Максимальный крутящий момент – Крутящий момент двигателя — что это за характеристика и на какие параметры влияет
Крутящий момент двигателя — что это за характеристика и на какие параметры влияет
Контакты Menu Menu- Главная
- Авто
- Audi
- BMW
- Cadillac
- Chevrolet
- Citroen
- Ford
- Geely
- Honda
- Hyundai
- Infiniti
- Jaguar
- Kia
- Lada
- Land Rover
- Lexus
- Mazda
- Mercedes
- Mitsubishi
avtonam.ru
Что такое крутящий момент двигателя автомобиля простыми словами
Даже тем людям, которые не очень интересуются автомобилями, у которых их никогда не было и которые не намереваются становиться их владельцами, отлично известно, что одной из основных характеристик этих транспортных средств является мощность двигателя. Ее принято измерять в лошадиных силах (несколько реже используют более «правильную» с технической точки зрения величину — киловатт), причем вполне справедливо считается, что чем выше значение этого показателя — тем лучше.
С другой стороны такая важная характеристика как крутящий момент двигателя часто остается неизвестной даже некоторым автолюбителям. И это при том, что она является, на самом деле, ничуть не менее значимой характеристикой двигателя, чем его мощность и обороты, с которыми, кстати, находится в весьма тесной и даже неразрывной взаимосвязи.
В данной статье мы попробуем объяснить, что такое крутящий момент двигателя, чем он отличается от мощности, от чего зависит и на что влияет.
Что такое крутящий момент двигателя автомобиля простыми словами
Крутящий момент и мощность двигателей ВАЗ. Как видно из графиков, максимальная мощность достигается только на максимальных оборотах, тогда как пик крутящего момента находится между 3000 и 4500 оборотов.
Чтобы ответить на этот вопрос простыми словами нужно сначала выяснить, что подразумевается под терминами «мощность», «крутящий момент», а также число оборотов. С первой из этих характеристик дело обстоит несколько проще, поскольку всем тем, кто хорошо учился в средней школе, известно, что мощность — это работа, производимая в единицу времени.
Двигатель внутреннего сгорания, потребляя топливо, преобразовывает тепловую энергию его сгорания в кинетическую, совершая при этом работу. Она заключается во вращении коленчатого вала, и этот показатель измеряется в количестве оборотов в минуту. Соответственно, от частоты, с которой в цилиндрах ДВС происходит сгорание топливной смеси, напрямую зависит и работа, которую производит двигатель, и его мощность. Зависимость эта — прямо пропорциональная.
Что же касается крутящего момента, то с ним отнюдь не все так очевидно, как с мощностью и количеством оборотов. Он является, по сути дела, величиной, производной от них и представляет собой произведение силы на плечо рычага. Поскольку сила (в данном случае та, которая возникает при сгорании топлива и воздействует на поршень) измеряется в физике в ньютонах, а длина (в данном случае — длина плеча кривошипа коленчатого вала) — в метрах, то единицей измерения крутящего момента, является Нм.
Таким образом, получается, что крутящий момент представляет собой усилие, которое развивает двигатель. Именно его значение определяет силу тяги, обеспечивающую разгон автомобиля и его движение. Следовательно, чем больше крутящий момент, тем автомобиль «резвее», что есть тем лучше его динамика. Поскольку сила, воздействующая на поршень при сгорании топлива, растет с увеличением рабочего объема двигателя, то чем он больше, тем выше крутящий момент.
Следует заметить, что в характеристиках двигателей внутреннего сгорания всегда указывается максимальная мощность, которую они способны развить. Крутящий момент определяет, как быстро она достигается, и поэтому он указывается для конкретного числа оборотов. Иными словами, он определяет, как быстро силовой агрегат «выбирает» тот потенциал мощности, который в нем заложен конструкторами. Именно поэтому, к примеру, при достаточно спокойной езде на невысоких оборотах (до 2500 об/мин) для быстрого ускорения самым предпочтительным двигателем является тот, который имеет максимальный крутящий момент именно на них.
От чего зависит величина крутящего момента двигателя
Крутящий момент двигателя зависит от целого ряда показателей, среди которых основными являются следующие:
- Рабочий объем двигателя;
- Рабочее давление, создаваемое в цилиндрах;
- Площадь поршня;
- Радиус кривошипа коленчатого вала.
С таким показателем, как рабочий объем двигателя, его крутящий момент, как уже было отмечено выше, при прочих равных связан прямо пропорциональной зависимостью. Это объясняется чисто математически: с ростом рабочего объема растет сила, воздействующая на поршень, и, соответственно, значение крутящего момента.
Такая же зависимость наблюдается и относительно такого фактора, как радиус кривошипа коленчатого вала. Правда, конструктивно современные двигатели внутреннего сгорания устроены таким образом, что значение этой величины можно варьировать только в весьма ограниченных пределах, так что возможности для увеличения крутящего момента за счет этого показателя у разработчиков ДВС относительно невелики.
В прямо пропорциональной зависимости величина крутящего момента двигателя находится и по отношению к рабочему давлению, создаваемому в камере сгорания. Это тоже вполне логично, поскольку чем оно больше, тем больше сила, которая давит на поршень. От его площади же величина крутящего момента зависит обратно пропорционально, поскольку с ее ростом удельное давление падает и сила, соответственно, уменьшается.
На что влияет крутящий момент двигателя
Если производить аналогию с человеческим организмом, то можно условно определить, что крутящий момент — это аналог силы, а мощность — это аналог выносливости. Именно от мощности двигателя внутреннего сгорания в конечном итоге зависит то, какую максимальную скорость может развить автомобиль, а от крутящего момента — то, как быстро сможет он это сделать. Именно поэтому далеко не все мощные автомобили имеют хорошую динамику разгона, и далеко не все, у которых она находится на высоком уровне, располагают очень мощными моторами.
Опытные автомобилисты отлично знают, что лучше всего выбирать для себя автомобиль с таким двигателем, показатель крутящего момента которого при работе на тех оборотах, на которых он обычно функционирует, является наилучшим. Дело в том, что это позволяет им использовать потенциал мощности ДВС в максимальной степени.
Следует заметить, что производители двигателей внутреннего сгорания всячески стремятся увеличить их крутящие моменты, причем во всем диапазоне работы моторов. Чаще всего пытаются достичь этого (и, кстати говоря, достаточно успешно) с помощью турбонаддува, управляемых фаз газораспределения (это оптимизирует процесс сгорания топливной смеси), повышения степени сжатия, использованием особых конструкций впускного коллектора и целым рядом других способов.
Видео на тему
Похожие статьи
avtonov.comКрутящий момент двигателя. Все о крутящем моменте
[]
Что важнее:крутящий момент или мощность двигателя?
Так уж повелось, что любого автолюбителя при оценке способностей машины в первую очередь интересует такой показатель, как мощность. Но не менее важной характеристикой является крутящий момент. И вот почему
Несмотря на то, что гужевой транспорт давно «канул в Лету» и «л. с.» является персоной нон-грата в международной системе классификации, «лошадиная» единица измерения мощности продолжает пользоваться спросом. Причем не только у простого люда, но и на государственном уровне. Для этого достаточно взглянуть на квитанцию об уплате транспортного налога.
Между тем, появившаяся в период промышленной революции «л. с.» весьма условна. А все потому, что она определяет относительный уровень производительности среднестатистической лошади путем определения усилий, необходимых для подъема 75-килограммового груза на один метр за одну секунду. Новая единица измерения, взятая на вооружение фабрикантами для оценки превосходства стационарных механизмов над животными, со временем перекочевала в мир подвижного состава.
Позже шотландский инженер Джеймс Уатт ввел в обращение официальную единицу измерения мощности своего имени – «Вт», которую для удобства использования укрупнили до «кВт». Ватт, синхронизированный с л. с. в соотношении 1 кВт = 1,36 л. с., так и не добился всеобщей любви, оставив пальму первенства конской силе. Однако мощность мощностью, но, как говорится, двигает машину не она, а крутящий момент, измеряемый в ньютон-метрах (Н∙м).
Что такое крутящий момент?
У многих автомобилистов нет адекватного представления о том, что это за «зверь». О нем, впрочем, как и о мощности, бытует расхожее мнение: чем больше, тем лучше. По сути, это тесно связанные характеристики. Мощность в ваттах не что иное, как крутящий момент в ньютон-метрах, умноженный на число оборотов и на 0,1047. Другими словами, мощность демонстрирует количество работы, выполняемой двигателем за определенный промежуток времени, а крутящий момент отражает способность силового агрегата эту работу совершить. Если, скажем, автомобиль завяз в глинистом грунте и обездвижился, то производимая им мощность будет равняться нулю. Ведь работа не совершается. А вот момент, хотя его и не хватает для движения, присутствует. Крутящий момент без мощности существовать может, а мощность без момента — нет.
Главным достижением работающего мотора при превращении тепловой энергии в механическую является момент, или тяга. Высокие моментные значения характерны для дизельных двигателей, конструктивная особенность которых – большой (больше диаметра цилиндра) ход поршня. Большой крутящий момент у дизеля нивелируется относительно низким допустимым числом оборотов, которые ограничивают для увеличения ресурса. Высокооборотистым бензиновым моторам свойствен «крен» в сторону мощности, ведь их детали отличаются меньшим весом. И степень сжатия тоже ниже. Правда, современные силовые агрегаты – и дизельные, и бензиновые – совершенствуясь, становятся ближе и конструктивно, и по показателям. Но пока банальное правило рычага сохраняется: выигрывая в силе, проигрываешь в скорости. И, соответственно, в расстоянии.
Лучшие черты двигателя определяются совокупностью оптимальных значений мощности и тяги. Чем раньше наступает максимум крутящего момента и чем позже пик мощности, тем шире диапазон возможностей силового агрегата. Близкие к оптимальным характеристики имеют электрические двигатели. Они располагают тягой, близкой к максимальной, практически с начала движения. В то же время значение мощности прогрессивно возрастает. Существенным фактором в вопросах определения мощности и крутящего момента являются обороты двигателя. Чем они выше, тем большую мощность можно снять.
В этом контексте уместно упомянуть о гоночных моторах. Из-за относительно скромных объемов они не блещут умопомрачительным крутящим моментом. Однако способны раскручиваться до 15–20 тыс. оборотов в минуту (мин-1), что позволяет им выдавать супермощность. Так, если рядовой силовой агрегат при 4000 об/мин генерирует 250 Н∙м и порядка 140 л. с., то при 18 000 мин-1 он мог бы выдать в районе 640 л. с.
К сожалению, повышать частоту вращения довольно сложно. Мешают силы инерции, нагрузки, трение. Скажем, если раскрутить мотор от 6000 до 12 000 мин-1, то силы инерции возрастут вчетверо, что потенциально грозит опасностью перекрутить мотор. Повысить величину крутящего момента можно с помощью турбонаддува, но в этом случае негативную роль начинают играть тепловые нагрузки.
Принцип максимальной отдачи мощности красноречиво иллюстрируют моторы болидов «Формулы-1», имеющие весьма скромный объем (1,6 литра) и относительно невысокий показатель тяги. Но за счет наддува и способности раскручиваться до высоких оборотов выдают порядка 600 л. с. Плюс к тому, конструкция у «Ф1» – гибридная, и электродвигатель, дополняющий основной мотор, при необходимости добавляет еще 160 «лошадей».
Важной характеристикой, отражающей возможности мотора, является диапазон оборотов, при котором доступна максимальная тяга. Но еще важнее эластичность двигателя, то есть способность набирать обороты под нагрузкой. Другими словами, это соотношение между числами оборотов для максимальной мощности и оборотов для максимального крутящего момента. Оно определяет возможность снижения и увеличения скорости за счет работы педалью газа без переключения передач. Или возможность езды на высоких передачах с малой скоростью. Эластичность, к примеру, выражается способностью автомобиля разгоняться на пятой передаче с 80 до 120 км/ч на пятой. Чем меньше времени займет этот разгон, тем эластичнее двигатель. Из двух двигателей одинакового объема и мощности предпочтителен тот, у которого выше эластичность. При прочих равных условиях такой мотор будет меньше изнашиваться, работать с меньшим шумом и меньше расходовать топливо, а также облегчит работу трансмиссии.
А если все-таки задаться вопросом о том, что важнее – крутящий момент или мощность, деля мир на черное и белое, ответ будет предельно прост: так как это зависимые величины, важно и то и другое.
5koleso.ru
Крутящий момент двигателя: что это такое?
В списке ключевых характеристик любого бензинового или дизельного ДВС обязательно указывается мощность и крутящий момент двигателя. Что касается самого транспортного средства, отдельный акцент делается на разгонной динамике автомобиля 0-100 км/ч. независимо от типа силового агрегата под капотом (бензин, дизель, гибридный двигатель и т.д.). Традиционно сложилось, что максимум внимания покупателей изначально обращен на мощность двигателя, выраженную в лошадиных силах (л.с.). Прочно укоренилось мнение, что чем больше л.с. выдает двигатель, тем быстрее, динамичнее и, зачастую, престижнее окажется автомобиль в конечном итоге. Параллельно с этим показатель крутящего момента, который выражается в ньютон-метрах (Н∙м), маркетологи сознательно отодвигают на второй план.
Рекомендуем также прочитать статью о том, что такое объем двигателя. Из этой статьи вы узнаете о том, по каким параметрам измеряется и на что влияет рабочий объем ДВС.Такой подход хорошо иллюстрирует распространенное выражение среди продавцов автомобилей в США. Как они говорят, продавать машины помогают «лошади», то есть мощность, при этом двигает автомобиль вперед крутящий момент. Далее мы подробно рассмотрим, что такое крутящий момент двигателя внутреннего сгорания, а также взглянем на зависимость характеристик мощности двигателя, крутящего момента и разгонной динамики.
Читайте в этой статье
Мощность и крутящий момент ДВС
Для большинства рядовых автолюбителей понятие о показателе максимальной мощности и крутящего момента сводится к тому, что чем больше мощность, тем больше окажется и крутящего момента, а также более мощный двигатель всегда лучше. При этом чёткое понимание указанных характеристик мотора у многих отсутствует.
Смятение в этот лагерь также внесло растущее число «дизелистов», среди которых намного больше внимания уделяется именно кутящему моменту, а не мощности дизельного мотора. Также следует упомянуть и о турбомоторах, которые могут разгонять автомобиль намного быстрее, хотя мощность самого ДВС с наддувом заметно уступает атмосферным аналогам с намного более внушительным количеством «лошадей» под капотом. Получается, мощнее, но не всегда динамичнее и быстрее? Давайте разбираться, почему так происходит и чем «моментная» характеристика отличается от «мощностной».
Как мощность двигателя и крутящий момент влияют на разгон автомобиля
Как уже было сказано, в технических характеристиках указывается максимальная мощность двигателя и крутящий момент. Итак, крутящий момент представляет собой силу вращения коленвала ДВС. Измеряется крутящий момент в ньютон-метрах. Также моментная характеристика может быть выражена в килограмм-силах на метр. Крутящий момент возникает тогда, когда свободно вращающийся коленвал начинают тормозить.
Другими словами, на коленвал подается нагрузка, которая заставляет двигать автомобиль. Отметим, что крутящий момент имеет прямую зависимость от числа оборотов двигателя. Для двигателей внутреннего сгорания характерной особенностью является то, что на низких оборотах крутящий момент небольшой, затем наблюдается рост момента параллельно росту оборотов силового агрегата, далее происходит спад момента, хотя обороты остаются высокими. Обратите внимание, в характеристиках указывается максимальная мощность двигателя, например, 150 л.с. при 6000 об/мин. При этом максимальный крутящий момент указан на отметке 3500-3700 об/мин.
Так происходит по причине того, что на разных оборотах в камере сгорания происходят разные процессы, что отражается на эффективности наполнения цилиндров, качестве сгорания топливно-воздушной смеси, вентиляции цилиндров и т.д. Другими словами, количество воздуха на впуске, угол опережения зажигания, объем отработавших газов и ряд других параметров меняется в зависимости от числа оборотов коленвала. По этой причине каждому водителю бензиновой машины с малообъемным атмосферным мотором хорошо знакома ситуация, когда на «низах» при езде на высокой передаче двигатель не тянет, то есть крутящий момент очень мал.
Нажатие на педаль газа и поднятие оборотов до средних значений приводит к тому, что эффективность наполнения воздухом на впуске растет, топливно-воздушная смесь сгорает более полноценно, цилиндры лучше вентилируются. Результатом становится то, что крутящий момент растет. Добавим, что турбомоторы в среднем диапазоне оборотов полностью преодолевают эффект турбоямы, после чего у двигателя возникает желаемый подхват. Дело в том, что поток отработавших газов после раскручивания двигателя начинает эффективно вращать крыльчатку турбокомпрессора для подачи большего количества воздуха в цилиндры.
Рекомендуем также прочитать статью об устройстве турбонаддува. Из этой статьи вы узнаете о конструктивных особенностях турбины, а также о преимуществах и недостатках данного способа увеличению мощности двигателя без увеличения его физического объема.Дальнейший рост оборотов вызывает то, что в двигателе существенно растут механические потери. К таким потерям следует отнести трение поршневых колец о стенки цилиндров, а также различные инерционные потери в других узлах и механизмах двигателя. В результате КПД мотора падает, энергия начинает расходоваться на преодоление таких потерь в условии езды на приближенных к максимальным оборотах. Закономерно, что крутящий момент начинает уменьшаться с учетом растущих нагрузок. Турбомоторы также теряют отдачу, так как сам турбонагнетатель не обеспечивает должную производительность на максимальных оборотах.
Если сказать иначе, мощность двигателя означает количество работы, которую агрегат способен выполнить за определенный промежуток времени. Мощность ДВС измеряется в киловаттах (кВт) и напрямую зависит от показателя крутящего момента на конкретных оборотах. Не вдаваясь в подробности, мощность является расчетной величиной и не измеряется отдельно от кутящего момента. Что касается максимальной мощности, такая мощность представляет собой условную точку начала уменьшения крутящего момента, но произведение мощности и оборотов еще не стремится к увеличению. С учетом данной информации становится понятно, что такое полка крутящего момента, которая часто отображается на графиках. Под такой полкой следует понимать диапазон оборотов, на которых постоянно доступен максимум крутящего момента.
Простыми словами, крутящий момент и есть мощность двигателя, которая будет доступна на разных оборотах мотора. Этой фактической мощностью, а не разрекламированной маркетологами «максималкой», водители каждый день пользуются во время обгонов и резких ускорений. Вот и получается, что ездим мы на крутящем моменте, а не на максимальной мощности, оценивая динамику разгона на том или ином двигателе.
Что касается самой максимальной мощности, от данного показателя зависит, прежде всего, та максимальная скорость, с которой способен двигаться автомобиль. Максимальная скорость становится доступной в том случае, когда расходуемая мощность равна мощности ДВС. При этом для определения «максималки» конструкторами учитывается ряд потерь на инерцию и трение, сопротивление потокам воздуха и качению колес. Если проще, от запаса мощности зависит способность мотора преодолевать растущие потери и сопротивление, что и позволяет агрегату разогнать автомобиль только до определенного предела и далее поддерживать набранную скорость.
Крутящий момент дизельного двигателя
Особенностью дизельных двигателей сравнительно с бензиновыми аналогами является более высокий крутящий момент и меньшая мощность. Дело в том, что дизельные моторы имеют суженный диапазон оборотов. Это связано с конструктивными отличиями таких моторов (ход поршня), а также более высокой степенью сжатия и спецификой процесса сгорания дизтоплива.
Другими словами, дизель изначально не приспособлен для работы на высоких оборотах. Следовательно, агрегат не так хорошо раскручивается. Параллельно с этим температура выхлопа у дизельного двигателя ниже по сравнению с бензиновым, а также на «низах» моторы на солярке не так склонны к детонации. В результате конструкторы смогли установить сложные и максимально эффективные системы турбонаддува именно на дизель.
Благодаря таким особенностям крутящий момент дизельного двигателя на низких оборотах намного выше аналогичных атмосферных или тубированных бензиновых ДВС. Поднимать мощность такого агрегата не имеет смысла, так как уверенная тяга на низах, высокий КПД и топливная экономичность полностью перекрывают небольшое отставание дизелей по показателю мощности и максимальной скорости.
Добавим, что потенциал дизеля позволяет сделать его даже мощнее бензиновых собратьев, но это приведет к существенному удорожанию и утяжелению всей конструкции двигателя. Также понадобится доработка системы питания дизельного мотора и установка более выносливой КПП, которая будет способна выдерживать просто огромный крутящий момент. Не следует забывать и об экологических нормах, для соответствия которым мощные дизели потребуют серьезной модернизации. Получается, поднимать мощность дизеля сегодня попросту нецелесообразно.
Подведем итоги
Если вы столкнулись с возможностью выбрать автомобиль с незначительно отличающимися по характеристикам двигателями, тогда оптимально выбирать агрегат с большим крутящим моментом. Данное правило особенно актуально для машин с МКПП. Например, производитель может выпускать одну и ту же модель, которая получает ДВС с рабочим объемом 1.8 литра (140 л.с.) и 2.0 (155 л.с.). Также следует учитывать и упомянутую выше полку крутящего момента, то есть зависимость мощности и крутящего момента от оборотов двигателя.
Лучшим вариантом двигателя будет тот, когда мотор выходит на пик момента не на определенных оборотах, а в максимально широком диапазоне. Например, простой атмосферный двигатель может иметь пик крутящего момента на 3500 об/мин, в то время как его продвинутый высокотехнологичный аналог с турбиной выходит на пик момента уже при 1500 об/мин, сохраняя «ровную» полку до 4500 об/мин. Это значит, что в первом случае для уверенного разгона мотор нужно крутить, удерживать ДВС на оборотах максимального момента, а также чаще переключать передачи вниз при возникновении нагрузок. Во втором случае максимум крутящего момента будет доступен водителю в широком диапазоне оборотов, что позволяет эффективно ускоряться и справляться с меняющимися нагрузками без частого переключения передачи на пониженную. Другими словами, доступность высокого крутящего момента в расширенном диапазоне фактически означает, что и мощности почти всегда достаточно.
Указанные особенности разных ДВС и умение справляться с нагрузками определяют следующий показатель, который известен как эластичность двигателя. Под эластичностью мотора следует понимать способность агрегата набирать обороты и разгонять автомобиль в условиях растущей нагрузки без переключения передачи на пониженную.
Различные силовые установки тестируются на эластичность путем анализа тяги и разгона с 60 до 100 км/ч при движении на четвёртой передаче или ускорения с 80 до 120 км/ч на включенной пятой передаче. По этой причине малообъемный высокофорсированный двигатель, который имеет отличный подхват на низких оборотах и широкую полку момента, покажет себя отличным вариантом для города. Именно в городском цикле, то есть в условиях умеренных скоростей и режимов ускорение-замедление, потенциала такого ДВС более чем достаточно. При этом следует учитывать, что на более высокой скорости в режиме трассы подобный агрегат может не обеспечить уверенного обгона, уступив в этом плане простому атмосферному двигателю с большим крутящим моментом и мощностью.
Читайте также
krutimotor.ru
Крутящий момент
Крутящий момент – качественный показатель, характеризующий силу вращения коленчатого вала автомобиля.
Его измерение производится в ньютон-метрах (н*м). От показателя КМ зависят тяговые характеристики ДВС и динамика разгона транспортного средства.Важно: ошибкой было бы называть крутящий момент вращающим, как это делают некоторые источники в Сети. Термин «крутящий» подразумевает внутреннюю силу, приводящую к вращению. Под словом «вращающий» подразумевается наружная сила. Так, крутящей является сила, приводящая в движение коленчатый вал. Вращающей – сила пальцев, в которых крутят карандаш.
Если простым языком отвечать на вопрос, что такое крутящий момент двигателя, то можно сказать, что КМ – сила, с которой агрегат крутит выходной вал. Например, при КМ, равном 130 Н*м и длине выходного вала 1 метр на его конец можно повесить груз весом 13 кг. При этом мотор должен провернуть вал.
Непосредственное отношение к понятию КМ имеет показатель мощности. Мощность и крутящий момент неразрывно связаны, так как одно вытекает из другого. График КМ растет только совместно с графиком мощности.
Мощность определяется количеством работы, которую мотор способен выполнять за единицу времени. Измеряется в лошадиных силах или киловаттах. При этом первая единица измерения является неофициальной, но более популярной. Вторая – официальной, но используемой только в документах.
Показатель КМ двигателя автомобиля напрямую зависит от:
Мощность двигателя определяется по формуле P=M*N, где P это мощность, М – крутящий момент, N – обороты двигателя. Соответственно, расчитать КМ можно по формуле M = P/N.
При проведении подсчетов необходимо использовать официальные единицы измерения, зарегистрированные в СИ (Н*м, ватты, радианы в секунду). Реальное измерение крутящего момента производится на специальном стенде в лабораторных условиях.
Передача КМ к ведущим колесам
Появления КМ в результате сгорания топлива недостаточно для начала движения. Момент должен быть передан к ведущим колесам транспортного средства.
Передача выработанного крутящего момента осуществляется посредством трансмиссии – коробки передач, валов, ШРУСов, заднего редуктора, раздаточной коробки. Наличие тех или иных элементов трансмиссии зависит от типа привода автомобиля.
В процессе движения водитель имеет возможность изменять КМ, передаваемый от двигателя к колесам. Чтобы добиться этого, необходимо увеличивать или уменьшать количество оборотов силового агрегата. Подобные манипуляции без потерь в скорости движения совершаются с помощью коробки передач.
Важно: коробка переключения передач – устройство, предназначенное для изменения частоты вращения и КМ на двигателях, не обладающих достаточной приспособляемостью. Сегодня в автомобильной промышленности применяются механические, гидромеханические, электромеханические и автоматические КПП.
В процессе передачи крутящего момента его показатель может уменьшаться вследствие механических потерь. Передающееся усилие ослабевает по причине трения элементов мотора и трансмиссии друг об друга, сопротивления материалов, из которых изготовлены детали автомобиля и других факторов воздействия.
Максимальный и номинальный КМ
В механике существует понятие о максимальном и номинальном КМ.
Максимальный крутящий момент – самый большой показатель КМ, который двигатель может развить.
Известно, что момент не является постоянной величиной. Его показатель растет совместно с ростом оборотов.
Однако на определенном этапе поток воздуха, поступающий в цилиндры, начинает оказывать столь высокое сопротивление, что разрежения, создаваемого поршнем, становится недостаточно для всасывания достаточного количества топливовоздушной смеси. При этом ухудшается вентиляция цилиндров, и рост к/м прекращается.
На автомобилях ВАЗ-2110 с мотором 21114 максимальный показатель КМ достигается на 3 тысячах оборотов в минуту. Дальнейшее увеличение частоты работы силового агрегата приводит к росту мощности. При этом крутящий момент снижается.
На что влияет подобное явление? Автомобиль, работающий в мощностном режиме, способен легко преодолевать подъемы, тащить тяжелый прицеп, другой автомобиль. При этом динамика разгона даже не загруженного ТС будет существенно снижена.
Номинальный крутящий момент – показатель КМ, который двигатель выдает без дополнительной нагрузки, работая в нормальном режиме.
Как увеличить КМ
Как увеличить крутящий момент двигателя? Увеличение КМ осуществляется практически аналогично увеличению такого показателя, как мощность двигателя. Для этого необходимо произвести доработку самого мотора или его агрегатов.
- Замена распределительных валов, системы выпуска, фильтров на высокопроизводительные аналоги;
- Повышение пропускных возможностей впускного клапана или турбирование. Это дает возможность улучшить вентиляцию цилиндров;
- Коррекция фаз газораспределения с увеличением времени открытия впускных клапанов;
- Увеличение степени сжатия. Данный способ позволяет значительно повысить КМ, однако сопровождается существенными техническими трудностями.
- Замена поршней более легкими аналогами. Двигателю будет легче крутиться. Соответственно, динамика разгона вырастет.
Увеличения динамики разгона можно добиться и путем коррекции механизма передачи крутящего момента к ведущим колесам. Для этого необходимо установить в коробку передач шестерни с большим передаточным числом. Следует помнить, что увеличение КМ будет означать снижение максимальной скорости авто.
Увеличения динамики разгона можно добиться и с помощью чип-тюнинга. При этом заводская программа с блока управления двигателем заменяется на альтернативную, изменяющую параметры работы силового агрегата в ту или иную сторону.
znanieavto.ru
Крутящий момент двигателя — все что вы хотели знать но боялись спросить
Почти в каждой статье на CARakoom пишут про крутящий момент такого или иного двигателя. Но что значит этот крутящий момент? Зачем он вообще нужен? Разве лошадиные силы – не главный показатель? Давайте разберемся вместе! Благодаря этому полезному пособию вы сможете блеснуть умом в компании друзей.Крутящий момент не так уж и важен. Хотя, погодите-ка, крутящий момент очень важен! Так что же это вообще такое? Признаюсь честно, несмотря на то, что я обожаю автомобили и всё, что с ними связано, я и сам-то не особо понимаю, что такое крутящий момент. Да, в интернете есть куча умных определений, и я прекрасно знаю, каким образом он ощущается при езде. Но что же он на самом деле из себя представляет? Разве количество Л.С. – не единственный важный показатель? Я долго разбирался с определением крутящего момента, подготовил несколько доступных графиков и, наконец, счёл возможным поделиться своими наработками с вами.
Первое, к чему я пришел – лошадиные силы являются единственным важным показателем. Не спешите писать гневные комментарии, позвольте мне объяснить. Крутящий момент очень важен, но не сам по себе. Чтобы машина разгонялась, нужно приложить определенную силу: F=Ma (Сила = Масса х Ускорение). Крутящий момент – это сила, но у него отсутствует временной показатель. Для наглядности приведу пример. Представьте, что вы приложили 200 Нм крутящего момента к железному ведру. Это, конечно, круто, но этого не хватит, чтобы отправиться на нем в путешествие.
Просветление ко мне пришло благодаря… свету! Обычная лампочка потребляет энергию, которая измеряется в ваттах – величине, названной в честь Джеймса Ватта, который, помимо того, подарил нам величину, называемую Лошадиными Силами. Ну, во всяком случае, так говорят достоверные источники. В электричестве, ватт определяется как произведение Вольт на Амперы, то есть напряжение, умноженное на ток. Таким образом, при напряжении в 110 Вольт, 60-ваттная лампочка имеет ток, равный 0.55 Ампер, а при напряжении в 220 Вольт, та же самая лампочка имеет ток в 0.275 Ампер. Грубо говоря, чем выше напряжение, тем «медленнее» ток при той же самой «мощности».
Лошадиные Силы измеряются по той же схеме. ЛС=(КМ*ОБ/М)/5252. Крутящий момент нам известен, обороты тоже, а 5252 – это единица для перевода, о которой даже и думать не стоит. Для проведения аналогии с электричеством, представим, что Лошадиные Силы – это Ватты (кстати, во многих странах мощность двигателя измеряется именно в киловаттах), крутящий момент – напряжение, а обороты в минуту – ток. Таким образом, при 135 Нм крутящего момента на 3151 об/мин, двигатель будет выдавать 60 Л.С. Для получения тех же самых шестидесяти лошадиных сил, я могу удвоить обороты и вдвое уменьшить крутящий момент, или удвоить крутящий момент и вдвое порезать обороты. Чувствуете?
В электричестве, Ватт – самая важная величина, ведь благодаря ей горит свет. Можно иметь напряжение без тока, или ток без напряжения, но для того, чтобы была энергия, необходимо и напряжение, и ток.
С крутящим моментом та же самая тема: необходимы лошадки и обороты. Представьте себе двигатель, который имеет крутящий момент 1350 Нм, достигаемый при всего лишь 500 об/мин. «Круто же!» — скажете вы. Ничего подобного. Подставьте эти показатели в нашу формулу, и вы поймете, что такой двигатель будет выжимать всего 95 Л.С. Крутящий момент – это сила, но эта сила не будет работать до тех пор, пока к ней не добавится вращение (об/м). Работа должна производиться в течение определенного времени, только тогда мы получим энергию и ускорение, а ускорение – это, по сути, и есть самый главный показатель автомобиля. И да, когда я говорю «ускорение», я имею в виду переход из статичного состояния в динамичное. В данном случае, речь идет о физическом определении этого понятия, а не о разгоне до сотни и т.д.
Итак, если важны только лошадиные силы, то в чем суть дизельных движков? Давайте начнём по порядку:
1. Мы знаем, что автомобиль ускоряется благодаря лошадиным силам
2. Мы знаем, что крутящий момент, умноженный на обороты в минуту (и всё это поделённое на 5252) создаёт эти лошадиные силы
То есть, чем быстрее вращается движок, тем больше лошадиных сил. Логично? Вполне. Теперь давайте попробуем научиться читать подобные графики динамики.
(График взят из журнала Automobile)
1. Лошадиные Силы – это переменная, зависящая от скорости двигателя, это мы узнали только что, но скорость двигателя имеет значительно больший потенциал, чем крутящий момент (двигатель может раскручиваться, например, до 7000 об/м, при этом крутящий момент может составлять лишь 200-400 Нм). Это значит, что большой показатель лошадиных сил будет следствием большого количества оборотов в минуту, и даже небольшой крутящий момент, приложенный к большому количеству оборотов, в итоге выдаст неплохую мощность. Именно поэтому болиды Formula 1, или гоночные мотоциклы… в общем любые транспортные средства, оснащенные двигателями с высокой оборотностью, имеют так много мощности.
2. Кроме того, значение имеет где и каким образом вы производите крутящий момент. Дизельные движки производят много крутящего момента. Очень много. Но они выжимают его при низких оборотах. Этот низкооборотный крутящий момент как раз таки и создает то ощущение, которое вы испытываете при езде на огромном ленивом V8 или дизельном движке. Но ощущение это в первую очередь связано не с крутящим моментом, а именно с мощностью двигателя.
Для наглядности я выбрал небольшой современный движок от Volkswagen – CJAA 2.0 TDI. Максимальный крутящий момент двигателя, который составляет 319 Нм достигается при 1700 об/мин, а при 2600 об/мин он начинает угасать. Это является следствием того, что дизельные движки способны нагнетать огромное давление воздуха и не поджигать топливо до тех пор, пока они не будут готовы к этому. При таком крутящем моменте мы имеем 76 л.с. на 1700 об/мин, 90 л.с. при 2000 об/мин и 116 л.с. при 2600 об/мин. На графике заметно, как линия лошадиных сил резко взмывает вверх в том месте, где достигается максимальный крутящий момент.
Сравним его с бензиновым двигателем аналогичного объема. В данном случае рассмотрим двигатель Subaru FA20. Максимальная мощность движка составляет 200 л.с, таким образом, можно сказать, что он более «спортивный», в сравнении с CJAA. Однако, на 1700 об/мин FA20 выдает всего 142 Нм крутящего момента, что соответствует лишь 34 л.с. При 2000 оборотах крутящий момент составляет 155 Нм и выдает 43 л.с., при 2600 – 185 Нм и 68 л.с. По факту, FA20 не выжимает больше лошадиных сил, чем CJAA ровно до тех пор, пока не разгонится до 3900 об/мин. Примерно на таких оборотах мы с вами ездим на работу и по магазинам. Таким образом получается, что двигатель Subaru BRZ страдает от нехватки мощности, при том, что у него её вполне достаточно. Нонсенс, но факт.
Посмотрите на этот график. Тут вы видите сравнение показателей двух рассмотренных двигателей. Как можно заметить, кривая лошадиных сил дизельного движка взмывает вверх на низких оборотах.
На данном графике оранжевым цветом обозначена зона, в которой TDI выжимает больше мощности, чем «более мощный» двигатель FA20.
Обратите внимание на интервал от 900 до 4500 об/мин, на котором TDI выдает значительно больше лошадиных сил. Две сотни лошадей, конечно, будут быстрее, чем 136, но пока BRZ медленно лениво разгоняется до необходимых оборотов, TDI уже улетит в космос. Этим и объясняется явление «турбоямы»: когда турбина не работает, двигатель не выдает нормального крутящего момента, следовательно у него мало мощности и он плетется как улитка. Когда турбина входит в дело, движок начинает производить крутящий момент, мощность и скорость.
Другой способ разобраться в этом явлении состоит в рассмотрении лошадиных сил на фоне определенного интервала оборотов, скажем, 1100-4000 об/мин, то есть средней оборотности ежедневных поездок. В данной зоне средний показатель мощности FA20 составляет 67 л.с, а CJAA показывает 107 л.с. Это говорит о том, что если бы движок BRZ не разгонялся до 4000 об/мин, то юркий дизель рвал бы его по мощности почти в два раза! Именно поэтому крутящий момент ощущается таким «быстрым». Быстрее разгоняться будет тот автомобиль, чей двигатель проведет больше времени на более высоком среднем показателе лошадиных сил.
Проблема состоит в том, что, как я уже ранее говорил, оборотность двигателя – величина более широкая, чем крутящий момент, а это значит, что количество крутящего момента, который можно добавить на низких оборотах, сильно ограничено. На практике, путём увеличения скорости двигателя можно получить больше мощности, чем путём увеличения крутящего момента. При этом, увеличить скорость двигателя гораздо дешевле и проще, чем поднять крутящий момент. Именно по этой причине дизели, как правило, совершенно не подходят для гоночных автомобилей.
Мы сравнили оборотистый спортивный двигатель FA20 и медленный дизельный TDI, пришло время сравнить что-то другое. Теперь мы посмотрим на три шестицилиндровых двигателя от внедорожников. Синяя кривая отвечает за Toyota 1FZ-FE 4.5 – последний рядный шестицилиндровый двигатель от Toyota, установленный в Land Cruiser. Красная кривая – Toyota 1GR-FE 4.0 – рабочая лошадка от Tacoma. И, наконец, зеленая линия – GM LFX 3.6 – V6, сидящий под капотами Colorado и Canyon.
1. Двигатель 1FZ-FE (синяя линия) – настоящий олдскул.
Его большой объем, распредвал и дизайн головки блока цилиндров созданы для того, чтобы производить большую мощность на низких оборотах. Благодаря этому, на таком автомобиле, как говорится, можно пни выкорчевывать. Несмотря на то, что среди трех двигателей данный имеет наименьшее количество максимальной мощности (212 л.с.), он имеет максимальный средний показатель мощности (128 л.с.) в интервале ежедневной езды, достигает своей максимальной мощности на 1800 об/мин и дольше всех держится на этой отметке. Это не значит, что автомобиль быстрый, совсем нет, он та еще улитка, но его показатели позволяют ему успешно разгоняться при высокой нагрузке на низких оборотах. Кроме того он хорош на бездорожье.
2. Двигатель 1GR-FE отличается своим умеренным характером и пытается выстроить баланс между крутящим моментом и лошадиными силами, но на высоких оборотах он выдыхается, и причиной тому является конструкция профиля кулачка.
Движок неплохо показывает себя на низких оборотах. К сожалению, на высоких оборотах наблюдается сильный спад мощности, поскольку двигателю просто не хватает воздуха. В то же время, двигатель имеет тот же самый средний показатель мощности в диапазоне оборотов при ежедневной езде, что и более мощный двигатель GM V6 (115 л.с.)
3. В двигателе LFX сделан упор на лошадиные силы, но благодаря хорошей регулировке кулачка на впуске и выхлопе, а также прямому впрыску, крутящий момент также вполне неплох.
Его «коньком» является тот факт, что он продолжает раскручивать обороты до тех пор, пока не достигнет максимального количества лошадиных сил. Однако, на низких оборотах этот движок менее мощный, чем древний Toyota V6. Средний показатель мощности на оборотах ежедневной езды – такой же, как и у 1GR-FE (115 л.с.), и он развивает 85% своей мощности при 1500 об/мин.
Какой из них лучше? Это зависит от разных факторов. Самый крупный и медленный из них хорош на низких оборотах, но подыхает на высоких. Самый мелкий двигатель выжимает самую большую мощность, но для этого его нужно посильнее раскрутить.
В идеале хотелось бы иметь и то, и другое. Хороший крутящий момент на любых оборотах, который мог бы выжать много лошадиных сил. Этого можно добиться увеличением объема двигателя, но тогда он будет неэффективен на низкой нагрузке. Турбонаддув также может решить проблему, но движок будет вёдрами пить топливо.
Дизельные двигатели хороши на низких оборотах, но на высокой скорости они начинают задыхаться, поэтому нам вряд ли когда-либо удастся увидеть спортивный автомобиль на дизельном движке. Если только произойдет какой-нибудь технологический прорыв…
Надеюсь, что эта обучающая статья поможет вам лучше разобраться в понятии крутящего момента и научиться взвешивать все «за» и «против» при выборе двигателя.
Чтобы узнать об автомобильной технике и физике больше, заглядывайте в наше сообщество Tech.
carakoom.com
Что такое крутящий момент двигателя автомобиля.
Крутящий момент, или как его еще называют, момент силы является одной определяющих характеристик автомобильного двигателя, наряду с его объемом и мощностью. Но что мы знаем об этой величине, и насколько она важна на самом деле? В этом мы и попытаемся с вами разобраться в этой статье. И начнем мы, пожалуй, со школьного курса физики.
Содержание статьи
Определение крутящего момента
С точки зрения физики, момент силы – это произведение силы, действующей на рычаг (плечо), на его длину. Чтобы понять, как это происходит, рассмотрим простой пример с болтом и гаечным ключом. Если мы накинем ключ на болт, и попытаемся его закрутить (открутить), то момент силы для вращаемой головки болта будет равняться произведению значения приложенной нами силы к ключу на его длину.
Для силового агрегата автомобиля крутящий момент определяется произведением силы, получаемой от сгорания горючей смеси и действующей на днище поршня на величину расстояния от оси шатунной шейки до оси коленчатого вала. На информационных просторах нередко приходится встречать определение момента силы для ДВС, когда за плечо принимается не кривошип, а шатун. Это неправильно! Измеряется крутящий момент в Ньютонах на метр (Н*м).
Особенности величины момента силы
Крутящий момент для автомобильного мотора не является величиной постоянной, так как его значение зависит от множества факторов. Для примера давайте рассмотрим, как она изменяется в ходе рабочего цикла ДВС. При воспламенении топливной смеси в цилиндре на поршень действует сила максимальной величины, а поскольку длина плеча у нас постоянная, крутящий момент в этот промежуток будет наибольшим. Когда поршень под воздействием силы сгорающей смеси начинает двигаться вниз, свободный объем цилиндра увеличивается, а давление, соответственно, падает. Следовательно, сила, толкающая поршень, достигает своего минимума в тот момент, когда последний оказывается в нижней мертвой точке.
Кроме этого, момент силы имеет зависимость и от оборотов двигателя, а поскольку эта величина также непостоянна, определить его максимальный показатель возможно только при определенных оборотах.
Зависимость момента силы ДВС от его оборотов не является линейной, так как на определенных этапах работы двигателя возникают различные факторы, воздействующие на эту зависимость. Это сила трения, потери, вызванные повышением нагрузки на ДВС и т.п.
Зависимость мощности двигателя от величины момента силы
Мощность ДВС определяется его работой за определенный промежуток времени. С другой стороны – это производная от момента силы ДВС, выражающаяся его произведением на количество оборотов: P = M*n, где P – максимальная развиваемая мощность, M – момент силы, n – количество оборотов коленвала. Мощность силового агрегата напрямую зависит и от частоты вращения коленчатого вала, и от величины крутящего момента. Чем выше эти показатели, тем мощнее двигатель автомобиля. Таким образом, в процессе оценки основных характеристик мотора, приоритет следует отдавать не мощности, а именно показателю максимального момента силы. Ниже приведена таблица, в которой представлены наиболее популярные марки и модели автомобилей с указанием их мощности и крутящего момента.
Марка и модель | Объем силового агрегата, см3 | Мощность, л.с. | Крутящий момент, Н*м/при достижении оборотов коленвала в минуту |
Skoda Octavia A7 | 1,6MPI | 110 | 155/3800 |
Hyundai Solaris | 1,6 | 123 | 155/4200 |
Hyundai ix35 | 1,6 | 135 | 165/4850 |
Renault Duster | 1,6 | 114 | 156/4000 |
Renault Sandero | 1,6 | 102 | 145/3750 |
Renault Logan | 1,6 | 102 | 145/3750 |
Nissan Qashkai | 1,6 dCi | 130 | 320/1750 |
Nissan Almera | 1,6i | 102 | 145/3750 |
Nissan Juke | 1,6 | 117 | 158/4000 |
BMW X6 | 3,0 | 249 | 560/1500-3000 |
Toyota Rav4 | 2,0 | 146 | 187/3600 |
Chevrolet Niva | 1,7 | 80 | 127/4000 |
Chevrolet Cruze | 1,6 | 109 | 150/4000 |
Ford Focus | 1,6 | 105 | 150/4000 |
Mitsubishi Outlender | 2,0 | 146 | 196/4200 |
Opel Astra | 1,6 Turbo | 180 | 230/2200 |
Volkswagen Polo | 1,4 TSI | 150 | 250/1500 |
Kia New Rio | 1,6 | 123 | 155/4200 |
Audi Q7 | 3,0 TDI | 272 | 600/1250-3250 |
Honda CR-V | 2,0 | 150 | 190/4300 |
Mazda CX-9 | 3,7 | 277 | 367/4250 |
Mercedes ML 350 4Matic | 3,5 | 306 | 370/3500 |
Peugeot 308 | 1,6 | 125 | 200/1400 |
Volvo V60 | 1,6 | 150 | 240/1600 |
Ssang Yong Actyon | 2,0 | 149 | 197/4500 |
Lexus RX 200t | 2,0 | 238 | 350/1650-4000 |
Lada Granta | 1,6 | 98 | 145/4000 |
Lada Priora | 1,6 | 98 | 145/4000 |
Lada Kalina | 1,6 | 98 | 145/4000 |
Lada Xray | 1,6 | 106 | 148/4000 |
Что определяет крутящий момент в автомобильном двигателе
Если мощность автомобильного двигателя напрямую зависит от момента силы, то зачем он вообще используется для характеристики мотора, ведь можно просто ограничиться мощностью? Дело в том, что крутящий момент определяет не только мощность, но и способность машины преодолевать препятствия и ускоряться. Приведем простой пример. Есть два автомобиля с разным объемом силового агрегата, разными показателями мощности и момента силы: у одного мощность 100 л.с. и крутящий момент 250 Н*м, у другого мощность 150 л.с. и 145 Н*м. Так вот, если эти две машины будут стартовать с места одновременно, то первый автомобиль обязательно опередит второго на рывке. То же самое произойдет, и если эти машины будут подниматься вверх по склону.
Почему так получается? Да потому, что второму автомобилю при старте для развития максимальной мощности не хватает оборотов. Иными словами, если вы покупаете машину и хотите, чтобы она стартовала уверенно, уделите внимание моделям с большим моментом силы.
Максимальный момент силы бензиновых и дизельных двигателей
Как мы уже говорили, момент силы – это величина постоянно изменяющаяся, поэтому в характеристиках двигателя указывается ее максимальный показатель. Достичь его можно лишь при определенных оборотах коленвала.
У серийных бензиновых силовых агрегатов (нетурбированных) максимальный крутящий момент достигается при оборотах 4000-6000 об/мин. У дизелей (нетурбированных) этот показатель ниже практически в два раза, т.е. наибольший момент силы возникает на 2000-2500 об/мин. Поэтому, собственно, дизельные автомобили и считаются более мощными на низких оборотах.
Можно ли увеличить крутящий момент кустарным способом
Поскольку крутящий момент зависит всего от двух показателей (силы, толкающей поршень, и длины кривошипа), увеличить его можно всего двумя способами: изменением значения силы или длины плеча в большую сторону. Поскольку внесение изменений в конструкцию коленчатого вала в условиях гаража невозможно, этот способ можно упустить. Подобными переделками занимаются компании, специализирующиеся на тюнинге автомобильных двигателей. А что касается увеличения показателя силы, действующей на поршень, то здесь вполне можно поэкспериментировать. Для этого можно выбрать один из ниже перечисленных методов, или же использовать их в комплексе.
Увеличение рабочего объема каждого из цилиндров
Данный метод подразумевает расточку цилиндров и использование поршней большего диаметра. При увеличении объема возрастет не только крутящий момент, но и мощность силового агрегата. Такое увеличение не будет линейным из-за потерь на впуске, но положительный результат гарантирован. Расход топлива, конечно, существенно возрастет.
Увеличение степени сжатия
Повысить степень сжатия возможно путем фрезерования ГБЦ, уменьшая объем камер сгорания. Часто при этом в днище поршней делаются проточки под клапана. При таком способе возрастает давление в камере сгорания, что и приводит к увеличению силы, действующей на поршень. Однако здесь есть свои нюансы. Дело в том, что при уменьшении объема камеры сгорания понижается и детонационный порог. Иными словами, в результате подобного «тюнинга» можно добиться не только увеличения крутящего момента, но и преждевременного воспламенения топливной смеси под действием высокого давления. В итоге – постоянная детонация и быстрый износ деталей поршневой группы.
Применение впускных клапанов большего диаметра
Повысить крутящий момент можно и за счет увеличения количества топлива, поступающего в цилиндры. Чем больше его попадет в камеру сгорания, тем больше энергии выделится при его сжигании. Для этого применяют впускные клапана большего диаметра. Обычно их берут из других двигателей. Естественно, без токарных работ и опыта в подобных переделках здесь не обойтись.
Чип-тюнинг
Чип-тюнинг – самый безопасный из способов увеличения крутящего момента. Он сводится к тому, чтобы подключить компьютер к контроллеру двигателя и внести в него необходимые программные изменения. Без повышения расхода топлива здесь тоже не обойдется. Чем хорош этот метод, так это тем, что всегда можно вернуть стандартные настройки.
miravto24.ru