Как узнать крутящий момент двигателя: гидравлика, гидравлические оборудование, пневматические оборудование, смазочное оборудование, фильтры

Содержание

Как узнать крутящий момент двигателя?

Крутящий момент двигателя

Рассуждая о главнейшем автомобильном узле — двигателе, стало принято превозносить мощность превыше других параметров. Между тем, вовсе не мощностные способности являются первостепенной характеристикой силовой установки, а явление, называемое крутящим моментом. Потенциал любого автомобильного двигателя напрямую определяется данной величиной.

Понятие крутящего момента ДВС. О сложном простыми словами

Крутящим моментом применительно к двигателям автомобилей называется произведение значения силы и плеча рычага, или, простыми словами, сила давления поршня на шатун. Исчисляется эта сила ньютон-метрами, и чем выше ее величина, тем резвее машина.

Более того, мощность двигателя, выражаемая в ваттах, — это не что иное, как умноженное на частоту вращения коленвала значение крутящего момента в ньютон-метрах.

Представим лошадь, которая тащит тяжелые сани и увязает в канаве. Вытянуть сани не получится, если лошадь будет пытаться выскочить из канавы с разбега. Здесь необходимо приложить определенную силу, которая и будет являться крутящим моментом (КМ).

Часто крутящий момент путают с частотой вращения коленвала. В реальности это два совершенно разных понятия. Если вернуться к примеру с лошадью, застрявшей в канаве, частота шага будет символизировать частоту оборотов двигателя, тогда как сила, прикладываемая животным при отталкивании во время шага, олицетворяет в данном случае крутящий момент.

Факторы, влияющие на величину крутящих моментов

Из примера с лошадью легко догадаться, что в данном случае значение КМ будет во многом определяться мышечной массой животного. Применительно к автомобильному двигателю внутреннего сгорания эта величина зависит от рабочего объема силовой установки, а также от:

  • уровня рабочего давления внутри цилиндров;
  • размера поршня;
  • диаметра кривошипа коленвала.

Наиболее сильно крутящий момент зависим от рабочего объема и давления внутри силовой установки, и эта зависимость прямо пропорциональна. Другими словами, двигатели с большим объемом и давлением, соответственно, отличаются и большим моментом.

Прямая зависимость наблюдается также между КМ и радиусом кривошипа коленвала. Однако конструкция современных автомобильных двигателей такова, что не позволяет варьировать значения момента в широких пределах, из-за чего возможности добиться повышенного крутящего момента за счет радиуса кривошипа коленчатого вала у конструкторов ДВС невелики. Вместо этого разработчики прибегают к таким способам увеличить момент, как использование технологий турбонаддува, увеличение степени сжатия, оптимизация процесса сгорания топлива, использование впускных коллекторов специальных конструкций, и т.д.

Важно, что КМ увеличивается с ростом оборотов двигателя, однако после достижения максимума на определенном диапазоне крутящий момент понижается несмотря на продолжающийся прирост частоты вращения коленвала.

Влияние крутящего момента ДВС на характеристики автомобиля

Величина крутящего момента выступает тем самым фактором, который непосредственным образом задает динамику разгона автомобиля. Если вы — заядлый автолюбитель, то могли заметить, что разные автомобили, но с одинаковым силовым агрегатом, по-разному ведут себя на дороге. Или на порядок менее мощный автомобиль на дороге превосходит того, у которого под капотом лошадиных сил больше, причем даже тогда, когда сравнимые авто имеют одинаковые размеры и вес. Причина заключается как раз в разнице в крутящих моментах.

Лошадиные силы можно представить как индикатор выносливости мотора. Именно этот показатель определяет скоростные возможности автомобиля. Но поскольку крутящий момент является разновидностью силы, то непосредственно от его величины, а не от количества «лошадей», зависит то, насколько быстро автомобиль сможет достичь максимального скоростного режима. По этой причине далеко не каждое мощное авто обладает хорошей динамикой разгона, а те, что способны разгоняться быстрее других, необязательно оснащены мощным двигателем.

Вместе с тем высокий крутящий момент еще не гарантирует сам по себе отличную динамичность машины. Ведь кроме прочего, динамика увеличения скорости, а также способность авто к резвому преодолению подъемов участков, зависит от диапазона работы силовой установки, передаточных чисел трансмиссии, отзывчивости педали газа. Наряду с этим нужно учитывать, что момент существенно понижается из-за различных противодействующих явлений — сил качения колес и трения в различных автомобильных узлах, из-за аэродинамических и прочих явлений.

Крутящий момент vs. мощность. Связь с динамикой автомобиля

Мощность — производное такого явления, как крутящий момент, ею выражается работа силовой установки, выполненная за определенное время. А поскольку КМ олицетворяет собой непосредственную работу мотора, то в виде мощности отражается величина момента в соответствующий период времени.

Наглядно увидеть связь между мощностью и КМ позволяет следующая формула:

P=М*N/9549

Где: P в формуле означает мощность, М — крутящий момент, N — обороты двигателя за минуту, а 9549 — коэффициент обращения N в радианы в секунды. Результатом вычислений по данной формуле будет являться число в киловаттах. Когда нужно перевести полученный результат в лошадиные силы, полученное число умножают на 1.36.

По сути, крутящим моментом является мощность при неполных оборотах, например, во время обгона. Мощность возрастает по мере роста момента, и чем выше этот параметр, тем больше запас кинетической энергии, тем легче автомобиль преодолевает противодействующие на него силы и тем лучше его динамические характеристики.

При этом важно помнить, что мощность достигает своих максимальных значений не сразу, а постепенно. Ведь с места автомобиль трогается на минимуме оборотов, и затем скорость наращивается. Именно здесь и подключается сила под названием крутящий момент, и именно она определяет тот самый временной отрезок, за который авто достигнет своей пиковой мощности, или, другими словами, скоростную динамику.

Из этого следует, что машина с силовым агрегатом мощнее, но обладающим недостаточно высоким крутящим моментом, уступит по скорости разгона модели с мотором, который, напротив, не способен похвастать хорошей мощностью, но превосходит конкурента в крутящем моменте. Чем большая тяга, сила передается ведущим колесам и чем богаче диапазон оборотов силовой установки, в котором достигается высокий КМ, тем быстрее происходит ускорение автомобиля.

В то же время существование крутящего момента возможно без мощности, но существование мощности без момента — нет. Представьте, что наша лошадь с санями увязла в грязи. Производимая лошадью мощность в этот момент будет равняться нулю, но крутящий момент (попытки выбраться, тяга), хотя его может быть недостаточно для движения, будет присутствовать.

Дизельный момент. Отличия между КМ бензинового и дизельного двигателей

Если сравнивать бензиновые силовые установки с дизельными, то отличительной особенностью последних (всех без исключения) является повышенный крутящий момент при меньшем количестве лошадиных сил.

Бензиновый ДВС достигает своих максимальных значений КМ при трех-четырех тысячах оборотов в минуту, но затем способен стремительно нарастить мощность, раскрутившись за минуту до семи-восьми тысяч раз. Диапазон оборотов же коленчатого вала дизельного двигателя обычно ограничен тремя-пятью тысячами. Однако в дизельных установках больше ход поршня, выше уровень сжатия и другая специфика сгорания топлива, что обеспечивает не только более высокий относительно бензиновых установок крутящий момент, но и доступность этой силы едва ли не с холостого хода.

По этой причине смысла добиваться повышенной мощности дизельных двигателей нет: уверенная, доступная «с низов» тяга, высокий коэффициент полезного действия и топливная эффективность полностью нивелируют отставание таких ДВС от бензиновых как по мощностным показателям, так и по скоростному потенциалу.

Особенности правильного разгона машины. Как выжать из авто максимум

Основа правильного разгона — умение работать с коробкой передач и следование принципу «от максимума момента до пика мощности». То есть, добиться наилучшей динамики разгона машины можно только поддерживая частоту вращения коленвала в том диапазоне значений, при которых КМ достигает своего максимума. Очень важно, чтобы обороты совпали с пиком крутящего момента, но при этом должен оставаться запас по их увеличению. Если разгоняться на оборотах выше пиковой мощности, динамика разгона будет меньше.

Диапазон оборотов, соответствующий максимуму крутящего момента, обусловлен характеристиками двигателя.

Выбор двигателя. Какой лучше — с высоким моментом или повышенной мощностью?

Если подвести итоговую черту под всем вышесказанным, то станет очевидно, что:

  • крутящий момент — ключевой фактор, характеризующий возможности силовой установки;
  • мощность — это производная КМ и, соответственно, вторичная характеристика двигателя;
  • прямую зависимость мощности от момента можно увидеть по выведенной физиками формуле Р (мощность) = М (момент) * n (частота вращения коленвала в минуту).

Таким образом, выбирая между двигателем с большим количеством лошадиных сил, но меньшим крутящим моментом, и двигателем с большим КМ, но меньшей мощностью, приоритетным будет второй вариант. Использовать весь заложенный в автомобиль потенциал позволит только такой мотор.

При этом не следует забывать о взаимосвязи динамических характеристик автомобиля с такими факторами, как отзывчивость педали газа и коробка переключения передач. Лучшим вариантом станет то авто, которое не только оснащено двигателем с высоким крутящим моментом, но и имеет наименьшую длину задержки между нажатием педали газа и реакцией двигателя, а также трансмиссию с короткими соотношениями передач. Наличие этих особенностей компенсирует маломощность силовой установки, заставляя автомобиль разгоняться быстрее, чем машина с двигателем похожей конструкции, но с меньшей силой тяги.

Видео: Мощность и крутящий момент двигателя

Видео: Крутящий момент, обороты и мощность двигателя. Простыми словами

Разница между крутящим моментом и лошадиными силами

Парадокс, но лишь немногие автолюбители ясно представляют принципиальную разницу между «лошадиными силами» и «ньютон-метрами», в которых измеряется крутящий момент. В обиходе определение крутящего момента двигателя напрямую связывают с динамикой разгона, а лошадиные силы с максимальной скорость. Если говорить уж совсем грубо, то формулировка вполне удовлетворительна, хоть и не объясняет всей сути физических процессов. Восполнить теоретические пробелы, а также получить наглядное представление о том, что такое крутящий момент двигателя, — вам поможет предоставленный ниже материал.

Момент вращения

Если выражаться языком физики, то понятие о вращающем моменте легко уяснить, зная принцип получения преимущества от использования рычага. Вычисляемые путем сложения приложенных на рычаг усилий (вес груза) к длине плеча (рычага) «ньютон-метры», показывают потенциальное количество выполняемой работы. В случае с ДВС вес груза – это усилие с которым поршень после сгорания топливно-воздушной смеси совершает возвратно-поступательное движение. Длина плеча будет не чем иным, как ходом поршня (расстояние от ВМТ до НМТ). Вращающее усилие создается только во время рабочего такта.

От чего зависит полка крутящего момента

Согласно расчетной формуле Мкр = F х L, где F – это сила, а L – длина плеча, момент вращения будет зависеть от КПД сгорания топливно-воздушной смеси (F) и величины хода поршней (L).

Поскольку автомобиль – это комплексный механизм, на крутящий момент двигателя влияет ряд характеристик других узлов и агрегатов. Ведущие колеса автомобиля будут получать максимальное тяговое усилие лишь в тот момент, когда взаимодействие механизмов является оптимальным. Пик крутящего момента достигается на таких оборотах двигателя, когда наполнение камеры сгорания рабочей смесью, сжигание продуктов горение и вывод отработавших газов осуществляется с минимальными механическими потерями. Для каждого двигателя этот параметр колеблется в зависимости от конструктивных особенностей и типа используемого топлива.

Количество полезной работы, преобразованное возвратно-поступательными движениями КШМ, обозначается ньютон-метрами (крутящий момент). Тогда что такое мощность двигателя? Мощностью именуется количество произведенной работы за единицу времени. Иными словами, количество единиц крутящего момента, которое мотор способен выдать за определенный промежуток времени. Мощность двигателя измеряется в киловаттах (кВт).

Формула для расчета мощности в киловаттах:

P=Mkp*n/9549, где n – количество оборотов коленвала в минуту; Mkp – вращающий момент на коленчатом валу.

Нехитрое логическое умозаключение приводит нас к тому, что мощность мотора зависит от количества оборотов.

Соотношение крутящего момента к мощности

Для получения наглядного представления о взаимодействии двух величин рассмотрим основные характеристики мотора на графике. Он демонстрирует выдаваемую двигателем мощность и крутящий момент двигателя в зависимости от оборотов коленчатого вала.

График отчетливо демонстрирует тот факт, что тяговое усилие на колесах не прямо пропорционален количеству оборотов либо мощности. Двигатель достигает пика крутящего момента уже на 3 тыс. об/мин. Максимум мощности доступно на 5500 об/мин. В обоих случаях обороты продолжают расти, но отдача падает. Для обозначенного двигателя обороты от 2500 до 5 тыс. наиболее оптимальные.

В этом режиме работы близкая к максимальному значению «полка» момента позволит полноценно реализовать потенциал мотора на протяжении всего отрезка.

Приведенный график является примером гражданской настройки современных бензиновых моторов. Преимущества очевидны:

  • стабильный прирост мощности;
  • достаточно широкая «полка» с плавным приростом и затуханием.

Настройка подобного типа позволяет добиться «эластичности» двигателя. Такая работа обеспечивается не только программно (настройка ЭБУ), но и применением различных вспомогательных технологий (изменяемые фазы газораспределения).

Разница мощностных характеристик во многом зависит от конструкции системы впуска и выпуска. К примеру, двигатели оснащенные турбонаддувом в точке выхода на «буст» получают значительную прибавку в динамике. Крутящий момент и количество лошадиных сил таких моделей значительно превышают своих атмосферных собратьев.

Что такое лошадиные силы

Наблюдательный читатель, скорей всего, отметит подозрительным тот факт, что до сих пор не прозвучало, всеми так любимое «лошадиные силы». Суть в том, что «скакуны» — это лишь дань моде тех времен, когда механизмам приходилось доказывать свое преимущество над живой рабочей силой. Поэтому превосходство (способность выполнить определенное количество работы) удобно было выражать в пересчете на потенциал одной лошади. Фактически 1 л.с – это усилие, которого достаточно для поднятия груза массою 75 кг на 1 м за 1 с.

Для того чтобы получить «лошадиные силы» достаточно умножить значение мощности в киловаттах на коэффициент 1,36.

Покупатели не потеряют ровным счетом ничего, если производители откажутся использовать «л.с» в качестве показателя мощностных характеристики автомобилей. Обозначить крутящий момент и мощность в кВт вполне достаточно. Но традиция настолько глубоко запечатлелась в сознании, что тратить усилия на ее разрушения попросту нецелесообразно.

  • Мощность мотора зависит от крутящего момента;
  • «л.с» рассчитаны на достижение максимальной скорости. Автомобиль с большим количеством «скакунов» под капотом сможет развить внушительную скорость, но это займет очень много времени;
  • от тягового усилия зависит насколько быстро двигатель сможет развить свою максимальную мощность;
  • большое количество «ньютон-метров» позволяет более выгодно использовать потенциал двигателя. Такие моторы легче переносят нагрузки;
  • чем шире «полка» момента, тем эластичней двигатель и приятней в управлении автомобиль;
  • ввиду особенностей дизельных ДВС (большая степень сжатия, медленное горение смеси), а также применения современных систем дополнительного нагнетания воздуха, дизельные двигатели имеют больший крутящий момент с самих низких оборотов.

Выражаясь простым языком, «ньютон-метры» – это сила вашего автомобиля, а киловатты – выносливость.

Удивляюсь, как можно делать такие выводы.
1.»Мощность мотора зависит от крутящего момента (является его производной)». Мощность мотора на замеренных оборотах — это произведения момента на обороты, при которых он измерен, и на постоянный коэффициент приведения размерности. Т.е. мощность не производная от момента, произведение момента на обороты! Где обороты не менее значимы.
2. «от тягового усилия зависит насколько быстро двигатель сможет развить свою максимальную мощность» Не от усилия зависит скорость набора оборотов до значения максимальной мощности, а от конструкции мотора. Например моторы с коротким ходом быстрее раскручиваются.
3.»большое количество «ньютон-метров» позволяет более выгодно использовать потенциал двигателя» С чего это вдруг? И какой потенциал?
4. «Выражаясь простым языком, «ньютон-метры» – это сила вашего автомобиля, а киловатты – выносливость.» Простым языком-киловатты-это и услие, что может создать мотор на колесах и максимальная скорость. А ньютон -метры это требуемые передаточные числа в трансмиссии и диапазон оборотов двигателя на которых он отдает свою мощность для нужного стиля езды.
Резюмируя: Моторы создаются под конкретные автомобили. И выбор баланса между значением момента и оборотами на которых он достигается зависит от автомобиля.

Спасибо за комментарии и желание сделать информацию на нашем ресурсе более достоверной!

Удивляюсь, как можно делать такие выводы.
1.»Мощность мотора зависит от крутящего момента (является его производной)». Мощность мотора на замеренных оборотах — это произведения момента на обороты, при которых он измерен, и на постоянный коэффициент приведения размерности. Т.е. мощность не производная от момента, произведение момента на обороты! Где обороты не менее значимы.

Ваше замечание было бы крайне актуально, если бы в статье отсутствовала формула расчета мощности двигателя. «P=Mkp*n/9549, где n – количество оборотов коленвала в минуту; Mkp – вращающий момент на коленчатом валу»; там же: «Нехитрое логическое умозаключение приводит нас к тому, что мощность мотора зависит от количества оборотов». Как мы понимаем, претензия только к понятию «производная»? Признаем, что формулировка неверна, но при внимательном прочтении статьи никак не влияет на суть понимания поставленного вопроса. Мощность не является производной от крутящего момента, если придерживаться общепринятых трактовок этого понятия. В любом случае суть утверждения зависимости мощности мотора от крутящего момента своей достоверности не меняет (а именно это написано перед скобками).

2. «от тягового усилия зависит насколько быстро двигатель сможет развить свою максимальную мощность» Не от усилия зависит скорость набора оборотов до значения максимальной мощности, а от конструкции мотора. Например моторы с коротким ходом быстрее раскручиваются.

Чем быстрее нарастает крутящий момент, и чем раньше достигается ровная полка максимального крутящего момента, тем быстрее двигатель выйдет на пиковую мощность. Цитаты из статьи: «график отчетливо демонстрирует тот факт, что тяговое усилие на колесах не прямо пропорционален количеству оборотов либо мощности.», «Поскольку автомобиль – это комплексный механизм, на крутящий момент двигателя влияет ряд характеристик других узлов и агрегатов. Ведущие колеса автомобиля будут получать максимальное тяговое усилие лишь в тот момент, когда взаимодействие механизмов является оптимальным. Пик крутящего момента достигается на таких оборотах двигателя, когда наполнение камеры сгорания рабочей смесью, сжигание продуктов горение и вывод отработавших газов осуществляется с минимальными механическими потерями. Для каждого двигателя этот параметр колеблется в зависимости от конструктивных особенностей и типа используемого топлива.», «Разница мощностных характеристик во многом зависит от конструкции системы впуска и выпуска. К примеру, двигатели оснащенные турбонаддувом в точке выхода на «буст» получают значительную прибавку в динамике.»

3.»большое количество «ньютон-метров» позволяет более выгодно использовать потенциал двигателя» С чего это вдруг? И какой потенциал?

Чем ровнее полка момента, и чем раньше достигается пиковый крутящий момент, тем двигатель более тяговитый и эластичный.
4. «Выражаясь простым языком, «ньютон-метры» – это сила вашего автомобиля, а киловатты – выносливость.» Простым языком-киловатты-это и услие, что может создать мотор на колесах и максимальная скорость. А ньютон -метры это требуемые передаточные числа в трансмиссии и диапазон оборотов двигателя на которых он отдает свою мощность для нужного стиля езды.

На то он и «простой язык», что допускает размытость формулировки. Опять таки, приведенная в статье формула расчета мощности в киловаттах «P=Mkp*n/9549, где n – количество оборотов коленвала в минуту; Mkp – вращающий момент на коленчатом валу» позволяет понять, что представить себе киловатты без ньютон-метров невозможно. О каких передаточных числах идет речь, если мощность двигателя может быть замерена, что называется, на маховике.

Резюмируя: Моторы создаются под конкретные автомобили. И выбор баланса между значением момента и оборотами на которых он достигается зависит от автомобиля.
Разве в статье есть утверждения, противоречащие вашему выводу?

Что важнее: крутящий момент или мощность двигателя?

Так уж повелось, что любого автолюбителя при оценке способностей машины в первую очередь интересует такой показатель, как мощность. Но не менее важной характеристикой является крутящий момент. И вот почему

Несмотря на то, что гужевой транспорт давно «канул в Лету» и «л. с.» является персоной нон-грата в международной системе классификации, «лошадиная» единица измерения мощности продолжает пользоваться спросом. Причем не только у простого люда, но и на государственном уровне. Для этого достаточно взглянуть на квитанцию об уплате транспортного налога.

Между тем, появившаяся в период промышленной революции «л. с.» весьма условна. А все потому, что она определяет относительный уровень производительности среднестатистической лошади путем определения усилий, необходимых для подъема 75-килограммового груза на один метр за одну секунду. Новая единица измерения, взятая на вооружение фабрикантами для оценки превосходства стационарных механизмов над животными, со временем перекочевала в мир подвижного состава.

Позже шотландский инженер Джеймс Уатт ввел в обращение официальную единицу измерения мощности своего имени – «Вт», которую для удобства использования укрупнили до «кВт». Ватт, синхронизированный с л. с. в соотношении 1 кВт = 1,36 л. с., так и не добился всеобщей любви, оставив пальму первенства конской силе. Однако мощность мощностью, но, как говорится, двигает машину не она, а крутящий момент, измеряемый в ньютон-метрах (Н∙м).

Что такое крутящий момент?

У многих автомобилистов нет адекватного представления о том, что это за «зверь». О нем, впрочем, как и о мощности, бытует расхожее мнение: чем больше, тем лучше. По сути, это тесно связанные характеристики. Мощность в ваттах не что иное, как крутящий момент в ньютон-метрах, умноженный на число оборотов и на 0,1047. Другими словами, мощность демонстрирует количество работы, выполняемой двигателем за определенный промежуток времени, а крутящий момент отражает способность силового агрегата эту работу совершить. Если, скажем, автомобиль завяз в глинистом грунте и обездвижился, то производимая им мощность будет равняться нулю. Ведь работа не совершается. А вот момент, хотя его и не хватает для движения, присутствует. Крутящий момент без мощности существовать может, а мощность без момента — нет.

Главным достижением работающего мотора при превращении тепловой энергии в механическую является момент, или тяга. Высокие моментные значения характерны для дизельных двигателей, конструктивная особенность которых – большой (больше диаметра цилиндра) ход поршня. Большой крутящий момент у дизеля нивелируется относительно низким допустимым числом оборотов, которые ограничивают для увеличения ресурса. Высокооборотистым бензиновым моторам свойствен «крен» в сторону мощности, ведь их детали отличаются меньшим весом. И степень сжатия тоже ниже. Правда, современные силовые агрегаты – и дизельные, и бензиновые – совершенствуясь, становятся ближе и конструктивно, и по показателям. Но пока банальное правило рычага сохраняется: выигрывая в силе, проигрываешь в скорости. И, соответственно, в расстоянии.

Лучшие черты двигателя определяются совокупностью оптимальных значений мощности и тяги. Чем раньше наступает максимум крутящего момента и чем позже пик мощности, тем шире диапазон возможностей силового агрегата. Близкие к оптимальным характеристики имеют электрические двигатели. Они располагают тягой, близкой к максимальной, практически с начала движения. В то же время значение мощности прогрессивно возрастает. Существенным фактором в вопросах определения мощности и крутящего момента являются обороты двигателя. Чем они выше, тем большую мощность можно снять.

В этом контексте уместно упомянуть о гоночных моторах. Из-за относительно скромных объемов они не блещут умопомрачительным крутящим моментом. Однако способны раскручиваться до 15–20 тыс. оборотов в минуту (мин -1 ), что позволяет им выдавать супермощность. Так, если рядовой силовой агрегат при 4000 об/мин генерирует 250 Н∙м и порядка 140 л. с., то при 18 000 мин -1 он мог бы выдать в районе 640 л. с.

К сожалению, повышать частоту вращения довольно сложно. Мешают силы инерции, нагрузки, трение. Скажем, если раскрутить мотор от 6000 до 12 000 мин -1 , то силы инерции возрастут вчетверо, что потенциально грозит опасностью перекрутить мотор. Повысить величину крутящего момента можно с помощью турбонаддува, но в этом случае негативную роль начинают играть тепловые нагрузки.

Принцип максимальной отдачи мощности красноречиво иллюстрируют моторы болидов «Формулы-1», имеющие весьма скромный объем (1,6 литра) и относительно невысокий показатель тяги. Но за счет наддува и способности раскручиваться до высоких оборотов выдают порядка 600 л. с. Плюс к тому, конструкция у «Ф1» – гибридная, и электродвигатель, дополняющий основной мотор, при необходимости добавляет еще 160 «лошадей».

Важной характеристикой, отражающей возможности мотора, является диапазон оборотов, при котором доступна максимальная тяга. Но еще важнее эластичность двигателя, то есть способность набирать обороты под нагрузкой. Другими словами, это соотношение между числами оборотов для максимальной мощности и оборотов для максимального крутящего момента. Оно определяет возможность снижения и увеличения скорости за счет работы педалью газа без переключения передач. Или возможность езды на высоких передачах с малой скоростью. Эластичность, к примеру, выражается способностью автомобиля разгоняться на пятой передаче с 80 до 120 км/ч на пятой. Чем меньше времени займет этот разгон, тем эластичнее двигатель. Из двух двигателей одинакового объема и мощности предпочтителен тот, у которого выше эластичность. При прочих равных условиях такой мотор будет меньше изнашиваться, работать с меньшим шумом и меньше расходовать топливо, а также облегчит работу трансмиссии.

А если все-таки задаться вопросом о том, что важнее – крутящий момент или мощность, деля мир на черное и белое, ответ будет предельно прост: так как это зависимые величины, важно и то и другое.

Что надо знать про мощность и крутящий момент в автомобиле

Мощность двигателя – это величина, показывающая, какую работу способен совершить мотор в единицу времени. То есть то количество энергии, которую двигатель передает на трансмиссию за определенный временной промежуток. Измеряется в киловаттах (кВт) или лошадиных силах (л. с.).

Как рассчитывается мощность двигателя?

Расчет мощности мотора проводится несколькими способами. Самый доступный способ – через крутящий момент. Умножаем крутящий момент на угловую скорость – получаем мощность двигателя.

N_дв=M∙ω=2∙π∙M∙n_дв

N_дв – мощность двигателя, кВт;

M – крутящий момент, Нм;

ω – угловая скорость вращения коленчатого вала, рад/сек;

π – математическая постоянная, равная 3,14;

n_дв – частота вращения двигателя, мин-1.

Мощность рассчитывается и через среднее эффективное давление. Камера сгорания имеет определенный объем. Разогретые газы воздействуют на поршень в цилиндре с определенным давлением. Двигатель вращается с некоторой частотой. Произведение объема двигателя, среднего эффективного давления и частоты вращения, поделенное на 120, и даст теоретическую мощность двигателя в кВт.

N_дв=(V_дв∙P_эфф∙n_дв)/120

V_дв – объем двигателя, см3;

P_эфф – эффективное давление в цилиндрах, МПа;

120 – коэффициент, применяемый для расчета мощности четырехтактного двигателя (у двухтактных ДВС этот коэффициент равен 60).

Для расчета лошадиных сил киловатты умножаем на 0,74.

N_(дв л.с.)=N_дв∙0,74

N_дв л.с. – мощность двигателя в лошадиных силах, л. с.

Другие формулы мощности двигателя используются в реальных расчетах реже. Эти формулы включают в себя специфичные переменные. И чтобы измерить мощность двигателя по другим методикам, нужно знать производительность форсунок или массу потребленного двигателем воздуха.

На практике расчет мощности автопроизводители выполняют эмпирическим способом, то есть замеряют на стенде и строят график зависимости по факту, на основании полученных во время испытаний показателей.

Мощность двигателя – величина непостоянная. Для каждого мотора есть кривая, которая отображает на графике зависимость мощности от частоты вращения коленчатого вала. До определенного пика, примерно до 4-5 тысяч оборотов, мощность растет пропорционально оборотам. Далее идет плавное отставание роста мощности, кривая наклоняется. Примерно к 7-8 тысячам оборотов мощность идет на спад. Сказывается перекрытие клапанов на большой частоте вращения коленвала и падение КПД мотора из-за недостаточно интенсивного газообмена.

Чтобы узнать мощность двигателя, обратитесь к инструкции по эксплуатации авто. В разделе с техническими характеристиками мотора будет указана мощность и обороты, при которых она достигает пикового значения. Если мощность указана киловаттах, чтобы рассчитать лошадиные силы двигателя, воспользуйтесь приведенной выше формулой. В некоторых случаях автопроизводитель предоставляет график, на котором есть зависимость мощности двигателя и крутящего момента от частоты оборотов.

Видео: Простыми словами без сложных формул и расчетов, что такое мощность, крутящий момент и обороты двигателя.

Мощность ДВС определяет, насколько быстро автомобиль способен передвигаться или ускоряться (совершать работу). Полезная мощность двигателя рассчитывается с учетом потерь в трансмиссии, то есть указывает, сколько от изначальной мощности мотора по факту доходит до колес авто.

Что такое крутящий момент

Крутящий момент в двигателе автомобиля – это вращающая сила, которая численно равна произведению приложенной силы (давление раскаленных газов на поршень) на плечо (расстояние между осями коренных и шатунных шеек коленчатого вала в проекции, перпендикулярной оси вращения коленвала). Измеряется крутящий момент в ньютонах на метр (Нм).

Крутящий момент ДВС зависит от силы давления на поршень и расстояния между коренными и шатунными шейками. Зависимость здесь прямая. Чем больше плечо и чем больше давление на поршень – тем больше крутящий момент двигателя.

У дизельных двигателей степень сжатия больше. Больше и ход поршня в цилиндре (при равном с бензиновым мотором диаметре цилиндров). А это значит, что и расстояние между коренными и шатунными шейками будет больше. То есть длиннее плечо. За счет большей степени сжатия при рабочем такте у дизелей выше сила, давящая на поршень. Крутящий момент в дизельных моторах при прочих равных больше, чем в бензиновых.

Крутящий момент влияет на то, сколько энергии отдает мотор в текущий момент времени. Крутящий момент есть та величина, которая определяет фактически передаваемую в данный момент времени энергию на трансмиссию. Чем больше момент, тем сильнее тяга двигателя при текущих оборотах.

Что лучше: мощность или крутящий момент

Мощность и крутящий момент двигателя – величины взаимосвязанные. Это хорошо видно в формуле из первого пункта.

Пик крутящего момента на графике зависимости от частоты вращения мотора появляется раньше, чем пик мощности. Это справедливо как для дизельных, так и для бензиновых моторов. Однако у дизелей крутящий момент достигается раньше, и плато (интервал частоты вращения при пиковом значении) длиннее. У бензиновых ДВС мощность выше, хотя для ее достижения нужно раскрутить мотор почти до максимальных оборотов.

Сказать определенно, что лучше: мощность или крутящий момент, нельзя. Все зависит от случая. Трансмиссия современного авто способна трансформировать эти величины под требуемые условия. Поясним на примерах.

Для тяжелой техники, которой важна тяга в широком диапазоне оборотов, важнее крутящий момент. Мотор должен хорошо тянуть. Раскручивать его до предельных оборотов не нужно. Отчасти поэтому почти вся коммерческая техника оснащается дизельными моторами.

В гоночных автомобилях важнее мощность. Моторы этих авто по оборотам пилоты во время заездов держат в красной зоне. Двигатель отдает максимальную мощность. А трансмиссия преобразовывает мощность в тягу.

Для гражданских авто важен стиль вождения. Для езды на автомате подойдут оба мотора. Автоматическая трансмиссия будет держать мотор в диапазоне оборотов, при которых двигатель отдает максимум своего потенциала.

Для агрессивной езды на механике с раскручиванием двигателя в красную зону тахометра лучше подойдет бензиновый мотор. Но в этом случае нужно понимать, что для получения максимальной производительности от мотора потребуется держать его на пике оборотов и часто переключать передачи. Пик мощности у бензинового ДВС имеет малый диапазон и находится около максимальных оборотов. Для уверенных обгонов и ускорений нужно будет понижать передачу и раскручивать двигатель.

Для размеренной езды, особенно в городе, больше подходит дизель. Для обгона на дизельном авто зачастую не потребуется переходить на пониженную передачу, а высокий крутящий момент в широком диапазоне оборотов позволит реже переключаться.

Как рассчитать крутящий момент

На чтение 7 мин. Просмотров 27 Обновлено

Крутящий момент М (Нм), который требуется передать гидравлическому насосу от двигателя может быть вычислен с использованием следующих параметров:

1. Скорость вращения вала насоса n, для электродвигателей переменного тока это обычно – 960, 1370, 1450 или 2850 оборотов в минуту

2. Мощность N (кВт), это может находиться в пределах от 0.25 до 55 кВт

Лучшие ответы в теме

Заку.Если редуктор понижающий на выходном валу (там где отбирается мощность) обороты выходного вало уменьшатся, а крутящий момент возрастет.Насколько возрастет зависит от ПЕРЕДАТОЧНОГО числа редуктора.Узнать это число просто.Нужно посчитать сколько сделает оборотов входной вал пока выходной вал сделает один оборот.Вообще-то это число должно быть указано на табличке.Для вашего случая входные обороты делим на передаточное число, получаем выходные обороты.Или входной крутящий момент УМНОЖАЕМ на .

Друзья. Всё ещё проще. КПД редуктора, как правило пренебрегают, т.к. в любом случае мощность выбирается с запасом. А считать по формуле: Q= P/n где Q- момент на валу.(кг*м) P-мощность (вт) n- обороты в минуту Если хотите момент на валу в N*m — надо умножить на 9.8

Вопрос конечно интересный. Хотя для специалиста это не вопрос. Но специалисты молчат и я рискну изложить ход своих мыслей. Мощность двигателя и мощность на вторичном валу можно принять равными, если не учитывать КПД редуктора. Наверное КПД зависит от типа передачи ( червячная, цилиндрическая, клиноременная, глобоидная и другие, о которых я и не догадываюсь), от количества ступеней и других факторов. Вряд ли он будет меньше 0.8. Дальше. Мощность — работа за единицу времени. Зная эту раб.

Мощность двигателя – это величина, показывающая, какую работу способен совершить мотор в единицу времени. То есть то количество энергии, которую двигатель передает на трансмиссию за определенный временной промежуток. Измеряется в киловаттах (кВт) или лошадиных силах (л. с.).

Как рассчитывается мощность двигателя?

Расчет мощности мотора проводится несколькими способами. Самый доступный способ – через крутящий момент. Умножаем крутящий момент на угловую скорость – получаем мощность двигателя.

N_дв=M∙ω=2∙π∙M∙n_дв

N_дв – мощность двигателя, кВт;

M – крутящий момент, Нм;

ω – угловая скорость вращения коленчатого вала, рад/сек;

π – математическая постоянная, равная 3,14;

n_дв – частота вращения двигателя, мин-1.

Мощность рассчитывается и через среднее эффективное давление. Камера сгорания имеет определенный объем. Разогретые газы воздействуют на поршень в цилиндре с определенным давлением. Двигатель вращается с некоторой частотой. Произведение объема двигателя, среднего эффективного давления и частоты вращения, поделенное на 120, и даст теоретическую мощность двигателя в кВт.

N_дв=(V_дв∙P_эфф∙n_дв)/120

V_дв – объем двигателя, см3;

P_эфф – эффективное давление в цилиндрах, МПа;

120 – коэффициент, применяемый для расчета мощности четырехтактного двигателя (у двухтактных ДВС этот коэффициент равен 60).

Для расчета лошадиных сил киловатты умножаем на 0,74.

N_(дв л.с.)=N_дв∙0,74

N_дв л.с. – мощность двигателя в лошадиных силах, л. с.

Другие формулы мощности двигателя используются в реальных расчетах реже. Эти формулы включают в себя специфичные переменные. И чтобы измерить мощность двигателя по другим методикам, нужно знать производительность форсунок или массу потребленного двигателем воздуха.

На практике расчет мощности автопроизводители выполняют эмпирическим способом, то есть замеряют на стенде и строят график зависимости по факту, на основании полученных во время испытаний показателей.

Мощность двигателя – величина непостоянная. Для каждого мотора есть кривая, которая отображает на графике зависимость мощности от частоты вращения коленчатого вала. До определенного пика, примерно до 4-5 тысяч оборотов, мощность растет пропорционально оборотам. Далее идет плавное отставание роста мощности, кривая наклоняется. Примерно к 7-8 тысячам оборотов мощность идет на спад. Сказывается перекрытие клапанов на большой частоте вращения коленвала и падение КПД мотора из-за недостаточно интенсивного газообмена.

Чтобы узнать мощность двигателя, обратитесь к инструкции по эксплуатации авто. В разделе с техническими характеристиками мотора будет указана мощность и обороты, при которых она достигает пикового значения. Если мощность указана киловаттах, чтобы рассчитать лошадиные силы двигателя, воспользуйтесь приведенной выше формулой. В некоторых случаях автопроизводитель предоставляет график, на котором есть зависимость мощности двигателя и крутящего момента от частоты оборотов.

Видео: Простыми словами без сложных формул и расчетов, что такое мощность, крутящий момент и обороты двигателя.

Мощность ДВС определяет, насколько быстро автомобиль способен передвигаться или ускоряться (совершать работу). Полезная мощность двигателя рассчитывается с учетом потерь в трансмиссии, то есть указывает, сколько от изначальной мощности мотора по факту доходит до колес авто.

Что такое крутящий момент

Крутящий момент в двигателе автомобиля – это вращающая сила, которая численно равна произведению приложенной силы (давление раскаленных газов на поршень) на плечо (расстояние между осями коренных и шатунных шеек коленчатого вала в проекции, перпендикулярной оси вращения коленвала). Измеряется крутящий момент в ньютонах на метр (Нм).

Крутящий момент ДВС зависит от силы давления на поршень и расстояния между коренными и шатунными шейками. Зависимость здесь прямая. Чем больше плечо и чем больше давление на поршень – тем больше крутящий момент двигателя.

У дизельных двигателей степень сжатия больше. Больше и ход поршня в цилиндре (при равном с бензиновым мотором диаметре цилиндров). А это значит, что и расстояние между коренными и шатунными шейками будет больше. То есть длиннее плечо. За счет большей степени сжатия при рабочем такте у дизелей выше сила, давящая на поршень. Крутящий момент в дизельных моторах при прочих равных больше, чем в бензиновых.

Крутящий момент влияет на то, сколько энергии отдает мотор в текущий момент времени. Крутящий момент есть та величина, которая определяет фактически передаваемую в данный момент времени энергию на трансмиссию. Чем больше момент, тем сильнее тяга двигателя при текущих оборотах.

Что лучше: мощность или крутящий момент

Мощность и крутящий момент двигателя – величины взаимосвязанные. Это хорошо видно в формуле из первого пункта.

Пик крутящего момента на графике зависимости от частоты вращения мотора появляется раньше, чем пик мощности. Это справедливо как для дизельных, так и для бензиновых моторов. Однако у дизелей крутящий момент достигается раньше, и плато (интервал частоты вращения при пиковом значении) длиннее. У бензиновых ДВС мощность выше, хотя для ее достижения нужно раскрутить мотор почти до максимальных оборотов.

Сказать определенно, что лучше: мощность или крутящий момент, нельзя. Все зависит от случая. Трансмиссия современного авто способна трансформировать эти величины под требуемые условия. Поясним на примерах.

Для тяжелой техники, которой важна тяга в широком диапазоне оборотов, важнее крутящий момент. Мотор должен хорошо тянуть. Раскручивать его до предельных оборотов не нужно. Отчасти поэтому почти вся коммерческая техника оснащается дизельными моторами.

В гоночных автомобилях важнее мощность. Моторы этих авто по оборотам пилоты во время заездов держат в красной зоне. Двигатель отдает максимальную мощность. А трансмиссия преобразовывает мощность в тягу.

Для гражданских авто важен стиль вождения. Для езды на автомате подойдут оба мотора. Автоматическая трансмиссия будет держать мотор в диапазоне оборотов, при которых двигатель отдает максимум своего потенциала.

Для агрессивной езды на механике с раскручиванием двигателя в красную зону тахометра лучше подойдет бензиновый мотор. Но в этом случае нужно понимать, что для получения максимальной производительности от мотора потребуется держать его на пике оборотов и часто переключать передачи. Пик мощности у бензинового ДВС имеет малый диапазон и находится около максимальных оборотов. Для уверенных обгонов и ускорений нужно будет понижать передачу и раскручивать двигатель.

Для размеренной езды, особенно в городе, больше подходит дизель. Для обгона на дизельном авто зачастую не потребуется переходить на пониженную передачу, а высокий крутящий момент в широком диапазоне оборотов позволит реже переключаться.

Калькулятор расчета мощности двигателя автомобиля

Рассмотрим 5 популярных способа как вычислить мощность двигателя автомобиля используя такие данные как:

  • обороты двигателя,
  • объем мотора,
  • крутящий момент,
  • эффективное давление в камере сгорания,
  • расход топлива,
  • производительность форсунок,
  • вес машины
  • время разгона до 100 км.

Каждая из формул, по которой будет производиться расчет мощности двигателя автомобиля довольно относительная и не может со 100% точностью определить реальную лошадиную силу движущую машину. Но произведя подсчеты каждым из приведенных гаражных вариантов, опираясь на те или иные показатели, можно рассчитать, по крайней мене, среднее значение будь-то стоковый или тюнингованный движок, буквально с 10-ти процентной погрешностью.

Мощность — энергия, вырабатываемая двигателем, она преобразуется в крутящий момент на выходном валу ДВС. Это не постоянная величина. Рядом со значениями максимальной мощности всегда указываются обороты, при которых можно её достигнуть. Точкой максимума достигается при наибольшем среднее эффективном давлении в цилиндре (зависит от качества наполнения свежей топливной смесью, полноты сгорания и тепловых потерь). Наибольшую мощность современные моторы выдают в среднем при 5500–6500 об/мин. В автомобильной сфере измерять мощность двигателя принято в лошадиных силах. Поэтому поскольку большинство результатов выводятся в киловаттах вам понадобится калькулятор перевода кВт в л.с.

Как рассчитать мощность через крутящий момент

Самый простой расчет мощности двигателя авто можно определить по зависимости крутящего момента и оборотов.

Крутящий момент

Сила, умноженная на плечо ее приложения, которую может выдать двигатель для преодоления тех или иных сопротивлений движению. Определяет быстроту достижения мотором максимальной мощности. Расчетная формула крутящего момента от объема двигателя:

Мкр = VHхPE/0,12566, где

  • VH – рабочий объем двигателя (л),
  • PE – среднее эффективное давление в камере сгорания (бар).
Обороты двигателя

Скорость вращения коленчатого вала.

Формула для расчета мощности двигателя внутреннего сгорания автомобиля имеет следующий вид:

P = Mкр * n/9549 [кВт], где:

  • Mкр – крутящий момент двигателя (Нм),
  • n – обороты коленчатого вала (об./мин.),
  • 9549 – коэффициент, дабы обороты подставлять именно в об/мин, а не косинусами альфа.

Поскольку по формуле, результат получим у кВт, то при надобности также можно конвертировать в лошадиные силы или попросту умножать на коэффициент 1,36.

Использование данных формул — это самый простой способ перевести крутящий момент в мощность.

А дабы не вдаваться во все эти подробности быстрый расчет мощности ДВС онлайн, можно произвести, используя наш калькулятор.

Но, к сожалению, данная формула отражает лишь эффективную мощность мотора которая не вся доходит именно до колес автомобиля. Ведь идут потери в трансмиссии, раздаточной коробке, на паразитные потребители (кондиционер, генератор, ГУР и т.п.) и это без учета таких сил как сопротивление качению, сопротивление подъему, аэродинамическое сопротивление.

Как рассчитать мощность по объему двигателя

Если же вы не знаете крутящий момент двигателя своего автомобиля, то для определения его мощности в киловаттах также можно воспользоваться формулой такого вида:

Ne = Vh * pe * n/120 (кВт), где:

  • Vh — объём двигателя, см³
  • n — частота вращения, об/мин
  • pe — среднее эффективное давление, МПа (на обычных бензиновых моторах составляет порядка 0,82 — 0,85 МПа, форсированных — 0,9 МПа, а для дизеля от 0,9 и до 2,5 МПа соответственно).

Для получения мощности движка в «лошадках», а не киловаттах, результат следует разделить на 0,735.

Расчет мощности двигателя по расходу воздуха

Такой же приблизительный расчет мощности двигателя можно определять и по расходу воздуха. Функция такого расчета доступна тем, у кого установлен бортовой компьютер, поскольку нужно зафиксировать значение расхода, когда двигатель автомобиля, на третьей передаче, раскручен до 5,5 тыс. оборотов. Полученное значение с ДМРВ делим на 3 и получаем результат.

Формула как рассчитать мощность ДВС по расходу воздуха в итоге выглядит так:

Gв [кг]/3=P[л.с.]

Такой расчет, как и предыдущий, показывает мощность брутто (стендовое испытание двигателя без учета потерь), которая выше на 10—20% от фактической. А еще стоит учесть, что показания датчика ДМРВ сильно зависят от его загрязненности и калибровок.

Расчет мощности по массе и времени разгона до сотни

Еще один интересный способ как рассчитать мощность двигателя на любом виде топлива, будь-то бензин, дизель или газ – по динамике разгона. Для этого используя вес автомобиля (включая пилота) и время разгона до 100 км. А чтобы Формула подсчета мощности была максимально приближена к истине нужно учесть также потери на пробуксовку в зависимости от типа привода и быстроту реакции разных коробок передач. Приблизительные потери при старте для переднеприводных составит 0,5 сек. и 0,3-0,4 у заднеприводных авто.

Используя этот калькулятор мощности ДВС, который поможет определить мощность двигателя исходя из динамики разгона и массы, вы сможете быстро и достаточно точно узнать мощь своего железного коня не вникая в технические характеристики.

Расчет мощности ДВС по производительности форсунок

Не менее эффективным показателем мощности автомобильного двигателя является производительность форсунок. Ранее мы рассматривали её расчет и взаимосвязь, поэтому, труда, высчитать количество лошадиных сил по формуле, не составит. Подсчет предполагаемой мощности происходит по такой схеме:

Где, коэффициент загруженности не более 75-80% (0,75…0,8) состав смеси на максимальной производительности где-то 12,5 (обогащенная), а коэффициент BSFC будет зависеть от того какой это у вас двигатель, атмосферный или турбированный (атмо — 0.4-0.52, для турбо — 0.6-0.75).

Узнав все необходимые данные, вводите в соответствующие ячейки калькулятора показатели и по нажатию кнопки «Рассчитать» Вы сразу же получаете результат, который покажет реальную мощность двигателя вашего авто с незначительной погрешностью. Заметьте, что вам совсем не обязательно знать все представленные параметры, можно расчищать мощность ДВС отдельно взятым методом.

Ценность функционала данного калькулятора заключается не в расчете мощности стокового автомобиля, а если ваш автомобиль подвергся тюнингу и его масса и мощность притерпели некоторые изменения.

Часто задаваемые вопросы

  • Как рассчитать мощность двигателя внутреннего сгорания?

    Мощность двигателя в кВт можно рассчитать по объему двигателя и оборотах коленвала. Формула расчета мощности двигателя имеет вид:
    Ne = Vh * Pe * n / 120 (кВт), где:
    Vh — объём двигателя, см³
    n — количество оборотов коленчатого вала за минуту
    Pe — среднее эффективное давление, Мпа

  • Какой коэффициент учитывать при расчете мощности двигателя?

    Коэффициент мощности (cosϕ) для расчета мощности электродвигателя принимают равным 0,8 для маломощных двигателей (менее 5,5 кВт) или 0,9 для двигателей мощностью свыше 15 кВт.

  • Как рассчитать мощность двигателя по крутящему моменту?

    Для определения мощности двигателя в киловаттах, когда известен крутящий момент, можно по формуле такого вида: P = Mкр * n/9549, где:
    Mкр – крутящий момент (Нм),
    n – обороты коленвала (об./мин.),
    9549 – коэффициент для перевода оборотов в об/мин.

  • Как рассчитать мощность двигателя по расходу воздуха?

    Рассчитать мощность двигателя в кВт зная его потребления воздуха (при наличии бортового компьютера) можно используя простую схему. Необходимо раскрутить двигатель на третьей передаче до 5500 об/мин (пик крутящего момента) и по показаниям, на тот момент, зафиксировать расход воздуха, а затем разделить то значение на три. В результате такого математического вычисления можно узнать приблизительную мощность двигателя с небольшой погрешностью.

Что такое крутящий момент электродвигателя

Одним из важных параметров электродвигателя, который так же важен при его выборе, является крутящий момент. Эта величина определяется произведением приложенной к плечу рычага силы и зависит исключительно от степени нагрузки. Если в двигателях внутреннего сгорания данную нагрузку задаётся коленчатым валом, то асинхронные электродвигатели получают величину крутящего момента от токов возбуждения. При этом величина этого момента будет зависеть от скорости вращающегося в магнитном поле статора устройства, называемого ротор. В зависимости от периода и способа определения, крутящий момент разделяют на:

  • статический (пусковой) – минимальный момент холостого хода;
  • промежуточный – развивает значение при работе двигателя от 0 величины оборотов до максимального значения в номинальной величине напряжения;
  • максимальный – развивающийся при эксплуатации двигателя;
  • номинальный – соответствует номинальным значениям мощности и оборотов.

Для вычисления величины крутящего момента, определяющегося в «кгм» (килограмм на метр) или «Нм» (ньютон на метр), многие электротехнические пособия предлагают специальные формулы, учитывающие кроме основного действия вращающегося магнитного поля ряд всевозможных факторов, например:

  • напряжения сети;
  • величину индуктивного и активного сопротивления;
  • зависимость от увеличения скольжения.

Но, рост скольжения не всегда приносит высокий момент. Зачастую, при достижении критических значений, наблюдается его резкое снижение. Такое явление обозначается как опрокидывающий момент. Одним из устройств, стабилизирующих скорость вращения ротора, а значит и величину момента кручения является частотный преобразователь, применение которого сейчас очень распространено во всех сферах, где от контроля работы двигателя зависит и успешность выполнения множественных производственных задач.

Выбираем электродвигатель по крутящему моменту

Для выбора, требуемого к выполнению тех или иных задач электродвигателя, берут в учёт практически все его характеристики, начиная от показателей мощности и заканчивая массогабаритными параметрами. Каждый из элементов по-своему важен в решении нюансов. Не меньшее значение припадает и на крутящий момент. Благодаря тому, что момент кручения напрямую связан с оборотами в соотношении: чем больше сами обороты, тем меньше будет момент, выбор электродвигателя будет исходить из следующих нюансов:

  • из скоростных требований. В этом случае, более полезным будет выбор двигателя по малому моменту для работающих со слабыми усилиями и на большой скорости, и со средними либо высокими показателями моментов пуска для работающих в усиленных режимах. На малых скоростях;
  • по пусковым напряжениям. Здесь учитывается первичное усилие, например, для управления лифтом следует подбирать двигатели высокого пускового момента, способного поднимать большие грузы со старта. Хотя, многие статьи про электродвигатели рекомендуют так же применять устройства плавного пуска, умеющие обезопасить от нежелательных перегрузов.

Стоит помнить, что выбор осуществляется не по одному из показателей, даже при ориентировании относительно крутящего момента, ведь каждый из показателей ориентируется по рабочей предрасположенности электротехнического приводного устройства и его рабочих нагрузок в статистических и динамических эксплуатационных условиях, задаваемых самим предприятием.

Электродвигатели

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Крутящий момент двигателя — какой максимальный и оптимальный

Каждый владелец автомобиля хотя бы один раз слышал выражение «крутящий момент двигателя». Этот параметр напрямую влияет на такие характеристики машины, как расход топлива, время разгона до 100 километров в час, мощность мотора и содержание вредных веществ в выхлопе.

Что такое крутящий момент

 

Во время работы бензинового, газового или дизельного двигателя, топливовоздушная смесь сгорает с выделением большого количества выхлопных газов. Во время горения смеси давление в камере сгорания возрастает и газы начинают искать выход. Поскольку единственная подвижная вещь в камере сгорания – поршень, то газы начинают давить на него. В результате чего поршень с помощью шатуна проворачивает коленчатый вал мотора. По мере набора оборотов двигателя эффективность передачи энергии расширения газов увеличивается. На средних и высоких оборотах в дело вступает маховик, увеличивая общую инерционность системы, в результате чего энергия инерции системы и сила давления газов складываются, образуя тот самый крутящий момент, то есть способность вращаться, преодолевая сопротивление.

От чего зависит крутящий момент

В любом описании машины или автомобильного двигателя указан крутящий момент на определенных оборотах. Это связано не только с инерционностью поршней, шатунов и коленчатого вала, но и с таким параметром, как аэродинамическое сопротивление. Чем выше обороты двигателя и сильней нажата педаль газа, тем больше воздуха проходит через впускной коллектор и каналы головки блока цилиндров. Это приводит к увеличению скорости движения воздуха, который тоже обладает определенной инерционностью. Поэтому нельзя увеличивать обороты мотора до бесконечности, ведь наступает момент, когда инерционность и вязкость воздуха окажутся настолько велики, что разряжения, создаваемого поршнем, не хватит для заполнения камеры сгорания.

 

В результате количество (а нередко и соотношение) топливовоздушной смеси окажется недостаточным для дальнейшего увеличения оборотов двигателя и мощность мотора начнет падать. Поэтому максимальный вращающий момент, указанный в справочниках и каталогах, соответствует оборотам, на которых двигатель максимально наполняется воздухом, ведь это обеспечивает наибольшее давление выхлопных газов. Увеличение количества топлива приводит к дальнейшему росту оборотов мотора, но крутящий момент начинает падать. Затем обороты двигателя достигают того значения, когда дальнейший рост оборотов возможет лишь без нагрузки, поэтому мощность мотора начинает снижаться. Поэтому максимальный крутящий момент большинства моторов приходится на средние обороты, а пик мощности на высокие.

Стенд для измерения

Оптимальный и максимальный вращающий момент 

Когда обороты двигателя соответствуют наибольшему крутящему моменту, его КПД (коэффициент полезного действия) максимален. На этих оборотах состав топливовоздушной смеси оптимален, за счет этого снижается расход топлива и износ делателей двигателя. Топливовоздушная смесь сгорает с меньшей температурой, чем в режиме максимальной мощности, поэтому нагрузка на систему охлаждения заметно ниже. Также образуется намного меньше частиц недогоревшего топлива (сажи), которые приводят к закоксовыванию мотора. В этом режиме масляная система мотора обеспечивает максимально эффективную смазку всех трущихся поверхностей.

 

Если вы хотите, чтобы двигатель вашего автомобиля работал долго и эффективно, старайтесь ездить на оборотах, соответствующих максимальному крутящему моменту. Переход на более высокую передачу позволит снизить обороты и расход топлива (незначительно), зато увеличит износ мотора из-за увеличенной нагрузки на коленчатый вал, шатуны и поршни, а также неоптимального состава топливовоздушной смеси. Поэтому движение на 3-й передаче (обороты соответствуют максимальному крутящему моменту) предпочтительней перехода на 4-ю передачу, где обороты мотора будут заметно ниже. 

Крутящий момент и мощность – основные характеристики двигателя — Автомобильный журнал АВТОГИД 174

Крутящий момент и мощность – основные характеристики двигателя

Итак, что же это за основные характеристики и на что они влияют. Если с мощностью более-менее понятно и среднестатистический автолюбитель скажет, что для бюджетного хатчбека 100 лошадиных сил вполне хватает, то с крутящим моментом начинается полная неразбериха.

Мощность автомобиля характеризует его скоростные качества – чем выше мощность, тем выше можно развить скорость. Так уж повелось, что в автомобильном мире мощность принято измерять лошадиными силами. Однако, мощность двигателя является величиной не постоянной и напрямую зависит от его оборотов. Другими словами, на низких оборотах в работе двигателя задействован далеко не весь «табун лошадей», а только некоторая его часть. Так для бензиновых двигателей большинства современных автомобилей максимальная мощность (которую указывают в паспорте) достигается при 5000-6000 оборотах в минуту, а для дизельных – 3000-4000. Однако, в повседневной городской езде обороты двигателя, как правило, ниже, а значит, ниже мощность. А теперь представим, что нам надо ускориться для обгона – мы нажимаем на педаль и обнаруживаем, что «автомобиль не едет». В чем же причина? Причина – в крутящем моменте.

Крутящий момент – это произведение силы на плечо рычага, к которому она приложена, Мкр = F х L. Сила измеряется в ньютонах, рычаг – в метрах. 1 Нм – крутящий момент, который создает сила в 1 Н, приложенная к концу рычага длиной 1 м. В двигателе внутреннего сгорания роль рычага исполняет кривошип коленчатого вала. Сила, рождаемая при сгорании топлива, действует на поршень, через который и создает крутящий момент. В контексте настоящей статьи крутящий момент есть величина, определяющая насколько быстро двигатель может набрать максимальную мощность. Нетрудно догадаться, что именно эта величина характеризует динамику разгона. Также как и мощность, максимальный крутящий момент указывается для конкретных оборотов двигателя. При этом важным параметром является не столько величина момента, сколько обороты, на которых он достигается. Например, для резкого ускорения при спокойной езде (2000-2500 об./мин.) более предпочтителен тот двигатель, крутящий момент которого достигается на низких оборотах – нажал на педаль и машина выстрелила.

Известно, что серийные бензиновые двигатели развивают не самый большой крутящий момент, при этом максимальное значение достигается только на средних оборотах (обычно 3000-4000). Зато бензиновые двигатели могут раскручиваться до 7-8 тыс. об./мин., что позволяет им развивать довольно большую мощность. В противоположность таким моторам «тихоходные дизели», развивающие не более 5 000 об./мин., обладают внушительным моментом, доступным практически с самых «низов», при этом проигрывают в максимальной мощности.

И на десерт капелька математики. Мощность двигателя можно рассчитать по формуле:
P = Mкр*n/9549 [кВт],

где Mкр – крутящий момент двигателя (Нм), n – обороты коленчатого вала двигателя (об./мин.).

Для получения лошадиных сил необходимо полученный результат умножать на коэффициент 1,36.

На практике известно, что мощность двигателя в большей степени зависит от оборотов, потому что эту величину «проще нарастить», чем крутящий момент.

Сухой остаток: для максимальной скорости важна мощность двигателя, а для ускорения – крутящий момент. При этом важной характеристикой являются обороты двигателя, на которых этот крутящий момент максимален, то есть на которых возможно максимальное ускорение.

Источник: CAR-TALES.RU

Крутящий момент, что это и зачем он нужен?

Каждый двигатель внутреннего сгорания рассчитан на определенную максимальную мощность, которую он может выдавать при наборе определенного количества оборотов коленчатого вала. Однако помимо максимальной мощности существует еще и такая величина в характеристике двигателя, как максимальный крутящий момент, достигаемый на оборотах отличных от оборотов максимальной мощности.

Что же означает понятие крутящий момент?

Говоря научным языком, крутящий момент равен произведению силы на плечо ее применения и измеряется в ньютон — метрах. Значит если к гаечному ключу длиной 1 метр (плечо), приложить силу в 1 Ньютон (перпендикулярно на конце ключа), то мы получим крутящий момент равный 1 Нм.

Для наглядности. Если гайка затянута с усилием 3 кгс, то для ее откручивания придется к ключу с длиной плеча в 1 метр приложить усилие 3 кг. Однако, если на ключ длиной 1 метр надеть дополнительно 2-х метровый отрезок трубы, увеличив тем самым рычаг до 3 метров, то тогда для отворачивания этой гайки потребуется лишь усилие в 1 кг. Так поступают многие автолюбители при откручивании колесных болтов: либо добавляют отрезок трубы, а за неимением такового просто надавливают на ключ ногой, увеличив тем самым силу приложения к баллонному ключу.

Так же если на рычаг метровой длины повесить груз равный 10 кг, то появится крутящий момент равный 10 кгм. В системе СИ это значение (перемножается на ускорение свободного падения — 9,81 м/см2) будет соответствовать 98,1 Нм.

Результат всегда един — крутящий момент, это произведение силы на длину рычага, стало быть, нужен либо длиннее рычаг, либо большее количество прикладываемой силы.

Показатели ньютон-метров на примере двигателя V6 3,5 литра Lexus GS450h

Все это хорошо, но для чего нужен крутящий момент в автомобиле и как его величина влияет на его поведение на дороге?

Мощность двигателя лишь косвенно отражает тяговые возможности мотора, и ее максимальное значение проявляется, как правило, на максимальных оборотах двигателя. В реальной жизни в таких режимах практически никто не ездит, а вот ускорение двигателю требуется всегда и желательно с момента нажатия на педаль газа. На практике одни автомобили уже с низких оборотов (с низов) ведут себя достаточно резво, другие напротив предпочитают лишь высокие обороты, а на низах показывают вялую динамику.

Так у многих возникает масса вопросов, когда они с авто с бензиновым мотором мощностью 105-120 л.с. пересаживаются на 70-80 – сильный дизель, то последний с легкостью обходит машину с бензиновым мотором. Как такое может быть?

Связано это с величиной тяги на ведущих колесах, которая различна для этих двух автомобилей. Величина тяги напрямую зависит от произведения таких показателей как, величины крутящего момента, передаточного числа трансмиссии, ее КПД и радиуса качения колеса.

Как создается крутящий момент в двигателе

В двигателе нет метровых рычагов и грузов, и их заменяет кривошипно-шатунный механизм с поршнями. Крутящий момент в двигателе образуется за счет сгорания топливо — воздушной смеси, которая расширяясь в объеме с усилием толкает поршень вниз. Поршень в свою очередь через шатун передает давление на шейку коленчатого вала. В характеристике двигателя нет значения плеча, но есть величина хода поршня (двойное значение радиуса кривошипа коленвала).

Для любого мотора крутящий момент рассчитывается следующим образом. Когда поршень с усилием 200 кг двигает шатун на плечо 5 см, появляется крутящий момент 10 кГс или 98,1Нм. В данном случает для увеличения крутящего момента нужно либо увеличить радиус кривошипа, или же увеличить давление расширяющихся газов на поршень.

До определенной величины можно увеличить радиус кривошипа, но будут расти и размеры блока цилиндров как в ширину, так и в высоту и увеличивать радиус до бесконечности невозможно. Да и конструкцию двигателя придется значительно упрочнять, так как будут нарастать силы инерции и другие отрицательные факторы. Следовательно, у разработчиков моторов остался второй вариант – нарастить силу, с которой поршень передает усилие для прокручивания коленвала. Для этих целей в камере сгорания нужно сжечь больше горючей смеси и к тому же более качественно. Для этого меняют величину и конфигурацию камеры сгорания, делают «вытеснители» на головках поршней и повышают степень сжатия.

Однако максимальный момент доступен не на всех оборотах мотора и у различных двигателей пик момента достигается на различных режимах. Одни моторы выдают его в диапазоне 1800- 3000 об/мин, другие на 3000-4500 об/мин. Это зависит от конструкции впускного коллектора и фаз газораспределения, когда эффективное наполнение цилиндров рабочей смесью происходит при определенных оборотах.

Наиболее простое решение для увеличения крутящего момента, а следовательно и тяги, это применение турбо или механического наддува, либо применение их в комплексе. Тогда крутящий момент можно уже использовать с 800-1000 об/мин, т.е. практически сразу при нажатие на педаль акселератора. К тому же это закрывает такую проблему, как провалы при наборе скорости, так как величина КМ становится практически одинакова во всем диапазоне оборотов двигателя. Достигается это различными путями: увеличивают количество клапанов на цилиндр, делают управляемыми фазы газораспределения для оптимизации сгорания топлива, повышают степень сжатия, применяют выпускной коллектор по формуле 1-4 -2-3, в турбинах применяют крыльчатки с изменяемым и регулируемым углом атаки лопаток и т.д.

Что такое крутящий момент двигателя? Его характеристики и формула — CarBikeTech

Крутящий момент, говоря простым языком, составляет « крутящего момента или силы поворота ». Это тенденция силы вращать объект вокруг оси. С точки зрения автомобилестроения, это мера вращательного усилия, прилагаемого поршнем к коленчатому валу двигателя.

Крутящий момент = сила x расстояние. Система SI использует Ньютон-метр (Нм) для измерения крутящего момента. Другие единицы измерения: килограмм-метр (кг-м) в метрической системе и фут-фунт-сила ’(фут-фунт) в британской системе мер.

Каждый двигатель спроектирован и построен для определенной цели. Следовательно, его производительность варьируется в зависимости от его применения. Выходной крутящий момент автомобильного двигателя в основном зависит от его отношения хода к диаметру цилиндра, степени сжатия, давления сгорания и скорости в об / мин. Большинство двигателей «под квадратным сечением», длина хода которых на больше, чем диаметр отверстия , имеют тенденцию развивать высокий крутящий момент « на нижнем конце ». Величина крутящего момента, которую может проявить двигатель, зависит от оборотов двигателя.

Различные конструкции / конфигурации двигателей развивают разные характеристики крутящего момента, такие как пиковая кривая / плоская кривая . Большинство автомобильных двигателей развивают полезный крутящий момент в узком диапазоне всего диапазона скоростей двигателя. В бензиновых двигателях он обычно начинается при 1000–1200 об / мин и достигает пика в диапазоне 2 500–4 000 об / мин. В то время как в дизельном двигателе он начинается с при 1500-1700 об / мин и достигает максимума при 2000-3000 об / мин. Bugatti Veyron — один из автомобилей с самыми высокими показателями крутящего момента.

Если вам известна мощность двигателя в лошадиных силах, то вы можете использовать следующую формулу —

Крутящий момент = 5252 x л.с. / об / мин

Почему крутящий момент двигателя важен?

Крутящий момент и мощность в лошадиных силах — это две выходные характеристики двигателя. Они связаны и пропорциональны друг другу по скорости. «Диапазон крутящего момента » на кривой двигателя представляет его тяговую способность , которая определяет «управляемость » и « ускорение ».Крутящий момент больше всего необходим при движении автомобиля с места и / или при подъеме на склон. Точно так же, чем тяжелее транспортное средство, либо транспортное средство с полной номинальной нагрузкой требует большего крутящего момента, чтобы тянуть его и заставить двигаться. В обычном двигателе мощность определяет максимальную скорость автомобиля (передаточные числа), тогда как крутящий момент управляет его ускорением / подбором. Скорость ускорения также зависит от веса транспортного средства и «нагрузки», которую несет транспортное средство.

Крутящий момент двигателя с плоской кривой и пиковой кривой:

Большинство бензиновых двигателей обычно вырабатывают значительно большее значение « с низким крутящим моментом ».Однако обычно они демонстрируют крутящий момент « пиковая кривая » в форме «пика» холма. В конструкции « пик-кривая » максимальный крутящий момент приходится на середину диапазона оборотов двигателя (около 2500–3000 об / мин). После этого он начинает быстро гаснуть, а мощность продолжает расти. Максимальное значение HP достигает позже при более высоких оборотах двигателя, а затем гаснет на красной линии.

Пиковый крутящий момент в сравнении с крутящим моментом с плоской кривой

Большинство современных дизельных двигателей обеспечивают крутящий момент « с плоской кривой ».В конструкции с «плоской кривой» двигатель развивает максимальный крутящий момент при « от нижнего до среднего значения » частоты вращения двигателя, то есть прибл. 1500 об / мин и далее. Его значение остается почти таким же или «плоским» в большей части диапазона оборотов двигателя (2500–4000 об / мин). Это помогает улучшить ускорение и уменьшает количество переключений передач во время вождения.

Что такое крутящий момент на нижнем пределе?

Часто производители используют этот термин для описания крутящего момента двигателя. « Low-End-Torque » — это величина крутящего момента, который двигатель производит в нижнем диапазоне оборотов двигателя i.е. между 1000-2000 об / мин . Этот диапазон оборотов очень важен при движении автомобиля из неподвижного состояния или при движении в условиях низкой скорости, например, в транспортном потоке. Если двигатель создает больший крутящий момент на нижнем конце диапазона оборотов, это означает, что двигатель имеет более высокий « крутящий момент на нижнем конце » или лучшую тяговую способность на низких скоростях . Это также означает, что двигатель может быстро выводить транспортное средство из состояния покоя, тянуть более тяжелые грузы или относительно легко подниматься по склону, в зависимости от обстоятельств, без резких оборотов.

Крутящий момент и эффективность двигателя:

Крутящий момент двигателя достигает своего максимального значения на скорости, где он наиболее эффективен. Другими словами, КПД двигателя максимален на скорости, на которой он обеспечивает максимальный крутящий момент. Если вы поднимете двигатель выше этой скорости, его крутящий момент начнет уменьшаться из-за повышенного трения движущихся частей двигателя. Таким образом, даже если вы увеличите обороты двигателя до максимальной скорости вращения, крутящий момент больше не увеличится.

Крутящий момент двигателя умножается на шестерни.Чем ниже выбранная передача (т. Е. 1 -я передача с повышенным передаточным числом), тем больше тяговая способность двигателя. Таким образом, тяговые способности автомобиля максимальны на первой передаче. Однако, если вы увеличите обороты двигателя на передаче 1 , через некоторое время он достигнет своего предела; тем самым побуждая водителя переключиться на следующую передачу. Напротив, если вы переключаете передачу до того, как крутящий момент двигателя достигнет своего «пикового» значения, автомобиль может потерять ускорение. Это потому, что колеса не получают достаточной силы для вращения.Таким образом, вынуждая водителя переключиться обратно на предыдущую / более низкую передачу.

Крутящий момент двигателя и движение:

Наилучшая топливная экономичность может быть получена путем переключения передач в пределах «диапазона мощности» транспортного средства и переключения передач как можно ближе к значению максимального крутящего момента . Кроме того, чтобы повысить эффективность, выберите правильную передачу / с, соответствующую скорости автомобиля / оборотам двигателя, как рекомендовано производителем автомобиля.

1. Сценарий шоссе:

Самое доступное снаряжение (т.е. 5-е или 6-е или так далее) + самая низкая частота вращения двигателя = наилучшая топливная экономичность

2. При подъеме на склон / уклон:

Низкая передача (т. Е. 1-я) + высокие обороты двигателя = наименьшая топливная экономичность, но большая тяговая способность.

Когда ваш автомобиль разгоняется до 60 км / ч, например, по шоссе, вам не нужны высокие обороты двигателя, чтобы он продолжал двигаться. Это означает, что при движении по автомагистралям / автомагистралям используйте самую верхнюю передачу и поддерживайте обороты двигателя ниже 2500, чтобы получить максимальную эффективность.Точно так же при подъеме по склону вам нужно использовать более низкую передачу (т.е. 1-ю передачу) и более высокие обороты двигателя, чтобы тянуть автомобиль (и груз, если таковой имеется) против силы тяжести. Однако это повлияет на топливную экономичность.

Мощность крутящий момент Расход топлива

Эти значения упоминаются в каждом руководстве по эксплуатации. Сказав это, всегда запускать двигатель на «максимальной мощности / скорости» или увеличивать обороты двигателя до зоны « Red Line » нет необходимости, если вы не участвуете в гонке, поскольку это приведет только к сжиганию дополнительного топлива .

Помните, что такое дополнительное количество топлива, сожженное или сэкономленное, будет иметь большое значение в конце пути — будь оно коротким или длинным… !!!

Подробнее: Что такое мощность в лошадиных силах?

О компании CarBikeTech

CarBikeTech — технический блог. Его члены имеют опыт работы в автомобильной сфере более 20 лет. CarBikeTech регулярно публикует специальные технические статьи по автомобильным технологиям.

Посмотреть все сообщения CarBikeTech

Что такое крутящий момент? Объяснение NM и LB-FT

Если вы посмотрите на технические характеристики двигателя автомобиля, вы увидите цифры мощности и крутящего момента.Мощность говорит сама за себя, но крутящий момент? Не так много.

Большие цифры мощности могут выглядеть впечатляюще, но они — только часть истории при выяснении того, каким будет управлять автомобиль. Крутящий момент имеет не меньшее, а возможно и большее значение, в зависимости от того, как вы используете свой автомобиль. В этом руководстве вы найдете все, что вам нужно знать о крутящем моменте.

  • Объяснение определения крутящего момента
  • Почему крутящий момент имеет значение при выборе следующего автомобиля
  • Какие автомобили имеют двигатели с низким крутящим моментом?
  • Какие автомобили имеют двигатели с высоким крутящим моментом?
  • Как крутящий момент влияет на экономию топлива
  • У электромобилей низкий или высокий крутящий момент?

Что такое крутящий момент?

Power показывает, насколько быстро будет ехать автомобиль с определенным двигателем.Двигатель с большой мощностью будет разгоняться до предела оборотов, производя много шума и чувствуя себя очень возбуждающе. Но большинство людей не ездят так, и именно здесь крутящий момент играет важную роль. Крутящий момент говорит вам, насколько силен двигатель.

Представьте, что вы затягиваете гайку гаечным ключом. Использование короткого гаечного ключа требует больших усилий для затяжки гайки. Использование более длинного гаечного ключа требует меньших усилий для затяжки гайки до такой же степени. Более длинный гаечный ключ имеет больший крутящий момент.

Давайте выразим это в терминах автомобилей.Вы едете со скоростью 40 миль в час на высшей передаче и опускаете ногу. Автомобиль с низким крутящим моментом — гаечный ключ — не разгоняется быстро. Автомобиль с большим крутящим моментом — гаечный ключ — будет.

Крутящий момент измеряется в Ньютон-метрах (Нм), или вы можете увидеть фунт-фут (фунт-фут) в британской системе мер. Если вы хотите рассчитать преобразование для себя, 1 Нм эквивалентен 0,738 фунт / фут.

Посмотрите на тягу к крутящему моменту в нашем видео о перетягивании каната.

Почему крутящий момент имеет значение?

Как упоминалось ранее, крутящий момент показывает, как двигатель чувствует себя при ускорении.Автомобили с двигателями с высоким крутящим моментом, как правило, ускоряются медленнее на заданной скорости, но быстрее на низких оборотах на высокой передаче.

И наоборот, автомобили с двигателями с низким крутящим моментом имеют тенденцию ускоряться быстрее, чем обычно, но медленнее на низких оборотах на высокой передаче.

Автомобили с двигателями с низким крутящим моментом могут быть немного неистовыми и тяжелыми, требуя большого количества переключений передач и высоких оборотов, чтобы поддерживать прибывающую мощность. В правильном контексте это может быть довольно весело.

Автомобили с двигателями с высоким крутящим моментом намного проще ездить.Им нужно меньше переключений передач, и они взлетят, просто нажав на дроссельную заслонку во время движения. Это делает их фантастическими на автомагистралях.

Двигатели с высоким крутящим моментом, возможно, лучше подходят для большинства людей, так что жизнь за рулем максимально упрощается.

Какие автомобили имеют двигатели с низким крутящим моментом?

Как правило, автомобили с меньшими по объему бензиновыми двигателями без турбонаддува. Обычно это городские автомобили, такие как Toyota Aygo, и спортивные автомобили, такие как Mazda MX-5.

Какие автомобили имеют двигатели с высоким крутящим моментом?

Практически все остальное.Большие двигатели, как бензиновые, так и дизельные, по своей природе обладают высоким крутящим моментом. Но некоторые из последних небольших бензиновых двигателей с турбонаддувом также удивительно сильны. Например, 1,0-литровый 3-цилиндровый двигатель EcoBoost с турбонаддувом может быть небольшим, но его крутящего момента более чем достаточно для всех, кроме самых сложных ситуаций.

Однако обычно дизельный двигатель развивает больший крутящий момент, чем эквивалентный бензиновый двигатель. Это потому, что у них более длинный ход поршня — поршень должен дальше перемещаться внутри цилиндра.Как и в приведенной выше аналогии с малым / большим гаечным ключом, более длинный ход поршня создает больший крутящий момент, чем меньший.

Также дизельные двигатели обычно оснащаются турбонаддувом. Турбокомпрессор помогает создать большее давление внутри цилиндра, что снова увеличивает крутящий момент.

Если вам нужна машина для буксировки прицепа или автоприцепа, вам понадобится дополнительная мощность двигателя с высоким крутящим моментом, который поможет справиться с лишним весом.

Стоит отметить, что двигатели с крутящим моментом, намного превышающим 400 Нм (295 фунт / фут), будь то бензиновые или дизельные, обычно лучше всего работают с автоматической коробкой передач.При крутящем моменте более 500 Нм (369 фунтов / фут) большинство двигателей в любом случае оснащается автоматической коробкой передач, поскольку они лучше справляются с работой двигателя такой мощности.

Влияет ли крутящий момент на экономию топлива?

Да. Двигатели с низким крутящим моментом менее экономичны, потому что они должны работать больше, чем двигатели с высоким крутящим моментом. И наоборот, именно поэтому дизельные автомобили — хороший выбор, если вы отправляетесь в длительные скоростные поездки по автомагистралям. Они будут намного экономичнее, чем бензиновый автомобиль.

У электромобилей низкий или высокий крутящий момент?

Какой крутящий момент производит электромобиль, зависит от мощности двигателя, и некоторые цифры не кажутся такими впечатляющими.Но что отличает электромобили, так это то, что весь крутящий момент доступен мгновенно. Двигатели внутреннего сгорания развивают максимальный крутящий момент только при определенных оборотах двигателя.

Благодаря этому мгновенному крутящему моменту электромобили очень быстро выходят из строя — как Tesla Model 3, изображенная выше. Но, как и в случае с двигателями внутреннего сгорания, только двигатели с очень высоким крутящим моментом могут сильно разгоняться при большой нагрузке — например, при движении по автомагистрали.

Что дальше?
Не знаете, какой крутящий момент понадобится вашему следующему автомобилю? Тогда ознакомьтесь с инструментом Car Chooser.Просто ответьте на несколько вопросов о том, какой автомобиль вам нужен, и мы покажем вам автомобили, которые лучше всего соответствуют вашим потребностям. Затем вы можете проверить лучшие предложения на эти автомобили в нашей сети проверенных местных и национальных дилеров.

Что такое крутящий момент? Все о крутящем моменте: определение, уравнения и единицы измерения

Крутящий момент — это слово, которое свободно обсуждают производители автомобилей, рекламодатели и обозреватели, и оно не менее важно, чем другие цифры в заголовках, с которыми вы столкнетесь, например, лошадиные силы.Однако реклама крутящего момента не всегда была данностью — посмотрите на рекламу автомобилей 1980-х годов, и вы обнаружите, что о ней почти никогда не упоминали.

Это в основном из-за лишнего веса новых автомобилей. Современные двигатели настолько загружены технологиями, комфортом и безопасностью, что весят намного больше, чем их аналоги десятилетней давности. Это означает, что этим автомобилям требуется больше силы или крутящего момента, чтобы заставить их двигаться.

Крутящий момент определяется как сила вращения двигателя. Вы можете заметить, что крутящий момент — как и мощность — всегда выражается при определенной частоте вращения двигателя.Например, Ford Fiesta Ecoboost развивает максимальный крутящий момент в диапазоне от 1400 до 4000 об / мин. Вообще говоря, автомобиль будет чувствовать себя более отзывчивым, когда максимальный крутящий момент будет развиваться на низком уровне в диапазоне оборотов, но многим людям нравятся высоконагруженные двигатели, которые необходимо резко увеличить, прежде чем они разовьют максимальный крутящий момент.

Крутящий момент становится более важным по мере того, как автомобили становятся больше и тяжелее. Крошечный городской автомобиль может легко путешествовать с очень небольшим крутящим моментом, в то время как большому внедорожнику или фургону требуется много усилий, чтобы заставить его двигаться.Вот почему более крупные автомобили, как правило, оснащаются дизельными двигателями — дизели обеспечивают больший крутящий момент на более низких оборотах, чем бензиновые двигатели.

Что такое крутящий момент?

Проще говоря, крутящий момент — это сила вращения двигателя. Он отличается от лошадиных сил, поскольку относится к количеству работы, которую может выполнить двигатель, в то время как лошадиные силы определяют, насколько быстро эта работа может быть выполнена. Вот почему крутящий момент в простонародье часто называют «тяговое усилие», «сила» или «ворчание».

Крутящий момент обычно измеряется в Ньютон-метрах (Нм) или фунт-фут (фунт-фут) — последнее не следует путать с фут-фунтом (фут-фунт), поскольку один фут-фунт относится не к крутящей силе, а до количества энергии, необходимого для поднятия 1 фунта веса на расстояние 1 фут.

В частности, крутящий момент фактически измеряет величину силы, необходимой для поворота объекта (например, при затягивании крышки бутылки с газированной водой, гайки колеса или болта головки блока цилиндров). Или, в случае двигателя, он измеряет, сколько крутящего усилия доступно на коленчатом валу при любых заданных оборотах двигателя (RPM).

• Автомобили Cat D и Cat C: объяснение списания страховых сумм

В автомобиле мощность — это мера того, насколько быстро двигатель может развивать тот же крутящий момент с течением времени, поэтому чем больше (обоих) у вас есть, тем быстрее ты сможешь ускориться.Одна лошадиная сила (HP) — это абсолютно произвольная единица, придуманная инженером Джеймсом Ваттом. Это эквивалентно тому, что одна лошадь поднимает вес 33 000 фунтов на высоту 12 дюймов за одну минуту — или 33 000 фут-фунтов в минуту. Метрический эквивалент (PS) равен 4500 кгм в минуту или 0,97 л.с.

Тормозная мощность в лошадиных силах (л.

Основные уравнения крутящего момента

Допустим, мы используем 0.Ключ длиной 5 м, чтобы затянуть колесную гайку, и нам нужно опереться на дальний конец ключа с силой 50 Ньютонов, чтобы затянуть гайку. Простое умножение двух чисел дает нам необходимое значение крутящего момента в Ньютон-метрах:

50 (Н) x 0,5 (м) x = 25 Н · м крутящего момента

Если вы хотите сохранить его старомодным, вы можете измерить расстояние в футах, и сила в фунтах. На этот раз наш гаечный ключ может быть 18 дюймов (1½ фута), и мы прикладываем усилие в 20 фунтов на дальнем конце:

20 (фунт) x 1½ (фут) = 30 фунт-фут крутящего момента

Итак, что значит двигатель крутящий момент похож?

Если двигатель развивает крутящий момент 500 Нм, мы можем использовать аналогичную визуализацию в обратном направлении, чтобы помочь понять задействованные силы.Чтобы такой двигатель не вращался, потребуется гаечный ключ длиной один метр, прикрепленный к коленчатому валу, с приложением силы 500 Ньютон на другом конце. Поскольку один килограмм создает силу притяжения Земли примерно в 9,8 Ньютона, это означает, что вам понадобится 50-килограммовый жокей, чтобы стоять на конце. Или Аллан Макниш.

• Автосинхронизация: разрешена ли корректировка пробега?

Если это не кажется большим усилием, чтобы остановить двигатель, развивающий тяжелые 500 Нм, не забывайте, что крутящий момент на колесах значительно увеличивается за счет снижения оборотов двигателя.Значит, жокей мог заглушить двигатель, но не мог остановить машину!

Что лучше: крутящий момент или мощность?

Крутящий момент и мощность очень тесно связаны, потому что в двигателе внутреннего сгорания одно без другого не может быть. Снова дело в математике, поскольку HP рассчитывается следующим образом:

HP = Крутящий момент x RPM ÷ 5252

Это означает, что если вы сравните два двигателя с разным выходным крутящим моментом, двигатель с более высоким крутящим моментом всегда будет вырабатывать больше лошадиных сил на любом данном двигателе. скорость.

Однако многие двигатели с высоким крутящим моментом не рассчитаны на такие высокие обороты (подумайте о мощном дизельном двигателе), поэтому показатели максимальной мощности часто оказываются под угрозой. Напротив, спортивный бензиновый автомобиль с высокими оборотами может быть спроектирован так, чтобы иметь более низкий крутящий момент, но его исключительная мощность на высоких оборотах двигателя позволяет ему двигаться быстрее.

• Как сдать экзамен по теории вождения

Вот почему для повседневного вождения мощность и гибкость двигателя с высоким крутящим моментом часто более полезны — и это жизненно важно, когда вам нужен автомобиль для буксировки больших прицепов или перевозки тяжелых грузов.

При нормальном вождении крутящий момент часто более важен, чем мощность, поэтому мы уделяем ему так много внимания в наших обзорах автомобилей.

Можете ли вы объяснить крутящий момент не более чем 25 словами? Перейдите в раздел комментариев ниже …

Крутящий момент двигателя — обзор

5 НАСТРОЙКА ИЗМЕРЕНИЯ ДВИГАТЕЛЯ И ИССЛЕДОВАННЫЕ РАБОЧИЕ ТОЧКИ

На основе спецификации серийного производства турбонагнетателя испытательного двигателя был создан прототип турбонагнетателя. , включающую описанную бесконтактную систему определения крутящего момента вала.Стандартный серийный турбонагнетатель был заменен прототипом. Компрессор и турбина не претерпели изменений. Следовательно, что касается согласования двигателя и турбонагнетателя, двигатель может безопасно эксплуатироваться в полном рабочем диапазоне.

Кроме того, поскольку был доступен частично программируемый ЭБУ, определенными условиями рабочих точек можно было управлять независимо, например фаз газораспределения, которая использовалась для организации специальных вариаций параметров для детального исследования взаимодействия между двигателем внутреннего сгорания и системой наддува.

Для измерений крутящего момента вала турбины турбонагнетателя с временным разрешением использовалась частота регистрации более 100 кГц. С помощью DFT был исследован спектр измеряемого сигнала на предмет его ширины полосы и максимальной соответствующей частоты. Затем необработанные данные были соответствующим образом отфильтрованы и пересчитаны на угол поворота коленчатого вала (разрешение 0,1 ° CA). Этот рабочий процесс обеспечивает высокое качество данных с разрешением по углу поворота коленчатого вала и разумный конечный размер файла. Для показанных устойчивых рабочих точек примерно 200 последовательных циклов двигателя были записаны, обработаны, отфильтрованы и затем рассчитан средний цикл двигателя.

В таблице 1 дан обзор рабочих точек двигателя, представленных в этой статье. Все точки были зафиксированы при частоте вращения двигателя 1250 об / мин. Представлены четыре стационарных стабильных рабочих точки, в которых изменялась только фаза кулачков для впускных и выпускных клапанов для регулирования нагрузки двигателя, в то время как дроссельная заслонка оставалась в условиях WOT. Нагрузка указана в процентах от полного крутящего момента двигателя серийного производства при 1250 об / мин.

Таблица 1. Рабочие точки двигателя

CRC

116OT 100%
No. Скорость Педаль Нагрузка Cam_int Cam_exh Лямбда
об / мин%% 116_00 1250 WOT / 100% 63,6 110 — 110 0,99
116_01 1250 WOT / 100%5 85-85 1
116_02 1250 WOT / 100% 91,6 82-80 1,09 1,09 112,9 82 — 72 1,18

Очевидно, насколько сильно время перекрытия клапанов влияет на крутящий момент двигателя. Любое изменение нагрузки двигателя вызывается исключительно изменением фаз впускных и выпускных клапанов и, таким образом, тесно связано с так называемым механизмом «продувки», который (в дополнение к обычному турбонаддува) усиливает двигатель.Благодаря этой хорошо известной стратегии работы ([7], [8], [9]) крутящий момент двигателя может быть увеличен почти вдвое. Даже при серийном применении крутящий момент при полной нагрузке может быть превышен, что, как считается, связано с двумя основными причинами:

Сливной клапан был механически заблокирован для минимизации утечки — состояние, которое, безусловно, не может быть достигнуто в последовательном режиме. производственный двигатель в импульсных условиях горячего газа. Повышенный массовый расход через турбинное колесо приводит к увеличению мощности на валу турбины и, следовательно, мощности компрессора.

Производитель оригинального оборудования следует консервативной стратегии продувки, чтобы гарантировать долговечность двигателя, а также определенно избегать преждевременных воспламенений при любых обстоятельствах в полевых условиях.

Для исследуемого случая двигатель был хорошо подготовлен и эксплуатировался под наблюдением системы контроля и управления, поэтому указанные выше ограничения могут быть превышены. Все четыре стационарные точки работали с термостойкостью и близкой к пределу детонации двигателя.

Для рабочих точек, перечисленных в Таблице 1, для примера был проведен комбинированный анализ сгорания и газообмена для четвертого цилиндра с использованием коммерчески доступного программного обеспечения Tiger [10]. Соответствующие результаты показаны на рисунке 5. Хотя — из-за сложных режимов потока — операцию очистки трудно точно проанализировать с помощью нульмерного или ограниченного одномерного кода, результаты ясно показывают долю поглощенной массы. Эффективные площади клапана показаны пунктирными черными линиями.Давления во впускном и выпускном каналах четвертого цилиндра показаны сплошными синими и красными кривыми. Соответствующие расчетные массовые потоки на впуске и выпуске показаны пунктирными синими и красными кривыми.

Рис. 5. Результаты анализа газообмена

Очевидно, смещение кривых подъема клапана вызывает два изменения: во-первых, это позволяет вообще продувку, поскольку впускные и выпускные клапаны могут открываться одновременно с определенным перекрытием. . Во-вторых, он также перемещает относительное положение импульсов давления и перекрытия клапана в желаемом направлении.Для продувки давление на входе в цилиндр (~ давление на выходе компрессора) должно быть выше давления на выходе из цилиндра (~ давление на входе в турбину).

В конце процесса продувки (близко к закрытию выпускного клапана) может наблюдаться отрицательный массовый расход. Это вызвано абсолютной длиной синхронизации (выпускного) клапана, поскольку событие открытия выпускного клапана следующего цилиндра отодвигает некоторый массовый расход, в то время как выпускной клапан фактического цилиндра все еще открыт. В четырехцилиндровом двигателе укороченная и / или регулируемая длина момента выпуска может помочь избежать этого, как показано в [7], [8].Этот эффект свидетельствует о несовершенном разделении потоков выхлопных каналов, особенно в четырехцилиндровых двигателях, где время открытия выпускного клапана больше, чем расстояние между двумя тактами выпуска. Это также одна из основных движущих сил для концепций двойной спирали или двойной спирали, где разделение потока осуществляется внутри корпуса турбины. Альтернативой является событие переменного открытия выпускного клапана, реализующее это разделение потока внутри головки блока цилиндров. Однако короткая продолжительность открытия выпускного клапана может быть эффективно использована только для области нижнего конечного крутящего момента, так как для высоких скоростей и нагрузок требуется более длительная продолжительность (вместе с газодинамическими эффектами), чтобы реализовать обмен массой газа в цилиндре в очень короткие сроки. ограниченный период времени.

Как производители автомобилей используют динамометр для измерения мощности в лошадиных силах

  • Крутящий момент и мощность — оба способа понять силу, где крутящий момент измеряет способность силы поворачивать объект, а мощность измеряет эту способность с течением времени.
  • Динамометры — это инструменты для измерения крутящего момента. Как только крутящий момент получен, вам просто нужно применить его к формуле для получения лошадиных сил.
  • Чтобы подробнее узнать о крутящем моменте и лошадиных силах, а также о том, как производители автомобилей измеряют их, посмотрите видео ниже.
  • Посетите домашнюю страницу Business Insider, чтобы узнать больше.

Ниже приводится расшифровка видеозаписи.

Рассказчик: Этот автомобиль вращается со скоростью 8 200 оборотов в минуту. При 8200 об / мин кричит. Это Ford Mustang GT350, и хотя его колеса крутятся с такой скоростью, которая должна довести автомобиль до 140 миль в час, он, очевидно, никуда не движется. Но то, что вы видите, — это важный тест, который помогает нам понять, на что способен автомобиль, и, в этом случае, может даже помочь Ford решить, за какую цену они могут его продать.

Невозможно смотреть рекламу автомобиля, не увидев значений крутящего момента и мощности.

Коммерческий: Создан для выдачи 412 лошадиных сил и 390 Нм крутящего момента.

Рассказчик: Производители автомобилей хотят, чтобы вы поверили, что более высокая мощность и крутящий момент переводятся как «быстрее» и «сильнее». Это не совсем так. Точнее, эти два числа дают нам представление о том, на что способен автомобиль в различных дорожных ситуациях, без необходимости видеть его лично.

Прежде чем мы рассмотрим, как измеряются мощность и крутящий момент, давайте разберемся, что это такое.

Проще говоря, крутящий момент — это способность силы что-то крутить. Представьте себе динамометрический ключ, в котором вы прикрепляете головку ключа к болту и нажимаете на ручку. Способность гаечного ключа поворачивать болт — крутящий момент. То же самое точное скручивающее действие происходит внутри двигателя автомобиля, за исключением того, что на этот раз вместо того, чтобы ваша рука давила на ручку, внутри каждого цилиндра двигателя происходят крошечные взрывы, толкая поршень вниз, который заставляет коленчатый вал вращаться.Никаких рук не требуется! Крутящий момент!

Чем сильнее этот поршень давит на коленчатый вал, тем сильнее вращается коленчатый вал, тем больше энергии выдает двигатель автомобиля. Итак, в случае с нашим автомобилем, крутящий момент — это сила, которую производит двигатель. Как соотносятся лошадиные силы? Что ж, если крутящий момент — это то, сколько силы производит двигатель, то мощность в лошадиных силах — это то, как быстро он может создать эту силу.

Итак, у нас куча лошадиных сил. Что с этим делать? Если у нас есть, скажем, 5 лошадиных сил, у нас будет достаточно, чтобы переместить 2750-фунтовый автомобиль на один фут за одну секунду, учитывая, что вес и мощность являются единственными двумя факторами.Если бы у нас была более тяжелая машина, нам потребовалось бы больше лошадиных сил, чтобы сдвинуть ее на одну ногу. Итак, как именно измерить крутящий момент и мощность?

Ну, инженеры используют устройство, называемое динамометром, есть несколько типов. Этот динамометр, называемый динамометром шасси, представляет собой своего рода беговую дорожку для автомобилей. Здесь колеса автомобиля сидят на ролике, который позволяет колесам вращаться, не заставляя машину никуда ехать. С помощью ремней к автомобилю прилагается различный вес или нагрузка. Когда автомобиль прикован цепью, инженер нажимает на педаль газа, чтобы увидеть, как автомобиль взаимодействует с каждой нагрузкой на разных оборотах.Динамометр выводит диаграмму, которая выглядит следующим образом. На нем нанесены две линии: линия крутящего момента и линия мощности. Пик крутящего момента — это то место, где двигатель создает наибольшую силу. Пиковая мощность — это то место, где двигатель быстрее всего выдает наибольшую мощность. Цифры для крутящего момента и лошадиных сил, которые указываются в статистических таблицах дилерских центров и в рекламных роликах, как правило, являются числами на пике каждой из этих строк.

Хотя большие значения крутящего момента и мощности в таблице характеристик несомненно впечатляют, они лишь подсказывают покупателю нового автомобиля несколько аспектов личности автомобиля.Эти цифры, тем не менее, по-прежнему являются лучшими, которые у нас есть, чтобы сказать, насколько способна машина на самом деле.

ПРИМЕЧАНИЕ РЕДАКТОРА: это видео было первоначально опубликовано в ноябре 2019 года.

Электродвигатели

— крутящий момент в зависимости от мощности и об / мин

  • Работа является результатом силы, действующей на некотором расстоянии. Работа измеряется в джоулях (Нм) или фут-фунтах.
  • Крутящий момент — это сила вращения, создаваемая коленчатым валом двигателя. Чем больший крутящий момент производит двигатель, тем выше его способность выполнять работу.Поскольку крутящий момент является вектором, действующим в определенном направлении, его обычно определяют в единицах Нм или фунт-фут.
  • Power — это скорость выполнения работы — работа за заданный промежуток времени. Мощность измеряется в ваттах (Дж / с) или лошадиных силах.

Обратите внимание, что движущая сила электродвигателя составляет крутящего момента , а не лошадиных сил. Крутящий момент — это крутящая сила, которая заставляет двигатель работать, и крутящий момент активен от 0% до 100% рабочей скорости.

Мощность, производимая двигателем, зависит от скорости двигателя и составляет

  • ноль при 0% скорости и
  • обычно на максимуме при рабочей скорости

Примечание ! — полный крутящий момент с нулевой скорости является большим преимуществом для электромобилей.

Для полного стола — поворот экрана!

903 1,5 903 903 903 903 903 903 903 903 903 903 903 903 903 158 903 903 793 903 903 9019 903 9031 9 41 902 902 903 903 903 903 903 903 903 903 9031 9 142 603 9019 9019 903 903 903 903 9019 903 903 9 0319 210 903 903 903 903 903 903 137 9020 903 903 903 903 903 903 903 903 902 903 814 903 903 9019 903 903 903 9019 903 903 903 903 903 903 903 903 903 901 903 903 903 903 903
Мощность Частота вращения двигателя (об / мин)
3450 2000 1750 1000 500
905 9015 9028 9015 9028 9015 9015 9028 9015 (фунт на дюйм)
(фунт на фут)
(Нм) (фунт на фунт f фут) (Нм) (фунт фут дюйм) (фунт фут фут) 905 (фунт f дюйм) (фунт фут фут) (Нм) (фунт f дюйм) (фунт на фут) (Нм)
1 0.75 18 1,5 2,1 32 2,6 3,6 36 3,0 4,1 63 5,3 7,1 126 10 7,1 126 10 1,1 27 2,3 3,1 47 3,9 5,3 54 4,5 6,1 95 7.9 10,7 189 15,8 21,4
2 1,5 37 3,0 4,1 63 5,3 7,1 903 126 10,5 14,2 252 21,0 28,5
3 2,2 55 4,6 6,2 95 7.9 10,7 108 9,0 12 189 15,8 21,4 378 31,5 42,7
13,1 18 180 15 20 315 26,3 36 630 52,5 71
5 5,6 137 11 15 236 20 27 270 23 31 473 39 9 903
10 7,5 183 15 21 315 26 36 360 30 41 630 142
15 11 274 23 31 473 39 53 540 45 158 214
20 15 365 30 630 53 71 720 60 81 1260 105 142 2521 210 285 285 38 52 788 66 89 900 75 102 1576 131 178 3151 263 903 548 46 62 945 79 107 1080 90 122 1891 158 214 30 731 61 83 1260 105 1441 120 163 2521 210 285 5042 420 570
50 37 913 9020 903 131 178 1801 150 204 3151 263 356 6302 525 712
1891 158 214 2161 180 244 3781 315 427 7563 630 903 903 10785 903 9019 903 903 145 2206 184 249 2521 285 4412 368 499 8823 735 997
80 60 1461 16520 903 2881 240 326 5042 420 570 10084 840 1140
90 67 321 3241 270 366 5672 473 641 11344 945 1282
100
100
100 263 356 3601 300 407 6302 525 712 12605 1050 1425
125 93 2283 190 258 903 903 902 509 7878 657 891 15756 1313 1781
150 112 2740 228 902 2740 228 903 450 611 9454 788 1069 18907 1576 2137
175 131 903 903 903 903 903 903 903 903 903 903 419 2619 903 903 6302 525 712 1 1029 919 1247 22058 1838 2494
200 149 3654 413 12605 1050 1425 25210 2101 2850
225 168 4110 803 903 903 903 903 903 9019 4620 803 903 903 9 4620 675 916 14180 1182 1603 28361 2363 3206
250 187 4567 903 903 903 9019 903 903 903 903 9003 750 1018 15756 90 320 1313 1781 31512 2626 3562
275 205 5024 419 568 8666 7229 9020 568 8666 7229

17332 1444 1959 34663 2889 3918
300 224 5480 457 1221 18907 1576 2137 37814 3151 4275
350 1219 261 6394 903 903 11020 903 9019 5319 903 903 903 903 903 1050 1425 22058 1838 2494 44117 3676 4987
400 298 7307 609 826 903 903 903 142019 9019 903 903 9019 903 903 903 142019 903 903 25210 2101 2850 50419 4202 5699
450 336 8221 685 1832 28361 2363 3206 56722 4727 6412
550 410 10047 903 903 903 903 9019 819 903 903 8019 903 8019 903 1651 2239 34663 2889 3918 69326 5777 7837
600 448 10961 913 1239 903 903 903 903 903 903 9019 903 2443 37814 3151 4275 75629 6302 8549

Мощность электродвигателя, скорость и крутящий момент2 Уравнения

05

917 917 Имперские единицы дюйм-фунт = P л.с. 63025 / n (1)

, где

T дюйм-фунт = крутящий момент (фунт f )

P л.с. двигатель (л.с.)

n = число оборотов в минуту (об / мин)

В качестве альтернативы

T фут-фунт = P л.с. 5252 / n (1b)

где

T фут-фунт T фут-фунт фунт

Крутящий момент в единицах СИ можно рассчитать как

T Нм = P W 9.549 / n (2)

где

T Нм = крутящий момент (Нм)

P W = мощность (Вт)

n = обороты в минуту (об / мин)

Электродвигатель — зависимость крутящего момента от мощности и скорости

мощность (кВт)

скорость (об / мин)

Электродвигатель — мощность от крутящего момента и скорости

крутящий момент (Нм)

скорость (об / мин)

Электродвигатель — Зависимость скоростиМощность и крутящий момент

мощность (кВт)

крутящий момент (Нм)

Пример — крутящий момент от электродвигателя

Крутящий момент, передаваемый электродвигателем, производящим 0,75 кВт (750 Вт) при скорости 2000 об / мин можно рассчитать как

T = (750 Вт ) 9,549 / (2000 об / мин)

= 3,6 (Нм) 4 — 917 Крутящий момент Пример от электродвигателя

Крутящий момент, передаваемый электродвигателем мощностью 100 л.с. при скорости 1000 об / мин можно рассчитать как

T = (100 л.с.) 63025 / (1000 об / мин)

= 6303 (фунт f дюйм)

Для преобразования в фунт-сила-фут — разделите крутящий момент на 12 .

Блог AAMCO Bay Area | Все, что вам нужно знать о гидротрансформаторах

Итак, что такое гидротрансформатор?

Преобразователи крутящего момента

— это особые компоненты двигателя, и их внутренности редко видят свет, а если и появляются, то их все еще довольно сложно понять. По сравнению с другими внутренними компонентами вашего автомобиля, гидротрансформатор напоминает что-то из космического корабля. Независимо от того, как этот компонент выглядит или звучит, если у вас есть автомобиль с автоматической коробкой передач, вы используете его ежедневно.

Если у вас есть базовые знания об автомобилях с механической коробкой передач, то вы знаете, что двигатель соединяется с трансмиссией с помощью сцепления. Без этого соединения автомобиль не смог бы полностью остановиться, не заглушив двигатель. Однако автомобили с автоматической коробкой передач не имеют диска сцепления, соединяющего двигатель с трансмиссией; вместо этого у них есть преобразователь крутящего момента. Его внешний вид может показаться не таким уж большим, но внутри него многое происходит.

Гидротрансформатор вашего автомобиля аналогичен сцеплению автомобиля с механической коробкой передач. Однако, в отличие от автомобиля с механической коробкой передач, он использует жидкость для передачи мощности на трансмиссию, предотвращая остановку двигателя и позволяя трансмиссии переключиться.

Описание гидротрансформатора

Гидротрансформатор — это внутренний элемент двигателя в форме пончика, прикрепленный непосредственно между двигателем и трансмиссией.Внутри гидротрансформатора есть две серии изогнутых лопастей, каждая из которых обращена в противоположном направлении. Пространство внутри гидротрансформатора обычно заполнено трансмиссионной жидкостью, которая помогает передавать мощность, генерируемую двигателем, на трансмиссию. Это кажется странным, правда? Не совсем! Двигатель вашего автомобиля приводит в движение одну из турбин, также известную как крыльчатка, которая нагнетает жидкость на турбину. Гидротрансформатор эффективен, поскольку его лопасти сконструированы таким образом, чтобы обеспечить максимальную передачу энергии, уменьшая тепловыделение или турбулентность.

Чтобы лучше понять его работу, представьте, как два вентилятора смотрят друг на друга. Когда один вентилятор подключается к сети (двигателю), он начинает вращать второй вентилятор (трансмиссию). Если лопасти вентилятора имеют одинаковые размеры и вес, они будут вращаться с одинаковой скоростью. Однако это грубое упрощение работы гидротрансформатора.

Есть несколько факторов, которые делают преобразователь крутящего момента более эффективным; это включает в себя статор, который помогает ему перенаправлять поток трансмиссионной жидкости обратно к крыльчатке для повышения эффективности.

Как работает гидротрансформатор?

Немного сложно понять концепцию того, как жидкость может обеспечить силу для перемещения чего-то столь же важного, как транспортное средство. Насос помогает достичь контроля крутящего момента, который работает, направляя жидкость вокруг преобразователя крутящего момента, определяемую вращением коленчатого вала. Внутри корпуса находится турбина, которая вращается, когда перекачиваемая жидкость входит в контакт с лопатками турбины, это помогает измерить величину крутящего момента, который поступает на трансмиссию через входные валы.

Корпус гидротрансформатора соединяется с маховиком, вращающимся с той же скоростью, что и коленчатый вал, внутри корпуса турбины. Крыльчатка или центробежный насос эффективно перекачивает трансмиссионную жидкость в лопасти турбины, которая, в свою очередь, вращает или передает крутящий момент на трансмиссию. Статор — это барьер, который отбрасывает жидкость прямо обратно в турбину, а не в насос, повышая эффективность системы.

Когда автомобиль работает на холостом ходу, скорость, с которой трансмиссионная жидкость закачивается в турбину, низкая, что означает, что очень маленький крутящий момент поступает в двигатель через трансмиссию.Поскольку коленчатый вал вращается быстрее, а маховик вращается с большей дроссельной заслонкой, жидкость быстрее перемещается от насоса к турбине, заставляя турбину вращаться быстрее, что позволяет передавать больший крутящий момент через трансмиссию.

Важно отметить, что внутреннее устройство гидротрансформатора все еще остается загадкой. Базовая механика может быть понятна, но сложные вычисления и инженерные решения, лежащие в ее основе, лучше всего понятны тем, кто обладает глубокими знаниями в области механики жидкостей.

Связанные: Обслуживание радиаторов и систем охлаждения AAMCO Bay Area

Связано: признаки того, что пришло время для автоматической настройки

Связано: работает ли система кондиционирования вашего автомобиля

Могут ли возникнуть проблемы с гидротрансформатором?

Существует несколько различных причин неисправности гидротрансформатора, некоторые из которых могут быть очень опасными. Высокий уровень проскальзывания приведет к перегреву, который повредит эластомерные уплотнения, которые помогают удерживать трансмиссионную жидкость в гидротрансформаторе.Когда жидкость начнет вытекать, она вообще перестанет работать.

Также возможно полное торможение или заедание муфты статора. Когда это произойдет, внутренний и внешний элементы сцепления будут постоянно заблокированы, что приведет к неэффективности использования топлива. В случае полной поломки статора он будет свободно вращаться, останавливая двигатель. Когда большое давление создается горячей жидкостью, движущейся внутри корпуса гидротрансформатора, оно может стать слишком высоким, что приведет к его надуванию или взрыву.

Получите информацию о своем автомобиле

Гидротрансформатор вашего автомобиля — это неотъемлемая часть любого автомобиля. Большинство владельцев никогда не будут взаимодействовать с этой деталью за всю свою жизнь вождения. Однако это срок службы автоматической коробки передач, а также большая часть топливной экономичности. Знакомство с его работой может помочь вам узнать, как диагностировать проблемы, связанные с вашей трансмиссией, экономя время и деньги на ремонт.

Наши услуги

Возникли проблемы с трансмиссией? Возможно, ваш гидротрансформатор неисправен.Зарегистрируйтесь или свяжитесь с ближайшим к вам центром по ремонту автомобилей AAMCO Bay Area для полной диагностики трансмиссии. Мы предлагаем лучший сервис по уходу за автомобилем в Bay Area.

Помимо услуг трансмиссии, мы также специализируемся на услугах автоматической настройки, ремонте подвески, регулярном техническом обслуживании автомобилей, замене масла и многом другом. Наши профессиональные специалисты обладают необходимыми навыками, а также отраслевыми знаниями, чтобы предложить комплексные решения для вашего автомобиля.

Связано: Рекомендуемые заводом-изготовителем услуги по техническому обслуживанию в районе залива AAMCO

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *