближается к пределу, может потребоваться уменьшить скорость набора высоты или выполнить ступенчатый набор высоты.

На этом мы подошли к концу нашего обсуждения цикла четырехтактного двигателя внутреннего сгорания. В следующем посте мы перейдем к более практическим аспектам эксплуатации поршневого самолета. Мы начнем с кабины и обсудим инструменты двигателя, общие для большинства легких самолетов, прежде чем перейти к некоторым общим проблемам с двигателями; как их диагностировать и что делать, если вы видите их во время полета.

Вам понравился этот пост? Почему бы не продолжить чтение этой серии статей о поршневых двигателях самолетов и их системах?

Четырехтактные двигатели — части, работа, применение

Четырехтактные двигатели описаны вместе с их различными частями, принципами работы, преимуществами, недостатками и т. Д. Для общего понимания. Захвачено множество изображений, диаграмм для визуализации этого движка.

Давайте изучим четырехтактные (4) тактные двигатели!

Что такое четырехтактные двигатели?

Основы четырехтактного двигателя

Четырехтактные двигатели являются частью двигателя внутреннего сгорания.Четырехтактный двигатель — один из наиболее часто используемых типов двигателей внутреннего сгорания. Название четырехтактный произошло от его рабочего механизма.

  • Поршень совершает четыре полных отдельных хода в этом цикле. Если вы не знаете о ходах, ход означает, что поршень движется вместе с цилиндром.
  • Эти 4-тактные двигатели используются почти во всех коммерческих автомобилях. Как правило, четырехтактные двигатели с бензиновым двигателем более популярны во многих легковых и грузовых автомобилях и т. Д.
  • Рабочий процесс требует двух оборотов (720 °) коленчатого вала.Таким образом, 4-тактный цикл завершается на 180 ° за один ход, завершая 4 хода за 720 °.
Четыре 4-тактных двигателя

Философия четырехтактных двигателей

Четырехтактные двигатели имеют четыре такта: впускной, компрессионный, мощный и выпускной.

  • У всех этих четырех ударов разные функции и обязанности.
  • Чтобы внести свой вклад в эту операцию, задействовано множество деталей двигателя.
  • Будет легко понять работу четырехтактных двигателей, зная, какие части участвуют в работе.

Итак, давайте узнаем больше о деталях 4-х тактного двигателя и их работе. Эти детали такие же, как и у любых двигателей с небольшими изменениями.

Компоненты четырехтактных двигателей

Четырехтактный двигатель состоит из следующих частей:

  • Блок двигателя
  • Поршень
  • Шатуны
  • Коленчатый вал
  • Головка блока цилиндров
  • Клапаны
  • Распределительный вал
  • Подъемники
  • ГРМ цепь / ремень / шестерни
  • Клапанный механизм
Детали четырехтактных двигателей

Блок двигателя

Это центр, или вы можете назвать его основой двигателя.Блок двигателя удерживает другие части двигателя. Вы можете понять это как большой блок, содержащий различные маленькие блоки внутри.

  • Этот блок удерживает детали двигателя, такие как цилиндры, коленчатые валы, поршни, шатуны.
  • Блок имеет большие круглые отверстия, известные как цилиндры.
  • В этих отверстиях поршни перемещаются вверх и вниз для 4-тактных операций.
  • В конструкции блока цилиндров имеются каналы для охлаждающей жидкости, масляные каналы и трещина в картере.

Блоки двигателя изготовлены из чугуна или алюминиевого сплава. Алюминиевые блоки легче, имеют лучшую теплопередачу, а железные блоки имеют такие преимущества, как долговечность и зазоры.

Поршень

Поршень, который мы уже обсуждали, отвечает за ходы и работу 4-тактных двигателей.

  • Поршень скользит вверх и вниз от нижней мертвой точки до верхней мертвой точки, совершая 720 градусов хода за один полный ход.
  • Поршень имеет соединение с трещинами валов через шатуны.
  • Поршень используется практически во всех типах двигателей, и это очень важная часть всех двигателей.
  • Поршень имеет поршневые кольца, которые герметизируют камеру сгорания, так что потери газов в картер минимальны.
Поршень четырехтактных двигателей

Кроме того, он улучшает теплопередачу и поддерживает количество масла между поршнем и стенкой цилиндра.

Шатуны

Они соединяются как с поршнем, так и с коленчатыми валами.Для прочности они имеют двутавровую конструкцию.

  • Его основная и важная функция — преобразовывать возвратно-поступательное движение поршня во вращение коленчатого вала.
  • Большой конец шатуна соединяется с кривошипом с помощью шатунного штифта.

Кроме того, в подшипнике на большом конце шатуна имеется отверстие, в которое помещается смазочное масло для смазки поршня и поршневых колец.

Головка блока цилиндров

Головка блока цилиндров, как и ее название, является верхней частью блока цилиндров.Он действует как крышка для цилиндров и поршней.

  • Дыхание двигателя осуществляется от головки блока цилиндров.
  • Впускает топливовоздушную смесь в двигатель и выходит из двигателя.
  • Оснащен клапанами, регулирующими впуск и выпуск двигателя.
  • Это похоже на нормальную операцию по дыханию.

Мы увидим это более подробно при работе 4-х тактных двигателей.

Клапаны

Выше мы уже немного говорили о клапанах.Предусмотрены два типа клапанов;

  • один — впускной, а
  • другой — выпускной.

Впускной клапан обеспечивает поступление топливовоздушной смеси внутрь. В то время как выпускные клапаны выводят выхлоп из цилиндра. Во время других операций один из клапанов закрыт.

Коленчатый вал

Сначала поршень, затем идет шатун, соединенный с поршнем, а с другой стороны, он соединен с коленчатым валом. Его также называют кривошипом.

  • Вертикальное движение поршней с помощью шатунов преобразует вал трещины во вращательное движение.
  • Коленчатый вал соединен с маховиком с помощью подшипников и шейки.

Маховик — это маховик, который передает мощность двигателя на колеса через трансмиссию. Маховик помогает уменьшить пульсацию, которая возникает при работе с четырехтактным циклом.

Распределительный вал

Мы видели функции клапанов, но открытие и закрытие клапанов контролируется распределительным валом.

Это в основном вал, как показано на рисунке ниже.

Четырехтактный четырехтактный двигатель Распределительный вал коленчатого вала

Для каждого клапана имеется выступ, подобный структуре распредвала.

Он расположен либо в блоке двигателя, над головой, либо над головой.

Подъемники

Подъемники действуют как связующее звено между кулачком и клапанами. Как видно из названия, они поднимаются при вращении кулачка распределительного вала. Существует два типа подъемников:

  • Гидравлический подъемник и
  • Цельный подъемник,

Цепь / ремень / шестерни привода ГРМ

Они используются в различных комбинациях, чтобы помочь соединить коленчатый вал с распределительным валом.

Они регулируют время открытия и закрытия клапана в зависимости от движения поршня.

Valvetrain

Так же, как и блок цилиндров, содержит в своем блоке все детали, необходимые для работы.

  • То же, клапанный механизм имеет детали, необходимые для открытия и закрытия клапанов.
  • Включает в себя рассмотренные выше подъемники. Кроме того, пружины, держатели и т. Д.

Чтобы понять принцип работы четырехтактных двигателей, вам следует знать несколько терминов.Вот несколько терминов, которые мы собираемся использовать для понимания рабочего процесса четырехтактного двигателя.

Основная терминология

Основные термины:

  • Диаметр цилиндра
  • TDC
  • BDC
  • Сжатие
  • Кубическое смещение

Давайте попробуем понять вкратце,

  1. Диаметр цилиндра — расстояние по цилиндру, или вы можете назвать это диаметром.
  2. Верхняя мертвая точка (ВМТ) — когда поршень достигает своей наивысшей точки в цилиндре, это положение или точка называется верхней мертвой точкой.
  3. Нижняя мертвая точка (НМТ) — когда поршень достигает своей самой нижней точки в цилиндре, положение или точка называется нижней мертвой точкой.
  4. Сжатие — имеет то же значение, что и само слово — сжатие топливовоздушной смеси, когда поршень движется из НМТ в ВМТ, известное как сжатие.
  5. Объем кубический — обозначает объем двигателя. Вы, должно быть, слышали в технических характеристиках автомобиля, что двигатель объемом 350 куб. См или 1800 куб. См и т. Д. Он показывает размер двигателя в кубических сантиметрах.Проще говоря, он показывает, какой объем воздуха цилиндр может переместить из НМТ в ВМТ.

Итак, теперь вы знаете основные термины, используемые в двигателях. Теперь о работе четырехтактных двигателей было бы довольно легко понять, давайте теперь узнаем, как они работают.

Работа четырехтактных двигателей

Итак, перед тем, как перейти в рабочий процесс, четырехтактный двигатель имеет разные циклы. Названный циклом Отто (довольно популярным в бензиновых двигателях), дизельным циклом и циклом Аткинсона.Один из самых популярных — цикл Отто.

Назван в честь ученого Николая Августа Отто.

Принцип работы четырехтактного двигателя объясняется в нескольких шагах,

  • Ход всасывания
  • Ход сжатия
  • Ход поршня
  • Ход выхлопа
Работают четыре четырехтактных двигателя

Ход всасывания

Первый ход в четырех -тактный цикл двигателя — такт впуска. Поршень находится в верхней мертвой точке (ВМТ), а затем опускается в нижнюю мертвую точку (НМТ).

  • Впускной клапан открывается, что позволяет воздуху и топливной смеси всасываться в цилиндр.
  • Поскольку впускной клапан открыт, выпускной клапан остается закрытым.
  • Поршень на 180 градусов завершен.

Ход сжатия

Второй ход — это ход сжатия. Поршень находится в нижней мертвой точке (НМТ) после такта впуска.

  • Теперь поршень движется вверх в верхнюю мертвую точку (ВМТ), вызывая сжатие и сжатие топливовоздушной смеси.
  • В этом такте и впускной, и выпускной клапаны закрыты.
  • Итак, топливовоздушная смесь не забирается и не выводится.
  • Еще 180 градусов, то есть 360 градусов поршня, пройденного до сих пор.
  • Непосредственно перед переходом в рабочий такт запускается событие зажигания.
  • Топливо воспламеняется от искры.
  • Непосредственно перед завершением поворота поршня на 360 градусов поверните, как правило, на 20 градусов, прежде чем топливо воспламенится свечой зажигания.

Рабочий ход

Это такты, генерирующие энергию.Этим ходом генерируется мощность, и воспламеняемое топливо расширяется.

  • Поршень быстро перемещается из верхней мертвой точки (ВМТ) в нижнюю мертвую точку (НМТ).
  • Создаваемая сила и движение передаются на коленчатый вал через шатун.
  • Обе заслонки закрываются во время этого хода, и теперь поршень перемещается на 540 градусов.

Такт выпуска

Это последний такт, при котором расширенные газы должны вытесняться из цилиндра.Поршень находится в нижней мертвой точке (НМТ) в конце рабочего хода.

  • В такте выпуска поршень движется вверх, перемещая вместе с собой газы.
  • Выпускной клапан открывается, а впускной клапан закрывается.
  • Газы выбрасываются из выпускных клапанов.
  • Поршень совершает 720-градусный ход.

Снова открываются впускные клапаны, и новое топливо поступает в цилиндр. Цикл повторяется снова и снова в секундах.Цикл повторяется.

Порядок не меняется. Несколько замечаний по работе четырехтактных двигателей.

  • Направление поршня имеет четкую структуру, впускной клапан открывается только на такте впуска, и, наконец, выпускные клапаны открываются только на такте выпуска.
  • В четырехтактных двигателях есть больше достижений. Работа, которую мы видели выше, является идеальной работой четырехтактных двигателей.

Посмотрите красивое АНИМИРОВАННОЕ ВИДЕО от 3D_Guy_2008!

Изменения в четырехтактном двигателе

В соответствии с требованиями эффективности и стабильности были внесены различные изменения.Например,

  • Зажигание топлива до 20 градусов завершения такта сжатия и открытие впускного клапана незадолго до 10-15 градусов завершения такта выпуска, и удерживание выпускного клапана открытым до 10-15 градусов после начала такта впуска. .
  • Это регулировки, сделанные для обеспечения стабильной, безопасной и эффективной работы четырехтактных двигателей.

Теперь рассмотрим некоторые преимущества и недостатки четырехтактных двигателей.

Преимущества 4-тактных двигателей

Больше крутящего момента

Это основная причина, по которой люди выбирают 4-тактные двигатели. На низких оборотах крутящий момент четырехтактных двигателей лучше, чем у двухтактных. Он надежнее и тише в работе, чем двухтактный двигатель.

Лучшая топливная экономичность

В четырехтактных двигателях топливо расходуется только один раз, что дает лучшую топливную экономичность, чем двухтактные двигатели.

Очистка воздуха

Четырехтактные двигатели создают меньше загрязнений благодаря отсутствию горения масла.По сравнению с двухтактным двигателем, который выделяет много дыма из-за сжигаемого масла и топлива.

В четырехтактных двигателях масло хранится отдельно от камеры сгорания, что обеспечивает сгорание только бензина.

Увеличенный срок службы

Двухтактные двигатели рассчитаны на высокие скорости вращения, которые быстро изнашиваются. Чем больше работает двигатель, тем быстрее он изнашивается.

Четырехтактные двигатели должны совершать 4 такта при меньших оборотах.

Дополнительное масло не требуется.

Только движущиеся части четырехтактных двигателей нуждаются в смазке.

Недостатки 4-тактных двигателей

Сложная конструкция

Больше деталей, совершающих возвратно-поступательное движение, больше деталей, о которых нужно беспокоиться, следовательно, сложно устранить проблемы из-за сложной конструкции.

Не такой мощный, как двухтактный

В четырехтактных двигателях мощность вырабатывается за два оборота.

Но в случае двухтактных двигателей он имеет рабочий ход на каждом обороте.

Дорого

Очевидно, что более значительное количество деталей и сложных конструкций стоит дороже, чем двухтактные двигатели.

Частая замена масла

В четырехтактных двигателях сделано больше. Например, регулировка таймингов клапанов, наддува и т. Д. Они улучшаются с каждым усовершенствованием, сделанным в их работе, а также в конструкции.

Заключение

Таким образом, мы узнали все о четырехтактном двигателе, а также о его частях, принципах работы. Надеюсь, вам понравился наш контент.

Двухтактный против. Четырехтактные двигатели мотоциклов

Во время такта впуска поршень опускается от верха цилиндра к низу, уменьшая давление внутри цилиндра.Затем он втягивает смесь топлива и воздуха в цилиндр через впускной канал, готовый к такту сжатия.

При закрытых впускных и выпускных клапанах поршень возвращается в верхнюю часть цилиндра, сжимая топливно-воздушную смесь. Вот что происходит во время такта сжатия.

Смесь сжатого воздуха и топлива воспламеняется от искры. Давление от сгорания топливно-воздушной смеси с огромной силой толкает поршень вниз, удерживая коленчатый вал во вращении.Это фаза рабочего хода, которая является основным источником крутящего момента и мощности двигателя.

Наконец, во время такта выпуска поршень снова поднимается и выталкивает сгоревший газ из цилиндра через выпускной клапан. Еще одна вещь, о которой стоит упомянуть, это то, что свеча зажигания срабатывает только один раз каждые два оборота. Двухтактный двигатель

В отличие от четырехтактного, двухтактный двигатель имеет три такта, объединенные в одно действие, что означает, что впуск и выпуск оба интегрированы в движение сжатия поршня, что устраняет необходимость в клапанах.Это происходит благодаря впускному и выпускному патрубкам, встроенным в стенку камеры сгорания.

Когда поршень опускается после сгорания, отработавшие газы могут выходить из камеры через выхлопное отверстие. Топливно-воздушная смесь всасывается через входное отверстие, расположенное ниже в камере. Когда поршень снова поднимается, он перекрывает впускное и выпускное отверстия, сжимая газы в верхней части камеры. Свеча зажигания загорается, и процесс начинается заново. Двигатель срабатывает при каждом обороте. Да начнется бой!
Двухтактный двигатель может производить вдвое большую мощность (и производить в два раза больше шума), чем четырехтактный двигатель того же размера.Это потому, что он срабатывает один раз за каждый оборот, что дает ему вдвое большую мощность, чем четырехходовой, который срабатывает только один раз за каждый второй оборот. Примечательно, что он также имеет более высокое соотношение веса и мощности, потому что он намного легче.

Двухтактные двигатели проще и дешевле в производстве по сравнению с четырехтактными двигателями из-за их более простой конструкции.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *