Угол поворота в физике формула – Формула угловой скорости в физике

формулы и расчеты — OneKu

Содержание статьи:

Перемещение тел по окружности достаточно распространено в нашей жизни и в природе. Яркими примерами этого типа перемещения являются вращения ветровых мельниц, планет вокруг своих звезд и колес транспортных средств. В данной статье рассмотрим, какими формулами движение по окружности тел описывается.

Перемещение по окружности и по прямой линии в физике

В физике вопросами движения занимается кинематика. Она устанавливает связь между величинами, описывающими этот процесс. В динамике также уделяется внимание движению, однако она ориентирована на описание причин его возникновения. Другими словами, если для кинематики главными физическими величинами являются путь и скорость, то для динамики — это действующие на тела силы.

Вам будет интересно:Интерес: определение, понятие, типы и функции

В физике принято выделять два идеальных типа траекторий движения:

  • прямая линия;
  • окружность.

Математический аппарат для описания движения по обоим типам траекторий развит настолько хорошо, что понимание формул, например для прямолинейного движения, автоматически приводит к пониманию выражений для движения по окружности. Единственная принципиальная разница между формулами указанных типов перемещения заключается в том, что для движения по окружности удобно использовать угловые характеристики, а не линейные.

Далее в статье будем рассматривать исключительно кинематические формулы движения по окружности тел, не вдаваясь в подробности динамики.

Угловые характеристики движения: угол поворота

Прежде чем записывать формулы движения по окружности в физике, следует ввести величины, которые будут фигурировать в этих формулах.

Начнем с угла поворота. Будем обозначать его греческой буквой θ (тета). Поскольку вращение предполагает движение точки вдоль одной и той же окружности, то значение угла поворота θ за определенный промежуток времени можно использовать для определения количества оборотов, которое сделала эта точка. Напомним, что вся окружность равна 2*pi радиан, или 360o. Тогда формула для числа оборотов n через угол θ примет вид:

n = θ/(2*pi)

Здесь и далее во всех формулах угол выражается в радианах.

Пользуясь известным углом θ, также можно определить линейное расстояние, которое точка прошла вдоль окружности. Это расстояние будет равно:

Вам будет интересно:Педагогическая система Макаренко: принципы и компоненты

L = θ*r

Здесь r — радиус рассматриваемой окружности.

Угловая скорость и ускорение

Кинематические формулы движения по окружности точки предполагают также использование понятий угловой скорости и углового ускорения. Обозначим первую буквой ω (омега), а вторую буквой α (альфа).

Физический смысл угловой скорости ω прост: эта величина показывает, на какой угол в радианах поворачивается точка за каждую секунду времени. Данное определение имеет следующее математическое представление:

ω = dθ/dt

Эта формула скорости движения по окружности записана в дифференциальной форме. Полученная с ее помощью величина ω называется мгновенной скоростью. Ее удобно использовать, если движение не является равномерным, то есть происходит с переменной скоростью.

Угловое ускорение α — это величина, которая описывает быстроту изменения скорости ω, то есть:

α = dω/dt

Угловое ускорение измеряется в радианах в секунду квадратную (рад/с2). Так, 1 рад/с2 означает, что тело увеличивает за каждую секунду времени скорость на 1 рад/с.

Учитывая выражение для ω, записанное выше, равенство можно представить в такой форме:

α = d2θ/dt2

В зависимости от особенностей движения по окружности величина α может быть постоянной, переменной или нулевой.

Равномерное движение

Когда на вращающееся тело не действует никакая внешняя сила, то угловая скорость будет оставаться постоянной сколь угодно длительное время. Такое движение получило название равномерного вращения. Оно описывается следующей формулой:

θ = ω*t

В этом выражении переменными являются всего две величины: t и θ. Скорость ω = const.

Следует отметить один важный момент: нулю равна лишь равнодействующая внешних сил на тело, внутренние же силы, действующие в системе, нулю не равны. Так, внутренняя сила заставляет вращающееся тело изменять свою прямолинейную траекторию на криволинейную (окружность). Эта сила приводит к появлению центростремительного ускорения. Последнее не изменяет ни скорость ω, ни линейную скорость v, оно лишь изменяет направление движения.

Равноускоренное движение по окружности

Вам будет интересно:Академик Рыбаков Б.А.: биография, археологическая деятельность, книги

Формулы для этого типа перемещения можно получить непосредственно из приведенных математических выражений для величин ω и α. Равноускоренное движение предполагает, что за более-менее длительный промежуток времени модуль и направление ускорения α не изменяются. Благодаря этому можно проинтегрировать дифференциальное выражение для α и получить следующие две формулы:

ω = ω0 + α*t;

ω = ω0 — α*t

Очевидно, что в первом случае движение будет равноускоренным, во втором — равнозамедленным. Величина ω0 здесь — это некоторая начальная скорость, которой вращающееся тело обладало до появления ускорения.

Для равноускоренного движения не существует конечной скорости, поскольку она может возрастать сколь угодно долго. Для равнозамедленного движения конечным состоянием будет прекращение вращения, то есть ω = 0.

Теперь запишем формулы для определения угла θ при движении с постоянным ускорением. Эти формулы получаются, если произвести двойное интегрирование по времени для выражения α через θ. Получаются следующие выражения:

θ = ω0*t + α*t2/2;

θ = ω0*t — α*t2/2

То есть центральный угол θ, на который тело повернется за время t, будет равен сумме двух слагаемых. Первое слагаемое — это вклад в θ равномерного движения, второе — равноускоренного (равнозамедленного).

Связь между угловыми и линейными величинами

При рассмотрении понятия угла поворота θ уже была приведена формула, которая его связывает с линейным расстоянием L. Здесь же рассмотрим аналогичные выражения для скорости ω и ускорения α.

Линейная скорость v при равномерном движении определяется как расстояние L, пройденное за время t, то есть:

v = L/t

Подставляя сюда выражение для L через θ, получаем:

v = L/t = θ/t*r = ω*r

Мы получили связь между линейной и угловой скоростью. Важно отметить, что удобство использования угловой скорости связано с тем, что она не зависит от радиуса окружности. В свою очередь, линейная скорость v возрастает линейно с увеличением r.

Остается записать связь между линейным ускорением a и его угловым аналогом α. Чтобы это сделать, запишем выражение для скорости v при равноускоренном движении без начальной скорости v0. Получаем:

v = a*t

Подставляем сюда полученное выражение связи между v и ω:

ω*r = a*t =>

a = ω/t*r = α*r

Как и скорость, линейное ускорение, направленное по касательной к окружности, зависит от радиуса.

Ускорение центростремительное

Выше уже было сказано несколько слов об этой величине. Здесь приведем формулы, которые можно использовать для ее вычисления. Через скорость v выражение для центростремительного ускорения ac имеет вид:

ac = v2/r

Через угловую скорость его можно записать так:

ac = ω2*r2/r = ω2*r

Величина ac не имеет никакого отношения к тангенциальному ускорению a. Центростремительное ускорение обеспечивает поддержание вращающегося тела на одной окружности.

Задача на определение угловой скорости вращения планеты

Известно, что ближе всего к солнцу находится Меркурий. Полагая, что он вращается по окружности вокруг светила, мы можем определить его угловую скорость ω.

Для решения задачи следует обратиться к справочным данным. Из них известно, что планета делает полный оборот вокруг светила за 87 дней 23,23 часа земных. Это время называется периодом обращения. Учитывая, что движение происходит с постоянной угловой скоростью, запишем рабочую формулу:

θ = ω*t =>

ω = θ/t

Остается перевести время в секунды, подставить значение угла θ, соответствующее полному обороту (2*pi), и записать ответ: ω = 8,26*10-7 рад/c.

Источник

1ku.ru

Движение тела по окружности в физике » Nikulux

Движение  по окружности — это вращательное движение определённой материальной точки или тела, ось вращения в выбранной системе отсчёта неподвижна и не проходит через центр тела.

Такое движение может быть :

  1. Равномерное движение (с постоянной угловой скоростью):
    Формула угловой скорости: ;
    Формула скорости движения: ;
    Формула угла поворота: ;
    Формула ускорения: ;
  2. Неравномерное движение (с переменной угловой скоростью):
    Формула тангенциального ускорения: ;
    Формула центростремительного ускорения: ;

— период вращения;
— время;
— угловая скорость;
— радиус;
— тангенциальное ускорение;
— центростремительное (полное) ускорение;

 

Таким не хитрым образом мы познакомились с «движение тела по окружности в физике»!

nikulux.ru

Равномерное движение тела по окружности – FIZI4KA

1. Движением тела по окружности называют движение, траекторией которого является окружность. По окружности движутся, например, конец стрелки часов, точки лопасти вращающейся турбины, вращающегося вала двигателя и др.

При движении по окружности направление скорости непрерывно изменяется. При этом модуль скорости тела может изменяться, а может оставаться неизменным. Движение, при котором изменяется только направление скорости, а её модуль сохраняется постоянным, называется равномерным движением тела по окружности. Под телом в данном случае имеют в виду материальную точку.

2. Движение тела по окружности характеризуется определёнными величинами. К ним относятся, прежде всего, период и частота обращения. Период обращения тела по окружности ​\( T \)​ — время, в течение которого тело совершает один полный оборот. Единица периода — ​\( [\,T\,] \)​ = 1 с.

Частота обращения ​\( (n) \)​ — число полных оборотов тела за одну секунду: ​\( n=N/t \)​. Единица частоты обращения — \( [\,n\,] \) = 1 с-1 = 1 Гц (герц). Один герц — это такая частота, при которой тело совершает один оборот за одну секунду.

Связь между частотой и периодом обращения выражается формулой: ​\( n=1/T \)​.

Пусть некоторое тело, движущееся по окружности, за время ​\( t \)​ переместилось из точки А в точку В. Радиус, соединяющий центр окружности с точкой А, называют радиусом-вектором. При перемещении тела из точки А в точку В радиус-вектор повернётся на угол ​\( \varphi \)​.

Быстроту обращения тела характеризуют угловая и линейная скорости.

Угловая скорость ​\( \omega \)​ — физическая величина, равная отношению угла поворота \( \varphi \) радиуса-вектора к промежутку времени, за которое этот поворот произошел: ​\( \omega=\varphi/t \)​. Единица угловой скорости — радиан в секунду, т.е. ​\( [\,\omega\,] \)​ = 1 рад/с. За время, равное периоду обращения, угол поворота радиуса-вектора равен ​\( 2\pi \)​. Поэтому ​\( \omega=2\pi/T \)​.

Линейная скорость тела ​\( v \)​ — скорость, с которой тело движется вдоль траектории. Линейная скорость при равномерном движении по окружности постоянна по модулю, меняется по направлению и направлена по касательной к траектории.

Линейная скорость равна отношению пути, пройденному телом вдоль траектории, ко времени, за которое этот путь пройден: ​\( \vec{v}=l/t \)​. За один оборот точка проходит путь, равный длине окружности. Поэтому ​\( \vec{v}=2\pi\!R/T \)​. Связь между линейной и угловой скоростью выражается формулой: ​\( v=\omega R \)​.

Из этого равенства следует, что чем дальше от центра окружности расположена точка вращающегося тела, тем больше её линейная скорость.

4. Ускорение тела равно отношению изменения его скорости ко времени, за которое оно произошло. При движении тела по окружности изменяется направление скорости, следовательно, разность скоростей не равна нулю, т.е. тело движется с ускорением. Оно определяется по формуле: ​\( \vec{a}=\frac{\Delta\vec{v}}{t} \)​ и направлено так же, как вектор изменения скорости. Это ускорение называется центростремительным ускорением.

Центростремительное ускорение при равномерном движении тела по окружности — физическая величина, равная отношению квадрата линейной скорости к радиусу окружности: ​\( a=\frac{v^2}{R} \)​. Так как ​\( v=\omega R \)​, то ​\( a=\omega^2R \)​.

При движении тела по окружности его центростремительное ускорение постоянно по модулю и направлено к центру окружности.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. При равномерном движении тела по окружности

1) изменяется только модуль его скорости
2) изменяется только направление его скорости
3) изменяются и модуль, и направление его скорости
4) не изменяется ни модуль, ни направление его скорости

2. Линейная скорость точки 1, находящейся на расстоянии ​\( R_1 \)​ от центра вращающегося колеса, равна ​\( v_1 \)​. Чему равна скорость ​\( v_2 \)​ точки 2, находящейся от центра на расстоянии ​\( R_2=4R_1 \)​?

1) ​\( v_2=v_1 \)​
2) ​\( v_2=2v_1 \)​
3) ​\( v_2=0,25v_1 \)​
4) ​\( v_2=4v_1 \)​

3. Период обращения точки по окружности можно вычислить по формуле:

1) ​\( T=2\pi\!Rv \)​
2) \( T=2\pi\!R/v \)​
3) \( T=2\pi v \)​
4) \( T=2\pi/v \)​

4. Угловая скорость вращения колеса автомобиля вычисляется по формуле:

1) ​\( \omega=a^2R \)​
2) \( \omega=vR^2 \)​
3) \( \omega=vR \)
4) \( \omega=v/R \)​

5. Угловая скорость вращения колеса велосипеда увеличилась в 2 раза. Как изменилась линейная скорость точек обода колеса?

1) увеличилась в 2 раза
2) уменьшилась в 2 раза
3) увеличилась в 4 раза
4) не изменилась

6. Линейная скорость точек лопасти винта вертолёта уменьшилась в 4 раза. Как изменилось их центростремительное ускорение?

1) не изменилось
2) уменьшилось в 16 раз
3) уменьшилось в 4 раза
4) уменьшилось в 2 раза

7. Радиус движения тела по окружности увеличили в 3 раза, не меняя его линейную скорость. Как изменилось центростремительное ускорение тела?

1) увеличилось в 9 раз
2) уменьшилось в 9 раз
3) уменьшилось в 3 раза
4) увеличилось в 3 раза

8. Чему равен период обращения коленчатого вала двигателя, если за 3 мин он совершил 600 000 оборотов?

1) 200 000 с
2) 3300 с
3) 3·10-4 с
4) 5·10-6 с

9. Чему равна частота вращения точки обода колеса, если период обращения составляет 0,05 с?

1) 0,05 Гц
2) 2 Гц
3) 20 Гц
4) 200 Гц

10. Линейная скорость точки обода велосипедного колеса радиусом 35 см равна 5 м/с. Чему равен период обращения колеса?

1) 14 с
2) 7 с
3) 0,07 с
4) 0,44 с

11. Установите соответствие между физическими величинами в левом столбце и формулами для их вычисления в правом столбце. В таблице под номером физической
величины левого столбца запишите соответствующий номер выбранной вами формулы из правого столбца.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
А) линейная скорость
Б) угловая скорость
В) частота обращения

ФОРМУЛА
1) ​\( 1/T \)​
2) ​\( v^2/R \)​
3) ​\( v/R \)​
4) ​\( \omega R \)​
5) ​\( 1/n \)​

12. Период обращения колеса увеличился. Как изменились угловая и линейная скорости точки обода колеса и её центростремительное ускорение. Установите соответствие между физическими величинами в левом столбце и характером их изменения в правом столбце.
В таблице под номером физической величины левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) угловая скорость
Б) линейная скорость
B) центростремительное ускорение

ХАРАКТЕР ИЗМЕНЕНИЯ ВЕЛИЧИНЫ
1) увеличилась
2) уменьшилась
3) не изменилась

Часть 2

13. Какой путь пройдёт точка обода колеса за 10 с, если частота обращения колеса составляет 8 Гц, а радиус колеса 5 м?

Ответы

Равномерное движение тела по окружности

5 (100%) 1 vote

fizi4ka.ru

Kvant. Вращательное движение — PhysBook

Кикоин А.К. Формулы кинематики для вращательного движениях //Квант. — 1983. — № 11. — С. 25-26.

По специальной договоренности с редколлегией и редакцией журнала «Квант»

Для описания движения материальной точки или поступательного движения твердого тела пользуются следующими кинематическими величинами: перемещением \(~\vec s\), скоростью \(~\vec \upsilon\) и ускорением \(~\vec a\). Сами они и их проекции на оси координат связаны между собой кинематическими формулами. Например, для прямолинейного равномерного движения перемещение от времени зависит так:

\(~\vec s = \vec \upsilon t\) или \(~s_x = \upsilon_x t\),

где t — время, отсчитываемое от некоторого начального момента. При прямолинейном равноускоренном движении с начальной скоростью \(~\vec \upsilon_0\) формулы кинематики имеют вид:

\(~\begin{matrix} \vec \upsilon = \vec \upsilon_0 + \vec a t \\ \vec s = \vec \upsilon_0 t + \frac{\vec a t^2}{2} \end{matrix}\) ,

или

\(~\begin{matrix} \upsilon_x = \upsilon_{0x} + a_x t \\ s_x = \upsilon_{0x} t + \frac{a_x t^2}{2} \\ \upsilon^2_x — \upsilon^2_{0x} = 2 a_x s_x \end{matrix}\) .

Но при вращательном движении тела величинами \(~\vec s\), \(~\vec \upsilon\) и \(~\vec a\) пользоваться неудобно, так как различные точки тела за один и тот же промежуток времени совершают разные перемещения и движутся с различными скоростями и ускорениями. Поэтому для описания вращательного движения вводятся специальные, так называемые угловые величины: угол поворота φ, угловая скорость ω (о них говорится в учебнике «Физика 8») и угловое ускорение \(~\varepsilon = \frac{\omega — \omega_0}{\Delta t} = \frac{\Delta \omega}{\Delta t}\) (о нем в учебнике не говорится). Для различных точек вращающегося тела они одинаковы.

Угловые величины связаны с величинами \(~\vec s\), \(~\vec \upsilon\) и \(~\vec a\), которые, в отличие от угловых, называют линейными, простыми соотношениями:

\(~\begin{matrix} s = r \varphi \\ \upsilon = r \omega \\ a = r \varepsilon \end{matrix}\) .

Здесь s — модуль перемещения данной точки тела (при малых перемещениях s — это длина дуги), r — радиус окружности, по которой она движется, υ — модуль скорости точки, а — модуль касательной проекции ускорения[1].

Из-за такой простой связи угловых и линейных величин кинематические формулы для вращательного движения во всем подобны кинематическим формулам, приведенным выше.

При равномерном вращении тела (угловая скорость постоянна) зависимость угла поворота φ от времени имеет вид:

\(~\varphi = \omega t\) .

При равноускоренном вращении угловая скорость ω изменяется со временем по формуле

\(~\omega = \omega_0 + \varepsilon t\) ,

где ω — начальная угловая скорость. Зависимость угла поворота от времени выражается формулой

\(~\varphi = \omega_0 t + \frac{\varepsilon t^2}{2}\) .

Точно так же между углом поворота и иловой скоростью существует связь:

\(~\omega^2 — \omega^2_0 = 2 \varepsilon \varphi\) .

Вообще любая формула кинематики вращательного движения тела получается из соответствующей формулы кинематики точки (или поступательного движения тела) простой заменой линейной величины соответствующей угловой.

В заключение отметим (в учебнике «Физика 8» об этом не говорится), что величины φ, ω и ε тоже считаются векторными. (Нужно же отличать повороты или вращения по часовой стрелке от поворотов или вращений против часовой стрелки!) Принимается, что векторы угловых величин направлены вдоль оси вращения тела по правилу правого винта: если мысленно вращать правый винт так, как вращается тело, то направление поступательного движения винта укажет направление соответствующего вектора (см. рисунок). Правда, для углового ускорения это правило несколько усложняется: вектор ускорения совпадает по направлению с направлением движения винта, если угловая скорость возрастает по модулю, и направлен в противоположную сторону, если угловая скорость уменьшается.

Примечания

  1. ↑ При движении точки по окружности вектор ускорения может иметь две проекции: на направление к центру окружности (центростремительное ускорение) и иа направление касательной к окружности (касательная проекция, представляющая собой быстроту изменения модуля скорости точки).

www.physbook.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *