Название датчика в выхлопной трубе: Название датчика в выхлопной трубе

Содержание

Лямбда зонд: что это такое, как он работает и зачем нужен

В настоящее время, когда все более жесткие экологические нормы диктуют автопроизводителям использования тех или иных решений для уменьшения вредных выбросов в атмосферу, катализаторами оборудуются все без исключения автомобили. Не спорим, катализатор вещь необходимая, но его эффективная работа зависит от постоянного контроля топливно-воздушной смеси. Для этого служит специальный кислородный датчик — так называемый «лямбда зонд». Что такое, и каково его назначение — попробуем рассказать в этом материале.

Лямбда зонд: что это такое

Лямбда-зонд – это датчик выпускного коллектора, который сравнивает воздух в выпускном коллекторе с воздухом, окружающим двигатель, генерируя электрический сигнал на блок управления двигателя посредством химической реакции. Лямбда зонд также иногда называют кислородным датчиком, поскольку его основная задача состоит в определении количества остаточного кислорода в выхлопных газах.

После того, как блок управления получает сигнал от лямбда датчика, он регулирует соотношение топлива и воздуха в цилиндрах двигателя с помощью дросселя и форсунок. Выходное значение сигнала, который лямбда-датчик посылает на блок управления двигателем, изменяется в зависимости от содержания кислорода в выхлопной трубе.

Таким образом, используя лямбда датчик, блок управления двигателем может обеспечить наилучшее соотношение компонентов, благодаря чему двигатель работает экономно и производит меньше вредных веществ. Когда лямбда датчик холодный, он действует только как электрическое сопротивление. Когда температура поднимается, она начинает генерировать напряжение.

Особенности лямбда зонда

Принцип измерения остаточного кислорода в выхлопных газах (задача с лямбда зондом) известен с конца 1960-х годов. Bosch был вовлечен в разработку функционального лямбда датчика. Вот почему датчик кислорода изначально назывался датчиком Bosch. Одним из первых пользователей был автомобиль Volvo. Первые лямбда зонды 1970-х годов называются простыми. Чтобы обеспечить надежный сигнал, они должны быть сначала нагреты до рабочей температуры, а именно отработавших газов. Однако это может занять несколько минут. С 1980-х годов производители автомобилей начали использовать лямбда зонды с подогревом. В отличие от простых лямбда датчиков, не было необходимости ждать, пока выхлопные газы нагревают их из-за дополнительного отопительного контура. Просто активный нагрев значительно улучшил эффект зонда. Потребовалось около 30 секунд, чтобы начать работать с момента запуска двигателя. Последние лямбда зонды – это так называемые плоские зонды. Им нужно всего около 10 секунд, чтобы полностью активировать функцию. В будущем ожидается дальнейшее сокращение этого времени.

Современные автомобили содержат два лямбда датчика в выхлопной трубе вместо одного. Первый лямбда зонд расположен перед каталитическим нейтрализатором и выполняет свою классическую функцию. Второй лямбда зонд расположен за катализатором и предназначен для проверки эффективности катализатора.

Существует три типа лямбда зондов – диоксид циркония и диоксид титана, где сигнал переключается только между двумя предельными значениями. Третий тип – это широкополосные датчики, которые могут считывать значения равномерно по всему спектру.

Циркониевый лямбда датчик генерирует напряжение, зависящее от разности содержания кислорода в дымовых газах и содержания кислорода в окружающей среде. Чем больше эта разница, тем больше напряжение. Для зондов диоксида циркония максимальное значение напряжения составляет приблизительно один вольт. Титановые датчики генерируют напряжение до пяти вольт. Титановые лямбда зонды работают, например, как датчик температуры в радиаторе. В зависимости от состава выхлопа электрическое сопротивление зонда варьируется. Изменение электрического сопротивления не является непрерывным.

К чему приводит неисправность оборудования?

Неисправность лямбда зонда может быть причиной многих проблем, связанных с высоким расходом топлива или работой двигателя.

Отказ лямбда датчика может вызвать несколько различных проблем. Изношенный лямбда зонд относительно легко обнаружить, основываясь на запахе бензина, который выделяется в транспортном средстве, даже когда двигатель прогрет до рабочей температуры. Этот запах означает, что смесь интенсивней, чем должна быть. Говоря о запахе бензина из выхлопа, мы можем судить о другом признаке износа этого оборудования. Этот признак – увеличение расхода топлива.

Если в выпускном коллекторе имеется два лямбда зонда, и проблема заключается только в диагностическом лямбда зонде и, следовательно, в датчике, который находится, ниже по потоку от катализатора и проверяет только эффективность катализатора, между двумя лямбда зондами будет несоответствие. Это приведет к тому, что контрольная лампа двигателя загорится на приборной панели, но работа двигателя, мощность или расход топлива не изменятся.

Лямбда датчик в выхлопной трубе подвергается очень нежелательным воздействиям, таким как высокая температура и агрессивное химическое воздействие выхлопных газов. Поэтому естественно, что лямбда-датчик изнашивается через определенный промежуток времени. Лямбда зонд должен проверяться каждые 30 000 километров.

Кислородные датчики: подробное руководство — Denso

Вы наверняка знаете, что в вашем автомобиле установлен кислородный датчик (или даже два!)… Но зачем он нужен и как он работает? На часто задаваемые вопросы отвечает Стефан Верхоеф (Stefan Verhoef), менеджер DENSO по продукту (кислородные датчики).

B: Какую работу выполняет датчик кислорода в автомобиле?
O: Датчики кислорода (также называемые лямбда-зондами) помогают контролировать расход топлива вашего автомобиля, что способствует снижению объема вредных выбросов. Датчик непрерывно измеряет объем несгоревшего кислорода в выхлопных газах и передает эти данные в электронный блок управления (ЭБУ). На основании этих данных ЭБУ регулирует соотношение топлива и воздуха в топливовоздушной смеси, поступающей в двигатель, что помогает каталитическому нейтрализатору (катализатору) работать более эффективно и уменьшать количество вредных частиц в выхлопных газах.

B: Где находится датчик кислорода?
O: Каждый новый автомобиль и большинство автомобилей, выпущенных после 1980 г., оснащены датчиком кислорода. Обычно датчик установлен в выхлопной трубе перед каталитическим нейтрализатором. Точное местоположение датчика кислорода зависит от типа двигателя (V-образное или рядное расположение цилиндров), а также от марки и модели автомобиля. Для того чтобы определить, где расположен датчик кислорода в вашем автомобиле, обратитесь к руководству по эксплуатации.

В: Почему состав топливовоздушной смеси нужно постоянно регулировать?
O: Соотношение «воздух — топливо» крайне важно, поскольку оно влияет на эффективность работы каталитического нейтрализатора, который снижает содержание оксида углерода (CO), несгоревших углеводородов (CH) и оксида азота (NOx) в выхлопных газах. Для его эффективной работы необходимо наличие определенного количества кислорода в выхлопных газах. Датчик кислорода помогает ЭБУ определить точное соотношение «воздух — топливо» в смеси, поступающей в двигатель, передавая в ЭБУ быстроизменяющийся сигнал напряжения, который меняется в соответствии с содержанием кислорода в смеси: слишком высокого (бедная смесь) или слишком низкого (богатая смесь). ЭБУ реагирует на сигнал и изменяет состав топливовоздушной смеси, поступающей в двигатель. Когда смесь слишком богатая, впрыск топлива уменьшается. Когда смесь слишком бедная — увеличивается. Оптимальное соотношение «воздух — топливо» обеспечивает полное сгорание топлива и использует почти весь кислород из воздуха. Оставшийся кислород вступает в химическую реакцию с токсичными газами, в результате которой из нейтрализатора выходят уже безвредные газы.

В: Почему на некоторых автомобилях устанавливаются два кислородных датчика?


O: Многие современные автомобили дополнительно кроме датчика кислорода, расположенного перед катализатором, оснащаются и вторым датчиком, установленным после него. Первый датчик является основным и помогает электронному блоку управления регулировать состав топливовоздушной смеси. Второй датчик, установленный после катализатора, контролирует эффективность работы катализатора, измеряя содержание кислорода в выхлопных газах на выходе. Если весь кислород поглощается химической реакцией, происходящей между кислородом и вредными веществами, то датчик выдает сигнал высокого напряжения. Это означает, что катализатор работает нормально. По мере износа каталитического нейтрализатора некоторое количество вредных газов и кислорода перестает участвовать в реакции и выходит из него без изменений, что отражается на сигнале напряжения. Когда сигналы станут одинаковыми, это будет указывать на выход из строя катализатора.


В: Какие бывают датчики?
О: Существует три основных типа лямбда-сенсоров: циркониевые датчики, датчики соотношения «воздух — топливо» и титановые датчики. Все они выполняют одни и те же функции, но используют при этом различные способы определения соотношения «воздух — топливо» и разные исходящие сигналы для передачи результатов измерений.

Наибольшее распространение получила технология на основе использования циркониево-оксидных датчиков (как цилиндрического, так и плоского типов). Эти датчики могут определять только относительное значение коэффициента: выше или ниже соотношение «топливо — воздух» коэффициента лямбда 1.00 (идеальное стехиометрическое соотношение). В ответ ЭБУ двигателя постепенно изменяет количество впрыскиваемого топлива до тех пор, пока датчик не начнет показывать, что соотношение изменилось на противоположное. С этого момента ЭБУ опять начинает корректировать подачу топлива в другом направлении. Этот способ обеспечивает медленное и непрекращающееся «плавание» вокруг коэффициента лямбда 1.00, не позволяя при этом поддерживать точный коэффициент 1.00. В итоге в изменяющихся условиях, таких как резкое ускорение или торможение, в системах с циркониево-оксидным датчиком подается недостаточное или избыточное количество топлива, что приводит к снижению эффективности каталитического нейтрализатора.

Датчик соотношения «воздух — топливо» показывает точное соотношение топлива и воздуха в смеси. Это означает, что ЭБУ двигателя точно знает, насколько это соотношение отличается от коэффициента лямбда 1.00 и, соответственно, насколько требуется корректировать подачу топлива, что позволяет ЭБУ изменять количество впрыскиваемого топлива и получать коэффициент лямбда 1.00 практически мгновенно.

Датчики соотношения «воздух — топливо» (цилиндрические и плоские) впервые были разработаны DENSO для того, чтобы обеспечить соответствие автомобилей строгим стандартам токсичности выбросов. Эти датчики более чувствительны и эффективны по сравнению с циркониево-оксидными датчиками. Датчики соотношения «воздух — топливо» передают линейный электронный сигнал о точном соотношении воздуха и топлива в смеси. На основании значения полученного сигнала ЭБУ анализирует отклонение соотношения «воздух — топливо» от стехиометрического (то есть Лямбда 1) и корректирует впрыск топлива. Это позволяет ЭБУ предельно точно корректировать количество впрыскиваемого топлива, моментально достигая стехиометрического соотношения воздуха и топлива в смеси и поддерживая его. Системы, использующие датчики соотношения «воздух — топливо», минимизируют возможность подачи недостаточного или избыточного количества топлива, что ведет к уменьшению количества вредных выбросов в атмосферу, снижению расхода топлива, лучшей управляемости автомобиля.

Титановые датчики во многом похожи на циркониево-оксидные датчики, но титановым датчикам для работы не требуется атмосферный воздух. Таким образом, титановые датчики являются оптимальным решением для автомобилей, которым необходимо пересекать глубокий брод, например полноприводных внедорожников, так как титановые датчики способны работать при погружении в воду. Еще одним отличием титановых датчиков от других является передаваемый ими сигнал, который зависит от электрического сопротивления титанового элемента, а не от напряжения или силы тока. С учетом данных особенностей титановые датчики могут быть заменены только аналогичными и другие типы лямбда-зондов не могут быть использованы.

В: Чем отличаются специальные и универсальные датчики?
O: Эти датчики имеют разные способы установки. Специальные датчики уже имеют контактный разъем в комплекте и готовы к установке. Универсальные датчики могут не комплектоваться разъемом, поэтому нужно использовать разъем старого датчика.


B: Что произойдет, если выйдет из строя датчик кислорода?
O: В случае выхода из строя датчика кислорода ЭБУ не получит сигнала о соотношении топлива и воздуха в смеси, поэтому он будет задавать количество подачи топлива произвольно. Это может привести к менее эффективному использованию топлива и, как следствие, увеличению его расхода. Это также может стать причиной снижения эффективности катализатора и повышения уровня токсичности выбросов.

B: Как часто необходимо менять датчик кислорода?
O: DENSO рекомендует заменять датчик согласно указаниям автопроизводителя. Тем не менее следует проверять эффективность работы датчика кислорода при каждом техобслуживании автомобиля. Для двигателей с длительным сроком эксплуатации или при наличии признаков повышенного расхода масла интервалы между заменами датчика следует сократить.

Ассортимент кислородных датчиков

• 412 каталожных номеров покрывают 5394 применения, что соответствует 68 % европейского автопарка.
• Кислородные датчики с подогревом и без (переключаемого типа), датчики соотношения «воздух — топливо» (линейного типа), датчики обедненной смеси и титановые датчики; двух типов: универсальные и специальные.
• Регулирующие датчики (устанавливаемые перед катализатором) и диагностические (устанавливаемые после катализатора).
• Лазерная сварка и многоэтапный контроль гарантируют точное соответствие всех характеристик спецификациям оригинального оборудования, что позволяет обеспечить эффективность работы и надежность при длительной эксплуатации.

В DENSO решили проблему качества топлива!

Вы знаете о том, что некачественное или загрязненное топливо может сократить срок службы и ухудшить эффективность работы кислородного датчика? Топливо может быть загрязнено присадками для моторных масел, присадками для бензина, герметиком на деталях двигателя и нефтяными отложениями после десульфуризации. При нагреве свыше 700 °C загрязненное топливо выделяет вредные для датчика пары. Они влияют на работу датчика, образуя отложения или разрушая его электроды, что является распространенной причиной выхода датчика из строя. DENSO предлагает решение этой проблемы: керамический элемент датчиков DENSO покрыт уникальным защитным слоем оксида алюминия, который защищает датчик от некачественного топлива, продлевая срок его службы и сохраняя его рабочие характеристики на необходимом уровне.

Дополнительная информация

Более подробную информацию об ассортименте кислородных датчиков DENSO можно найти в разделе Кислородные датчики, в системе TecDoc или у представителя DENSO.

Кислородный датчик: устройство, назначение, диагностика

Сомнительная заправка, плохой бензин, «чек» на панели — стандартный и быстрый путь к замене кислородного датчика. Про лямбда-зонд слышали многие автомобилисты, но мало кто разбирался, за что именно он отвечает и почему так легко выходит из строя. Рассказываем про датчик кислорода — «обоняние» двигателя.

Лямбда и стехиометрия двигателя

Название датчика происходит от греческой буквы λ (лямбда), которая обозначает коэффициент избытка воздуха в топливно-воздушной смеси. Для полного сгорания смеси соотношение воздуха с топливом должно быть 14,7:1 (λ=1). Такой состав топливно-воздушной смеси называют стехиометрическим — идеальным с точки зрения химической реакции: топливо и кислород в воздухе будут полностью израсходованы в процессе горения. При этом двигатель произведёт минимум токсичных выбросов, а соотношение мощности и расхода топлива будет оптимальным.

Если лямбда будет <1 (недостаток воздуха), смесь станет обогащённой; при лямбде >1 (избыток воздуха) смесь называют обеднённой. Чересчур богатая смесь — это повышенный расход топлива и более токсичный выхлоп, а слишком бедная смесь грозит потерей мощности и нестабильной работой двигателя.

Зависимость мощности и расхода топлива от состава смеси

Из графика видно, что при λ=1 мощность двигателя не пиковая, а расход топлива не минимален — это лишь оптимальный баланс между ними. Наибольшую мощность мотор развивает на слегка обогащённой смеси, но расход топлива при этом возрастает. А максимальная топливная эффективность достигается на слегка обеднённой смеси, но ценой падения мощности. Поэтому задача ЭБУ (электронного блока управления) двигателя — корректировать топливно-воздушную смесь исходя из ситуации: обогащать её при холодном пуске или резком ускорении, и обеднять при равномерном движении, добиваясь оптимальной работы мотора во всех режимах. Для этого блок управления ориентируется на показания датчика кислорода.

Зачем нужен кислородный датчик

Датчиков в современном двигателе великое множество. С помощью различных сенсоров ЭБУ замеряет температуру забортного воздуха и его поток, «видит» положение дроссельной заслонки, отслеживает детонацию и положение коленвала — словом, внимательно следит за воздухом «на входе» и показателями работы мотора, регулируя подачу топлива для создания оптимальной смеси в цилиндрах.

Схема лямбда-коррекции двигателя

Лямбда-зонд показывает, что же получилось «на выходе», замеряя количество кислорода в выхлопных газах. Другими словами, кислородный датчик определяет, оптимально ли работает мотор, соответствуют ли расчёты ЭБУ реальной картине и нужно ли вносить в них поправки. Основываясь на данных с лямбда-зонда, ЭБУ вносит соответствующие коррекции в работу двигателя и подготовку топливно-воздушной смеси.

Где находится кислородный датчик

Датчик кислорода установлен в выпускном коллекторе или приёмной трубе глушителя двигателя, замеряя, сколько несгоревшего кислорода находится в выхлопных газах. На многих автомобилях есть ещё один лямбда-зонд, расположенный после каталитического нейтрализатора выхлопа — для контроля его работы.

Если у двигателя две головки блока (V-образники, «оппозитники»), то удваивается количество выпускных коллекторов и катализаторов, а значит и лямбда-зондов — у современной машины может быть и 4 кислородных датчика.

Устройство кислородного датчика

Классический лямбда-зонд порогового типа — узкополосный — работает по принципу гальванического элемента. Внутри него находится твёрдый электролит — керамика из диоксида циркония, поэтому такие датчики часто называют циркониевыми. Поверх керамики напылены токопроводящие пористые электроды из платины. Будучи погружённым в выхлопные газы, датчик реагирует на разницу между уровнем кислорода в них и в атмосферном воздухе, вырабатывая на выходе напряжение, которое считывает ЭБУ.

Циркониевый элемент лямбда-зонда приобретает проводимость и начинает работать только после прогрева до температуры 300 °C. До этого ЭБУ двигателя действует «вслепую» согласно топливной карте, без обратной связи от кислородного датчика, что повышает расход топлива при прогреве двигателя и количество вредных выбросов. Чтобы быстрее задействовать лямбда-зонд, ему добавляют принудительный электрический подогрев. Кислородные датчики с подогревом внешне отличаются увеличенным количеством проводов: у них 3–4 жилы против 1–2 у обычных датчиков.

В названии узкополосного датчика кроется его недостаток — он способен замерять количество кислорода в выхлопе в достаточно узком диапазоне. ЭБУ может корректировать смесь по его показаниям только в некоторых режимах работы мотора (холостой ход, движение с постоянной скоростью), что не отвечает современным требованиям по экономичности и экологичности двигателей. Для более точных замеров в широком диапазоне используют широкополосный лямбда-зонд (A/F-сенсор), который также называют датчиком соотношения «воздух-топливо» (Air/Fuel Sensor). Обычно к нему подходят 5–6 проводов, хотя бывают и исключения.

Внешне «широкополосник» похож на обычный датчик кислорода, но внутри есть отличия. Благодаря специальным накачивающим ячейкам эталонный лямбда-коэффициент газового содержимого датчика всегда равен 1, и генерируемое им напряжение постоянно. А вот ток меняется в зависимости от количества кислорода в выхлопных газах, и ЭБУ двигателя считывает его в реальном времени. Это позволяет электронике быстрее и точнее корректировать смесь, добиваясь её полного сгорания в цилиндрах.

Почему до сих пор производят узкополосные датчики? Во-первых, для старых автомобилей, где A/F-сенсоры не применялись. Во-вторых, из-за особенностей «широкополосника» его нельзя устанавливать после катализатора, где он быстро выходит из строя. А контролировать работу катализатора как-то надо. Поэтому в современных двигателях ставят два лямбда-зонда разного типа: широкополосный (управляющий) — в районе выпускного коллектора, а узкополосный (диагностический) — после катализатора.

Причины и признаки неисправности лямбда-зонда

Основная причина поломок кислородных датчиков — некачественный бензин: свинец и ферроценовые присадки оседают на чувствительном элементе датчика, выводя его из строя. На состояние лямбда-зонда влияет и нестабильная работа двигателя: при пропусках зажигания от старых свечей или пробитых катушек несгоревшая смесь попадает в выхлопную систему, где догорает, выжигая и катализатор, и датчики кислорода. Приговорить датчик также может попадание в цилиндры антифриза или масла.

Самый очевидный признак неисправности лямбда-зонда — индикатор Check Engine на приборной панели. Считав код ошибки с помощью сканера или самодиагностики, можно проверить, какой именно датчик вышел из строя, если их несколько. Иногда всё дело в повреждённой проводке датчика — с проверки цепи и стоит начать поиск поломки.

Но далеко не всегда проблемный лямбда-зонд зажигает «Чек»: иногда он не ломается полностью, а медленно умирает, давая при этом ложные показания, из-за чего ЭБУ двигателя неверно корректирует состав смеси. В этом случае нужно ориентироваться на косвенные признаки — ухудшение работы двигателя.

Проблемы с датчиком кислорода нарушают всю систему обратной связи и лямбда-коррекции, вызывая целый букет неисправностей. Прежде всего, это увеличение расхода топлива и токсичности выхлопа, снижение мощности и нестабильный холостой ход. Если вовремя не заменить лямбда-зонд, следом выйдет из строя каталитический нейтрализатор, осыпавшись из-за перегрева от обогащённой смеси.

Универсальные кислородные датчики

Цена на оригинальные датчики кислорода вряд ли обрадует автомобилистов, но все лямбда-зонды работают по единому принципу, что позволяет без труда подобрать замену. Главное, чтобы соответствовал типа датчика (широкополосный/узкополосный), количество проводов и резьбовая часть. В продаже есть универсальные кислородные датчики без разъёма, которые можно использовать на десятках моделей автомобилей — подобрать и купить лямбда-зонд не составляет проблемы.

Чтобы избежать проблем с кислородными датчиками, следите за состоянием двигателя, заправляйтесь качественным топливом и регулярно выполняйте компьютерную диагностику, которая позволит выявить неисправности на ранней стадии.

Лямбда-зонд (датчик кислорода). Устройство лямбда-зонда

  • Замена лямбда-зонда
  • Установка лямбда зонда

Строгие экологические нормы (которые, к тому же, постоянно ужесточаются) требуют постоянного контроля токсичности выхлопа автомобиля. За параметрами следит блок управления двигателем, регулируя степень обогащения топливной смеси. Для правильной работы этого компьютера требуются специальные датчики.

Система, в которой установлены кислородные датчики, функционирует следующим образом:

  1. В начале выхлопной трубы находится катализатор, снижающий токсичность отработанных газов.
  2. Перед катализатором размещен датчик кислорода (лямбда зонд), который анализирует неочищенный состав выхлопа. Этот элемент помогает формировать правильную смесь. Если для поддержания требуемой мощности двигателя расход топлива слишком большой, компьютер дает команду на снижение количества бензина.
  3. После каталитического нейтрализатора находится второй датчик О2. Он отвечает в основном за оценку токсичности выхлопа. Его показания также меняют настройки обогащения топливной смеси.

Становится понятно, что датчик лямбда зонда влияет не только на экологию, а также на мощность автомобиля и расход топлива.

Важно! Речь идет о системе с двумя лямбдами. Автомобили, в которых установлен один кислородный датчик, встречаются сейчас относительно редко. Следует знать, что пара лямбд (до и после катализатора) устанавливается на выходе из каждого выпускного коллектора. Если у вас двигатель V6, V8 или V10, с двумя коллекторами – количество датчиков удваивается.

Ресурс лямбды составляет 50-100 тысяч километров, в зависимости от условий эксплуатации, особенности самого датчика и ряда других факторов. Это достаточно дорогой расходник, его замена ощутима для кошелька.

Как работает датчик концентрации кислорода 

Принцип действия рассматриваемого элемента основан на изменении электрического потенциала между электродами, при различном содержании кислорода в анализируемом воздухе. Один электрод – внешний, выполнен с применением платины (это оправдывает высокую стоимость). Второй – внутренний, из циркония. Эти металлы при прохождении атомов кислорода, формируют некоторый потенциал, увеличивающийся при повышении концентрации О2.

Для нормальной работы датчика требуется температура от 300 до 1000 °C. Пока двигатель не прогрелся, система не функционирует должным образом. Мощность силовой установки избыточна, токсичность выхлопа – высокая. Для моментальной готовности лямбды, внутренний электрод нагревается. К нагревателю подводятся дополнительные провода питания.

Универсальный кислородный датчик может иметь различную конструкцию – широкополосный, двухточечный, коаксиальный. Принцип анализа концентрации О2 один и тот же.

Неисправность лямбда зонда приводит к серьезным проблемам в работе двигателя. Поэтому не стоит игнорировать поломку. И тем более, нельзя самостоятельно пытаться отремонтировать датчики. Даже если Вы знаете, где находится лямбда зонд, его легко повредить при демонтаже. В условиях высоких температур резьба намертво прикипает. А использовать стандартный накидной ключ невозможно, по причине длинных проводов, выходящих из датчика.

Обратившись в сервис «Ваш глушитель», Вы получите грамотную диагностику и профессиональный ремонт без повреждения хрупких лямбда зондов. Наши мастера знают все неисправности датчика кислорода, и смогут устранить поломку с минимальными финансовыми затратами. Не обязательно сразу менять деталь, некоторые дефекты подлежат ремонту. Специалисты нашего сервиса по ремонту выхлопных систем помогут Вам сэкономить на ремонте.

Обманка лямбда-зонда (датчика кислорода) без миникатализатора ЕВРО-3

Преимущества механической обманки лямбда зонда

1.Высокая эффективность

2.Низкая стоимость (в 10 раз дешевле нового катализатора!)

3.Простота в установке (Можно установить самому)

4.Большой срок службы (~ 50.000 км. пробега!)

Установка обманки на лямбда зонд

 Установка обманки на лямбда зонд своими руками производится следующим способом.

При помощи ключа на «22»:

Выкручивается второй лямбда зонд (расположен после катализатора)

На его место вкручивается обманка лямбда зонда

Лямбда зонд вкручивается в обманку лямбда зонда

Может потребоваться сброс ошибки «CHECK ENGINE»

Катализатор и Лямбда-зонд

В 90-х годах из-за ужесточения экологических норм, автопроизводители стали применять на автомобилях каталитический нейтрализатор (катализатор). Катализатор — механическое устройство, которое снижает содержания вредных веществ в выхлопных газах проходящих через него. Его эффективная работа возможна только при совместной работе с двумя лямбда-зондами (другое название — «Датчик О2» или как его еще принято называть «Датчик кислорода»), которые постоянно контролируют состав топливно-воздушной смеси. Первый лямбда-зонд установлен в выхлопной трубе до катализатора, второй — после (Именно на место второго лямбда-зонда устанавливается наша механическая обманка лямбда зонда и уже в нее вкручивается лямбда зонд, но об этом чуть позже).

На рисунке ниже, в виде схематичной диаграммы, представлены изменения в показаниях первого и второго лямбда зонда, в зависимости от состояния катализатора

Неисправности катализатора

Низкая эффективность катализатора — Ошибка P0420

Керамическая или металлическая основа катализатора может быть в удовлетворительном состоянии, но каталитический слой на нем выгорел
Последствия:После выгорания каталитического слоя, в корпусе катализатора остается лишь бесполезный керамический элемент, который рекомендуется удалить пока он не начал разрушаться и приносить вред

Низкая пропускная способность катализатора

Забиты или оплавлены соты каталитического элемента, что создает препятствие для выхода отработанных газов 

Последствия:Создается избыточное давление до катализатора (выпускной коллектор, гофра), в следствии чего происходит преждевременный износ гофры глушителя и перегрев выпускного коллектора. В редких случаях, приводит к ремонту ДВС

Разрушение катализатора

Полное или частичное разрушение каталитического элемента (катализатора) 

Причины:

-механическое повреждение (удар) корпуса катализатора, внутри которого уязвимая к ударам керамическая основа катализатора.

-резкий перепад температуры, в следствии чего керамический элемент разрушается.

Последствия:

-звонкий шум от катализатора при повышенных оборотах / резком нажатии на педаль газа

При неисправном катализаторе (код ошибки P0420, P0421, P0422, P0430 и другие связанные с работой катализатора) двигатель автоматически переходит в аварийный режим работы, что приводит к повышенному расходу топлива и снижению мощности двигателя. На приборной панели, загорается индикатор «CHECK ENGINE», который информирует водителя о том, что работа двигателя нарушена. Что бы выявить неисправность, нужно произвести компьютерную диагностику автомобиля. Если при диагностике считываются ошибки P0420, P0421, P0422, P0430 и др. — «Неэффективность катализатора / Катализатор неисправен» — в данном случае, неисправный катализатор подлежит замене на новый, либо на более дешевый и практичный — пламегаситель.

Самым практичным решением данной проблемы является установка пламегасителя вместо катализатора. Если Вы все же решили установить пламегаситель, то неизбежно столкнетесь с проблемой, что второй лямбда зонд не обнаружит работающий катализатор и двигатель продолжит работу в «аварийном режиме» (увеличенный расход топлива до 20%), именно здесь к Вам придет на помощь наше устройство — механическая обманка лямбда зонда с миникатализатором.

Обманка лямбда зонда — предназначена для того, чтобы устранить ошибку катализатора на автомобиле. Принцип установки: выкручиваете лямбда зонд, на его место вкручиваете обманку катализатора и далее в обманку вкручиваете лямбда зонд. Благодаря мини катализатору внутри обманки, лямбда зонд будет выдавать такие же параметры как с оригинальным катализатором. Интернет-магазин PROMASTER.SU предлагает купить обманку второго лямбда зонда по выгодной цене в Москве. Мы предлагаем только качественные товары для безопасной и исправной работы вашего автомобиля. Суть обманки лямбда-зонда.Какую же функцию выполняет эмулированный лямбда-зонд? Обманка призвана ввести в заблуждение электронный блок управления автомобиля при вышедшем из строя каталитическом конвертере путем подачи сигнала ему о том, что катализатор работает в нормальном режиме, а концентрация кислорода в выхлопных газах не ниже и не выше допустимого.

Суть метода заключается в том, чтобы сместить датчик кислорода подальше от коллектора или приемной трубы. В этом случае выхлопные газы, проходя через тонкое отверстие (в малой концентрации), попадают на керамическую крошку, где окисляются под воздействием температуры. Концентрация вредных веществ, естественно, при этом снижается. Вот таким нехитрым образом работает эмулированный лямбда-зонд. Обманка попросту вводит датчик кислорода в заблуждение, заставляя его передавать на контроллер «нормальный» сигнал. Этот способ, учитывая непосредственное участие в процессе «обмана» датчика, приемлем исключительно при неисправности катализатора. Последний, при этом, удаляется из выхлопной системы, или заменяется стронгером (пламегасителем).

При экологическом стандарте выхлопа ЕВРО-3/4/5, каждый автомобиль оснащается минимум двумя (некоторые автомобили, особенно с V-образным двигателем — четырьмя) кислородными датчиками. Первый лямбда-зонд расположен до катализатора, он отслеживает остаток кислорода в выхлопе автомобиля и корректируют подачу топливовоздушной смеси. Второй датчик находится после катализатора, и он считывает показания выхлопных газов, прошедших через него. ЭБУ сравнивает эти показания с первым датчиком и если катализатор забился или его нет совсем — выдает соответствующую ошибку.

Для чего нужен лямбда зонд?

Кратко:

Лямбда зонд устанавливается в любых транспортных средствах, приводимых в движение с помощью двигателей внутреннего сгорания. Лямбда зонд:

• Регулирует смесеобразование, удерживая расход топлива на максимально низком уровне.
• Обеспечивает катализатору оптимальные условия работы, что в итоге влияет на срок службы катализатора и низкий уровень токсичности выхлопа.

Подробно:

Подробное понимание того, как устроен и для чего нужен лямбда зонд никак не повлияет на обнаружение и устранение неисправности этого датчика, если вы внимательно будете следовать тем советам, которые мы даём в наших статьях.
Даже простое чтение статьи будет для вас пустой тратой времени, поскольку, когда у вас перегорает лампочка, вы не стремитесь понять, как она работает, а просто меняете её на новую. Ведь всё, что на самом деле нужно вам, это исправный автомобиль. Поэтому, смело пропускайте эту статью и переходите к статьям, которые непосредственно расскажут вам, как проверить, подобрать и заменить ваш датчик.
Если же вы всё-таки решительно настроены вникнуть в суть работы лямбда зонда, желаем удачи.

Функция лямбда зонда в современном автомобиле.

На все автомобили, начиная с конца 80-х годов прошлого века, устанавливаются катализаторы, задачей которых является очищение выхлопных газов от вредных примесей. Для оптимальной и эффективной работы катализатора необходимо подготовить строго определённое качество воздушно-топливной смеси для двигателя и проконтролировать качественные характеристики выхлопных газов, возникших в результате её сгорания. Эту функцию выполняет лямбда зонд.

Лямбда зонд – также называемый кислородным датчиком или датчиком кислорода – измеряет количество остаточного кислорода в выхлопных газах. Отсюда пошло основное название этого датчика – кислородный. Исходя из количества остаточного кислорода, датчик посылает сигналы в электронный блок управления двигателем, который, в свою очередь, регулирует количество подаваемого топлива или, другими словами, изменяет качество воздушно-топливной смеси. Именно поэтому так важна герметичность выхлопной системы в местах установки этих датчиков, поскольку, в результате подмеса воздуха извне параметры этих измерений нарушаются. Идеальное соотношение воздуха и топлива в смеси обозначается греческой буквой λ (лямбда) и равняется приблизительно 15 к 1, где 15 частей это воздух, а 1 часть это топливо. Отсюда и пошло наиболее распространённое в России название датчика – лямбда зонд.

Лямбда зонд установлен в трубы выхлопной системы автомобиля так, чтобы его рабочие поверхности обтекали выхлопные газы. Эти рабочие поверхности состоят из многослойных материалов обеспечивающих тестирование смеси. Тестирование смеси эффективно идёт только при высокой температуре рабочей поверхности, поэтому все современные датчики снабжены функцией принудительного прогрева. Для подробного рассмотрения конструкции датчика обратитесь к схеме 1.

Первый (верхний, регулирующий) лямбда зонд.

До начала 2000-х годов на автомобиль устанавливался только один датчик. Этот датчик устанавливался на отрезок выхлопной трубы между двигателем и катализатором и впоследствии, после появления второго датчика, получил свои нынешние названия: первый датчик или верхний или регулирующий. В задачу этого датчика входил вышеописанный процесс измерений и поскольку он устанавливается выше, чем второй этот датчик был назван верхним. Регулирующим он был назван по причине того, что именно он несёт основную нагрузку по регулированию воздушно-топливной смеси. Этот же датчик принимает на себя главный удар раскалённых токсичных газов двигателя, ещё не очищенных от ядовитых примесей катализатором. За счёт этого он и выходит из строя в среднем в 5-7 раз чаще, чем второй датчик.

Второй (нижний, диагностирующий) лямбда зонд.

После 2000-х годов, дополнительно к Первому датчику, в автомобилях стали устанавливать ещё один, при этом местоположение Первого не изменилось. Второй датчик стали устанавливать на отрезок выхлопной трубы от катализатора до глушителя. Задачей этого дополнительного датчика стала проверка качества очистки выхлопных газов, прошедших через катализатор. Он получил название «Второй» или «Нижний», поскольку устанавливался под днищем автомобиля. Другим названием этого датчика стало «Диагностирующий», оно отражало его функциональную отличие от Первого датчика – проверять качество очистки выхлопных газов. После появления Второго датчика блок управления рассчитывает параметры идеальной воздушно-топливной смеси на основании показаний их обоих. В результате удалось добиться дополнительного снижения расхода топлива и высочайшей степени очистки выхлопных газов от ядовитых примесей — 95%.

Следует заметить, что поскольку Второй датчик установлен после катализатора, где газы уже очищены от агрессивных примесей, он выходит из строя значительно реже и то в результате либо разрушения катализатора, либо в результате механического или термического повреждения.

Конструктивно оба датчика  очень похожи. Тем не менее они имеют ряд различий, обусловленных их функциональностью. В последние годы первые и вторые лямбда зонды стали также отличаться и конструктивно. В качестве регулирующих датчиков всё чаще применяются сложные и дорогостоящие широкополосные датчики, в то время как в качестве диагнотических по прежнему используют циркониевые лямбда зонды.

Схематичное обозначение местоположения лямбда зондов на современном автомобиле.

Все автомобили объёмом двигателя более 2-х литров имеют по два Первых датчика и два Вторых датчика. Установка четырех датчиков продиктована большей мощностью таких двигателей требующих наличия двух катализаторов. В последние годы, в связи с введением более строгих требований по выбросам, стали устанавливать до трёх катализаторов, а соответственно понадобился и пятый кислородный датчик.


Разновидности лямбда зондов.

Лямбда зонд из диоксида циркония является самым распространённым на сегодняшний день типом кислородных датчиков.
Менее распространёнными датчиками является широкополосные датчики и датчики воздух — топливо.
Совсем редкими являются лямбда зонд их диоксида титана, которые постепенно вытесняются из-за своей дороговизны.

Лямбда-зонды

Какая связь между катализатором и лямбда-зонд?

Лямбда зонд Лямбда-зонд — это датчик кислорода (Oxygen Sensor), устанавливаемый в системе выпуска. В выхлопной системе автомобиля, как правило, их один или две штуки. Первый датчик лямбда-зонд всегда устанавливается сразу после выпускного коллектора, чтобы выхлопные газы обтекали рабочую поверхность датчика, а второй, если есть, сразу после катализатора. Применение лямбда-зонд обусловнено жесткими экологическими нормами по снижению содержания вредных веществ в выхлопных газах.

Катализатор предназначен для снижения выброса токсичных отработавших газов. В свою очередь, катализатор вещь хорошая, но эффективно работает лишь при определенных условиях. Без постоянного контроля состава топливно-воздушной смеси катализатор выходит из строя очень быстро – вот тут и необходим датчик кислорода,он же лямбда-зонд (ЛЗ), он же O2-датчик. Название датчика кислорода происходит от греческой буквы L (лямбда), которая в автомобилестроении обозначает коэффициент избытка воздуха в топливно-воздушной смеси. Избыток воздуха в смеси измеряется весьма оригинально – путем определения в выхлопных газах содержания остаточного кислорода (O2).

При оптимальном составе этой смеси, когда на 14,7 части воздуха приходится 1 часть топлива, L равна 1. Окно эффективной работы катализатора очень небольшое: L = 1±0,01. Обеспечить такую точность возможно только с помощью систем питания с электронным (дискретным) впрыском топлива и при использовании в цепи обратной связи лямбда-зонда. Поэтому лямбда-зонд устанавливается перед катализатором. Электрический сигнал датчика считывается электронным блоком управления системы впрыска топлива (ЭБУ), а тот в свою очередь анализирует и оптимизирует состав смеси путем изменения количества подаваемого в цилиндры двигателя топлива. Как мы уже упоминали выше, на некоторых современных автомобилях имеется дополнительный датчик лямбда-зонд, который устанавливается на выходе катализатора. Это позволяет увеличить точность приготовления смеси и контролировать работу катализатора, чтобы трехкомпонентный катализатор смог полностью выполнить свое предназначение и сократить объем вредных выбросов до минимума.

Лямбда-зонд, как правило, изготавливают из циркониевого сплава (используется керамический элемент на основе двуокиси циркония, покрытый платиной) — гальванический источник тока, меняющий напряжение в зависимости от температуры и наличия кислорода в окружающей среде. Конструкция его предполагает, что одна часть соединяется с наружным воздухом, а другая — с выхлопными газами внутри трубы. В зависимости от концентрации кислорода в выхлопных газах, на выходе датчика появляется сигнал. Контроллер принимает сигнал с ЛЗ, сравнивает его с значением, прошитым в его памяти и, если сигнал отличается от оптимального для текущего режима, корректирует длительность впрыска топлива в ту или иную сторону. Таким образом осуществляется обратная связь с контроллером впрыска и точная подстройка режимов работы двигателя под текущую ситуацию с достижением максимальной экономии топлива и минимизацией вредных выбросов.

Возможные причины поломки лямбда-зонд:

1)некачественный бензин, железо, свинец забивают платиновые электроды за несколько неудачных заправок; 2)перегрев корпуса датчика из-за неправильно установленного угла опережения зажигания, сильно переобогащенной топливной смеси;

3)масло в выхлопной трубе из-за плохого состояния маслосъемных колец;

4)сбои в системе зажигания, хлопки в глушителе и в выпуске разрушающие хрупкую керамику;

5)удары;

6)многократные (неудачные) попытки запуска двигателя через небольшие промежутки времени, что приводит к накапливанию несгоревшего топлива в выпускном трубопроводе, которое может воспламениться с образованием ударной волны;

7)попадание на керамический наконечник датчика любых эксплуатационных жидкостей, растворителей, моющих средств;

8) использование при установке датчика герметиков, вулканизирующихся при комнатной температуре или содержащих в своем составе силикон;

9)обрыв, плохой контакт или замыкание на «массу» выходной цепи датчика.

Возможные признаки неисправности лямбда-зонд:

1)неустойчивая работа двигателя на малых оборотах;

2)ухудшение динамических характеристик автомобиля;

3)повышенный расход топлива;

4)повышение температуры в районе каталитического нейтрализатора или его нагрев до раскаленного состояния;

5)характерное потрескивание в районе расположения каталитического нейтрализатора после остановки двигателя.

Можно ли отключать лямбда-зонд после замены катализатора на пламегаситель?

После замены катализатора на пламегаситель, наличие кислородного датчика, как детали выхлопной системы, обеспечивающей в числе прочего эффективную работу катализатора, становится не важным. Отсюда вопрос: допускается ли эксплуатировать автомобиль совсем без лямбда-зонда? Однозначного ответа для всех автомобилей нет. Наиболее просто и правильно эта задача решается в том случае, если у данного автомобиля предусмотрена возможность перепрограммировать контроллер на режим работы без катализатора. Это возможно у большинства BMW с «мозгами» BOSH (Siemens не перепрограммируется). В этом случае после замены катализатора на пламегаситель меняется программа управления и лямбда-зонд просто снимается и всё. У некоторых марок автомобилей перепрограммирование невозможно и, если неисправность датчика сильно влияет на работу мотора, тогда выхода нет — необходимо устанавливать исправный датчик лямбда-зонд .

Взаимозаменяемость лямбда-зонд .

Рекомендованные заводом-изготовителем лямбда-зонды и сходные по конструкции циркониевые датчики могут быть взаимозаменяемы. Возможна замена неподогреваемых датчиков на подогреваемые (но не наоборот!). Однако при этом может возникнуть проблема несовместимости разъемов и отсутствия в автомобиле цепи питания для нагревателя лямбда-зонда. Недостающие провода можно проложить самостоятельно, а вместо разъема использовать стандартные автомобильные контакты. Рекомендуется использовать графитовую смазку, чтобы датчик не прикипел к выпускному коллектору.

Функции кислородных датчиков в выхлопных системах

В свое время самые ранние выхлопные системы были глухими металлическими связями. Конечно, сварные трубы работали качественно. Они достаточно хорошо избавляли двигатель от отработанных газов, но в системе не было контроля выбросов. Сегодняшние выхлопные трубы отличаются продуманным дизайном. Они включают в себя специальный датчик кислорода, датчик O2, который контролирует и контролирует выбросы двигателя. Все дело в обратной связи, но что меняет этот контур управления?

Топливная смесь

Датчики кислорода (O2) обычно устанавливаются в выпускном коллекторе.Они контролируют кислород, потому что это атмосферный газ, который смешивается с вашим топливом, чтобы вызвать сгорание. Двигатели точно настроены так, что основная часть топлива сгорает, а отходы не остаются, но если коэффициент сжигания богат кислородом, что ж, эта тяжелая смесь будет вызывать отходы. Точно так же бедная смесь кислорода и топлива также вызывает загрязнение. Датчики O2 обнаруживают этот дисбаланс и отправляют данные на компьютер вашего двигателя, когда индикатор проверки двигателя начинает мигать.

Активный контроль выбросов

Если соотношение топливо / кислород не в норме, происходит загрязнение, но бортовые датчики всегда под рукой, чтобы сообщить вам об этой опасности для окружающей среды.Однако технология не останавливается на достигнутом, и не только тогда, когда петля обратной связи срывается, чтобы постоянно обновлять коэффициент сжигания. Компьютер двигателя регулирует смесь, ориентируясь на крошечный контур обратной связи, чтобы он мог управлять количеством кислорода, входящего в цикл сгорания.

Безопасность в цифрах

По мере ужесточения стандартов контроля выбросов количество кислородных детекторов, устанавливаемых в современные автомобили, увеличилось вдвое. Например, перед каталитическим нейтрализатором установлен входной детектор.Он обнюхивает входную смесь, в то время как второй монитор ниже по потоку отмечает выходную смесь кислорода и топлива. Компьютер выполняет небольшую арифметику, сравнивает два значения и ставит невидимую галочку для модуля cat. Как выпускной коллектор двигателя, так и остальная часть выхлопной системы выдают постоянно контролируемые выходные сигналы таким образом, чтобы замкнутая обратная связь поддерживала идеально сбалансированный цикл горения.

На первый взгляд кажется, что датчики O2 предназначены для того, чтобы сжечь индикаторы проверки двигателя и вызвать у вас головную боль, но их истинная цель — информировать компьютер вашего автомобиля, чтобы точно контролировать смесь топлива и кислорода.Если эта взрывоопасная смесь такова, что ж, никаких загрязняющих веществ не образуется, но если она горит слишком богато или слишком бедно, будут происходить опасные выбросы. Что еще хуже, пострадает экономия топлива, в то время как производительность двигателя упадет, а ключевые компоненты будут повреждены.

Trufit Exhaust
437 Warrigal Road,
Moorabbin, VIC 3189
Австралия
Обслуживаемые районы: Мельбурн
Тел .: Trufit Trufit Maps на Google Maps Выхлоп в поиске Google

Датчик кислорода

Обновлено: 16 августа 2013 г.

Датчик кислорода (датчик O2) измеряет количество кислорода в выхлопных газах, отправляя сигнал на компьютер двигателя.Передний кислородный датчик установлен в выпускном коллекторе или в передней выхлопной трубе перед каталитическим нейтрализатором. Как вы знаете, каталитический нейтрализатор — это основная часть системы снижения токсичности выхлопных газов автомобиля.

A Задний кислородный датчик установлен в выхлопе после каталитического нейтрализатора. Смотрите фото, показывающее, как задний кислородный датчик выглядит внутри выхлопной трубы.

Автомобили с 4-цилиндровым двигателем имеют не менее двух кислородных датчиков; Автомобили V6 и V8 имеют как минимум четыре датчика O2.
Компьютер двигателя (модуль управления трансмиссией или PCM) использует сигнал от переднего кислородного датчика для регулировки соотношения воздух / топливо путем добавления или вычитания топлива. Сигнал заднего кислородного датчика используется для контроля производительность катализатора . В современных автомобилях вместо переднего кислородного датчика используется датчик соотношения воздух-топливо. Он работает аналогично, но более точен. Об этом читайте в этой статье: Датчик соотношения воздух-топливо.

Как работает кислородный датчик

Передний (верхний) кислородный датчик

Существует несколько типов кислородных датчиков, но для простоты в этой статье мы будем рассматривать только обычные кислородные датчики, генерирующие напряжение.Как следует из названия, датчик кислорода, генерирующий напряжение, генерирует небольшое напряжение, пропорциональное разнице в количестве кислорода внутри и снаружи выхлопа.

Когда топливно-воздушная смесь, поступающая в двигатель, бедная (меньше топлива и больше воздуха), в выхлопе больше кислорода, и датчик кислорода будет генерировать очень небольшое напряжение (0,1–0,2 В).

Если топливно-воздушная смесь становится на обогащенной (больше топлива и меньше воздуха), в выхлопе будет меньше кислорода, поэтому датчик кислорода будет генерировать большее напряжение (около 0.9В).
Для правильной работы кислородный датчик должен быть нагрет до определенной температуры. Типичный современный датчик имеет внутренний электрический нагревательный элемент, который питается от PCM.

Реклама — Продолжить чтение ниже

Регулировка соотношения воздух / топливо

Передний датчик O2 отвечает за поддержание соотношения воздух / топливо в смеси, поступающей в двигатель, на оптимальном уровне, который составляет примерно 14,7: 1 или 14,7 частей воздуха на 1 часть топлива.

Компьютер двигателя регулирует соотношение воздух / топливо
на основе обратной связи от переднего датчика O2

Когда передний датчик O2 определяет высокий уровень кислорода, PCM предполагает, что двигатель работает на обедненной смеси (недостаточно топлива), поэтому PCM добавляет топливо. Когда уровень кислорода в выхлопных газах становится низким, PCM предполагает, что двигатель работает на богатой смеси (слишком много топлива), и сокращает подачу топлива.

Этот процесс непрерывный.Компьютер двигателя постоянно переключается между слегка обедненной и слегка богатой смесью, чтобы поддерживать соотношение воздух / топливо на оптимальном уровне. Этот процесс называется закрытым циклом операцией. Если вы посмотрите на сигнал напряжения переднего кислородного датчика (см. Сигнал осциллографа выше), он будет колебаться где-то между 0,2 В (бедная) и 0,9 В (богатая). Смотрите фото.

Сигнал напряжения переднего кислородного датчика
на дисплее осциллографа.Нажмите для увеличения фото

Когда автомобиль заводится холодным, передний кислородный датчик не полностью прогрет, и PCM не использует сигнал переднего датчика O2 для регулировки топливной коррекции. Этот режим называется открытый контур . Только при полном прогреве кислородного датчика система впрыска топлива переходит в режим замкнутого контура .

В современных автомобилях вместо штатного кислородного датчика установлен широкополосный датчик соотношения воздух / топливо. Датчик соотношения воздух / топливо работает по-другому, но служит той же цели — определять, является ли смесь воздух / топливо, поступающая в двигатель, богатой или обедненной.Датчик отношения воздух-топливо является более точным и может измерять более широкий диапазон отношения воздух / топливо. О заднем кислородном датчике, идентификации и замене датчика читайте на следующей странице.

Следующая »

Все, что нужно знать о лямбда-зонд и выхлоп

Лямбда-зонд , также называемый кислородным датчиком, представляет собой небольшой зонд, расположенный на выхлопе автомобиля , между выпускным коллектором и каталитическим нейтрализатором.Он был разработан компанией Volvo в 70-х годах.

Если у вас более новая машина, она будет оснащена 2 лямбда-датчиками. В этом случае второй датчик будет расположен сразу за каталитическим нейтрализатором.

Для чего это используется?

Лямбда-зонд регулирует количество топлива, которое подается в цилиндры двигателя, оптимизируя воздушно-топливную смесь, что, в свою очередь, обеспечивает правильную работу двигателя. Это также повлияет на уровень выбросов вредных газов, поскольку каталитический нейтрализатор работает правильно.

Таким образом, лямбда-зонд гарантирует, что ваш автомобиль соответствует европейским нормам по загрязнению окружающей среды и выбросам CO2.

Как это работает?

Поскольку лямбда-зонд расположен перед каталитическим нейтрализатором, он может измерять количество воздуха и топлива в несгоревших углеводородах после сгорания.

Таким образом, электронный блок управления (ECU) транспортного средства, который управляет некоторыми функциями двигателя , получит правильные данные о выбросах, а затем выпустит точное количество необходимого газа.Это очень важно для снижения выбросов загрязняющих веществ.

Неисправный лямбда-зонд?

Если лямбда-зонд неисправен, данные не будут отправлены в ЭБУ, который затем будет использовать неверную информацию. Это, скорее всего, увеличит расход топлива и, как следствие, выбросы загрязняющих веществ.

Со временем это может привести к засорению каталитического нейтрализатора, который затем придется заменить.

Признаки неисправности лямбда-зонда

  • Контрольная лампа двигателя будет гореть на приборной панели
  • Автомобиль дергается при запуске
  • Необычно высокий расход топлива
  • Низкая мощность двигателя при разгоне
  • Повышение выбросов токсичных газов

Когда следует заменять лямбда-зонд?

Срок службы лямбда-зонда составляет около 93 000 миль.Однако он может быть короче в зависимости от множества факторов, которые могут повредить его, в основном из-за аномалий, исходящих от двигателя. Утечки из выхлопной трубы также могут повредить зонд.

Если вы заметили один из вышеуказанных признаков, мы рекомендуем вам посетить механика, который может проверить, исходит ли неисправность лямбда-зондом. Это делается с помощью автомобильного диагностического прибора.

В случае, если вам в ближайшее время придется отвезти машину на ТО, имейте в виду, что неисправный лямбда-зонд выйдет из строя.Не стесняйтесь сравнить предложений по диагностике автомобиля из ближайших к вам гаражей или получить предложения по полной замене лямбда-зонда .

Могу ли я отключить лямбда-зонд и по-прежнему ехать?

Вождение без лямбда-зонда крайне не рекомендуется. Запчасть гарантирует, что ваш автомобиль не выбрасывает больше CO2, чем разрешено законами ЕС.

Более того, даже если вы думаете, что ваш автомобиль будет мощнее, это не продлится долго, так как каталитический нейтрализатор будет иметь более высокий риск засорения.

Кроме того, вы потратите больше денег, так как отключение лямбда-зонда увеличит расход топлива примерно на 15%.

Получите расценки на новые лямбда-зонды

Разбираемся с вашими датчиками: датчик температуры выхлопных газов

Благодаря все более строгим законам о выбросах, датчики температуры выхлопных газов становятся все более популярными в современных автомобилях. А поскольку они часто выходят из строя, они становятся все более популярными.Здесь мы объясняем, что делает датчик температуры выхлопных газов, почему и как он выходит из строя, и как его заменить, чтобы вы могли воспользоваться этой быстрорастущей возможностью обслуживания с качественным ремонтом, выполненным с учетом лучших практик.

Что такое датчик температуры выхлопных газов?

Как следует из названия, датчик температуры выхлопных газов измеряет температуру выхлопных газов. Затем эта информация передается обратно в блок управления двигателем или ЭБУ, где предпринимаются соответствующие действия. В бензиновых двигателях его основная роль заключается в защите ключевых компонентов от более высоких температур, характерных для двигателей меньшего размера, поэтому, если датчик обнаруживает чрезмерные температуры, ЭБУ снижает температуру, например, за счет снижения давления наддува в случае турбокомпрессора. или увеличение количества топлива, впрыскиваемого в каталитический нейтрализатор.В дизельных двигателях датчики температуры выхлопных газов также используются для контроля температуры сажевого фильтра (DPF), чтобы установить правильную температуру для регенерации, уменьшая вредные выбросы. Нередко на выхлопе устанавливают три или более датчика; один перед турбокомпрессором, один перед сажевым фильтром и третий после сажевого фильтра.

Как работают датчики температуры выхлопных газов?

Есть два типа датчиков температуры выхлопных газов; один с чувствительным элементом с положительным температурным коэффициентом (PTC), а другой с отрицательным температурным коэффициентом (NTC), единственная разница заключается в том, как они измеряют температуру.Элемент NTC имеет высокое сопротивление при низких температурах и низкое сопротивление при высоких температурах. Другими словами, его сопротивление уменьшается с повышением температуры. В то время как в элементе PTC, наиболее распространенном типе, сопротивление увеличивается в соответствии с температурой. В любом случае сопротивление в блоке управления двигателем назначается температуре и предпринимаются соответствующие действия.

Почему выходят из строя датчики температуры выхлопных газов?

Одной из частых причин выхода из строя датчика температуры выхлопных газов является воздействие чрезмерно высоких температур — в некоторых случаях более 900 ° C — именно от этого они защищают другие компоненты.Как и все проводные датчики, сильная вибрация также может ослабить внутренние соединения, а любые изгибы или перекручивания могут привести к разрыву провода, что делает их особенно уязвимыми для повреждения при замене других компонентов в выхлопной системе. Все это, наряду с загрязнением другими жидкостями, такими как масло или антифриз, может повлиять на характеристики чувствительности датчика, вынуждая его выходить за пределы допуска и давать неточные показания.

Каковы симптомы неисправности датчика температуры выхлопных газов?

Неисправный датчик температуры выхлопных газов может негативно повлиять на систему нейтрализации выхлопных газов автомобиля, что приведет к появлению следующих симптомов:

  • Контрольная лампа двигателя: если ЭБУ обнаруживает проблему с датчиком или сигналом, он включает контрольную лампу двигателя.
  • Пониженная топливная эффективность: если датчик выдает неправильное напряжение, процесс регенерации DPF может занять больше времени, что приведет к увеличению расхода топлива.
  • Ненужная регенерация DPF: неисправные датчики также могут привести к ненужной регенерации, причиняя неудобства владельцу транспортного средства.
  • Неудачный тест на выбросы: ложное показание может привести к неисправности системы рециркуляции отработавших газов без включения контрольной лампы двигателя. Это может привести к сбою теста на выбросы.
  • Отказ компонента: повышение температуры выхлопных газов также может способствовать преждевременному выходу из строя других выхлопных или внутренних компонентов двигателя.

Как устранить неисправность датчика температуры выхлопных газов?

Чтобы диагностировать неисправный датчик температуры выхлопных газов, выполните следующие действия:

  • Проведите проверку электроники и считайте коды неисправностей с помощью диагностического прибора.
  • Осмотрите разъемы на предмет признаков коррозии или ослабленных соединений.
  • Проверьте проводку на предмет обрывов или повреждений, которые могут вызвать короткое замыкание на массу.
  • Осмотрите датчик на предмет скопления загрязнений и при необходимости очистите чистой сухой тканью.
  • Чтобы проверить датчик, используйте отдельное устройство измерения ИК и сравните показания с данными в реальном времени, полученными при использовании диагностического прибора. Запустите двигатель, чтобы температура выхлопных газов увеличилась, и сравните показания.
  • При включенном зажигании автомобиля и отключенном разъеме датчика EGT измерьте напряжение на разъеме датчика — должно быть 5 вольт. Если нет, то проследите провод обратно к ЭБУ и проверьте там питание.

Каковы наиболее распространенные коды неисправностей датчика температуры выхлопных газов?

Общие коды неисправностей включают:

  • P0544: Датчик температуры ОГ, банк 1, датчик 1 — неисправность электрической цепи
  • P0546: Датчик температуры отработавших газов, ряд 1, датчик 1 — высокий уровень входного сигнала
  • P2033: Температура выхлопных газов, ряд 1, датчик 2 — высокий уровень сигнала
  • P247A: Датчик температуры выхлопных газов, ряд 1, датчик 3 — вне допустимого диапазона
  • P0549: Датчик температуры выхлопных газов, ряд 2, датчик 1 — высокий уровень сигнала
  • P2031: Температура ОГ 1, датчик 2 — неисправность электрической цепи

Обратите внимание, что по своей конструкции датчики PTC будут продолжать передавать дезинформацию в ЭБУ без установки диагностического кода неисправности.

Как заменить датчик температуры выхлопных газов?

Если температура выхлопных газов неверна, его необходимо заменить — просто следуйте практическому совету:

  • Найдите неисправный датчик. Обратите внимание, что положение может варьироваться в зависимости от их функции; до или после турбокомпрессора, каталитического нейтрализатора и сажевого фильтра, а также в системе снижения выбросов NOX.
  • Затем отсоедините электрический разъем и открутите датчик с помощью торцевого ключа, стараясь не повредить близлежащие компоненты.
  • Подготовьте новый датчик, при необходимости нанеся противозадирный состав на резьбу. Обращайтесь осторожно, чтобы не повредить компонент.
  • Установите новый датчик температуры выхлопных газов и затяните с требуемым моментом в соответствии с рекомендациями производителя транспортного средства.
  • Установите на место электрический разъем, а затем отрицательную клемму аккумуляторной батареи.
  • Теперь снова подключите диагностический прибор и удалите все связанные коды неисправностей.
  • Включите зажигание и убедитесь, что индикатор проверки двигателя не горит и выхлопная система работает правильно.
  • Наконец, проведите дорожное испытание.

Полное руководство по ремонту датчика кислорода и датчика кислорода

Ни один владелец транспортного средства не хочет видеть, как включается контрольный двигатель. Этот предупреждающий знак предназначен для того, чтобы сообщить вам, что вашему автомобилю требуется обслуживание или ремонт. Как правило, когда загорается индикатор проверки двигателя, это означает, что система выхлопных газов вашего автомобиля не работает должным образом. Одна из основных причин, по которой загорается индикатор, связана с неисправностью кислородного датчика. Узнайте больше об этом устройстве, чтобы понять, насколько оно важно и когда нужно ремонтировать.

Что такое кислородный датчик и для чего он нужен?

Датчик кислорода является частью системы выбросов в вашем автомобиле. Он измеряет долю кислорода в вашем двигателе. Внутреннее сгорание в автомобиле работает за счет сжигания бензина. Чтобы правильно сжечь бензин, большинству автомобилей требуется соотношение 14 граммов кислорода на каждый грамм газа. Датчик кислорода помогает контролировать этот баланс.

Датчик обычно располагается на стороне пассажира автомобиля и устанавливается непосредственно на выхлопной трубе рядом с каталитическим нейтрализатором.Когда датчик выходит из строя, ваш автомобиль может потерять до 40 процентов своей топливной экономичности, потому что ваш автомобиль будет использовать слишком много газа.

Когда в автомобиле слишком много воздуха, говорят, что двигатель работает на обедненной смеси. Когда в двигатель не хватает воздуха, говорят, что он работает на обогащенной смеси. На обедненной смеси двигатель вызывает рывки или нерешительность при ускорении. Богатая смесь двигателя вызывает нагрев автомобиля и загрязнение окружающей среды. Оба условия могут вызвать возможное повреждение двигателя и плохой расход топлива. Датчик O2 контролирует ваши выбросы.

В вашем автомобиле может быть один, два, три или четыре датчика, в зависимости от типа, марки и модели двигателя.

Признаки неисправности кислородного датчика

Вы можете определить неисправность кислородного датчика по следующим признакам:

  1. Отказ пройти тест на выбросы
  2. Уменьшение пробега топлива
  3. Проверьте, горит ли свет двигателя
  4. Низкая производительность, грубый холостой ход, глохнет и т. Д.
  5. Программа проверки кода, выявляющая неисправность датчика O2

Наши механики имеют специализированное оборудование для проверки кислородного датчика в вашем автомобиле.Используя контрольные световые коды двигателя, мы можем быстро определить, почему горит ваш свет, и предложить решения.

Рекомендации по замене датчика кислорода

Частота замены кислородного датчика будет зависеть от возраста вашего автомобиля и типа имеющегося у вас датчика. В более новых автомобилях, которым меньше 20 лет, вероятно, потребуется заменять датчик примерно каждые 100 000 миль. Автомобили старше середины 1990-х годов потребуют замены при пробеге от 50 000 до 70 000 миль.Обратитесь к сервису, рекомендованному производителем, чтобы получить лучшие рекомендации.

Датчики кислорода

довольно легко диагностировать и заменять. Как правило, неисправный датчик O2 не отремонтировать. Его необходимо заменить из-за технологии и материалов, из которых он изготовлен. Есть несколько мест, где можно сделать самодельные работы, которые расскажут вам, как очистить датчик, чтобы получить от него еще несколько миль, но вы только откладываете неизбежное. Нет гарантии, что очистка датчика решит проблему. Вы также можете повредить чувствительную технику.

Когда вы узнаете, что у вас неисправный датчик, это похоже на замену свечи зажигания. Некоторые люди предпочитают заменять датчик самостоятельно, но для этого вам понадобится специальная розетка. Важно не допускать попадания масла или смазки на датчик. Механик может выполнить работу и убедиться, что она установлена ​​правильно.

Не игнорируйте контрольную лампу двигателя

Индикатор проверки двигателя говорит о том, что в вашей машине жар. Это больной. Это может быть что-то незначительное, например, незакрепленная крышка бензобака.Это также может означать неисправный каталитический нейтрализатор или поврежденные провода. В некоторых автомобилях при изменении влажности может загореться индикатор проверки двигателя. Без правильного диагноза нельзя быть уверенным в том, что случилось. Знание того, почему горит индикатор проверки двигателя, может дать вам душевное спокойствие, особенно после выполнения необходимого ремонта.

Sun Devil Auto имеет 19 точек в районе Феникса, которые обеспечивают диагностику, обслуживание и ремонт всех марок и моделей. Найдите ближайший к вам магазин, назначьте встречу и позвольте нам помочь вам поддерживать вашу машину в максимальной производительности.

OBDII

Выхлоп



Выхлопной и каталитический нейтрализатор

Система выпуска и каталитического нейтрализатора предназначена для безопасного отвода выхлопных газов от двигателя, снижения шума двигателя, снижения выбросов из выхлопной трубы и поддержания оптимальной топливной эффективности. Эти газы могут нанести вред вам и окружающей среде, если с ними не обращаться должным образом.Убедитесь, что в передней части выхлопной системы нет отверстий, которые могут привести к плохому контролю за выбросами. И убедитесь, что выхлопные газы не попадают в салон автомобиля, где они могут вызвать у вас серьезные проблемы, включая головокружение, головокружение и даже смерть.

Выхлопная система и каталитический нейтрализатор обычно не содержат движущихся частей, однако система чрезвычайно важна для активного контроля за выбросами загрязняющих веществ. Коллектор и трубопровод выхлопной системы уносят газы, образующиеся при сжигании топлива и воздуха в камере сгорания двигателя.Датчик кислорода, датчик обратной связи системы управления двигателем, расположенный в передней части выхлопного потока, измеряет, насколько эффективно топливо и воздух сжигались в камере сгорания.

Благодаря точному мониторингу сигнала датчика кислорода система управления двигателем чрезвычайно быстро регулирует количество топлива, подаваемого в камеру сгорания, обеспечивая максимальную топливную эффективность и создавая смесь выхлопных газов, оптимизированную для очистки каталитическим нейтрализатором.Выхлопные газы проходят через каталитический нейтрализатор, где вредные компоненты выхлопных газов: оксиды азота, углеводороды и монооксид углерода (NOx, HC и CO) превращаются в безвредную воду и диоксид углерода (h3O и CO2).

Когда преобразованные выхлопные газы покидают каталитический нейтрализатор, они проходят через другой кислородный датчик, который сигнализирует системе управления двигателем, насколько эффективно каталитический нейтрализатор смог очистить вредные загрязнители выхлопных газов. Оттуда выхлопные газы проходят через стандартные компоненты выхлопной системы, включая глушитель (глушители), резонатор (ы), трубы и выхлопные трубы.Давайте подробнее рассмотрим некоторые компоненты выхлопных газов и каталитического нейтрализатора и их функции, в том числе то, как каталитический нейтрализатор изменяет химический состав выхлопных газов.


Обзор выбросов выхлопных газов

Выхлопные газы состоят из вредных молекул, но эти молекулы состоят из относительно безвредных атомов. С помощью химии и технологии катализаторов мы можем разделить молекулы после того, как они покинут зону сгорания автомобиля, на безвредные частицы, прежде чем они будут выброшены в воздух.Эти процессы происходят внутри горячего каталитического нейтрализатора.

Катализатор — это просто химическое вещество, которое ускоряет химическую реакцию, не меняя ее и не расходуя в процессе. В каталитическом нейтрализаторе задача катализатора — ускорить расщепление вредных молекул. Катализатор изготовлен из платины или аналогичного платиноподобного металла, такого как палладий или родий.

В каталитическом нейтрализаторе работают два различных типа катализатора: катализатор восстановления и катализатор окисления.Оба типа состоят из керамической структуры, покрытой металлическим катализатором, обычно платиной, родием и / или палладием. Идея состоит в том, чтобы создать структуру, которая подвергает максимальную площадь поверхности катализатора потоку выхлопных газов, а также минимизирует необходимое количество катализатора.

Автомобили OBD II оснащены трехкомпонентными каталитическими нейтрализаторами. Это относится к трем регулируемым выбросам, которые он помогает снизить. Катализатор восстановления — это первая ступень каталитического нейтрализатора.В нем используются платина и родий, чтобы уменьшить выбросы NOx. Когда молекула NO или NO2 контактирует с катализатором, катализатор вырывает атом азота из молекулы и удерживает его, высвобождая кислород в форме O2. Атомы азота связываются с другими атомами азота, которые также прилипают к катализатору, образуя N2. Например: 2NO => N2 + O2 или 2NO2 => N2 + 2O2 2NO => N2 + O2 или 2NO2 => N2 + 2O2. Катализатор окисления — это вторая ступень каталитического нейтрализатора. Он уменьшает количество несгоревших углеводородов и окиси углерода, сжигая их над платиновым и палладиевым катализатором.Этот катализатор способствует реакции CO и углеводородов с оставшимся кислородом в выхлопных газах. Например: 2CO + O2 => 2CO2.


Выпускной коллектор

Выпускной коллектор прикрепляется к головке блока цилиндров и забирает выхлопные газы из каждого цилиндра и объединяет их в одну трубу. Коллектор традиционно изготавливается из чугуна. Новые коллекторы могут быть изготовлены из нержавеющей стали, стали или алюминия. Для большинства конфигураций с рядным цилиндром имеется только один выпускной коллектор.На двигателях с V-цилиндровым расположением цилиндров, типичных для двигателей V-6 и V-8, обычно имеется один выпускной коллектор на ряд цилиндров. Выпускные коллекторы работают в экстремальных условиях с быстрыми изменениями температуры, которые могут вызвать растрескивание или ослабление прокладок и соединительных соединений, что приведет к утечкам выхлопных газов.

В некоторых выпускных коллекторах датчик кислорода перед каталитическим нейтрализатором или перед каталитическим нейтрализатором ввинчивается в центральное место, которое подвергает наконечник датчика кислорода воздействию смеси газов из всех цилиндров.Если эта конструкция используется на двигателях V-6 или V-8, в каждом коллекторе будет датчик кислорода.


Каталитический нейтрализатор

Эта деталь, похожая на глушитель, преобразует вредные угарный газ и углеводороды в водяной пар и углекислый газ. Некоторые конвертеры также уменьшают вредные оксиды азота. Преобразователь устанавливается между выпускным коллектором и глушителем.

Каталитический нейтрализатор представляет собой большой металлический контейнер цилиндрической формы, расположенный в потоке выхлопных газов рядом с двигателем.Впускная труба преобразователя соединена с двигателем и пропускает горячие загрязненные выхлопные газы из цилиндров двигателя. Выход преобразователя подключен к выхлопной трубе. Когда газы из двигателя проходят через катализатор, на его поверхности происходят химические реакции, разлагающие загрязняющие газы и превращающие их в другие газы, которые можно безопасно возвращать в атмосферу.

Температура, при которой каталитический нейтрализатор начинает работать, составляет около 600 градусов по Фаренгейту, при нормальном рабочем диапазоне около 1400 градусов по Фаренгейту.При добавлении несгоревшего топлива в выхлопные газы рабочая температура преобразователя может сильно возрасти. Если температура достигает 2000 градусов по Фаренгейту или выше, керамические соты начинают разрушаться и ослабевать, а металлы катализатора могут плавиться. Это ускоряет процесс старения и приводит к снижению эффективности преобразователя. Когда эффективность преобразователя снизилась до точки, при которой транспортное средство может превышать предел загрязнения, PCM включает лампу проверки двигателя и устанавливает диагностический код неисправности.

Неустраненный перегрев является основной причиной засорения каталитического нейтрализатора. Основной причиной здесь часто является засорение свечей зажигания или пропуск зажигания.


Датчик кислорода (перед или перед катализатором)

Все автомобили, оборудованные системой OBD II, используют кислородный датчик для измерения количества кислорода в выхлопных газах. Датчик сообщает компьютеру управления двигателем (PCM), если топливная смесь горит богатой (меньше кислорода) или бедной (больше кислорода).PCM постоянно смотрит на напряжение датчика, чтобы определить, является ли смесь богатой или бедной, и регулирует количество топлива, поступающего в двигатель, чтобы получить правильную смесь для максимальной экономии топлива и низких выбросов. Датчик кислорода установлен в выпускном коллекторе или рядом с ним в передней выхлопной трубе.

Датчик кислорода должен быть горячим (600 градусов по Фаренгейту), прежде чем он выдаст надежный сигнал напряжения. Горячие выхлопные газы обеспечивают достаточно тепла, чтобы довести датчик кислорода до рабочей температуры в некоторых рабочих условиях, но не во время других условий, таких как холодный запуск или холостой ход.В это время PCM не использует сигнал датчика кислорода для регулировки топливной смеси. Обычно это приводит к обогащению топливной смеси, расходу топлива и более высоким выбросам. Из-за этих проблем в автомобилях, совместимых с OBD II, в основном используются подогреваемые датчики кислорода.

Подогреваемые кислородные датчики имеют внутреннюю цепь нагревателя, которая доводит датчик до рабочей температуры быстрее, чем ненагреваемый датчик. Нагреватель доводит датчик до рабочей температуры в течение от 20 до 60 секунд в зависимости от датчика, а также поддерживает датчик кислорода в горячем состоянии, даже когда двигатель работает на холостом ходу в течение длительного периода времени.

Когда сигнал датчика кислорода или цепь нагревателя разрываются, замыкаются или выходят за пределы допустимого диапазона, PCM обычно устанавливает диагностический код неисправности (DTC) и включает лампу проверки двигателя. Тем не менее, кислородные датчики считаются предметами технического обслуживания, которые выходят из строя в результате использования, и их следует заменять в соответствии с рекомендованными производителем интервалами или при обнаружении их неисправного состояния. Дефектный датчик может продолжать работать достаточно хорошо, чтобы не устанавливать код неисправности, но недостаточно хорошо, чтобы предотвратить увеличение выбросов и расхода топлива.

Характеристики кислородного датчика имеют тенденцию к снижению с возрастом, поскольку загрязнения накапливаются на наконечнике датчика и постепенно снижают его способность вызывать напряжение или быстрые изменения напряжения. Такое ухудшение может быть вызвано различными веществами, попадающими в выхлопные газы, такими как свинец, силикон, сера, масляная зола и даже некоторые присадки к топливу. Принято считать, что трех- и четырехпроводные датчики O2 с подогревом в приложениях с середины 1980-х до середины 1990-х должны заменяться каждые 60000 миль, а рекомендуемый интервал замены для 1996 года и более новых автомобилей, оборудованных OBDII, составляет 100000 миль.


Датчик кислорода (ниже по потоку или после катушки)

На автомобилях, оборудованных OBD ​​II, один или два дополнительных кислородных датчика устанавливаются в каталитическом нейтрализаторе или за ним для контроля эффективности преобразователя. Для каждого нейтрализатора будет установлен один датчик кислорода после каталитического нейтрализатора, если двигатель имеет двойные выхлопы с отдельными преобразователями.

Нижний кислородный датчик работает так же, как верхний кислородный датчик в выпускном коллекторе.Датчик вырабатывает напряжение, которое изменяется при изменении количества несгоревшего кислорода в выхлопных газах. Сигнал высокого или низкого напряжения сообщает PCM, что топливная смесь богатая или бедная.

PCM контролирует эффективность преобразователя, сравнивая сигналы верхнего и нижнего кислородных датчиков. Если преобразователь выполняет свою работу и снижает количество загрязняющих веществ в выхлопных газах, нижний кислородный датчик должен показывать небольшую активность. Если сигнал нижнего кислородного датчика начинает отражать сигнал верхнего кислородного датчика, это означает, что эффективность преобразователя упала и преобразователь не очищает загрязняющие вещества в выхлопных газах.Когда эффективность преобразователя, похоже, снизилась до точки, при которой транспортное средство может превышать предел загрязнения, PCM включает лампу проверки двигателя и устанавливает диагностический код неисправности.


Глушитель

Глушитель снижает выхлоп до приемлемого уровня. Помните, что процесс горения — это серия взрывов, которые создают много шума. В большинстве глушителей используются перегородки, которые отражают выхлоп, рассеивая энергию и уменьшая шум.В некоторых глушителях также используется уплотнение из стекловолокна, которое поглощает звуковую энергию при прохождении газов. Внутри глушителя вы найдете обманчиво простой набор трубок с несколькими отверстиями. Эти трубки и камеры на самом деле настроены так же тонко, как музыкальный инструмент. Они предназначены для отражения звуковых волн, производимых двигателем, таким образом, чтобы они частично гасились.


Выхлопная труба

Выхлопная труба — это последняя часть выхлопной трубы в системе, которая выходит в открытую атмосферу.Обычно выхлопная труба крепится к выходной стороне глушителя.

датчиков кислорода — почему в моей машине четыре, и могу ли я заменить один самостоятельно?

Что такое кислородный датчик и как он работает?

Датчик кислорода (также известный как датчик O2 или лямбда-датчик) — это датчик, предназначенный для получения показаний на основе содержания кислорода в выхлопной системе автомобиля. Сам датчик изготовлен из керамического компаунда с пористыми электродами, покрытыми платиной, и окружен защитным металлическим кожухом.Корпуса датчика O2 имеют резьбу, и весь блок предназначен для ввинчивания до тех пор, пока он не достигнет положения половинного или полуотвернутого положения на выхлопной трубе. Современные кислородные датчики нагреваются, чтобы обеспечить быстрое достижение рабочей температуры.

Датчик кислорода генерирует показание выходного напряжения, сравнивая количество кислорода в выхлопных газах с количеством кислорода в наружном воздухе. Богатая топливно-воздушная смесь с более высокой концентрацией углеводородов или несгоревшее топливо в выхлопе вызывает потребность в кислороде.Поскольку ионы кислорода естественным образом притягиваются к покрытым платиной электродам внутри датчика, напряжение увеличивается. И наоборот, бедная топливно-воздушная смесь с чрезмерно высоким содержанием кислорода по сравнению с углеводородами приведет к оттоку ионов кислорода от электродов, что приведет к более низкому показанию напряжения. При изменении условий наружного воздуха сопротивление может изменяться.

Сколько датчиков кислорода требуется на типичный автомобиль?

Каждая выхлопная труба на новом автомобиле, продаваемом в США, должна быть оборудована каталитическим нейтрализатором, который преобразует вредные выхлопные газы в менее вредные благодаря химическим реакциям, происходящим внутри них.Системы выбросов OBD II (бортовая диагностика II) на автомобилях США с середины 1990-х годов требовали, чтобы каждый каталитический нейтрализатор имел один кислородный датчик, установленный перед ним, и один кислородный датчик, установленный после него. В результате автомобили с одним выхлопом будут оснащаться на заводе двумя датчиками кислорода, а автомобили с двумя выхлопными газами будут оснащены четырьмя датчиками.

Два кислородных датчика на выхлопную трубу позволяют управляющему компьютеру двигателя автомобиля сравнивать чистоту выхлопных газов до того, как они попадают в каталитический нейтрализатор, и выхлопных газов после их выхода.Это не только обеспечивает требуемую законом самопроверку для отслеживания отказа одного из датчиков, но и позволяет отслеживать эффективность каталитического нейтрализатора.

С помощью этой информации блок управления двигателем (ECU) транспортного средства может компенсировать обогащенные топливовоздушные смеси, которые являются естественным результатом запуска холодного двигателя. Некоторые автомобили использовали насос вторичного воздуха во время прогрева двигателя, чтобы нагружать выхлопную систему дополнительным кислородом из внешнего воздуха, обеспечивая тем самым чистые выбросы.Новейшее решение этой проблемы устраняет воздушный насос и вместо этого использует ЭБУ для постоянного изменения топливно-воздушной смеси между обедненной и богатой смеси, пока двигатель не достигнет рабочей температуры.

Со временем избыточные несгоревшие углеводороды, проходящие через выхлопную систему, загрязняют кислородные датчики и каталитические нейтрализаторы, сокращая срок их службы и требуя для потребителя большого счета за ремонт запасных частей.

Узкополосные (стандартные) и широкополосные датчики кислорода

Просматривая предлагаемые нами сменные кислородные датчики, вы заметите, что некоторые из них описываются как «широкополосные».Это по сравнению с «узкополосными» датчиками, которые на протяжении десятилетий были стандартным заводским оборудованием OEM. Широкополосные кислородные датчики предназначены для считывания гораздо более широкого диапазона соотношений топлива и воздуха — определения точного количества несгоревшего топлива в выхлопной системе. Эта информация полезна, если вы калибруете для большей мощности. У нас есть широкополосные датчики O2 от Bosch и Эдельброк.

Если вы не уверены, какой тип датчика вам нужен, наш веб-сайт подскажет вам, какие датчики применимы именно к вашему автомобилю, один раз в год, когда были указаны марка и модель.

Описание расположения датчика кислорода

Передние датчики кислорода расположены в выхлопной системе перед каталитическим нейтрализатором, часто глубоко в моторном отсеке. Передние датчики обозначаются на диагностических приборах как «Датчик 1».

Задние кислородные датчики расположены в выхлопной системе после каталитического нейтрализатора и на диагностических приборах обозначаются как «Датчик 2».

Передний кислородный датчик, расположенный «перед каталитическим нейтрализатором». Задний кислородный датчик, расположенный «за каталитическим нейтрализатором».

При отображении местоположения кислородных датчиков сканирующие приборы будут использовать такие термины, как «Банк 1, Датчик 2». Рядные двигатели имеют только один ряд цилиндров, поэтому все датчики O2 на таком транспортном средстве будут называться Bank 1. V-образные двигатели с двумя рядами цилиндров (V6, V8, V10, V12) будут регистрироваться как Bank 1 или Bank 2. Возможно, вам потребуется обратиться к сервисной информации производителя транспортного средства, чтобы определить, какой банк какой. Датчик 1 всегда будет располагаться перед каталитическим нейтрализатором, а датчик 2 всегда будет располагаться после него.

Как продлить срок службы кислородных датчиков?

Датчики кислорода, как и каталитические нейтрализаторы, внутри сделаны из экзотических материалов, что делает их более дорогими при покупке. Продлить срок службы этих компонентов можно без какого-либо физического обслуживания, поэтому имеет смысл следовать методам продления срока службы и получать максимальную отдачу за свои деньги. Во-первых, не заправляйте в бак некачественный бензин со скидкой. Вы можете сэкономить немного денег заранее, но более низкое качество очистки, которое приводит к выгодным ценам на насосе, означает, что в конечном итоге через вашу выхлопную систему будет проходить больше примесей.Со временем они засорят ваши датчики выбросов.

На рисунке A показан новый датчик кислорода. На рисунке B показан датчик O2, загрязненный маслом, на рисунке C показан датчик, загрязненный избыточным углеродом, а на рисунке D показан датчик O2 с нормальным износом.

Использование топлива с более низким октановым числом, чем рекомендует производитель автомобиля, также вредно для вашей выхлопной системы. Октан улучшает процесс сгорания внутри вашего двигателя, чтобы топливо сгорало более полно без отходов. Уберите даже часть октанового числа, необходимого вашему двигателю, и вы получите несгоревшие углеводороды, выходящие из выхлопных газов, где они загрязняют датчики O2 и каталитические нейтрализаторы.

Выполнение регулярного планового технического обслуживания, например, замена свечей зажигания двигателя и воздушные фильтры — необходимость. Когда срок службы свечей зажигания заканчивается, они также могут способствовать неполному сгоранию бензина и несгоревшему топливу в выхлопных газах, что приводит к преждевременной поломке вашего выхлопного оборудования. Транспортные средства с изношенными Поршневые кольца, которые сжигают много масла, также чаще загрязняют кислородные датчики.

Замена кислородного датчика

Замена кислородного датчика — это сервисная работа, в рамках которой многие люди могут спокойно выполнять небольшие работы по техническому обслуживанию своих транспортных средств.Диагностический прибор с возможностью считывания кодов неисправностей двигателя позволит вам точно определить, какой датчик кислорода неисправен. В то время как кислородные датчики на большинстве автомобилей расположены в легкодоступных местах выхлопной системы, некоторые датчики, расположенные выше по потоку, спрятаны под выпускным коллектором, что делает их чрезвычайно неудобными и труднодоступными.

Возможно, вам придется попробовать различные комбинации глубоких головок, удлинителей или трещоток с поворотной головкой, чтобы проникнуть глубоко в моторный отсек. Специально установленное гнездо датчика кислорода обеспечит лучший захват, не повредив подключенную проводку во время снятия и установки.Вы захотите дать теплому автомобилю остыть — ожоги от прикосновения к горячим деталям выхлопной системы, как правило, оставляют след.

Что касается кислородных датчиков оригинального качества, у нас есть большой выбор Бош, Спектра Премиум, Дельфи, Моторкрафт, Мопар, AC Delco, Авто 7, НТК, Денсо, Подлинный и многое другое.

Необходимые инструменты и оборудование:

  • Противооткатные упоры для установки за задними колесами во избежание смещения или откатывания автомобиля
  • Автомобильные домкраты и подставки для домкратов, или пандусы (если потребуется дополнительное пространство)
  • Ходунки колесные (для комфорта)
  • Запасной (ые) кислородный датчик (и)
  • Гнездо датчика кислорода особой формы для вашего гаечного ключа
  • Проникающая смазка для ослабления коррозии вокруг резьбы старого датчика
  • Противозадирный состав для покрытия резьбы устанавливаемого (ых) нового (ых) датчика (ов) O2

После подтверждения местоположения датчика O2, нуждающегося в замене, подъезжайте на автомобиле по пандусу, если вы будете работать под ним.Или при необходимости приподнимите автомобиль домкратом и вставьте домкрат или подставки, чтобы выдержать его вес. Убедитесь, что селектор передач находится в положении парковки, аварийный тормоз включен, а противооткатные упоры расположены за задними колесами, чтобы автомобиль оставался неподвижным.

После отсоединения проводного разъема неисправного датчика O2 нанесите проникающую смазку на металлическую резьбовую часть. Пока выхлопная система охлаждается дальше, дайте смазке впитаться в резьбу, где она ослабит коррозию, которая обычно затрудняет откручивание датчика.

После того, как вы дадите пенетранту некоторое время, чтобы выполнить свою работу, открутите старый датчик от выхлопной системы с помощью подходящего гнезда. Очистите резьбу внутри отверстия и нанесите противозадирную смазку, чтобы создать плотное уплотнение, предотвращающее коррозию и наружные элементы.

Гнездо датчика кислорода специальной формы.

Настоятельно рекомендуется использовать гнезда для датчиков кислорода особой формы, чтобы обеспечить максимальный захват в ограниченном пространстве и предотвратить повреждение чувствительных компонентов.

Перед установкой нового кислородного датчика нанесите противозадирную смазку на резьбу, чтобы создать плотное и устойчивое к коррозии уплотнение.

Установите запасной датчик O2, используя специально разработанное гнездо. Если вы устанавливаете новый датчик на фланец, используйте новую прокладку перед затяжкой. Вставьте разъем провода от автомобиля в разъем нового датчика, и все готово. Диагностический прибор сбрасывает все коды неисправности двигателя, генерируемые неисправным датчиком.

Как мы упоминали ранее, замена любого из ваших датчиков O2 не является серьезной операцией для большинства автомобилей. Если предположить, что к датчикам можно добраться относительно легко, вы обнаружите, что эта работа не сильно отличается от рутинного обслуживания по замене свечи зажигания. Вы обнаружите, что установка новых полнофункциональных кислородных датчиков поможет вашему двигателю работать лучше, достигая мощности и пробега, на которые он был рассчитан, сохраняя при этом чистоту окружающей среды. Если у вас возникнут вопросы по замене кислородных датчиков, мы будем рады вашим звонкам семь дней в неделю.

Пункты, обсуждаемые в статье

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *