Послойный впрыск топлива применяют для: Послойный и распределенный впрыск топлива

Послойный и распределенный впрыск топлива

Система впрыска

На чтение 4 мин. Просмотров 889

Распределенный впрыск топлива — что это такое и как работает? Какие компоненты влияют на работы такой системы и за счет чего происходит экономия топлива?

Распределенный впрыск топлива — специальная система, устанавливаемая на двигатель, которая отвечает за подачу топливной жидкости в камеру сгорания. Эта система применяется абсолютно на всех инжекторных автомобилях, однако различается по своему характеру:

  • Механический;
  • Послойный;
  • Непосредственный;
  • Моновпрыск.

Самой известной и распространенной моделью этой системы стал послойный впрыск, с помощью которого подача топливо-воздушной смеси происходит отдельно на каждый цилиндр по определенной схеме. Для такого типа подачи необходимы специальные распределительные форсунки.

Содержание

  1. Понятие последовательности впрыска
  2. Суть распределенного впрыска топлива
  3. Элементы системы распределенного впрыска
  4. Процесс работы распределенного впрыска

Понятие последовательности впрыска

Впрыск топлива

На последовательность или фазы впрыска влияют следующие показатели:

  • На каждый отдельный цикл работы двигателя приходится одна фаза впрыска каждой отдельной форсунки;
  • Время этой фазы для каждого типа двигателя может быть разным, однако количество топлива в основном одинаково.

Ключевой особенностью непосредственного впрыска является значительная экономия топлива, отдельные исследования показывают экономию до 15%.

Суть распределенного впрыска топлива

Если говорить более простым языком, то распределенный впрыск топлива работает по такой схеме:

  • В двигатель подается топливно-воздушная смесь;
  • Контроль подачи воздуха происходит за счет дроссельной заслонки;
  • Перед подачей в двигатель смесь разделяется на четыре отдельных потока;
  • Затем каждый отдельный поток попадает в специальный ресивер, где и аккумулируется под большим давлением;

Размер установленного ресивера подбирается таким образом, чтобы не допустить воздушного голодания цилиндров, то есть система должна иметь достаточное количество воздуха для всех режимов работы. С помощью форсунок эта смесь подается в цилиндры, вернее, в камеру сгорания, куда предварительно уже закачан воздух.

Элементы системы распределенного впрыска

Конечно, стоит перечислить все компоненты, с помощью которых работает эта система:

  • Бензонасос. Работа бензонасоса заключается в подачи бензина в специальную рампу, в которой давление поддерживается на постоянном уровне за счет регулятора давления механического типа. В некоторых моделях регулятор давления и бензонасос совмещены;
  • Форсунки, которые оборудованы специальными электромагнитными клапанами с возможностью регулировки производительности;
  • Зажигательный модуль, с помощью которого происходит регуляция искрообразования. Обычно имеет два канала, работающих независимо друг от друга, с помощью которых происходит воспламенение смеси отдельно в 1 и 4, а также во 2 и 3 цилиндрах;
  • Клапан предохранения, который необходим для защиты всех элементов системы от повышенного давления впрыска, оно наблюдается при температурном расширении топливной смеси;
  • Регулятор холостого хода, который обеспечивает поддержание заданных оборотов;
  • Вентилятор системного охлаждения, обороты которого регулируются электрически;
  • Датчик расхода, с помощью которого подается информация на бортовой компьютер;
  • Адсорбер, который необходим для регуляции паров бензина.
Система впрыска

Процесс работы распределенного впрыска

Работа этой системы предполагает использование преднамеренно обедненной смеси, за счет этого происходит экономия бензина. По сути это должно приводить к понижению мощности, однако повышенная эффективность распрыскивания топлива позволяет этого избежать. Одно и то же количество топлива может сгорать по разному, в зависимости от размера капли разбрызгиваемого топлива. Чем меньше капля, тем выше вероятность получения тумана из смеси бензина и воздуха, в котором распространение пламени происходит более равномерно. Бензин в этом случае сгорает полностью без остатка, а значит, меньшее количество за счет эффективного мелкодисперсного впрыска может давать большее количество тепла.

На исследования по оптимизации сгорания многие автоконцерны тратят большое количество финансов и сил. Наиболее перспективным подвидом распределенного впрыска стал послойный впрыск топлива. При послойном впрыске топливо-воздушная смесь подается в камеру сгорания не одной порцией, а несколькими, но с очень малым интервалом. Такая подача позволила получить дополнительную оптимизацию процесса сгорания.

Дополнительно за счет точного дозирования смеси и открытия форсунок в строго определенный момент происходит экономия. При помощи компьютера момент открытия форсунки, а также срок этого открытия оперативно меняются при изменении нагрузки на двигатель автомобиля. Помимо системы управления форсунками, с помощью компьютера происходит интеллектуальный контроль фаз газораспределения. В зависимости от нагрузки на двигатель происходит автоматическое изменение режимов работы:

  • Холостые обороты;
  • Движение с повышенным уровнем нагрузки;
  • Движение с малым уровнем нагрузки.

Естественно, при разных режимах количество топлива, которое подается в камеру сгорания форсунками, разное и постоянно меняется блоком управления в зависимости от ситуации.

Бензиновые двигатели FSI Fuel Stratified Injection

Двигатели FSI (Fuel Stratified Injection — послойный впрыск топлива) превосходят двигатели с впрыском бензина во впускной коллектор по показателям экономичности, выброса вредных веществ и динамики. Это одна из самых инновационных технологий в ряду двигателей с непосредственным впрыском.

Основной принцип работы FSI — впрыск топлива непосредственно в камеру сгорания. Форсунки имеют по шесть отверстий и с большой точностью распределяют сверхтонкие струи топлива по камере, а поток воздуха управляется заслонками движения заряда — все это обеспечивает однородность топливовоздушной смеси и эффективность процесса сгорания.

Необходимое давление впрыска поддерживает насос высокого давления нового типа. Он приводится в действие четырехсторонним кулачком распределительного вала выпускных клапанов. Такое решение уменьшает требуемую рабочую силу, повышает точность работы, позволяя снизить токсичность отработавших газов. Его рабочий процесс поддерживается движением воздуха в цилиндрах двигателя, интенсивность которого регулируется в зависимости от скоростного и нагрузочного режимов, обеспечивая образование послойной или гомогенной (однородной) смеси. Еще одна «фишка» — двойной впрыск (распределение подаваемого топлива между тактом впрыска и тактом сжатия) — также способствует образованию однородной топливовоздушной смеси и прогреву каталитического нейтрализатора после запуска холодного двигателя.

Первым двигателем с системой FSI стал мотор рабочим объемом 1,4 литра, мощностью 86 л.с. при 5000 об./мин и крутящим моментом — 130 Н·м при 3500 об./мин., разработанный еще в конце 2000 года специалистами концерна Volkswagen для автомобиля Lupo.

На практике двигатели FSI совмещают хорошие динамические и мощностные показатели с умеренным расходом топлива. Технология FSI уже предоставила убедительные доказательства своей эффективности, обеспечив четыре победы модели R8 на автогонках в Ле-Мане. В общем, похоже, титул «Двигатель года» этот мотор получил не зря… Прелесть системы FSI заключается в том, что мотор способен живо откликаться на педаль акселератора в достаточно широком диапазоне оборотов, но при этом его характеристики не сглажены, взрывной характер весьма ощутим. Что особенно приятно при разгоне или ускорениях, необходимых для обгонов на трассе.

  • Благодаря электромагнитному клапану возможно точно определить момент впрыска топлива в камеру сгорания
  • Распределительный вал, поворачивающийся на 40°, обеспечивает хорошую тягу на малых и средних оборотах двигателя
  • Рециркуляция отработанных газов значительно снижает уровень эмиссии вредных веществ в атмосферу
  • По сравнению с обычным бензиновым двигателем экономия топлива составляет до 15%

Концерн Volkswagren Audi, стал первым в мире автопроизводителем, сочетающим в своих двигателях непосредственный впрыск бензина с турбонаддувом. Например, двигатель 2,0 TFSI начал свою успешное восхождение на Олимп славы с модели Audi A3 Sportback. Сейчас 2,0 TFSI устанавливается также на Audi A4, A6 и выпускается в трёх мощностных вариантах: от 170 до 220 л.с. В 2006 году 2.0T FSI удостоился почетно звания «Двигатель года» за инновационные разработки в области бензиновых двигателей с впрыском.

На данный момент линейка бензиновых двигателей FSI состоит из множества двигателей рабочим объемом от 1,4 до 5,2 литра и устанавливается практически весь модельный ряд концерна Audi Volkswagen.

Наш сервис Фольксваген и Ауди ремонтирует бензиновые двигатели FSI как с турбонаддувом, так и без него. Записаться на ремонт можно по телефону +7 (495) 798-07-56.

Двигатель с искровым зажиганием с расслоением заряда (автомобильный)

7.2.

Двигатель с искровым зажиганием с расслоением заряда

Если смесь расслоенная, богаче, чем в среднем по цилиндру, вблизи источника воспламенения и беднее, чем в среднем, или предпочтительно не содержит топлива в остальной части камеры, тогда становится возможным используйте в целом более бедную смесь, чем можно было бы добиться при однородной смеси топлива и воздуха. Благодаря такому подходу, в принципе, можно добиться термодинамических преимуществ и снижения потерь при перекачивании, связанных с разбавленной смесью. Существует большое количество способов осуществления такого расслоения и сжигания полученной смеси. На рис. 7.22 показаны три подхода к расслоению заряда; топливо вводится путем карбюрации, через порт впрыска топлива и через прямой впрыск в цилиндр.

Рис. 7.22. Расслоение заряда в двигателе.
A. Двигатель с раздельной камерой и послойным зарядом. B. Двигатель с аксиально-расслоенным зарядом.
C. Двигатель с послойным наддувом и непосредственным впрыском.

7.2.1.


Расслоение заряда с карбюратором

В двигателе с раздельной камерой (рис. 7.22А) обедненная смесь карбюраторно подается в предкамеру через отдельный впускной клапан. Воспламенение богатой предкамерной смеси продвигает пылающий газовый факел в основную камеру, обеспечивая мощный источник воспламенения обедненной смеси.
Некоторые типичные результаты выбросов для такого двигателя, работающего при фиксированной нагрузке и частоте вращения, показаны на рис. 7.23. Двигатель мог работать при довольно бедных соотношениях воздух-топливо, и выбросы NOx при этих соотношениях были довольно низкими. Это действительно важно из-за невозможности использования восстанавливающего катализатора для контроля NOx на такой обедненной смеси. К сожалению, при этом выбросы УВ возросли до неприемлемого уровня. Каталитическая обработка этих выбросов с помощью окислительного катализатора на таких обедненных смесях затруднена из-за связанной с этим низкой температуры выхлопных газов. Оценка этой концепции привела к выводу, что, если необходимо соблюдать стандарты выбросов, этот двигатель не дает никаких преимуществ по сравнению с обычным двигателем с гомогенным зарядом.


Рис. 7.23. Выбросы в сравнении с общим соотношением воздух-топливо для двигателя с раздельной камерой и послойным зарядом.

7. 2.2.

Расслоение заряда с впрыском в порт

В подходе с аксиальным расслоением заряда (рис. 7.22B) впрыск топлива во впускной канал происходит по времени, чтобы поддерживать богатую смесь в верхней части камеры, рядом со свечой зажигания. , и оставьте слой воздуха напротив поршня. Это потенциальный подход, поскольку он требует минимальной модификации существующих производственных двигателей. В экспериментальном двигателе, использующем эту концепцию, текущие стандарты выбросов были соблюдены при небольшом пробеге с использованием почти стехиометрической смеси с разомкнутым контуром с рециркуляцией отработавших газов, а не воздухом в качестве разбавителя, и окислительного нейтрализатора для контроля HC и CO. 6% топлива выигрыш в экономии был возможен по сравнению с обычным базовым двигателем, который использовался для преобразования изменения стратификации. Наблюдалась незначительная разница между измеренными выбросами и стандартами. Некоторые двигатели с такой компоновкой получили статус рынка в Японии.
7.2.3.

Расслоение заряда с непосредственным впрыском

В двигателе с послойным впрыском топлива (DISC) (рис. 7.22C) топливо распыляется непосредственно в камеру поршня, образуя центральное облако горючей смеси, окруженное воздуха. Рассмотрены два различных варианта двигателя DISC этого типа. В версии с ранним впрыском (E-DISC) впрыск начинается сравнительно рано во время такта сжатия и заканчивается до зажигания. Это дает некоторое время для перемешивания перед сжиганием. В версии с поздним впрыском (L-DISC) впрыск начинается намного позже во время сжатия. Искра зажигается во время впрыска, а это означает, что топливо впрыскивается в существующее пламя, как в дизельном двигателе.
Оба этих двигателя столкнулись с трудностями при соблюдении норм выбросов НС и NOx. Оба требуют окислительного катализатора. Оба требуют дальнейших исследований из-за их потенциала экономии топлива, который превышает потенциал двигателя с однородным зарядом, работающим на обедненной смеси. Двигатель L-DISC многотопливный, но при высоких нагрузках он дымоограничен, как и дизель.

Бензиновые системы прямого впрыска топлива

Концепция впрыска бензина непосредственно в цилиндры двигателя была изобретена шведским инженером Йонасом Хессельманом в 1925. Во время Второй мировой войны Германия начала оснащать некоторые свои истребители системой прямого впрыска топлива, чтобы предотвратить останов двигателя во время высокоскоростных маневров в воздухе. После Второй мировой войны отечественные и импортные производители автомобилей обнаружили, что их попытки механического впрыска бензина непосредственно в цилиндры двигателя были крайне ограничены современными технологиями. Но, несмотря на ряд проблем, связанных с популярным внедрением системы непосредственного впрыска бензина (GDFI), кажется, что большинство ошибок было устранено, и концепция открыла двери для ряда эксплуатационных улучшений.

ИСТОРИЧЕСКАЯ ПЕРСПЕКТИВА
Большинство специалистов по запчастям помнят, что система впрыска дроссельной заслонки (TBI) была одной из первых отечественных систем впрыска топлива, появившихся на рынке.

Основная идея TBI состоит в том, чтобы создать систему впрыска топлива, которая могла бы легко заменить карбюратор в существующих двигателях. Для TBI требовался простой компьютер, способный управлять одной или двумя топливными форсунками, распыляющими топливо непосредственно в поток воздуха, поступающий во впускной коллектор. Датчик положения дроссельной заслонки (TPS), датчик температуры охлаждающей жидкости (CTS), датчик абсолютного давления во впускном коллекторе (MAP) и датчик кислорода (O2) были основными датчиками, необходимыми для точного управления подачей топлива в двигатель. Топливо подавалось в двигатель топливным насосом в баке и регулировалось регулятором давления топлива, встроенным в узел TBI.

Хотя TBI был чрезвычайно простым, капли топлива отделялись от воздушного потока по мере того, как всасываемый заряд следовал за изогнутыми внешними окружностями впускных каналов. Образовавшийся «влажный поток» или струя жидкого топлива по впускным каналам создавал неравномерное распределение топлива по цилиндрам двигателя.

Чтобы уменьшить поток жидкости и, таким образом, улучшить распределение топлива между цилиндрами, отечественные производители автомобилей внедрили многоточечный впрыск (MPI) на ограниченном количестве автомобилей более высокого класса. Поскольку федеральное правительство установило более строгие стандарты выбросов выхлопных газов и экономии топлива, MPI стала предпочтительной топливной системой для всех отечественных и импортных производителей. Для дальнейшего улучшения распределения топлива цикл впрыска топлива в конфигурациях MPI может быть синхронизирован с открытием впускного клапана двигателя, что еще больше снижает эффект влажного потока во впускных каналах и цилиндрах. К сожалению, распределение топлива внутри цилиндра имело тенденцию оставаться неравномерным, что приводило к незначительной неэффективности сгорания топлива от цилиндра к цилиндру.

ПРЯМОЙ ВПРЫСК ТОПЛИВА
Поскольку автопроизводители должны постоянно соответствовать более строгим федеральным стандартам выбросов выхлопных газов и корпоративной экономии топлива (CAFE), концепция непосредственного впрыска бензина была усовершенствована до такой степени, что эта некогда экзотическая технология теперь предлагается. на нескольких популярных транспортных платформах. Базовая конфигурация GDFI почти такая же, как у обычных систем MPI. Фактически, единственным видимым отличием может быть механический топливный насос высокого давления, установленный на одной из крышек верхнего распределительного вала двигателя.

Большинство систем GDFI включают обычный встроенный в бак модульный электрический топливный насос, который подает нормальное давление топлива на механический насос высокого давления, установленный на двигателе. Отдельный модуль топливного насоса также можно использовать для регулирования скорости и давления насоса в баке.

Давление топливного насоса высокого давления контролируется модулем управления силовым агрегатом (PCM) с помощью датчика и может регулироваться путем изменения объема топлива, поступающего на вход насоса. В то время как удельное давление варьируется в зависимости от различных транспортных средств, большинство насосов высокого давления способны создавать давление топлива не менее 2000 фунтов на квадратный дюйм. Эти чрезвычайно высокие уровни давления топлива необходимы для преодоления давления сжатия и сгорания внутри цилиндра и для впрыска относительно большого объема топлива непосредственно в цилиндр за очень короткий промежуток времени.

В некоторых случаях купол поршня содержит углубление в форме пончика, которое формирует поступающее топливо в виде «тороидального» или круглого шлейфа. Когда двигатель работает в режиме обедненной смеси, тороидальный шлейф позволяет топливу сгорать вместе с воздухом гораздо более контролируемым и эффективным образом.

Для систем GDFI требуются пьезоэлектрические топливные форсунки, способные быстро открывать игольчатые клапаны форсунок при давлении топлива более 2000 фунтов на квадратный дюйм. В отличие от обычных соленоидных топливных форсунок, в пьезоэлектрических топливных форсунках используется набор кристаллических пластин, которые расширяются при подаче электричества. Физическое расширение этих пластин заставляет игольчатый клапан открываться при чрезвычайно высоком давлении топлива.

Пьезоэлектрические топливные форсунки работают очень быстро и точно, особенно при высоких оборотах двигателя и давлении топлива.

ПРЕИМУЩЕСТВА GDFI
Наиболее непосредственными преимуществами впрыска бензина непосредственно в цилиндр двигателя являются повышенная экономия топлива и мощность. Поскольку дополнительные функции, такие как изменение фаз газораспределения, изменяемая длина или «настроенные» впускные коллекторы и турбонаддув, могут повлиять на то, как GDFI используется в конкретных приложениях, я буду обсуждать следующие режимы работы GDFI в общих чертах.

Двигатель GDFI может работать в стехиометрическом режиме, на полной мощности и на обедненной смеси. В стехиометрическом режиме 14,7 единиц воздуха смешиваются с 1 единицей бензина (соотношение воздух/топливо 14,7:1) по весу, чтобы создать химически правильную реакцию, которая теоретически производит только углекислый газ (CO2) и воду (h3O). В режиме полной мощности соотношение воздух/топливо смешивается между 13:1 и 14:1 для достижения наибольшей мощности.

Эта немного более богатая воздушно-топливная смесь снижает детонацию и смягчает другие проблемы, ограничивающие выходную мощность. Ультрабедная обедненная смесь включает в себя любое соотношение воздух/топливо выше стехиометрического соотношения 14,7:1. Точное сверхбедное соотношение воздух/топливо очень сильно зависит от применения автомобиля, но может превышать 50:1.

Стратегия работы с послойным впрыском топлива (FSI) также может использоваться для повышения экономии топлива. Стратифицированное соотношение воздух/топливо может быть создано путем впрыска обедненной воздушно-топливной смеси в цикл рабочего такта сразу после того, как происходит начальное «обогащенное» сгорание. Из-за различных эксплуатационных проблем, включая износ выпускного клапана, послойный цикл зарядки имеет ограниченное применение в большинстве приложений.

Непосредственный впрыск бензина также позволяет инженерам фактически запускать двигатель, впрыскивая топливо в цилиндр, находящийся в состоянии покоя на рабочем такте. Топливо, впрыскиваемое в цилиндр, затем воспламеняется свечой зажигания, которая создает давление сгорания, толкающее поршень вниз. Следующий цилиндр в последовательности запуска берет на себя поддержание вращения коленчатого вала до тех пор, пока двигатель не достигнет скорости холостого хода.

Этот аспект GDFI позволяет инженерам управлять двигателем в микрогибридном режиме, который позволяет PCM выключать двигатель на светофоре, а затем снова запускать его при нажатии педали газа на дроссельную заслонку. Эта особая функция «стоп-старт» снижает количество расходуемого топлива, поддерживая работу двигателя, когда автомобиль временно останавливается.

Наконец, скрытая теплота испарения топлива, впрыскиваемого непосредственно в цилиндр, фактически охлаждает поверхности поршня и головки цилиндра. Этот технический дивиденд позволяет инженерам увеличить степень сжатия примерно с 9.5:1 до 14:1, что значительно увеличивает мощность и экономию топлива.

ТЕКУЩИЕ ПРОБЛЕМЫ GDFI
Поскольку вычислительная мощность и скорость современных PCM были значительно увеличены, большинство диагностических средств GDFI основаны на сканирующем инструменте. Другими словами, не ищите диагностику на основе симптомов для решения проблем с автомобилями GDFI. Когда в 1996 году Mitsubishi широко представила свои системы прямого впрыска бензина (GDI), большинство первоначальных проблем было вызвано топливом, состав которого был неправильным для систем прямого впрыска топлива. Самой последней проблемой в современных системах GDFI является образование нагара на седлах впускных клапанов, что вызывает потерю герметичности клапанов, что, в свою очередь, вызывает проблемы с пропусками зажигания в цилиндрах.

Поскольку GDFI впрыскивает бензин непосредственно в цилиндры, поступающее топливо не очищает клапаны. Большая часть этого образования нагара вызвана масляным туманом, выходящим из системы принудительной вентиляции картера (PCV) и системой рециркуляции отработавших газов (EGR), поступающей во впускной коллектор. Наконец, механические топливные насосы высокого давления, по-видимому, являются ранней точкой отказа современных серийных автомобилей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *