Формула периода обращения по окружности: Движение по окружности, период обращения и частота.

Содержание

Движение по окружности, период обращения и частота.

1. Равномерное движение по окружности

Внимание следует обратить на то, что криволинейные движения более распространены, чем прямолинейные. Любой криволинейное движение можно рассматривать как движение по дугам окружностей с разными радиусами. Изучение движения по кругу дает также ключ к рассмотрению произвольного криволинейного движения.

Мы будем изучать движение тел по окружности с постоянной по модулю скоростью. Такое движение называют равномерным движением по кругу.

Наблюдения показывают, что маленькие частицы, которые отделяются от тела, вращающегося летят с той скоростью, которой владели в момент отрыва: грязь из-под колес автомобиля летит по касательной к поверхности колес; раскаленные частицы металла отрываются при заточке резца о точильный камень, вращающийся также летят по касательной к поверхности камня.

Таким образом,

 Во время движения по кругу скорость в любой точке траектории направлена ​​по касательной к окружности в этой точке.

Необходимо обратить внимание учащихся, что при равномерном движении по окружности модуль скорости тела остается постоянным, но направление скорости все время меняется.

2. Период вращения и вращающаяся частота

Движение тела по окружности часто характеризуют не скоростью движения, а промежутком времени, за которое тело совершает один полный оборот. Эта величина называется периодом вращения.

Период обращения — это физическая величина, равная промежутку времени, за который тело равномерно вращается, делает один оборот.

Период вращения обозначается символом T. Например, Земля делает полный оборот вокруг Солнца за 365,25 суток.

При расчетах период обычно выражают в секундах. Если период обращения равен 1с, это означает, что тело за одну секунду делает один полный оборот. Если за время t тело сделало N полных оборотов, то период можно определить по формуле:

   

Если известен период обращения Т, то можно найти скорость тела v. За время t, равное периоду Т, тело проходит путь, равный длине окружности: . Итак,

   

Движение тела по окружности можно характеризовать еще одной величиной — числом оборотов по кругу за единицу времени. Ее называют вращающейся частотой:

частота вращения равна количеству полных оборотов за одну секунду.

Частота вращения и период обращения связаны следующим соотношением:

   

Частоту в СИ измеряют в

   

3. Вращательное движение

В природе довольно распространенный вращательное движение: вращение колес, маховиков, Земли вокруг своей оси и т. Д.

Важной особенностью вращательного движения является то, что все точки тела движутся с тем же периодом, но скорости различных точек могут существенно отличаться, поскольку разные точки движутся по кругам различных радиусов.

Например, при суточном вращении Земли быстрее других движутся точки, находящиеся на экваторе, так как они движутся по кругу крупнейшего радиуса — радиуса Земли. Точки же земной поверхности, находящиеся на других параллелях, движутся с меньшей скоростью, так как длина каждой из этих параллелей меньше длины экватора.

ПРОВЕРЬТЕ СЕБЯ

  1. Приведите два-три примера криволинейного движения.
  2. Приведите два-три примера равномерного движения по кругу.
  3. Что такое вращательное движение? Приведите примеры такого движения.
  4. Как направлена ​​мгновенная скорость при движении по кругу Приведите два-три примера.

1.Равномерное движение по кругу. Внимание учащихся следует обратить на то, что криволинейные движения более распространены, чем прямолинейные. Любой криволинейное движение можно рассматривать как движение по дугам окружностей с разными радиусами. Изучение движения по кругу дает также ключ к рассмотрению произвольного криволинейного движения. Мы будем изучать движение тел по окружности с постоянной по модулю скоростью. Такое движение называют равномерным движением по кругу. Наблюдения показывают, что маленькие частицы, которые отделяются от тела, вращающегося летят с той скоростью, которой владели в момент отрыва: грязь из-под колес автомобиля летит по касательной к поверхности колес; раскаленные частицы металла отрываются при заточке резца о точильный камень, вращающийся также летят по касательной к поверхности камня.

Таким образом, • Во время движения по кругу скорость в любой точке траектории направлена ​​по касательной к окружности в этой точке. Необходимо обратить внимание учащихся, что при равномерном движении по окружности модуль скорости тела остается постоянным, но направление скорости все время изменяется.

2. Период вращения и частота вращения. Движение тела по окружности часто характеризуют не скоростью движения, а промежутком времени, за которое тело совершает один полный оборот. Эта величина называется периодом вращения. • Период вращения — это физическая величина, равная промежутку времени, за который тело равномерно вращается, делает один оборот. Период вращения обозначается символом T. Например, Земля делает полный оборот вокруг Солнца за 365,25 суток. При расчетах период обычно выражают в секундах. Если период обращения равен 1с, это означает, что тело за одну секунду делает один полный оборот. Если за время t тело сделало N полных оборотов, то период можно определить по формуле: если известен период обращения Т, то можно найти скорость тела v.

За время t, равное периоду Т, тело проходит путь, равный длине окружности:. Итак, движение тела по окружности можно характеризовать еще одной величиной — числом оборотов по кругу за единицу времени. Ее называют вращающейся частотой: • вращающаяся частота равна количеству полных оборотов в одну секунду. Частота вращения и период обращения связаны следующим соотношением:  Частоту в СИ измеряют в обратных секундах.

3. Вращательного движения. В природе довольно распространенно вращательное движение: вращение колес, маховиков, Земли вокруг своей оси и т. д.Важной особенностью вращательного движения является то, что все точки тела движутся с тем же периодом, но скорости различных точек могут существенно отличаться, поскольку разные точки движутся по кругам различных радиусив. Например, при суточном вращении Земли быстрее других движутся точки, находящиеся на экваторе, так как они движутся по кругу самого большого радиуса — радиуса Земли. Точки же земной поверхности, находящиеся на других параллелях, движутся с меньшей скоростью, так как длина каждой из этих параллелей меньше длины экватора.

Равномерное движение по окружности. Скорость, ускорение

 

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: движение по окружности с постоянной по модулю скоростью, центростремительное ускорение.

Равномерное движение по окружности - это достаточно простой пример движения с вектором ускорения, зависящим от времени.

Пусть точка вращается по окружности радиуса . Скорость точки постоянна по модулю и равна . Скорость называется линейной скоростью точки.

Период обращения - это время одного полного оборота. Для периода имеем очевидную формулу:

. (1)

Частота обращения - это величина, обратная периоду:

.

Частота показывает, сколько полных оборотов точка совершает за секунду. Измеряется частота в об/с (обороты в секунду).

Пусть, например, . Это означает, что за время точка совершает один полный
оборот. Частота при этом получается равна: об/с; за секунду точка совершает 10 полных оборотов.

 

Угловая скорость.

 

Рассмотрим равномерное вращение точки в декартовой системе координат. Поместим начало координат в центре окружности (рис. 1).

Рис. 1. Равномерное движение по окружности

 

Пусть - начальное положение точки; иными словами, при точка имела координаты . Пусть за время точка повернулась на угол и заняла положение .

Отношение угла поворота ко времени называется угловой скоростью вращения точки:

. (2)

Угол , как правило, измеряется в радианах, поэтому угловая скорость измеряется в рад/с. За время, равное периоду вращения, точка поворачивается на угол . Поэтому

. (3)

Сопоставляя формулы (1) и (3), получаем связь линейной и угловой скоростей:

. (4)

 

Закон движения.

 

Найдём теперь зависимость координат вращающейся точки от времени. Видим из рис. 1, что

.

Но из формулы (2) имеем: . Следовательно,

. (5)

Формулы (5) являются решением основной задачи механики для равномерного движения точки по окружности.

 

Центростремительное ускорение.

 

Теперь нас интересует ускорение вращающейся точки. Его можно найти, дважды продифференцировав соотношения (5):

С учётом формул (5) имеем:

(6)

Полученные формулы (6) можно записать в виде одного векторного равенства:

(7)

где - радиус-вектор вращающейся точки.

Мы видим, что вектор ускорения направлен противоположно радиус-вектору, т. е. к центру окружности (см. рис. 1). Поэтому ускорение точки, равномерно движущейся по окружности, называется центростремительным.

Кроме того, из формулы (7) мы получаем выражение для модуля центростремительного ускорения:

(8)

Выразим угловую скорость из (4)

и подставим в (8). Получим ещё одну формулу для центростремительного ускорения:

.

 

Глава 7. Вращательное движение. Кинематика и динамика

Как правило, в любом варианте задания ЕГЭ по физике представлены несколько задач на вращательное движение. Приведем основные определения и законы, необходимые для решения такого рода задач. Угловой скоростью тела, совершающего вращательное движение, называется отношение угла поворота к тому времени , за которое этот поворот произошел

(7.1)

В этом определении угол должен измеряться в радианах, поэтому размерность угловой скорости рад/с (или 1/с поскольку радиан - безразмерная величина). В принципе, определение (7. 1) позволяет найти как среднюю (для больших интервалов времени ), так и мгновенную (при ) угловую скорость. Однако в школьном курсе физики рассматривается только движение с постоянной угловой скоростью, для которого определение (7.1) дает один и тот же результат для любых интервалов времени . Применяя определение (7.1) к полному обороту тела (угол поворота - радиан), получим связь угловой скорости и периода вращения

(7.2)

Угловую скорость можно ввести не только для точечного тела, но и для протяженного тела. Действительно, при вращении неточечного тела вокруг любой оси все его точки поворачиваются за одинаковое время на одинаковый угол. Поэтому можно говорить об угловой скорости всего тела.

Из формулы (7.2) легко получить связь угловой и обычной скорости вращающегося точечного тела (в этом контексте последнюю всегда называют линейной скоростью). Умножая правую и левую часть формулы (7. 2) на радиус окружности и учитывая, что – это длина пути, пройденного за период, получим

(7.3)

Конечно, для неточечного вращающегося тела нельзя ввести понятие линейной скорости, поскольку у разных точек этого тела линейные скорости будут разными.

Очевидно, при вращательном движении тело всегда имеет ускорение. Действительно, согласно определению (2.1) ускорение тела равно нулю, если не меняется вектор скорости этого тела (т.е. как величина скорости, так и ее направление). При вращательном движении направление скорости обязательно меняется. Можно доказать, что при вращательном движении точечного тела с постоянной по величине линейной скоростью вектор его ускорения в любой момент направлен от тела к центру траектории тела, а его величина равна

(7.4)

Ускорение (7. 3) принято называть центростремительным. Если использовать связь линейной и угловой скорости тела при вращательном движении (7.3), то формулу для центростремительного ускорения можно записать и в таких формах

(7.5)

Согласно второму закону Ньютона ускорения сообщаются телам силами. Поэтому если тело совершает движение по окружности радиуса с постоянной по величине скоростью (и соответственно угловой скоростью ), на него должна действовать сила, направленная к центру окружности и равная по величине

(7.6)

Силу (7.6) принято называть центростремительной. Отметим, что термин «центростремительная» связан не с природой этой силы, а с тем, как она действует: в разных ситуациях центростремительной силой может быть и сила тяжести, и сила трения, и сила реакции, и другие силы или их комбинации.

Перечисленных законов и определений достаточно для решения любых задач ЕГЭ на вращательное движение. Рассмотрим их применение к решению задач, приведенных в первой части.

Если период вращения тела задан, то его угловая скорость может быть однозначно определена независимо от размеров тела или радиуса орбиты для точечного тела. В частности, секундная стрелка любых часов поворачивается на угол за одну минуту (конечно, при условии, что они идут «правильно»). Поэтому угловая скорость секундных стрелок любых часов равна рад/мин (задача 7.1.1 – ответ 2).

Для нахождения линейной скорости конца секундной стрелки часов (задача 7.1.2) используем связь угловой и линейной скоростей (7.5). Имеем

(правильный ответ – 2).

Применяя определение угловой скорости к колесу (задача 7.1.3), получаем

(правильный ответ 1).

Из формулы (7.2) имеем

(задача 7.1.4 – правильный ответ 4).

Используя известное расстояние от первой точки до оси вращения и ее центростремительное ускорение (задача 7.1.5), из формулы (7.5) находим квадрат угловой скорости диска

А теперь по формуле (7.5) для второй точки получаем

(ответ 2).

Поскольку скорость автомобиля в задаче 7.1.6 не меняется в процессе движения для сравнения центростремительных ускорений автомобиля в разных точках траектории следует использовать формулу (7.4), из которой находим, что ускорение тем больше, чем меньше радиус траектории (правильный ответ – 3).

Ускорение мальчика из задачи 7. 1.7 будет равно нулю, если его скорость относительно земли будет равна нулю. Поэтому при движении мальчика против движения карусели, его скорость относительно карусели равна скорости карусели относительно земли . Если мальчик пойдет в другую сторону с той же скоростью относительно карусели, его скорость относительно земли будет равна . Поэтому центростремительное ускорение мальчика будет равно

(ответ 4).

Тело, находящееся на поверхности вращающегося диска и вращающееся вместе с ним (задача 7.1.8), участвует в следующих взаимодействиях. Во-первых, тело притягивается к земле (сила тяжести), и на него действует поверхность диска (сила нормальной реакции и трения), причем сила трения в каждый момент времени направлена к оси вращения (см. рисунок). Действительно, в отсутствии силы трения тело либо будет оставаться на месте, а диск под ним будет вращаться, либо (если тело имеет скорость) слетит с поверхности диска. Именно сила трения «заставляет» тело вращаться вместе с диском. Поэтому сила трения служит в данной задаче цен-тростремительной силой. Остальные перечисления, данные в условии: «на тело действуют силы тяжести, трения, реакции опоры, центростремительная (или центробежная)» являются неправильными, поскольку в них смешиваются характеристики сил разных типов – первые три касаются природы взаимодействий, вторые – результат действия. Поэтому правильный ответ на вопрос задачи – 1. Кроме того, отметим, что центробежная сила возникает только в неинерциальных системах отсчета и в школьном курсе физики не рассматривается (поэтому лучше этим понятием вообще не пользоваться).

Поскольку тело в задаче 7.1.9 вращается с постоянной по величине скоростью по окружности, то его ускорение направлено к центру окружности, и, следовательно, согласно второму закону Ньютона, туда же направлена и результирующая сила, действующая на тело (ответ 2).

Применяя к данному в задаче 7. 1.10 телу второй закон Ньютона и учитывая, что его ускорение равно м/с2, получим для равнодействующей =2 Н (ответ 2).

Используя формулу для центростремительного ускорения , находим отношение ускорений материальных точек из задачи 7.2.1

(ответ 1).

Для сравнения центростремительных ускорений материальных точек в задаче 7.2.2 удобно использовать формулу , поскольку в этой задаче одинаковы угловые скорости точек. Получаем

(ответ 3).

Для сравнения центростремительных ускорений тел в задаче 7.2.3 выразим ускорение через радиус окружности и период. Используя формулу (7.2) для периода и (7.5) для центростремительного ускорения, получим

(7. 5)

Поэтому

(ответ 1).

Используя связь угловой и линейной скорости, находим скорости концов часовой и минутной стрелки (задача 7.2.4)

где и – угловые скорости часовой и минутной стрелки соответственно (в рад/час), и – длины часовой и минутной стрелок. Учитывая, что , получаем

(ответ 2).

Телу, вращающемуся вместе с диском на его горизонтальной поверхности (задача 7.2.5), центростремительное ускорение сообщается силой трения

Поэтому при увеличении угловой скорости вращения диска возрастает и сила трения между телом и диском. При некоторой угловой скорости сила трения достигнет максимально возможного для нее значения . Если еще увеличить угловую скорость диска, сила трения уже не сможет удержать тело на диске: тело начнет скользить по поверхности и слетит с поверхности диска. Поэтому значения угловой скорости, при которой тело может вращаться вместе с диском, находится из неравенства

(ответ 4).

В задаче 7.2.6 центростремительной силой является сила натяжения нити. Поэтому из второго закона Ньютона с учетом формулы (7.5) для центростремительного ускорения имеем

(ответ 3).

В задаче 7.2.7 нужно использовать второй закон Ньютона для каждого тела. Силы, действующие на тела, показаны на рисунке. Проекция второго закона Ньютона для дальнего тела на координатную ось, направленную к центру диска, дает

(1)

На ближнее тело действуют силы натяжения и двух нитей (см. рисунок). Поэтому для него из второго закона Ньютона имеем

Подставляя в эту формулу силу из формулы (1), находим (ответ 2).

В задаче 7.2.8 необходимо использовать то обстоятельство, что угловая скорость всех точек стержня одинакова. Обозначая расстояния от оси вращения до концов стержня как и , имеем

где = 1 м/с и = 2 м/с – линейные скорости концов стержня, м – его длина. Решая эту систему уравнений, найдем расстояния и , а затем и угловую скорость стержня . В результате получим

(ответ 3).

Среднее ускорение тела за некоторый интервал времени (не обязательно малый) определяется по формуле (2. 1):

где и – скорости тела в конце и начале интервала времени . За половину периода вектор скорости поворачивается на 180°, поэтому величина разности равна . Поэтому среднее ускорение тела за половину периода равно

(задача 7.2.9 – ответ 1).

Очевидно, при зубчатой передаче совпадают линейные скорости точек на ободе шестерней. Действительно, если бы эти скорости были разными, между поверхностями шестерней было бы проскальзывание, которому препятствуют зубцы шестерней (задача 7.2.10 – ответ 2).

Движение по окружности | LAMPA

Найдем угловую скорость. Известно, что ω=φt\omega=\frac{\varphi}{t}ω=tφ​. В качестве угла φ\varphiφ можно взять полный оборот, то есть угол 2π2\pi2π радиан, а в качестве времени — время одного полного оборота, то есть период TTT. Поэтому

ω=2πT,\omega=\frac{2\pi}{T}{,}ω=T2π​,ω=2πT=2π⋅1T=2πν.\omega=\frac{2\pi}{T}=2\pi\cdot\frac{1}{T}=2\pi\nu{.}ω=T2π​=2π⋅T1​=2πν.

Эти формулы мы тоже рекомендуем запомнить. Это будет полезно.

Единица измерения угловой скорости [ω]=радс[\omega]=\frac{\text{рад}}{\text{с}}[ω]=срад​.

Оказывается, что линейная скорость VVV и угловая скорость ω\omegaω связаны друг с другом. Рассмотрим пример из жизни. На детских площадках наверняка все видели карусель. Представьте, что карусель вращается. Вы сами сидите на сиденьи этой карусели, а ваш друг не стал сидеть на сиденьи, а "пролез" поближе к центру карусели.

Поскольку каждый из вас поворачивается вокруг карусели на один и тот же угол за то же время, то угловые скорости у вас равны: ωвы=ωдруг\omega_{вы}=\omega_{друг}ωвы​=ωдруг​. Но вот линейные скорости у вас не равны: Vвы≠VдругV_{вы}\neq V_{друг}Vвы​≠Vдруг​. Это нам подсказывает наш жизненный опыт. Тот, кто сидит поближе, двигается медленнее.

Чем ближе к центру находится тело — тем меньше его линейная скорость VVV. И наоборот: чем дальше от центра (чем больше расстояние от центра), тем больше скорость VVV.

Линейная скорость VVV также будет больше и в том случае, если будет больше быстрота поворота вокруг оси, то есть угловая скорость ω\omegaω.

По-простому: чем дальше сидишь от оси (чем больше RRR) и чем быстрее вращается тело (чем больше ω\omegaω), тем больше линейная скорость VVV.

Линейную скорость VVV можно пойти по формуле:

V=ω⋅R.V=\omega\cdot R{.}V=ω⋅R.

Эту формулу можно вывести строго. Возьмем уже известные нам формулы:

V=2πR⋅νV=2\pi R\cdot \nuV=2πR⋅ν и ω=2π⋅ν\omega=2\pi\cdot \nuω=2π⋅ν.

Из них видно, что в первой формуле вместо 2πν2\pi\nu2πν можно подставить ω\omegaω:

V=2πR⋅ν=2πνR=(2πν)⋅R=ω⋅RV=2\pi R\cdot \nu=2\pi\nu R=(2\pi\nu)\cdot R=\omega\cdot RV=2πR⋅ν=2πνR=(2πν)⋅R=ω⋅R.

Мы получили формулу V=ω⋅RV=\omega\cdot RV=ω⋅R.

Как можно найти период обращения зная радиус окружности и скорость движения тела?

Дам 20 баллов, нужно срочно! В изогнутую трубку, запаянную с одного конца, налита жидкость с плотностью ρ = 800 кг/м3 и не смешивающаяся с ней жидкост … ь в два раза большей плотности. h = 20 см, атмосферное давление при проведении эксперимента равно 101 кПа, g = 10 Н/кг. Чему равно давление воздуха над поверхностью жидкости в точке А (в кПа) внутри закрытого участка трубки? Ответ округлите до десятых.

Установите соответствие: 1. Мензурка 2. Курвиметр 3. Штангенциркуль 4. Одометр a. Прибор, измеряющий большие расстояния при помощи количества вращения … колёс b. Прибор, измеряющий с высокой точностью внешние и внутренние размеры тела c. 11 м ? Решение пожалуйста.​

Физика. Период и частота | Частная школа. 9 класс

Конспект по физике для 9 класса «Период и частота». Что такое период обращения. Что такое частота обращения. Как вычислить скорость и ускорение тела, движущегося по окружности, если известны его период и частота обращения.

Конспекты по физике    Учебник физики    Тесты по физике


Период и частота

Измерить скорость тела, движущегося по окружности, не всегда просто. Однако её можно вычислить, используя такие понятия, как период и частота обращения.

ПЕРИОД

Когда тело движется по окружности с постоянной по модулю скоростью, через определённые промежутки времени движение повторяется снова и снова. Примером этому может служить движение на обычной детской карусели.

Время, в течение которого тело совершает один полный оборот, называют периодом обращения. Период обращения принято обозначать буквой Т. Единица этой физической величины в СИ — секунда.

С понятием периода обращения вы уже знакомились при изучении географии. Например, период обращения Земли вокруг своей оси составляет 23 ч 56 мин 4 с, а период обращения Земли вокруг Солнца — 1,00004 земных года. Самый короткий период обращения вокруг Солнца в нашей Солнечной системе имеет планета Меркурий. Её период обращения составляет 0,24085 земных лет. Интересно, что самая большая планета Солнечной системы — Юпитер — имеет самый короткий период обращения вокруг своей оси — всего 9 ч 50 мин. В 226 000 000 лет оценивается период обращения Солнечной системы вокруг ядра Галактики.

ЧАСТОТА

Число оборотов в единицу времени, которое совершает тело при движении по окружности, называют частотой обращения. Частоту обращения обозначают греческой буквой ν.

Если, катаясь на карусели в парке, мы совершаем один оборот за 20 с, то период обращения в этом случае Т = 20 с. Как определить частоту обращения при этом движении? Сколько оборотов совершает карусель за 1 с?

Очевидно, ν = 1/Т = 1/20 1, т. е. за 1 с карусель совершает одну двадцатую часть своего полного оборота.

Таким образом, частота обращения является величиной, обратной периоду обращения:

Именно поэтому единица этой физической величины обратна секунде, т. е. 1/с, или с-1.

СВЯЗЬ МОДУЛЯ СКОРОСТИ С ПЕРИОДОМ И ЧАСТОТОЙ ОБРАЩЕНИЯ

Чтобы определить модуль скорости тела, движущегося по окружности, достаточно знать радиус окружности R и период или частоту обращения. Действительно, один полный оборот тело совершает за время, равное периоду обращения Т. Путь, пройденный телом, в этом случае равен длине окружности: l = 2πR. Тогда можно записать:

или с учётом формулы (1):

С учётом формул (2) и (3) можно найти центростремительное ускорение тела, выразив скорость через период или частоту обращения:

Часто мгновенную скорость движения по окружности называют линейной скоростью.

Модуль скорости движения тела по окружности рассчитывается по формуле:

Умение описывать движение тела по окружности чрезвычайно важно, так как движение по криволинейной траектории можно приближённо представить как движение по дугам окружностей различных радиусов.

РЕШЕНИЕ ЗАДАЧ

Задача 1. Найдём модуль скорости вращения ребёнка на карусели, если радиус окружности, по которой происходит движение, равен 2,3 м, а время, за которое карусель совершает один полный оборот, равно 20 с.

Ответ: υ = 0,722 м/с.

 

Задача 2.  Земля делает один оборот вокруг Солнца за 365 дней. Расстояние от Солнца до Земли составляет 149,6 • 106 км. Определим линейную скорость движения Земли вокруг Солнца, считая орбиту окружностью.

Ответ: υ ≈ 30 км/с.

 


Вы смотрели Конспект по физике для 9 класса «Период и частота».

Вернуться к Списку конспектов по физике (Оглавление).

Кинематика - Физика - Теория, тесты, формулы и задачи

Оглавление:

 

Основные теоретические сведения

Система СИ

К оглавлению...

Основные единицы измерения величин в системе СИ таковы:

  1. единица измерения длины - метр (1 м),
  2. времени - секунда (1 с),
  3. массы - килограмм (1 кг),
  4. количества вещества - моль (1 моль),
  5. температуры - кельвин (1 К),
  6. силы электрического тока - ампер (1 А),
  7. Справочно: силы света - кандела (1 кд, фактически не используется при решении школьных задач).

При выполнении расчетов в системе СИ углы измеряются в радианах.

Если в задаче по физике не указано, в каких единицах нужно дать ответ, его нужно дать в единицах системы СИ или в производных от них величинах, соответствующих той физической величине, о которой спрашивается в задаче. Например, если в задаче требуется найти скорость, и не сказано в чем ее нужно выразить, то ответ нужно дать в м/с.

Для удобства в задачах по физике часто приходится использовать дольные (уменьшающие) и кратные (увеличивающие) приставки. их можно применять к любой физической величине. Например, мм – миллиметр, кт – килотонна, нс – наносекунда, Мг – мегаграмм, ммоль – миллимоль, мкА – микроампер. Запомните, что в физике не существует двойных приставок. Например, мкг – это микрограмм, а не милликилограмм. Учтите, что при сложении и вычитании величин Вы можете оперировать только величинами одинаковой размерности. Например, килограммы можно складывать только с килограммами, из миллиметров можно вычитать только миллиметры, и так далее. При переводе величин пользуйтесь следующей таблицей.

Таблица дольных и кратных приставок в физике:

 

Путь и перемещение

К оглавлению...

Кинематикой называют раздел механики, в котором движение тел рассматривается без выяснения причин этого движения.

Механическим движением тела называют изменение его положения в пространстве относительно других тел с течением времени.

Всякое тело имеет определенные размеры. Однако, во многих задачах механики нет необходимости указывать положения отдельных частей тела. Если размеры тела малы по сравнению с расстояниями до других тел, то данное тело можно считать материальной точкой. Так при движении автомобиля на большие расстояния можно пренебречь его длиной, так как длина автомобиля мала по сравнению с расстояниями, которое он проходит.

Интуитивно понятно, что характеристики движения (скорость, траектория и т.д.) зависят от того, откуда мы на него смотрим. Поэтому для описания движения вводится понятие системы отсчета. Система отсчета (СО) – совокупность тела отсчета (оно считается абсолютно твердым), привязанной к нему системой координат, линейки (прибора, измеряющего расстояния), часов и синхронизатора времени.

Перемещаясь с течением времени из одной точки в другую, тело (материальная точка) описывает в данной СО некоторую линию, которую называют траекторией движения тела.

Перемещением тела называют направленный отрезок прямой, соединяющий начальное положение тела с его конечным положением. Перемещение есть векторная величина. Перемещение может в процессе движения увеличиваться, уменьшаться и становиться равным нулю.

Пройденный путь равен длине траектории, пройденной телом за некоторое время. Путь – скалярная величина. Путь не может уменьшаться. Путь только возрастает либо остается постоянным (если тело не движется). При движении тела по криволинейной траектории модуль (длина) вектора перемещения всегда меньше пройденного пути.

При равномерном (с постоянной скоростью) движении путь L может быть найден по формуле:

где: v – скорость тела, t – время в течении которого оно двигалось. При решении задач по кинематике перемещение обычно находится из геометрических соображений. Часто геометрические соображения для нахождения перемещения требуют знания теоремы Пифагора.

 

Средняя скорость

К оглавлению...

Скорость – векторная величина, характеризующая быстроту перемещения тела в пространстве. Скорость бывает средней и мгновенной. Мгновенная скорость описывает движение в данный конкретный момент времени в данной конкретной точке пространства, а средняя скорость характеризует все движение в целом, в общем, не описывая подробности движения на каждом конкретном участке.

Средняя скорость пути – это отношение всего пути ко всему времени движения:

где: Lполн – весь путь, который прошло тело, tполн – все время движения.

Средняя скорость перемещения – это отношение всего перемещения ко всему времени движения:

Эта величина направлена так же, как и полное перемещение тела (то есть из начальной точки движения в конечную точку). При этом не забывайте, что полное перемещение не всегда равно алгебраической сумме перемещений на определённых этапах движения. Вектор полного перемещения равен векторной сумме перемещений на отдельных этапах движения.

  • При решении задач по кинематике не совершайте очень распространенную ошибку. Средняя скорость, как правило, не равна среднему арифметическому скоростей тела на каждом этапе движения. Среднее арифметическое получается только в некоторых частных случаях.
  • И уж тем более средняя скорость не равна одной из скоростей, с которыми двигалось тело в процессе движения, даже если эта скорость имела примерно промежуточное значение относительно других скоростей, с которыми двигалось тело.

 

Равноускоренное прямолинейное движение

К оглавлению...

Ускорение – векторная физическая величина, определяющая быстроту изменения скорости тела. Ускорением тела называют отношение изменения скорости к промежутку времени, в течение которого происходило изменение скорости:

где: v0 – начальная скорость тела, v – конечная скорость тела (то есть спустя промежуток времени t).

Далее, если иное не указано в условии задачи, мы считаем, что если тело движется с ускорением, то это ускорение остается постоянным. Такое движение тела называется равноускоренным (или равнопеременным). При равноускоренном движении скорость тела изменяется на одинаковую величину за любые равные промежутки времени.

Равноускоренное движение бывает собственно ускоренным, когда тело увеличивает скорость движения, и замедленным, когда скорость уменьшается. Для простоты решения задач удобно для замедленного движения брать ускорение со знаком «–».

Из предыдущей формулы, следует другая более распространённая формула, описывающая изменение скорости со временем при равноускоренном движении:

Перемещение (но не путь) при равноускоренном движении рассчитывается по формулам:

В последней формуле использована одна особенность равноускоренного движения. При равноускоренном движении среднюю скорость можно рассчитывать, как среднее арифметическое начальной и конечной скоростей (этим свойством очень удобно пользоваться при решении некоторых задач):

С расчетом пути все сложнее. Если тело не меняло направления движения, то при равноускоренном прямолинейном движении путь численно равен перемещению. А если меняло – надо отдельно считать путь до остановки (момента разворота) и путь после остановки (момента разворота). А просто подстановка времени в формулы для перемещения в этом случае приведет к типичной ошибке.

Координата при равноускоренном движении изменяется по закону:

Проекция скорости при равноускоренном движении изменяется по такому закону:

Аналогичные формулы получаются для остальных координатных осей. Формула для тормозного пути тела:

 

Свободное падение по вертикали

К оглавлению...

На все тела, находящиеся в поле тяготения Земли, действует сила тяжести. В отсутствие опоры или подвеса эта сила заставляет тела падать к поверхности Земли. Если пренебречь сопротивлением воздуха, то движение тел только под действием силы тяжести называется свободным падением. Сила тяжести сообщает любым телам, независимо от их формы, массы и размеров, одинаковое ускорение, называемое ускорением свободного падения. Вблизи поверхности Земли ускорение свободного падения составляет:

Это значит, что свободное падение всех тел вблизи поверхности Земли является равноускоренным (но не обязательно прямолинейным) движением. Вначале рассмотрим простейший случай свободного падения, когда тело движется строго по вертикали. Такое движение является равноускоренным прямолинейным движением, поэтому все изученные ранее закономерности и фокусы такого движения подходят и для свободного падения. Только ускорение всегда равно ускорению свободного падения.

Традиционно при свободном падении используют направленную вертикально ось OY. Ничего страшного здесь нет. Просто надо во всех формулах вместо индекса «х» писать «у». Смысл этого индекса и правило определения знаков сохраняется. Куда направлять ось OY – Ваш выбор, зависящий от удобства решения задачи. Вариантов 2: вверх или вниз.

Приведем несколько формул, которые являются решением некоторых конкретных задач по кинематике на свободное падение по вертикали. Например, скорость, с которой упадет тело падающее с высоты h без начальной скорости:

Время падения тела с высоты h без начальной скорости:

Максимальная высота на которую поднимется тело, брошенное вертикально вверх с начальной скоростью v0, время подъема этого тела на максимальную высоту, и полное время полета (до возвращения в исходную точку):

 

Горизонтальный бросок

К оглавлению...

При горизонтальном броске с начальной скоростью v0 движение тела удобно рассматривать как два движения: равномерное вдоль оси ОХ (вдоль оси ОХ нет никаких сил препятствующих или помогающих движению) и равноускоренного движения вдоль оси OY.

Скорость в любой момент времени направлена по касательной к траектории. Ее можно разложить на две составляющие: горизонтальную и вертикальную. Горизонтальная составляющая всегда остается неизменной и равна vxv0. А вертикальная возрастает по законам ускоренного движения vy = gt. При этом полная скорость тела может быть найдена по формулам:

При этом важно понять, что время падения тела на землю никоим образом не зависит от того, с какой горизонтальной скоростью его бросили, а определяется только высотой, с которой было брошено тело. Время падения тела на землю находится по формуле:

Пока тело падает, оно одновременно движется вдоль горизонтальной оси. Следовательно, дальность полета тела или расстояние, которое тело сможет пролететь вдоль оси ОХ, будет равно:

Угол между горизонтом и скоростью тела легко найти из соотношения:

Также иногда в задачах могут спросить о моменте времени, при котором полная скорость тела будет наклонена под определенным углом к вертикали. Тогда этот угол будет находиться из соотношения:

Важно понять, какой именно угол фигурирует в задаче (с вертикалью или с горизонталью). Это и поможет вам выбрать правильную формулу. Если же решать эту задачу координатным методом, то общая формула для закона изменения координаты при равноускоренном движении:

Преобразуется в следующий закон движения по оси OY для тела брошенного горизонтально:

При ее помощи мы можем найти высоту на которой будет находится тело в любой момент времени. При этом в момент падения тела на землю координата тела по оси OY будет равна нулю. Очевидно, что вдоль оси OХ тело движется равномерно, поэтому в рамках координатного метода горизонтальная координата изменятся по закону:

 

Бросок под углом к горизонту (с земли на землю)

К оглавлению...

Максимальная высота подъема при броске под углом к горизонту (относительно начального уровня):

Время подъема до максимальной высоты при броске под углом к горизонту:

Дальность полета и полное время полета тела брошенного под углом к горизонту (при условии, что полет заканчивается на той же высоте с которой начался, т.е. тело бросали, например, с земли на землю):

Минимальная скорость тела брошенного под углом к горизонту – в наивысшей точке подъёма, и равна:

Максимальная скорость тела брошенного под углом к горизонту – в моменты броска и падения на землю, и равна начальной. Это утверждение верно только для броска с земли на землю. Если тело продолжает лететь ниже того уровня, с которого его бросали, то оно будет там приобретать все большую и большую скорость.

 

Сложение скоростей

К оглавлению...

Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кинематические характеристики движения, такие как траектория, перемещение, скорость, в разных системах оказываются различными. Величины, зависящие от выбора системы отсчета, в которой производится их измерение, называют относительными. Таким образом, покой и движение тела относительны. Классический закон сложения скоростей:

Таким образом, абсолютная скорость тела равна векторной сумме его скорости относительно подвижной системы координат и скорости самой подвижной системы отсчета. Или, другими словами, скорость тела в неподвижной системе отсчета равна векторной сумме скорости тела в подвижной системе отсчета и скорости подвижной системы отсчета относительно неподвижной.

 

Равномерное движение по окружности

К оглавлению...

Движение тела по окружности является частным случаем криволинейного движения. Такой вид движения также рассматривается в кинематике. При криволинейном движении вектор скорости тела всегда направлен по касательной к траектории. То же самое происходит и при движении по окружности (см. рисунок). Равномерное движение тела по окружности характеризуется рядом величин.

Период – время, за которое тело, двигаясь по окружности, совершает один полный оборот. Единица измерения – 1 с. Период рассчитывается по формуле:

Частота – количество оборотов, которое совершило тело, двигаясь по окружности, в единицу времени. Единица измерения – 1 об/с или 1 Гц. Частота рассчитывается по формуле:

В обеих формулах: N – количество оборотов за время t. Как видно из вышеприведенных формул, период и частота величины взаимообратные:

При равномерном вращении скорость тела будет определяется следующим образом:

где: l – длина окружности или путь, пройденный телом за время равное периоду T. При движении тела по окружности удобно рассматривать угловое перемещение φ (или угол поворота), измеряемое в радианах. Угловой скоростью ω тела в данной точке называют отношение малого углового перемещения Δφ к малому промежутку времени Δt. Очевидно, что за время равное периоду T тело пройдет угол равный 2π, следовательно при равномерном движении по окружности выполняются формулы:

Угловая скорость измеряется в рад/с. Не забывайте переводить углы из градусов в радианы. Длина дуги l связана с углом поворота соотношением:

Связь между модулем линейной скорости v и угловой скоростью ω:

При движении тела по окружности с постоянной по модулю скоростью изменяется только направление вектора скорости, поэтому движение тела по окружности с постоянной по модулю скоростью является движением с ускорением (но не равноускоренным), так как меняется направление скорости. В этом случае ускорение направлено по радиусу к центру окружности. Его называют нормальным, или центростремительным ускорением, так как вектор ускорения в любой точке окружности направлен к ее центру (см. рисунок).

Модуль центростремительного ускорения связан с линейной v и угловой ω скоростями соотношениями:

Обратите внимание, что если тела (точки) находятся на вращающемся диске, шаре, стержне и так далее, одним словом на одном и том же вращающемся объекте, то у всех тел одинаковые период вращения, угловая скорость и частота.

Веб-сайт класса физики

Круговое движение и гравитация: обзор набора задач

Этот набор из 27 задач нацелен на вашу способность комбинировать законы Ньютона и уравнения кругового движения и гравитации для анализа движения объектов, движущихся по кругу, включая орбитальные спутники. Проблемы варьируются по сложности от очень простых и простых до очень сложных и сложных.Более сложные задачи обозначены цветом , синие задачи .

Характеристики движения объектов, движущихся по кругам.

Объекты, движущиеся по кругу, имеют скорость, равную пройденному за время пути расстоянию. Расстояние вокруг круга эквивалентно длине окружности и рассчитывается как 2 • pi • R, где R - радиус. Время на один оборот по окружности называется периодом и обозначается символом T.Таким образом, средняя скорость объекта при круговом движении определяется выражением 2 • pi • R / T. Часто в постановке задачи указывается частота вращения в оборотах в минуту или в оборотах в секунду. Каждый оборот по окружности эквивалентен длине окружности. Таким образом, умножение частоты вращения на длину окружности позволяет определить среднюю скорость объекта.

Ускорение объектов, движущихся по кругу, основано в первую очередь на изменении направления.Фактическая скорость ускорения зависит от скорости изменения направления и напрямую связана со скоростью и обратно пропорциональна радиусу поворота. В итоге ускорение определяется выражением v 2 / R, где v - скорость, а R - радиус окружности.

Уравнения для средней скорости (v) и среднего ускорения (a) приведены ниже.

v = d / t = 2 • pi • R / T = частота • 2 • pi • R
а = v 2 / R

Направленные величины для объектов, движущихся по кругу

Успешный математический анализ объектов, движущихся по кругу, во многом зависит от концептуального понимания направления векторов ускорения и результирующей силы.Движение по круговой траектории требует чистой силы, направленной к центру круга. В каждой точке пути результирующая сила должна быть направлена ​​внутрь. Хотя может существовать отдельная сила, направленная наружу, должна быть внутренняя сила, которая подавляет ее по величине и удовлетворяет требованию для внутренней чистой силы. Поскольку чистая сила и ускорение всегда в одном и том же направлении, ускорение объектов, движущихся по кругу, также должно быть направлено внутрь.

Диаграммы свободного тела и второй закон Ньютона

Часто силовой анализ должен проводиться для объекта, движущегося по кругу.Цель анализа - либо определить величину отдельной силы, действующей на объект, либо использовать значения отдельных сил для определения ускорения. Как и любая задача анализа сил, эти задачи должны начинаться с построения диаграммы свободного тела, показывающей тип и направление всех сил, действующих на объект. Из диаграммы F net = m • можно записать уравнение. При написании уравнения помните, что F net представляет собой векторную сумму всех индивидуальных сил.Лучше всего это записать, сложив все силы, действующие в направлении ускорения (внутрь), и вычтя те, которые ему противостоят. Два примера показаны на рисунке ниже.


Закон всемирного тяготения Ньютона

Спутники, движущиеся по орбите, - это просто снаряды - объекты, на которые действует только сила тяжести. Сила, управляющая их движением, - это сила гравитационного притяжения к объекту, который находится в центре их орбиты.Планеты вращаются вокруг Солнца в результате гравитационной силы притяжения к Солнцу. Естественные луны вращаются вокруг планет в результате гравитационной силы притяжения к планете. Гравитация - это сила, которая действует на больших расстояниях таким образом, что любые два объекта с массой будут притягиваться. Ньютон был первым, кто предложил теорию, чтобы описать это универсальное массовое притяжение и выразить его математически. Закон, известный как закон всемирного тяготения, гласит, что сила гравитационного притяжения прямо пропорциональна произведению масс и обратно пропорциональна квадрату расстояния между их центрами.В форме уравнения:

F grav = G • m 1 • m 2 / d 2

где m 1 и m 2 - массы притягивающих объектов (в кг), d - расстояние разделения, измеренное от центра объекта до центра объекта (в метрах), а G - константа пропорциональности (иногда называемая всемирная гравитационная постоянная). Значение G составляет 6,673 x 10 -11 Н • м 2 / кг 2 .

Ускорение свободного падения

Поскольку на орбитальные спутники действует исключительно сила тяжести, их ускорение является ускорением силы тяжести (g). На земной поверхности это значение составило 9,8 м / с 2 . Для местоположений, отличных от поверхности Земли, необходимо уравнение, которое выражает g через соответствующие переменные. Ускорение свободного падения зависит от массы объекта, который находится в центре орбиты (M в центре ) и расстояния разделения от этого объекта (d).Уравнение, связывающее эти две переменные с ускорением свободного падения, получено из закона всемирного тяготения Ньютона. Уравнение

g = G • M центральный / d 2

где G составляет 6,673 x 10 -11 Н • м 2 / кг 2 .

Орбитальная скорость

Скорость, необходимая для того, чтобы спутник оставался на орбите вокруг центрального тела (планеты, солнца, другой звезды и т. Д.).) зависит от радиуса орбиты и массы центрального тела. Уравнение, выражающее взаимосвязь между этими переменными, получается путем объединения определений ускорения кругового движения с законом всемирного тяготения Ньютона. Уравнение

v = SQRT (G • M центральный / R)

где M central - масса центрального тела, вокруг которого вращается спутник, R - радиус орбиты, а G - 6,673 x 10 -11 Н • м 2 / кг 2 .

Орбитальный период

Для общего движения объекта по кругу период связан с радиусом круга и скоростью объекта уравнением v = 2 • pi • R / T. В случае орбитального спутника это уравнение для скорости можно приравнять к уравнению для орбитальной скорости, полученной из всемирного тяготения, чтобы получить новое уравнение для орбитального периода. Результат вывода:

T 2 / R 3 = 4 • pi 2 / (G • M центральный )

где M central - масса центрального тела, вокруг которого вращается спутник, R - радиус орбиты, а G - 6.673 x 10 -11 Н • м 2 / кг 2 . Выраженное таким образом уравнение показывает, что отношение квадрата периода к радиусу в кубе для любого спутника, вращающегося вокруг центрального тела, одинаково независимо от природы спутника или радиуса его орбиты. Это соотношение зависит только от массы объекта, который втягивает орбитальный спутник внутрь. Этот принцип согласуется с третьим законом движения планет Кеплера.

Резюме математических формул

Одна из трудностей, с которыми студент может столкнуться в этом наборе задач, - это путаница относительно того, какую формулу использовать.В таблице ниже представлено полезное резюме формул, относящихся к круговому движению и движению спутника. В таблице многие формулы получены из других уравнений. Таким образом, часто будет несколько способов определения неизвестной величины. Подходя к этим проблемам, рекомендуется практиковать обычные привычки эффективного решателя проблем; определить известные и неизвестные величины в виде символов физических формул, разработать стратегию использования известных для решения неизвестного, а затем, наконец, выполнить необходимые алгебраические шаги и замены, необходимые для решения.

Для расчета ... ... используйте уравнение (а):
Скорость
(v)
v = 2 • pi • R / T
v = SQRT (G • M центральный / R) только для спутников
Разгон
(а)
a = v 2 / R или a = F net / m
a = g = G • M центральный / d 2 только для спутников
Чистая сила
(F net )
F net = m • a или F net = m • v 2 / R
F net = F grav = G • m sat • M центральный / d 2 только для спутников
Период
(Т)
T = 2 • pi • R / v
T 2 = 4 • pi 2 / (G • M центральный ) • R 3 только для спутников

Привычки эффективно решать проблемы

Эффективный решатель проблем по привычке подходит к физическим проблемам таким образом, чтобы отражать набор дисциплинированных привычек.Хотя не все эффективные специалисты по решению проблем используют один и тот же подход, все они имеют общие привычки. Эти привычки кратко описаны здесь. Эффективное решение проблем ...

  • ... внимательно читает задачу и создает мысленную картину физической ситуации. При необходимости они набрасывают простую схему физической ситуации, чтобы помочь визуализировать ее.
  • ... определяет известные и неизвестные величины в организованном порядке, часто записывая их на диаграмме.Они приравнивают заданные значения к символам, используемым для представления соответствующей величины (например, m = 61,7 кг, v = 18,5 м / с, R = 30,9 м, F norm = ???).
  • ... строит стратегию решения неизвестной величины; стратегия, как правило, сосредоточена вокруг использования физических уравнений и во многом зависит от понимания физических принципов.
  • ... определяет подходящую (ые) формулу (ы) для использования, часто записывая их. При необходимости они выполняют необходимое преобразование количеств в правильные единицы.
  • ... выполняет подстановки и алгебраические манипуляции, чтобы найти неизвестную величину.

Подробнее ...

Дополнительная литература / Учебные пособия:

Следующие страницы из учебного пособия по физике могут быть полезны для понимания концепций и математики, связанных с этими проблемами.

Набор задач кругового движения и гравитации

Просмотреть набор задач

Решения с аудиогидом для кругового движения и гравитации

Просмотрите решение проблемы с аудиогидом:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27

Равномерное круговое движение

Введение

Равномерное круговое движение - это движение объекта, движущегося с постоянной (равномерной) скоростью по круговой траектории.Помимо скорости, есть несколько других переменных, которые используются для характеристики движения. Это радиус движения r , угловая скорость ω , период T и частота вращения f . Период - это время, необходимое для того, чтобы объект совершил один оборот движения. Угловая скорость - это угловое смещение в секунду, которое связано с частотой следующим образом: с ω в рад / с.Частота вращения - это количество оборотов в секунду, которое определяется по формуле: с f в Гц или сек -1 . Скорость объекта является касательной к окружности с величиной v = . Ускорение , a направлено к центру круга (центростремительное) с величиной, определяемой следующим образом: с a м / с 2 . Чтобы объект массой м мог двигаться по окружности с постоянной скоростью, на объект должна действовать чистая центростремительная сила.Величина чистой силы, F , должна быть постоянной и связана с центростремительным ускорением вторым законом Ньютона: с F в N. Эта центростремительная сила может создаваться за счет натяжения (как в этой лаборатории), трения (как для автомобиля, движущегося по кривой), нормальной силы (как в петлеобразных американских горках) или гравитации (как для движения спутника). В этом эксперименте вы будете измерять период объекта, совершающего равномерное круговое движение с фиксированным радиусом, но с различными значениями F .По периоду можно рассчитать угловую скорость. Используя эти известные значения и приведенные выше уравнения, вы можете найти эмпирическую массу вращающегося объекта и сравнить ее со значением массы, полученным путем непосредственного взвешивания его на весах.

Аппарат UCM

Аппарат UCM состоит из регулируемой вращающейся платформы . На расстоянии r от центра вращения находится узел боковой стойки , на котором висит объект массой м , называемый вращающейся массой (не путать со статической массой ).Вращающаяся масса прикреплена к пружине на центральной стойке с помощью струны и небольшого шкива. Когда платформа вращается, вращающаяся масса будет перемещаться по круговой траектории из-за силы, прилагаемой к ней струной (посредством натяжения пружины). Поскольку невозможно получить мгновенное считывание этой силы натяжения во время вращения платформы, косвенное измерение этой силы будет производиться с использованием веса статической массы, как показано и объяснено ниже.

Рисунок 1

Когда платформа не вращается, вращающаяся масса не свисает вертикально с боковой стойки, а, скорее, втягивается внутрь за счет натяжения струны и пружины. При проведении эксперимента вы будете регулировать скорость вращения платформы до тех пор, пока вращающаяся масса не будет висеть вертикально на радиусе r . Оранжевый индикаторный диск поможет вам определить, когда вращающаяся масса достигла этого положения.

Рисунок 2

Период вращения измеряется секундомером .Платформу можно вращать, поворачивая стержень с накаткой вручную.

Процедура

Выравнивание предмета

Если платформа неровная, это отрицательно скажется на ваших результатах. Студенты первой лаборатории недели должны были уже выровнять прибор. Будем надеяться, что с тех пор аппарат не перемещали, и его не нужно будет снова выравнивать. Убедитесь, что ваше устройство выровнено, включив двигатель регулировки скорости и наблюдая за оранжевым индикаторным диском, чтобы увидеть, качается ли он вверх и вниз при вращении платформы.Если ваше устройство необходимо выровнять, выполните следующие действия.
  • 1

    Чтобы примерно выровнять платформу, поместите пузырьковый уровень в середину платформы и отрегулируйте два регулировочных винта на основании устройства до тех пор, пока пузырь не будет отцентрирован.
  • 2

    Поместите дополнительную массу (~ 500 г) на тот же конец вращающейся платформы, что и вращающаяся масса. Если платформа неровная, тяжелый конец будет качаться в низкую сторону.
  • 3

    Отрегулируйте регулировочные винты на ножках основания до тех пор, пока конец платформы не будет качаться равномерно, когда ее осторожно поворачивают вручную.

Установка радиуса

  • 1

    Осторожно отсоедините вращающуюся массу от струн. Используйте весы, чтобы взвесить его, и запишите значение массы.
  • 2

    Подвесьте вращающуюся гирю к боковой стойке и подсоедините шнур от пружины к гири.Убедитесь, что эта струна проходит под (а не за) маленьким шкивом на центральной стойке.
  • 3

    Переместите кронштейн индикатора на центральной стойке в самое нижнее положение.
  • 4

    Оттяните вращающуюся массу от центральной стойки, пока оранжевый индикатор не окажется в центре кронштейна. Если струна, поддерживающая вращающийся груз, не является вертикальной, когда индикатор выровнен с кронштейном, боковую стойку следует перемещать внутрь или наружу, пока струна не станет вертикальной.Используйте вертикальную линию на боковой стойке, чтобы облегчить это выравнивание. При затягивании боковой стойки, нажмите на платформу, чтобы убедиться, что она надежно удерживается в вертикальном положении, и избегайте чрезмерного затягивания и поломки пластикового винта с накатанной головкой!
  • 5

    Измерьте и запишите радиус, а также оценку погрешности на основе центровки.
  • 6

    Теперь ваш аппарат должен быть готов к работе в максимально широком диапазоне центростремительных сил.(Почему это важно?) Центростремительную силу можно изменять, перемещая опору пружины вверх и вниз, при этом другие части устройства остаются на месте. Этот диапазон движение по центральной стойке должно быть не менее 5 см, что соответствует диапазону натяжения пружины примерно 1,2 Н.

Установка величины центростремительной силы

В этой первой части процедуры вы будете использовать метод static (без вращения) для настройки устройства на известное значение центростремительной силы.
  • 1

    Присоедините зажимной шкив к концу платформы, ближайшему к вращающейся массе. Прикрепите веревку к вращающейся массе и навесьте известную массу (начиная с 20 г) над зажимным шкивом. Отрегулируйте прижимной шкив вверх или вниз по мере необходимости так, чтобы веревка между шкивом и вращающаяся масса расположена горизонтально. (Почему это важно?)
  • 2

    Запишите значение этой статической массы , которая будет определять центростремительную силу.
  • 3

    Отрегулируйте опору пружины по вертикали, пока оранжевый индикаторный диск не окажется по центру кронштейна индикатора. Теперь устройство должно быть выровнено, чтобы точно знать радиус движения вращающейся массы, когда платформа вращается.
На этом этапе остановитесь и проанализируйте все силы, действующие на вращающуюся массу. Каковы их масштабы и направления? Какие-то силы не совсем вертикальные или горизонтальные? Если да, то как это повлияет на ваши результаты?

КПП 1:
Прежде чем продолжить, попросите ТА проверить ваше устройство.

Измерение периода

  • 1

    Удалите статическую массу и струну из вращающейся массы. (Почему?)
  • 2

    Поверните устройство, равномерно поворачивая стержень с накаткой по часовой стрелке. Уделите минуту, чтобы прочувствовать поворот платформы с постоянной скоростью. Увеличивайте скорость до тех пор, пока оранжевый индикаторный диск не окажется по центру кронштейна индикатора на центральной стойке.Это указывает на то, что струна, поддерживающая вращающуюся массу, вертикальна и, следовательно, масса находится на желаемом радиусе.
  • 3

    Когда один партнер по лаборатории вращает платформу, другой должен использовать секундомер для измерения времени, необходимого для совершения одного оборота. Сделайте десять таких измерений.
  • 4

    Альтернативный метод измерения среднего периода - использовать секундомер для измерения времени для N (например, 10) оборотов и разделить на N, чтобы получить T .Сделайте это хотя бы для одного испытания и сравните со значением, полученным с помощью процедуры, приведенной на шаге 3. Какой метод, по вашему мнению, более точен?
  • 5

    Прежде чем продолжить, проверьте свои результаты для этой единственной точки данных и убедитесь, что ваше эмпирическое значение для вращающейся массы является разумным. Если ваш результат не имеет смысла, проанализируйте свою процедуру и исправьте все ошибки, прежде чем брать дополнительные данные.

КПП 2:
Прежде чем продолжить, попросите технического специалиста проверить ваши данные и результаты расчетов.

Изменение центростремительной силы

Повторите описанную выше процедуру как минимум с пятью различными статическими массами (и, следовательно, пятью различными силами), которые охватывают максимально широкий диапазон значений (обычно от 40 до 150 г).

Анализ

  • 1

    Вес статической массы, висящей на шкиве, равен центростремительной силе F , приложенной пружиной. Вычислите эту силу для каждого из пяти испытаний, умножив статическую массу на г , и запишите результаты.
  • 2

    Для каждой центростремительной силы F вычислите средний период вращения T и его стандартную ошибку.
  • 3

    Для каждого значения F рассчитайте ω 2 и его неопределенность из
  • 4

    Постройте график ω 2 и F (с планками ошибок) и выполните аппроксимацию методом наименьших квадратов.
  • 5

    Определите экспериментальное значение вращающейся массы, м , из наклона вашего графика и уравнения центростремительной силы.Определите пересечение и линейного соответствия вашим данным. Это то, чего вы ожидаете?

Обсуждение

Сравните значение м , полученное при подборе кривой, с измеренными значениями вращающейся массы м и радиуса движения r . Есть согласие в пределах неопределенностей? Если вы проведете этот эксперимент осторожно, вы сможете получить результаты с ошибкой менее 3%. Сравните значение интерцепта y с ожидаемым значением.Они согласны? Почему для этого (и большинства других) экспериментов важно получить данные в самом широком диапазоне значений? Каковы потенциальные последствия близкого расположения точек данных? Объясните, как вы собираете данные с помощью этого устройства, чтобы проверить следующую гипотезу: для данного значения центростремительной силы F радиус движения r обратно пропорционален квадрату угловой скорости ω .

Copyright © 2011 Advanced Instructional Systems, Inc. и Университет Северной Каролины | Кредиты

Калькулятор кругового движения

Калькулятор кругового движения для расчета параметров центростремительного ускорения, угловой скорости, скорости, периода, частоты и радиуса равномерного кругового движения в физике.

Формулы кругового движения, которые используются для расчетов, приведены ниже.

ИЗВЕСТНЫЕ ПАРАМЕТРЫ
Скорость [V], Ускорение [ac] Скорость [V], Радиус [r] Ускорение [ac], Радиус [r] Угловая скорость [w], Радиус [r] Угловая скорость [w], Ускорение [ac] Радиус [r ], Период [T] Скорость [V], Период [T] Радиус [r], Частота [f] Скорость [V], Частота [f] Ускорение [ac], Период [T] Ускорение [ac], Частота [f ] Угловая скорость [w], скорость [V]
ВХОДНЫЕ ПАРАМЕТРЫ
Радиус [r] cmmkminchft
Угловая скорость [w] об / минrpsрад / с
Скорость [В] см / см / см / hkm / hin / sft / smph
Период [T] sminh
Частота [f] [Гц]
Центростремительное ускорение (a c ) см / с ^ 2 м / с ^ 2 м / ч ^ 2 км / ч ^ 2 дюйм / с ^ 2 фута / с ^ 2 миль / ч ^ 2

Примечание: используйте точку "."как десятичный разделитель.


РЕЗУЛЬТАТЫ
Параметр Решение Отряд
Радиус [r] cmmkminchft
Угловая скорость [w] об / минrpsрад / с
Скорость [В] см / см / см / hkm / hin / sft / smph
Период [T] sminh
Частота [f] [Гц]
Центростремительное ускорение (a c ) см / с ^ 2 м / с ^ 2 м / ч ^ 2 км / ч ^ 2 дюйм / с ^ 2 фута / с ^ 2 миль / ч ^ 2

Примечание. Округление по умолчанию составляет 5 знаков после запятой.

Центростремительное ускорение (a c ): Скорость изменения тангенциальной скорости.

Частота (f): Количество оборотов объекта по кругу в секунду.

Период (T): Время, необходимое для одного полного оборота объекта по окружности.

Скорость (В): Описывает, насколько быстро движется объект.

Скорость: Описывает, насколько быстро и в каком направлении движется объект.

Равномерное круговое движение

Равномерное круговое движение: движение по круговой траектории с постоянной скоростью.

Здесь задействовано ускорение?

  1. Да
  2. Нет

Да - скорость меняется из-за изменения ее направления.

Мяч вращается по кругу.Если веревку отпустить, когда мяч находится в показанном положении, по какому пути он пойдет?

Если струна отпущена, нет силы отклонить траекторию мяча, поэтому он продолжит движение по прямой линии, следуя траектории 2.

Основные определения

r = радиус круговой траектории

T = период, время на обход один раз

v = 2πr / Тл

Как и при прямолинейном движении, соотношение между a и v такое же, как между v и r:

а = 2πv / Тл

Объединение этих двух уравнений дает нам:

центростремительное ускорение: a c = v 2 / r

Угловые переменные

Для движения по круговым траекториям может быть полезно описать движение с помощью угловых переменных.Вместо того, чтобы спрашивать, какое расстояние было пройдено, мы иногда спрашиваем, на какой угол что-то развернулось. Есть эквивалентные вопросы по скорости и ускорению.

Расстояние: s = rθ

Скорость: v = rω

Ускорение: a т = rα

Это ускорение включает в себя ускорение или замедление объекта, когда он движется по круговой траектории, и равно нулю для равномерного кругового движения. А находится в направлении, касательном к окружности, поэтому это тангенциальное ускорение.Это сильно отличается от центростремительного ускорения, которое действует в радиальном направлении.

Схемы свободного тела

Имея в виду, что диаграмма свободного тела показывает все силы, действующие на объект, и что эти силы возникают в результате взаимодействий между этим объектом и другими объектами, как выглядит диаграмма свободного тела для Земли на ее примерно круговой орбите? вокруг Солнца?

Единственное взаимодействие, о котором мы должны беспокоиться, - это сила тяжести.Солнце оказывает на Землю гравитационную силу, которая направлена ​​к Солнцу.

Зная расстояние до Солнца и время, необходимое Земле для обращения вокруг Солнца, мы можем вычислить ускорение, которое испытывает Земля.

r = 150 млн км = 1,5 x 10 11 м

T = 1 год = π x 10 7 с

v = 2π r / t = 3 x 10 4 м / с = 30000 м / с = 30 км / с.

a c = v 2 / r = 9 x 10 8 /1.5 x 10 11 = 6 x 10 -3 м / с 2

Довольно маленький, но подходящий для удержания нас на орбите.

Центростремительное ускорение

Центростремительное ускорение - это особая форма ускорения, когда объект совершает равномерное круговое движение. Это:

a c = v 2 / r

и направлена ​​к центру круга.

Второй закон Ньютона может быть записан как:

Σ F = ma = mv 2 / r

Я предпочитаю НЕ использовать фразу «центростремительная сила», потому что она заставляет вас думать, что существует магическая сила, которая появляется, когда объект испытывает равномерное круговое движение.Такого не существует, и, на мой взгляд, вы никогда не должны помещать центростремительную силу на диаграмму свободного тела.

Когда объект совершает равномерное круговое движение, определенно существует результирующая сила, направленная к центру круга, но эта сила исходит от одной или нескольких стандартных сил, которые мы уже обсуждали. В зависимости от ситуации это может быть сила тяжести, нормальная сила, натяжение, трение, некоторая их комбинация или даже комбинация этих компонентов.

Равномерное круговое движение и простое гармоническое движение

Цели обучения

К концу этого раздела вы сможете:

  • Сравните простое гармоническое движение с равномерным круговым движением.

Рис. 1. Лошади этой карусели совершают равномерное круговое движение. (Источник: Wonderlane, Flickr)

Рис. 2. Тень шара, вращающегося с постоянной угловой скоростью ω на поворотной платформе, движется вперед и назад в точном простом гармоническом движении.

Есть простой способ создать простое гармоническое движение с помощью равномерного кругового движения. На рисунке 2 показан один из способов использования этого метода. Мяч прикреплен к равномерно вращающемуся вертикальному поворотному столу, и его тень проецируется на пол, как показано. Тень совершает простое гармоничное движение. Закон Гука обычно описывает однородные круговые движения (постоянная ω ), а не системы, которые имеют большие видимые смещения. Поэтому наблюдать проекцию равномерного кругового движения, как на рисунке 2, часто проще, чем наблюдать за точным крупномасштабным простым гармоническим осциллятором.При достаточно глубоком изучении простое гармоническое движение, создаваемое таким образом, может дать значительное понимание многих аспектов колебаний и волн и очень полезно с математической точки зрения. В нашем кратком описании мы укажем на некоторые из основных особенностей этих отношений и на то, как они могут быть полезны.

На рисунке 3 показана основная взаимосвязь между равномерным круговым движением и простым гармоническим движением. Точка P движется по окружности с постоянной угловой скоростью ω .Точка P аналогична объекту на карусели. Проекция положения P на фиксированную ось подвергается простому гармоническому движению и аналогична тени объекта. В момент времени, показанный на рисунке, проекция имеет положение x и движется влево со скоростью v . Скорость точки P по окружности равна [latex] \ bar {v} _ {\ text {max}} \\ [/ latex]. Проекция [latex] \ bar {v} _ {\ text {max} }} \\ [/ latex] на оси x - это скорость v простого гармонического движения по оси x .

Рис. 3. Точка движется по круговой траектории

На рисунке 3 мы видим, что точка P, движущаяся по круговой траектории с постоянной угловой скоростью ω , совершает равномерное круговое движение. Его проекция на ось x совершает простое гармоническое движение. Также показана скорость этой точки по кругу, [latex] \ bar {v} _ {\ text {max}} \\ [/ latex], и ее проекция, которая составляет v . Обратите внимание, что эти скорости образуют треугольник, аналогичный треугольнику смещения.

Чтобы увидеть, что проекция совершает простое гармоническое движение, обратите внимание, что ее положение x задается как

.

x = X cos θ,

, где θ = ωt , ω - постоянная угловая скорость, а X - радиус круговой траектории. Таким образом,

x = X cos ωt.

Угловая скорость ω выражается в радианах в единицу времени; в данном случае 2π радиан - это время одного оборота T .То есть [латекс] \ omega = \ frac {2 \ pi} {T} \\ [/ latex]. Подставляя это выражение для ω , мы видим, что позиция x задается следующим образом:

[латекс] x (t) = \ cos \ left (\ frac {2 \ pi {t}} {T} \ right) \\ [/ latex].

Рис. 4. Положение проекции равномерного кругового движения выполняет простое гармоническое движение, как показывает этот волнообразный график x против t .

Это то же самое выражение, которое мы использовали для положения простого гармонического осциллятора в Simple Harmonic Motion: A Special Periodic Motion.2}} \\ [/ латекс].

Это выражение для скорости простого гармонического осциллятора в точности совпадает с уравнением, полученным из соображений сохранения энергии в Энергии и Простом гармоническом осцилляторе. Вы можете начать видеть, что можно получить все характеристики простого гармонического осциллятора. движение из анализа проекции равномерного кругового движения.

Наконец, рассмотрим период движения проекции T . Этот период - время, за которое точка P совершит один оборот.Это время равно длине окружности 2π X , деленной на скорость по окружности, v max . Таким образом, период T равен

[латекс] T = \ frac {2 \ pi {X}} {v _ {\ text {max}}} \\ [/ latex].

Из соображений сохранения энергии мы знаем, что

[латекс] v _ {\ text {max}} = \ sqrt {\ frac {k} {m}} X \\ [/ latex].

Решение этого уравнения для

[латекс] \ frac {X} {v _ {\ text {max}}} \\ [/ latex] дает [латекс] \ frac {X} {v _ {\ text {max}}} = \ sqrt {\ frac {m} {k}} \\ [/ латекс].

Подставляя это выражение в уравнение для T , получаем

[латекс] T = 2 \ pi \ sqrt {\ frac {m} {k}} \\ [/ latex].

Таким образом, период движения такой же, как у простого гармонического осциллятора. Мы определили период для любого простого гармонического осциллятора, используя соотношение между равномерным круговым движением и простым гармоническим движением.

В некоторых модулях иногда упоминается связь между равномерным круговым движением и простым гармоническим движением.Более того, если вы углубитесь в изучение физики и ее приложений, эта взаимосвязь окажется для вас полезной. Это может, например, помочь проанализировать, как волны складываются при наложении.

Проверьте свое понимание

Определите объект, который совершает равномерное круговое движение. Опишите, как можно проследить простое гармоническое движение этого объекта в виде волны.

Решение

Плеер совершает равномерное круговое движение. Вы можете прикрепить дюбель к одной точке на внешнем крае поворотного стола и прикрепить ручку к другому концу дюбеля.Когда проигрыватель поворачивается, ручка будет двигаться. Вы можете перетащить под перо длинный лист бумаги, зафиксировав его движение как волну.

Сводка раздела

Проекция равномерного кругового движения совершает простое гармоническое колебание.

Задачи и упражнения

  1. (a) Какова максимальная скорость человека весом 85,0 кг, подпрыгивающего на весах для ванной с силовой константой 1,50 × 10 6 Н / м, если амплитуда отскока составляет 0,200 см? б) Каков максимальный запас энергии в пружине?
  2. Часы новинки имеют 0.Объект массой 0100 кг подпрыгивает на пружине с силовой постоянной 1,25 Н / м. Какова максимальная скорость объекта, если объект подпрыгивает на 3,00 см выше и ниже своего положения равновесия? (б) Сколько джоулей кинетической энергии имеет объект при максимальной скорости?
  3. В каких положениях скорость простого гармонического осциллятора вдвое меньше максимальной? То есть, какие значения [latex] \ frac {x} {X} \\ [/ latex] дают [latex] v = \ pm \ frac {{v} _ {\ text {max}}} {2} \ \ [/ latex], где X - амплитуда движения?
  4. Божья коровка сидит 12.0 см от центра музыкального альбома Beatles, вращающегося со скоростью 33,33 об / мин. Какова максимальная скорость его тени на стене за поворотным столом, если она освещена параллельно записи параллельными лучами заходящего Солнца?

Избранные решения проблем и упражнения

1. (а) 0,266 м / с; (б) 3,00 Дж

3. [латекс] \ pm \ frac {\ sqrt {3}} {2} \\ [/ latex]

Использование уравнений кругового движения - Высшая школа физики

Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает или другие ваши авторские права, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее в информацию, описанную ниже, назначенному ниже агенту.Если репетиторы университета предпримут действия в ответ на ан Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как в виде ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно искажать информацию о том, что продукт или действие нарушает ваши авторские права.Таким образом, если вы не уверены, что контент находится на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

Чтобы отправить уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени; Идентификация авторских прав, которые, как утверждается, были нарушены; Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \ достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например нам требуется а ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание к какой конкретной части вопроса - изображению, ссылке, тексту и т. д. - относится ваша жалоба; Ваше имя, адрес, номер телефона и адрес электронной почты; а также Ваше заявление: (а) вы добросовестно считаете, что использование контента, который, по вашему мнению, нарушает ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

Отправьте жалобу нашему уполномоченному агенту по адресу:

Чарльз Кон Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

6.2 Равномерное круговое движение - Физика

Задачи обучения разделу

К концу этого раздела вы сможете делать следующее:

  • Описывать центростремительное ускорение и связывать его с линейным ускорением
  • Опишите центростремительную силу и свяжите ее с линейной силой
  • Решение проблем, связанных с центростремительным ускорением и центростремительной силой

Поддержка учителей

Поддержка учителей

Цели обучения в этом разделе помогут вашим ученикам овладеть следующими стандартами:

  • (4) Научные концепции.Учащийся знает и применяет законы движения в самых разных ситуациях. Ожидается, что студент:
    • (C) анализировать и описывать ускоренное движение в двух измерениях с использованием уравнений, включая примеры снарядов и кругов.
    • (D) вычислить влияние сил на объекты, включая закон инерции, соотношение между силой и ускорением и характер пар сил между объектами.

Кроме того, Руководство лаборатории по физике для старших классов рассматривает содержание этого раздела лаборатории под названием «Круговое и вращательное движение», а также следующие стандарты:

  • (4) Научные концепции.Учащийся знает и применяет законы движения в самых разных ситуациях. Ожидается, что студент:
    • (C) анализировать и описывать ускоренное движение в двух измерениях с использованием уравнений, включая примеры снарядов и кругов.

Раздел Основные термины

центробежная сила центростремительное ускорение центростремительная сила равномерное круговое движение

Центростремительное ускорение

Поддержка учителя

Поддержка учителя

[BL] [OL] Проверьте равномерное круговое движение.Попросите учащихся привести примеры кругового движения. Просмотрите линейное ускорение.

В предыдущем разделе мы определили круговое движение. Простейшим случаем кругового движения является равномерное круговое движение, когда объект движется по круговой траектории с постоянной скоростью . Обратите внимание, что, в отличие от скорости, линейная скорость объекта при круговом движении постоянно меняется, потому что он всегда меняет направление. Из кинематики мы знаем, что ускорение - это изменение скорости либо по величине, либо по направлению, либо по обоим направлениям.Следовательно, объект, совершающий равномерное круговое движение, всегда ускоряется, даже если величина его скорости постоянна.

Вы сами испытываете это ускорение каждый раз, когда едете в машине на повороте. Если во время поворота удерживать рулевое колесо неподвижно и двигаться с постоянной скоростью, вы совершаете равномерное круговое движение. Вы замечаете ощущение скольжения (или отбрасывания, в зависимости от скорости) от центра поворота. На вас действует не настоящая сила - это происходит только потому, что ваше тело хочет продолжать движение по прямой (согласно первому закону Ньютона), в то время как машина сворачивает с этого прямолинейного пути.Внутри машины создается впечатление, что вас оттесняют от центра поворота. Эта фиктивная сила известна как центробежная сила. Чем резче кривая и чем выше ваша скорость, тем заметнее становится этот эффект.

Поддержка учителя

Поддержка учителя

[BL] [OL] [AL] Продемонстрируйте круговое движение, привязывая груз к веревке и вращая ее. Спросите студентов, что произойдет, если вы внезапно перережете веревку? В каком направлении движется объект? Почему? Что это говорит о направлении ускорения? Попросите учащихся привести примеры, когда они столкнулись с центростремительным ускорением.

На рис. 6.7 показан объект, движущийся по круговой траектории с постоянной скоростью. Направление мгновенной тангенциальной скорости показано в двух точках вдоль пути. Ускорение происходит в направлении изменения скорости; в этом случае он указывает примерно на центр вращения. (Центр вращения находится в центре круговой траектории). Если мы представим, что ΔsΔs становится все меньше и меньше, тогда ускорение будет указывать точно на в сторону центра вращения, но этот случай трудно изобразить.Мы называем ускорение объекта, движущегося в равномерном круговом движении, центростремительным ускорением a c , потому что центростремительное означает поиска центра .

Рисунок 6.7 Показаны направления скорости объекта в двух разных точках, и видно, что изменение скорости ΔvΔv указывает приблизительно на центр кривизны (см. Маленькую вставку). При очень малом значении ΔsΔs ΔvΔv указывает точно на центр круга (но это трудно изобразить).Поскольку ac = Δv / Δtac = Δv / Δt, ускорение также направлено к центру, поэтому a c называется центростремительным ускорением.

Поддержка учителей

Поддержка учителей

Обратите внимание на рисунок 6.7. На рисунке показан объект, движущийся по круговой траектории с постоянной скоростью, и направление мгновенной скорости двух точек на траектории. Ускорение происходит в направлении изменения скорости и указывает на центр вращения. Это строго верно только при стремлении ΔsΔs к нулю.

Теперь, когда мы знаем, что центростремительное ускорение направлено к центру вращения, давайте обсудим величину центростремительного ускорения. Для объекта, движущегося со скоростью v по круговой траектории с радиусом r , величина центростремительного ускорения составляет

.

Центростремительное ускорение больше на высоких скоростях и на крутых поворотах (меньший радиус), как вы могли заметить при вождении автомобиля, потому что автомобиль фактически толкает вас к центру поворота.Но немного удивительно, что a c пропорционально квадрату скорости. Это означает, например, что при повороте на 100 км / ч ускорение в четыре раза больше, чем при 50 км / ч.

Мы также можем выразить a c через величину угловой скорости. Подставляя v = rωv = rω в уравнение выше, мы получаем ac = (rω) 2r = rω2ac = (rω) 2r = rω2. Следовательно, величина центростремительного ускорения с точки зрения величины угловой скорости равна

Советы для успеха

Уравнение, выраженное в форме a c = 2 , полезно для решения задач, в которых вам известна угловая скорость, а не тангенциальная скорость.

Виртуальная физика

Движение божьей коровки в 2D

В этом моделировании вы экспериментируете с положением, скоростью и ускорением божьей коровки при круговом и эллиптическом движении. Переключите тип движения с линейного на круговое и наблюдайте за векторами скорости и ускорения. Затем попробуйте эллиптическое движение и обратите внимание, как векторы скорости и ускорения отличаются от векторов кругового движения.

Проверка захвата

Какой угол между ускорением и скоростью при равномерном круговом движении? Какое ускорение испытывает тело при равномерном круговом движении?

  1. Угол между ускорением и скоростью равен 0 °, и тело испытывает линейное ускорение.
  2. Угол между ускорением и скоростью равен 0 °, и тело испытывает центростремительное ускорение.
  3. Угол между ускорением и скоростью составляет 90 °, и тело испытывает линейное ускорение.
  4. Угол между ускорением и скоростью составляет 90 °, и тело испытывает центростремительное ускорение.

Центростремительная сила

Поддержка учителя

Поддержка учителя

[BL] [OL] [AL] Используя ту же демонстрацию, что и раньше, попросите учащихся предсказать отношения между величинами угловой скорости, центростремительного ускорения, массы, центростремительной силы.Предложите студентам поэкспериментировать, используя веревки разной длины и веса.

Поскольку объект в равномерном круговом движении испытывает постоянное ускорение (за счет изменения направления), мы знаем из второго закона движения Ньютона, что на объект должна действовать постоянная чистая внешняя сила.

Любая сила или комбинация сил могут вызвать центростремительное ускорение. Вот лишь несколько примеров: натяжение веревки на тросовом шаре, сила притяжения Земли на Луне, трение между дорогой и шинами автомобиля при движении по кривой или нормальная сила американских горок. следите за тележкой во время петли.

Любая чистая сила, вызывающая равномерное круговое движение, называется центростремительной силой. Направление центростремительной силы - к центру вращения, такое же, как и для центростремительного ускорения. Согласно второму закону движения Ньютона, чистая сила вызывает ускорение массы согласно F net = м a . Для равномерного кругового движения ускорение является центростремительным: a = a c . Следовательно, величина центростремительной силы F c равна Fc = macFc = mac.

Используя две разные формы уравнения для величины центростремительного ускорения, ac = v2 / rac = v2 / r и ac = rω2ac = rω2, мы получаем два выражения, включающих величину центростремительной силы F c . Первое выражение относится к тангенциальной скорости, второе - к угловой скорости: Fc = mv2rFc = mv2r и Fc = mrω2Fc = mrω2.

Обе формы уравнения зависят от массы, скорости и радиуса круговой траектории. Вы можете использовать любое более удобное выражение для центростремительной силы.Второй закон Ньютона также гласит, что объект будет ускоряться в том же направлении, что и чистая сила. По определению центростремительная сила направлена ​​к центру вращения, поэтому объект также будет ускоряться к центру. Прямая линия, проведенная от круговой траектории к центру круга, всегда будет перпендикулярна тангенциальной скорости. Обратите внимание, что если вы решите первое выражение для r , вы получите

Из этого выражения мы видим, что для данной массы и скорости большая центростремительная сила вызывает малый радиус кривизны, то есть резкую кривую.

Рисунок 6.8 На этом рисунке сила трения f служит центростремительной силой F c . Центростремительная сила перпендикулярна тангенциальной скорости и вызывает равномерное круговое движение. Чем больше центростремительная сила F c , тем меньше радиус кривизны r и тем круче кривизна. Нижняя кривая имеет ту же скорость v , но большая центростремительная сила F c дает меньший радиус r'r '.

Watch Physics

Центростремительная сила и ускорение Intuition

В этом видео объясняется, почему центростремительная сила создает центростремительное ускорение и равномерное круговое движение. Он также охватывает разницу между скоростью и скоростью и показывает примеры равномерного кругового движения.

Поддержка учителей
Предупреждение о неправильном представлении
Поддержка учителей

Некоторые студенты могут запутаться между центростремительной силой и центробежной силой. Центробежная сила - это не реальная сила, а результат ускоряющейся системы отсчета, такой как вращающийся автомобиль или вращающаяся Земля.Центробежная сила относится к вымышленному центру , убегающему от силы .

Проверка захвата

Представьте, что вы раскачиваете йо-йо по вертикальному кругу по часовой стрелке перед собой, перпендикулярно направлению, в которое вы смотрите. Если веревка порвется, когда йо-йо достигнет самого нижнего положения, ближайшего к полу. Что будет с йо-йо после разрыва струны?

  1. Йо-йо полетит внутрь в направлении центростремительной силы.
  2. Йо-йо полетит наружу в направлении центростремительной силы.
  3. Йо-йо полетит влево в направлении тангенциальной скорости.
  4. Йо-йо полетит вправо в направлении тангенциальной скорости.

Решение проблем центростремительного ускорения и центростремительной силы

Чтобы получить представление о типичных величинах центростремительного ускорения, мы проведем лабораторию по оценке центростремительного ускорения теннисной ракетки, а затем, в нашем первом рабочем примере, сравним центростремительное ускорение автомобиля, огибающего кривую, с ускорением свободного падения.Для второго рабочего примера мы вычислим силу, необходимую для того, чтобы автомобиль проехал по кривой.

Snap Lab

Оценка центростремительного ускорения

В этом упражнении вы будете измерять качание клюшки для гольфа или теннисной ракетки, чтобы оценить центростремительное ускорение конца клюшки или ракетки. Вы можете сделать это в замедленном режиме. Напомним, что уравнение центростремительного ускорения: ac = v2rac = v2r или ac = rω2ac = rω2.

  • Одна теннисная ракетка или клюшка для гольфа
  • Один таймер
  • Одна линейка или рулетка

Порядок действий

  1. Работа с партнером.Стойте на безопасном расстоянии от вашего партнера, когда он или она размахивает клюшкой для гольфа или теннисной ракеткой.
  2. Опишите движение качелей - это равномерное круговое движение? Почему или почему нет?
  3. Постарайтесь сделать свинг как можно ближе к равномерному круговому движению. Какие корректировки пришлось внести вашему партнеру?
  4. Измерьте радиус кривизны. Что вы измерили физически?
  5. Используя таймер, найдите либо линейную, либо угловую скорость, в зависимости от того, какое уравнение вы решите использовать.
  6. Каково примерное центростремительное ускорение на основе этих измерений? Как вы думаете, насколько они точны? Почему? Как вы и ваш партнер можете сделать эти измерения более точными?
Подставка для учителя
Подставка для учителя

Размах клюшки или ракетки можно сделать очень близким к равномерному круговому движению. Для этого человек должен двигать его с постоянной скоростью, не сгибая руки. Длина руки плюс длина клюшки или ракетки - это радиус кривизны.Точность измерения угловой скорости и углового ускорения будет зависеть от разрешающей способности используемого таймера и ошибки наблюдения человека. Размах клюшки или ракетки может быть очень близок к равномерному круговому движению. Для этого человек должен двигать его с постоянной скоростью, не сгибая руки. Длина руки плюс длина клюшки или ракетки - это радиус кривизны. Точность измерения угловой скорости и углового ускорения будет зависеть от разрешающей способности используемого таймера и ошибки наблюдения человека.

Проверка захвата

Было ли более полезным использовать в этом упражнении уравнение ac = v2rac = v2r или ac = rω2ac = rω2? Почему?

  1. Должно быть проще использовать ac = rω2ac = rω2, потому что измерение угловой скорости путем наблюдения было бы проще.
  2. Должно быть проще использовать ac = v2rac = v2r, потому что измерение тангенциальной скорости посредством наблюдения было бы проще.
  3. Должно быть проще использовать ac = rω2ac = rω2, потому что измерение угловой скорости путем наблюдения было бы затруднительно.
  4. Должно быть проще использовать ac = v2rac = v2r, потому что измерение тангенциальной скорости посредством наблюдения было бы затруднительно.

Рабочий пример

Сравнение центростремительного ускорения автомобиля, огибающего кривую, с ускорением под действием силы тяжести

Автомобиль следует кривой радиусом 500 м со скоростью 25,0 м / с (около 90 км / ч). Какова величина центростремительного ускорения автомобиля? Сравните центростремительное ускорение для этой довольно пологой кривой, снятой на скорости шоссе, с ускорением свободного падения ( g ).

Стратегия

Поскольку дана линейная, а не угловая скорость, наиболее удобно использовать выражение ac = v2rac = v2r, чтобы найти величину центростремительного ускорения.

Решение

Ввод данных значений v = 25,0 м / с и r = 500 м в выражение для a c дает

ac = v2r = (25,0 м / с) 2500 м = 1,25 м / с 2. ac = v2r = (25,0 м / с) 2500 м = 1,25 м / с2.

Обсуждение

Для сравнения с ускорением свободного падения ( г = 9.80 м / с 2 ), берем соотношение ac / g = (1,25 м / с2) / (9,80 м / с2) = 0,128 ac / g = (1,25 м / с2) / (9,80 м / с2) = 0,128. Следовательно, ac = 0,128gac = 0,128g, что означает, что центростремительное ускорение составляет примерно одну десятую ускорения свободного падения.

Рабочий пример

Сила трения на шинах автомобиля, огибающих кривую
  1. Рассчитайте центростремительную силу, действующую на автомобиль массой 900 кг, который движется по кривой радиусом 600 м на горизонтальной поверхности со скоростью 25,0 м / с.
  2. Статическое трение предотвращает скольжение автомобиля.Найдите величину силы трения между шинами и дорогой, которая позволяет автомобилю обогнуть поворот, не соскальзывая по прямой.

Стратегия и решение для (а)

Мы знаем, что Fc = mv2rFc = mv2r. Следовательно,

Fc = mv2r = (900 кг) (25,0 м / с) 2600 м = 938 Н. Fc = mv2r = (900 кг) (25,0 м / с) 2600 м = 938 Н.

Стратегия и решение для (b)

На изображении выше показаны силы, действующие на автомобиль при повороте кривой. На этой диаграмме автомобиль движется по странице, как показано, и поворачивает налево.Трение действует влево, ускоряя автомобиль к центру поворота. Поскольку трение - единственная горизонтальная сила, действующая на автомобиль, в этом случае оно обеспечивает всю центростремительную силу. Следовательно, сила трения является центростремительной силой в этой ситуации и направлена ​​к центру кривой.

Обсуждение

Поскольку мы нашли силу трения в части (b), мы также можем найти коэффициент трения, поскольку f = μsN = μsmgf = μsN = μsmg.

Практические задачи

9.

Какое центростремительное ускорение ощущают пассажиры автомобиля, движущегося со скоростью 12 м / с по кривой радиусом 2,0 м?

  1. 3 м / с 2
  2. 6 м / с 2
  3. 36 м / с 2
  4. 72 м / с 2
10.

Вычислить центростремительное ускорение объекта, движущегося по траектории с радиусом кривизны 0,2 м и угловой скоростью 5 рад / с.

  1. 1 м / с
  2. 5 м / с
  3. 1 м / с 2
  4. 5 м / с 2

Проверьте свое понимание

11.

Что такое равномерное круговое движение?

  1. Равномерное круговое движение - это когда объект ускоряется по круговой траектории с постоянно увеличивающейся скоростью.
  2. Равномерное круговое движение - это когда объект движется по круговой траектории с переменным ускорением.
  3. Равномерное круговое движение - это когда объект движется по круговой траектории с постоянной скоростью.
  4. Равномерное круговое движение - это когда объект движется по круговой траектории с переменной скоростью.
12.

Что такое центростремительное ускорение?

  1. Ускорение объекта, движущегося по круговой траектории и радиально направленного к центру круговой орбиты
  2. Ускорение объекта, движущегося по круговой траектории и тангенциально направленного по круговой траектории
  3. Ускорение объекта, движущегося по линейной траектории и направленного в направлении движения объекта
  4. Ускорение объекта, движущегося по линейной траектории и направленного в направлении, противоположном движению объекта
13.

Существует ли чистая сила, действующая на объект при равномерном круговом движении?

  1. Да, объект ускоряется, поэтому на него должна действовать чистая сила.
  2. Да потому что разгона нет.
  3. Нет, потому что ускорение есть.
  4. Нет, потому что разгона нет.
14.

Укажите два примера сил, которые могут вызвать центростремительное ускорение.

  1. Сила притяжения Земли на Луну и нормальная сила
  2. Сила притяжения Земли на Луну и натяжение веревки на вращающемся тезерболе
  3. Нормальная сила и сила трения, действующие на движущийся автомобиль
  4. Нормальная сила и натяжение веревки на тезерболе

Поддержка учителей

Поддержка учителей

Используйте вопросы «Проверьте свое понимание», чтобы оценить, усвоили ли учащиеся учебные цели этого раздела.Если учащиеся борются с определенной целью, формирующая оценка поможет определить, какая цель вызывает проблему, и направит учащихся к соответствующему содержанию.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *