Что такое дросселя: Тюнинг двигателя для смелых — установка четырёхдроссельного впуска

Содержание

Тюнинг двигателя для смелых — установка четырёхдроссельного впуска

Когда автолюбитель задумывается о тюнинге двигателя, то в большинстве случаев он рассчитывает незначительно увеличить его объём, доработать ГБЦ и установить спортивный распредвал. Более смелые устанавливают турбонаддув или систему черырёхдроссельного впуска.

Для получения заметной прибавки в мощности от дросселей нужно установить верховой распредвал. Дроссели не должны препятствовать движению воздушного потока до входа в цилиндр, и основная отдача от них требуется на высоких оборотах двигателя, когда стандартный ресивер уже не справляется. Здесь очень важно грамотно отнестись к точной развесовке и облегчению шатунно-поршневой группы. Ведь при скорости вращения коленвала около 8000 об./мин. каждый несбалансированный грамм может привести к выходу из строя всей системы. Для лучшей отдачи придётся поменять и выхлопную систему. В идеале, увеличить впускные и выпускные каналы в головке блока цилиндров и установить увеличенные клапана. Если вас это не пугает, то стоит изучить черырёхдроссельный впуск более подробно. Поэтому сначала рассмотрим существующие системы.


Впускной коллектор

На обычных автомобилях впускная система включает в себя воздушный фильтр, дроссельную заслонку и впускной коллектор. Дроссельная заслонка открывает доступ воздуха в цилиндры двигателя. Всасывание воздуха происходит в определённой последовательности, в зависимости от того, какой в данный момент цилиндр работает на впуск. Такой тип впускных коллекторов используется на серийных инжекторных автомобилях. Здесь важна длина впускных труб коллектора, от которых зависит режим работы двигателя. Длинные впускные трубы улучшают работу на низких и средних оборотах, тогда как использование короткого впуска ведёт к повышению мощности на высоких оборотах двигателя.

На рисунке изображена конструкция обычного впускного коллектора. Основным его недостатком является то, что воздух поступает быстрее в первый цилиндр от дроссельной заслонки. Количество воздуха тоже пропорционально расстоянию от дросселя, поэтому в последний цилиндр его поступает намного меньше.


Впускной ресивер

В высокооборотистых двигателях находит применение ресивер типа «банка», который оснащается короткими патрубками внутри («мегафоны» или «диффузоры»), что хорошо видно на приведенном рисунке.


При высоких оборотах двигателя он уменьшает колебания воздуха и приводит к увеличению наполнения цилиндров. К сожалению, он тоже имеет недостатки, присущие впускному коллектору. Поэтому, в основном, применяется в двигателях с турбонаддувом, и когда требуется объединить все впускные каналы.


Четырёхдроссельный впуск

Идеальным вариантом для двигателя является четырёхдроссельный впуск. В этом варианте каждый цилиндр оснащён независимой дроссельной заслонкой, что избавляет систему от резонансных колебаний воздуха, возникающих между цилиндрами во время впуска. При этом, во всём диапазоне оборотов, от холостых до максимальных, двигатель работает намного стабильнее.


В автомобили ВАЗ со спортивными двигателями устанавливается четырёхдроссельный впуск или — в простонародье — «дудки», которые обеспечивают раздельный впуск воздуха. При этом они объединены общим каналом для вакуумного усилителя тормозов, датчика абсолютного давления (ДАД), регулятора давления топлива (РДТ) и регулятора холостого хода (РХХ). Учтите, что при установке четырёхдроссельного впуска расчёт воздуха берётся не по датчику массового расхода воздуха (ДМРВ), а по ДАДу и длительным замерам расхода воздуха двигателя при разных режимах работы. Так что установка четырёхдроссельного впуска не так проста, как кажется со стороны.


Четырёхдроссельный впуск «TEAM80»

Система четырёхдроссельного впуска «TEAM80» предназначена для установки на 8-ми клапанные двигатели производства «АвтоВАЗ». Такой впуск является лучшей альтернативой стандартному впускному коллектору, так как обеспечивает оптимальную передачу топливной смеси в двигатель.

Существуют варианты исполнения для 8-ми и 16-ти клапанных двигателей переднеприводных моделей ВАЗ, а также и для мотора «классики». Отличительной особенностью дросселей от компании «TEAM80» является то, что дроссельный модуль накрыт воздухосборным коробом максимально увеличенного объёма (по типу спортивного ресивера). Это позволяет производить установку узла без доработок кузова (за исключением установки на «Самару» и «Самару-2» с двигателем 16V) и использовать один стандартный «нулевик». Также короб позволяет сохранить в системе ДМРВ и облегчает подключение РХХ.

Четырёхдроссельный впуск приводит к уменьшению длины впускного тракта, уменьшая количество поворотов. Вследствие этого мы получаем облегчённую тягу воздушной смеси в цилиндры мотора, а значит, заметно повышается КПД двигателя ВАЗ, также увеличивается его мощность и крутящий момент. «Дудки» впуска изготавливаются из прочного металла, что позволяет использовать этот вид впускного коллектора на автомобилях с ранним зажиганием. Взрывы во впускном тракте не приведут к остаточным деформациям элементов конструкции.

 

Система выполнена таким образом, что все четыре дроссельных заслонки приводятся в действие одним соосным механизмом, имеющим стандартное крепление тросика. С противоположной стороны от «колеса управления» устанавливается стандартный датчик положения дроссельной заслонки (ДПДЗ). Четырёхдроссельный впуск «TEAM80» оснащается трубкой, объединяющей все четыре цилиндра, которая обеспечивает работоспособность вакуумного усилителя тормозов.


Четырёхдроссельный впуск «PROSPORT»

Система четырёхдроссельного впуска «PROSPORT» представлена в следующих вариантах исполнения:

1. вертикальная, для установки на 16-ти клапанные двигатели переднеприводных ВАЗ;

2. горизонтальная, для установки на 16-ти клапанные двигатели переднеприводных ВАЗ;

3. вертикальная, для установки на «классику» с 16-ти клапанным двигателем от переднеприводного ВАЗ.

Многодроссельные узлы «PROSPORT» являются «бюджетной» альтернативой дросселям «TEAM80». В основе их конструкции применены стандартные дроссельные патрубки ВАЗ 2112. Все четыре заслонки диаметром 46 мм объединены одной внешней осью и приводятся в движение при помощи стандартного крепления троса газа, размещённого на одном из дроссельных патрубков.

   

Как и в случае с дросселями от компании «TEAM80», вертикальное исполнение системы четырёхдроссельного впуска не требует для установки какие-либо доработки кузова (за тем же исключением установки на 16-ти клапанную «Самару» и «Самару-2»). Однако, для установки горизонтальной системы потребуется произвести определённые работы, направленные на обеспечение необходимого пространства и прямого попадания воздуха в «дудки». Как правило, для этих целей стандартный радиатор охлаждения заменяют на другую, более подходящую по габаритам модель. Также может потребоваться доработка рамки радиатора.

Четырёхдроссельный впуск «33S»

Ещё одна отлично зарекомендовавшая себя бюджетная линейка многодроссельных узлов, выпускаемая под брендом «33S». Конструкция абсолютно аналогична той, что описана выше в статье. В настоящее время это самый популярный вариант недорогих и при этом высокоэффективных «дросселей».

  

Две наиболее востребованные модели представлены в нашем магазине:

— Система четырёхдроссельного впуска 33S горизонтальная 8V ВАЗ 2101-2107;

— Система четырёхдроссельного впуска 33S вертикальная 16V ВАЗ 2110-2112, Калина, Приора, Гранта.

Дроссельная заслонка увеличенного диаметра для двигателя

Некоторые утверждают, что при установке увеличенного «дросселя» повышается мощность автомобиля. А если ещё установить «нулевик», то эффект улучшится. Разберемся, есть ли толк от увеличенной дроссельной заслонки для авто.

Зачем устанавливают большую заслонку

Размер стандартного дросселя — 46 мм и считается самым узким местом в воздушном тракте автомобиля. Если установить дроссель большего диаметра, то возрастет проходное отверстие, и соответственно больше поступит воздуха, а значит, увеличится мощность двигателя машины. На рынке тюнинг запчастей существует множество вариантов дроссельной заслонки увеличенного размера — от «52» до «58» размера. Все зависит от цели установки. Например, на стандартный мотор без доработок есть смысл устанавливать дроссель на «52» или «54 мм». А более производительный «56» и «58» используется для моторов с увеличенным объемом двигателя.

Если на стандартный мотор поставит 54 дроссель — лучше не станет, а хуже — вполне вероятно. После установки нужно будет аккуратнее работать с педалью газа. Раньше при легком нажатии «на газ» дроссельная заслонка открывалась на 10-15 процентов, а при увеличенном узле — на 20-25%. Это приведет к дерготне на малых оборотах!

Увеличенный «дроссель» создает иллюзию повышения мощности, когда приходиться меньше давить на педаль газа и любой отклик становиться резче. Хотя некоторым водителям понравится этот эффект.


Увеличенная заслонка пришла из автоспорта, когда ее устанавливали на спортивные машины не методом тыка, а исходя из производительности. Сначала делается мотор, снимаются мощностные показатели, и в случае нехватки поступающего воздуха в двигатель авто устанавливается дроссельная заслонка увеличенного размера. Если ставить на стандартный мотор, то это выброшенные деньги на ветер. Ведь поступление воздуха при стандартном размере «дросселя» хватает.

Есть ли смысл в промывке дросселя

Не стоит забывать про промывку. За время эксплуатации в заслонке скапливается грязь, что со временем ведет к худшей реакции на педаль газа. После операции промывки, машина начинает лучше ехать, что лично проверено на практике.
Может эффект от увеличенной дроссельной заслонки объясняется тем, что ставим вместо грязной — новую и чистую? Тогда, прежде чем покупать новую большую заслонку, лучше промыть стандартный дроссель от грязи. Операция не займет много времени, нужно купить баллончик «очистителя карбюратора», снять дроссель и тщательно промыть. Ни в коем случае не используйте средство WD-40 для промывки или любое другое, содержащее масло. Для машин с инжектором — промывка заслонки немного сложнее. Придётся снимать минусовую клемму аккумулятора перед демонтажом и началом работ. Это делается, чтобы потом обучить дроссельную заслонку авто с новыми параметрами после промывки. Происходит в автоматическом режиме после подсоединения клеммы АКБ и первого пуска мотора. Причем двигатель, может запуститься не с первого раза.

После промывки дроссельной заслонки машина лучше едет. Не удивительно, особенно если раньше ее никто не промывал, и там скопилась грязь.

Про нулевик и увеличенную заслонку

Про фильтр нулевого сопротивления можно сказать, что вещь полезная, если правильно установить. Для полноценной работы нужно делать холодный впуск, а то будет брать горячий воздух из-под капота. Стандартный воздушный фильтр, который берет воздух из нижней точки под капотом — более предпочтителен.

Если хотите ставить нулевик, то делайте холодный впуск. Самый доступный вариант — взять алюминиевую гофру для воздуховодов на 80-100 мм, присоединить один конец к корпусу воздушного фильтра, а другой — в точке, где воздух прохладнее. Как правило, это вдалеке от радиатора автомобиля, ближе к колесу.

На личном опыте убедился, что установка увеличенной дроссельной заслонки и «нулевика» дает хороший эффект. Появляется больше остроты в работе педали газа, чувствуется уверенность при обгонах. Но эффект настолько мал, что говорить о какие-то мифических процентах увеличения мощности не стоит. Тем более об улучшении времени разгона автомобиля.

Дроссель и его параметры | HomeElectronics

Что такое электрический дроссель?

Дросселем, в общем случае, называют катушку индуктивности, чаще всего с сердечником, которая служит для устранения или уменьшения переменного (импульсного) тока, разделения или ограничения сигналов различной частоты. Исходя из этого, дроссели условно можно разделить на следующие типы:

сглаживающие дроссели, предназначены для ослабления переменной составляющей постоянного тока или напряжения различной частоты, то есть сглаживания пульсаций, на выходе и входе силовых преобразователей или выпрямителей;

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

дроссели переменного тока, предназначены для ограничения электрического тока, при резких изменениях нагрузки, например, при пуске электродвигателей или источников питания;

дроссели насыщения, или управляемые дроссели, предназначенные для регулирования индуктивного сопротивления за счёт изменения тока подмагничивания.

Дроссели, как и любая другая катушка индуктивности, может быть без сердечника, с замкнутым сердечником, с сердечником, имеющим малый зазор и с сердечником, имеющим большой зазор или разомкнутым сердечником. Поэтому в независимости от назначения дросселя его принцип действия основан на электромагнитных свойствах катушки индуктивности и сердечника, на котором она выполнена.

Принцип работы идеального дросселя

Дроссель, как и любой другой элемент электрической цепи, содержит ряд параметров, которые определяются его физическими и конструктивными характеристиками. В зависимости от назначения дросселя одни его характеристики стараются улучшить, а значение других уменьшить. Но, несмотря на характер работы дросселя, его основным параметром является индуктивность, поэтому рассмотрим дроссель, содержащий только один параметр – индуктивность, такой дроссель называется идеальным и он характеризуется следующими допущениями:

— обмотка дросселя не имеет активного сопротивления;

— отсутствует межвитковая ёмкость проводников дросселя;

— магнитное поле в сердечнике однородно, то есть значение индукции и напряженности в различных его точках имеет одинаковое значение.

С учётом таких допущений, представим сердечник, на который намотана катушка.


Идеальный дроссель.

Подадим на катушку переменное напряжение U, в результате по катушке потечёт переменный ток I, создающий в сердечнике переменный магнитный поток Φ. Тогда в соответствии с законом самоиндукции в витках обмотки возникнет ЭДС самоиндукции Е. Так как у нас отсутствует активное сопротивление обмотки идеального дросселя, то ЭДС самоиндукции уравновесит напряжение, вызвавшее электрический ток

В тоже время индуктивность, как коэффициент самоиндукции можно определить по следующему выражению

где ω – количество витков катушки,

S – площадь поперечного сечения сердечника,

B – магнитная индукция,

I – величина электрического тока.

Тогда выражение для ЭДС самоиндукции будет иметь вид

Данное выражение показывает, что ЭДС самоиндукции зависит от конструкции и размеров дросселя, а также от скорости изменения магнитного поля (dB/dt).

Так как в идеальном дросселе отсутствуют активные нагрузки, а только индуктивная составляющая, то активная мощность будет равняться нулю. В индуктивном элементе расходуется только реактивная мощность на создание магнитного поля.

Принцип работы реального дросселя

В реальном дросселе, в отличие от идеального, кроме индуктивности имеется ещё рад параметров, вносящих активную составляющею мощности. Рассмотрим реальный дроссель


Магнитные силовые линии реальной катушки.

Поступающий в дроссель переменный ток возбуждает вокруг катушки переменное магнитное поле, определяемое магнитным потоком Φ. В идеальном дросселе он полностью замыкается через сердечник Φ0, но в реальности к нему добавляется магнитный поток рассеяния, охватывающий как витки по отдельности, так и группы витков провода. Он зависит от расположения витков, сечения провода, плотности укладки витков провода и так далее. Поток рассеивания достаточно трудно выразить количественно, поэтому для его характеристики вводят понятие потокосцепление рассеяния ΨS, который можно выразить через индуктивность рассеяния LS обмоток дросселя

В соответствии с законом электромагнитной индукции, поток рассеяния возбуждает ЭДС рассеяния

Поток рассеяния в дросселе негативно влияет на работу устройств, так как вызывает паразитные шумы, наводки и потери мощности в целом.

Кроме потерь реактивной мощности потоками рассеяния, в реальном дросселе происходят потери активной мощности в сопротивлении витков обмотки и потерях в сердечнике, обусловленных его ферромагнитными свойствами.

Эквивалентная схема дросселя

Для анализа работы реального дросселя создадим схему замещения, которая учитывает его основные и паразитные параметры.


Эквивалентная схема дросселя с учётом паразитных параметров.

Таким образом, на характеристики дросселя кроме собственной индуктивности дросселя L, являющейся основным параметром, так сказать полезным, присутствует паразитная индуктивность LS, обусловленная потоком рассеяния, активное сопротивление R обмоточного провода, межвитковая ёмкость С обмотки дросселя, а также проводимости gμ. Проводимость gμ характеризует мощность, которая затрачивается на перемагничивание сердечника, из-за наличие петли гистерезиса.

Уравнение соответствующее эквивалентной схеме будет иметь вид

Как видно на схеме ток в дросселе состоит из двух составляющих: Iμ – ток отвечающий за создание основного магнитного потока Φ0 и Iа – ток, учитывающий потери мощности при перемагничивании и нагрев сердечника

где РС – мощность потерь в сердечнике.

Основной параметр дросселя – индуктивность L определяется по выражениям для индуктивностей различных типов, например, индуктивность без сердечника, индуктивности на замкнутых сердечниках, индуктивности на сердечниках с зазором и индуктивности на разомкнутых сердечниках.

Остальные параметры определить несколько сложнее. Рассмотрим определение данных параметров.

Как рассчитать межвитковую ёмкость обмотки дросселя?

В дросселе, между витками, слоями и металлическими предметами вокруг дросселя существует некоторая разность потенциалов, создающих электрическое поле. Для оценки влияния данного поля вводят понятие межвитковой ёмкости или собственной ёмкости дросселя, величина которой зависит от размеров и конструктивных особенностей дросселя.

Межвитковая ёмкость C обмотки, являясь паразитным параметром, совместно с индуктивностью рассеивания и собственной индуктивностью дросселя образуют различные виды фильтров и колебательных контуров. Хотя данный параметр имеет небольшое значение, тем не менее, в определённых условиях его приходится учитывать, однако точный расчёт затруднён в связи с большим влиянием различных конструктивных параметров, в первую очередь, взаимного расположения витков провода между собой. Так наибольшей межвитковой ёмкостью обладают катушки намотанные «внавал», а наименьшей – катушки с намоткой типа «Универсаль» или секционные катушки.

Межвитковую емкость Собщ дросселя можно представить в виде суммы емкостей между внутренним слоем обмотки и магнитопроводом С1 и межслоевой емкости внутри обмотки С2

Ёмкость между внутренним слоем обмотки и магнитопроводом можно определить из эмпирической формулы

где εа – абсолютная диэлектрическая проницаемость среды вокруг проводника, εа = ε0εr,

εr – относительная диэлектрическая проницаемость,

ε0 – электрическая постоянная, ε0 = 8,85 * 10-12 Ф/м,

r – радиус поперечного сечения провода,

а – расстояние между магнитопроводом и осью провода,

n – число витков в слое,

р1 – периметр витка внутреннего слоя обмотки.

Относительная диэлектрическая проницаемость берётся для материала каркаса дросселя, если бескаркасное исполнение, то соответственно проницаемость воздуха либо изоляции проводника, в зависимости от необходимой точности.

Емкость между слоя обмотки так же вычисляется по эмпирической формуле

где рср – периметр среднего витка обмотки,

b – расстояние между осями витков в соседних слоях,

m – число слоёв.

В данном случае диэлектрическая проницаемость берётся для материала межслоевой изоляции.

Во всех случаях необходимо добиваться уменьшения межвитковой ёмкости обмотки. Для этого применяют различные виды намоток и материалов для каркасов и межслоевой изоляции с малым значением диэлектрической проницаемости.

Как рассчитать индуктивность рассеяния дросселя?

Индуктивность рассеяния LS, также как и межвитковая ёмкость, является паразитным параметром и негативно влияет на индуктивные элементы, в частности на дроссель. Индуктивность рассеяния вместе с межвитковой емкостью образуют фильтр нижних частот, вызывающий уменьшение амплитуды переменного напряжения и тока на высоких частотах. Данное обстоятельство приводит к тому, что увеличиваются активные потери мощности и происходит нагрев дросселя.

Индуктивность рассеяния зависит от типа конструкции дросселя и его размеров и может быть определена по следующему выражению

где μ0 – относительная магнитная проницаемость, μ0 = 4π*10-8,

рср – периметр среднего витка обмотки,

w – количество витков провода в дросселе,

l – длина намотки,

h – толщина намотки.

В большинстве случаев необходимо добиваться уменьшения индуктивности рассеяния, для чего стараются как можно плотнее уложить провод в намотке, уменьшения количества слоёв обмотки дросселя и увеличения длины намотки. В идеале стремятся использовать однослойные обмотки, если это возможно.

Стоит отметить, что приведённые выражения для определения паразитных параметров межвитковой ёмкости С и индуктивности рассеяния LS являются ориентировочными и могут в различных случаях давать погрешность порядка 20 %. Поэтому при необходимости знать точное значение их определяют экспериментальным путём различными способами.

На сегодня всё, а в следующей статье я расскажу о потерях мощности и нагреве дросселей при работе.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Сетевые дроссели 2% | Новосибирский завод конденсаторов

При эксплуатации преобразователя частоты возможно искажение формы напряжения сети в виде появления гармоник с частотой 250 Гц, 350 Гц, 550 Гц и т.д.

Наличие гармоник приводит к аварийным режимам работы электроустановок потребителей. Применение сетевых дросселей позволяет устранить такие режимы.

Кроме того, сетевой дроссель является элементом защиты преобразователя частоты от скачков напряжения в питающей сети, так как снижает скорость нарастания тока и позволяет защитить электроустановку без ее выхода из строя.

Применение сетевых дросселей в комплекте с преобразователем частоты позволяет повысить надежность работы и получить значительный экономический эффект, так как срок службы резко увеличивается.

Скачать листовку Сетевые дроссели 2%.pdf

 

Способы доставки

1. Самовывоз

Самовывоз осуществляется по адресу г. Новосибирск, ул. Часовая, д. 6.

2.    Доставка ТК

Доставка осуществляется по России и ближайшему зарубежью транспортными компаниями Деловые Линии, Энергия, КИТ, ПЭК или любой другой по желанию клиента.

3.   Сроки доставки

Примерные сроки доставки с момента отгрузки товара. Более точные сроки будут предоставлены менеджером.

Город

Срок доставки

Москва

От 6 дней

Новосибирск

Доставка в день заказа

Санкт-Петербург

От 9 дней

Екатеринбург

От 2-4 дней

Ростов-на-Дону

От 7 дней

Краснодар

От 6-7 дней

Воронеж

От 6 дней

Нижний Новгород

От 6 дней

Самара

От 5 дней

Челябинск

От 4-6 дней

Красноярск

От 2-3 дней

Казань

От 5 дней

Пермь

От 4 дней

Омск

От 1-2 дней

Уфа

От 4-5 дней

Другие города

Уточняйте у менеджеров

Дроссель в автомобиле это

Дроссельная заслонка (ДЗ), в сокращенном виде можно встретить просто дроссель – составная часть двигателя, с помощью которого происходит управление приходом воздуха во впускной коллектор. Само понятие дроссель иногда применяется некорректно. К примеру, в авиационной технике принято называть дросселем устройство, меняющее тягу ДВС, но корректное его название – рычаг тяги.

Устройство и работа дроссельной заслонки

В системе создается пониженное давление, и его изменение зависит от того, насколько у двигателя высоки обороты. В результате открывания дроссельная заслонка регулирует приход воздуха и суммарный объём смеси, поступающие в цилиндры. Когда ДЗ открывается, в коллектор приходит большее количество воздуха, а форсунки, срабатывающие от сигналов устройства контроля, впрыскивают большее количество топлива.

В реальности ДЗ – это клапан, повышающий давление в системе до атмосферного, когда он открыт, и понижающий до вакуума, когда закрыт. Дроссельный узел устроен следующим образом: в корпусе-трубе смонтирована ось, а за её середину крепится заслонка округлой формы. ДЗ вращается на оси от привода. Поэтому поперечный разрез трубы, открытый для прохождения воздуха периодически возрастает и уменьшается.

В той конструкции, которая была изобретена для работы карбюраторных двигателей, привод ДЗ был механическим. Ось приводилась в движение тросом, прикреплённым к педали акселератора. Когда появились инжекторы, такая конструкция очень долго не претерпевала никаких изменений. И когда конструкторы разработали привод с электрическим двигателем, место педали заменила электронная система управления, которая подаёт в блок ДЗ управляющий сигнал.

Устройство дроссельного узла

ДЗ с механическим приводом довольно часто используется в недорогих авто, например, автомобили выпусков до 2003 года. Механическая дроссельная заслонка проста и дешева в изготовлении, и это гарантирует её применение почти уже 150 лет. Но современный электронный блок уже не повинуется воле водителя в полном объем, подобно в случае с механической ДЗ. Водитель может регулировать количество бензина и воздуха, попадающих в двигатель при помощи несколько датчиков:

  • положения ДЗ;
  • положения педали газа;
  • датчик-выключатель на педалях сцепления и газа и т.п.

Датчики и устройство электронного контроля вместе с электроприводом ДЗ дают возможность оптимально управлять расходом топлива в различных режимах движения, а также и поддерживать на определённом уровне холостой ход двигателя.

Наиболее часто встречающиеся неисправности

Основную неисправность дроссельной заслонки вызывает сам атмосферный воздух проходящий через неё при работе ДЗ. Во время движения мельчайшие частицы пыли могут проникать даже через превосходный воздушный фильтр. Также загрязнение может вызывать и масляная пыль, проникающая через систему вентиляции картера. Пыль и масло смешиваются и образуют на ДЗ достаточно твёрдый налет. Со временем этот налёт покрывает края пластины, и ДЗ перестает закрываться до конца. По причине загрязнения дроссельной заслонки автомобили наиболее часто попадают в ремонт.

Типичные признаки загрязнения ДЗ:

Частая причина неправильной работы узла дроссельной заслонки – загрязнение заслонки.

Способы устранения неисправностей

Обычно все проблемы с дроссельным узлом решает чистка дроссельной заслонки. Чтобы очистить ДЗ, обычно можно просто отсоединить патрубок воздушного фильтра. После этого нужно брызнуть на ДЗ аэрозолем для очистки карбюраторов или инжекторов. Данное вещество растворит налёт. И после этого налёт можно удалить простой ветошью или бумажной салфеткой.

Чтобы решить более серьёзные неисправности, нужно снять узел дроссельной заслонки, затем извлечь резиновые уплотнители и снова побрызгать этим же аэрозолем. Если ДЗ механическая, и в ней не предусмотрена встроенная электроника, то будет разумно опустить ее на ночь в сосуд с бензином.

На любой СТО можно почистить ДЗ довольно быстро и относительно недорого. Стоимость работы может зависеть от её сложности и степени загрязнения системы.

Если же проблема с дросселем касается не механического управления, а электронного, то проблемы решаются после диагностики, возможно неисправность ДЗ решится после настройки или замены датчика положения дроссельной заслонки.

Подпишись на наш канал в Я ндекс.Дзене

Еще больше полезных советов в удобном формате

На современных авто питание силовой установки осуществляется двумя системами – впрыска и впуска. Первая из них отвечает за подачу топлива, в задачу второй входит обеспечение поступления воздуха в цилиндры.

Назначение, основные конструктивные элементы

Несмотря на то, что подачей воздуха «заведует» целая система, конструктивно она очень проста и основным ее элементом выступает дроссельный узел (многие по старинке называют его дроссельной заслонкой). И даже этот элемент имеет несложную конструкцию.

Принцип работы дроссельной заслонки остался идентичным еще со времен карбюраторных двигателей. Она перекрывает основной воздушный канал, благодаря чему и регулируется количество подаваемого в цилиндры воздуха. Но если эта заслонка раннее входила в конструкцию карбюратора, то в инжекторных двигателях она является полностью отдельным узлом.

Помимо основной задачи – дозировки воздуха для нормального функционирования силового агрегата на любом режиме, эта заслонка также отвечает за поддержание требуемых оборотов коленвала на холостом ходу (ХХ), причем с разной нагрузкой на мотор. Участвует она и в функционировании усилителя тормозной системы.

Устройство дроссельной заслонки – очень простое. Основными ее конструктивными составляющими являются:

  1. Корпус
  2. Заслонка с осью
  3. Механизм привода

Механический дроссельный узел

Дроссели разных типов также могут включать ряд дополнительных элементов – датчики, байпасные каналы, каналы подогрева и т. д. Более подробно конструктивные особенности дроссельных заслонок, применяемых на авто, рассмотрим ниже.

Устанавливается дроссельная заслонка в воздуховоде между фильтрующим элементом и коллектором двигателя. Доступ к этому узлу ничем не затруднен, поэтому при проведении обслуживающих работ или замене добраться до него и демонтировать с авто несложно.

Типы узлов

Как уже отмечено, существуют разные виды дроссельной заслонки. Всего их три:

  1. С механическим приводом
  2. Электромеханический
  3. Электронный

Именно в таком порядке и развивалась конструкция этого элемента системы впуска. Каждый из существующих видов имеет свои конструктивные особенности. Примечательно, что с развитием технологий устройство узла не осложнялось, а наоборот – становилось проще, но с некоторыми нюансами.

Заслонка с механическим приводом. Конструкция, особенности

Начнем с заслонки с механическим приводом. Этот тип детали появился с началом установки инжекторной системы питания на автомобили. Основная его особенность заключается в том, что заслонкой водитель управляет самостоятельно при помощи тросового привода, соединяющего педаль акселератора с сектором газа, соединенного с осью заслонки.

Конструкция такого узла полностью позаимствована с карбюраторной системы, разница лишь в том, что заслонка – отдельный элемент.

В конструкцию этого узла дополнительно входят датчик положения (угла открытия заслонки), регулятор холостого хода (ХХ), байпасные каналы, система подогрева.

Дроссельный узел с механическим приводом

В целом, датчик положения дросселя присутствует во всех типах узлов. В его задачу входит определение угла открытия, что дает возможность электронному блоку управления инжектором определить количество подаваемого в камеры сгорания воздуха и на основе этого откорректировать подачу топлива.

Ранее использовался датчик потенциометрического типа, в котором определение угла открытия осуществлялось за счет изменения сопротивления. Сейчас обычно применяются магниторезистивные датчики, которые являются более надежными, поскольку в них отсутствуют контактные пары, подверженные износу.

Датчик положения дроссельной заслонки потенциометрического типа

Регулятор ХХ в механических дросселях представляет собой отдельный канал, идущий в обход основного. Этот канал оснащается электроклапаном, корректирующим поступление воздуха в зависимости от условий функционирования двигателя на ХХ.

Устройство регулятора холостого хода

Суть его работы такова – на ХХ заслонка полностью закрыта, но для работы мотора требуется воздух, он и подается по отдельному каналу. При этом ЭБУ определяет обороты коленвала, на основе чего регулирует степень открытия этого канала электроклапаном, чтобы поддерживать заданные обороты.

Байпасные каналы работают по тому же принципу, что и регулятор. Но в их задачу входит поддержание оборотов силовой установки при создании нагрузки на холостом ходу. К примеру, при включении климат-системы, нагрузка на мотор повышается, из-за чего обороты падают. Если регулятор не способен обеспечить мотор необходимым количеством воздуха, то задействуются байпасные каналы.

Но эти дополнительные каналы имеют существенный недостаток – сечение их небольшое, поэтому возможно их засорение и обледенение. Для борьбы с последним, дроссельная заслонка подключается к системе охлаждения. То есть, по каналам в корпусе циркулирует охлаждающая жидкость, отогревая каналы.

Компьютерная модель каналов в дроссельной заслонке

Основным недостатком механического дроссельного узла является наличие погрешности при приготовлении топливовоздушной смеси, что сказывается на экономичности двигателя и выходе мощности. Все из-за того, что ЭБУ не управляет заслонкой, на него лишь подается информация об угле открытия. Поэтому при резких изменения положения дросселя блок управления не всегда успевает «подстроиться» под изменившиеся условия, что и приводит к перерасходу топлива.

Электромеханическая дроссельная заслонка

Следующим этапом развития дроссельный заслонок стало появление электромеханического типа. Механизм управления у него остался прежний – тросовый. Но в этом узле отсутствуют какие-либо дополнительные каналы за ненадобностью. Вместо всего этого в конструкцию добавили электронный механизм частичного управления заслонкой, управляемый ЭБУ.

Конструктивно этот механизм включает в себя обычный электромотор с редуктором, который соединен с осью заслонки.

Работает этот узел так: после запуска двигателя, блок управления для установления требуемых оборотов холостого хода рассчитывает количество подаваемого воздуха и приоткрывает заслонку на нужный угол. То есть, блок управления в таком типе узла получил возможность регулировать работу двигателя на холостых оборотах. На остальных же режимах функционирования силовой установки дросселем управляет сам водитель.

Использование механизма частичного управления позволило упростить конструкцию самого дроссельного узла, но не устранило основной недостаток – погрешности в смесеобразовании. Его в заслонке такой конструкции нет только на холостом ходу.

Электронная заслонка

Последний тип – электронный, внедряется на автомобили все больше. Его основная особенность заключается в отсутствии прямого взаимодействия педали акселератора с осью заслонки. Механизм управления в такой конструкции уже полностью электрический. В нем используется все тот же электродвигатель с редуктором, связанный с осью, и управляемый ЭБУ. Но открытием заслонки блок управления «заведует» уже на всех режимах. В конструкцию дополнительно добавили еще один датчик – положения педали акселератора.

Элементы электронной дроссельной заслонки

В процессе работы блок управления использует информацию не только с датчиков положения заслонки и педали акселератора. В учет берутся также сигналы, поступающие со следящих устройств автоматических трансмиссий, тормозной системы, климатического оборудования, круиз-контроля.

Вся поступающая информация с датчиков обрабатывается блоком и на ее основе устанавливается оптимальный угол открытия заслонки. То есть, электронная система полностью контролирует работу системы впуска. Это позволило устранить погрешности в смесеобразовании. На любом режиме работы силовой установки в цилиндры будет подаваться точное количество воздуха.

Но и без недостатков у этой системы не обошлось. Причем их чуть больше, чем в других двух видах. Первая из них заключается в том, что заслонка открывается при помощи электродвигателя. Любые, даже незначительные неисправности составляющих привода, приводят к нарушению работы узла, что сказывается на функционировании двигателя. В тросовых механизмах управления такой проблемы нет.

Второй недостаток – более существенный, но касается он по большей части бюджетных автомобилей. И сводится он к тому, что из-за не очень хорошо проработанного программного обеспечения дроссель может работать с запозданием. То есть, после нажатия на педаль акселератора ЭБУ требуется некоторое время на сбор и обработку информации, после чего он подает сигнал на электродвигатель механизма управления дросселем.

Основная причина задержки от нажатия на электронную педаль газа до реакции двигателя — более дешевые электронные комплектующие и не оптимизированное программное обеспечение.

В обычных условиях этот недостаток особо не заметен, но при определенных условиях такая работа может привести к неприятным последствиям. К примеру, при начале движения на скользком участке дороги иногда возникает потребность быстрой смены режима работы мотора («поиграться педалью»), то есть, в таких условиях нужен быстрый «отклик» мотора на действия водителя. Существующая же задержка в срабатывании дросселя может привести к осложнению в управлении автомобилем, поскольку водитель «не чувствует» двигатель.

Еще одна особенность электронной дроссельной заслонки некоторых моделей авто, которая для многих является недостатком – особые заводские установки работы дросселя. В ЭБУ заложена установка, которая исключает вероятность пробуксовки колес при старте. Достигается это тем, что при начале движения блок специально не открывает заслонку для получения максимальной мощности, по сути, ЭБУ дросселем «придушивает» двигатель. В некоторых случаях эта функция сказывается негативно.

На премиумных авто проблем с «откликом» системы впуска нет из-за нормальной проработки программного обеспечения. Также на таких авто нередко можно установить режим работы силовой установки по предпочтениям. К примеру, при режиме «спорт» перенастраивается работа и системы впуска, и в этом случае ЭБУ на старте уже не «душит» двигатель, что позволяет авто «резво» начать движение.

Мы расскажем о том, что такое дроссельная заслонка (ДЗ), то, как она устроена и как ее грамотно отрегулировать. От того, как функционирует этот элемент топливной системы, зависят характеристики транспортного средства, одной из которых является расход топлива.

Для чего нужна ДЗ

ДЗ является элементом топливной системы двигателя, работающего на бензине. Основная задача ее заключается в дозированной подаче воздуха, подающегося в цилиндры двигателя внутреннего сгорания, и формирования топливной смеси. Устанавливается этот элемент после воздушного фильтра и перед впускным коллектором.

Внешний вид дроссельной заслонки

Фактически ДЗ используется как воздушный перепускной клапан. Если она находится в открытом положении, то никакого избыточного давления во впускной системе нет. Если же заслонка закрывается, то в системе формируется отрицательное давление.

Есть два основных способа управления дроссельной заслонкой:

Рассмотрим оба варианта работы механизма.

Механика

Таким вариантом привода награждают автомобили бюджетной категории. Так производитель снижает стоимость машины для покупателя. Принцип работы дроссельной заслонки с механикой достаточно прост: осуществляется прямое управление ДЗ через педаль акселератора посредством стального гибкого троса.

Механический привод ДЗ

Составные части ДЗ скомпонованы в едином модуле. Он объединяет корпус, саму ДЗ зафиксированную на вращающейся оси, регулятор холостых оборотов, датчик положения ДЗ.

Нужно знать, что система охлаждения двигателя подогревает корпус ДЗ.

За функцию регулирования оборотов силовой установки отвечает предусмотренный в конструкции регулятор. Его задача менять объемы воздуха, поступающего мимо заслонки, при запуске какого-либо допоборудования. Основными его элементами являются клапан и электрический двигатель.

Электрика

Для современных автомобилей характерно использование более дорогого, но эффективного электрического привода. За счет установки такого узла конструкторы добиваются нужной величины крутящего момента. Это происходит при всех основных режимах силовой установки. Также удается добиться понижения расхода топлива, соблюдаются требования по безопасности и чистоте выбросов.

Электрический привод ДЗ

Особенности ДЗ с приводом от электрического мотора заключается в следующем:

  • нет прямого контакта педали акселератора и ДЗ;
  • холостой ход регулируется с помощью перемещений ДЗ.

Отсутствие прямого влияния на ДЗ при нажатии на педаль акселератора позволяет применять электронную систему для управления ДЗ.

Работа электроники помогает устанавливать нужные обороты двигателя даже без нажатия на педаль водителем.

Проводится подключение контрольных датчиков, запускается блок, управляющий мотором, и активируется исполнительный механизм.

Электронное устройство должно дополнительно оборудоваться датчиком положения педали «газа», блокиратором положения «сцепления», блокиратором положения тормозной педали.

Если в автомобиле подключены климат-контроль, коробка-«автомат», круиз-контроль и другие узлы, влияющие на мощность авто, то датчики от них также подключены к ДЗ.

Схема работы дроссельной заслонки

Управляющий двигателем блок принимает сигналы от датчиков и соответствующе реагирует, отдавая «приказы» заслонке.

Неисправности дроссельной заслонки

Специалисты подсчитали примерное число нажатий на педаль акселератора во время движения водителя по дороге за получасовую поездку. Оно составило чуть больше сотни раз. Такой немалый объем работы выполняется этим устройством регулярно.

Нагар на заслонке

Неудивительно, что поломка этого узла является распространенной проблемой. Но как диагностировать выход из строя или снижение работоспособности этого элемента? Нужно основываться на некоторых косвенных признаках:

  • нестабильность оборотов двигателя на холостом ходу;
  • проблемы при запуске как холодного, так и горячего двигателя;
  • «заторможенный» отклик на «утопленную» педаль акселератора;
  • небольшое снижение мощности авто.

Если заслонка покрывается загрязнением, то это негативно влияет расход бензина.

Зазор в заслонке

Особенно к такому фактору чувствительны автомобили, на которых установлены турбины. Длительная эксплуатация транспортного средства с загрязненной заслонкой может привести к ее заклиниванию, что повлечет за собой резкий износ сервопривода, а в заключение выльется в достаточно дорогостоящий ремонт автомобиля.

Нужно знать, что о проблеме с заслонкой подается сигнал на приборную панель.

Чаще всего информирование получается с помощью сигнальной лампочки с подписью «CHEK».

Нужно знать, что новые автомобили реагируют также немного с запаздыванием на нажатие педали акселератора. И это у них не является причиной некачественной работы заслонки.

В этом случае машина проводит подстройку электроники под вождение. Поэтому возможна замедленная реакция. Но если такой процесс затянулся, то нужно обратиться к специалистам за более точной диагностикой или провести регулировку самостоятельно.

Регулировка дроссельной заслонки

Начиная процесс регулировки, необходимо заглушить мотор. После этого проводим отключение датчика заслонки и проверяем цепь на разрыв с помощью электротестера. Если показания демонстрируют отсутствие напряжения, то неисправность практически найдена, и кроется в нерабочем датчике.

Если напряжение есть, то понадобится щуп порядка 0,4 мм. Замеряем зазор между рычагом, расположенным рядом с прокладкой, и винтом. Когда замер проведен, то проверяем напряжение, если оно есть, поломка кроется в датчике положения заслонки. Если его нет, то проворачиваем привод до значения между клеммами, указанного в техдокументации.

После окончания всех регулировок необходимо затянуть все крепежные метизы. Это поможет избежать ослабления крепления элементов на заслонке.

Если проведенная регулировка прошла успешно, то об этом заявит сниженный расход и увеличившаяся мощность автомобиля.

Нужно знать, что дроссельная заслонка является одним из главных факторов, влияющих на расход бензина в автомобиле.

Поэтому своевременный ремонт и регулировка сэкономят деньги и повысят мощность автомобиля.

chto-takoe-drossel

Система вентиляционных воздуховодов состоит из множества элементов, среди которых встречаются такие, которые может распознать не каждый специалист и профессионал. Приточная вентиляционная система конечно гораздо сложнее чем вытяжная, ведь там мало только вытягивать воздух на улицу, но есть еще необходимость нагревать воздух до комнатной температуры и очищать от примесей уличных газов, пыли и прочего мусора.

В системах воздуховодов присутствует элемент — дроссель клапан. Основное назначение дросселя — это перекрытие живого сечения канала воздуховода, для оптимизации расходов по всей системе.

Основная магистраль воздуховодов выполнена из самого большого диаметра или прямоугольного сечения, по такому же принципу как и у водопроводных систем -от большего диаметра к меньшему.Если не устанавливать дросселями систему регулирования (настройку), то первый потребитель воздушного потока (решетка, диффузор, анемостат) будет выбрасывать максимально возможный поток воздуха при существующей скорости воздуха. Самая дальняя решетка получится совершенно не нужной.

Из чего же состоит дроссельная заслонка?

На самом деле это крайне необходимое устройство весьма простое. Дроссель состоит из корпуса, регулирующей заслонки и ручки регулирования. Корпус дросселя как правило выполняется из оцинкованной стали, с зависимостью между толщиной и размером. Регулирующая заслонка заполняет почти все пространство воздушного канала, однако при полностью закрытой заслонке клапан не является герметичным и не препятствует проникновению уличного воздуха или из смежного помещения. Полностью закрытый дроссель опускает не более 10% воздушного потока от возможностей канала. Лопатка перекрывая воздуховод располагается на оси, которая удерживается на приваренных креплениях. Регулирующая ручка располагается на корпусе вне канала, для того чтобы можно было регулировать положение заслонки, в зависимости от поставленных задач и потребностей. Для того чтобы заслонка оставалась в необходимом положении все дросселя снабжены фиксирующим устройством. Устройство такое же простое, как и вся конструкция -это “гайка-барашек”, которая затягивается на площадке вместе с ручкой регулирования.

Прямоугольные дросселя могут выполняться из черной стали (металлопрокат) и могут содержать не одну заслонку, а несколько лопастей, которые будут приводиться в движение рычажным приводом. Это сделано для того чтобы облегчить нагрузку на крепления и снизить прикладываемые усилия для работы дросселя под воздействием воздушный потоков.

Маркировка круглых дросселей: Дроссель Клапан круглый -ДКК-⌀…

Маркировка прямоугольных дросселей: Дроссель Клапан прямоугольный — ДКп А(мм) Х В(мм).

Специалисты которые занимаются настройкой и регулированием вентиляционных систем не всегда могут достать до дросселя по разным причинам. Где-то нет возможности подняться на высоту, а в некоторых помещениях ремонт выполнен таким образом, что нет возможности достать “за стеной”. В этих случаях на дроссель можно установить электромеханический привод. Управление с помощью привода весьма простое, необходимо лишь вывести провода на пульт или кнопку управления.

Какие бывают привода и как они различаются вы сможете узнать на следующей странице. Электропривода.

Назначение сетевых и моторных дросселей

В данной статье мы рассмотрим сетевые и моторные дроссели — фильтры низких частот, которые устанавливаются на входе и выходе частотных преобразователей. Простейшая схема подключения ПЧ выглядит следующим образом: три фазы на входе, три фазы на выходе, электродвигатель.

Однако здесь возникает одна проблема. Дело в том, что частотный преобразователь является генератором широкого спектра помех, которые могут оказывать значительное влияние на работу устройств, находящихся неподалеку или питающихся от одной сети. С другой стороны, ПЧ сам реагирует на помехи различного рода, поскольку в его состав входят слаботочные компоненты. Поэтому при применении преобразователя очень важным является вопрос электромагнитной совместимости.

Условно помехи можно разбить на два основных вида:

  1. помехи, передающиеся по электромагнитному полю
  2. помехи, передающиеся по питающим проводам

В первом случае наводки можно уменьшить, проведя качественное экранирование и заземление преобразователя частоты, его проводов и периферийных устройств. Высокочастотные помехи, распространяющиеся по проводам, значительно снижаются с помощью радиочастотных фильтров.

Назначение входного сетевого дросселя

Сетевой дроссель, который также называют входным реактором, подключается на входе питания частотного преобразователя (обычно это силовые клеммы R, S, T). Основными параметрами сетевого дросселя являются индуктивность и максимальный длительный ток. Индуктивность выбирается такой, чтобы при рабочей частоте и номинальном рабочем токе падение напряжения на дросселе составляло 3-5%. Рассчитать падение можно по формуле:

U=2πfLI, где f – рабочая частота (Гц), L – индуктивность дросселя (Гн), I – ток, А.

Рассмотрим основные плюсы применения сетевого дросселя.

1. Подавление высших гармоник, проникающих в питающую сеть от преобразователя частоты и обратно. Обычно в состав ПЧ входит радиочастотный фильтр, снижающий данные наводки. Подключение сетевого дросселя создает дополнительное подавление высокочастотных помех. В результате уровень высших гармоник питающего напряжения в значительной степени уменьшается, а действующее значение питающего тока стремится к величине тока основной гармоники (50 Гц).

2. В случае, когда источник питания расположен близко, и сопротивление питающей линии очень низкое, использование сетевого дросселя позволяет значительно уменьшить ток короткого замыкания и увеличить время его нарастания. Это позволяет защитить ПЧ при коротких замыканиях на выходе.

3. Если на одной шине питания расположены несколько мощных устройств, возможны ситуации, когда при их включении или выключении возникает скачок напряжения с большой скоростью нарастания. Сетевой дроссель значительно понижает этот эффект.

При выборе оборудования следует учитывать один нюанс. Чтобы избежать перегрева дросселя, его номинальный ток должен быть равен или больше максимального тока преобразователя.

Когда сетевой дроссель не нужен

Оснащение преобразователей частоты сетевыми дросселями лучше взять за правило. Многие компании увеличивают гарантию в 2 раза при покупке ПЧ в комплекте с дроселями. Однако в некоторых случаях данным оборудованием можно пренебречь:

  1. В питающей сети нет мощных электроприборов, имеющих большие пусковые токи.
  2. Питающая сеть имеет сравнительно высокое сопротивление (низкий ток короткого замыкания).
  3. Режим работы ПЧ исключает резкие изменения мощности, при которых скачкообразно растет потребляемый ток.
  4. В соответствии с рекомендациями производителя, для защиты ПЧ применяются полупроводниковые предохранители, либо защитные автоматы характеристики В.
  5. Имеется большой запас по мощности ПЧ по отношению к используемому двигателю.

Тем не менее, в целом использование сетевых дросселей значительно повышает срок службы и надежность работы частотных преобразователей.

Использование моторного дросселя

Моторный дроссель включается в цепи питания электродвигателя. Другие его названия – выходной реактор или синусоидальный фильтр.

Необходимость применения моторного дросселя обусловлена принципом работы ПЧ. На выходе преобразователя стоят силовые транзисторы, которые работают в ключевом режиме. При этом образуются прямоугольные импульсы, приближающие действующее напряжение по форме к синусоиде за счет изменения длительности. Моторный дроссель снижает высшие гармоники выходного напряжения ПЧ и делает ток питания двигателя практически синусоидальным, минимизируя высокочастотные токи. Это повышает коэффициент мощности и позволяет уменьшить потери в двигателе.

Кроме того, из-за высших гармоник на выходе ПЧ повышаются емкостные токи, которые могут привести к ощутимым потерям при длине кабеля более 20 м. Моторный дроссель существенно снижает этот эффект. Данные устройства также устанавливают там, где важно уменьшить помехи, создаваемые кабелем от ПЧ до электродвигателя.

Следует учитывать, что номинальный ток моторного дросселя должен быть больше максимального тока двигателя. Расчет падения напряжения на дросселе следует производить с учетом максимальной рабочей частоты двигателя, которая может достигать 400 Гц.

Другие полезные материалы:
Как выбрать мотор-редуктор
Выбор частотного преобразователя
Зачем нужен контактор байпаса в УПП
Схемы подключения устройства плавного пуска

определение дросселя по The Free Dictionary

На основе WordNet 3.0, коллекции картинок Farlex. © 2003-2012 Принстонский университет, Farlex Inc.

Существительное 1. дроссель — катушка с низким сопротивлением и высокой индуктивностью, используемая в электрических цепях для пропускания постоянного тока и ослабления переменного тока; катушка — реактор, состоящий из спирали изолированного провода, вводящего в цепь индуктивность
2. дроссель — клапан, регулирующий подачу воздуха в карбюратор бензинового двигателя; автоматическая дроссельная заслонка — дроссель, автоматически регулирующий поток воздуха в топливную систему карбюратора — оборудование автомобиля или самолета, которое подает топливо к клапану двигателя — управление, состоящее из механического устройства для управления потоком жидкости
Verb 1. choke — дышать с большим затруднением, как при сильном волнении; «Она задыхалась от волнения, когда рассказывала о своем умершем муже»
2. choke — слишком туго; потереть или надавить; «Этой ободком кота душит»
3. choke — свернуть шею; «Мужчина душил своего противника»
4. choke — сдавить (кому-то) горло и не дать дышать
5. choke — затрудненное дыхание; имеют недостаточное потребление кислорода; «проглотил рыбную кость и заткнул рот»
6. штуцер — не работает должным образом из-за напряжения или волнения; «Команда должна была победить, но подавилась, разочаровав тренера и публику» провал, пренебрежение — не сделать что-то; оставить что-то незавершенным; «Она не заметила, что ее ребенка больше нет в кроватке»; «Секретарю не удалось дозвониться до клиента, и компания потеряла счет»
7. choke — остановить или замедлить действие или эффект; «Она подавила свой гнев»
8. choke — стать или стать причиной препятствий; «Осенью листья забивают нам канализацию»; «Водопроводная труба заделана» резинка вверх — склеиваются как резинка; «внутренняя часть трубы забита» дерьмо — засорилась или забита; «Засорение канализации» ил, заиление — забивание илом; «Река заилилась»
9. заслонка — затрудняет дыхание или затрудняет прохождение воздуха; «Зловонный воздух медленно душил детей»
10. choke — стать подавленным, подавленным или задушенным; «Он задыхается — живет дома со своими престарелыми родителями в маленькой деревне» задыхается, задыхается — подавляет развитие, творчество или воображение; «Его задушила работа» стать, очередь — претерпеть изменение или развитие; «Вода превратилась в лед»; «Ее бывший друг стал ее злейшим врагом»; «Он стал предателем»
11. дроссель — подавлять развитие, творчество или воображение; «Его работа задушила его» увлажнить, задушить — задушить или подавить; «Задуши свое любопытство» задохнись, задохнись — стань одураченным, подавленным или задушенным; «Он задыхается — живет дома со своими престарелыми родителями в маленькой деревне»
12. удушье — уходит из физической жизни и теряет все физические атрибуты и функции, необходимые для поддержания жизни; «Она умерла от рака»; «Дети погибли в огне»; «Пациент ушел мирно»; «Старик пнул ведро в возрасте 102 лет» каркает, умирает, умирает, офигительно, покупает ферму, обналичивает свои фишки, бросает призрак, пинает, умирает, погибает, убивает его, истекает , pop off, conk, exit, go, passabort — прекратить развитие, умереть и быть прерванным; «абортирующий плод» меняет состояние, поворот — претерпевает трансформацию или изменение положения или действия; «Мы перешли от социализма к капитализму»; «Народ обратился против президента, когда он украл выборы» тонут — умирают от погружения в воду, попадания воды в легкие и удушья; «Ребенок утонул в озере» предсмерть — умереть раньше; умереть раньше; «Она умерла раньше своего мужа», выходила из строя, ломалась, умирала, терпела неудачу, сдалась, уступала, ломалась, уходила — перестала действовать или функционировать; «Двигатель наконец поехал»; «Машина умерла на дороге»; «Автобус, в котором мы ехали, сломался по дороге в город»; «Сломалась кофеварка»; «Двигатель отказал по дороге в город»; «ее зрение ухудшилось после аварии» голодать, голодать — умереть от голодания; «Политзаключенные умерли от голода»; «Многие голодающие в деревне во время засухи» умирают — страдают или сталкиваются с болью смерти; «Мученики могут умирать каждый день за свою веру» падать — погибать, как в битве или на охоте; «Многие солдаты пали при Вердене»; «Из одного ружья упало несколько оленей»; «Пострадавший упал замертво»
13. штуцер — уменьшить подачу воздуха; «заглушить карбюратор» обогатить — сделать лучше или улучшить в качестве; «Опыт обогатил ее понимание»; «обогащенные продукты»
14. удушье — вызывает тошноту или удушье — вызывает тошноту или недомогание; «Меня тошнит от такой еды»

Причины, профилактика и лечение удушья

Удушье случается, когда что-то — еда или другой предмет — попадает в заднюю часть глотки.Если предмет (или пища) блокирует верхнюю часть трахеи, человек может быть не в состоянии дышать. Это срочно. Также возможно, что еда или другие предметы могут застрять в пищеводе; будучи болезненным, это не заставляет человека перестать дышать. Эта статья расскажет о причинах, профилактике и лечении удушья.

Библиотека научных фотографий / Getty Images

Причины

Определенные медицинские условия или обстоятельства могут повысить вероятность удушья. Факторы риска включают (но не ограничиваются ими):

  • Дети до 5 лет
  • Пожилые
  • Люди с неврологическими заболеваниями
  • Люди с заболеваниями, вызывающими мышечную дегенерацию, такими как рассеянный склероз
  • Заболевания пищевода, такие как сужение пищевода, вызванное хроническим кислотным рефлюксом (ГЭРБ)
  • Люди с анатомическими генетическими аномалиями, влияющими на процесс глотания (например, заячья губа)
  • Люди с травмами, влияющими на процесс глотания

Кроме того, определенные действия или привычки также могут увеличить риск удушья:

  • Слишком быстрое питание
  • Отсутствие сидения во время еды
  • Недостаточное пережевывание пищи
  • Прием пищи в положении лежа

Профилактика

Дети в возрасте до 5 лет имеют повышенный риск удушья.Как когнитивное развитие, так и анатомические различия у детей вызывают повышенный риск в этой возрастной группе. Маленькие дети не умеют различать, какие предметы могут застрять у них в горле. Часто это происходит во время их оральной фазы развития, когда они все кладут в рот.

По мере того, как ваш ребенок становится старше, он все еще подвергается риску из-за того, что у него более узкие дыхательные пути. Риск, однако, снижается, потому что когнитивно они лучше осознают, какие предметы безопасно класть им в рот.Хотя полностью обезопасить свой дом от детей практически невозможно, хранение определенных предметов вдали от маленьких детей может иметь большое значение для предотвращения удушья.

Распространенные опасности удушья

  • Воздушные шары из латекса — основная причина смерти детей в возрасте до 6 лет
  • Мячи
  • Шарики
  • Монеты (18% посещений ЭД детей от 1 до 4 лет по поводу удушья)
  • Дисковые батареи (также называемые кнопочными батарейками и особенно опасны, потому что при проглатывании существует вероятность утечки токсичного щелочного содержимого в пищеварительный тракт.)
  • Маленькие игрушки — некоторые говорят, что если какой-либо предмет может поместиться в рулон туалетной бумаги, ребенок может подавиться им.
  • Колпачки (особенно колпачки для ручек или маркеров)
  • Английские булавки

Продукты высокого риска

  • Хот-доги — наиболее частая смертельная опасность, связанная с пищевыми продуктами
  • Карамель — (19% обращений в отделения неотложной помощи по поводу удушья)
  • Виноград
  • Орехи
  • Сырая морковь
  • Яблоки
  • Зефир
  • Попкорн
  • Арахисовое масло

Примерно 60% несмертельных случаев удушья вызвано продуктами питания.Продукты, которые представляют опасность для удушья, — это продукты, которые можно сжать, чтобы они соответствовали размеру дыхательных путей. В дополнение к перечисленным выше продуктам вы не должны давать маленьким детям, пожилым людям или людям, испытывающим трудности с глотанием, продукты, которые трудно пережевывать, или которые имеют размер или форму, которые легко сжимаются в дыхательных путях.

Наблюдение также является одним из наиболее важных факторов, помогающих предотвратить удушье. Стопроцентный контроль обычно невозможен, но его следует применять в максимально возможной степени, когда едят дети младше 5 лет, пожилые люди или люди, у которых в анамнезе были проблемы с глотанием.Хранение мелких предметов вне досягаемости и покупка игрушек соответствующего возраста также может помочь предотвратить удушье, не связанное с едой. Кроме того, не разрешайте детям бегать и играть во время еды или сладостей, чтобы не подавиться пищей.

Некоторые другие полезные советы по профилактике включают:

  • Есть только за столом
  • Приготовление овощей до мягкости
  • Нарезка хот-догов и других продуктов питания на куски менее 1/2 дюйма, избегая нарезания округлых форм
  • Поощрение адекватного пережевывания — это может быть невозможно освоить, пока вашему ребенку не исполнится 4 года
  • Ограничение отвлекающих факторов во время еды
  • Наличие напитков во время еды — избегайте одновременного проглатывания пищи и жидкости
  • Некоторым людям с проблемами глотания (дисфагией) следует пить только загущенные жидкости

Что делать, если кто-то задохнулся?

Если кто-то задыхается, вы должны определить, могут ли они говорить.Если они могут говорить, кашлять или издавать другие звуки, указывающие на прохождение воздуха, дайте им возможность самостоятельно очистить дыхательные пути. Вмешательство в этот момент может привести к дальнейшему заселению объекта.

Если у человека что-то застряло в пищеводе, он все равно сможет говорить и дышать, но это может быть болезненно, особенно при глотании. Они также могут пускать слюни. Вам следует обратиться за медицинской помощью, чтобы объект можно было либо извлечь, либо протолкнуть в желудок / кишечник с помощью прицела (EGD).

Если задыхающийся человек не может говорить или издавать другие звуки, он также не сможет дышать. Признаком того, что человек не дышит, является цианоз. Это срочно. Вам следует начать абдоминальные толчки, также известные как маневр Геймлиха. Если человек в какой-то момент перестает отвечать (теряет сознание), вам следует начать СЛР. Если вы не одиноки, попросите кого-нибудь позвонить по номеру 9-1-1. Если вы один, немедленно позвоните в службу 911 и (если возможно) оставайтесь на линии во время выполнения СЛР.

Когда дело доходит до удушья, ключевую роль играет профилактика. Изучение распространенных причин удушья может помочь предотвратить возникновение осложнений и обезопасить ваших близких.

Что такое дроссель и каково его назначение?

Дело в том, что топливо в двигателе при первом запуске остается холодным, и для его нагрева требуется смесь топлива и воздуха, и для этого предназначена воздушная заслонка. Дроссель обычно расположен ближе к верхнему концу карбюратора и обеспечивает эту смесь, перекрывая подачу воздуха в карбюраторы.Когда это происходит, внутри карбюратора также создается низкое давление воздуха, чтобы больше топлива проходило через главный контур. Когда ваш автомобиль не работает, давление воздуха обычно снижается или отсутствует вовсе, что не улучшает прохождение топлива через автомобиль.

Когда вы используете дроссельную заслонку для временного прекращения подачи воздуха, создается разряжение в коллекторе, а не избыточное разрежение, что способствует увеличению подачи топлива по топливопроводам автомобиля. Когда дроссельная заслонка повернута на самый высокий уровень, она притягивает топливо через канал холостого хода и в сочетании с уменьшенной подачей воздуха создает решение, необходимое для запуска холодного двигателя.Когда двигатель в конце концов запускается, ему требуется воздух, чтобы поддерживать его работу и в то же время поддерживать баланс топливной смеси. Вал дроссельной заслонки немного наклонен в одну сторону, поэтому сила поступающего воздуха в конечном итоге подтолкнет ее к полному открытию.

Во многих старых транспортных средствах отливка карбюратора или поршень с вакуумным приводом используются для той же концепции, но они вызвали длинный список проблем, включая остановку и затрудненный запуск транспортных средств. В последние годы эти поршни были заменены дроссельными диафрагмами, в которых они лишь немного приоткрывают дроссельную заслонку при запуске двигателя.Существует ряд проблем, которые могут возникнуть из-за неисправной воздушной заслонки, включая грубый запуск и остановку вашего автомобиля.

Эти проблемы обычно возникают при отсутствии нагрева корпуса дросселя. К этим проблемам добавляется скопление ржавчины в выпускном коллекторе, которая может вызвать засорение карбюратора. Когда это происходит, пружина внутри карбюратора нагревается не так быстро, как предполагалось, чтобы вызвать медленное открывание воздушной заслонки. Карбюраторы, которые питаются от электрического нагревательного элемента, могут иметь ослабленный провод или заземление, что в конечном итоге препятствует открытию дроссельной заслонки.
Воздушную заслонку можно отрегулировать для изменения температуры, при которой она открывается и закрывается, что приводит к обедненной топливной смеси для запуска. Вы можете отрегулировать воздушную заслонку, ослабив винты, удерживающие корпус и заслонку на месте, а затем повернув корпус. На многих новых моделях автомобилей вместо винтов используются заклепки, и их можно легко заменить после регулировки путем их высверливания.

Важно обращать внимание на скорость открытия и закрытия заслонки.Если он не открывается в положенное время, особенно в теплую погоду, это может привести к увеличению выбросов углекислого газа. И наоборот, если воздушная заслонка открывается слишком быстро в холодную погоду, это может привести к остановке двигателя или вообще не запускаться. Скорость срабатывания воздушной заслонки играет решающую роль при открытии и закрытии воздушной заслонки, особенно в теплую погоду. Чтобы улучшить дросселирование, некоторые новые карбюраторы оснащены двухдроссельной заслонкой, которая позволяет открывать и закрывать воздушную заслонку в зависимости от температуры.В заключение, воздушная заслонка является важным компонентом транспортного средства, и приведенные выше советы помогут вам использовать ее в своих интересах.

Что означает дроссель?

  • chokenoun

    Регулятор карбюратора для регулировки топливовоздушной смеси при холодном двигателе.

    Этимология: От choken (также cheken), от *, aceocian, вероятно, от ceoce, ceace, see cheek. Совместите с кок, кока. См. Также achoke.

  • чокеноун

    В борьбе, карате и т. Д.), способ захвата, который может привести к удушению.

    Этимология: От choken (также cheken), от *, aceocian, вероятно, от ceoce, ceace, see cheek. Совместите с кок, кока. См. Также achoke.

  • chokenoun

    Сужение дульного конца ствола ружья, влияющее на дальность выстрела.

    Этимология: От choken (также cheken), от *, aceocian, вероятно, от ceoce, ceace, see cheek. Совместите с кок, кока.См. Также achoke.

  • chokenoun

    Частичная или полная блокировка (из-за валунов, грязи и т. Д.) В проходе пещеры.

    Этимология: От choken (также cheken), от *, aceocian, вероятно, от ceoce, ceace, see cheek. Совместите с кок, кока. См. Также achoke.

  • chokeverb

    Неспособность дышать из-за закупорки дыхательного горла, например, еды или других предметов, которые спускаются в неправильном направлении.

    Этимология: От choken (также cheken), от *, aceocian, вероятно, от ceoce, ceace, see cheek.Совместите с кок, кока. См. Также achoke.

  • chokeverb

    Чтобы не дать кому-нибудь дышать, задушив его.

    Этимология: От choken (также cheken), от *, aceocian, вероятно, от ceoce, ceace, see cheek. Совместите с кок, кока. См. Также achoke.

  • chokeverb

    Плохо выступить на решающем этапе соревнования, потому что нервничаешь, особенно когда он побеждает.

    Этимология: От choken (также cheken), от *, aceocian, вероятно, от ceoce, ceace, see cheek.Совместите с кок, кока. См. Также achoke.

  • chokeverb

    Прохода в пещере, который должен быть частично или полностью заблокирован валунами, грязью и т. Д.

    Этимология: От choken (также cheken), от *, aceocian, вероятно, от ceoce, ceace, см. щека. Совместите с кок, кока. См. Также achoke.

  • chokeverb

    Чтобы поднести пальцы к кончику карандаша, кисти или другого художественного инструмента.

    Этимология: От choken (также cheken), от *, aceocian, вероятно, от ceoce, ceace, see cheek.Совместите с кок, кока. См. Также achoke.

  • Определение для изучающих английский язык из Словаря учащихся Merriam-Webster

    дроссели; подавился; задыхаясь

    дроссели; подавился; задыхаясь

    Определение CHOKE для учащихся

    1 [нет объекта] : потерять способность дышать обычно из-за того, что что-то застревает в горле или потому, что воздух не подходит для дыхания
    • Хорошо пережевывайте пищу, чтобы не подавиться .

    • Она задушила насмерть. = Она умерла от удушья .

    • Мы были , задыхаясь от паров .

    2

    [+ объект]

    a : заставить (кого-то) перестать дышать, сдавливая горло б : сделать (кого-то) неспособным нормально дышать

    ◊ Если вы или ваш голос задыхаетесь от эмоций, гнева и т. Д., вы испытываете такие сильные эмоции, что вам трудно говорить.

    3 [+ объект] : остановить (что-то) от роста или развития — часто + из 4 [+ объект] : чтобы заполнить (что-то) полностью, чтобы движение остановилось или замедлилось
    • Оставляет забит [= забит, забит] слив.

    • Улицы были заглушены пробками.

    — часто + до 5 [нет объекта] неофициальный : не делать что-то хорошо, потому что вы очень нервничаете

    дроссель задний

    [фразовый глагол]

    ◊ Если вы сдерживаете слезы, ярость, гнев и т. Д., вам очень трудно не плакать и не выражать эмоции.

    дроссель

    [фразовый глагол]

    подавиться (что-то) или подавить (что-то) вниз неофициальный

    : есть (что-нибудь) с трудом или без удовольствия

    воздушная заслонка

    [фразовый глагол]

    1

    задушить (что-то) также подавить (что-то) прочь

    : сделать (что-то) меньше, слабее или менее мощным : чтобы заставить (что-то) замедлить или остановиться 2 : чтобы предотвратить (что-то) течь или проходить

    заслонка на выходе

    [фразовый глагол]

    задыхаться (что-то) или задыхаться (что-то)

    : сказать (что-то) с трудом из-за сильных эмоций

    дроссель

    [фразовый глагол]

    1

    ◊ Если вы задохнулись или задохнулись / задохнулись, вы почти плачете и не можете говорить из-за сильных эмоций.

    2 бейсбол : переместить руки в более высокое положение на бейсбольной бите — часто + на

    2 удушение / ˈTʃoʊk / имя существительное

    множественное число задыхается

    множественное число задыхается

    Определение CHOKE для учащихся

    [считать]

    : Деталь транспортного средства, которая контролирует поток воздуха в двигатель

    Основы дроссельных трубок — спусковые крючки и дуги

    Ружья — невероятно универсальный инструмент как для охотников, так и для спортивных стрелков.Одна из вещей, которые делают их такими полезными, — это их дульные насадки. Дроссельные заслонки предназначены для изменения схемы выстрела, производимого при выстреле из ружья. Заменив трубку в передней части ствола, стрелок может увеличить дальность стрельбы или точность. Заменив дульную насадку, охотник может приспособить свое огнестрельное оружие к конкретным видам охоты. Выбор правильной дульной насадки может иметь огромное значение, когда дело доходит до успеха охоты. Например, охота на индейку требует другого порядка выстрела и расстояния, чем охота на голубя.Существует 4 основных типа штуцеров: модифицированные, цилиндрические, улучшенные и полные. Каждая дульная насадка служит разным целям. Помимо основных дросселей существует несколько специализированных типов. Они часто предназначены для стрельбы из определенного вида игры или для отличия с определенными типами боеприпасов.

    Цилиндровый дроссель:

    Эти типы дульных сужений не имеют сужения, что означает, что их схемы полета являются наиболее открытыми, а эффективная дальность стрельбы является самой короткой. Открытые дульные сужения используются в основном с дробовиком и картечью на коротких дистанциях.Они выпускают широко распространенный образец, который уничтожает цели на коротких дистанциях. Лучше всего они работают на 15-25 ярдах.

    Улучшенный дроссель цилиндра:

    Улучшенные дроссели цилиндров по-прежнему используются на коротких дистанциях. Они увеличивают плотность выстрела ружья примерно на 10% на короткой дистанции. Это изменение может показаться незначительным, но в зависимости от ситуации эти 10% могут иметь решающее значение между убийственным выстрелом и промахом. При выстреле пули рекомендуется использовать этот тип чока, поскольку сужение не настолько велико, чтобы ограничить прохождение пули.Этот удушающий прием наиболее эффективен на дистанции 20-30 ярдов.

    Модифицированный дроссель:

    Это дроссельная заслонка среднего диапазона, имеющая большее сужение, чем дроссельная заслонка улучшенного цилиндра. Хотя из пистолета все еще можно стрелять пулями, это не рекомендуется для длительного сохранения работоспособности чока. Этот чок — один из самых популярных охотников из-за его универсальности. Он наиболее эффективен на дистанциях от 30 до 40 ярдов, что дает охотникам сокрушительную защиту на коротких и средних дистанциях.

    Полный дроссель:

    Полный штуцер используется в основном на больших дистанциях.Это значительно увеличивает сужение дроби, что означает, что пули перемещаются дальше, прежде чем разлететься. Тем не менее, этот штуцер требует значительно большей точности, чтобы быть эффективным на коротких дистанциях, и может плохо работать на близком расстоянии. Как правило, чем сильнее сужение дульной насадки, тем меньше количество выемок на передней части. Модифицированные дроссели обычно имеют три выемки, а полный дроссель — только один. Количество насечек может различаться у разных производителей, поэтому всегда важно дважды проверить, какая дульная насадка у вас установлена, прежде чем устанавливать ее в оружие.

    Дополнительная информация:

    В дополнение к 4 наиболее распространенным дросселям, есть и другие более специализированные дроссели. Они используются в определенных обстоятельствах, например, при использовании удушения для индейки во время охоты на индейку или удушения по тарелочкам при стрельбе по тарелочкам. Когда дело доходит до выбора дросселя, есть много вариантов, и каждый из них имеет свой рисунок. Прежде чем брать удушающий прием на охоте, найдите время, чтобы посетить полигон и выяснить диапазон и характер вашего конкретного чока. Типы боеприпасов также могут изменить способ стрельбы дульной насадки.Стальная дробь стреляет значительно плотнее, чем свинцовая дробь. Нарезные чоки изменят то, как летит пуля-саботаж. Стрелок должен знать об уровне сужения внутри дульного сужения, но чоки бывают разных стилей, таких как переносные и внешние. Эти дополнительные стили также могут влиять на звук, дальность или характер выстрела. Некоторые чоки разработаны специально для стальной дроби, а все чоки предназначены для использования с конкретными марками и моделями огнестрельного оружия. Люди все еще спорят о том, насколько эффективны некоторые из этих других типов дросселей, но важно то, каково это, когда вы стреляете ими.В конце концов, важно выяснить, что лучше всего подходит вам и вашему стилю охоты. Часто задаваемые вопросы по усилителю

    : Что такое дроссель? | Guitar.com

    Привет, Крис, я собираюсь собрать элементы, необходимые для создания моего собственного 50-ваттного усилителя, и мне сказали, что я должен использовать дроссель в блоке питания. Что это?

    — Брэд, Дарлингтон

    Привет, Брэд, большое спасибо за твой вопрос, и какой он отличный! Проще говоря, дроссель — это индуктор, который находится в источнике высокого напряжения и чья работа заключается в том, чтобы помочь отфильтровать любой остаточный шум в источнике питания.Обычно они выглядят как трансформатор, но имеют только два вывода и могут быть намного меньше.

    Не все гитарные усилители будут иметь дроссель, потому что он нужен не всем усилителям. Разработчик схемы полностью решает, будет ли дроссель выгодным или нет по сравнению с соответствующими дополнительными затратами.

    Обычно дроссель заменяет резистор, который находится между выходным трансформатором и узлами сетки экрана выходного клапана в шине ВН. Преимущество использования одного из них заключается в том, что они регулируют ток без падения напряжения, что позволяет уменьшить провисание выходного каскада.

    Вы ​​обнаружите, что большинство усилителей мощностью 30 Вт и более имеют дроссель в блоке питания. Легче генерировать мощный чистый аудиосигнал, если ваш блок питания не пытается справиться с требованиями плеера.

    Задыхаясь от опций

    По сравнению с силовым резистором за 1 фунт стерлингов дроссели довольно дороги, их стоимость в двадцать раз больше. К счастью, по большому счету это все еще относительно дешево.

    Вы ​​обнаружите, что те, которые выставлены на продажу, будут иметь различные рейтинги и измерения, которые вам нужно будет принять во внимание.Это сопротивление постоянному току, постоянный ток, индуктивность и номинальное напряжение. Вам нужно будет сосредоточиться только на трех из них: сопротивление постоянному току, ток и индуктивность.

    1. Сопротивление постоянному току

    Хотя идеальный дроссель будет иметь нулевое сопротивление, вы обычно найдете его с показанием 100-200 Ом. Чем ниже DCR, тем меньше падение напряжения и лучше регулирование. Не беспокойтесь об этом слишком сильно — конструкция дросселя претерпела значительные изменения с 1960-х годов, и разница между дросселем на 105 Ом и версией на 180 Ом минимальна для использования на гитаре.

    2. Постоянный ток

    Это говорит вам, какой ток может проходить через дроссель. Вам нужно будет рассчитать комбинированные требования для секции предусилителя и сеток экрана выходного клапана.

    3. Индуктивность

    Помните, я сказал, что дроссель — это индуктор? Что ж, значит, у него должна быть номинальная индуктивность! Индуктивность измеряется в единицах Генри (H), и, как правило, большее число означает большую фильтрацию. Дроссели для гитарных усилителей обычно доступны в диапазоне 5-20 Гн, и я не могу представить себе ситуацию, когда потребовалась бы более высокая индуктивность.

    Дроссельная заслонка

    Давайте посмотрим на характеристики дросселей, обычно используемые тремя крупными производителями усилителей:

    • Маршалл: 5 Генри, 120 мА, 115 Ом DCR
    • Fender: 4 Henries, 90 мА, 105 Ом DCR
    • Vox: 19 Генри, 100 мА, 500 Ом DCR

    Вы ​​увидите, что и Fender, и Marshall использовали очень похожие характеристики для своих дросселей, в то время как Vox выбрал более высокие значения индуктивности и DCR в AC30.

    Однажды я попытался поменять дроссель Marshall на Fender в сборке Super Lead и не обнаружил очевидных тональных изменений.Я ожидал, что спецификация, выбранная каждым из них, была просто самой близкой из доступных у их поставщиков. Дроссель Vox выделяется тем, что они решили фильтровать всю подачу высокого напряжения, а не только его часть, как это делали Маршалл и Фендер. Индуктивность выше, потому что нужно больше фильтровать, понятно?

    Если вы строите клон Fender или Marshall — а я подозреваю, что это так — то просто выберите подходящую спецификацию и приступайте к сборке!

    Посетите рифтампы.com, чтобы узнать больше.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *