Устройство системы питания: Устройство системы питания автомобиля
Устройство системы питания автомобиля
3. Топливный насос (служит для подачи топлива в двигатель). Топливные насосы служат для подачи бензина в цилиндры бензинового двигателя или дизельного топлива дизеля под определенным давлением и в определенный момент точно дозированных порций топлива, соответствующих нагрузке при данном режиме работы двигателя. Топливные насосы различаются по способу впрыска непосредственного действия и с аккумуляторным впрыском. В инжекторной топливной системе применяются электробензонасосы, которые размещаются в модуле топливного бака, вместе с датчиком указания уровня топлива, фильтром и завихрителем.
3.1 Топливный насос дизеля — в системах топливоподачи дизелей применяют поршневые насосы, которые служат для подачи топлива через фильтры к топливному насосу высокого давления (ТНВД).
3.2 Топливный насос высокого давления — (18—20 МПа) подает топливо через форсунки в камеру сгорания в строго определенные моменты и в определенном количестве в зависимости от режима работы двигателя. На автомобильных двигателях применяют ТНВД золотникового типа с постоянным ходом плунжера и регулировкой окончания подачи топлива.
3.3 ТНВД КАМАЗ — зарекомендовал себя, как насос высокого давления отличного качества. Продажа ТНВД КАМАЗ осуществляется профессионалами и представлена в широком ассортименте.
3.4 Топливный насос с электроприводом — служит для подачи топлива, поддерживает оптимальное давление в системе и обеспечивает правильный впрыск топлива при разных режимах работы.
4. Топливный фильтр (служит для очистки топлива).
4.1Фильтр тонкой очистки топлива ямз
5. Воздушный фильтр (очищает воздух, который используется для приготовления горючей смеси).
5.1Воздухоочиститель
6. Карбюратор (используется для приготовления горючей смеси).
6.1 Простейший карбюратор
6.2 Вспомогательные устройства карбюратора
6.3 Управление карбюратором
6.4 Устройство карбюратора
6.5 Поплавковая камера карбюратора
6.6 Системы карбюратора
6.7 Карбюраторный двигатель
7. Инжектор
Система питания двигателя (топливная система)
Главным предназначением топливной системы автомобиля являются подача топлива из бака, фильтрация, образование горючей смеси и подача ее в цилиндры. Существует несколько типов топливных систем для автомобильных двигателей. Самая распространенная в 20-ом веке была карбюраторная система подачи смеси топлива. Следующим этапом стало развитие впрыска топлива при помощи одной форсунки, так называемый моновпрыск. Применение этой системы позволило уменьшить расход топлива. В настоящее время используется третья система подачи топлива – инжекторная. В этой системе топливо под давлением подается непосредственно в впускной коллектор. Количество форсунок равно количеству цилиндров.
Схема топливной системы: инжекторный и карбюраторный вариант
Устройство топливной системы
Все cистемы питания двигателя похожи, отличаются только способами смесеобразования. В состав топливной системы входят следующие элементы:
- Топливный бак, предназначен для хранения топлива и представляет собой компактную емкость с устройством забора топлива (насос) и, в некоторых случаях, элементами грубой фильтрации.
- Топливопроводы представляют собой комплекс топливных трубок, шлангов и предназначены для транспортировки топлива к устройству смесеобразования.
- Устройства смесеобразования (карбюратор, моновпрыск, инжектор) – это механизм в котором происходит соединение топлива и воздуха (эмульсии) для дальнейшей подачи в цилиндры в такт работы двигателя (такт впуска).
- Блок управления работой устройства смесеобразования (инжекторные системы питания) – сложное электронное устройство для управления работой топливных форсунок, клапанов отсечки, датчиков контроля.
- Топливный насос, обычно погружной, предназначен для закачивания топлива в топливопровод. Представляет собой электродвигатель, соединенный с жидкостным насосом, в герметичном корпусе. Смазывается непосредственно топливом и длительная эксплуатация с минимальным количеством топлива, приводит к выходу из строя двигателя. В некоторых двигателях топливный насос крепился непосредственно к двигателю и приводился в действие вращением промежуточного вала, или распредвала.
- Дополнительные фильтры грубой и тонкой очистки. Установленные фильтрующие элементы в цепь подачи топлива.
Принцип работы топливной системы
В инжекторной системе топливо подается к форсункам, которые открываются управляющими сигналами от блока управления. Форсунки соединены между собой топливопроводом, в котором всегда находится топливо. Во всех топливных системах существует обратный топливопровод, по нему сливается излишек топлива в бак.
Система питания дизельного двигателя похожа на бензиновую. Правда, впрыск топлива происходит непосредственно в камеру сгорания цилиндра, под большим давлением. Смесеобразование происходит в цилиндре. Для подачи топлива под большим давлением применяется насос высокого давления (ТНВД).
РЕКОМЕНДУЕМ ТАКЖЕ ПРОЧИТАТЬ:
|
Системы питания двигателя: система питания бензинового двигателя
Системы питания бензиновых и дизельных двигателей значительно отличаются, поэтому рассмотрим их по отдельности. Итак, что такое система питания автомобиля?
Система питания бензинового двигателя
Системы питания бензиновых двигателей бывают двух типов — карбюраторная и впрысковая (инжекторная). Поскольку на современных автомобилях карбюраторная система уже не применяется ниже рассмотрим лишь основные принципы ее работы. При необходимости вы легко сможете найти дополнительную информацию по ней в многочисленных специальных изданиях.
Система питания бензинового двигателя, независимо от типа двигателя внутреннего сгорания, предназначена для хранения запаса топлива, очистки топлива и воздуха от посторонних примесей, а также подачи воздуха и топлива в цилиндры двигателя.
Для хранения запаса топлива на автомобиле служит топливный бак. На современных автомобилях применяются металлические или пластмассовые топливные баки, которые в большинстве случаев расположены под днищем кузова в задней части.
Систему питания бензинового двигателя можно условно разделить на две подсистемы — подачи воздуха и подачи топлива. Что бы ни случилось, в любой ситуации наши специалисты по выездной тех помощи на дорогах москвы приедут и окажут необходимую помощь.
Система подачи воздуха практически одинакова для всех типов двигателей внутреннего сгорания. Воздух, предназначенный для подачи в цилиндры двигателя, очищается от пыли воздушным фильтром, который расположен в моторном отсеке автомобиля. Воздух очищается сменным фильтрующим элементом, который выполнен из специальной бумаги с мелкими порами. Из следующей главы можно будет узнать электронная система управления двигателем — что это такое и как осуществляется диагностика электронной системы управления двигателем.
Дальнейший путь очищенного воздуха зависит от типа системы питания и будет рассмотрен ниже. А в одной из следующих глав можно будет узнать система питания дизельного двигателя: устройство системы питания дизельного двигателя.
Система питания бензинового двигателя карбюраторного типа
В карбюраторном двигателе система подачи топлива работает следующим образом.
Топливный насос (бензонасос) подает топливо из бака в поплавковую камеру карбюратора. Топливный насос, обычно мембранный, расположен непосредственно на двигателе. Привод насоса осуществляется при помощи штока-толкателя эксцентриком на распределительном валу.
Очистка топлива от загрязнений совершается в несколько этапов. Самая грубая очистка происходит сеточкой на заборнике в топливном баке. Затем топливо фильтруется сеточкой на входе в бензонасос. Также сетчатый фильтр-отстойник установлен на входном патрубке карбюратора.
В карбюраторе очищенный воздух из воздушного фильтра и бензин из бака смешиваются и подаются во впускной трубопровод двигателя.
Карбюратор устроен таким образом, чтобы обеспечить оптимальное соотношение воздуха и бензина в смеси. Это соотношение (по массе) составляет приблизительно 15 к 1. Топливовоздушная смесь с таким соотношением воздуха к бензину называется нормальной.
Нормальная смесь необходима для работы двигателя в установившемся режиме. На других режимах двигателю могут потребоваться топливовоздушные смеси с иным соотношением компонентов.
Обедненная смесь (15-16,5 частей воздуха к одной части бензина) имеет меньшую скорость сгорания по сравнению с обогащенной, но зато происходит полное сгорание топлива. Обедненная смесь применяется при средних нагрузках и обеспечивает высокую экономичность, а также минимальный выброс вредных веществ.
Бедная смесь (более 16,5 частей воздуха к одной части бензина) горит очень медленно. На бедной смеси могут возникать перебои в работе двигателя.
Обогащенная смесь (13-15 частей воздуха к одной части бензина) обладает наибольшей скоростью сгорания и используется при резком увеличении нагрузки.
Богатая смесь (менее 13 частей воздуха к одной части бензина) горит медленно. Богатая смесь необходима при пуске холодного двигателя и последующей работе на холостом ходу.
Для создания смеси, отличной от нормальной, карбюратор снабжен специальными устройствами — экономайзер, ускорительный насос (обогащенная смесь), воздушная заслонка (богатая смесь).
В карбюраторах разных систем эти устройства реализованы по-разному, поэтому здесь мы не будем рассматривать их более подробно. Суть просто в том, что
Для изменения количества топливовоздушной смеси и, следовательно, частоты вращения коленчатого вала двигателя служит дроссельная заслонка. Именно ею управляет водитель, нажимая или отпуская педаль газа.
Система питания бензинового двигателя инжекторного типа
На автомобиле с системой впрыска топлива водитель тоже управляет двигателем посредством дроссельной заслонки, но на этом аналогия с карбюраторной системой питания бензинового двигателя заканчивается.
Топливный насос расположен непосредственно в баке и имеет электропривод.
Электробензонасос обычно объединен с датчиком уровня топлива и сетчатым фильтром в узел, получивший название топливный модуль.
На большинстве впрысковых автомобилей топливо из топливного бака под давлением поступает в сменный топливный фильтр.
Топливный фильтр может быть установлен под днищем кузова либо в моторном отсеке.
Топливные трубопроводы подсоединяются к фильтру резьбовыми или быстросъемными соединениями. Соединения уплотнены кольцами из бензостойкой резины или металлическими шайбами.
В последнее время многие автопроизводители стали отказываться от применения подобных фильтров. Очистка топлива производится только фильтром, установленным в топливном модуле.
Замена такого фильтра не регламентирована планом технического обслуживания.
Системы впрыска топлива бывают двух основных типов — центральный впрыск топлива (моновпрыск) и распределенный впрыск, или, как его еще называют, многоточечный.
Центральный впрыск стал для автопроизводителей переходным этапом от карбюратора к распределенному впрыску и на современных автомобилях применения не находит. Это связано с тем, что система центрального впрыска топлива не позволяет выполнить требования современных экологических стандартов.
Агрегат центрального впрыска похож на карбюратор, только вместо смесительной камеры и жиклеров внутри установлена электромагнитная форсунка, которая открывается по команде электронного блока управления двигателем. Впрыск топлива происходит на вход впускного трубопровода.
В системе распределенного впрыска количество форсунок равно количеству цилиндров.
Форсунки установлены между впускным трубопроводом и топливной рампой. В топливной рампе поддерживается постоянное давление, которое обычно составляет около трех бар (1 бар равен примерно 1 атм). Для ограничения давления в топливной рампе служит регулятор, который стравливает излишки топлива обратно в бак.
Раньше регулятор давления устанавливали непосредственно на топливной рампе, а для соединения регулятора с топливным баком использовалась обратная топливная магистраль. В современных системах питания бензинового двигателя регулятор располагают в топливном модуле и необходимость в обратной магистрали отпала.
Топливные форсунки открываются по командам электронного блока управления, и происходит впрыск топлива из рампы во впускной трубопровод, где топливо смешивается с воздухом и поступает в виде смеси в цилиндр.
Команды на открытие форсунок вычисляются на основании сигналов, поступающих от датчиков электронной системы управления двигателем. Тем самым обеспечивается синхронизация работы системы подачи топлива и системы зажигания.
Система питания бензинового двигателя инжекторного типа обеспечивает большую производительность и возможность соответствия более высоким экологическим стандартам, чем карбюраторного.
Инжекторная система питания
На всех современных автомобилях с бензиновыми моторами используется инжекторная система подачи топлива, поскольку она является более совершенной, чем карбюраторная, несмотря на то, что она конструктивно более сложная.
Инжекторный двигатель – не новь, но широкое распространение он получил только после развития электронных технологий. Все потому, что механически организовать управление системой, обладающей высокой точностью работы было очень сложно. Но с появлением микропроцессоров это стало вполне возможно.
Инжекторная система отличается тем, что бензин подается строго заданными порциями принудительно в коллектор (цилиндр).
Устройство ДВСОсновным достоинством, которым обладает инжекторная система питания, является соблюдение оптимальных пропорций составных элементов горючей смеси на разных режимах работы силовой установки. Благодаря этому достигается лучший выход мощности и экономичное потребление бензина.
Устройство системы
Инжекторная система подачи топлива состоит из электронной и механической составляющих. Первая контролирует параметры работы силового агрегата и на их основе подает сигналы для срабатывания исполнительной (механической) части.
К электронной составляющей относится микроконтроллер (электронный блок управления) и большое количество следящих датчиков:
- лямбда-зонд;
- положения коленвала;
- массового расхода воздуха;
- положения дроссельной заслонки;
- детонации;
- температуры ОЖ;
- давления воздуха во впускном коллекторе.
Датчики системы инжектора
На некоторых авто могут иметься еще несколько дополнительных датчиков. У всех у них одна задача – определять параметры работы силового агрегата и передавать их на ЭБУ
Что касается механической части, то в ее состав входят такие элементы:
- бак;
- электрический топливный насос;
- топливные магистрали;
- фильтр;
- регулятор давления;
- топливная рампа;
- форсунки.
Простая инжекторная система подачи топлива
Как все работает
Теперь рассмотрим принцип работы инжекторного двигателя отдельно по каждой составляющей. С электронной частью, в целом, все просто. Датчики собирают информацию о скорости вращения коленчатого вала, воздуха (поступившего в цилиндры, а также остаточной его части в отработанных газах), положения дросселя (связанного с педалью акселератора), температуры ОЖ. Эти данные датчики передают постоянно на электронный блок, благодаря чему и достигается высокая точность дозировки бензина.
Поступающую с датчиков информацию ЭБУ сравнивает с данными, внесенными в картах, и уже на основе этого сравнения и ряда расчетов осуществляет управление исполнительной частью.В электронный блок внесены так называемые карты с оптимальными параметрами работы силовой установки (к примеру, на такие условия нужно подать столько-то бензина, на другие – столько-то).
Первый инжекторный двигатель Toyota 1973 года
Чтобы было понятнее, рассмотрим более подробно алгоритм работы электронного блока, но по упрощенной схеме, поскольку в действительности при расчете используется очень большое количество данных. В целом, все это направлено на высчитывание временной длины электрического импульса, который подается на форсунки.
Поскольку схема – упрощенная, то предположим, что электронный блок ведет расчеты только по нескольким параметрам, а именно базовой временной длине импульса и двум коэффициентам – температуры ОЖ и уровне кислорода в выхлопных газах. Для получения результата ЭБУ использует формулу, в которой все имеющиеся данные перемножаются.
Для получения базовой длины импульса, микроконтроллер берет два параметра – скорость вращения коленчатого вала и нагрузку, которая может высчитываться по давлению в коллекторе.
К примеру, обороты двигателя составляют 3000, а нагрузка 4. Микроконтроллер берет эти данные и сравнивает с таблицей, внесенной в карту. В данном случае получаем базовую временную длину импульса 12 миллисекунд.
Но для расчетов нужно также учесть коэффициенты, для чего берутся показания с датчиков температуры ОЖ и лямбда-зонда. К примеру, температура составляется 100 град, а уровень кислорода в отработанных газах составляет 3. ЭБУ берет эти данные и сравнивает с еще несколькими таблицами. Предположим, что температурный коэффициент составляет 0,8, а кислородный – 1,0.
Получив все необходимые данные электронный блок проводит расчет. В нашем случае 12 множиться на 0,8 и на 1,0. В результате получаем, что импульс должен составлять 9,6 миллисекунды.
Описанный алгоритм – очень упрощенный, на деле же при расчетах может учитываться не один десяток параметров и показателей.
Поскольку данные поступают на электронный блок постоянно, то система практически мгновенно реагирует на изменение параметров работы мотора и подстраивается под них, обеспечивая оптимальное смесеобразование.
Стоит отметить, что электронный блок управляет не только подачей топлива, в его задачу входит также регулировка угла зажигания для обеспечения оптимальной работы мотора.
Теперь о механической части. Здесь все очень просто: насос, установленный в баке, закачивает в систему бензин, причем под давлением, чтобы обеспечить принудительную подачу. Давление должно быть определенным, поэтому в схему включен регулятор.
По магистралям бензин подается на рампу, которая соединяет между собой все форсунки. Подающийся от ЭБУ электрический импульс приводит к открытию форсунок, а поскольку бензин находится под давлением, то он через открывшийся канал просто впрыскивается.
Виды и типы инжекторов
Инжекторы бывают двух видов:
- С одноточечным впрыском. Такая система является устаревшей и на автомобилях уже не используется. Суть ее в том, что форсунка только одна, установленная во впускном коллекторе. Такая конструкция не обеспечивала равномерного распределения топлива по цилиндрам, поэтому ее работа была сходной с карбюраторной системой.
- Многоточечный впрыск. На современных авто используется именно этот тип. Здесь для каждого цилиндра предусмотрена своя форсунка, поэтому такая система отличается высокой точностью дозировки. Устанавливаться форсунки могут как во впускной коллектор, так и в сам цилиндр (инжекторная система непосредственного впрыска).
На многоточечной инжекторной системе подачи топлива может использовать несколько типов впрыска:
- Одновременный. В этом типе импульс от ЭБУ поступает сразу на все форсунки, и они открываются вместе. Сейчас такой впрыск не используется.
- Парный, он же попарно-параллельный. В этом типе форсунки работают парами. Интересно, что только одна из них подает топливо непосредственно в такте впуска, у второй же такт не совпадает. Но поскольку двигатель – 4-тактный, с клапанной системой газораспределения, то несовпадение впрыска по такту на работоспособность мотора влияния не оказывает.
- Фазированный. В этом типе ЭБУ подает сигналы на открытие для каждой форсунки отдельно, поэтому впрыск происходит с совпадением по такту.
Примечательно, что современная инжекторная система подачи топлива может использовать несколько типов впрыска. Так, в обычном режиме используется фазированный впрыск, но в случае перехода на аварийное функционирование (к примеру, один из датчиков отказал), инжекторный двигатель переходит на парный впрыск.
Обратная связь с датчиками
Одним из основных датчиков, на показаниях которого ЭБУ регулирует время открытия форсунок, является лямбда-зонд, установленный в выпускной системе. Этот датчик определяет остаточное (не сгоревшее) количество воздуха в газах.
Эволюция датчика лямбда-зонд от Bosch
Благодаря этому датчику обеспечивается так называемая «обратная связь». Суть ее заключается вот в чем: ЭБУ провел все расчеты и подал импульс на форсунки. Топливо поступило, смешалось с воздухом и сгорело. Образовавшиеся выхлопные газы с не сгоревшими частицами смеси выводится из цилиндров по системе отвода выхлопных газов, в которую установлен лямбда-зонд. На основе его показаний ЭБУ определяет, правильно ли были проведены все расчеты и при надобности вносит корректировки для получения оптимального состава. То есть, на основе уже проведенного этапа подачи и сгорания топлива микроконтроллер делает расчеты для следующего.
Стоит отметить, что в процессе работы силовой установки существуют определенные режимы, при которых показания кислородного датчика будут некорректными, что может нарушить работу мотора или требуется смесь с определенным составом. При таких режимах ЭБУ игнорирует информацию с лямбда-зонда, а сигналы на подачу бензина он отправляет, исходя из заложенной в карты информации.
На разных режимах обратная связь работает так:
- Запуск мотора. Чтобы двигатель смог завестись, нужна обогащенная горючая смесь с увеличенным процентным содержанием топлива. И электронный блок это обеспечивает, причем для этого он использует заданные данные, и информацию от кислородного датчика он не использует;
- Прогрев. Чтобы инжекторный двигатель быстрее набрал рабочую температуру ЭБУ устанавливает повышенные обороты мотора. При этом он постоянно контролирует его температуру, и по мере прогрева корректирует состав горючей смеси, постепенно ее обедняя до тех пор, пока состав ее не станет оптимальным. В этом режиме электронный блок продолжает использовать заданные в картах данные, все еще не используя показания лямбда-зонда;
- Холостой ход. При этом режиме двигатель уже полностью прогрет, а температура выхлопных газов – высокая, поэтому условия для корректной работы лямбда-зонда соблюдаются. ЭБУ уже начинает использовать показания кислородного датчика, что позволяет установить стехиометрический состав смеси. При таком составе обеспечивается наибольший выход мощности силовой установки;
- Движение с плавным изменением оборотов мотора. Для достижения экономичного расхода топлива при максимальном выходе мощности, нужна смесь со стехиометрическим составом, поэтому при таком режиме ЭБУ регулирует подачу бензина на основе показания лямбда-зонда;
- Резкое увеличение оборотов. Чтобы инжекторный двигатель нормально отреагировал на такое действие, нужна несколько обогащенная смесь. Чтобы ее обеспечить, ЭБУ использует данные карт, а не показания лямбда-зонда;
- Торможение мотором. Поскольку этот режим не требует выхода мощности от мотора, то достаточно, чтобы смесь просто не давала остановиться силовой установке, а для этого подойдет и обедненная смесь. Для ее проявления показаний лямбда-зонда не нужно, поэтому ЭБУ их не использует.
Как видно, лямбда-зонд хоть и очень важен для работы системы, но информация с него используется далеко не всегда.
Напоследок отметим, что инжектор хоть и конструктивно сложная система и включает множество элементов, поломка которых сразу же сказывается на функционировании силовой установки, но она обеспечивает более рациональный расход бензина, а также повышает экологичность автомобиля. Поэтому альтернативы этой системе питания пока нет.
Назначение и приборы системы питания дизельного двигателя
Какое назначение системы питания дизельного двигателя?
Система питания дизельного двигателя служит для подвода воздуха и топлива в цилиндры двигателя в заданной пропорции и под заданным давлением и отвода отработавших газов из них.
Что входит в устройство системы питания дизельного двигателя автомобиля КамАЗ-5320?
Система питания дизельного двигателя автомобиля КамАЗ-5320 (рис.76) состоит из топливного бака 16; топливного фильтра 18 предварительной (грубой) очистки топлива; топливоподкачивающего насоса 2 с устройством 1 для ручной подкачки топлива; топливного насоса 4 высокого давления; форсунок 6; электромагнитного клапана 8; факельной свечи 10; фильтра 12 для окончательной (тонкой) очистки топлива; топливопроводов низкого 3 и высокого 5 давления; топливоотводящих (дренажных) трубопроводов 9, 11, 14 и 15 с тройником 17; топливопроводов 7 и 13 для подвода топлива соответственно к электромагнитному клапану и топливному насосу; воздушных фильтров; трубопровода для подвода воздуха в цилиндры двигателя и отвода отработавших газов из них; глушители шума выпуска отработавших газов; указателя уровня топлива в топливном баке; регулятора частоты вращения коленчатого вала; педали газа с системой тяг для управления рейкой топливного насоса; автоматической муфты опережения впрыска топлива.
Рис.76. Схема системы питания дизельного двигателя автомобиля КамАЗ-5320.
На отдельных двигателях устанавливают турбокомпрессор для подачи воздуха в цилиндры двигателя под давлением с целью повышения мощности двигателя и снижения токсичности отработавших газов.
Как работает система питания двигателя автомобиля КамАЗ-5320?
Во время работы двигателя топливо из топливного бака поступает по топливопроводу в фильтр предварительной очистки 18 (рис.76), очищается от грубых примесей и воды и топливоподкачивающим насосом под давлением 0,15-0,20 МПа по топливопроводу 3 подается в фильтры тонкой очистки 12, где окончательно очищается. Затем по топливопроводу 13 поступает в топливный насос высокого давления 4, который повышает давление топлива, дозирует его количество для каждого цилиндра в соответствии с порядком работы и нагрузкой двигателя и по топливопроводам 5 высокого давления подает в форсунки 6, которые впрыскивают топливо в цилиндры под давлением 18 МПа. Впрыскнутое топливо смешивается в цилиндре с нагретым при такте сжатия воздухом и испаряется. Образовавшаяся горючая смесь самовоспламеняется и сгорает. Совершается такт рабочего хода, во время которого тепловая энергия преобразуется в механическую, и в виде крутящего момента передается на колеса автомобиля.
Избыточное топливо, а вместе с ним и проникший в систему питания воздух отводятся через перепускной клапан топливного насоса высокого давления и клапан-жиклер фильтра тонкой очистки по дренажным топливопроводам 11 и 14 в топливный бак 16. Топливо, просочившееся в полость пружины форсунки через зазор между корпусом распылителя и иглой, сливается в бак по дренажным топливопроводам 9 и 15 с тройником 17.
Электромагнитный клапан 8 топливопроводом 7 соединен с насосом высокого давления и служит для подачи топлива под давлением 0,06-0,08 МПа к факельным свечам 10, установленным во всех впускных трубопроводах для подогрева воздуха при пуске двигателя в холодное время года.
Система питания других дизельных двигателей устроена и работает так же, если она разделенного типа.
В чем особенности системы питания неразделенного типа и где она применяется?
Система питания дизельных двигателей неразделенного типа применяется на дизельных двухтактных двигателях ЯАЗ-204, ЯАЗ-206. В этой системе насос высокого давления и форсунка объединены в одном при боре, называемом насосом-форсункой, что позволило повысить давление впрыскиваемого топлива до 140 МПа при 2000 об/мин коленчатого вала. Однако работа такого двигателя более жесткая, что снижает срок его службы, в нем отсутствуют топливопроводы высокого давления. Регулятор частоты вращения коленчатого вала двухрежимный. Он устойчиво поддерживает минимальную частоту вращения коленчатого вала на холостом ходу и максимальную – на полных нагрузках двигателя.
***
Проверьте свои знания и ответьте на контрольные вопросы по теме «Система питания дизельного двигателя»
давление, двигатель, дизельный, насос, питание, система, топливный, топливо, топливопровод
Смотрите также:
Система питания дизельного двигателя (схема); устройство системы питания
Перед покупкой авто, нужно решить один важный вопрос – «Какой двигатель ставить на транспорт — дизельный или бензиновый?». Каждый из них обладает преимуществами и недостатками. В этой статье подробно поговорим о дизельном моторе, о его краткой истории создания, детально рассмотрим строение и поделимся рекомендациями по обслуживанию.
Каждый второй производимый транспорт в Германии работает на дизелеТурбокомпрессоры, которые могут изменять форму внутренних турбин, что является стандартом для проектировщиков, и улучшения высокого крутящегося момента, сделали наследие Дизеля нужным и на современном рынке автопрома. Скептики заблуждаются, когда считают, что такие моторы источник грязи, громкого шума, неэкономичности и общего загрязнения окружающей среды это давно в прошлом. Специальные механизмы обрабатывают выхлопные газы на уровне соответствия стандартам Euro-6. И если по состоянию на 1997 год лишь 22% транспорта были на дизеле, то теперь их продано свыше 60%. И на 2020 год есть большие перспективы развития этого моторчика, объединив его с электроникой. Эту инновацию воплотили в жизнь в моделях Peugeot 3008_Hybrid4 и во многих других. Рудольф Дизель не имел представления о том, какое будущие у его выдумки, но запись из личного дневника подтверждает, что он высоко верил в потенциал изобретения. Что же такого в его творении, что ценят водители со всего мира?
Характерные черты и особенности дизельного горючего.
«Солярку» получают из нефти, а именно — когда от нее отделяют бензин. Особенность данного вида топлива состоит в том, что у него высокий показатель самовозгорания, измеряется в цетановых числах. На заправочных станциях обычно горючее с числами от 45 до 50. Современные авто, оснащенные инновационными моторами, питаются «соляркой» с большим цетановым значением.
Двигатель внутреннего сгорания подает высококачественное топливо к цилиндрическим бакам, а топливный насос высокого давления сдавливает его до такого уровня, что у форсунки появляется возможность подать его мельчайшие частички в камеру сгорания. После этого начинается смешивание «солярки» с раскаленным воздухом, и начинается самовозгорание.
Принцип работы системы питания дизельного двигателя заключается именно том, что смесь поджигается не сторонним устройством, а самостоятельно в этом главное отличие от аналоговых изобретений, работающих на бензине.
Еще одно отличие «солярки» от бензина — из-за высокой плотности она лучше смазывает внутренние детали и обладает лучшей вязкостью, дольше застывает, а также она чище других видов. Из-за вариативной температуры застывания специалисты делят топливо на три вида летнее, зимнее и даже морозоустойчивое арктическое топливо.
Из чего состоит и как выглядит система питания?Система питания дизельного двигателя — это сложный механизм, в который входит множество мелких деталей, формирующих целостное, структурное изобретение. В прибор входят узлы, которые размещаются вне корпуса мотора. Те что расположены на раме выполняют функцию сбора горючего, к ним относятся топливо распределительный кран, топливный насос и другие узлы. К тем что располагаются на корпусе автомобиля относятся форсунки, ТНВД, и проводник горючего высокого давления.
Что происходит, когда работа начинается?
Из бака под высоким давлением «соляра» забирается и транспортируется к топливному насосу высокого давления. Во время движения к ТНВД, горючее ждет приключение, ведь ему еще нужно пройти через топливо распределительный кран и очищающий фильтр.
Перед тем как попасть в ТНВД, смесь очищается от малейших деструктивных примесей, которые могут помешать генерации энергии. Затем форсунки впрыскивают жижу в специальный отсек для сгорания, это происходит в момент, когда в емкости приходит к концу цикл сжатия.
Перед самым запуском сердца машины, его заполнение нефтяным продуктом делается при помощи предпускового насоса. А после зажигания он перестает работать. Если в магистрали подачи высокого давления попадет воздух, то это плохо скажется на подаче смеси в главные цилиндры.
Чтобы это предотвратить устанавливается специальный воздухоотстойник, он располагается в самом верху, рассматриваемой системы. Перед тем как запустить лошадиные силы, воздух, который мог скопиться за время простоя, сгоняется через клапан для отвода кислорода. Чтобы это сделать нужно при выключенном движке открыть кран, а затем предпусковой насос сделает свою работу. А смесь под давлением вытеснит кислород в воздушный отсек топливного бака.
ТНВД что это такое и зачем нужно?Диагностика системы питания дизельного двигателя необходима, чтобы предотвратить поломку, и ее можно провести собственноручно, если детальнее пройтись и понять что такое схема анатомии внутреннего строения системы.
ТНВД — топливный насос высокого давления
Главная задача насоса, подавать нефтяную автомобильную энергию к форсункам, учитывая особенности мотора, действия владельца транспорта и разнообразных режимов работы авто. Если обобщить функцию современных ТНВД, то это автоматически регулировать сложную работу движка и обрабатывать запросы автовладельца. После нажатия на педаль газа, шофер не увеличивает количество подаваемого горючего, а только меняет режим регулирующих элементов, которые в свою очередь уже сами меняют напор в зависимости от множества разных факторов и математических коррелятов.
Современные машинки оснащены насосы распределительного типажа. Их особенность в том, что они компактные, удобные и с высокой точностью равномерно подают «солярку» по цилиндрам. Их минус в том, что для хорошего исполнения, системе требуется топливо высокого качества и чистоты.
ФорсункиСистема питания дизеля невозможна без хорошего форсунка. Его функция обеспечивать столько горючего в камеру сгорания, сколько предусмотрено дозиметром. Также они регулируют рабочее давление движка, а вид распылителя знает форму факела горючего – это важно, для этапа самовозгорания. Форсунок может быть со шрифтовым или многодырчатым механизмом распределения. Так как работка у рассматриваемой детали нелегкая, ее выполняют из жаропрочных сплавов с точностью форму вплоть миллиметров.
Фильтры для горючегоХотя их конструкция простая и незатейливая, они выступают как важное устройство системы питания дизельного двигателя.
Фильтры обладают своими характеристиками, например, тонкость фильтрации или сколько они могут пропускать жидкости эти параметры регулируется в зависимости от типа движка. Одной из задач фильтра является удаление влаги, а насос расположенный на верхней части служит для откачки воздуха. В некоторых случаях монтируется специальный прибор для электрического подогрева фильтра, это делают для облегчения старта работы движка. А еще благодаря ей фильтры не так портятся от забивания деструктивными парафинами зимой.
Система питания воздухомЗадача этой конструкции очищать кислород и подавать его в баки для хранения горючего.
Как выглядит процесс?
Турбокомпрессор всасывает воздух, а затем O2 проходит контроль в системе очистки и фильтрации, дальнейшее путешествие продолжается по трубопроводу в радиатор, где воздух снижает температуру до эксплуатационной при помощи вентилятора. После охлаждающих процедур кислород попадает во впускной коллектор, а уже дальше в дизельные цилиндры. Система питания воздухом снижает температуру и способствует лучшему сгоранию смеси, а это хорошо сказывается на общих рабочих процессах и экономичности топлива.
Система питания топливом дизельного двигателяРаспыленное топливо должно подаваться в цилиндры в количестве, строго определенном системой для выполнения нужной задачи.
Система питания топливом дизельного двигателя выполняет именно эту функцию, впрыскивает нефтепродукты в строго определенный момент и в фиксированном количестве.
Например, в легковых машинах впрыск в цилиндр происходит в одну тысячную долю секунды. В холодное время года или в зонах с арктическим климатом, чтобы облегчить запуск, прибегают к использованию свечей накаливания. Они отличаются от зажигательных свечей, которые используются в бензиновых движках, тем что просто нагревают воздух, как обычные батареи.
Система питания дизельных двигателей выполняет роль преобразователя энергии топливной смеси в механическую, что и делает возможным ход транспорта.
Неисправности системы питания дизельного двигателяТранспорт с дизельной системой питания включает в себя много различных элементов сложной иерархической системы. Новичок в мире диагностики или простой автолюбитель столкнется с определенными трудностями, если двигатель вдруг решит не запускаться.
Что же могло выйти из строя? Может топливный бак или фильтры, или какой-то из насосов?
Чтобы все работало корректно нужно вовремя обнаружить проблему и провести профилактику.
Как показывает практика, большой процент поломок происходит именно в деталях топливной системы, ведь она функционирует под высоким давлением, шанс появления дефекта при таких условиях работы – высок.
Чтобы сделать все как профессионалы и в дальнейшем ремонт системы питания дизельного двигателя прошел гладко, обратите внимание на датчики, которые демонстрируют значения, свидетельствующие о чрезмерном расходе «солярки».
Сперва взгляните на фильтры, форсунок и очиститель воздуха. А затем на насос для подкачки и транспортирования горючего. После этих проверок уделите внимание приводу и регулятору частоты оборотов. Ремонт системы питания дизельного двигателя может дорого обойтись, так что отнеситесь к диагностике серьезно.
Основные ошибки при эксплуатации дизельного двигателя видео
https://www.youtube.com/watch?v=B3hbl6KSWJc
Какой движок лучше дизельный или бензиновый?Теперь, когда полностью разобрались в принципе работе дизельных агрегатов сравним его с бензиновым аналогом. Разберемся в отличиях, которые присутствуют в этих технологиях и начнем со сравнения работы двух моторов. Оба относятся к двигателям внутреннего сгорания. В бензиновом моторе топливовоздушная смесь образуется за чертой цилиндрического бака. В конце цикла сжатия, пары от бензина и кислорода перемешиваются и равномерно расходятся по периметру бензобака. Результатом сжатия становится высокая температура жижи, но ее все равно мало для возгорания. Поэтому свечи зажигания выполняют роль вспомогательного поджигателя – и воспламенят смесь для образования энергии. У его соперника и главного героя данной статьи воздух сжимается только под давление. После физического воздействия температура цилиндра подскакивает до 900 градусов. Это стимулирует появление гетерогенной смеси, которая самовоспламеняется.
Бензин или дизель? Что лучше?
Коэффициент полезного действия и силаХотя у бензинового агрегата выше мощность, но сгорание нефтяного продукта в дизельном моторе происходит гораздо эффективнее. Он выигрывает в показателях КПД и экономичнее расходует топливную смесь.
ЗвукТворение Рудольфа Дизеля издает больше шума из-за работы при высоком давлении, но современные автомобильные рынки предлагают качественную шумоизоляцию, что нивелирует этот недостаток.
Выхлопные газыБезопасное устройство и сажевый фильтр и соответствие экологическим стандартам «Euro-4» делает дизельные агрегаты более современными и менее воздействующими на окружающую среду.
Безопасность использованияТак как «солярка» сгорает гораздо медленнее бензина это снижает риск возгорания и взрыва бака, еще одним преимуществом в безопасности – отсутствие свечи зажигания.
ИспользованиеЕсли использовать качественное топливо, то представитель дизельного семейства движков победит в этой рубрике за счет прочных блоков цилиндров и других деталей. Бензиновый аналог менее требователен к горючему низкого класса и устойчивее себя ведет, потребляя его.
Климатические условияБензиновые модели лучше себя показывают в холодной климатической зоне в отличие от «солярки». Но это решается покупкой специального зимнего топлива, но все равно даже с покупкой морозоустойчивого горючего движок будет долго прогреваться. Внедорожники работают на дизеле и выполняют свое назначение, так как горючее не портится от влаги.
ОбслуживаниеТем, кто ездит на машинах оснащенных дизельным движком придется чаще менять расходные детали. Фильтры, компрессия в цилиндрах. Техническое обслуживание системы питания, то еще приключение, ведь не каждая мастерская справится с поломкой из-за сложной структуры двигателя. Как правило, ремонт обходится дороже, чем бензинового агрегата.
Краткий экскурс в историюЧтобы совершить великую транспортную революцию, Рудольфу Дизелю пришлось использовать 13 страниц бумаги на которой и был продуман, начерчен и детально изложен принцип работы его детища. Патент был успешно одобрен и выдан имперским ведомством в Германии — это случилось 23 февраля 1893 года. Результатом его интеллектуальной работы и инженерного таланта стало миллиарды различного транспорта от легковых автомобилей до огромных транспортных танкеров, работающих по тому же принципу и сегодня. К несчастью сам Рудольф не дожил до момента всемирного признания и погиб во время морского приключения в 1913 году.
В чем же секрет Рудольфа, почему его изобретение стало трендом в моторостроительстве и оказало большое влияние на индустриальный мир?
Секрет скрывается в способе воспламенения топливовоздушной смеси, а именно в ее самовозгорании. В конструкции инженера смесь сжималась в соотношении 20 к 1, что приводило к воспламенению. Результат– его эффективность была значительно выше аналогов того времени. Для сравнения — модели на бензине показывали КПД в 12%, газовые в 17%, а даже первый прототип Рудольфа мог похвастаться 25% коэффициентом полезного действия.
Двигатели Дизеля выходят на рынокВ 1920-ых годах эксперты в области транспорта пророчили изобретению большое будущее. Но до наступления золотого века двигателей на «солярке» пришлось ждать еще не один год. В германии первое авто с данным типом движка выпустили аж в 1924. Американская компания Cummins решила получить технологическое преимущество и вырываться вперед от многочисленных бензиновых конкурентов. Так в 1929 году она использовала движок Дизеля в легковой модели автомобиля. Первое конвейерное производство транспорта с инновационным движком началось в 1936 году, попробовать вкус нефтяного топлива довелось модели Mercedes-Benz 260D. Но это не перевернуло мышление автолюбителей того времени, они все еще воспринимали изобретение Рудольфа, как что-то медленное, небрежное, грязное, неэкономичное и шумное.
Но после Второй мировой коллективное отношение к технологии изменилось. В 1975 модель VW GOLF Diesel завоевала недоверчивые сердца потребителей и принцип работы системы питания дизельного двигателя стал общедоступным и понятным для многих покупателей. А благодаря хитрой разработке топливных насосов нового поколения от компании Bosch движок стал меньше потреблять горючего и изменилось общее устройство движка. Затем эта модель была усовершенствована до спортивного авто, ее оснастили турбонаддувом. После успеха на рынке, зеленый свет, открылся для остальных ведущих производителей, кто боялся рисковать капиталом, теперь могли наладить выпуск моделей с изобретением Рудольфа.
Увеличение производительности и дальнейшее завоевание рынкаПосле того как рынок компактных авто был покорен, дизельная инновация перешла к завоеванию всего автопрома. Инженерам удалось спроектировать конструкцию, которая повышала давление, а система моментального впрыска избавила от посредничества и освободило место и облегчило вес, избавившись от ненужного отсека камеры сгорания. Новинка компании Bosch сделала реальным подачу топлива под давлением в тысячу бар прямо в цилиндрический бак — это привело к более эффективному сжиганию топлива. С каждым годом, улучшались показатели, рос потребительский спрос, что стимулировало изучение движков, работающих на дизеле. В начале нового тысячелетия моторы могли выдавать показатели в 2000 бар, и эта цифра растет до сих пор.
Устройство и принцип действия системы питания ГАЗ, ЗИЛ — Студопедия
Содержание
Введение
Устройство и принцип действия системы питания карбюраторного двигателя ГАЗ, ЗИЛ
Диагностика системы питания карбюраторного двигателя ГАЗ, ЗИЛ
ТО системы питания карбюраторного двигателя ГАЗ, ЗИЛ
Основные неисправности системы питания карбюраторного двигателя ГАЗ, ЗИЛ
Ремонт системы питаниякарбюраторного двигателя ГАЗ, ЗИЛ
Требования безопасности. При техническом обслуживании и ремонте автомобилей
Список используемой литературы
Введение
По проходимости автомобили делятся на три группы: обычной (дорожной), повышенной и высокой проходимости. Первые из них (ЗИЛ-130) используются главным образом на дорогах. Повышенной проходимости — ГАЗ-66 и ЗИЛ-131 — могут двигаться по дорогам и участкам местности вне дорог.
Двигателем называется машина, в которой тот или иной вид энергии преобразуется в механическую работу. Двигатели, в которых тепловая энергия преобразуется в механическую работу, являются тепловыми.
Тепловая энергия получается при сжигании какого-либо топлива. Двигатель, в котором топливо сгорает непосредственно внутри цилиндра и энергия образующихся при этом газов воспринимается движущимся в цилиндре поршнем, называется поршневым двигателем внутреннего сгорания. Такие двигатели в основном и применяются на современных автомобилях.
Рассмотрим двигатель ЗиЛ-130:
Двигатель состоит из механизм и систем обеспечивающих его работу:
-кривошитно-шатунный механизм,
-газораспределительный механизм,
-система охлаждения,
-система смазки,
-система питания.
В данной работе рассматривается система питания карбюраторного двигателя ЗИЛ.
Назначение
Все двигатели, работающие на бензине, имеют принципиально одну и ту же систему питания и работают на горючей смеси, состоящей из паров топлива и воздуха. В систему питания входят приборы, предназначенные для хранения, очистки и подачи топлива, приборы очистки воздуха и прибор, служащий для приготовления горючей смеси из паров топлива и воздуха.
Система питания карбюраторных двигателей состоит из топливного бака, отстойника , топливного насоса , карбюратора , воздухоочистителя и впускного трубопровода .
Топливо помещается в топливном баке, вместимость которого достаточна для работы автомобиля в течение одной смены. Топливный бак грузового автомобиля расположен сбоку автомобиля на раме.
Из топливного бака топливо поступает к топливным фильтрам-отстойникам, в которых от топлива отделяются механические примеси и вода. Фильтр-отстойник расположен на раме у топливного бака. Подачу топлива из бака через фильтр тонкой очистки к карбюратору осуществляет топливный насос, расположенный на картере двигателя» между рядами цилиндров сверху двигателя .
Приготовление необходимой горючей смеси из топлива и воздуха происходит в карбюраторе, установленном сверху двигателя на впускном трубопроводе. Воздух, поступающий для приготовления горючей смеси в карбюратор, проходит очистку от пыли в воздушном фильтре, расположенном непосредственно на карбюраторе или сбоку двигателя. В этом случае воздушный фильтр соединен с карбюратором патрубком.
Все приборы подачи топлива соединены между собой металлическими трубками — топливопроводами, которые крепятся к раме или кузову автомобиля, а в местах перехода от рамы или кузова к двигателю — шлангами из специальных сортов бензо-стойкой резины.
Карбюратор соединен с впускными каналами головки цилиндров двигателя при помощи впускного трубо-провода, а выпускные каналы соединены с выпускным трубопроводом, последний при помощи трубы соединен с глушителем шума выпуска отработавших газов.
Чтобы предотвратить возможность работы двигателя с чрезмерно большой частотой вращения коленчатого вала, в систему питания грузовых автомобилей включен ограничитель частоты вращения коленчатого вала.
Карбюратор К-88АМ двигателя ЗИЛ-130 имеет две смесительные камеры, каждая из которых обслуживает четыре цилиндра. При работе двигателя на средних нагрузках топливо из поплавковой камеры поступает через главные жиклеры, а затем через жиклеры полной мощности в эмульсионные каналы . В этих каналах к топливу подмешивается воздух, поступающий из воздушных жиклеров и жиклеров системы холостого хода. Образовавшаяся эмульсия попадает в смесительные камеры через кольцевые щели малых диффузоров. Поддержание постоянного состава обедненной смеси происходит за счет торможения топлива воздухом.
2.Устройство и принцип действия системы питания карбюраторного двигателя ГАЗ, ЗИЛ.
Устройство и принцип действия системы питания ГАЗ, ЗИЛ
Система питания карбюраторного двигателя (рис.47) состоит из топливного бака 10, топливного фильтра-отстойника 12, топливного насоса 1, фильтра тонкой очистки топлива 4, карбюратора 3, воздушного фильтра 2, впускного трубопровода, выпускного трубопровода 15, газоотводящей трубы 14 с глушителем шума выпуска отработанных газов 13, соединительных трубопроводов и бензостойких шлангов 8, топливозаборного крана 11; указателя уровня топлива в топливном баке 9, педали управления дроссельной заслонкой 7, кнопки управления воздушной 5 и дроссельной 6 заслонками карбюратора.
Рис.47. Система питания карбюраторного двигателя.
При работе двигателя топливо из топливного бака принудительно с помощью топливного насоса подается в поплавковую камеру карбюратора, предварительно очистившись в фильтре-отстойнике и фильтре тонкой очистки. Одновременно в карбюратор поступает воздух, предварительно очищенный в воздушном фильтре. В карбюраторе топливо смешивается с воздухом в заданной пропорции и образуется горючая смесь, которая по впускному трубопроводу поступает в цилиндры двигателя, где сжимается, воспламеняется и сгорает, выделяя тепловую энергию, которая с помощью механизмов и систем преобразуется в механическую и в виде крутящего момента передается на колеса автомобиля, приводя его в движение. Отработавшие газы по выпускному трубопроводу отводятся в атмосферу.
эспандеров, петель и трубок | Поезд везде
Цена, простота использования и гибкость — ключевые преимущества лент и петель сопротивления от Power Systems Эспандеры
называют «великим демократизатором» мира упражнений, потому что они стоят примерно столько же, сколько месячное членство в тренажерном зале, и в несколько раз меньше, чем стоят другие типы тренажеров. Но преимущества полос сопротивления не ограничиваются их низкой ценой. Они удивительно просты в использовании и позволяют создавать замечательный набор упражнений, используя одно оборудование.Наконец, что, возможно, наиболее важно для людей, которые постоянно в пути, они привносят гибкость в ваш график тренировок, потому что, если вы бросите их в чемодан во время путешествия, вы сможете тренироваться где угодно. Так что, если вы ищете недорогое, портативное и гибкое тренажерное оборудование — для вашего дома, для вашего профессионального тренажерного зала или занятий, — Power Systems имеет все необходимое для создания ультрасовременных тренировок с эспандером.
Ленты сопротивления гибкие и простые в использовании Эспандеры
позволяют прорабатывать те же группы мышц, которые вы могли бы тренировать со свободными весами или на специализированных тренажерах в тренажерном зале.Например, вы можете встать на один конец эспандера и потянуться вверх, чтобы сгибать бицепс. Если вы прикрепите ленту к верхней раме двери, вы можете тянуть вниз, чтобы выполнять тяги вниз или трицепс. Оберните ленту вокруг вертикального столба, и вы можете работать над грудью, имитируя движения жима бабочки. Вы даже можете использовать их вместе с другим оборудованием; например, использование эластичных лент для лодыжек при выполнении упражнений с силовым степпером. Единственное ограничение на количество упражнений с отягощениями, которое вы можете создать, — это ваше собственное воображение.
Полосы сопротивления имеют преимущества Другое оборудование не имеет
Одним из ключевых преимуществ эспандеров перед тренажерами и свободными весами является то, что они обеспечивают постоянное сопротивление во всем диапазоне движений. Например, если вы работаете со свободными весами для выполнения сгибаний на бицепс, сопротивление создается силой тяжести, поэтому сопротивление больше во время подъема сгибания (когда вы работаете против силы тяжести), чем во время маха вниз (когда вы выполняете махи вниз). на самом деле ему помогает сила тяжести).С бинтами сопротивление остается постоянным, что заставляет вас задействовать больше групп мышц и помогает улучшить координацию и равновесие по мере наращивания силы.
В Power Systems мы предлагаем широкий выбор эластичных лент, от стартовых наборов до индивидуальных ручек, шлангов сопротивления и манжет, так что вы можете создавать свои собственные упражнения с эластичными бандажами в индивидуальных конфигурациях, которые вы создаете сами. У нас также есть плакаты с инструкциями по тренировкам с тубусом и инструкции, которые помогут вам начать работу.
О нас | Энергетические системы
МиссияPower Systems заключается в том, чтобы «усилить ваш потенциал», улучшая здоровье, физическую форму и производительность, будучи ресурсом для наших клиентов.Мы — ведущий поставщик товаров для фитнеса и повышения производительности для профессиональных помещений и домашних тренажерных залов, признанный во всех отраслях спорта и фитнеса за создание исключительного качества обслуживания клиентов, полный выбор товаров и быструю доставку.
С 1986 года страсть Power Systems к фитнесу поддерживается нашими клиентами. В фитнес-индустрии, которая кардинально изменилась за последние несколько десятилетий, Power Systems стремится постоянно развиваться вместе с отраслью, обеспечивая при этом людям инструменты для ведения активной жизни с помощью продуктов профессионального уровня, новейших учебных материалов и элитного обслуживания клиентов. .«Увеличьте свой потенциал» — это философия, которой руководствуется все, что отстаивает компания Power Systems.
- 30-летний опыт работы на рынке профессиональных фитнес-аксессуаров
- Инвентаризация более 2400 наименований товаров, которая может служить комплексным продуктом и обеспечивать удовлетворение потребностей в закупке по одному заказу на поставку
- Опытная команда менеджеров по работе с клиентами, обеспечивающая плавный и бесперебойный процесс обслуживания клиентов
- Специализированная команда по работе с клиентами с более чем 5-летним опытом ответит на любые вопросы, которые могут возникнуть
- Объект площадью 250 000 квадратных футов, 90% заказов доставляются в тот же день, включая автоматическое отслеживание электронной почты
- 30-дневное обещание — если вас что-то не устраивает, мы все исправим
https: // www.youtube.com/watch?v=F94l9VzZkXY&feature=youtu.be
О нашей материнской компании
PlayCore помогает создавать более сильные сообщества по всему миру, продвигая игру через исследования, образование и партнерские отношения. Компания внедряет эти знания во все свое семейство брендов. PlayCore сочетает в себе лучшие в своем классе программы планирования и обучения с наиболее полным набором продуктов для отдыха, доступных для создания игровых решений, соответствующих уникальным потребностям каждого сообщества, которому они служат.Узнайте больше на www.playcore.com
Реле защиты для систем резервного питания
При возникновении сверхтоков описанная выше схема часто используется для отключения выключателей среднего напряжения, которые не имеют встроенных расцепителей. Тем не менее, изменение устройств ввода и назначения вывода делает защитные реле полезными для обнаружения других состояний. Например, мониторинг сигнала от трансформатора напряжения может использоваться для защиты от пониженного или повышенного напряжения. Выходной сигнал термодатчика может использоваться для защиты оборудования от перегрева, а оптический датчик может использоваться для срабатывания защиты от дугового разряда.Выходные контакты могут использоваться для управления устройством, активации сигнала тревоги или оповещения о состоянии. Общие области применения в системах резервного питания
На практике устройства защитных реле служат для очень широкого круга приложений и могут быть в центре внимания всей карьеры инженера. Хотя объем возможностей описывать в этой статье непрактично, три распространенных приложения для систем резервного питания включают:
Работа выключателя среднего напряжения : Для систем среднего напряжения доступны переключатели и параллельное распределительное устройство.Защитные реле используются для отключения этих выключателей при возникновении электрических аномалий, таких как токи перегрузки. Следовательно, защитные реле могут быть включены в коммутационные устройства для переключения или параллельного включения, чтобы обеспечить необходимую защиту от условий перегрузки по току.
Защита при параллельном подключении питания на месте к электросети : Некоторые системы резервного питания параллельно источникам питания на месте с коммунальными службами. Автоматические переключатели с замкнутым переходом делают это в течение очень коротких промежутков времени (обычно <100 миллисекунд), чтобы избежать мгновенных сбоев питания, которые в противном случае могли бы быть связаны с переключением нагрузки между источниками питания.Как переключатели с плавной нагрузкой, так и распределительное устройство для параллельной работы могут использоваться для параллельного подключения источников питания в течение неопределенных периодов времени. Для этих приложений коммунальные предприятия предъявляют различные требования к реагированию на сбои, которые могут возникнуть при параллельном подключении. Некоторым коммунальным предприятиям потребуются быстродействующие защитные реле для отключения параллельных источников при возникновении неисправностей. Для получения дополнительной информации обратитесь к официальному документу ASCO Power Technologies, озаглавленному «Подключение безобрывных переключателей к коммунальным службам».
Защита от определенных электрических событий и состояний : Защитные реле используются для определения различных условий и защиты систем от широкого спектра электрических событий. Например, следующий список номеров устройств ANSI указывает лишь на некоторые функции защитных реле, которые используются в системах резервного питания:
Номера электрических устройств
Номера устройств указаны в стандарте ANSI / IEEE C37.2 и используются для обозначения функций устройства, показанного на принципиальной схеме.
1. Мастер-элементИнициирующее устройство, такое как управляющий переключатель, которое работает либо напрямую, либо через другие разрешающие устройства для включения или отключения оборудования.
2. Пусковое или замыкающее реле с выдержкой времениФункции, обеспечивающие желаемое время задержки до или после любой точки срабатывания в последовательности переключения или системе защитных реле.
3. Реле проверки или блокировкиРаботает в соответствии с положением других устройств в оборудовании, чтобы разрешить выполнение или остановку последовательности операций.
4. Главный контакторСлужит для замыкания и размыкания необходимых цепей управления для ввода оборудования в работу в требуемых условиях и вывода его из эксплуатации при других или ненормальных условиях.
5.Устройство остановкиИспользуется для отключения оборудования и вывода его из строя, за исключением функции электрической блокировки (устройство 86) в ненормальных условиях.
6. Пусковой выключательПодключает машину к источнику пускового напряжения.
7. Анодный автоматический выключательУстройство, используемое в анодных цепях силового выпрямителя с основной целью прерывания цепи выпрямителя в случае возникновения дуговой дуги.
8. Устройство отключения управляющего питанияНожевой выключатель, автоматический выключатель или выдвижной блок предохранителей, используемый для подключения и отключения источника управляющего напряжения к шине управления или части оборудования и от них, включая вспомогательный источник питания для небольших двигателей и нагревателей.
9. Реверсивное устройствоИспользуется для реверсирования поля машины или для выполнения любых других функций реверсирования.
10.Переключатель последовательности агрегатовУстройство, используемое для изменения последовательности, в которой блоки могут быть включены и выключены в конфигурациях с несколькими блоками.
11. Многофункциональное устройствоВыполняет три или более сравнительно важных функции, которые могут быть назначены только путем объединения нескольких из этих номеров функций устройства. Все функции, выполняемые устройством 11, должны быть определены в легенде чертежа или в списке определений функций устройства.
12.Устройство повышенной скоростиОбычно переключатель скорости с прямым подключением, который работает при превышении скорости машины.
13. Устройство синхронной скоростиУстройство любого типа, которое работает примерно с синхронной скоростью машины, например центробежный переключатель, реле частоты скольжения, реле напряжения и реле минимального тока.
14. Устройство пониженной скоростиРаботает, когда скорость машины падает ниже заданного значения.
15. Устройство согласования скорости или частотыФункции для согласования и удержания скорости или частоты машины или системы, равной или приблизительно равной скорости или частоте другой машины, источника или системы.
16. Устройство передачи данныхДля устройства 16 буквы суффикса дополнительно определяют устройство: первая буква суффикса — «S» для последовательного порта или «E» для Ethernet. Последующие буквы: функция обработки безопасности ‘C’ (например,грамм. VPN, шифрование), межсетевой экран или фильтр сообщений «F», функция управления сетью «M», маршрутизатор «R», коммутатор «S» и телефонный компонент «T». Таким образом, управляемый коммутатор Ethernet будет 16ESM.
17. Маневровый или выпускной выключательСлужит для размыкания или замыкания шунтирующей цепи вокруг любого устройства, за исключением устройств, которые выполняют маневровые операции, которые могут потребоваться в процессе запуска машины.
18. Устройство ускорения или замедленияЗамыкает или вызывает замыкание цепей, которые используются для увеличения или уменьшения скорости машины.
19. Пусковой контакторУстройство, которое запускает или вызывает автоматический перевод машины из состояния запуска в рабочее состояние.
20. КлапанКлапан с электрическим управлением, используемый в вакуумной, воздушной, газовой, масляной или аналогичной линии.
21. Дистанционное релеРаботает, когда полная проводимость, импеданс или реактивное сопротивление цепи увеличивается или уменьшается сверх заданных пределов.
22. Автоматический выключатель эквалайзераСлужит для управления или включения и отключения выравнивателя или соединений для балансировки тока для машинного поля или для регулирования оборудования в многоблочной установке.
23. Устройство контроля температурыФункционирует для повышения или понижения температуры машины или другого оборудования или любой среды, когда ее температура падает ниже или повышается выше заданного значения. Представьте термостат, который включает обогреватель в распределительном устройстве.
24. Реле вольт на герцРеле с мгновенной или временной характеристикой, которое работает, когда отношение напряжения к частоте превышает заданное значение.
25. Синхронизация или устройство проверки синхронизмаРаботает, когда две цепи переменного тока находятся в требуемых пределах частоты, фазового угла или напряжения, чтобы разрешить или вызвать параллельное включение этих двух цепей.
26. Аппарат Тепловой приборРаботает, когда температура оборудования, жидкости или другой среды превышает заданное значение: или если температура защищаемого устройства, например, силового выпрямителя, или любой среды снижается ниже заданного значения.
27. Реле минимального напряженияРаботает, когда заданное значение напряжения падает ниже заданного значения.
28. Датчик пламениУстройство, контролирующее наличие пилотного или основного пламени такого оборудования, как газовая турбина или паровой котел.
29. Разделительный контакторИспользуется специально для отключения одной цепи от другой в целях аварийной работы, технического обслуживания или тестирования.
30. Реле сигнализатораУстройство без автоматического сброса, которое дает ряд отдельных визуальных указаний на функции защитных устройств и которое также может быть выполнено с возможностью выполнения функции блокировки.
31. Устройство раздельного возбужденияПодключает цепь, такую как шунтирующее поле синхронного преобразователя, к источнику отдельного возбуждения во время последовательности запуска; или тот, который питает цепи возбуждения и зажигания силового выпрямителя.
32. Реле мощностиУстройство, которое работает на желаемом значении потока мощности в заданном направлении или на обратной мощности, возникающей в результате дуговой обратной дуги в анодной или катодной цепях выпрямителя мощности.
33. Позиционный переключательВключает или прерывает контакт, когда основное устройство или часть устройства, не имеющая номера функции устройства, достигает заданного положения.
34. Главное устройство последовательностиУстанавливает или определяет последовательность работы основных устройств в оборудовании во время запуска и остановки или во время других последовательных операций переключения, таких как многоконтактный переключатель с приводом от двигателя или устройство программирования, такое как компьютер.
35. Щеточное или скользящее устройство короткого замыканияИспользуется для подъема, опускания или перемещения щеток машины, или для короткого замыкания контактных колец, или для включения или отключения контактов механического выпрямителя.
36. Полярность или поляризационное напряжениеРазрешает работу другого устройства только с заранее определенной полярностью или проверяет наличие поляризующего напряжения в оборудовании.
37. Реле минимального тока или минимальной мощностиРаботает, когда поток тока или мощности уменьшается ниже заданного значения.
38. Защитное устройство подшипникаРаботает при чрезмерной температуре подшипника или других ненормальных механических условиях, связанных с подшипником, которые в конечном итоге могут привести к чрезмерной температуре подшипника.
39. Монитор механического состоянияРаботает при возникновении ненормального механического состояния, не охватываемого функцией 38 устройства, такого как чрезмерная вибрация, эксцентриситет, скачок расширения, наклон или отказ уплотнения.
40. Полевое релеРаботает при заданном или аномально низком значении или отказе тока возбуждения машины, или при чрезмерном значении реактивной составляющей тока якоря в машине переменного тока, указывающей на возбуждение ненормально слабого поля.
41. Полевой автоматический выключательИспользуется для применения или снятия возбуждения поля машины.
42. Рабочий выключательФункции для подключения машины к источнику рабочего или рабочего напряжения.Эта функция также может использоваться для устройства, такого как контактор, который используется последовательно с автоматическим выключателем или другими средствами защиты поля, в первую очередь для частого размыкания и замыкания выключателя.
43. Ручное передаточное или селекторное устройствоУстройство с ручным управлением, которое переключает цепи управления для изменения схемы работы коммутационного оборудования или некоторых устройств.
44. Пусковое реле последовательности агрегатовФункционирует для запуска следующего доступного блока в многоблочном оборудовании при отказе или недоступности обычно предшествующего блока.
45. Монитор атмосферных условийФункционирует при возникновении ненормальных атмосферных условий, например, вредных паров, взрывоопасных смесей, дыма или пожара.
46. Реле тока обратной фазы или баланса фазРаботает, когда многофазные токи имеют обратную последовательность фаз, или когда многофазные токи несбалансированы или содержат компоненты обратной последовательности фаз, превышающие заданное значение.
47.Реле чередования фаз или фазового балансаРаботает на заданном значении многофазного напряжения в желаемой последовательности фаз.
48. Реле неполной последовательностиВозвращает оборудование в нормальное или выключенное положение и блокирует его, если нормальная последовательность запуска, работы или остановки не завершена должным образом в течение заданного времени. Если устройство используется только для сигнализации, желательно обозначить ее как 48A (сигнализация).
49. Тепловое реле машины или трансформатораРаботает, когда температура якоря машины или другой несущей обмотки или элемента машины или температура силового выпрямителя или силового трансформатора (включая трансформатор силового выпрямителя) превышает заданное значение.
50. Реле мгновенного максимального тока или скорости нарастанияРаботает мгновенно при чрезмерном значении тока или при чрезмерной скорости нарастания тока, что указывает на неисправность в защищаемом устройстве или цепи.
51. Реле максимального тока переменного токаРеле с независимой или обратнозависимой временной характеристикой, которое работает, когда ток в цепи переменного тока превышает заданное значение.
52. Автоматический выключатель переменного токаУстройство, которое используется для замыкания и прерывания цепи питания переменного тока при нормальных условиях или для прерывания этой цепи при неисправности в аварийных условиях.
53. Реле возбудителя или генератора постоянного токаРеле, которое заставляет возбуждение поля машины постоянного тока нарастать во время запуска или которое срабатывает, когда напряжение машины повышается до заданного значения.
54. Высокоскоростной автоматический выключатель D-CАвтоматический выключатель, который начинает уменьшать ток в главной цепи через 0,01 секунды или меньше, после возникновения перегрузки по току постоянного тока или чрезмерной скорости нарастания тока.
55. Реле коэффициента мощностиРаботает, когда коэффициент мощности в цепи переменного тока поднимается выше или опускается ниже заданного значения.
56. Реле полевого примененияАвтоматически управляет приложением возбуждения поля к двигателю переменного тока в некоторой заранее определенной точке в цикле скольжения.
57. Устройство короткого замыкания или заземленияУстройство переключения первичной цепи, которое функционирует для короткого замыкания или заземления цепи в ответ на автоматические или ручные действия.
58. Реле неисправности устранения неисправностиРаботает, если один или несколько анодов силового выпрямителя не срабатывают, или для обнаружения и обратного дугового разряда, или при отказе диода, чтобы провести или заблокировать должным образом.
59. Реле максимального напряженияРаботает с заданным значением перенапряжения.
60. Реле баланса напряжения или токаРаботает с заданной разницей напряжения, входным или выходным током или двумя цепями.
61. Реле или датчик плотностиРаботает при заданном значении или заданной скорости изменения плотности газа.
62. Реле остановки или размыкания с задержкойРеле с выдержкой времени, которое работает вместе с устройством, которое инициирует отключение, останов или размыкание в автоматической последовательности или в системе защитных реле.
63. Реле давленияРаботает при заданных значениях давления жидкости или газа или при заданных скоростях изменения этих значений.
64. Реле датчика заземленияРаботает при отсутствии заземления изоляции машины или другого оборудования. Эта функция назначается только реле, которое обнаруживает прохождение тока от корпуса машины или ограждающего корпуса или конструкции части устройства к земле или обнаруживает заземление на нормально незаземленной обмотке или цепи.Он не применяется к устройствам, подключенным во вторичной цепи трансформатора тока, во вторичной нейтрали трансформаторов тока, включенных в силовую цепь нормально заземленной системы.
65. ГубернаторУзел гидравлического, электрического или механического регулирующего оборудования, используемого для регулирования потока воды, пара или другой среды к первичному двигателю для таких целей, как запуск, скорость удержания или нагрузка, или остановка.
66.Устройство для надрезания или толканияФункции, позволяющие выполнять только определенное количество операций данного устройства или оборудования или определенное количество последовательных операций в течение заданного времени друг за другом. Это также устройство, которое функционирует для периодического включения цепи или на доли определенных временных интервалов, или которое используется для обеспечения прерывистого ускорения или толчкового режима машины на низких скоростях для механического позиционирования.
67. Направленное реле максимального тока переменного токаРаботает на желаемом значении перегрузки по току переменного тока, протекающего в заданном направлении.
68. Реле блокировкиИнициирует пилот-сигнал для блокировки отключения при внешних повреждениях в линии передачи или в другом устройстве при заранее определенных условиях или взаимодействует с другими устройствами для блокировки отключения или повторного включения при сбое в работе или при экономии энергии .
69. Устройство разрешающего контроляДвухпозиционный переключатель с ручным управлением, который в одном положении позволяет включить автоматический выключатель или ввести оборудование в работу, а в другом положении предотвращает включение автоматического выключателя или оборудования.
70. РеостатУстройство переменного сопротивления, используемое в электрической цепи с электрическим приводом или с другими электрическими аксессуарами, такими как вспомогательные, позиционные или концевые выключатели.
71. Реле уровня жидкости или газаДействует при заданных значениях уровня жидкости или газа или при заданных скоростях изменения этих значений.
72. Автоматический выключатель D-CИспользуется для замыкания и прерывания цепи питания постоянного тока при нормальных условиях или для прерывания этой цепи при неисправности или аварийных условиях.
73. Нагрузочно-резистивный контакторИспользуется для шунтирования или вставки ступени ограничения нагрузки, сдвига или индикации сопротивления в силовой цепи, или для включения обогревателя в цепи, или для включения светового или рекуперативного нагрузочного резистора, силового выпрямителя или другой машины и вне цепи.
74. Реле сигнализацииРеле, кроме сигнализатора, как описано в функции устройства 30, которое используется для срабатывания или работы в связи с визуальной или звуковой сигнализацией.
75. Механизм изменения положенияМеханизм, который используется для перемещения основного устройства из одного положения в другое в оборудовании: например, для перемещения съемного блока выключателя в и из подключенных, отключенных и испытательных положений.
76. Реле максимального тока D-CРаботает, когда ток в цепи постоянного тока превышает заданное значение.
77. Телеметрический приборПередатчик, используемый для генерации и передачи в удаленное место электрического сигнала, представляющего измеряемую величину, или приемник, используемый для приема электрического сигнала от удаленного передатчика и преобразования сигнала для представления исходной измеренной величины.
78. Реле измерения фазового угла или защиты от асинхронного ходаРаботает с заданным фазовым углом между двумя напряжениями, между двумя токами или между напряжением и током.
79. Реле повторного включения переменного токаУправляет автоматическим повторным включением и блокировкой прерывателя цепи переменного тока.
80. Реле расхода жидкости или газаРаботает при заданных значениях расхода жидкости или газа или при заданных скоростях изменения этих значений.
81. Реле частотыРаботает с заданным значением частоты (ниже, выше или выше нормальной системной частоты) или скоростью изменения частоты.
82. Реле повторного включения D-CУправляет автоматическим включением и повторным включением прерывателя цепи постоянного тока, как правило, в ответ на условия цепи нагрузки.
83. Реле автоматического селективного управления или переключенияИспользуется для автоматического выбора между определенными источниками или условиями в оборудовании или автоматически выполняет операцию передачи.
84. ПриводПолный электрический механизм или сервомеханизм, включая рабочий двигатель, соленоиды, позиционные переключатели и т. Д., Для переключателя ответвлений, индукционного регулятора или любого подобного устройства, которое иначе не имеет номера функции устройства.
85. Реле приемника несущей или контрольной проводкиРеле, которое приводится в действие или ограничивается сигналом, используемым в связи с направленной ретрансляцией неисправности контрольного провода постоянного тока или несущего тока.
86. Реле блокировкиРучное или электрически сбрасываемое реле или устройство, которое отключает или удерживает оборудование из строя, или и то, и другое при возникновении ненормальных условий.
87. Реле дифференциальной защитыФункционирует от процента, фазового угла или другой количественной разности двух токов или некоторых других электрических величин.
88. Вспомогательный двигатель или двигатель-генераторИспользуется для управления вспомогательным оборудованием, таким как насосы, воздуходувки, возбудители, вращающиеся магнитные усилители и т. Д.
89. Линейный переключательВыключатель, используемый в качестве разъединителя, выключателя нагрузки или разъединителя в цепи питания переменного или постоянного тока, когда это устройство работает от электричества или имеет электрические аксессуары, такие как вспомогательный выключатель, магнитный замок и т. Д.
90. Регулирующее устройствоФункции для регулирования количества или величин, таких как напряжение, текущая мощность, скорость, частота, температура и нагрузка при определенном значении или между определенными (обычно близкими) пределами для машин, соединительных линий или другого оборудования.
91. Реле направления напряженияСрабатывает, когда напряжение на размыкателе цепи или контакторе превышает заданное значение в заданном направлении.
92. Реле направления напряжения и мощностиРазрешает или вызывает соединение двух цепей, когда разница напряжений между ними превышает заданное значение в заданном направлении, и вызывает отсоединение этих двух цепей друг от друга, когда мощность, протекающая между ними, превышает заданное значение в противоположном направлении.
93. Переключающий контакторФункции для увеличения или уменьшения за один шаг значения возбуждения поля в машине.
94. Реле отключения или отключенияФункции для отключения автоматического выключателя, контактора или оборудования или для немедленного отключения других устройств; или для предотвращения немедленного повторного включения прерывателя цепи, если он должен размыкаться автоматически, даже если его замыкающая цепь остается замкнутой.
95. Для конкретных приложений, где другие числа не подходят 96. Реле блокировки отключения шинопровода 97-99. Для особых применений, где другие числа не подходятВспомогательные устройства
Эти буквы обозначают отдельные вспомогательные устройства, например:
- C — Реле включения или контактор
- CL — Вспомогательное реле, замкнуто (запитано, когда основное устройство находится в замкнутом положении).
- CS — Переключатель управления
- D — Переключатель или реле положения «вниз»
- L — Реле опускания
- 1. — Реле размыкания
- OP — Вспомогательное реле, разомкнутое (запитано, когда главное устройство находится в разомкнутом положении).
- PB — Кнопка
- R — Реле подъема
- U — Переключатель или реле положения «вверх»
- X Вспомогательное реле
- Y Вспомогательное реле
- Z Вспомогательное реле
Банкноты
- Номера устройств могут быть объединены, если устройство обеспечивает несколько функций, таких как реле максимального тока переменного тока мгновенного действия / с выдержкой времени, обозначенное как 50/51.
- Буква или цифра суффикса могут использоваться с номером устройства. Например, суффикс N используется, если устройство подключено к нейтральному проводу (59N в реле используется для защиты от смещения нейтрали).
- Суффиксы X, Y, Z используются для вспомогательных устройств. Точно так же суффикс «G» может обозначать «землю», следовательно, «51G» — это реле заземления максимального тока с выдержкой времени. Суффикс «G» может также означать «генератор», следовательно, «87G» означает реле дифференциальной защиты генератора.
- Суффикс «T» может обозначать «трансформатор», следовательно, «87T» — это дифференциальное защитное реле трансформатора. «F» может обозначать «поле» на генераторе или «предохранитель», как в защитном предохранителе для пускового трансформатора.
- Суффиксы используются для различения нескольких «одинаковых» устройств в одном оборудовании, например 51-1, 512.
- При управлении автоматическим выключателем с помощью схемы управления реле X-Y, реле X является устройством, основное устройство которого Контакты
- используются для подачи питания на замыкающую катушку или устройство, которое каким-либо другим образом, например, посредством высвобождения накопленной энергии, заставляет выключатель замыкаться.Контакты реле Y обеспечивают защиту от накачки автоматического выключателя.
на комментарий.
1613 | I | Стандартные требования к окружающей среде и тестированию для сетевых устройств связи, установленных на подстанциях электроэнергии (СВУ), установленные на объектах передачи и распределения | |||
1613.1 | I | Стандартные требования к окружающей среде и тестированию для коммуникационных сетевых устройств, установленных на объектах передачи и распределения | |||
1613a | I | Стандартные требования IEEE к окружающей среде и тестированию для коммуникационных сетевых устройств, установленных на электрических подстанциях Поправка: Рекомендация одно определение, требования к источнику питания постоянного тока (5.1) и приложение E — История | |||
1646 | H | Стандартное время доставки Требования к производительности для автоматизации электрических подстанций | |||
P1646 | H | Стандартная доставка Требования к рабочим характеристикам для автоматизации электрических подстанций | |||
P2030.12 | H | Руководство по проектированию систем защиты микросетей | |||
2030.1 | H | Рекомендуемая практика для внедрения системы связи, защиты, мониторинга и управления на основе IEC 61850 | |||
P2030.170.1 | HМониторинг и диагностика общих объектно-ориентированных событий состояния (GOOSE) IEC 61850 и систем на основе выборочных значений | ||||
2030.101 | H | Руководство по проектированию системы синхронизации времени для силовых подстанций | |||
60255-1 1 | H | Измерительные реле и защитное оборудование — Часть 118-1: Синхрофазор для энергосистемы — Измерения | |||
C37.1 | H | Стандарт для SCADA и систем автоматизации | |||
PC37.1.2 | H | Рекомендуемая практика для баз данных, используемых в системах автоматизации коммунальных предприятий | |||
PC37.1.3 | H | Рекомендуемая практика для человека Интерфейсы (HMI), используемые с системами автоматизации электроэнергетических предприятий | |||
C37.2 | I | Стандартные функциональные номера устройств электроснабжения, сокращения и обозначения контактов | |||
PC37.2 | I | Стандартные функциональные номера устройств системы электроснабжения, сокращения и обозначения контактов | |||
C37.90 | I | Стандарт для реле и релейных систем, связанных с электрооборудованием | |||
PC37.90 | I | Стандарт для реле и релейных систем, связанных с электрооборудованием | |||
C37.90.1 | I | Стандартные испытания на устойчивость к импульсным перенапряжениям (SWC) для реле и релейных систем, связанных с электрооборудованием | |||
C37 .90.2 | I | Стандарт устойчивости релейных систем к излучаемым электромагнитным помехам от приемопередатчиков | |||
PC37.90.2 | I | Стандарт устойчивости релейных систем к излучаемым электромагнитным помехам от приемопередатчиков | |||
I | Стандарт для испытаний на электростатический разряд для реле защиты | ||||
C37.91 | K | Руководство по защите силовых трансформаторов | |||
PC37.91 | K | Руководство по защите силовых трансформаторов | |||
C37.92 | I | Стандарт для аналоговых входов и реле защиты от электронных преобразователей напряжения и тока | |||
PC37.92 | I | Стандарт для Аналоговые входы в защитные реле от электронных преобразователей напряжения и тока||||
C37.95 | K | Руководство по защитным реле межсоединений между электросетью и потребителем | |||
C37.96 | J | Руководство по защите электродвигателя переменного тока | |||
C37.98 | I | Стандарт для сейсмических квалификационных испытаний защитных реле и вспомогательного оборудования для ядерных установок | |||
C37.99 | K | Защита батарей шунтирующих конденсаторов||||
PC37.99 | K | Руководство по защите батарей шунтирующих конденсаторов | |||
C37.101 | J | Руководство по защите заземления генератора | |||
J | Руководство по защите заземления генератора | ||||
C37.101-2006 / Cor 1 | J | Руководство по защите заземления генератора — Исправление 1: Приложение A.2 Анализ фаз (информационное) | |||
C37.102 | J | Руководство по защите генератора переменного тока | |||
PC37.102 | J | Руководство по защите генератора переменного тока | |||
C37.103 | I | Руководство по дифференциальной и поляризационной цепи | |||
C37.104 | D | Руководство по автоматическому повторному включению выключателей для линий распределения и передачи переменного тока | |||
PC37.104 | D | Руководство по автоматическому повторному включению в линиях распределения и передачи переменного тока | |||
C377.105 | |||||
C377.105 | I | Стандарт для квалифицируемых реле защиты и вспомогательного оборудования класса 1E для атомных электростанций | |||
C37.106 | J | Руководство по защите от аномальных частот для электростанций | |||
PC37.106 | J | Руководство по защите от аномальных частот для электростанций | |||
C37.108 | K | Руководство по защите сетевых трансформаторов | |||
PC37.108 | K | Руководство по защите вторичных сетевых систем | |||
C37.109 | K | Руководство по защите шунтирующих реакторов | |||
PC37.109 | K | Руководство по защите шунтирующих реакторов | C.110 | I | Руководство по применению трансформаторов тока, используемых для целей реле защиты |
PC37.110 | I | Руководство по применению трансформаторов тока, используемых для целей реле защиты | |||
C37.110- 2007 / Cor 1 | I | Руководство IEEE по применению трансформаторов тока, используемых для защитных реле — Исправление 1: Поправки к уравнению 18 и уравнению 19 | |||
C37.111 | H | Стандарт общего формата для обмена переходными данными (COMTRADE) для энергосистем | |||
C37.112 | K | Стандартные обратнозависимые характеристические уравнения для реле максимального тока | |||
C37.170 | DРуководство по применению защитных реле в линиях передачи | ||||
C37.114 | D | Руководство по определению места повреждения на линиях передачи и распределения переменного тока | |||
C37.116 | K | Руководство по применению защитных реле в конденсаторных батареях серии линий электропередачи | |||
C37.117 | C | Руководство по применению защитных реле, используемых для отключения и восстановления аномальной нагрузки | C37.117 | C | .119 | K | Руководство по защите силовых автоматических выключателей при отказе выключателя |
PC37.120 | C | Резервирование системы защиты для надежности энергосистемы | |||
C37.230 | D | Руководство по применению защитных реле в распределительных линиях | |||
PC37.230 | D | Руководство по применению защитных реле в распределительных линиях | |||
C37.231 | I | Рекомендуемая практика для микропроцессора Управление встроенным ПО на основе оборудования защиты | |||
C37.232 | H | Стандарт общего формата для именования файлов данных временной последовательности (COMNAME) | |||
C37.233 | C | Руководство по тестированию защиты системы питания | |||
PC37.233 | C | Руководство по тестированию защиты системы питания | |||
C37.234 | K | Руководство по применению реле защиты в системе питания Шины | |||
PC37.234 | K | Руководство по применению реле защиты в шинах энергосистемы | |||
C37.235 | I | Руководство по применению катушек Роговского, используемых для целей реле защиты | 6 РС37.235 | I | Руководство по применению катушек Роговского, используемых для целей реле защиты |
C37.237 | H | Стандартные требования к меткам времени, создаваемым интеллектуальными электронными устройствами — COMTAG (TM) | |||
H | Стандарт общего формата для обмена данными о событиях (COMFEDE) для энергосистем | ||||
C37.241 | I | Руководство по применению оптических измерительных трансформаторов для реле защиты | |||
C37.242 | C | Руководство по синхронизации, калибровке, тестированию и установке блоков измерения вектора (PMU) для защиты и управления энергосистемой | |||
PC37.242 | C | Руководство по синхронизации, калибровке, тестированию и Установка блоков измерения фазора (PMU) для защиты и управления энергосистемой | |||
C37.243 | D | Руководство по применению дифференциальных реле тока цифровых линий с использованием цифровой связи | |||
C37.245 | K | Руководство по применению защитных реле для фазосдвигающих трансформаторов | |||
C37.246 | C | Руководство по системам защиты межсоединений электропередач | |||
C37.247 | C37.247 | Стандарт для концентраторов фазорных данных для энергосистем | |||
C37.248 | H | Руководство по общему формату именования интеллектуальных электронных устройств (COMDEV) | |||
PC37.249 | H | Руководство по классификации потребностей в безопасности для файлов данных, связанных с защитой и автоматизацией | |||
PC37.250 | C | Руководство по проектированию, внедрению и управлению схемами защиты целостности системы | |||
PC37.251 | H | Стандарт для общих настроек защиты и управления или формата данных конфигурации (COMSET) | |||
PC37.252 | C | Руководство по тестированию систем автоматического регулирования напряжения в региональных электросетях | |||
PC37.300 | H | Руководство по централизованным системам защиты и управления (CPC) на подстанции | |||
C57.13.1 | I | Руководство по полевым испытаниям релейных трансформаторов тока | |||
C57.13.3 | I | Руководство по заземлению вторичных цепей и корпусов измерительного трансформатора |
Что такое система питания? Определение и структура энергосистемы
Определение: Энергетическая система — это сеть, состоящая из системы генерации, распределения и передачи.Он использует форму энергии (например, уголь и дизельное топливо) и преобразует ее в электрическую энергию. Энергосистема включает в себя устройства, подключенные к системе, такие как синхронный генератор, двигатель, трансформатор, автоматический выключатель, проводник и т. Д.
Электростанция, трансформатор, линия передачи, подстанции, распределительная линия и распределительный трансформатор — это шесть основных компонентов энергосистемы. Электростанция вырабатывает повышающую или понижающую мощность через трансформатор для передачи.
Линия передачи передает мощность на различные подстанции. Через подстанцию мощность передается на распределительный трансформатор, который понижает мощность до соответствующего значения, подходящего для потребителей.
Структура энергосистемы
Энергосистема — это сложное предприятие, которое можно разделить на следующие подсистемы. Подсистемы энергосистемы подробно описаны ниже.
Генерирующая подстанция
В электростанции топливо (уголь, вода, атомная энергия и др.)) преобразуется в электрическую энергию. Электроэнергия вырабатывается в диапазоне от 11 кВ до 25 кВ, что является повышением для передачи на большие расстояния. Электростанция генерирующей подстанции в основном подразделяется на три типа: тепловая электростанция, гидроэлектростанция и атомная электростанция.
Генератор и трансформатор являются основными компонентами электростанции. Генератор преобразует механическую энергию в электрическую. Механическая энергия поступает от сжигания угля, газа и ядерного топлива, газовых турбин или, иногда, двигателя внутреннего сгорания.
Трансформатор передает мощность с одного уровня на другой с очень высоким КПД. Передача мощности от вторичной обмотки примерно равна первичной, за исключением потерь в трансформаторе. Повышающий трансформатор снизит потери в линии, что позволяет передавать мощность на большие расстояния.
Передающая подстанция
Передающая подстанция несет воздушные линии, по которым вырабатываемая электрическая энергия передается от генерации к распределительным подстанциям.Он поставляет большую часть энергии только на крупные подстанции или очень крупных потребителей.
Линии передачи в основном выполняют две функции
- Он транспортирует энергию от генерирующих станций к оптовым приемным станциям.
- Он соединяет две или более генерирующих станций. Соседние подстанции также соединены между собой линиями электропередачи.
Напряжение передачи составляет более 66 кВ и стандартизовано на уровне 69 кВ, 115 кВ, 138 кВ, 161 кВ, 230 кВ, 345 кВ, 500 кВ и 765 кВ, между линиями.Линию передачи выше 230 кВ обычно называют сверхвысоким напряжением (СВН).
Линия высокого напряжения оканчивается на подстанциях, которые называются подстанциями высокого напряжения, приемными подстанциями или первичными подстанциями. На подстанции высокого напряжения напряжение понижается до подходящего значения для следующей части потока к нагрузке. Очень крупные промышленные потребители могут обслуживаться непосредственно в системе передачи.
Подстанция передачи
Часть системы передачи, которая соединяет подстанции высокого напряжения через понижающий трансформатор с распределительными подстанциями, называется подсистемой передачи.
Уровень напряжения дополнительной передачи колеблется от 90 до 138 кВ. Система субпередачи напрямую обслуживает некоторые крупные отрасли. Конденсатор и реактор расположены на подстанциях для поддержания напряжения в линии электропередачи.
Работа вспомогательной системы передачи аналогична работе системы распределения. Она отличается от системы распространения следующим образом.
- Подсистема передачи имеет более высокий уровень напряжения, чем система распределения.
- Поставляет только большие грузы.
- Она снабжает только несколько подстанций по сравнению с распределительной системой, которая питает некоторые нагрузки.
РП
Компонент системы электроснабжения, соединяющий всех потребителей в районе с основными источниками энергии, называется распределительной системой. Основные электростанции соединены с генерирующими подстанциями линиями электропередачи. Они питают некоторые подстанции, которые обычно расположены в удобных точках рядом с центрами нагрузки.
Подстанции распределяют электроэнергию между бытовыми, коммерческими и относительно небольшими потребителями. Потребителям требуются большие блоки энергии, которые обычно поставляются в суб-передающей системе или даже в передающей системе.
Коды номеров функцийANSI / IEEE | Системы измерения и контроля электроэнергии
В США организации ANSI и IEEE стандартизировали набор цифровых кодов, относящихся к различным типам устройств и функций энергосистемы (IEEE C 37.2). Некоторые из этих кодов относятся к конкретным элементам оборудования (например, автоматическим выключателям), а другие коды относятся к абстрактным функциям (например, к максимальной токовой защите). Два частичных списка этих кодовых номеров ANSI / IEEE показывают некоторые устройства и функции, охватываемые стандартом ANSI / IEEE:
Код ANSI / IEEE | Устройство |
---|---|
33 | Позиционный переключатель |
41 | Полевой выключатель |
52 | Автоматический выключатель переменного тока |
57 | Переключатель замыкания / заземления |
63 | Реле давления |
70 | Реостат |
71 | Датчик уровня жидкости |
72 | Автоматический выключатель постоянного тока |
80 | Реле потока |
84 | Приводной механизм (общий) |
88 | Вспомогательный двигатель или двигатель / генератор |
89 | Линейный выключатель (выключатель питания) |
Код ANSI / IEEE | Функция |
---|---|
12 | Превышение скорости |
14 | Пониженная |
19 | Пуск пониженного напряжения |
21 | Расстояние |
23 | Контроль температуры |
24 | В / Гц (перетекание) |
25 | Проверка синхронизма |
27 | Пониженное напряжение |
28 | Обнаружение пламени |
30 | Оповещатель |
32 | Направленная (обратная) мощность |
37 | Пониженный ток / пониженная мощность |
38 | Перегрев подшипника |
40 | Потеря возбуждения |
43 | Ручная коробка передач / селектор |
46 | Несимметрия тока |
46R | Обрыв проводника |
47 | Смена фаз |
48 | (мотор) стойло |
49 | Тепловая перегрузка |
50 | Мгновенная перегрузка по току |
50G | Мгновенная перегрузка по току (по заземляющему проводнику) |
50ARC | Дуга |
51 | МТЗ с выдержкой времени |
51G | МТЗ с выдержкой времени (по заземляющему проводнику) |
55 | Коэффициент мощности |
58 | Неисправность выпрямителя |
59 | Повышенное напряжение |
64 | Замыкание на землю |
65 | Регулирующая скорость |
66 | Число пусков в час / время между пусками |
67 | Направленная максимальная токовая нагрузка |
68 | Блокировка |
74 | Сигнализация |
78 | Фазовый угол / асинхронный режим |
79 | Автоматическое повторное включение |
81H / 81L | Повышенная / Пониженная частота |
81R | Скорость изменения частоты |
86 | Блокировка или вспомогательный |
87 | Дифференциал |
Типично найти несколько функций , выполняемых одним устройством в системе электроснабжения.Типичным примером этого является реле максимальной токовой защиты мгновенного действия / времени: одно устройство, отслеживающее сигналы, поступающие от набора трансформаторов тока (ТТ), выдает команду выключателю на отключение, если ток превышает заранее определенный предел в течение любого периода времени. (мгновенная максимальная токовая защита, код ANSI / IEEE 50) или если выдержка по току превышает заранее установленный предел (максимальная токовая защита с выдержкой времени, код ANSI / IEEE 51). Обе функции 50 и 51 обычно реализуются одним и тем же защитным реле.Современные цифровые электронные реле защиты могут выполнять множество защитных функций в одном устройстве.
Эти кодовые обозначения стали настолько распространенными в промышленном языке, что часто приходится слышать, как техники и инженеры ссылаются на реле по номеру, а не по имени (например, «Реле 50/51 необходимо откалибровать в следующем месяце»).
Функции защитного реле обычно представлены на однолинейных электрических схемах в виде кружков с числовым кодом ANSI / IEEE, определяющим каждую функцию.Это аналогично стандартным схемам циклов ISA и P&ID, где инструменты и функции управления представлены в виде кружков с именами тэгов ISA, написанными внутри кружков. Вот пример системы защитных реле для автоматического выключателя, передающего питание от шины к фидеру:
В этой системе одно защитное релейное устройство выполняет несколько функций: мгновенная максимальная токовая нагрузка на фазных проводниках (50P) и заземление (50G), максимальная токовая защита с выдержкой времени на фазных проводниках (51P) и заземлении (51G), минимальное напряжение (27) и перенапряжение (59).Обратите внимание, как буквы, следующие сразу за цифровым кодом, определяют назначение функции, например, «G» для «заземления» или «P» для «фазы». Если сигналы, полученные от трансформаторов тока и / или трансформатора тока, предполагают какое-либо из этих ненормальных условий, защитное реле отправит командный сигнал «отключение» на автоматический выключатель, чтобы его размыкать. Сам автоматический выключатель обозначается цифровым кодом 52, как показано в прямоугольнике на схеме.
Функциональные кодыANSI / IEEE также находят применение в схемах срабатывания реле.Рассмотрим следующий пример комплекта электромеханических реле максимальной токовой защиты с выдержкой времени (функция 51), контролирующего ток по трем силовым проводам и отключающего автоматический выключатель (устройство 52), если ток в какой-либо линии превышает безопасные уровни. Этот формат схемы типичен для электромеханических защитных реле: силовая схема показана слева, а схема отключения справа:
Обратите внимание на условные обозначения, используемые в схеме цепи отключения: каждое реле или компонент выключателя имеет этикетку, начинающуюся с номера устройства или функции ANSI / IEEE.Номер 52 относится к силовому автоматическому выключателю, 51 относится к функции максимальной токовой защиты с выдержкой времени, номера пунктирными линиями указывают, какое реле из набора из трех реле (одно электромеханическое реле максимального тока в сборе на фазу), а буквы находятся под горизонтальной линией идентифицируют элементы функции компонента (например, TC обозначает катушку отключения , a обозначает «нормально разомкнутый» контакт внутри устройства). Эта маркировка используется для исключения дублирования линий и компонентов на схеме отключения для реле 2 и 3 комплекта из трех реле (т.е.е. отсутствие необходимости показывать запечатанную катушку, размыкающий контакт или запечатанный контакт для двух других реле, потому что их форма идентична элементам внутри первого реле). Как и в случае с электрическими схемами лестничного типа, ассоциации между такими компонентами, как катушки реле и контакты реле, выполняются по имени , а не по физической близости или пунктирным соединительным линиям, как в случае с электронными схемами. Например, мы можем сказать, что ток контроля левого трансформатора тока в линии 1 активирует реле номер 1, потому что это метка на левой катушке (51-1), подключенной к этому ТТ.Мы можем сказать, какая катушка активирует герметичный контакт реле 1, потому что на герметичной катушке есть такая же метка (51-1 / SI).
.