Линейная скорость при движении по окружности формула: Движение по окружности, теория и онлайн калькуляторы

Содержание

1.1.8 Движение тела по окружности. Угловая и линейная скорости точки. Центростремительное ускорение точки

Видеоурок: Движение по окружности

Лекция: Движение тела по окружности. Угловая и линейная скорости точки. Центростремительное ускорение точки

Движение по окружности

Траектория движения — окружность.

Так как скорость — векторная величина, то она зависит не только от модуля значения, но и от направления. Поэтому движение тела по окружности можно назвать равноускоренным. Даже если тело будет двигаться с постоянной по величине скоростью, её направление будет постоянно изменяться.


Любое криволинейное движение можно свести к нескольким движениям по окружности. Примером данного движения является бег по стадиону, ход стрелки часов, прогулка на корде лошади и другое.Основные характеристики движения

1. Линейная скорость


Мгновенная скорость (линейная) — на протяжении всего движения меняет свое направление вдоль касательной к траектории.
Так как траектория движения точки — окружность, то в качестве пути в числителе находится формула длины перемещения.

Поэтому формула мгновенной скорости приобретает следующий вид, где Т — период:

2. Центростремительное ускорение


Направлено перпендикулярно к линейной скорости на протяжении всего движения.

Центростремительное ускорение определяется по формуле:

3. Период вращения


Период вращения — это величина, определяющая время, за которое тело делает одно полное вращение.

Период — это скалярная величина. Основной единицей периода является [Т]=1с.  

Период определяется по формуле:

где N — количество оборотов, t — время, за которое они были совершены.


4. Частота вращения


Определяет, насколько часто совершаются обороты в единицу времени.

Частота — скалярная величина. Измеряется в [n] = 1с

-1.

Частота определяется по формуле:

5. Угловое перемещение


Угловое перемещение — величина, которая определяется углом поворота радиуса, соединяющего центр описываемой окружности, с точкой, где находится тело, относительно начального его положения.


Данная величина может измеряться в градусной или радианной мере углов.

6. Угловая скорость


Это значение, которое определяет, насколько изменяется угловое перемещение со временем.

Измеряется в 1 рад/с.Определяется по формуле:
где
— угловая скорость материальной точки, 1/с
— угол поворота радиус — вектора, рад- промежуток времени, с

Угловое перемещение связано с линейной скоростью и центростремительным ускорением следующей формулой:



Таблица движение по окружности

Тестирование онлайн

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным, оно является равноускоренным.

Угловая скорость

Выберем на окружности точку 1. Построим радиус. За единицу времени точка переместится в пункт 2. При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращения T – это время, за которое тело совершает один оборот.

Частота вращение – это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.

Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено – это есть период T

. Путь, который преодолевает точка – это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Используя предыдущие формулы, можно вывести следующие соотношения

Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Вращение Земли

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Связь со вторым законом Ньютона

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Как вывести формулу центростремительного ускорения

Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна

vA и vB соответственно. Ускорение – изменение скорости за единицу времени. Найдем разницу векторов.

Разница векторов есть . Так как , получим

Движение по циклоиде*

В системе отсчета, связанной с колесом, точка равномерно вращается по окружности радиуса R со скоростью , которая изменяется только по направлению. Центростремительное ускорение точки направлено по радиусу к центру окружности.

Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А — уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.

Мгновенная скорость определяется по формуле

Движение по окружности – простейший случай криволинейного движения тела. Когда тело движется вокруг некоторой точки, наряду с вектором перемещения удобно ввести угловое перемещение ∆ φ (угол поворота относительно центра окружности), измеряемое в радианах.

Зная угловое перемещение, можно вычислить длину дуги окружности (путь), которую прошло тело.

Если угол поворота мал, то ∆ l ≈ ∆ s .

Угловая скорость

При криволинейном движении вводится понятие угловой скорости ω , то есть скорости изменения угла поворота.

Определение. Угловая скорость

Угловая скорость в данной точке траектории – предел отношения углового перемещения ∆ φ к промежутку времени ∆ t , за которое оно произошло. ∆ t → 0 .

ω = ∆ φ ∆ t , ∆ t → 0 .

Единица измерения угловой скорости – радиан в секунду ( р а д с ).

Существует связь между угловой и линейной скоростями тела при движении по окружности. Формула для нахождения угловой скорости:

Нормальное ускорение

При равномерном движении по окружности, скорости v и ω остаются неизменными. Меняется только направление вектора линейной скорости.

При этом равномерное движение по окружности на тело действует центростремительное, или нормальное ускорение, направленное по радиусу окружности к ее центру.

a n = ∆ v → ∆ t , ∆ t → 0

Модуль центростремительного ускорения можно вычислить по формуле:

a n = v 2 R = ω 2 R

Докажем эти соотношения.

Рассмотрим, как изменяется вектор v → за малый промежуток времени ∆ t . ∆ v → = v B → – v A → .

В точках А и В вектор скорости направлен по касательной к окружности, при этом модули скоростей в обеих точках одинаковы.

По определению ускорения:

a → = ∆ v → ∆ t , ∆ t → 0

Взглянем на рисунок:

Треугольники OAB и BCD подобны. Из этого следует, что O A A B = B C C D .

Если значение угла ∆ φ мало, расстояние A B = ∆ s ≈ v · ∆ t . Принимая во внимание, что O A = R и C D = ∆ v для рассмотренных выше подобных треугольников получим:

R v ∆ t = v ∆ v или ∆ v ∆ t = v 2 R

При ∆ φ → 0 , направление вектора ∆ v → = v B → – v A → приближается к направлению на центр окружности. Принимая, что ∆ t → 0 , получаем:

a → = a n → = ∆ v → ∆ t ; ∆ t → 0 ; a n → = v 2 R .

При равномерном движении по окружности модуль ускорения остается постоянным, а направление вектора изменяется со временем, сохраняя ориентацию на центр окружности. Именно поэтому это ускорение называется центростремительным: вектор в любой момент времени направлен к центру окружности.

Запись центростремительного ускорения в векторной форме выглядит следующим образом:

Здесь R → – радиус вектор точки на окружности с началом в ее центре.

Тангенциальное ускорение

В общем случае ускорение при движении по окружности состоит из двух компонентов – нормальное, и тангенциальное.

Рассмотрим случай, когда тело движется по окружности неравномерно. Введем понятие тангенциального (касательного) ускорения. Его направление совпадает с направлением линейной скорости тела и в каждой точке окружности направлено по касательной к ней.

a τ = ∆ v τ ∆ t ; ∆ t → 0

Здесь ∆ v τ = v 2 – v 1 – изменение модуля скорости за промежуток ∆ t

Направление полного ускорения определяется векторной суммой нормального и тангенциального ускорений.

Движение по окружности в плоскости можно описывать при помощи двух координат: x и y. В каждый момент времени скорость тела можно разложить на составляющие v x и v y .

Если движение равномерное, величины v x и v y а также соответствующие координаты будут изменяться во времени по гармоническому закону с периодом T = 2 π R v = 2 π ω

1. Движением тела по окружности называют движение, траекторией которого является окружность. По окружности движутся, например, конец стрелки часов, точки лопасти вращающейся турбины, вращающегося вала двигателя и др.

При движении по окружности направление скорости непрерывно изменяется. При этом модуль скорости тела может изменяться, а может оставаться неизменным. Движение, при котором изменяется только направление скорости, а её модуль сохраняется постоянным, называется

равномерным движением тела по окружности. Под телом в данном случае имеют в виду материальную точку.

2. Движение тела по окружности характеризуется определёнными величинами. К ним относятся, прежде всего, период и частота обращения. Период обращения тела по окружности ​ ( T ) ​ — время, в течение которого тело совершает один полный оборот. Единица периода — ​ ( [,T,] ) ​ = 1 с.

Частота обращения ​ ( (n) ) ​ — число полных оборотов тела за одну секунду: ​ ( n=N/t ) ​. Единица частоты обращения — ( [,n,] ) = 1 с -1 = 1 Гц (герц). Один герц — это такая частота, при которой тело совершает один оборот за одну секунду.

Связь между частотой и периодом обращения выражается формулой: ​ ( n=1/T ) ​.

Пусть некоторое тело, движущееся по окружности, за время ​ ( t ) ​ переместилось из точки А в точку В. Радиус, соединяющий центр окружности с точкой А, называют радиусом-вектором. При перемещении тела из точки А в точку В радиус-вектор повернётся на угол ​ ( varphi ) ​.

Быстроту обращения тела характеризуют угловая и линейная скорости.

Угловая скорость ​ ( omega ) ​ — физическая величина, равная отношению угла поворота ( varphi ) радиуса-вектора к промежутку времени, за которое этот поворот произошел: ​ ( omega=varphi/t ) ​. Единица угловой скорости — радиан в секунду, т.е. ​ ( [,omega,] ) ​ = 1 рад/с. За время, равное периоду обращения, угол поворота радиуса-вектора равен ​ ( 2pi ) ​. Поэтому ​ ( omega=2pi/T ) ​.

Линейная скорость тела ​ ( v ) ​ — скорость, с которой тело движется вдоль траектории. Линейная скорость при равномерном движении по окружности постоянна по модулю, меняется по направлению и направлена по касательной к траектории.

Линейная скорость равна отношению пути, пройденному телом вдоль траектории, ко времени, за которое этот путь пройден: ​ ( vec=l/t ) ​. За один оборот точка проходит путь, равный длине окружности. Поэтому ​ ( vec=2pi!R/T ) ​. Связь между линейной и угловой скоростью выражается формулой: ​ ( v=omega R ) ​.

Из этого равенства следует, что чем дальше от центра окружности расположена точка вращающегося тела, тем больше её линейная скорость.

4. Ускорение тела равно отношению изменения его скорости ко времени, за которое оно произошло.2R ) ​.

При движении тела по окружности его центростремительное ускорение постоянно по модулю и направлено к центру окружности.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. При равномерном движении тела по окружности

1) изменяется только модуль его скорости
2) изменяется только направление его скорости
3) изменяются и модуль, и направление его скорости
4) не изменяется ни модуль, ни направление его скорости

2. Линейная скорость точки 1, находящейся на расстоянии ​ ( R_1 ) ​ от центра вращающегося колеса, равна ​ ( v_1 ) ​. Чему равна скорость ​ ( v_2 ) ​ точки 2, находящейся от центра на расстоянии ​ ( R_2=4R_1 ) ​?

1) ​ ( v_2=v_1 ) ​
2) ​ ( v_2=2v_1 ) ​
3) ​ ( v_2=0,25v_1 ) ​
4) ​ ( v_2=4v_1 ) ​

3. Период обращения точки по окружности можно вычислить по формуле:

1) ​ ( T=2pi!Rv ) ​
2) ( T=2pi!R/v ) ​
3) ( T=2pi v ) ​
4) ( T=2pi/v ) ​

4.2 ) ​
3) ( omega=vR )
4) ( omega=v/R ) ​

5. Угловая скорость вращения колеса велосипеда увеличилась в 2 раза. Как изменилась линейная скорость точек обода колеса?

1) увеличилась в 2 раза
2) уменьшилась в 2 раза
3) увеличилась в 4 раза
4) не изменилась

6. Линейная скорость точек лопасти винта вертолёта уменьшилась в 4 раза. Как изменилось их центростремительное ускорение?

1) не изменилось
2) уменьшилось в 16 раз
3) уменьшилось в 4 раза
4) уменьшилось в 2 раза

7. Радиус движения тела по окружности увеличили в 3 раза, не меняя его линейную скорость. Как изменилось центростремительное ускорение тела?

1) увеличилось в 9 раз
2) уменьшилось в 9 раз
3) уменьшилось в 3 раза
4) увеличилось в 3 раза

8. Чему равен период обращения коленчатого вала двигателя, если за 3 мин он совершил 600 000 оборотов?

1) 200 000 с
2) 3300 с
3) 3·10 -4 с
4) 5·10 -6 с

9.2/R ) ​
3) ​ ( v/R ) ​
4) ​ ( omega R ) ​
5) ​ ( 1/n ) ​

12. Период обращения колеса увеличился. Как изменились угловая и линейная скорости точки обода колеса и её центростремительное ускорение. Установите соответствие между физическими величинами в левом столбце и характером их изменения в правом столбце.
В таблице под номером физической величины левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) угловая скорость
Б) линейная скорость
B) центростремительное ускорение

ХАРАКТЕР ИЗМЕНЕНИЯ ВЕЛИЧИНЫ
1) увеличилась
2) уменьшилась
3) не изменилась

Часть 2

13. Какой путь пройдёт точка обода колеса за 10 с, если частота обращения колеса составляет 8 Гц, а радиус колеса 5 м?

Равномерное движение по окружности

Равномерное движение по окружности – это простейший пример криволинейного движения. Например, по окружности движется конец стрелки часов по циферблату. Скорость движения тела по окружности носит название линейная скорость.

При равномерном движении тела по окружности модуль скорости тела с течением времени не изменяется, то есть v = const, а изменяется только направление вектора скорости . Тангенциальное ускорение в этом случае отсутствует (ar = 0), а изменение вектора скорости по направлению характеризуется величиной, которая называется центростремительное ускорение (нормальное ускорение) an или аЦС. В каждой точке траектории вектор центростремительного ускорения направлен к центру окружности по радиусу.

Модуль центростремительного ускорения равен

aЦС=v2 / R

Где v – линейная скорость, R – радиус окружности

Рис. 1.22. Движение тела по окружности.

Когда описывается движение тела по окружности, используется угол поворота радиуса – угол φ, на который за время t поворачивается радиус, проведённый из центра окружности до точки, в которой в этот момент находится движущееся тело. Угол поворота измеряется в радианах. Радиан равен углу между двумя радиусами окружности, длина дуги между которыми равна радиусу окружности (рис. 1.23). То есть если l = R, то

1 радиан= l / R

Так как длина окружности равна

l = 2πR

то

360о = 2πR / R = 2π рад.

Следовательно

1 рад. = 57,2958о = 57о18’

Угловая скорость равномерного движения тела по окружности – это величина ω, равная отношению угла поворота радиуса φ к промежутку времени, в течение которого совершён этот поворот:

ω = φ / t

Единица измерения угловой скорости – радиан в секунду [рад/с]. Модуль линейной скорости определяется отношением длины пройденного пути l к промежутку времени t:

v= l / t

Линейная скорость при равномерном движении по окружности направлена по касательной в данной точке окружности. При движении точки длина l дуги окружности, пройденной точкой, связана с углом поворота φ выражением

l = Rφ

где R – радиус окружности.

Тогда в случае равномерного движения точки линейная и угловая скорости связаны соотношением:

v = l / t = Rφ / t = Rω или v = Rω

Рис. 1.23. Радиан.

Период обращения – это промежуток времени Т, в течение которого тело (точка) совершает один оборот по окружности. Частота обращения – это величина, обратная периоду обращения – число оборотов в единицу времени (в секунду). Частота обращения обозначается буквой n.

n = 1 / T

За один период угол поворота φ точки равен 2π рад, поэтому 2π = ωT, откуда

T = 2π / ω

То есть угловая скорость равна

ω = 2π / T = 2πn

Центростремительное ускорение можно выразить через период Т и частоту обращения n:

aЦС = (4π2R) / T2 = 4π2Rn2


Урок 4. равномерное движение точки по окружности — Физика — 10 класс

Физика, 10 класс

Урок 04.Равномерное движение точки по окружности

Перечень вопросов, рассматриваемых на уроке:

  1. Равномерное движение точки по окружности и его характеристики.
  2. Центростремительное ускорение.

Глоссарий по теме

Криволинейное движение – это движение по дугам окружностей разных радиусов.

Ускорение – это векторная величина, равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло, при ∆t → 0

Равномерное движение точки по окружности — движение точки с постоянной по модулю скоростью (ν = const) по траектории, представляющей собой окружность.

Ключевые слова

Криволинейное движение; движение по окружности; скорость; радиус кривизны; изменение скорости; центростремительное ускорение.

Основная и дополнительная литература по теме урока:

Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2016. С.55-56

Марон Е.А., Марон А.Е. Сборник качественных задач по физике. М., Просвещение, 2006

Рымкевич А.П. Сборник задач по физике. 10-11 класс.-М.:Дрофа,2009.-С.20-22

Открытые электронные ресурсы:

http://kvant.mccme.ru/1986/11/kinematika_vrashchatelnogo_dvi.htm

Теоретический материал для самостоятельного изучения

1. Мы уже знакомы с равноускоренным движением. Как же меняются скорость и ускорение при криволинейном движении? Сегодня рассмотрим равномерное движение по окружности, узнаем, что такое центростремительное ускорение.

Если траектория движения тела прямая линия, то движение прямолинейное; если траектория кривая линия – криволинейное движение. Напомним, что траектория – это линия, вдоль которой двигалось тело.

При изучении равноускоренного движения мы заметили, что в некоторых случаях тело движется по прямой, например свободное падение тел, а в некоторых по кривой – тело, брошенное под углом к горизонту.

Рассмотрим движение тела, брошенного под углом к горизонту. Траекторией является парабола.

Возьмем разные точки на линии и нарисуем векторы скорости . Вектор скорости направлен по касательной, а ускорение свободного падения направлен вниз.

Векторы и не лежат на одной прямой, угол между ними не равен нулю.

Это естественно, так как, если ускорение образует угол со скоростью, то изменение скорости направлено не так, как скорость. Это приводит к изменению направления скорости. Изменение скорости направлено как ускорение. Скорость через некоторый промежуток времени образует некоторый угол с Итак, сформулируем первый вывод: если угол между векторами скорости и ускорения не равен нулю, то движение будет криволинейным.

2.Может ли быть движение одновременно равномерным и криволинейным? Да, например, движение по окружности.

Равномерное движение точки по окружности — это движение точки с постоянной по модулю скоростью (v = const) по траектории, представляющей собой окружность. Но, скорость – это векторная величина, а для векторной величины одинаково важны и модуль, и направление. Т.к. при движении по окружности скорость всегда направлена по касательной к траектории движения, то по направлению она изменяется. Если есть изменение скорости (точнее её направления), значит, есть ускорение

Сформулируем второй важный вывод: любое криволинейное движение является движением с ускорением, потому что меняется направление вектора скорости.

Решим задачу: найдем ускорение тела, равномерно движущегося по окружности.

Рассмотрим равномерное движение тела по окружности с центром в точке О. В какой-то момент времени, скорость тела в точке А была.

Модули скоростей равны:

но вектора скоростей не равны.

Поэтому построим вектор для тела, движущегося по окружности. Перенесем вектор в начало вектораи найдем разность векторов.

направлен в сторону.

Вспомним, что векторнаправлен по касательной, а касательная перпендикулярна радиусу окружности. Проведем радиусы к обеим точкам и обозначим угол между ними через ?.

Что можно сказать об угле между векторами ? Он равен малому углу, как углы с взаимно перпендикулярными сторонами.

Рассмотрим равнобедренный треугольник со сторонами , . Углы у основания равны.

Если угол φ стремится к нулю, то углы у основания совпадут и станут равными 900

Вектор будет перпендикулярен вектору в пределе, а значит вектор ускорения тоже перпендикулярен т.е направлен по радиусу к центру окружности. Поэтому часто его называют центростремительным ускорением

Теперь следующая задача: как найти модуль вектора ускорения. Давайте рассмотрим два треугольника: треугольник, образованный векторами и треугольник, образованный радиусами и хордой. У этих треугольников углы при вершинах равны, они равнобедренные. Треугольники подобны и, следовательно, выполняются соотношения подобия.

Промежуток времени мал, поэтому очень мал и угол при вершине, в пределе он стремится к нулю. Тогда можно сказать, что длина хорды s равна длине дуги АВ при

Длина дуги АВ это путь, пройденный точкой от А до В,

тогда запишем:

Умножим наи получим:

В левой части мы получили отношение изменения скорости за некоторый промежуток времени к этому промежутку времени т.е. ускорение:

Равномерное движение точки по окружности является движением с переменным ускорением и переменной скоростью. Модули скорости и ускорения остаются постоянными

  1. Криволинейное движение — это движение по дугам окружностей разных радиусов.

А если меняется радиус, то меняется и центростремительное ускорение. Чем меньше радиус, тем больше ускорение при одинаковой скорости.

Всегда при равномерном криволинейном движении вектор ускорения перпендикулярен вектору скорости, поэтому центростремительное ускорение иногда называют нормальным ускорением, от слова нормаль, т.е. перпендикуляр.

Основные выводы:

— движение криволинейное, так как траекторией является окружность;

— движение равномерное, так как модуль скорости не меняется;

— вектор скорости направлен по касательной к окружности;

-вектор ускорения направлен к центру окружности;

— модуль центростремительного ускорения равен:

Примеры и разбор решения заданий

1. Велосипедист движется по закруглению дороги радиусом 50 м со скоростью 36 км/ч. С каким ускорением он проходит закругление?

При движении по окружности линейная скорость и центростремительное ускорение связаны соотношением

где R = 50 м; υ= км/ч = 10 м/с.

Тогда ac = (10 м/с)2 / 50 м = 2 м/с2.

Ответ: 2 м/с2

2. Две материальные точки движутся по окружностям радиусами R1 = 10 см и R2 = 30 см с одинаковыми скоростями 0,20 м/с. Во сколько раз отличаются их центростремительные ускорения?

Дано:

R1 =10см = 0,10 м

R2 = 30см = 0,30 м

Найти —

Задано два объекта:

1) материальная точка, которая движется по окружности R1;

2) материальная точка, которая движется по окружности R2.

При движении по окружности центростремительное ускорение и линейная скорость связаны соотношением

Для тела 1 уравнение (1) примет вид:

для тела 2:

Тогда

Центростремительное ускорение тела (2) меньше ускорения тела (1) в 3 раза.

Физика — 10

Численное значение линейной скорости при равномерном движении по окружности равно отношению пройденного пути ко времени, затраченному на его прохождение:

v = l
t .

Материальная точка, двигаясь равномерно по окружности, за время, равное периоду обращения (t = T ), проходит путь, равный длине круга: l = 2πR. Приняв это во внимание в формуле линейной скорости, получим выражение, связывающее линейную скорость с угловой скоростью:

v = 2π
TR = ωR.

Центростремительное ускорение. Быстрота изменения направления линейной скорости при равномерном движении по окружности характеризуется физической величиной называемой центростремительным, или нормальным, ускорением. Вектор центростремительного, или нормального, ускорения в любой точке траектории направлен по радиусу к центру окружности (см.: c). Модуль центростремительного ускорения материальной точки при равномерном движении по окружности равен отношению квадрата линейной скорости к радиусу окружности:

a = v2
R.

Творческое применение. Исследование. Можете ли доказать?
Докажите, что:
  1. линейная скорость при равномерном движении по окружности связана с частотой обращения формулой:

    v = 2πvR.

  2. центростремительное ускорение при равномерном движении по окружности связано с перидом и частотой обращения и числом оборотов по формулам:

    a = 4π2R
    T 2; a = 2v 2R, a = 4π2N2
    t 2R .

  3. центростремительное ускорение при равномерном движении по окружности связано с угловой и линейной скоростью формулой:

    a = ωv .

Обсуждение результатов:
  • Постройте графики зависимости линейной скорости материальной точки, равномерно движущейся по окружности, от радиуса окружности, периода и частоты обращения.
  • Постройте графики зависимости центростремительного ускорения материальной точки, равномерно движущейся по окружности, от радиуса окружности, периода и частоты обращения.
Применение в повседневной жизни:
  • Длина секундной стрелки наручных часов 2 см, а длина минутной стрелки 1,5 см. Конец какой из стрелок движется с большим центростремительным ускорением и на сколько?
  • Где в повседневной жизни можно встретить равномерное движение по окружности? Что можно сказать о периоде и частоте их обращения?
Провести самооценку:
  1. Какие понятия повторили на уроке? Что из этого вы хорошо поняли, а что осталось вам не ясным?

Скорость движения по кругу

Тестирование онлайн

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным, оно является равноускоренным.

Угловая скорость

Выберем на окружности точку 1. Построим радиус. За единицу времени точка переместится в пункт 2. При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращения T — это время, за которое тело совершает один оборот.

Частота вращение — это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.

Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено — это есть период T. Путь, который преодолевает точка — это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Используя предыдущие формулы, можно вывести следующие соотношения

Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Вращение Земли

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Связь со вторым законом Ньютона

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Как вывести формулу центростремительного ускорения

Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна vA и vB соответственно. Ускорение — изменение скорости за единицу времени. Найдем разницу векторов.

Разница векторов есть . Так как , получим

Движение по циклоиде*

В системе отсчета, связанной с колесом, точка равномерно вращается по окружности радиуса R со скоростью , которая изменяется только по направлению. Центростремительное ускорение точки направлено по радиусу к центру окружности.

Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А — уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.

Мгновенная скорость определяется по формуле

Движение по окружности — простейший случай криволинейного движения тела. Когда тело движется вокруг некоторой точки, наряду с вектором перемещения удобно ввести угловое перемещение ∆ φ (угол поворота относительно центра окружности), измеряемое в радианах.

Зная угловое перемещение, можно вычислить длину дуги окружности (путь), которую прошло тело.

Если угол поворота мал, то ∆ l ≈ ∆ s .

Угловая скорость

При криволинейном движении вводится понятие угловой скорости ω , то есть скорости изменения угла поворота.

Определение. Угловая скорость

Угловая скорость в данной точке траектории — предел отношения углового перемещения ∆ φ к промежутку времени ∆ t , за которое оно произошло. ∆ t → 0 .

ω = ∆ φ ∆ t , ∆ t → 0 .

Единица измерения угловой скорости — радиан в секунду ( р а д с ).

Существует связь между угловой и линейной скоростями тела при движении по окружности. Формула для нахождения угловой скорости:

Нормальное ускорение

При равномерном движении по окружности, скорости v и ω остаются неизменными. Меняется только направление вектора линейной скорости.

При этом равномерное движение по окружности на тело действует центростремительное, или нормальное ускорение, направленное по радиусу окружности к ее центру.

a n = ∆ v → ∆ t , ∆ t → 0

Модуль центростремительного ускорения можно вычислить по формуле:

a n = v 2 R = ω 2 R

Докажем эти соотношения.

Рассмотрим, как изменяется вектор v → за малый промежуток времени ∆ t . ∆ v → = v B → — v A → .

В точках А и В вектор скорости направлен по касательной к окружности, при этом модули скоростей в обеих точках одинаковы.

По определению ускорения:

a → = ∆ v → ∆ t , ∆ t → 0

Взглянем на рисунок:

Треугольники OAB и BCD подобны. Из этого следует, что O A A B = B C C D .

Если значение угла ∆ φ мало, расстояние A B = ∆ s ≈ v · ∆ t . Принимая во внимание, что O A = R и C D = ∆ v для рассмотренных выше подобных треугольников получим:

R v ∆ t = v ∆ v или ∆ v ∆ t = v 2 R

При ∆ φ → 0 , направление вектора ∆ v → = v B → — v A → приближается к направлению на центр окружности. Принимая, что ∆ t → 0 , получаем:

a → = a n → = ∆ v → ∆ t ; ∆ t → 0 ; a n → = v 2 R .

При равномерном движении по окружности модуль ускорения остается постоянным, а направление вектора изменяется со временем, сохраняя ориентацию на центр окружности. Именно поэтому это ускорение называется центростремительным: вектор в любой момент времени направлен к центру окружности.

Запись центростремительного ускорения в векторной форме выглядит следующим образом:

Здесь R → — радиус вектор точки на окружности с началом в ее центре.

Тангенциальное ускорение

В общем случае ускорение при движении по окружности состоит из двух компонентов — нормальное, и тангенциальное.

Рассмотрим случай, когда тело движется по окружности неравномерно. Введем понятие тангенциального (касательного) ускорения. Его направление совпадает с направлением линейной скорости тела и в каждой точке окружности направлено по касательной к ней.

a τ = ∆ v τ ∆ t ; ∆ t → 0

Здесь ∆ v τ = v 2 — v 1 — изменение модуля скорости за промежуток ∆ t

Направление полного ускорения определяется векторной суммой нормального и тангенциального ускорений.

Движение по окружности в плоскости можно описывать при помощи двух координат: x и y. В каждый момент времени скорость тела можно разложить на составляющие v x и v y .

Если движение равномерное, величины v x и v y а также соответствующие координаты будут изменяться во времени по гармоническому закону с периодом T = 2 π R v = 2 π ω

4.1. Движение по окружности с постоянной скоростью.

Движение по окружности — простейший вид криволинейного движения.

4.1.1. Криволинейное движение — движение, траекторий которого является кривая линия.

Для движения по окружности с постоянной скоростью:

1) траектория движения — окружность;

2) вектор скорости направлен по касательной к окружности;

3) вектор скорости постоянно меняет свое направление;

4) за изменение направления скорости отвечает ускорение, называемое центростремительным (или нормальным) ускорением;

5) центростремительное ускорение меняет только направление вектора скорости, при этом модуль скорости остается неизменным;

6) центростремительное ускорение направлено к центру окружности, по которой происходит движение (центростремительное ускорение всегда перпендикулярно вектору скорости).

4.1.2. Период (T) — время одного полного оборота по окружности.

Это величина постоянная, так как длина окружности постоянная и скорость движения постоянна

4.1.3 Частота — число полных оборотов за 1 с.

По сути, частота отвечает на вопрос: как быстро вращается тело?

4.1.4. Линейная скорость — показывает, какой путь проходит тело за 1 с (это та же самая скорость, о которой говорилось в предыдущих темах)

где R — радиус окружности.

4.1.5. Угловая скорость показывает, на какой угол поворачивается тело за 1 с.

где — угол, на который повернулось тело за время

4.1.6. Центростремительное ускорение

Напомним, что центростремительное ускорение отвечает только за поворот вектора скорости. При этом, так как скорость постоянная величина, то значение ускорения тоже постоянно.

4.1.7. Закон изменения угла поворота

Это полный аналог закона движения при постоянной скорости :

Роль координаты x играет угол роль начальной координаты играет скорость — угловая скорость И с формулой следует работать так же, как ранее работали с формулой закона равномерного движения.

4.2. Движение по окружности с постоянным ускорением.

4.2.1. Тангенциальное ускорение

Центростремительное ускорение отвечает за изменение направления вектора скорости, но если еще меняется и модуль скорости, то необходимо ввести величину отвечающую за это — тангенциальное ускорение

Из вида формулы ясно, что — это обычное ускорение, о котором говорилось раньше. Если то справедливы формулы равноускоренного движения:

где S — путь, который проходит тело по окружности.

Итак, еще раз подчеркнем, отвечает за изменение модуля скорости.

4.2.2. Угловое ускорение

Мы ввели аналог скорости для движения по окружности — угловая скорость. Естественно будет ввести и аналог ускорения — угловое ускорение

Угловое ускорение связано с тангенциальным ускорением:

Из формулы видно, что если тангенциальное ускорение постоянно, то и угловое ускорение будет постоянно. Тогда можем записать:

Формула является полным аналогом закона равнопеременного движения, поэтому работать с этой формулой мы уже умеем.

4.2.3. Полное ускорение

Центростремительное (или нормальное) и тангенциальное ускорения не являются самостоятельными. На самом деле, это проекции полного ускорения на нормальную (направлена по радиусу окружности, то есть перпендикулярно скорости) и тангенциальную (направлена по касательной к окружности в сторону, куда направлен вектор скорости) оси. Поэтому

Нормальная и тангенциальные оси всегда перпендикулярны, следовательно, абсолютно всегда модуль полного ускорения можно найти по формуле:

4.4. Движение по криволинейной траектории.

Движение по окружности является частным видом криволинейного движения. В общем случае, когда траектория представляет собой произвольную кривую (см. рис.), всю траекторию можно разбить на участки: AB и DE — прямолинейные участки, для которых справедливы все формулы движения по прямой; а для каждой участка, который нельзя рассмотреть как прямую, строим касательную окружность (окружность, которая касается траектории только в этой точке) — в точках C и D. Радиус касательной окружности называется радиусом кривизны. В каждой точке траектории радиус кривизны имеет свое значение.

Формула для нахождения радиуса кривизны :

где — нормальное ускорение в данной точке (проекция полного ускорения на ось, перпендикулярную вектору скорости).

Равномерное движение по окружности — Технарь

Движение тела по окружности является частным случаем криволинейного движения. Такой вид движения также рассматривается в кинематике. При криволинейном движении вектор скорости тела всегда направлен по касательной к траектории. То же самое происходит и при движении по окружности (см. рисунок). Равномерное движение тела по окружности характеризуется рядом величин.

Период – время, за которое тело, двигаясь по окружности, совершает один полный оборот. Единица измерения – 1 с. Период рассчитывается по формуле:

T = t/N

Частота – количество оборотов, которое совершило тело, двигаясь по окружности, в единицу времени. Единица измерения – 1 об/с или 1 Гц. Частота рассчитывается по формуле:

v = N/t

В обеих формулах: N – количество оборотов за время t. Как видно из вышеприведенных формул, период и частота величины взаимообратные:

T = 1/v, v = 1/T, Tv = 1

При равномерном вращении скорость тела будет определяется следующим образом:

v = 1/t = 2πR/T = 2πRv

где: l – длина окружности или путь, пройденный телом за время равное периоду T. При движении тела по окружности удобно рассматривать угловое перемещение φ (или угол поворота), измеряемое в радианах. Угловой скоростью ω тела в данной точке называют отношение малого углового перемещения Δφ к малому промежутку времени Δt. Очевидно, что за время равное периоду T тело пройдет угол равный 2π, следовательно при равномерном движении по окружности выполняются формулы:

ω = Δφ/Δt = 2π/T = 2πv

Угловая скорость измеряется в рад/с. Не забывайте переводить углы из градусов в радианы. Длина дуги l связана с углом поворота соотношением:

l = φR

Связь между модулем линейной скорости v и угловой скоростью ω:

ω = v/R, v = ωR

При движении тела по окружности с постоянной по модулю скоростью изменяется только направление вектора скорости, поэтому движение тела по окружности с постоянной по модулю скоростью является движением с ускорением (но не равноускоренным), так как меняется направление скорости. В этом случае ускорение направлено по радиусу к центру окружности. Его называют нормальным, или центростремительным ускорением, так как вектор ускорения в любой точке окружности направлен к ее центру (см. рисунок).

Модуль центростремительного ускорения связан с линейной v и угловой ω скоростями соотношениями:

αц = v2/R = ω2R = vω

Обратите внимание, что если тела (точки) находятся на вращающемся диске, шаре, стержне и так далее, одним словом на одном и том же вращающемся объекте, то у всех тел одинаковые период вращения, угловая скорость и частота.

Формула линейной скорости с физикой | Решенные и практические вопросы

Что такое линейная скорость?

Линейная скорость — это тема, в которой формулам уделяется большое внимание. Вам нужно запомнить несколько формул в этом конкретном подразделении. Если вы не можете запомнить формулы, не волнуйтесь, мы здесь, чтобы помочь! Линейная скорость — это расстояние, которое проходит движущийся объект. Скорость, с которой объект движется по линейной траектории, называется линейной скоростью. Проще говоря, мы можем понять, что линейная скорость — это расстояние, которое тело преодолевает за заданный промежуток времени.Давайте лучше поймем, что такое линейная скорость, а также решим несколько проблем!

Определение линейной скорости

Изменение расстояния во времени называется линейной скоростью. Это изменение может быть мгновенным или происходить в течение определенного периода времени. Когда линейная скорость измеряется в течение очень короткого интервала, она называется мгновенной линейной скоростью, а когда она измеряется в течение заданного периода времени, она называется средней линейной скоростью. Однако когда линейная скорость измеряется за короткий промежуток времени, она оказывается более точной.

Формула для линейной скорости

V (линейная скорость) = ∆S / ∆T

Выше приведена формула средней линейной скорости. Это мера изменения линейной скорости во времени за данный период времени.

∆S представляет собой изменение расстояния

А ∆T представляет собой время, затрачиваемое телом на преодоление данного расстояния.

В (линейная скорость) = dS / dT

Выше приведена формула мгновенного измерения линейной скорости. Это измеряет изменение расстояния в пределах доли секунды движения.

Здесь dS представляет собой мгновенное изменение расстояния, а dT представляет собой долю секунды, необходимую для того, чтобы это изменение произошло. Мгновенная скорость является более точной, поскольку период, рассматриваемый при нахождении мгновенной линейной скорости, намного меньше.

Формула линейной скорости в круговом движении

Когда тело совершает круговое движение, оно имеет два разных вида скорости

  1. Угловая скорость

  2. Линейная скорость

Линейная скорость и угловая скорость вместе составляют скорость тела при круговом движении.Линейная скорость при круговом движении толкает тело вперед, тогда как угловая скорость вызывается центростремительной силой, которая заставляет тело продолжать движение по круговой траектории. Центростремительная сила создает притяжение внутрь и, следовательно, ограничивает движение круговой траекторией. Линейная скорость отвечает за движение тела. Без наличия линейной скорости круговое движение прекратится. Без наличия угловой скорости круговое движение будет нарушено, и движение продолжится в тангенциальном направлении.Следовательно, оба компонента одинаково важны для ограничения тела круговой траекторией.

Угловая линейная скорость

Как мы видели ранее, вращательное движение имеет два вида скоростей. Угловая скорость тела во вращательном движении возникает из-за ускорения, которое движет тело вперед и заставляет его двигаться по круговой траектории. Формула для линейной угловой скорости приведена ниже

V = rw

Где v — линейная скорость тела, r — радиус круговой траектории, а w — омега, угловая скорость тела, которая движется по круговой траектории.

Решенных ответов

Вопрос 1: Тело начинается с покоя и движется с ускорением 10 рад / с² по кругу радиусом 5 м. Найдите линейную скорость тела через 6 с.

Ответ:

Ускорение a = 10 рад с⁻²

Радиус r = 5 м

Время t = 6 с

Угловая скорость определяется как

ω = ω0 + при

= 0 + 10 ( 6)

= 60 рад⁻¹

Линейная скорость определяется как

v = r ω

= 5 м × 60 рад с⁻¹

v = 300 м / с.

Следовательно, линейная скорость данного тела составляет 300 м / с. Это означает, что если центростремительная сила, действующая на тело, будет снята, оно продолжит двигаться в тангенциальном направлении.

Вопрос 2: Найти линейную скорость тела, движущегося со скоростью 30 об / мин по круговой траектории с радиусом 5 м?

Ответ:

Учитывая

Угловая скорость = 30 об / мин

= 30 π / 30

= 1 рад / с

Радиус r = 2 м

Линейная скорость определяется как

v = r ω

v = 2 м × 1 рад / с

v = 2 м / с

Вопрос 3: Мальчик вращает йойо в радиусе 5 м.Если линейная или тангенциальная скорость йо-йо равна 6 м / с, найдите угловую скорость й-йо.

Ответ:

Учитывая

R = 5 м

V = 6 м / с

Формула для линейной скорости

v = r ω

ω = v / r

ω = 6/5

ω = 1.2

Движение по кругу — Математика A-Level Revision

Эта страница описывает Движение по кругу.

Угловая скорость

Представьте, что объект движется по круговой траектории.

Угловая скорость — это скорость изменения угла (который я обозначил буквой «а»). Таким образом, он измеряет, насколько быстро объект движется по кругу.

Угловая скорость обычно измеряется в радианах в секунду (рад с -1 ), то есть на сколько радиан проходит частица за секунду. Кроме того, его можно измерить в оборотах в секунду, т.е. сколько полных кругов объект проходит за секунду.

Существует формула, соединяющая «нормальную» скорость (обычно называемую «линейной скоростью») и угловую скорость:

где v — линейная скорость, r — радиус окружности, а w — угловая скорость.

Пример

Частица движется по кругу радиусом 10 см. Угловая скорость 2 рад / с -1 . Найдите (линейную) скорость.

Нам нужен радиус в метрах, то есть 0,1 м. Используя приведенную выше формулу, получаем:

v = 0,1 × 2 = 0,2

Значит скорость 0,2 мс -1 .

Обратите внимание, что если вам дана угловая скорость в оборотах в секунду, вам нужно сначала преобразовать в радианы в секунду.Для этого помните, что 1 оборот в секунду равен 2p радианам в секунду, потому что в круге 2p радиана.

Радиальное ускорение

Если тело движется по кругу, даже если оно движется с постоянной скоростью, оно ускоряется. Это потому, что он меняет направление (не движется по прямой).

Направление этого ускорения — к центру круга, а его величина определяется выражением:

где v — скорость, а r — радиус круга.

Используя нашу формулу выше, это также можно записать как:

Какой из них вы будете использовать, будет зависеть от того, имеете ли вы дело со скоростью или угловой скоростью.

Ускорение происходит из-за действующей силы:

Представьте, что вы едете в машине, которая быстро объезжает поворот налево. Вы почувствуете, как сила тянет вас в сторону (левую сторону). Это сила, вызывающая ускорение. Сила действует по направлению к центру круга.

Конический маятник

Конический маятник выглядит примерно так:

P — частица.AP — это строка. P движется по синему кругу с угловой скоростью w.

Пример

Предположим, что у нас есть конический маятник, как указано выше, где частица имеет массу 2 кг, радиус круга, по которому движется частица, составляет 0,5 м, а угол при A равен 45 градусам. Найти угловую скорость P.

Вес 2 г (W = мг), где g — ускорение свободного падения.

Вертикальное разрешение: Tcos45 = 2g
Следовательно (√2T) / 2 = 2g, поэтому T = 2√2 g (1)

Теперь используйте 2-й закон Ньютона, чтобы найти уравнение движения в радиальном направлении:
(«F = m r w 2 «)
Tsin45 = 2 × 5 × w 2

Используйте (1), чтобы исключить T:
2√2 g × (√2) / 2 = 10w 2
g / 5 = w 2
Итак, w = √ (g / 5)

Принимая g = 9.8, получаем, что угловая скорость составляет 1,4 рад с -1

Движение на береговой поверхности

Теперь рассмотрим движение частицы по «наклонной поверхности». Под этим я, например, имею в виду кольцевую гоночную трассу, которая наклонена вверх от центра, чтобы помочь автомобилям / мотоциклам оставаться на трассе на высоких скоростях.

Так вот, если машина едет очень быстро, она будет скользить по склону, двигаясь по кругу. Если он будет двигаться медленно, он поскользнется.

Если автомобиль не имеет тенденции к скольжению, силы и ускорение, действующие на кузов, будут такими, как на этой диаграмме (сила трения отсутствует):

Однако, если бы машина двигалась быстрее, она бы соскользнула по склону при движении по трассе. Таким образом, сила трения будет действовать, пытаясь предотвратить это:

6.2 Равномерное круговое движение — Физика

Задачи обучения разделу

К концу этого раздела вы сможете делать следующее:

  • Описывать центростремительное ускорение и связывать его с линейным ускорением
  • Опишите центростремительную силу и свяжите ее с линейной силой
  • Решение проблем, связанных с центростремительным ускорением и центростремительной силой

Поддержка учителей

Поддержка учителей

Цели обучения в этом разделе помогут вашим ученикам овладеть следующими стандартами:

  • (4) Научные концепции.Учащийся знает и применяет законы движения в самых разных ситуациях. Ожидается, что студент:
    • (C) анализировать и описывать ускоренное движение в двух измерениях, используя уравнения, включая примеры снарядов и кругов.
    • (D) вычислить влияние сил на объекты, включая закон инерции, соотношение между силой и ускорением и характер пар сил между объектами.

Кроме того, Руководство лаборатории по физике для старших классов рассматривает содержание этого раздела лаборатории под названием «Круговое и вращательное движение», а также следующие стандарты:

  • (4) Научные концепции.Учащийся знает и применяет законы движения в самых разных ситуациях. Ожидается, что студент:
    • (C) анализировать и описывать ускоренное движение в двух измерениях, используя уравнения, включая примеры снарядов и кругов.

Раздел Основные термины

центробежная сила центростремительное ускорение центростремительная сила равномерное круговое движение

Центростремительное ускорение

Поддержка учителя

Поддержка учителя

[BL] [OL] Проверьте равномерное круговое движение.Попросите учащихся привести примеры кругового движения. Просмотрите линейное ускорение.

В предыдущем разделе мы определили круговое движение. Простейшим случаем кругового движения является равномерное круговое движение, когда объект движется по круговой траектории с постоянной скоростью . Обратите внимание, что, в отличие от скорости, линейная скорость объекта при круговом движении постоянно меняется, потому что он всегда меняет направление. Из кинематики мы знаем, что ускорение — это изменение скорости либо по величине, либо по направлению, либо по обоим направлениям.Следовательно, объект, совершающий равномерное круговое движение, всегда ускоряется, даже если величина его скорости постоянна.

Вы сами испытываете это ускорение каждый раз, когда едете в машине на повороте. Если вы держите рулевое колесо неподвижно во время поворота и двигаетесь с постоянной скоростью, вы совершаете равномерное круговое движение. Вы замечаете ощущение скольжения (или отбрасывания, в зависимости от скорости) от центра поворота. На вас действует не настоящая сила — это происходит только потому, что ваше тело хочет продолжать движение по прямой линии (согласно первому закону Ньютона), в то время как машина сворачивает с этого прямолинейного пути.Внутри машины создается впечатление, что вас оттесняют от центра поворота. Эта фиктивная сила известна как центробежная сила. Чем резче кривая и чем выше ваша скорость, тем заметнее становится этот эффект.

Поддержка учителя

Поддержка учителя

[BL] [OL] [AL] Продемонстрируйте круговое движение, привязывая груз к веревке и вращая ее. Спросите студентов, что произойдет, если вы внезапно перережете веревку? В каком направлении движется объект? Почему? Что это говорит о направлении ускорения? Попросите учащихся привести примеры, когда они столкнулись с центростремительным ускорением.

На рис. 6.7 показан объект, движущийся по круговой траектории с постоянной скоростью. Направление мгновенной тангенциальной скорости показано в двух точках вдоль пути. Ускорение происходит в направлении изменения скорости; в этом случае он указывает примерно на центр вращения. (Центр вращения находится в центре круговой траектории). Если мы представим, что ΔsΔs становится все меньше и меньше, тогда ускорение будет направлять точно на в сторону центра вращения, но этот случай трудно изобразить.Мы называем ускорение объекта, движущегося в равномерном круговом движении, центростремительным ускорением a c , потому что центростремительное означает центростремительное движение .

Рисунок 6.7 Показаны направления скорости объекта в двух разных точках, и видно, что изменение скорости ΔvΔv указывает приблизительно на центр кривизны (см. Маленькую вставку). При очень малом значении ΔsΔs ΔvΔv указывает точно на центр круга (но это трудно изобразить).Поскольку ac = Δv / Δtac = Δv / Δt, ускорение также направлено к центру, поэтому a c называется центростремительным ускорением.

Поддержка учителей

Поддержка учителей

Обратите внимание на рисунок 6.7. На рисунке показан объект, движущийся по круговой траектории с постоянной скоростью, и направление мгновенной скорости двух точек на траектории. Ускорение происходит в направлении изменения скорости и указывает на центр вращения. Это строго верно только при стремлении ΔsΔs к нулю.

Теперь, когда мы знаем, что центростремительное ускорение направлено к центру вращения, давайте обсудим величину центростремительного ускорения. Для объекта, движущегося со скоростью v по круговой траектории с радиусом r , величина центростремительного ускорения составляет

.

Центростремительное ускорение больше на высоких скоростях и на крутых поворотах (меньший радиус), как вы могли заметить при вождении автомобиля, потому что автомобиль фактически толкает вас к центру поворота.Но немного удивительно, что a c пропорционально квадрату скорости. Это означает, например, что при повороте на 100 км / ч ускорение в четыре раза больше, чем при 50 км / ч.

Мы также можем выразить a c через величину угловой скорости. Подставляя v = rωv = rω в приведенное выше уравнение, мы получаем ac = (rω) 2r = rω2ac = (rω) 2r = rω2. Следовательно, величина центростремительного ускорения с точки зрения величины угловой скорости составляет

Советы для успеха

Уравнение, выраженное в форме a c = 2 , полезно для решения задач, где вам известна угловая скорость, а не тангенциальная скорость.

Virtual Physics

Движение божьей коровки в 2D

В этом моделировании вы экспериментируете с положением, скоростью и ускорением божьей коровки при круговом и эллиптическом движении. Переключите тип движения с линейного на круговое и наблюдайте за векторами скорости и ускорения. Затем попробуйте эллиптическое движение и обратите внимание, как векторы скорости и ускорения отличаются от векторов кругового движения.

Проверка захвата

Какой угол между ускорением и скоростью при равномерном круговом движении? Какое ускорение испытывает тело при равномерном круговом движении?

  1. Угол между ускорением и скоростью равен 0 °, и тело испытывает линейное ускорение.
  2. Угол между ускорением и скоростью равен 0 °, и тело испытывает центростремительное ускорение.
  3. Угол между ускорением и скоростью составляет 90 °, и тело испытывает линейное ускорение.
  4. Угол между ускорением и скоростью составляет 90 °, и тело испытывает центростремительное ускорение.

Центростремительная сила

Поддержка учителя

Поддержка учителя

[BL] [OL] [AL] Используя ту же демонстрацию, что и раньше, попросите учащихся предсказать отношения между величинами угловой скорости, центростремительного ускорения, массы, центростремительной силы.Предложите студентам поэкспериментировать, используя веревки разной длины и веса.

Поскольку объект в равномерном круговом движении испытывает постоянное ускорение (за счет изменения направления), мы знаем из второго закона движения Ньютона, что на объект должна действовать постоянная чистая внешняя сила.

Любая сила или комбинация сил могут вызвать центростремительное ускорение. Вот лишь несколько примеров: натяжение веревки на тросовом шаре, сила притяжения Земли на Луне, трение между дорогой и шинами автомобиля при движении по кривой или нормальная сила американских горок. следите за тележкой во время петли.

Любая чистая сила, вызывающая равномерное круговое движение, называется центростремительной силой. Направление центростремительной силы — к центру вращения, такое же, как и для центростремительного ускорения. Согласно второму закону движения Ньютона, чистая сила вызывает ускорение массы согласно F net = м a . Для равномерного кругового движения ускорение является центростремительным: a = a c . Следовательно, величина центростремительной силы F c равна Fc = macFc = mac.

Используя две разные формы уравнения для величины центростремительного ускорения, ac = v2 / rac = v2 / r и ac = rω2ac = rω2, мы получаем два выражения, включающих величину центростремительной силы F c . Первое выражение относится к тангенциальной скорости, второе — к угловой скорости: Fc = mv2rFc = mv2r и Fc = mrω2Fc = mrω2.

Обе формы уравнения зависят от массы, скорости и радиуса круговой траектории. Вы можете использовать любое более удобное выражение для центростремительной силы.Второй закон Ньютона также гласит, что объект будет ускоряться в том же направлении, что и чистая сила. По определению центростремительная сила направлена ​​к центру вращения, поэтому объект также будет ускоряться к центру. Прямая линия, проведенная от круговой траектории к центру круга, всегда будет перпендикулярна тангенциальной скорости. Обратите внимание, что если вы решите первое выражение для r , вы получите

Из этого выражения мы видим, что для данной массы и скорости большая центростремительная сила вызывает малый радиус кривизны, то есть резкую кривую.

Рисунок 6.8 На этом рисунке сила трения f служит центростремительной силой F c . Центростремительная сила перпендикулярна тангенциальной скорости и вызывает равномерное круговое движение. Чем больше центростремительная сила F c , тем меньше радиус кривизны r и тем круче кривизна. Нижняя кривая имеет ту же скорость v , но большая центростремительная сила F c дает меньший радиус r’r ‘.

Watch Physics

Центростремительная сила и ускорение Intuition

В этом видео объясняется, почему центростремительная сила создает центростремительное ускорение и равномерное круговое движение. Он также охватывает разницу между скоростью и скоростью и показывает примеры равномерного кругового движения.

Поддержка учителей
Предупреждение о неправильном представлении
Поддержка учителей

Некоторые студенты могут запутаться между центростремительной силой и центробежной силой. Центробежная сила — это не реальная сила, а результат ускоряющейся системы отсчета, такой как вращающийся автомобиль или вращающаяся Земля.Центробежная сила относится к вымышленному центру , убегающему от силы .

Проверка захвата

Представьте, что вы качаете йойо по вертикальному кругу по часовой стрелке перед собой, перпендикулярно направлению, в которое вы смотрите. Если веревка порвется, когда йо-йо достигнет самого нижнего положения, ближайшего к полу. Что будет с йо-йо после разрыва струны?

  1. Йо-йо полетит внутрь в направлении центростремительной силы.
  2. Йо-йо полетит наружу в направлении центростремительной силы.
  3. Йо-йо полетит влево в направлении тангенциальной скорости.
  4. Йо-йо полетит вправо в направлении тангенциальной скорости.

Решение проблем центростремительного ускорения и центростремительной силы

Чтобы получить представление о типичных величинах центростремительного ускорения, мы проведем лабораторию по оценке центростремительного ускорения теннисной ракетки, а затем, в нашем первом рабочем примере, сравним центростремительное ускорение автомобиля, огибающего кривую, с ускорением свободного падения.Для второго рабочего примера мы вычислим силу, необходимую для того, чтобы автомобиль проехал по кривой.

Snap Lab

Оценка центростремительного ускорения

В этом упражнении вы будете измерять качание клюшки для гольфа или теннисной ракетки, чтобы оценить центростремительное ускорение конца клюшки или ракетки. Вы можете сделать это в замедленном режиме. Напомним, что уравнение центростремительного ускорения имеет вид ac = v2rac = v2r или ac = rω2ac = rω2.

  • Одна теннисная ракетка или клюшка для гольфа
  • Один таймер
  • Одна линейка или рулетка

Порядок действий

  1. Работа с партнером.Стойте на безопасном расстоянии от вашего партнера, когда он или она размахивает клюшкой для гольфа или теннисной ракеткой.
  2. Опишите движение качелей — это равномерное круговое движение? Почему или почему нет?
  3. Постарайтесь сделать свинг как можно ближе к равномерному круговому движению. Какие корректировки пришлось внести вашему партнеру?
  4. Измерьте радиус кривизны. Что вы измерили физически?
  5. Используя таймер, найдите либо линейную, либо угловую скорость, в зависимости от того, какое уравнение вы решите использовать.
  6. Каково примерное центростремительное ускорение на основе этих измерений? Как вы думаете, насколько они точны? Почему? Как вы и ваш партнер можете сделать эти измерения более точными?
Поддержка учителя
Поддержка учителя

Удар клюшки или ракетки может быть очень близок к равномерному круговому движению. Для этого человек должен двигать его с постоянной скоростью, не сгибая руки. Длина руки плюс длина клюшки или ракетки — это радиус кривизны.Точность измерения угловой скорости и углового ускорения будет зависеть от разрешающей способности используемого таймера и ошибки наблюдения человека. Размах клюшки или ракетки может быть очень близок к равномерному круговому движению. Для этого человек должен двигать его с постоянной скоростью, не сгибая руки. Длина руки плюс длина клюшки или ракетки — это радиус кривизны. Точность измерения угловой скорости и углового ускорения будет зависеть от разрешающей способности используемого таймера и ошибки наблюдения человека.

Проверка захвата

Было ли более полезным использовать в этом упражнении уравнение ac = v2rac = v2r или ac = rω2ac = rω2? Почему?

  1. Должно быть проще использовать ac = rω2ac = rω2, потому что измерение угловой скорости путем наблюдения было бы проще.
  2. Должно быть проще использовать ac = v2rac = v2r, потому что измерение тангенциальной скорости посредством наблюдения было бы проще.
  3. Должно быть проще использовать ac = rω2ac = rω2, потому что измерение угловой скорости путем наблюдения было бы затруднительно.
  4. Должно быть проще использовать ac = v2rac = v2r, потому что измерение тангенциальной скорости посредством наблюдения было бы затруднительно.

Рабочий пример

Сравнение центростремительного ускорения автомобиля, огибающего кривую, с ускорением под действием силы тяжести

Автомобиль следует кривой радиусом 500 м со скоростью 25,0 м / с (около 90 км / ч). Какова величина центростремительного ускорения автомобиля? Сравните центростремительное ускорение для этой довольно пологой кривой, снятой на скорости шоссе, с ускорением свободного падения ( g ).

Стратегия

Поскольку дана линейная, а не угловая скорость, наиболее удобно использовать выражение ac = v2rac = v2r, чтобы найти величину центростремительного ускорения.

Решение

Ввод данных значений v = 25,0 м / с и r = 500 м в выражение для a c дает

ac = v2r = (25,0 м / с) 2500 м = 1,25 м / с 2. ac = v2r = (25,0 м / с) 2500 м = 1,25 м / с2.

Обсуждение

Для сравнения с ускорением свободного падения ( g = 9.80 м / с 2 ), берем соотношение ac / g = (1,25 м / с2) / (9,80 м / с2) = 0,128 ac / g = (1,25 м / с2) / (9,80 м / с2) = 0,128. Следовательно, ac = 0,128gac = 0,128g, что означает, что центростремительное ускорение составляет примерно одну десятую ускорения свободного падения.

Рабочий пример

Сила трения на шинах автомобиля, огибающих кривую
  1. Рассчитайте центростремительную силу, действующую на автомобиль массой 900 кг, который движется по кривой радиусом 600 м на горизонтальной поверхности со скоростью 25,0 м / с.
  2. Статическое трение предотвращает скольжение автомобиля.Найдите величину силы трения между шинами и дорогой, которая позволяет автомобилю обогнуть поворот, не соскальзывая по прямой.

Стратегия и решение для (а)

Мы знаем, что Fc = mv2rFc = mv2r. Следовательно,

Fc = mv2r = (900 кг) (25,0 м / с) 2600 м = 938 Н. Fc = mv2r = (900 кг) (25,0 м / с) 2600 м = 938 Н.

Стратегия и решение для (b)

На изображении выше показаны силы, действующие на автомобиль при повороте кривой. На этой диаграмме автомобиль движется по странице, как показано, и поворачивает налево.Трение действует влево, ускоряя автомобиль к центру поворота. Поскольку трение — единственная горизонтальная сила, действующая на автомобиль, в этом случае оно обеспечивает всю центростремительную силу. Следовательно, сила трения является центростремительной силой в этой ситуации и направлена ​​к центру кривой.

Обсуждение

Поскольку мы нашли силу трения в части (b), мы также можем найти коэффициент трения, поскольку f = μsN = μsmgf = μsN = μsmg.

Практические задачи

9.

Какое центростремительное ускорение ощущают пассажиры автомобиля, движущегося со скоростью 12 м / с по кривой радиусом 2,0 м?

  1. 3 м / с 2
  2. 6 м / с 2
  3. 36 м / с 2
  4. 72 м / с 2
10.

Вычислить центростремительное ускорение объекта, движущегося по траектории с радиусом кривизны 0,2 м и угловой скоростью 5 рад / с.

  1. 1 м / с
  2. 5 м / с
  3. 1 м / с 2
  4. 5 м / с 2

Проверьте свое понимание

11.

Что такое равномерное круговое движение?

  1. Равномерное круговое движение — это когда объект ускоряется по круговой траектории с постоянно увеличивающейся скоростью.
  2. Равномерное круговое движение — это когда объект движется по круговой траектории с переменным ускорением.
  3. Равномерное круговое движение — это когда объект движется по круговой траектории с постоянной скоростью.
  4. Равномерное круговое движение — это когда объект движется по круговой траектории с переменной скоростью.
12.

Что такое центростремительное ускорение?

  1. Ускорение объекта, движущегося по круговой траектории и радиально направленного к центру круговой орбиты
  2. Ускорение объекта, движущегося по круговой траектории и тангенциально направленного по круговой траектории
  3. Ускорение объекта, движущегося по линейной траектории и направленного в направлении движения объекта
  4. Ускорение объекта, движущегося по линейной траектории и направленного в направлении, противоположном движению объекта
13.

Существует ли чистая сила, действующая на объект при равномерном круговом движении?

  1. Да, объект ускоряется, поэтому на него должна действовать чистая сила.
  2. Да потому что разгона нет.
  3. Нет, потому что ускорение есть.
  4. Нет, потому что разгона нет.
14.

Укажите два примера сил, которые могут вызвать центростремительное ускорение.

  1. Сила притяжения Земли на Луну и нормальная сила
  2. Сила притяжения Земли на Луну и натяжение веревки на вращающемся тросболе
  3. Нормальная сила и сила трения, действующие на движущийся автомобиль
  4. Нормальная сила и натяжение веревки на тезерболе

Поддержка учителей

Поддержка учителей

Используйте вопросы «Проверьте свое понимание», чтобы оценить, усвоили ли учащиеся учебные цели этого раздела.Если учащиеся борются с определенной целью, формирующая оценка поможет определить, какая цель вызывает проблему, и направит учащихся к соответствующему содержанию.

Центростремительная сила и ускорение — AP Physics 1

Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает или несколько ваших авторских прав, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее в информацию, описанную ниже, назначенному ниже агенту.Если репетиторы университета предпримут действия в ответ на ан Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как в качестве ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно искажать информацию о том, что продукт или действие нарушает ваши авторские права.Таким образом, если вы не уверены, что контент находится на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

Чтобы отправить уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени; Идентификация авторских прав, которые, как утверждается, были нарушены; Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \ достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например нам требуется а ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба; Ваше имя, адрес, номер телефона и адрес электронной почты; а также Ваше заявление: (а) вы добросовестно полагаете, что использование контента, который, по вашему мнению, нарушает ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

Отправьте жалобу нашему уполномоченному агенту по адресу:

Чарльз Кон Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

4.4 Равномерное круговое движение — Университетская физика, том 1

Цели обучения

К концу этого раздела вы сможете:

  • Найдите центростремительное ускорение объекта, движущегося по круговой траектории.
  • Используйте уравнения кругового движения, чтобы найти положение, скорость и ускорение частицы, совершающей круговое движение.
  • Объясните разницу между центростремительным ускорением и тангенциальным ускорением, возникающим в результате неравномерного кругового движения.
  • Оцените центростремительное и тангенциальное ускорение при неравномерном круговом движении и найдите вектор полного ускорения.

Равномерное круговое движение — это особый тип движения, при котором объект движется по кругу с постоянной скоростью.Например, любая точка пропеллера, вращающегося с постоянной скоростью, совершает равномерное круговое движение. Другими примерами являются секундная, минутная и часовая стрелки часов. Примечательно, что точки на этих вращающихся объектах действительно ускоряются, хотя скорость вращения постоянна. Чтобы увидеть это, мы должны проанализировать движение в терминах векторов.

Центростремительное ускорение

В одномерной кинематике объекты с постоянной скоростью имеют нулевое ускорение. Однако в двух- и трехмерной кинематике, даже если скорость постоянна, частица может иметь ускорение, если она движется по криволинейной траектории, такой как окружность.В этом случае вектор скорости меняется, или

Это показано на (Рисунок). Поскольку частица движется против часовой стрелки во времени

по круговой траектории, его вектор положения перемещается из

С

по

Вектор скорости имеет постоянную величину и касается пути, поскольку он изменяется от

.

С

по

только меняет направление.Поскольку вектор скорости

перпендикулярно вектору положения

треугольники, образованные векторами положения и

и векторы скорости и

похожи. Кроме того, с

и

два треугольника равнобедренные. Из этих фактов мы можем сделать утверждение

или

Рисунок 4.18 (a) Частица движется по кругу с постоянной скоростью, временами имея векторы положения и скорости.

и

(b) Векторы скорости, образующие треугольник. Два треугольника на рисунке похожи. Вектор

указывает на центр круга в пределах

Мы можем найти величину ускорения от

Направление ускорения также можно найти, отметив, что как

и, следовательно,

приближение к нулю, вектор

приближается к направлению, перпендикулярному

В пределе

перпендикулярно

с

касается окружности, ускорение

указывает на центр круга.Таким образом, частица, движущаяся по кругу с постоянной скоростью, имеет ускорение с величиной

.

Направление вектора ускорения — к центру круга ((Рисунок)). Это радиальное ускорение и называется центростремительным ускорением , поэтому мы даем ему индекс c. Слово центростремительный происходит от латинских слов centrum (что означает «центр») и petere (что означает искать ») и, таким образом, принимает значение« поиск центра ».”

Рис. 4.19 Вектор центростремительного ускорения указывает на центр круговой траектории движения и представляет собой ускорение в радиальном направлении. Также показан вектор скорости, касающийся окружности.

Давайте рассмотрим несколько примеров, которые иллюстрируют относительные величины скорости, радиуса и центростремительного ускорения.

Пример

Создание ускорения 1
г

Самолет летит со скоростью 134,1 м / с по прямой и делает разворот по круговой траектории на уровне земли.Каким должен быть радиус окружности, чтобы вызвать центростремительное ускорение 1 g на пилоте и самолете по направлению к центру круговой траектории?

Стратегия

Учитывая скорость струи, мы можем найти радиус окружности в выражении для центростремительного ускорения.

Решение

Установите центростремительное ускорение равным ускорению свободного падения:

Решая для радиуса, находим

Значение

Чтобы создать у пилота большее ускорение, чем g , струе придется либо уменьшить радиус своей круговой траектории, либо увеличить скорость на существующей траектории, либо и то, и другое.

Проверьте свое понимание

Радиус маховика 20,0 см. Какова скорость точки на краю маховика, если она испытывает центростремительное ускорение

?

[показывать-ответ q = ”fs-id11651609 ″] Показать решение [/ показывать-ответ]

[скрытый-ответ a = ”fs-id11651609 ″]

134,0 см / с

[/ hidden-answer]

Центростремительное ускорение может иметь широкий диапазон значений в зависимости от скорости и радиуса кривизны круговой траектории.Типичные центростремительные ускорения приведены в следующей таблице.

Типичное центростремительное ускорение
Объект Центростремительное ускорение (м / с 2 или коэффициент g )
Земля вокруг Солнца

Луна вокруг Земли

Спутник на геостационарной орбите 0.233
Внешний край компакт-диска при воспроизведении

Струя в бочке ролика (2–3 г )
Американские горки (5 г )
Электрон, вращающийся вокруг протона в простой модели атома Бора

Уравнения движения для равномерного кругового движения

Частица, совершающая круговое движение, может быть описана ее вектором положения

(рисунок) показывает частицу, совершающую круговое движение против часовой стрелки.Когда частица движется по окружности, ее вектор положения выметает угол

с осью x- . Вектор

образующий угол

с осью x- показан с его компонентами вдоль осей x и y . Величина вектора положения равна

.

и также является радиусом круга, так что с точки зрения его компонентов,

Здесь,

— это константа, называемая угловой частотой частицы .Угловая частота измеряется в радианах (рад) в секунду и представляет собой просто количество радианов угловой меры, через которую проходит частица за секунду. Угол

, который вектор положения имеет в любой конкретный момент времени, равен

.

Если T — это период движения или время для завершения одного оборота (

рад), затем

Рис. 4.20 Вектор положения частицы, движущейся по кругу, с ее компонентами вдоль осей x и y.Частица движется против часовой стрелки. Угол

— угловая частота

в радианах в секунду, умноженное на t.

Скорость и ускорение можно получить из функции положения путем дифференцирования:

Из (Рисунок) можно показать, что вектор скорости тангенциальный к окружности в месте нахождения частицы с величиной

.

Аналогично, вектор ускорения находится путем дифференцирования скорости:

Из этого уравнения мы видим, что вектор ускорения имеет величину

.

и направлен против вектора положения, к началу координат, потому что

Пример

Круговое движение протона

Протон имеет скорость

и движется по окружности в плоскости xy радиуса r = 0.175 м. Каково его положение в плоскости xy в момент времени

?

При t = 0 положение протона

и вращается против часовой стрелки. Набросайте траекторию.

Решение

По приведенным данным протон имеет период и угловую частоту:

Положение частицы в

с A = 0.175 м —

Из этого результата мы видим, что протон расположен немного ниже оси x . Это показано на (Рисунок).

Рисунок 4.21 Вектор положения протона на

Показана траектория протона. Угол, под которым протон движется по окружности, составляет 5,712 рад, что немного меньше одного полного оборота.

Значение

Мы выбрали начальное положение частицы на оси x- .Это было совершенно произвольно. Если бы была дана другая начальная позиция, у нас была бы другая конечная позиция на t = 200 нс.

Неравномерное круговое движение

Круговое движение не обязательно должно иметь постоянную скорость. Частица может двигаться по кругу и ускоряться или замедляться, показывая ускорение в направлении движения.

При равномерном круговом движении частица, выполняющая круговое движение, имеет постоянную скорость, а круг имеет фиксированный радиус.Если скорость частицы тоже меняется, то мы вводим дополнительное ускорение в направлении, касательном к окружности. Такое ускорение происходит в точке на вершине, которая изменяет скорость вращения, или в любом ускоряющем роторе. В работе «Векторы смещения и скорости» мы показали, что центростремительное ускорение — это скорость изменения направления вектора скорости во времени. Если скорость частицы меняется, то она имеет тангенциальное ускорение , , то есть скорость изменения величины скорости во времени:

Направление тангенциального ускорения касается окружности, тогда как направление центростремительного ускорения радиально внутрь к центру окружности.Таким образом, частица, движущаяся по кругу с тангенциальным ускорением, имеет полное ускорение , которое является векторной суммой центростремительного и тангенциального ускорений:

Векторы ускорения показаны на (Рисунок). Обратите внимание, что два вектора ускорения

и

перпендикулярны друг другу, при этом

в радиальном направлении и

в тангенциальном направлении.Общее ускорение

точки под углом

и

Рис. 4.22 Центростремительное ускорение указывает на центр круга. Тангенциальное ускорение является касательным к окружности в месте расположения частицы. Общее ускорение — это векторная сумма тангенциального и центростремительного ускорений, которые перпендикулярны.

Пример

Полное ускорение при круговом движении

Частица движется по окружности радиуса r = 2.0 мин. В течение интервала времени от t = 1,5 с до t = 4,0 с его скорость изменяется со временем согласно

.

Каково полное ускорение частицы при t = 2,0 с?

Стратегия

Нам даны скорость частицы и радиус круга, поэтому мы можем легко вычислить центростремительное ускорение. Направление центростремительного ускорения — к центру круга. Мы находим величину тангенциального ускорения, взяв производную по времени

.

, используя (Рисунок) и оценив его как t = 2.0 с. Мы используем это и величину центростремительного ускорения, чтобы найти полное ускорение.

Решение

Центростремительное ускорение

направлен к центру круга. Касательное ускорение

Общее ускорение

и

от касательной к окружности. См. (Рисунок).

Рис. 4.23 Векторы тангенциального и центростремительного ускорения.Чистое ускорение

— векторная сумма двух ускорений.

Значение

Направления центростремительного и тангенциального ускорений можно описать более удобно в терминах полярной системы координат с единичными векторами в радиальном и тангенциальном направлениях. Эта система координат, которая используется для движения по криволинейным траекториям, подробно обсуждается позже в книге.

Сводка

  • Равномерное круговое движение — это движение по окружности с постоянной скоростью.
  • Центростремительное ускорение

    — это ускорение, которое должна иметь частица, чтобы двигаться по круговой траектории. Центростремительное ускорение всегда направлено к центру вращения и имеет величину

    .

  • Неравномерное круговое движение возникает, когда есть тангенциальное ускорение объекта, выполняющего круговое движение, так что скорость объекта изменяется. Это ускорение называется тангенциальным ускорением.

    Величина тангенциального ускорения — это скорость изменения величины скорости во времени.Вектор тангенциального ускорения касается окружности, тогда как вектор центростремительного ускорения направлен радиально внутрь к центру окружности. Общее ускорение — это векторная сумма тангенциального и центростремительного ускорений.

  • Объект, выполняющий равномерное круговое движение, можно описать уравнениями движения. Вектор положения объекта

    , где A — величина

    .

    , который также является радиусом круга, и

    — угловая частота.

Концептуальные вопросы

Может ли центростремительное ускорение изменить скорость частицы, совершающей круговое движение?

Может ли тангенциальное ускорение изменить скорость частицы, совершающей круговое движение?

[показывать-ответ q = ”fs-id11651623 ″] Показать решение [/ показывать-ответ]

[скрытый-ответ a = ”fs-id11651623 ″]

да

[/ hidden-answer]

Проблемы

Маховик вращается со скоростью 30 об / с.Каков полный угол в радианах, на который точка маховика поворачивается за 40 с?

Частица движется по кругу радиусом 10 м с постоянной скоростью 20 м / с. Какая величина ускорения?

[показывать-ответ q = ”fs-id1165168

5 ″] Показать решение [/ показывать-ответ]

[скрытый-ответ a = ”fs-id1165168

5 ″]

[/ hidden-answer]

Кэм Ньютон из Carolina Panthers бросает идеальную футбольную спираль на отметке 8.0 об / с. Радиус профессионального футбола составляет 8,5 см по середине короткой стороны. Что такое центростремительное ускорение шнурков на футбольном мяче?

Выставочный аттракцион раскручивает своих пассажиров внутри контейнера в форме летающей тарелки. Если горизонтальный круговой путь, по которому следуют гонщики, имеет радиус 8,00 м, при скольких оборотах в минуту гонщики подвергаются центростремительному ускорению, равному ускорению силы тяжести?

[показывать-ответ q = ”fs-id116516

61 ″] Показать решение [/ показывать-ответ]

[скрытый-ответ a = ”fs-id116516

61 ″]

, что составляет

[/ hidden-answer]

Бегун, участвующий в забеге на 200 м, должен обойти конец трассы, имеющей дугу окружности с радиусом кривизны 30.0 мин. Бегун начинает забег с постоянной скоростью. Если она преодолевает 200-метровый рывок за 23,2 с и бежит с постоянной скоростью на протяжении всей гонки, каково ее центростремительное ускорение при прохождении криволинейной части трассы?

Каково ускорение Венеры по направлению к Солнцу, если принять круговую орбиту?

[показывать-ответ q = ”fs-id11651611 ″] Показать решение [/ показывать-ответ]

[скрытый-ответ a = ”fs-id11651611 ″]

Венера находится на расстоянии 108,2 миллиона км от Солнца и имеет период обращения 0.6152 г.

[/ hidden-answer]

Экспериментальная реактивная ракета движется вокруг Земли вдоль экватора прямо над ее поверхностью. С какой скоростью должна двигаться струя, если величина ее ускорения g ?

Вентилятор вращается с постоянной скоростью 360,0 об / мин. Какова величина ускорения точки на одной из лопастей на расстоянии 10,0 см от оси вращения?

[показывать-ответ q = ”fs-id1165168934870 ″] Показать решение [/ показывать-ответ]

[скрытый-ответ a = ”fs-id1165168934870 ″]

[/ hidden-answer]

Точка, расположенная на секундной стрелке больших часов, имеет радиальное ускорение

.

Как далеко находится точка от оси вращения секундной стрелки?

Глоссарий

угловая частота

скорость изменения угла, под которым объект движется по круговой траектории

центростремительное ускорение
компонент ускорения объекта, движущегося по кругу, радиально направленного внутрь к центру круга
тангенциальное ускорение
величина которой является временной скоростью изменения скорости.Его направление касается окружности.
общее ускорение
векторная сумма центростремительного и тангенциального ускорений

Эпизод 225: Количественное круговое движение

В этой серии обсуждаются: линейная и угловая скорость; градусы и радианы; и угловое ускорение. И сопровождается рабочими примерами, наборами вопросов для студентов, студенческим экспериментом и демонстрацией.

Краткое содержание урока

  • Обсуждение: Линейная и угловая скорость (10 минут)
  • Рабочий пример: Расчет ω (10 минут)
  • Обсуждение: Градусы и радианы (5 минут)
  • Вопросы учащихся: Расчет v и ω (20 минут)
  • Обсуждение: Угловое ускорение (10 минут)
  • Рабочий пример: Центростремительная сила (5 минут)
  • Вопросы студентов: Расчет центростремительной силы (10 минут)
  • Студенческий эксперимент: проверка уравнения для центростремительной силы (40 минут)
  • Демонстрация: альтернативный метод проверки уравнения для центростремительной силы (40 минут)
Обсуждение: Линейная и угловая скорость

Объясните разницу между линейной и угловой скоростью.

Мгновенная линейная скорость в точке круга обычно обозначается буквой v и измеряется в метрах в секунду (м с -1 ).

Угловая скорость — это угол, на который радиус до этой точки на окружности поворачивается за одну секунду. Обычно обозначается буквой ω (греческое омега) и измеряется в радианах в секунду (рад с -1 ) (см. Ниже)

.

Период времени на один оборот:

T = расстояние, скорость

T = 2 π r v

Т = 2 π ω

Следовательно, линейная и угловая скорости связаны формулой:

Линейная скорость = радиус окружности × угловая скорость,

v = r × ω

Рабочие примеры: Расчет
ω

Камень на веревочке: камень движется с постоянной скоростью 3 м с -1 на веревке длиной 0.75 м.

Линейная скорость камня в любой точке окружности составляет 3 м с -1 , направленная по касательной к этой точке.

Обратите внимание, что, хотя величина линейной скорости (т.е.скорости) постоянна, ее направление постоянно меняется по мере того, как камень движется по кругу.

Угловая скорость камня в любой точке окружности = 3 м с -1 0,75 м

ω = 4 рад с -1

Обсуждение: Градусы и радианы

Вам нужно будет объяснить связь между градусами и радианами.Радиан — это более натуральных единиц измерения углов.

Один радиан (или сокращенно рад) определяется как угол, образованный в центре окружности радиусом r дугой длиной r .

Таким образом, полная окружность 2 π r образует угол 2 π r r радиан

Таким образом, в полном круге в 360 градусов 2 π радиана.

Следовательно 1 радиан = 360 ° 2 π

1 радиан = 57.3 °

Вопросы учащихся: Расчет
v и ω

Некоторые радианские идеи и практические расчеты v , ω .

Эпизод 225-1: Радианы и угловая скорость (Word, 45 КБ)

Обсуждение: Угловое ускорение

Если объект движется по кругу с постоянной скоростью, его направление движения постоянно меняется. Это означает, что его линейная скорость изменяется, и поэтому он имеет линейное ускорение.Наличие ускорения означает, что на вращающийся объект также должна действовать неуравновешенная сила.

Выведите формулу центростремительного ускорения ( α = v 2 r , α = r ω , α = r ω 2 ):

Рассмотрим объект массой м , движущийся с постоянной угловой скоростью ( ω ) и постоянной скоростью ( v ) по окружности радиуса r с центром O.

Он перемещается от P к Q за время t .

Изменение скорости Δ v параллельно PO и Δ v = v sin (θ)

Когда θ становится малым (то есть, когда Q очень близко к P) sin (θ) близко к θ в радианах.

Так Δ v = v θ

Разделив обе стороны на т. дает:

Δ v t = v θ t

Так как Δ v t = ускорение а также θ t = ω , у нас

α = v × ω

Так как у нас также есть

v = ω × r ,

это можно записать как

α = v 2 r

α = v × ω

α = ω 2 × r

Применение Второго закона Ньютона ( F = м × a ) дает:

F = м v 2 r

F = м r ω 2

Это уравнение центростремительной силы; студенты должны научиться определять подходящую форму для использования в любой конкретной ситуации.

Рабочие примеры: Центростремительная сила

Камень массой 0,5 кг вращается по горизонтальному кругу (на поверхности без трения) радиусом 0,75 м с постоянной скоростью 4 м с -1 .

Вычислить:

(а) центростремительное ускорение камня

ускорение = v 2 r

ускорение = (4 м с -1 ) 2 0,75 м

ускорение = 21,4 м с -2

(b) центростремительная сила, действующая на камень.

F = м × a

F = 0,5 кг × 21,4 м с -2

F = 10,7 N

Обратите внимание, что это линейное ускорение, а не угловое ускорение. Угловая скорость камня постоянна, поэтому угловое ускорение отсутствует.

Вопросы студентов: Расчет центростремительной силы

Эпизод 225-2: Расчет центростремительной силы (Word, 26 КБ)

Студенческий эксперимент: проверка уравнения центростремительной силы с помощью вращающейся пробки

Эпизод 225-3: Проверка уравнения центростремительной силы (Word, 28 КБ)

Версия Java-апплета этого эксперимента доступна на веб-сайте Национального Тайваньского педагогического университета.

Демонстрация: альтернативный метод проверки уравнения для центростремительной силы

Эта демонстрация представляет собой альтернативный метод проверки уравнения для центростремительной силы.

Эпизод 225-4: Проверка уравнения центростремительной силы (Word, 44 КБ)

Circular Motion — центростремительная сила, центростремительное ускорение, угловая скорость, радианы, линейная скорость

Нажмите здесь, чтобы узнать о круговых движениях и домашнее задание

Click — ответы на вопрос о круговых движениях.

Круговое движение

Когда объект движется по кругу с постоянной скоростью, его скорость (которая является вектором) постоянно меняется. Его скорость меняется не потому, что меняется величина скорости, а потому, что меняется ее направление. Эта постоянно меняющаяся скорость означает, что объект ускоряется (центростремительное ускорение , ). Чтобы это ускорение произошло, должна быть равнодействующая сила, эта сила называется центростремительной силой .

Угловая скорость — нажмите, чтобы увидеть примеры вопросов.

Угловая скорость (w) объекта — это угол (q), через который он проходит, измеренный в радианах (рад), деленный на время (t), необходимое для прохождения этого угла. Это означает, что единицей измерения угловой скорости является радиан в секунду (рад с -1 ).

v — линейная скорость, измеряемая в метрах в секунду (мс -1 ).

r — радиус круга в метрах (м).

f — частота вращения в герцах (Гц).

Центростремительное ускорение

Центростремительное ускорение (a) измеряется в метрах в секунду в секунду (мс -2 ). Он всегда направлен к центру круга.

Центростремительная сила

Когда объект движется по кругу, центростремительная сила (F) всегда действует по направлению к центру круга.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *