Принцип работы двс видео: Принцип работы двигателя V8: Видео

Содержание

Принцип работы двигателя V8: Видео

Пример работы двигателя V8 на пластиковой модели

Сегодня мы разберемся как работает двигатель V8, от основ, до деталей, на примере 3D-отпечатанного пластикового мотора, копии двигателя Chevrolet Camaro LS3.

 

Первое, о чем хотелось бы сказать – двигатель получил свое названием из-за 90-градусного развала цилиндров относительно коленчатого вала. В данном случае, угол между поршнями такого силового агрегата соответствует прямому, хотя на самом деле он может быть любым.

 

Цилиндро-поршневая группа

Количество цилиндров – 8. Счет рабочих цилиндров начинается с переднего правого и идет таким образом:

 

Смотрите также: Принцип работы сцепления для новичков: Видео

 

Двигатель V8 работает на основе базовых принципов обычного бензинового четырехтактного силового агрегата, со стандартным набором тактов: Впуск (бензин и воздух смешивается в цилиндрах)

, Сжатие (происходит сжатие смеси до давления степени сжатия, происходит зажигание свечей), Рабочий ход (движение поршня в сторону нижней мёртвой точки под давлением горячих газов, передаваемого поршнем через шатун коленчатому валу), Выпуск (отработавшая смесь выводится из цилиндров). 55 секунда видео.

 

Далее цикл повторяется. В двигателях V8 эти циклы проходят в восьми разных цилиндрах, в разное время работы мотора. Для мотора LS3, зажигание происходит по следующему порядку: 1-8-7-2-6-5-4-3. Важная деталь: каждый цилиндр активируется при каждом обороте коленчатого вала на 90-градусов, что означает, в каждое мгновение два цилиндра в работающем двигателе совершают Рабочий ход.

 

Обычный четырёхцилиндровый мотор будет совершать в два раза меньше работы, только одним цилиндром, что делает работу последнего не такой гладкой, как мотора V8.

 

Газораспределительный механизм

Клапанный механизм. Впуск воздуха происходит из верхней части двигателя, сбоку крышки цилиндра. С противоположенной стороны через схожие отверстия в крышки цилиндров происходит удаление отработавших газов из цилиндров.

 

Как видно, в крышке цилиндров стоят по два клапана (один-впускной, одни-выпускной). В данном двигателе – больший клапан – впускной, меньшие – выпускной. Клапаны приводятся в движение двумя распределительными валами, проложенными по центру крышек цилиндров. Принцип работы показан на 2:16 минуте видео.

 

На каждые два оборота коленчатого вала, распределительный вал делает один оборот.

 

Работа коленвала продемонстрирована на модели на 3 минуте видео. Обратите внимание, что на одну шатунную шейку коленвала, через шатунные подшипники установлено по два шатуна поршней. Также в видео акцентируется внимание на противовесах коленчатого вала и их форме, балансирующую систему от центробежных сил и инерции (3.30 минута видео). Помимо этого, в ролике говорится о том, что данный мотор, как и многие другие V8, имеет крестообразный коленчатый вал, который крайне выгодно сбалансирован по так называемым вторичным вибрациям, имеет компактную компоновку и очень выносливую основу.

 

И вообще, двигатели V8 отличаются крайне сбалансированной работой.

 

В минусы записывают: высокий центр тяжести, относительную сложность конструкции, больший вес.

 

Устройство и принцип работы двигателя внутреннего сгорания (18 фото+4 видео)

В устройстве двигателя поршень является ключевым элементом рабочего процесса. Поршень выполнен в виде металлического пустотелого стакана, расположенного сферическим дном (головка поршня) вверх. Направляющая часть поршня, иначе называемая юбкой, имеет неглубокие канавки, предназначенные для фиксации в них поршневых колец. Назначение поршневых колец – обеспечивать, во-первых, герметичность надпоршневого пространства, где при работе двигателя происходит мгновенное сгорание бензиново-воздушной смеси и образующийся расширяющийся газ не мог, обогнув юбку, устремиться под поршень. Во-вторых, кольца предотвращают попадание масла, находящегося под поршнем, в надпоршневое пространство. Таким образом, кольца в поршне выполняют функцию уплотнителей. Нижнее (нижние) поршневое кольцо называется маслосъемным, а верхнее (верхние) – компрессионным, то есть обеспечивающим высокую степень сжатия смеси.

Когда из карбюратора или инжектора внутрь цилиндра попадает топливно-воздушная или топливная смесь, она сжимается поршнем при его движении вверх и поджигается электрическим разрядом от свечи системы зажигания (в дизеле происходит самовоспламенение смеси за счет резкого сжатия). Образующиеся газы сгорания имеют значительно больший объем, чем исходная топливная смесь, и, расширяясь, резко толкают поршень вниз. Таким образом тепловая энергия топлива преобразуется в возвратно-поступательное (вверх-вниз) движение поршня в цилиндре.

Далее необходимо преобразовать это движение во вращение вала. Происходит это следующим образом: внутри юбки поршня расположен палец, на котором закрепляется верхняя часть шатуна, последний шарнирно зафиксирован на кривошипе коленчатого вала. Коленвал свободно вращается на опорных подшипниках, что расположены в картере двигателя внутреннего сгорания. При движении поршня шатун начинает вращать коленвал, с которого крутящий момент передается на трансмиссию и – далее через систему шестерен – на ведущие колеса.

Технические характеристики двигателя.Характеристики двигателя При движении вверх-вниз у поршня есть два положения, которые называются мертвыми точками. Верхняя мертвая точка (ВМТ) – это момент максимального подъема головки и всего поршня вверх, после чего он начинает движение вниз; нижняя мертвая точка (НМТ) – самое нижнее положение поршня, после которого вектор направления меняется и поршень устремляется вверх. Расстояние между ВМТ и НМТ названо ходом поршня, объем верхней части цилиндра при положении поршня в ВМТ образует камеру сгорания, а максимальный объем цилиндра при положении поршня в НМТ принято называть полным объемом цилиндра. Разница между полным объемом и объемом камеры сгорания получила наименование рабочего объема цилиндра.

Суммарный рабочий объем всех цилиндров двигателя внутреннего сгорания указывается в технических характеристиках двигателя, выражается в литрах, поэтому в обиходе именуется литражом двигателя. Второй важнейшей характеристикой любого ДВС является степень сжатия (СС), определяемая как частное от деления полного объема на объем камеры сгорания. У карбюраторных двигателей СС варьирует в интервале от 6 до 14, у дизелей – от 16 до 30. Именно этот показатель, наряду с объемом двигателя, определяет его мощность, экономичность и полноту сгорания топливо-воздушной смеси, что влияет на токсичность выбросов при работе ДВС.
Мощность двигателя имеет бинарное обозначение – в лошадиных силах (л.с.) и в киловаттах (кВт). Для перевода единиц одна в другую применяется коэффициент 0,735, то есть 1 л.с. = 0,735 кВт.
Рабочий цикл четырехтактного ДВС определяется двумя оборотами коленчатого вала – по пол-оборота на такт, соответствующий одному ходу поршня. Если двигатель одноцилиндровый, то в его работе наблюдается неравномерность: резкое ускорение хода поршня при взрывном сгорании смеси и замедление его по мере приближения к НМТ и далее. Для того, чтобы эту неравномерность купировать, на валу за пределами корпуса мотора устанавливается массивный диск-маховик с большой инерционностью, благодаря чему момент вращения вала во времени становится более стабильным.

Принцип работы двигателя внутреннего сгорания
Современный автомобиль, чаше всего, приводится в движение двигателем внутреннего сгорания. Таких двигателей существует огромное множество. Различаются они объемом, количеством цилиндров, мощностью, скоростью вращения, используемым топливом (дизельные, бензиновые и газовые ДВС). Но, принципиально, устройство двигателя внутреннего сгорания, похоже.

Как работает двигатель и почему называется четырехтактным двигателем внутреннего сгорания? Про внутреннее сгорание понятно. Внутри двигателя сгорает топливо. А почему 4 такта двигателя, что это такое? Действительно, бывают и двухтактные двигатели. Но на автомобилях они используются крайне редко.
Четырехтактным двигатель называется из-за того, что его работу можно разделить на четыре, равные по времени, части. Поршень четыре раза пройдет по цилиндру – два раза вверх и два раза вниз. Такт начинается при нахождении поршня в крайней нижней или верхней точке. У автомобилистов-механиков это называется верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ).
Первый такт — такт впуска

Первый такт, он же впускной, начинается с ВМТ (верхней мертвой точки). Двигаясь вниз, поршень, всасывает в цилиндр топливовоздушную смесь. Работа этого такта происходит при открытом клапане впуска. Кстати, существует много двигателей с несколькими впускными клапанами. Их количество, размер, время нахождения в открытом состоянии может существенно повлиять на мощность двигателя. Есть двигатели, в которых, в зависимости от нажатия на педаль газа, происходит принудительное увеличение времени нахождения впускных клапанов в открытом состоянии. Это сделано для увеличения количества всасываемого топлива, которое, после возгорания, увеличивает мощность двигателя. Автомобиль, в этом случае, может гораздо быстрее ускориться.

Второй такт — такт сжатия

Следующий такт работы двигателя – такт сжатия. После того как поршень достиг нижней точки, он начинает подниматься вверх, тем самым, сжимая смесь, которая попала в цилиндр в такт впуска. Топливная смесь сжимается до объемов камеры сгорания. Что это за такая камера? Свободное пространство между верхней частью поршня и верхней частью цилиндра при нахождении поршня в верхней мертвой точке называется камерой сгорания. Клапаны, в этот такт работы двигателя закрыты полностью. Чем плотнее они закрыты, тем сжатие происходит качественнее. Большое значение имеет, в данном случае, состояние поршня, цилиндра, поршневых колец. Если имеются большие зазоры, то хорошего сжатия не получится, а соответственно, мощность такого двигателя будет гораздо ниже. Компрессию можно проверить специальным прибором. По величине компрессии можно сделать вывод о степени износа двигателя.

Третий такт — рабочий ход

Третий такт – рабочий, начинается с ВМТ. Рабочим он называется неслучайно. Ведь именно в этом такте происходит действие, заставляющее автомобиль двигаться. В этом такте в работу вступает система зажигания. Почему эта система так называется? Да потому, что она отвечает за поджигание топливной смеси, сжатой в цилиндре, в камере сгорания. Работает это очень просто – свеча системы дает искру. Справедливости ради, стоит заметить, что искра выдается на свече зажигания за несколько градусов до достижения поршнем верхней точки. Эти градусы, в современном двигателе, регулируются автоматически «мозгами» автомобиля.

После того как топливо загорится, происходит взрыв – оно резко увеличивается в объеме, заставляя поршень двигаться вниз. Клапаны в этом такте работы двигателя, как и в предыдущем, находятся в закрытом состоянии.

Четвертый такт — такт выпуска

Четвертый такт работы двигателя, последний – выпускной. Достигнув нижней точки, после рабочего такта, в двигателе начинает открываться выпускной клапан. Таких клапанов, как и впускных, может быть несколько. Двигаясь вверх, поршень через этот клапан удаляет отработавшие газы из цилиндра – вентилирует его. От четкой работы клапанов зависит степень сжатия в цилиндрах, полное удаление отработанных газов и необходимое количество всасываемой топливно-воздушной смеси.


После четвертого такта наступает черед первого. Процесс повторяется циклически. А за счет чего происходит вращение – работа двигателя внутреннего сгорания все 4 такта, что заставляет поршень подниматься и опускаться в тактах сжатия, выпуска и впуска? Дело в том, что не вся энергия, получаемая в рабочем такте, направляется на движение автомобиля. Часть энергии идет на раскручивание маховика. А он, под действием инерции, крутит коленчатый вал двигателя, перемещая поршень в период «нерабочих» тактов.

Газораспределительный механизм

Газораспределительный механизм (ГРМ) предназначен для впрыска топлива и выпуска отработанных газов в двигателях внутреннего сгорания. Сам механизм газораспределения делится на нижнеклапанный, когда распределительный вал находится в блоке цилиндров, и верхнеклапанный. Верхнеклапанный механизм подразумевает нахождение распредвала в головке блока цилиндров (ГБЦ). Существуют и альтернативные механизмы газораспределения, такие как гильзовая система ГРМ, десмодромная система и механизм с изменяемыми фазами.
Для двухтактных двигателей механизм газораспределения осуществляется при помощи впускных и выпускных окон в цилиндре. Для четырехтактных двигателей самая распространенная система верхнеклапанная, о ней и пойдет речь ниже.

Устройство ГРМ
В верхней части блока цилиндров находится ГБЦ (головка блока цилиндров) с расположенными на ней распределительным валом, клапанами, толкателями или коромыслами. Шкив привода распредвала вынесен за пределы головки блока цилиндров. Для исключения протекания моторного масла из-под клапанной крышки, на шейку распредвала устанавливается сальник. Сама клапанная крышка устанавливается на масло- бензо- стойкую прокладку. Ремень ГРМ или цепь одевается на шкив распредвала и приводится в действие шестерней коленчатого вала. Для натяжения ремня используются натяжные ролики, для цепи натяжные «башмаки». Обычно ремнем ГРМ приводится в действие помпа водяной системы охлаждения, промежуточный вал для системы зажигания и привод насоса высокого давления ТНВД (для дизельных вариантов).
С противоположной стороны распределительного вала посредством прямой передачи или при помощи ремня, могут приводиться в действие вакуумный усилитель, гидроусилитель руля или автомобильный генератор.

Распредвал представляет собой ось с проточенными на ней кулачками. Кулачки расположены по валу так, что в процессе вращения, соприкасаясь с толкателями клапанов, нажимают на них точно в соответствии с рабочими тактами двигателя.
Существуют двигатели и с двумя распредвалами (DOHC) и большим числом клапанов. Как и в первом случае, шкивы приводятся в действие одним ремнем ГРМ и цепью. Каждый распредвал закрывает один тип клапанов впускных или выпускных.
Клапан нажимается коромыслом (ранние версии двигателей) или толкателем. Различают два вида толкателей. Первый – толкатели, где зазор регулируется калибровочными шайбами, второй – гидротолкатели. Гидротолкатель смягчает удар по клапану благодаря маслу, которое находится в нем. Регулировка зазора между кулачком и верхней частью толкателя не требуется.


Принцип работы ГРМ

Весь процесс газораспределения сводится к синхронному вращению коленчатого вала и распределительного вала. А так же открыванию впускных и выпускных клапанов в определенном месте положения поршней.
Для точного расположения распредвала относительно коленвала используются установочные метки. Перед одеванием ремня газораспределительного механизма совмещаются и фиксируются метки. Затем одевается ремень, «освобождаются» шкивы, после чего ремень натягивается натяжным(и) роликами.
При открывании клапана коромыслом происходит следующее: распредвал кулачком «наезжает» на коромысло, которое нажимает на клапан, после прохождения кулачка, клапан под действием пружины закрывается. Клапаны в этом случае располагаются v-образно.
Если в двигателе применены толкатели, то распредвал находится непосредственно над толкателями, при вращении, нажимая своими кулачками на них. Преимущество такого ГРМ малые шумы, небольшая цена, ремонтопригодность.
В цепном двигателе весь процесс газораспределения тот же, только при сборке механизма, цепь одевается на вал совместно со шкивом.

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм (далее сокращенно – КШМ) – механизм двигателя. Основным назначением КШМ является преобразование возвратно-поступательных движений поршня цилиндрической формы во вращательные движения коленчатого вала в двигателе внутреннего сгорания и, наоборот.

Устройство КШМ
Поршень

Поршень имеет вид цилиндра, изготовленного из сплавов алюминия. Основная функция этой детали заключается в превращении в механическую работу изменение давления газа, или наоборот, – нагнетание давления за счет возвратно-поступательного движения.
Поршень представляет собой сложенные воедино днище, головку и юбку, которые выполняют совершенно разные функции. Днище поршня плоской, вогнутой или выпуклой формы содержит в себе камеру сгорания. Головка имеет нарезанные канавки, где размещаются поршневые кольца (компрессионные и маслосъемные). Компрессионные кольца исключают прорыв газов в картер двигателя, а поршневые маслосъемные кольца способствуют удалению излишков масла на внутренних стенках цилиндра. В юбке расположены две бобышки, обеспечивающие размещение соединяющего поршень с шатуном поршневого пальца.

Изготовленный штамповкой или кованый стальной (реже – титановый) шатун имеет шарнирные соединения. Основная роль шатуна состоит в передаче поршневого усилия к коленчатому валу. Конструкция шатуна предполагает наличие верхней и нижней головки, а также стержня с двутавровым сечением. В верхней головке и бобышках находится вращающийся («плавающий») поршневой палец, а нижняя головка – разборная, позволяя, тем самым, обеспечить тесное соединение с шейкой вала. Современная технология контролируемого раскалывания нижней головки позволяет обеспечить высокую точность соединения ее частей.

Маховик устанавливается на конце коленчатого вала. На сегодняшний день находят широкое применение двухмассовые маховики, имеющие вид двух, упруго соединенных между собой, дисков. Зубчатый венец маховика принимает непосредственное участие в запуске двигателя через стартер.

Блок и головка цилиндров

Блок цилиндров и головка блока цилиндров отливаются из чугуна (реже – сплавов алюминия). В блоке цилиндров предусмотрены рубашки охлаждения, постели для подшипников коленчатого и распределительного валов, а также точки крепления приборов и узлов. Сам цилиндр выполняет функцию направляющей для поршней. Головка блока цилиндра располагает в себе камеру сгорания, впускные-выпускные каналы, специальные резьбовые отверстия для свечей системы зажигания, втулки и запрессованные седла. Герметичность соединения блока цилиндров с головкой обеспечены прокладкой. Кроме того, головка цилиндра закрыта штампованной крышкой, а между ними, как правило, устанавливается прокладка из маслостойкой резины.


В целом, поршень, гильза цилиндров и шатун формируют цилиндр или цилиндропоршневую группу кривошипно-шатунного механизма. Современные двигатели могут иметь до 16 и более цилиндров.

Как работает двигатель автомобиля – «сердечные» дела вашей машины

Прежде, чем рассматривать вопрос, как работает двигатель автомобиля, необходимо хотя бы в общих чертах разбираться в его устройстве. В любом автомобиле установлен двигатель внутреннего сгорания, работа которого основана на преобразовании тепловой энергии в механическую. Заглянем глубже в этот механизм.

Как устроен двигатель автомобиля – изучаем схему устройства

Классическое устройство двигателя включает в себя цилиндр и картер, закрытый в нижней части поддоном. Внутри цилиндра находится поршень с различными кольцами, который перемещается в определенной последовательности. Он имеет форму стакана, в его верхней части располагается днище. Чтобы окончательно понять, как устроен двигатель автомобиля, необходимо знать, что поршень с помощью поршневого пальца и шатуна связывается с коленчатым валом.

Для плавного и мягкого вращения используются коренные и шатунные вкладыши, играющие роль подшипников. В состав коленчатого вала входят щеки, а также коренные и шатунные шейки. Все эти детали, собранные вместе, называются кривошипно-шатунным механизмом, который преобразует возвратно-поступательное перемещение поршня в круговое вращение коленчатого вала.

Верхняя часть цилиндра закрывается головкой, где расположены впускной и выпускной клапаны. Они открываются и закрываются в соответствии с перемещением поршня и движением коленчатого вала. Чтобы точно представить, как работает двигатель автомобиля, видео в нашей библиотеке следует изучить также подробно, как и статью. А пока мы попытаемся выразить его действие на словах.

Как работает двигатель автомобиля – кратко о сложных процессах

Итак, граница перемещения поршня имеет два крайних положения – верхнюю и нижнюю мертвые точки. В первом случае поршень находится на максимальном удалении от коленчатого вала, а второй вариант представляет собой наименьшее расстояние между поршнем и коленчатым валом. Для того чтобы обеспечить прохождение поршня через мертвые точки без остановок используется маховик, изготовленный в форме диска.

Важным параметром у двигателей внутреннего сгорания является степень сжатия, напрямую влияющая на его мощность и экономичность.

Чтобы правильно понять принцип работы двигателя автомобиля, необходимо знать, что в его основе лежит использование работы газов, расширенных в процессе нагревания, в результате чего и обеспечивается перемещение поршня между верхней и нижней мертвыми точками. При верхнем положении поршня происходит сгорание топлива, поступившего в цилиндр и смешанного с воздухом. В результате температура газов и их давление значительно возрастает.

Газы совершают полезную работу, благодаря которой поршень перемещается вниз. Далее через кривошипно-шатунный механизм действие передается на трансмиссию, а затем на автомобильные колеса. Отработанные продукты удаляются из цилиндра через систему выхлопа, а на их место поступает новая порция топлива. Весь процесс, от подачи топлива до вывода отработанных газов, называется рабочим циклом двигателя.

Принцип работы двигателя автомобиля – различия в моделях

Существует несколько основных видов двигателей внутреннего сгорания. Наиболее простым является двигатель с рядным расположением цилиндров. Расположенные в один ряд, они составляют в целом определенный рабочий объем. Но постепенно некоторые производители отошли от такой технологии изготовления к более компактному варианту.

Много моделей используют конструкцию V-образного двигателя. При таком варианте цилиндры расположены под углом друг к другу (в пределах 180-ти градусов). Во многих конструкциях количество цилиндров составляет от 6 до 12 и более. Это позволяет значительно сократить линейный размер двигателя и уменьшить его длину.

Таким образом, разнообразие двигателей позволяет успешно их использовать в автомобилях самого разного назначения. Это могут быть стандартные легковые и грузовые машины, а также спортивные авто и внедорожники. В зависимости от типа двигателя вытекают и определенные технические характеристики всей машины.

Оцените статью: Поделитесь с друзьями!

Принцип работы двигателя внутреннего сгорания (ДВС) видео

Как устроен ДВС

Первые поршневые моторы имели лишь один цилиндр небольшого диаметра. В процессе развития для увеличения мощности сначала увеличивали диаметр цилиндра, а потом и их количество. Постепенно двигатели внутреннего сгорания приняли привычный нам вид. Мотор современного автомобиля может иметь до 12 цилиндров.

Современный ДВС состоит из нескольких механизмов и вспомогательных систем, которые для удобства восприятия группируют следующим образом:

  1. КШМ — кривошипно-шатунный механизм.
  2. ГРМ   — механизм регулировки фаз газораспределения.
  3. Система смазки.
  4. Система охлаждения.
  5. Система подачи топлива.
  6. Выхлопная система.

Также к системам ДВС относятся электрические системы пуска и управления двигателем.

КШМ — кривошипно-шатунный механизм

КШМ — основной механизм поршневого мотора. Он выполняет главную работу — преобразует тепловую энергию в механическую. Состоит механизм из следующих частей:

  • Блок цилиндров.
  • Головка блока цилиндров.
  • Поршни с пальцами, кольцами и шатунами.
  • Коленчатый вал с маховиком.

ГРМ — газораспределительный механизм

Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:

  • Распределительный вал.
  • Впускные и выпускные клапаны с пружинами и направляющими втулками.
  • Детали привода клапанов.
  • Элементы привода ГРМ.

ГРМ приводится от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их

В зависимости от конструкции и количества клапанов на двигатель может быть установлен один или два распределительных вала на каждый ряд цилиндров. При двухвальной системе каждый вал отвечает за работу своего ряда клапанов — впускных или выпускных. Одновальная конструкция имеет английское название SOHC (Single OverHead Camshaft). Систему с двумя валами называют DOHC (Double Overhead Camshaft).

Немного истории

Принцип превращения возвратно-поступательного движения во вращательное, посредством использования кривошипно-шатунного механизма известен с 1769 года, когда француз Николя Жозеф Кюньо показал миру первый паровой автомобиль. В качестве рабочего тела двигатель использовал водяной пар, был маломощным и извергал клубы черного, дурнопахнущего дыма.

Все изменилось в тот момент, когда в поисках новых источников энергии человечество обратило свой взор на органическую жидкость — нефть. В стhемлении повысить энергетические характеристики данного продукта, ученные и исследователи, проводили опыты по перегонке и дистилляции, и, наконец, получили неизвестное доселе вещество – бензин.

Примерно в то же время Этьен Ленуар сконструировал первый газовый двигатель внутреннего сгорания, работавший по двухтактной схеме, и запатентовал его в 1880 году.

В 1885 году немецкий инженер Готтлиб Даймлер, в сотрудничестве с предпринимателем Вильгельмом Майбахом, разработал компактный бензиновый двигатель, уже через год нашедший свое применение в первых моделях автомобилей. Рудольф Дизель, работая в направлении повышения эффективности ДВС (двигателя внутреннего сгорания), в 1897 году предложил принципиально новую схему воспламенения топлива.

А в 1903 году братья Райт подняли в воздух свой первый самолет, оснащенный бензиновым двигателем Райт-Тейлор, с примитивной инжекторной схемой подачи топлива.

Система охлаждения двигателя

Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать.

  • Рубашка охлаждения двигателя
  • Насос (помпа)
  • Термостат
  • Радиатор
  • Вентилятор
  • Расширительный бачок

Рубашку охлаждения двигателей внутреннего сгорания образуют полости внутри БЦ и ГБЦ, по которым циркулирует охлаждающая жидкость. Она отбирает избыточное тепло у деталей двигателя и относит его к радиатору. Циркуляцию обеспечивает насос, привод которого осуществляется с помощью ремня от коленчатого вала.

Термостат обеспечивает необходимый температурный режим двигателя автомобиля, перенаправляя поток жидкости в радиатор либо в обход него. Радиатор, в свою очередь, призван охлаждать нагретую жидкость. Вентилятор усиливает набегающий поток воздуха, тем самым увеличивая эффективность охлаждения.

Как это работает

Начнем с начального положения поршня – он находится вверху. В данный момент впускное отверстие открывается клапаном, поршень начинает движение вниз и засасывает топливную смесь в цилиндр. При этом всего лишь небольшая капля бензина поступает в емкость цилиндра. Это первый такт работы.

Во время второго такта поршень достигает самой нижней точки, при этом впускное отверстие закрывается, поршень начинает движение вверх, в результате чего топливная смесь сжимается, так как ей в закрытой камере некуда деваться. При достижении поршнем максимальной верхней точки топливная смесь сжата до максимума.

Третий этап – это поджигание сжатой топливной смеси с помощью свечи, которая испускает искру. В результате горючий состав взрывается и толкает поршень с большой силой вниз.

На заключительном этапе деталь достигает нижней границы и по инерции возвращается к верхней точке. В это время открывается выпускной клапан, отработанная смесь в виде газа выходит из камеры сгорания и через выхлопную систему попадает на улицу. После этого цикл, начиная с первого этапа, повторяется снова и продолжается в течение всего времени, пока водитель не заглушит двигатель.

В результате взрыва бензина поршень движется вниз и толкает коленчатый вал. Тот раскручивается и передает нагрузки на колеса автомобиля. Именно так и выглядит устройство двигателя автомобиля.

Общее устройство двигателя и основные принципы его работы станут понятны при изучении одноцилиндровой двухтактной модели.

Такой ДВС состоит из:

  • камеры сгорания;
  • поршня, соединенного с коленвалом посредством кривошипно-шатунного механизма;
  • системы подачи и воспламенения топливно-воздушной смеси;
  • клапана для удаления продуктов горения (выхлопных газов).

При пуске двигателя поршень начинает путь от верхней мертвой точки (ВМТ) к нижней (НМТ), за счет поворота коленвала. Достигнув нижней точки, он меняет направление движения к ВМТ, одновременно с чем проводится подача топливно-воздушной смеси в камеру сгорания.

Движущийся поршень сжимает ТВС, при достижении верхней мертвой точки система электронного зажигания воспламеняет смесь. Стремительно расширяясь, горящие пары бензина отбрасывают поршень в нижнюю мертвую точку. Пройдя определенную часть пути, он открывает выхлопной клапан, через который раскаленные газы покидают камеру сгорания. Пройдя нижнюю точку, поршень меняет направление движения к ВМТ. За это время коленвал совершил один оборот.

Данные пояснения станут более понятными при просмотре видео о работе двигателя внутреннего сгорания.

Данный видеоролик наглядно показывает устройство и работу двигателя автомобиля.

Два такта

Основным недостатком двухтактной схемы, в которой роль газораспределительного элемента играет поршень, является потеря рабочего вещества в момент удаления выхлопных газов. А система принудительной продувки и повышенные требования к термостойкости выхлопного клапана приводят к увеличению цены двигателя.

Четыре такта

Описанных недостатков лишены четырехтактные ДВС, используемые в более «серьезной» технике. Каждая фаза работы такого двигателя (впуск смеси, ее сжатие, рабочий ход и выпуск отработанных газов), осуществляется при помощи газораспределительного механизма.

Разделение фаз работы ДВС очень условно. Инерционность отработавших газов, возникновение локальных вихрей и обратных потоков в зоне выхлопного клапана приводит к взаимному перекрыванию во времени процессов впрыска топливной смеси и удаления продуктов горения.

Проблема была успешно решена путем механической синхронизации работы впускных и выпускных клапанов с оборотами коленвала. Проще говоря, впрыск топливно-воздушной смеси в камеру сгорания произойдет только после полного удаления отработанных газов и закрытия выхлопного клапана.

Но данная система управления газораспределением так же имеет свои недостатки. Оптимальный режим работы двигателя (минимальный расход топлива и максимальная мощность), может быть достигнут в достаточно узком диапазоне оборотов коленвала.

Развитие вычислительной техники и внедрение электронных блоков управления дало возможность успешно разрешить и эту задачу. Система электромагнитного управления работой клапанов ДВС позволяет на лету, в зависимости от режима работы, выбирать оптимальный режим газораспределения. Анимированные схемы и специализированные видео облегчат понимание этого процесса.

На основании видео не сложно сделать вывод, что современный автомобиль это огромное количество всевозможных датчиков.

Система смазки ДВС

В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:

  • Масляный картер (поддон).
  • Насос подачи масла.
  • Масляный фильтр с редукционным клапаном.
  • Маслопроводы.
  • Масляный щуп (индикатор уровня масла).
  • Указатель давления в системе.
  • Маслоналивная горловина.

Насос забирает масло из масляного картера и подает его в маслопроводы и каналы, расположенные в БЦ и ГБЦ. По ним масло поступает в места соприкосновения трущихся поверхностей.

Система питания

Система подачи для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:

  • Топливный бак.
  • Датчик уровня топлива.
  • Фильтры очистки топлива — грубой и тонкой.
  • Топливные трубопроводы.
  • Впускной коллектор.
  • Воздушные патрубки.
  • Воздушный фильтр.

В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, но в силу различных физических свойств бензина и дизельного топлива конструкция их имеет существенные различия. Сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки.

Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом. Детали, обеспечивающие очистку воздуха и поступление его цилиндры — воздушный фильтр и патрубки — тоже относятся к топливной системе.

Система выпуска

Система выпуска предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:

  • Выпускной коллектор.
  • Приемная труба глушителя.
  • Резонатор.
  • Глушитель.
  • Выхлопная труба.

В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.

В заключение необходимо упомянуть системы пуска и управления двигателем автомобиля. Они являются важной частью двигателя, но их необходимо рассматривать вместе с электрической системой автомобиля, что выходит за рамки этой статьи, рассматривающей внутреннее устройство двигателя.

Устройство двигателя внутреннего сгорания — видео, схемы, картинки

Двигатель внутреннего сгорания – это одно из тех изобретений, которые в корне перевернули нашу жизнь – с лошадиных повозок люди смогли пересесть на быстрые и мощные автомобили.

Первые ДВС обладали малой мощностью, а коэффициент полезного действия не доходил даже до десяти процентов, но неутомимые изобретатели – Ленуар, Отто, Даймлер, Майбах, Дизель, Бенц и множество других – привносили что-то новое, благодаря чему имена многих увековечены в названиях известных автомобильных компаний.

ДВС прошли длительный путь развития от коптящих и часто ломающихся примитивных моторов, до сверхсовременных битурбированных двигателей, но принцип их работы остался все тот же – теплота сгорания топлива преобразуется в механическую энергию.

Название “двигатель внутреннего сгорания” используется потому, что топливо сгорает в середине двигателя, а не снаружи, как в двигателях внешнего сгорания – паровых турбинах и паровых машинах.

Благодаря этому ДВС получили множество положительных характеристик:

  • они стали намного легче и экономичнее;
  • стало возможным избавиться от дополнительных агрегатов для передачи энергии сгорания топлива или пара к рабочим частям двигателя;
  • топливо для ДВС обладает заданными параметрами и позволяет получать значительно больше энергии, которую можно преобразовать в полезную работу.

Устройство ДВС

Вне зависимости от того, на каком топливе работает двигатель – бензин, дизель, пропан-бутан или экотопливо на основе растительных масел – главным действующим элементом является поршень, который находится внутри цилиндра. Поршень похож на металлический перевернутый стакан (скорее подойдет сравнение с бокалом для виски – с плоским толстым дном и прямыми стенками), а цилиндр – на небольшой кусок трубы, внутри которой и ходит поршень.

В верхней плоской части поршня имеется камера сгорания – углубление круглой формы, именно в нее попадает топливно воздушная смесь и здесь же детонирует, приводя поршень в движение. Это движение передается на коленчатый вал с помощью шатунов. Шатуны верхней своей частью прикреплены к поршню с помощью поршневого пальца, который просовывается в два отверстия по бокам поршня, а нижней – к шатунной шейке коленчатого вала.

Первые ДВС имели всего один поршень, но и этого было достаточно, чтобы развить мощность в несколько десятков лошадиных сил.

В наше время тоже применяются двигатели с одним поршнем, например пусковые двигатели для тракторов, которые выполняют роль стартера. Однако больше всего распространены 2-х, 3-х, 4-х, 6-и и 8-цилиндровые двигатели, хотя выпускаются двигатели на 16 цилиндров и более.

Поршни и цилиндры находятся в блоке цилиндров. От того, как расположены цилиндры по отношению к друг другу и к другим элементам двигателя, выделяют несколько видов ДВС:

  • рядные – цилиндры расположены в один ряд;
  • V-образные – цилиндры расположены друг против друга под углом, в разрезе напоминают букву “V”;
  • U-образные – два объединенных между собой рядных двигателя;
  • X-образные – ДВС со сдвоенными V-образными блоками;
  • оппозитные – угол между блоками цилиндров составляет 180 градусов;
  • W-образные 12-цилиндровые – три или четыре ряда цилиндров установленные в форме буквы “W”;
  • звездообразные двигатели – применяются в авиации, поршни расположены радиальными лучами вокруг коленчатого вала.

Важным элементом двигателя является коленчатый вал, на который передается возвратно-поступательное движение поршня, коленвал преобразует его во вращение.

Когда на тахометре отображаются обороты двигателя, то это как раз и есть количество вращений коленвала в минуту, то есть он даже на самых низких оборотах вращается со скоростью 2000 оборотов в минуту. С одной стороны коленвал соединен с маховиком, от которого вращение через сцепление подается на коробку передач, с другой стороны – шкив коленвала, связанный с генератором и газораспределительным механизмом через ременную передачу. В более современных авто шкив коленвала связан также со шкивами кондиционера и гидроусилителя руля.

Топливо подается в двигатель через карбюратор или инжектор. Карбюраторные ДВС уже отживают свое из-за несовершенства конструкции. В таких ДВС идет сплошной поток бензина через карбюратор, затем топливо смешивается во впускном коллекторе и подается в камеры сгорания поршней, где детонирует под действием искры зажигания.

В инжекторных двигателях непосредственного впрыска топливо смешивается с воздухом в блоке цилиндров, куда подается искра от свечи зажигания.

Газораспределительный механизм отвечает за согласованную работу системы клапанов. Впускные клапаны обеспечивают своевременное поступление топливновоздушной смеси, а выпускные отвечают за выведение продуктов сгорания. Как мы уже писали раньше, такая система используется в четырехтактных двигателях, тогда как в двухтактных необходимость в клапанах отпадает.

На данном видео показано как устроен двигатель внутреннего сгорания, какие функции выполняет и как он это делает.

Устройство четырехтактного ДВС

Загрузка…

Поделиться в социальных сетях

Запуск танка вручную показали на видео — Российская газета

Танк, несмотря на все свои особенности — транспортное средство, оснащенное двигателем внутреннего сгорания. Для его быстрого запуска современные боевые машины оснащены несколькими дублирующими друг друга системами. Можно завести двигатель электрическим стартером, можно при помощи сжатого воздуха, есть и другие способы…

Немецкая бронетехника времен Второй Мировой войны имела маховик-накопитель, предназначенный для запуска двигателя без использования аккумулятора или сжатого воздуха. Для этого в задней броне имелось отверстие, куда следовало вставить пусковую рукоятку — русские водители прозвали ее «кривой стартер», — и крутить, постепенно увеличивая частоту вращения. Когда маховик раскручивался, надо было быстро вытащить рукоятку, а затем при помощи особой веревки включить сцепление инерционного маховика с коленвалом двигателя. Если все проделать быстро и умело, силами одного-двух человек вполне возможно было запустить массивный танковый двигатель мощностью в несколько сотен лошадиных сил.

Инерционными маховиками оснащались самоходки Stug, танки Tiger, Tiger II и Pantera. Их преимущество перед «кривым стартером», соединенным  непосредственно с коленвалом — отсутствие риска сломать палец или получить удар рукояткой в лоб при детонации топливной смеси в цилиндрах.

Однако, как следует из опубликованного видео, есть еще более экзотические способы привести гусеничную бронетехнику в движение. Как минимум однажды советскую самоходную гаубицу 2С1 «Гвоздика» завели «с толкача», словно малолитражку. Чтобы сдвинуть с места и разогнать бронированную машину весом 15,7 тонны понадобились усилия шести человек. Завести САУ удалось со второй попытки. «Почему-то я не сомневался, что это русские», — написал комментатор видео.

Порядок работы двигателя 6 цилиндров автомобиля

Для обычного автовладельца принцип работы двигателя, например, шестицилиндрового, является чем-то вроде магии, интересной лишь автомеханикам и гонщикам.

С одной стороны, у большинства действительно нет никакой нужды в этой информации. Но с другой, отсутствие этих знаний порождает необходимость ехать на поклон в автосервис, чтобы решить простейшие задачи.

Содержание статьи

Немного о ДВС

Знание об устройстве и работе автомобиля пойдет большим плюсом в личное дело любого автолюбителя. Особенно это касается движка – важнейшего элемента и сердца железного коня. ДВС имеет уйму разновидностей – начиная от типа горючего и заканчивая уникальными для каждого авто мелкими нюансами.

Но суть работы примерно одинакова:

  1. Горючая смесь (топливо и кислород, без которого ничего гореть не будет) попадает в цилиндр двигателя и воспламеняется свечей зажигания.
  2. Энергия взрыва смеси толкает поршень внутри цилиндра, который, опускаясь, вращает коленвал. При вращении, коленвал поднимает к распределительному валу (который отвечает за подачу смеси через клапана) следующий цилиндр.

Благодаря последовательной работе цилиндров, коленвал находится в постоянном движении, образуя крутящий момент. Чем больше цилиндров – тем легче и быстрее будет вращаться коленвал. Вот и нарисовалась схема, знакомая даже школьникам, не разбирающимся в матчасти – больше цилиндров – мощнее мотор.

Порядок работы двигателя

Если объяснять по-простому, то порядок работы двигателя – это выверенная последовательность и интервал работы его цилиндров. Как правило, цилиндры мотора не работают строго по очереди (за исключением двухцилиндровых моторчиков). Этому способствует «змейкообразная» форма коленвала.

Порядок работы движка всегда начинается с первого цилиндра. А вот дальнейший цикл уже у всех разный. Причем даже у однотипных моторов разных модификаций. Знание этих нюансов будет необходимым, если вы захотите откалибровать работу клапанов или настроить зажигание. Поверьте, просьба подключить высоковольтные провода на автосервисе вызовет у мастеров чувство жалости.

Шестицилиндровый двигатель

Вот мы и добрались до сути. Порядок работы такого ДВС будет зависеть от того, как именно 6 цилиндров расположены. Здесь выделяют три типа — рядный, V-образный и оппозитный.

Стоит поподробнее остановиться на каждом:

  • Рядный двигатель. Такая конфигурация горячо любима немцами (в автомобилях BMW, AUDI и т.п. такой движок будет именоваться R6. Европейцы и американцы предпочитают маркировки l6 и L6). В отличии от европейцев, почти повсеместно оставивших рядные двигатели в прошлом, у BMW таким типом мотора может похвастаться даже навороченный X шестой. Порядок работы у таких 1 — 5 — 3 — 6 — 2 — 4 цилиндры соответственно. Но можно встретить и варианты 1 — 4 — 2 — 6 — 3 — 5 и 1 — 3 — 5 — 6 — 4 — 2.
  • V-образный движок. Цилиндры расположены по три в два ряда, пересекающихся снизу, образуя букву V. Хоть такая технология и пошла на конвейер в 1950 году, менее актуальной она не стала, комплектуя самых современных железных коней. Последовательность у таких движков 1 — 2 — 3 — 4 — 5 — 6. Реже 1 — 6 — 5 — 2 — 3 — 4.
  • Оппозитный мотор. Традиционно используется японцами. Чаще всего можно встретить на Субару и Сузуки. Двигатель такой компоновки будет функционировать по схеме 1 — 4 — 5 — 2 — 3 — 6.

Владея даже этими схемами, вы сможете грамотно подрегулировать клапана. Не обязательно вдаваться в историю развития технологий, физические характеристики и сложные формулы расчета – оставим это подлинным фанатам темы. Наша цель – научится самостоятельно делать то, что вообще возможно сделать самостоятельно. Ну а знание о функционале вашего мотора идет приятным бонусом.

Видео пример работы 6-ти цилиндров

Как работают автомобильные двигатели | HowStuffWorks

Используя всю эту информацию, вы можете начать понимать, что существует множество различных способов улучшить работу движка. Производители автомобилей постоянно играют со всеми перечисленными ниже параметрами, чтобы сделать двигатель более мощным и / или более экономичным.

Увеличение рабочего объема: Чем больше рабочий объем, тем выше мощность, поскольку вы можете сжигать больше газа за каждый оборот двигателя. Вы можете увеличить рабочий объем, увеличив цилиндры или добавив больше цилиндров.Двенадцать цилиндров кажутся практическим пределом.

Увеличьте степень сжатия: Чем выше степень сжатия, тем больше мощность, до определенного предела. Однако чем сильнее вы сжимаете топливно-воздушную смесь, тем больше вероятность самопроизвольного воспламенения (до того, как свеча зажигания воспламенит его). Бензины с более высоким октановым числом предотвращают такое преждевременное сгорание. Вот почему высокопроизводительным автомобилям обычно нужен высокооктановый бензин — их двигатели используют более высокую степень сжатия, чтобы получить больше мощности.

Добавьте больше в каждый цилиндр: Если вы можете втиснуть больше воздуха (и, следовательно, топлива) в цилиндр заданного размера, вы можете получить больше мощности от цилиндра (точно так же, как если бы вы увеличили размер цилиндр) без увеличения количества топлива, необходимого для сгорания. Турбокомпрессоры и нагнетатели сжимают входящий воздух, чтобы эффективно втиснуть больше воздуха в цилиндр.

Охлаждение поступающего воздуха: Сжатие воздуха повышает его температуру. Однако вы хотите, чтобы в цилиндре был как можно более холодный воздух, потому что чем горячее воздух, тем меньше он будет расширяться при сгорании.Поэтому многие автомобили с турбонаддувом и наддувом имеют интеркулер . Интеркулер — это специальный радиатор, через который проходит сжатый воздух, чтобы охладить его перед попаданием в цилиндр.

Пусть воздух поступает легче: Когда поршень опускается на такте впуска, сопротивление воздуха может лишить двигатель мощности. Сопротивление воздуха можно значительно уменьшить, установив по два впускных клапана в каждый цилиндр. В некоторых новых автомобилях также используются полированные впускные коллекторы для устранения там сопротивления воздуха.Большие воздушные фильтры также могут улучшить воздушный поток.

Обеспечьте более легкий выход выхлопных газов: Если сопротивление воздуха затрудняет выход выхлопных газов из цилиндра, это лишает двигатель мощности. Сопротивление воздуха можно уменьшить, добавив второй выпускной клапан к каждому цилиндру. Автомобиль с двумя впускными и двумя выпускными клапанами имеет четыре клапана на цилиндр, что улучшает рабочие характеристики. Когда вы слышите рекламу автомобиля, в которой говорится, что автомобиль имеет четыре цилиндра и 16 клапанов, в рекламе говорится, что двигатель имеет четыре клапана на цилиндр.

Если выхлопная труба слишком мала или глушитель имеет большое сопротивление воздуха, это может вызвать противодавление, которое имеет тот же эффект. В высокоэффективных выхлопных системах используются коллекторы, большие выхлопные трубы и глушители со свободным потоком для устранения противодавления в выхлопной системе. Когда вы слышите, что у автомобиля «двойной выхлоп», цель состоит в том, чтобы улучшить поток выхлопных газов, используя две выхлопные трубы вместо одной.

Сделайте все легче: Легкие детали помогают двигателю работать лучше.Каждый раз, когда поршень меняет направление, он использует энергию, чтобы остановить движение в одном направлении и запустить его в другом. Чем легче поршень, тем меньше энергии он потребляет. Это приводит к повышению топливной экономичности и производительности.

Впрыск топлива: Впрыск топлива позволяет очень точно дозировать топливо в каждый цилиндр. Это улучшает производительность и экономию топлива.

В следующих разделах мы ответим на некоторые распространенные вопросы, связанные с двигателем, которые задают читатели.

Замедленное видео двигателя внутреннего сгорания — захватывающий танец пламени — Nerdist

Ежедневно по дорогам мира проезжает более 1 миллиарда транспортных средств, и почти все они используют двигатели внутреннего сгорания (ДВС) для создания силы, вращающей их колеса. И хотя мы надеемся, что в скором времени полностью электрические автомобили начнут превосходить по численности автомобили с ДВС, все равно приятно наблюдать, как буквально взрыв выполняет механическую работу.Особенно super slow-mo работает.

SmarterEveryDay’s Destin Сэндлин отправился в Синнаминсон, штат Нью-Джерси ( мммммм булочки Cinnaminson ), чтобы посмотреть свой последний видеоролик вместе с командой, стоящей за каналом 805RoadKing на YouTube. Почему? Потому что у них двигатель внутреннего сгорания с прозрачной крышкой. И когда прозрачный двигатель внутреннего сгорания встречается с камерой сверхмедленной съемки, происходят волшебные вещи.

В супер замедленной съемке Sandlin демонстрирует принцип работы четырехтактного двигателя.Ход двигателя — это четыре разные фазы механического / химического процесса, который представляет собой непрерывное движение вверх и вниз, которое с помощью ряда шестерен преобразуется в движение вперед, так что ваш автомобиль, грузовик или квадроцикл SHERP могут двигаться вперед. .

Sandlin предоставляет очень четкую диаграмму четырех тактов, которая включает такт впуска, такт сжатия, рабочий ход и такт выпуска:

Что совершенно поразительно, так это то, что внутри автомобиля с ДВС, который может иметь от 1 до 16 цилиндров, этот процесс происходит сотни раз в секунду.В случае с чем-то вроде Ariel Atom полный четырехтактный цикл может происходить примерно 5300 раз в минуту, что составляет половину красной линии Atom в 10 600 об / мин. (Число оборотов уменьшается вдвое, потому что два оборота коленчатого вала автомобиля равны одному циклу полного хода.)

Что вы думаете о волшебном механическом процессе в двигателях внутреннего сгорания? Собираетесь ли вы теперь по-другому относиться к какофонии взрывов под капотом вашего автомобиля? Дайте нам знать в комментариях ниже!

Изображений: SmarterEveryDay

Какое будущее у двигателя внутреннего сгорания?

С более строгими стандартами выбросов и появлением электрических силовых агрегатов может показаться, что дни двигателей внутреннего сгорания сочтены.Но объяснение инженерной мысли Ведущий Джейсон Фенске считает, что внутреннее сгорание будет продолжаться благодаря новым технологиям.

Fenske довольно оптимистично оценивает долговечность двигателя внутреннего сгорания, как из-за присущего бензину преимущества по плотности энергии над батареями, так и из-за технологий повышения эффективности. В этом видео он более подробно рассматривает некоторые из этих технологий.

Один из вариантов — воспламенение от сжатия однородного заряда (HCCI).Двигатель HCCI сжигает бензин, но использует воспламенение от сжатия, как и дизельный двигатель, а не свечу зажигания. Теоретически это обеспечивает эффективность дизеля без образования сажи и высоких уровней выбросов оксидов азота (NOx). Однако для этого требуется гораздо более точный контроль температуры на впуске, а также момента зажигания.

Феррари 488 GT Modificata

Следующая опция — воспламенение от сжатия с предварительным смешиванием заряда (PCCI). Фенске описал это как «золотую середину» между воспламенением от сжатия дизельного двигателя и HCCI, потому что он впрыскивает немного топлива раньше, чтобы позволить ему смешаться с воздухом в камере сгорания, а затем впрыскивает больше топлива позже.Это обеспечивает больший контроль времени зажигания, чем HCCI, но также может создавать очаги несгоревших побочных продуктов углеводородов, что плохо сказывается на выбросах. По словам Фенске, двигатели PCCI также имеют довольно узкий рабочий диапазон с высоким потенциалом детонации при полностью открытой дроссельной заслонке.

Наконец, у нас есть воспламенение от сжатия с контролируемой реактивностью (RCCI). При этом используются два вида топлива: топливо с низкой реактивностью (например, бензин), которое впрыскивается через порт, и топливо с высокой реактивностью (например, дизельное топливо), которое впрыскивается напрямую.«Реакционная способность» относится к тенденции топлива воспламеняться при сжатии. По словам Фенске, этот метод приводит к значительному повышению эффективности, но по-прежнему с довольно высокими выбросами. Сложность использования двух видов топлива также может сделать его коммерчески не пусковым.

Эти альтернативные конструкции двигателей внутреннего сгорания могут быть еще не готовы к использованию, но автопроизводители стремятся выжать максимум эффективности из сегодняшних бензиновых двигателей, используя более совершенные технологии, такие как прямой впрыск. Фенске также рассказал о другой возможной будущей технологии внутреннего сгорания — начальном зажигании — в другом видео, которое также стоит посмотреть.

Двигатель внешнего сгорания: типы и применение — стенограмма видео и урока

Двигатели внешнего и внутреннего сгорания

Разница между двигателями внешнего и внутреннего сгорания довольно проста и очевидна из-за различия в их названиях. В двигателе внешнего сгорания топливо не сжигается внутри двигателя. В двигателе внутреннего сгорания камера сгорания находится прямо посередине двигателя.

Внешние двигатели имеют рабочую жидкость, нагреваемую топливом. Двигатели внутреннего сгорания полагаются на взрывную силу топлива в двигателе, чтобы произвести работу. В двигателях внутреннего сгорания взрыв с силой выталкивает поршни или выталкивает горячий газ под высоким давлением из двигателя на больших скоростях. Как движущиеся поршни, так и выбрасываемый с высокой скоростью газ могут выполнять свою работу. В двигателях внешнего сгорания при сгорании нагревается жидкость, которая, в свою очередь, выполняет всю работу.

Типы двигателей внешнего сгорания

Паровой двигатель — это один из типов двигателей внешнего сгорания.В паровом двигателе в камере сгорания сжигается такое топливо, как уголь. Это тепло превращает воду в бойлере в пар. По трубам пар подается в турбину, у которой к валу прикреплен ряд лопастей. При прохождении через турбину высокотемпературный пар расширяется, давит на лопасти и заставляет их вращать вал. Вращающийся вал может приводить в движение электрогенератор, приводить в движение гребной винт или выполнять другую полезную работу.

Другая конфигурация включает нагнетание пара высокого давления в камеру с поршнем.Пар давит на поршень, соединенный с коленчатым валом. Коленчатый вал может преобразовывать возвратно-поступательное движение поршня во вращательное движение, которое может вращать колеса или пропеллеры.

Второй тип двигателя внешнего сгорания — это двигатель Стирлинга . Двигатель Стирлинга отличается от парового двигателя тем, что его рабочая жидкость всегда находится в газовой фазе, в отличие от парового двигателя, который превращает жидкую воду в газообразный пар. Кроме того, двигатель Стирлинга непрерывно рециркулирует свою рабочую жидкость, тогда как паровые двигатели выбрасывают конденсированный пар, как только он проходит через двигатель.

Двигатели Стирлинга работают на горячем газе, нагретом от внешнего источника, через поршни, которые вращают коленчатый вал. В сложной конфигурации газ циркулирует между горячим и холодным концом поршневой камеры, расширяясь при нагревании и сжимаясь при охлаждении. Расширенный газ толкает поршень вперед, в то время как сжимающийся газ толкает поршень назад. Тепло, генерируемое при сгорании, используется для производства работы и непрерывного цикла рабочего тела в горячих и холодных циклах.

Использование двигателей внешнего сгорания

Паровые двигатели были первыми изобретенными удачными двигателями, и именно они стали движущей силой промышленной революции.Это то, что питало знаменитый паровоз с его струей пара, вырывающейся из трубы. В настоящее время они используются для производства большого количества электроэнергии в мире. Любая угольная или атомная электростанция приводится в движение паровыми двигателями. Любой, кто когда-либо ездил на электростанции, видел гигантские белые клубы пара, поднимающиеся из нескольких труб.

Двигатель Стирлинга имеет более ограниченное применение и не так широко распространен, как паровой двигатель. Двигатели Стирлинга используются для выработки электроэнергии в некоторых частях мира.Они также используются на подводных лодках и для отопления жилых домов. Недавно они были объединены с солнечными фермами для выработки электроэнергии.

Резюме урока

Таким образом, двигатель внешнего сгорания классифицируется как таковой, потому что он работает на сгорании топлива, но сгорание происходит в камере вне двигателя. Таким образом, он отличается от двигателя внутреннего сгорания , поскольку в двигателе внутреннего сгорания сгорание происходит внутри двигателя.

Двигатели внешнего сгорания могут быть паровыми двигателями или двигателями Стирлинга. Паровые двигатели превращают жидкую воду в газообразный пар и работают на паровозах и электростанциях, и они очень широко используются. Двигатели Стирлинга отличаются от паровых двигателей тем, что в них рабочая жидкость всегда находится в газовой фазе, ограничены в их использовании. В некоторых частях света они вырабатывают электроэнергию, обогревают дома и подводные лодки.

Урок 5: Двигатель внутреннего сгорания и моторное масло

В этом уроке вы узнаете, как работает двигатель внутреннего сгорания, и о важности моторного масла.

Как работает двигатель внутреннего сгорания:

Все двигатели внутреннего сгорания работают по теории, называемой циклом Отто событий , названным в честь Николауса Отто, который изобрел его в 1867 году. Он происходит в 4 повторяющихся шага или «тактов»:

  • Всасывание
  • Сжатие
  • Горение (или мощность)
  • Выхлоп

Схема, показывающая работу 4-тактного двигателя с искровым зажиганием. Ярлыки: 1 — Индукция, 2 — Компрессия, 3 — Мощность, 4 — Выхлоп.CC-BY-SA 3.0 Zephyris

Топливо и воздух втягиваются в цилиндр двигателя за счет движения поршня вниз при открытом впускном клапане. Затем поршень начинает двигаться вверх, и впускной, и выпускной клапаны закрываются. Поднимающийся вверх поршень сжимает топливно-воздушную смесь. Затем воздушно-топливная смесь воспламеняется свечой зажигания (в обычных бензиновых двигателях), вызывая сгорание. Сильный нагрев создает высокое давление, заставляющее поршень опускаться. Затем открывается выпускной клапан. Поршень снова поднимается, высасывая выхлопные газы.И затем цикл повторяется.

Вот приличная анимация цикла Отто на YouTube: http://www.youtube.com/watch?v=6qHherIwsTE. (На YouTube-анимации воздухозаборник слева, а выхлоп справа). В Википедии также есть GIF-анимация: https://commons.wikimedia.org/wiki/File:4StrokeEngine_Ortho_3D_Small.gif. (На гифке впускное отверстие справа, а выпускное — слева).

Процесс сгорания — это преобразование химической энергии (бензина) в тепловую энергию (сгорание), которая преобразуется в энергию возвратно-поступательного движения (нагнетание поршней).Поршни через шатун поворачивают коленчатый вал. Когда поршень поднимается и опускается во время сгорания, он вращает коленчатый вал. Коленчатый вал превращает возвратно-поступательную энергию в энергию вращения. Эта энергия в конечном итоге передается колесам через трансмиссию, что мы обсудим позже в Уроке 9.

Анимация «Коленчатый вал», общественное достояние.

Анимированную иллюстрацию, показывающую поршни (серые) в соответствующих цилиндрах (синий) и коленчатый вал (красный), можно найти по адресу http: // commons.wikimedia.org/wiki/File:Cshaft.gif. Когда поршни поднимаются и опускаются, коленчатый вал вращается.

В дизельном двигателе нет свечей зажигания. Топливо воспламеняется только за счет сжатия. Компрессия выше в дизельном двигателе, который выделяет достаточно тепла, чтобы вызвать сгорание.

В гибридном транспортном средстве наряду с двигателем внутреннего сгорания используется электродвигатель и аккумулятор для поддержки движения. Двигатель внутреннего сгорания вырабатывает электричество для подзарядки батарей.Также происходит подзарядка аккумуляторов при торможении до полной остановки.

Моторное масло

Моторное масло предназначено для образования пленки смазки между всеми движущимися частями двигателя внутреннего сгорания для уменьшения трения и износа. Выбор подходящего моторного масла для вашего автомобиля и замена масла во время регулярных интервалов технического обслуживания обеспечат бесперебойную работу двигателя с течением времени. Рекомендуемый тип масла и спецификацию для вашего автомобиля можно найти в руководстве по эксплуатации.Еще одно место, где его можно найти — это крышка маслозаливной горловины. Он будет зависеть от температуры окружающей среды в том месте, где вы живете. В руководстве пользователя указаны два кода моторного масла: API и SAE.

Все масла имеют код API, который расшифровывается как Американский институт нефти. Это рейтинг качества, чистоты и типов моющих средств в масле. Код всегда будет из двух букв.

SAE — это вязкость или густота масла. Современное масло — это мультивязкое масло.SAE может быть чем-то вроде 5W-30. Первая комбинация цифр и букв (5W) указывает вязкость или густоту масла в холодном состоянии. Второе число — это вязкость при рабочей температуре двигателя. Раньше у них было мультивязкое масло, было только одно-вязкое масло (SAE 30), которое в холодную погоду было очень густым. Залить его в двигатель — все равно что заливать мед, но, что еще важнее, будет трудно перекачивать масло и смазывать двигатель. Вот почему старые двигатели нужно было прогреть, прежде чем на них можно было ездить.

Урок 5: Двигатель внутреннего сгорания и моторное масло — это один из двенадцати уроков, которые также доступны в виде бесплатной электронной книги с иллюстрациями. Эти уроки основаны на схеме нагрудного знака Boy Scout Automotive Maintenance и адаптированы Crawford’s Auto Repair для широкой аудитории. Эта статья предназначена только для информационных целей, и автор не несет ответственности за любые несчастные случаи, которые могут произойти при работе с автотранспортными средствами.Читая эту страницу, вы принимаете условие, что вы несете полную ответственность за свои действия. Для получения дополнительной информации по темам на этой странице см. Пакет «Ремонт и смазка двигателя» и «Замена масла и работы».

Авторские права © 2014, Джефф Кроуфорд . Разрешается переиздать эту статью для личного или коммерческого использования при условии, что содержание, цитирование и уведомление об авторских правах остаются неизменными и неизменными. Должна быть активная ссылка для подписки на CrawfordsAutoService.com.


Урок 5: Двигатель внутреннего сгорания и моторное масло находятся под лицензией Creative Commons Attribution-NoDerivatives 4.0 International License.

Двигатель с раздельным циклом теперь более эффективен, чем традиционный двигатель внутреннего сгорания (с видео)

Прототип двигателя. Изображение: Scuderi Group

(PhysOrg.com) — Двигатели с раздельным циклом существуют уже некоторое время, но до сих пор никогда не соответствовали топливной эффективности традиционных двигателей внутреннего сгорания.Это скоро изменится: последние двигатели с разделенным циклом от Scuderi Group предлагают более высокую топливную экономичность и снижение выбросов NO x до 80%, а также сокращение выбросов CO 2 на 50%.

Двигатели

с разделенным циклом имеют спаренные цилиндры, поэтому четырехцилиндровый двигатель имеет два набора спаренных цилиндров, работающих вместе, с переходным каналом, соединяющим два цилиндра в каждой паре друг с другом.Четыре такта двигателя разделены на две группы: левый цилиндр управляет впуском и сжатием, а второй — сгоранием и выпуском. В конструкции Scuderi ™ Air-Hybrid добавлен резервуар для хранения воздуха и элементы управления, которые позволяют собирать и накапливать энергию, потерянную во время работы двигателя.

Новая конструкция решает некоторые проблемы, которые препятствовали предыдущим конструкциям с разделенным циклом. Проблема с низким объемом дыхания решается открывающимися наружу пневматическими клапанами и уменьшением зазора между поршнем и головкой цилиндра до менее 1 мм, что означает, что практически 100 процентов сжатого воздуха выталкивается из цилиндра.

Видео: Scuderi Group

Проблема теплового КПД предыдущих конструкций была решена за счет применения режима сжигания после верхней мертвой точки (ATDC), который позволяет избежать потерь, вызванных повторным сжатием газа. Срабатывание ATDC достигается за счет попадания воздуха под высоким давлением в цилиндр, что приводит к сильной турбулентности. Сжигание ATDC является более чистым сжиганием, которое также значительно снижает выбросы NOx и повышает топливную экономичность.

Юго-западный научно-исследовательский институт (SwRI) уже почти год тестирует 1-литровый двухцилиндровый двигатель.Предварительные результаты предполагают повышение топливной эффективности на 30-36 процентов для безнаддувного Scuderi ™ Air-Hybrid и на 25 процентов для базовой модели. Тестовый двигатель развивает 135 лошадиных сил при 6000 об / мин, что аналогично результатам для более крупных и более прожорливых автомобилей.

Двигатель с разделенным циклом. Изображение: Scuderi Group Президент

Scuderi Сал Скудери, сын изобретателя Кармело Скудери, умершего в 2002 году, сказал, что, по его мнению, эффективность должна повыситься еще больше, поскольку конструкции доработаны, а новые моделирование запускается с двигателями на различных транспортных средствах.

Двигатель Scuderi может быть построен с использованием обычных деталей, при этом требуется минимальное переоснащение, что упрощает его внедрение производителями. Скудери говорит, что технология должна быть лицензирована и запущена в эксплуатацию в течение трех лет.

Видео: Scuderi Group

Правительство США вводит правила экономии топлива, чтобы вынудить производителей производить более экономичные автомобили, и это может сделать принятие альтернатив, таких как двигатели Scuderi, более привлекательными.


Инженер работает над очисткой и улучшением характеристик двигателя.
Дополнительная информация: www.scuderigroup.com/our-engines/

© 2010 PhysOrg.com

Ссылка : Двигатель с разделенным циклом теперь более эффективен, чем традиционный двигатель внутреннего сгорания (с видео) (2011, 24 января) получено 19 сентября 2021 г. с https: // физ.org / news / 2011-01-split-cycle-эффективный-традиционное-сгорание.html

Этот документ защищен авторским правом. За исключением честных сделок с целью частного изучения или исследования, никакие часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в информационных целях.

Пиреолофор: новый принцип двигателя

Именно в Ницце Клод и Нисефор Ньепс начали свои первые творческие поиски в качестве изобретателей.Их интерес сначала был сосредоточен на создании нового принципа действия двигателя, основанного на использовании расширения воздуха во время взрыва. Знали ли они что-нибудь о работах Гюйгенса (1625-1695), который уже использовал воздух, расширенный в результате взрыва пороха в цилиндре, для перемещения поршня?

Париж, 9 ноября 1806 года. Представление, описание и планы двигателя, изобретенного Клодом и Нисефором.

Сначала братья Ньепсе использовали в качестве взрывчатого вещества порошок, сделанный из споров растения: Lycopodium (широкий мох), затем они использовали уголь, смешанный со смолой.Так они изобрели первый двигатель внутреннего сгорания, который они назвали Пиреолофор (пир = огонь, эоло = ветер и фор = я ношу или производю).

Отчет 1806 г. об изобретении пиреолофора

В 1806 году они написали первый отчет. Комиссия Национального института, также известного как Академия наук, которому было поручено оценить изобретение, вынесла следующий вердикт:
«Топливо, обычно используемое М. Niépce состоит из спор ликоподия, горение которых является наиболее интенсивным и легким; однако, поскольку этот материал был дорогостоящим, они заменили его измельченным углем и при необходимости смешали с небольшой порцией смолы, что очень хорошо работает, как было доказано многими экспериментами.В М. В машине Ньепса никакая часть тепла не рассеивается заранее; движущая сила — это мгновенный результат, и весь топливный эффект используется для создания расширения, которое вызывает движущую силу.
В другом эксперименте машина, установленная на лодке с носом около двух футов шириной на три фута высотой, уменьшенным в подводной части и весом около 2000 фунтов, поднялась по реке Сона только с мощностью двигателя и со скоростью более река в обратном направлении; количество сжигаемого топлива составляло около ста двадцати пяти гранул в минуту, а количество пульсаций было от двенадцати до тринадцати за тот же промежуток времени.Затем члены комиссии приходят к выводу, что машина, предложенная под названием Pyreolophore М.М. Ниепс изобретателен и может стать очень интересным по своим физическим и экономическим результатам и заслуживает одобрения Комиссии ».
Отчет Лазара Карно и К. Бертолле 15 декабря 1806 г.

Братья Ньепс провели несколько испытаний на озере Баттере, расположенном среди лесов Ла-Шарме у Сен-Лу-де-Варен. Они получили патент сроком на десять лет.Этот патент был подписан императором Наполеоном и датирован 20 июля 1807 года.
Нисефор и Клод продолжали совершенствовать Пиреолофор.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *