Регулятор оборотов асинхронного двигателя 220в: регулирование скорости вращения электродвигателя переменного тока

Содержание

Регулировка оборотов коллекторного электродвигателя 220в. Регулировка оборотов асинхронного двигателя

Не каждая современная дрель или болгарка оснащена заводским регулятором оборотов, и чаще всего регулировка оборотов не предусмотрена вовсе. Тем не менее, как болгарки, так и дрели построены на базе коллекторных двигателей, что позволяет каждому их владельцу, маломальски умеющему обращаться с паяльником, изготовить собственный регулятор оборотов из доступных электронных компонентов, хоть из отечественных, хоть из импортных.

В данной статье мы рассмотрим схему и принцип работы простейшего регулятора оборотов двигателя электроинструмента, и единственное условие — двигатель должен быть коллекторным — с характерными ламелями на роторе и щетками (которые порой искрят).

Приведенная схема содержит минимум деталей, и подойдет для электроинструмента мощностью до 1,8 кВт и выше, для дрели или болгарки. Похожая схема используется для регулировки оборотов в автоматических стиральных машинах, в которых стоят коллекторные высокоскоростные двигатели, а также в диммерах для ламп накаливания. Подобные схемы, в принципе, позволят регулировать температуру нагрева жала паяльника, электрического обогревателя на базе ТЭНов и т. д.

Потребуются следующие радиоэлектронные компоненты:

    Резистор постоянный R1 — 6,8 кОм, 5 Вт.

    Переменный резистор R2 — 2,2 кОм, 2 Вт.

    Резистор постоянный R3 — 51 Ом, 0,125 Вт.

    Конденсатор пленочный C1 — 2 мкф 400 В.

    Конденсатор пленочный C2 — 0,047 мкф 400 вольт.

    Диоды VD1 и VD2 — на напряжение до 400 В, на ток до 1 А.

    Тиристор VT1 — на необходимый ток, на обратное напряжение не менее 400 вольт.

В основе схемы — тиристор. Тиристор представляет собой полупроводниковый элемент с тремя выводами: анод, катод, и управляющий электрод. После подачи на управляющий электрод тиристора короткого импульса положительной полярности, тиристор превращается в диод, и начинает проводить ток до тех пор, пока в его цепи этот ток не прервется или не сменит направление.

После прекращения тока или при смене его направления, тиристор закроется и перестанет проводить ток, пока не будет подан следующий короткий импульс на управляющий электрод. Ну а поскольку напряжение в бытовой сети переменное синусоидальное, то каждый период сетевой синусоиды тиристор (в составе данной схемы) станет отрабатывать строго начиная с установленного момента (в установленной фазе), и чем меньше во время каждого периода тиристор будет открыт, тем ниже будут обороты электроинструмента, а чем, соответственно, дольше тиристор будет открыт, тем выше будут обороты.

Как видите, принцип прост. Но применительно к электроинструменту с коллекторным двигателем, схема работает хитрее, и об этом мы расскажем далее.

Итак, в сеть здесь включены параллельно: измерительная цепь управления и силовая цепь. Измерительная цепь состоит из постоянного и переменного резисторов R1 и R2, из конденсатора C1, и диода VD1. Для чего нужна эта цепь? Это делитель напряжения. Напряжение с делителя, и что важно, противо-ЭДС с ротора двигателя, складываются в противофазе, и формируют импульс для открывания тиристора. Когда нагрузка постоянна, то и время открытого состояния тиристора постоянно, следовательно обороты стабилизированы и постоянны.

Как только нагрузка на инструмент, и следовательно на двигатель, увеличивается, то величина противо-ЭДС уменьшается, поскольку обороты снижаются, значит сигнал на управляющий электрод тиристора возрастает, и открывание происходит с меньшей задержкой, то есть мощность подводимая к двигателю возрастает, увеличивая упавшие обороты. Так обороты сохраняются постоянными даже под нагрузкой.


В результате совместного действия сигналов от противо-ЭДС и с резистивного делителя, нагрузка не сильно влияет на обороты, а без регулятора это влияние было бы существенным. Таким образом при помощи данной схемы достижима устойчивая регулировка оборотов в каждом положительном полупериоде сетевой синусоиды. При средних и малых скоростях вращения этот эффект более выражен.

Однако, при повышении оборотов, то есть при повышении напряжения, снимаемого с переменного резистора R2, стабильность поддержания скорости постоянной снижается.

Лучше на этот случай предусмотреть шунтирующую кнопку SA1 параллельно тиристору. Функция диодов VD1 и VD2 — обеспечение однополупериодного режима работы регулятора, так как напряжения с делителя и с ротора сравниваются лишь в отсутствие тока через двигатель.

Конденсатор C1 расширяет зону регулирования на малых скоростях, а конденсатор C2 снижает чувствительность к помехам от искрения щеток. Тиристор нужен высокочувствительный, чтобы ток менее 100 мкА смог бы его открыть.

Декор дня рождения своими руками

Закрыть… [X]

Такую коробку для вещей можно использовать на кухне, ванной или других комнатах для декора помещения своими руками.



Ковбойские остроносые сапогиПринцип работы самодельного замка заключается в следующем. В одной его половине находится постоянный магнит. а в другой — металлическая пластина. Одна из них крепится к двери. Вторая, с удаленной металлической пластиной, оснащается герконом КЭМ-1 и крепится к дверной коробке. Если дверь находится в закрытом положении, две части замка прижимаются, магнит оказывает действие на геркон, замыкая его контакты. Если же дверь открывается, магнит уходит, и контакты геркона размыкаются.


Батарея, системный блок компьютера, даже блок питания для ноутбука — это все лучшие друзья. Я уже молчу, про такие хорошие грелки, как мы с мужем.


Берите наполнитель и набивайте куклу. Когда полностью равномерно распределите набивку, зашейте изделие. Ручки необходимо пришивать к туловищу практически около самой шеи.

Из одной паллеты, отшлифованной, пропитанной и лакированной, получается садовый столик вроде журнального, слева на рис. Если в наличии есть пара, из них буквально за полчаса можно сделать настенный рабочий стол-стеллаж, в центре и справа. Цепи для него также можно сплести самому из мягкой проволоки, обтянутой трубкой из ПВХ или, лучше, термоусаживаемой. Для полного поднятия столешницы мелкий инструмент укладывают на полку настенной паллеты.



Ну а если стеклянную чашу, вазу, конфетницу, сосуд для пунша или обыкновенные бокалы наполнить водой, разбросав на дне морскую гальку, и отпустить в «свободное плавание» свечи-таблетки, получим волшебную подсветку для романтического Нового года. Для более интересного и неожиданного эффекта можно поэкспериментировать с цветом воды.Как производится установка шипов на резину?



Игрушки ручной работы для детей — это красиво, дешево и приятно. Каждый ребенок нуждается в оригинальных и обучающих игрушках, но не всегда есть возможность их приобрести. Сегодня мы покажем вам 5 примеров веселых игрушек, которые вы можете сделать самостоятельно. Они могут быть сделаны из картона, бумаги или дерева. В общем вдохновляйтесь и чаще радуйте своих детей.

Для основания такой конструкции можно использовать толстую фанеру, а для её верхней части – поликарбонат. Найти в сети солнечные батареи сегодня тоже не проблема.



Внимание! При стыковке панелей не стоит прилагать слишком большие усилия, вы можете повредить место стыка.



Именно столько ножей должно быть у хозяйки на кухне, чтобы процесс приготовления пищи всегда был простым и приятным.


Для изготовления кормушки своими руками нам потребуется:



Расчет древесины. Доски, носящие название клепки, имеют двояковыпуклые стороны для придания бондарному изделию выпуклости. Чтобы их сделать такими, нужно взять нижнюю часть ствола дерева и расколоть подобием рубки дров. Если его аккуратно пилить, то нарушится природная целостность волокон, что плохо для такого изделия. Сразу приступать к фигурному выпиливанию не стоит – поленья нужно просушить в течение 2 месяцев. Причем сушить не под палящим солнцем, а в темном прохладном помещении.

Как плести браслеты из шнурков

Тот факт, что большинство новогодних костюмов для детей дошкольного возраста легко шьются на основе комбинезона, может значительно сузить и облегчить творческий поиск. Если научится шить комбинезон — основу для новогоднего костюма и придумать (почерпнуть), смастерить своими руками декоративные элементы к нему, то можно сделать удивительные и довольно интересные модели новогодних нарядов для детей. Главное заранее все продумать до мелочей, вооружится знаниями по теме — чтобы результат труда приятно удивил и порадовал всех.


Проектирование шкафа-купе

Картинки

Подарок маме на день рождения своими руками фото инструкция

Похожие новости .

С все более увеличивающимся ростом автоматизации в бытовой сфере появляется необходимость в современных системах и устройствах управления электродвигателями.

Управление и преобразование частоты в небольших по мощности однофазных асинхронных двигателях, запускаемых в работу с помощью конденсаторов, позволяет экономить электроэнергию и активирует режим энергосбережения на новом, прогрессивном уровне.

Принцип работы однофазной асинхронной машины

В основе работы асинхронного двигателя лежит взаимодействие вращающегося магнитного поля статора и токов, наводимых им в роторе двигателя. При разности частоты вращения пульсирующих магнитных полей возникает вращающий момент. Именно этим принципом руководствуются при регулировании скорости вращения асинхронного двигателя с помощью .

Пусковая обмотка занимает в конструкции статора 1/3 пазов, на главную обмотку приходится 23 паза статора.

Ротор однофазного двигателя коротко замкнутый, помещенный в неподвижное магнитное поле статора, начинает вращаться.

Рис.№1 Схематический рисунок двигателя, демонстрирующий принцип работы однофазного асинхронного двигателя.

Основные виды однофазных электроприводов

Кондиционеры воздуха, холодильные компрессоры, электрические вентиляторы, обдувочные агрегаты, водяные, дренажные и фекальные насосы, моечные машины используют в своей конструкции асинхронный трехфазный двигатель.

Все типы частотников преобразуют переменное сетевое напряжение в постоянное напряжение. Служат для формирования однофазного напряжения с регулируемой частотой и заданной амплитудой для управления вращения асинхронных двигателей.

Управление скоростью вращения однофазных двигателей

Существует несколько способов регулирования скорости вращения однофазного двигателя.

  1. Управление скольжением двигателя или изменением напряжения. Способ актуален для агрегатов с вентиляторной нагрузкой, для него рекомендуется использовать двигатели с повышенной мощностью. Недостаток способа – нагрев обмоток двигателя.
  2. Ступенчатое регулирование скорости вращения двигателя с помощью автотрансформатора.

Рис.№2. Схема регулировки с помощью автотрансформатора.

Достоинства схемы – напряжение выхода имеет чистую синусоиду. Способность трансформатора к перегрузкам имеет большой запас по мощности.

Недостатки – автотрансформатор имеет большие габаритные размеры.

Использование тиристорного . Применяются тиристорные ключи, подключенные встречно-параллельно.

Рис. №3.Схема тиристорного регулирования однофазного асинхронного электродвигателя.

При использовании для регулирования скорости вращения однофазных асинхронных двигателей, чтобы избежать негативного влияния индукционной нагрузки производят модификацию схемы. Добавляют LRC-цепи для защиты силовых ключей, для корректировки волны напряжения используют конденсатор, минимальная мощность двигателя ограничивается, так гарантируется старт двигателя. Тиристор должен иметь ток выше тока электродвигателя.

Транзисторный регулятор напряжения

В схеме используется широтно-импульсная модуляция (ШИМ) с применением выходного каскада, построенного на использовании полевых или биполярных IGBT транзисторах.

Рис. №4. Схема использования ШИМ для регулирования однофазного асинхронного электродвигателя.

Частотное регулирование асинхронного однофазного электродвигателя считается основным способом регулирования , мощности, эффективности использования, скорости и показателей энергосбережения.

Рис. №5. Схема управления электродвигателем без исключения из конструкции конденсатора.

Частотный преобразователь: виды, принцип действия, схемы подключения

Разрешает своему владельцу снизить энергопотребление и автоматизировать процессы в управлении оборудованием и производством.

Основные компоненты : выпрямитель, конденсатор, IGBT-транзисторы, собранные в выходной каскад.

Благодаря способности управлением параметрами выходной частоты и напряжения достигается хороший энергосберегающий эффект. Энергосбережение выражается в следующем:

  1. В двигателе поддерживается неизменный текущий момент ращения вала. Это обусловлено взаимодействием выходной частоты инверторного преобразователя с частотой вращения двигателя и соответственно, зависимостью напряжения и крутящего момента на валу двигателя. Значит, что преобразователь дает возможность автоматически регулировать напряжение на выходе при обнаружении превышающего норму значения напряжения с определенной рабочей частотой нужно для поддержания требуемого момента. Все инверторные преобразователи с векторным управлением имеют функцию поддержания постоянного вращающего момента на валу.
  2. Частотный преобразователь служит для регулировки действия насосных агрегатов (). При получении сигнала, поступающего с датчика давления, частотник снижает производительность насосной установки. При снижении оборотов вращения двигателя уменьшается потребление выходного напряжения. Так, стандартное потребление воды насосом требует 50Гц промышленной частоты и 400В напряжения. Руководствуясь формулой мощности можно высчитать соотношение потребляемых мощностей.

Уменьшая частоту до 40Гц, уменьшается величина напряжения до 250В, означает, что уменьшается количество оборотов вращения насоса и потребление энергии снижается в 2,56 раз.


Рис. №6. Использование частотного преобразователя Speedrive для регулирования насосных агрегатов по систем CKEA MULTI 35.

Для повышения энергетической эффективности использования необходимо сделать следующее:

  • Частотный преобразователь должен соответствовать параметрам электродвигателя.
  • Частотник подбирается в соответствии с типом рабочего оборудования, для которого он предназначен. Так, частотник для насосов функционирует в соответствии с заложенными в программу параметрами для управления работой насоса.
  • Точные настройки параметров управления в ручном и автоматическом режиме.
  • Частотный преобразователь разрешает использовать режим энергосбережения.
  • Режим векторного регулирования позволяет произвести автоматическую настройку управления двигателем.

Преобразователь частоты однофазный

Компактное устройство преобразования частоты служит для управления однофазными электродвигателями для оборудования бытового предназначения. Большинство частотных преобразователей обладает следующими конструктивными возможностями:

  1. Большинство моделей использует в своей конструкции новейшие технологии векторного управления.
  2. Они обеспечивают улучшенный вращающий момент однофазного двигателя.
  3. Энергосбережение введено в автоматический режим.
  4. Некоторые модели частотных преобразователей используют съемный пульт управления.
  5. Встроенный PLC контроллер (он незаменим для создания устройств сбора и передачи данных, для создания систем телеметрии, объединяет устройства с различными протоколами и интерфейсами связи в общую сеть).
  6. Встроенный ПИД регулятор (контролирует и регулирует температуру, давление и технологические процессы).
  7. Напряжение выхода регулируется в автоматическом режиме.


Рис.№7. Современный преобразователь Optidrive с основными функциональными особенностями.

Важно: Однофазный преобразователь частоты, питаясь от однофазной сети напряжением 220В, выдает три линейных напряжения, величина каждого из них по 220В. То есть, линейное напряжение между 2 фазами находится в прямой зависимости от величины выходного напряжения самого частотника.

Частотный преобразователь не служит для двойного преобразования напряжения, благодаря наличию в конструкции ШИМ-регулятора, он может поднять величину напряжения не более чем на 10%.

Главная задача однофазного преобразователя частоты – обеспечить питание как одно- так и трехфазного электродвигателя. В этом случае ток двигателя будет соответствовать параметрам подключения от трехфазной сети, и оставаться постоянным

Частотное регулирование однофазных асинхронных электродвигателей

Первое на что обращаем внимание при выборе частотника для своего оборудования – это соответствие сетевого напряжения и номинального значения тока нагрузки, на который рассчитан двигатель. Способ подключения выбирается относительно рабочего тока.

Главным в схеме подключения является наличие фазосдвигающего конденсатора, он служит для сдвига напряжения, поступающего на пусковую обмотку. Она служит для пускового включения двигателя, иногда после того, как двигатель заработал, пусковая обмотка вместе с конденсатором отключается, иногда остается включенной.

Схема подключения однофазного двигателя с помощью однофазного частотного преобразователя без использования конденсатора

Выходное линейное напряжение устройства на каждой фазе равно выходному напряжению частотника, то есть на выходе будет три напряжения линии, каждое по 220В. Для запуска может использоваться только пусковая обмотка.

Рис. №8. Схема присоединения однофазного асинхронного двигателя через конденсатор

Фазосдвигающий конденсатор не может обеспечить равномерный фазовый сдвиг в пределах границ частот инвертора. Частотник обеспечит равномерный сдвиг фаз. Для того, чтобы исключить из схемы конденсатор, нужно:

  1. Конденсатор стартера С1 удаляется.
  2. Вывод обмотки двигателя присоединяем к точке выхода напряжения частотника (используется прямая проводка).
  3. Точка А присоединяется к СА; В соединяется с СВ; W соединяется к СС, таким образом электродвигатель присоединится напрямую.
  4. Для включения в обратном направлении (обратная проводка) необходимо В присоединить к СА; А присоединить к СВ; W соединить с СС.


Рис. №9. Схема подключения однофазного асинхронного двигателя без использования конденсатора.

На видео — Частотный преобразователь. в однофазную сеть 220В.

Данный регулятор оборотов электродвигателя 220в позволяет изменять частоту либо электродвигателя, рассчитанных на работу от сети 220 вольт.

Достаточно популярным регулятором оборотов для электродвигателей на 220 вольт переменного тока является схема на тиристорах. Типовой схемой является подключение электродвигателя или вентилятора в разрыв анодной цепи тиристора.

Одно не маловажное условие при использовании подобных регуляторов, это надежный контакт во всей цепи. Что нельзя сказать про коллекторные электродвигатели, поскольку у них механизм щеток создает кратковременные обрывы электроцепи. Это существенно влияет на качество работы регулятора.

Описание работы схемы регулятора оборотов

Приведенная ниже схема тиристорного регулятора оборотов , как раз разработана для изменения частоты вращения коллекторных электродвигателей (электродрель, фрезер, вентилятор ). Первое, что следует отметить, это то, что двигатель вместе с силовым тиристором VS2 подсоединен в одну из диагоналей диодного моста VD3, на другую же подается сетевое напряжение 220 вольт .

Помимо этого, данный тиристор контролируется достаточно широкими импульсами, благодаря которым, непродолжительные отключения активной нагрузки, которыми характеризуется работа коллекторного двигателя, не влияют на устойчивую работу данной схемы.

Для управления тиристором VS1 на транзисторе VT1, собран генератор импульсов. Питание данного генератор осуществляется трапециевидным напряжением, создающимся в результате ограничения положительных полуволн стабилитроном VD1 имеющих частоту 100 Гц. Конденсатор С1 разряжается через сопротивления R1, R2, R3. Резистором R1 осуществляется скорость разряда данного конденсатора.

При достижении на конденсаторе напряжения достаточного для открывания транзистора VT1, на управляющий вывод VS1 поступает положительный импульс. Тиристор открывается и теперь уже на управляющем выводе VS2 появляется длительный импульс управления. И уже с данного тиристора напряжение, которое фактически и влияет на величину оборотов, подается на двигатель.

Частоту оборотов вращения электродвигателя регулируют резистором R1. Так как в цепь VS2 подключена индуктивная нагрузка, то возможно спонтанное отпирание тиристора, даже при отсутствии управляющего сигнала. Поэтому для предотвращения данного нежелательного эффекта, в схему добавлен диод VD2 который подключается параллельно обмотке возбуждения L1 электродвигателя.

Детали регулятора оборотов вентилятора и электродвигателя

Стабилитрон – можно заменить на другой с напряжением стабилизации в районе 27 – 36В. Тиристоры VS1 – любой маломощный с прямым напряжением более 100 вольт, VS2 — возможно поставить КУ201К, КУ201Л, КУ202М. Диод VD2 – с обратным напряжением не меньше 400 вольт и прямым током более 0,3А. Конденсатор C1 – КМ-6.

Настройка регулятора оборотов

Во время наладки схемы регулятора желательно применить стробоскоп, который позволяет либо стрелочный вольтметр для переменного тока, который подсоединяют параллельно двигателю.

Вращая ручку резистора R1, определяют диапазон изменения напряжения. Путем подбора сопротивления R3 устанавливают данный диапазон в районе от 90 до 220 вольт. В том случае если при минимальных оборотах двигатель вентилятора работает неустойчиво, то необходимо немного уменьшить сопротивление R2.

Это устройство, предназначенное для выполнения функции плавного увеличения или уменьшения скорости вращения вала электрического двигателя. Регулировку можно осуществлять методом широтно-импульсной модуляции и методом изменения фазного напряжения.

Использование широтно-импульсной модуляции

Для управления и регулировки числа оборотов вращения электродвигателя асинхронного типа, можно использовать импульсный регулятор-стабилизатор напряжения (инвертор). Он будет выполнять функцию источника питания. В его основу положено применение импульсного ШИМ-регулятора марки ТL494. Питающее напряжение электродвигателя, выходящее после ШИМ-регулятора, будет изменяться в соответствии с изменением частоты вращения. Используя этот способ, достигается больший экономический эффект, устройство достаточно простое и при этом увеличивает эффективность регулирования.

На рисунке выше изображена схема использования ШИМ-регулятора для трехфазного асинхронного двигателя, подключенного через конденсатор к однофазной сети.

Этот способ, несмотря на свою эффективность, имеет два существенных недостатка – это:

  • невозможность реверсивного управления двигателем без использования дополнительных коммутирующих аппаратов;
  • частотные преобразователи , использованные в регуляторе, отличаются высокой стоимостью и выпускаются ограниченным числом производителей.

Блок управления и регулирования скорости вращения электродвигателей изменением фазного напряжения

Существует несколько видов блоков управления, изготовленных промышленным способом. Они используются для однофазных асинхронных двигателей, границы регулирования составляют от 25 до 100% от значения мощности, и от 1000 до 4000 об/мин. Это устройства с маркировкой РВС207, РВ600/900.

Работа блока регулировки происходит при изменении средней величины переменного напряжения на электродвигателе. Она производится с помощью метода фазового регулирования напряжения, при изменении угла открытия полупроводниковых приборов (тиристоров, симисторов и т. д.), при использовании которых осуществлена сборка схемы.

Управление блоком осуществляется посредством использования внешнего переменного резистора. В том случае, когда мощность менее 25%, двигатель отключается и переходит в дежурный режим ожидания.

Контроль за работой осуществляется при помощи светового индикатора. Отключенное состояние двигателя – изредка мигает красный цвет. Двигатель работает – скважность включения индикатора пропорциональна оборотам вращения (производительности) двигателя.

На рисунке схема подключения блока регулятора РВС 207.

Регулятор скорости асинхронного двигателя

Помимо образцов регуляторов, промышленных образцов регуляторов, существует возможность самостоятельного выполнения регуляторов скорости бесколлекторных двигателей, не уступающих промышленным образцам. За основу схемы берется пример регулятора промышленного производства, ее можно собрать своими силами.

На рисунке выше электрическая схема регулятора скорости вращения бесколлекторного двигателя.

Регулировать количество оборотов вращения вала бесколлекторного асинхронного электродвигателя допускается также при изменении значения переменного напряжения, подаваемого к двигателю.

В состав регулятора входит задающий генератор, он служит для изменения частоты в границах значений 50 – 200 Гц. Генератор состоит из мультивибратора, работа которого строится на микросхеме К561ЛА7 и счетчика-дешифратора марки К561ИЕ8 с коэффициентом пересчета – 8, она отвечает за формирование сигналов управления силовыми полевыми транзисторами полумоста.

В схеме присутствует выходной трансформатор Т-1. Он служит для развязки транзисторов полумоста.

Выпрямитель включает в свою конструкцию диодный мост и удваивающие напряжение питания – конденсаторы с большой емкостью.

Диодный мост подключен по нетрадиционной схеме. С4 и R7 выполняют роль демпфирующей цепи, она служит для сглаживания всплесков напряжения, которые представляют собой опасность для транзисторов VТ4.

Рекомендация : для трансформатора управления транзисторными ключами, можно применить трансформатор от телевизионного блока питания. В этом случае, тип не играет большого значения, главное, чтобы первичная обмотка состояла из 120 витков провода 0,7 мм2, вторичная представляет собой 2 независимые друг от друга обмотки с количеством витков – 60, провод, применяемый во вторичной обмотке, аналогичен проводу первичной. Первичная обмотка имеет напряжение 2 х 12 В, вторичная обмотка – по 12 В каждая.

Необходимо помнить, что обе вторичные обмотки должны обладать хорошей изоляцией друг от друга, между обмотками присутствует высокий потенциал, он составляет 640 В, они подключаются к затворам транзисторных ключей в противофазе.

Такой регулятор может управлять вращением асинхронного двигателя с максимальным значением рабочей мощности – 500 Вт. Чтобы регулятор использовать для регулировки электродвигателей более высокой мощности, нужно применить большее количество силовых ключей, а также изменить в сторону увеличения емкость конденсаторов для питающего фильтра, это элементы схемы С3 и С4. Для регулятора достаточно использовать печатную плату размером 110 х 80 мм. Управляющий силовыми транзисторными ключами трансформатор монтируется отдельно от блока регулятора.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

Схемы регуляторов оборотов асинхронных двигателей

Плавная работа двигателя, без рывков и скачков мощности – это залог его долговечности. Для контроля этих показателей используется регулятор оборотов электродвигателя на 220В, 12 В и 24 В, все эти частотники можно изготовить своими руками или купить уже готовый агрегат.

Зачем нужен регулятор оборотов

Регулятор оборотов двигателя, частотный преобразователь – это прибор на мощном транзисторе, который необходим для того, чтобы инвертировать напряжение, а также обеспечить плавную остановку и пуск асинхронного двигателя при помощи ШИМ. ШИМ – широко-импульсное управление электрическими приспособлениями. Его применяют для создания определенной синусоиды переменного и постоянного тока.

Фото — мощный регулятор для асинхронного двигателя

Самый простой пример преобразователя – это обычный стабилизатор напряжения. Но у обсуждаемого прибора гораздо больший спектр работы и мощность.

Частотные преобразователи используются в любом устройстве, которое питается от электрической энергии. Регуляторы обеспечивают чрезвычайно точный электрический моторный контроль, так что скорость двигателя можно изменять в меньшую или большую сторону, поддерживать обороты на нужном уровне и защищать приборы от резких оборотов. При этом электродвигателем используется только энергия, необходимая для работы, вместо того, чтобы запускать его на полной мощности.

Фото — регулятор оборотов двигателя постоянного тока

Зачем нужен регулятор оборотов асинхронного электродвигателя:

  1. Для экономии электроэнергии. Контролируя скорость мотора, плавность его пуска и остановки, силы и частоты оборотов, можно добиться значительной экономии личных средств. В качестве примера, снижение скорости на 20% может дать экономию энергии в размере 50%.
  2. Преобразователь частоты может использоваться для контроля температуры процесса, давления или без использования отдельного контроллера;
  3. Не требуется дополнительного контроллера для плавного пуска;
  4. Значительно снижаются расходы на техническое обслуживание.

Устройство часто используется для сварочного аппарата (в основном для полуавтоматов), электрической печки, ряда бытовых приборов (пылесоса, швейной машинки, радио, стиральной машины), домашнего отопителя, различных судомоделей и т.д.

Фото — шим контроллер оборотов

Принцип работы регулятора оборотов

Регулятор оборотов представляет собой устройство, состоящее из следующих трех основных подсистем:

  1. Двигателя переменного тока;
  2. Главного контроллера привода;
  3. Привода и дополнительных деталей.

Когда двигатель переменного тока запускается на полную мощность, происходит передача тока с полной мощностью нагрузки, такое повторяется 7-8 раз. Этот ток сгибает обмотки двигателя и вырабатывает тепло, которое будет выделяться продолжительное время. Это может значительно снизить долговечность двигателя. Иными словами, преобразователь – это своеобразный ступенчатый инвертор, который обеспечивает двойное преобразование энергии.

Фото — схема регулятора для коллекторного двигателя

В зависимости от входящего напряжения, частотный регулятор числа оборотов трехфазного или однофазного электродвигателя, происходит выпрямление тока 220 или 380 вольт. Это действие осуществляется при помощи выпрямляющего диода, который расположен на входе энергии. Далее ток проходит фильтрацию при помощи конденсаторов. Далее формируется ШИМ, за это отвечает электросхема. Теперь обмотки асинхронного электродвигателя готовы к передаче импульсного сигнала и их интеграции к нужной синусоиде. Даже у микроэлектродвигателя эти сигналы выдаются, в прямом смысле слова, пачками.

Как выбрать регулятор

Существует несколько характеристик, по которым нужно выбирать регулятор оборотов для автомобиля, станочного электродвигателя, бытовых нужд:

  1. Тип управления. Для коллекторного электродвигателя бывают регуляторы с векторной или скалярной системой управления. Первые чаще применяются, но вторые считаются более надежными;
  2. Мощность. Это один из самых важных факторов для выбора электрического преобразователя частот. Нужно подбирать частотник с мощностью, которая соответствует максимально допустимой на предохраняемом приборе. Но для низковольтного двигатель лучше подобрать регулятор мощнее, чем допустимая величина Ватт;
  3. Напряжение. Естественно, здесь все индивидуально, но по возможности нужно купить регулятор оборотов для электродвигателя, у которого принципиальная схема имеет широкий диапазон допустимых напряжений;
  4. Диапазон частот. Преобразование частоты – это основная задача данного прибора, поэтому старайтесь выбрать модель, которая будет максимально соответствовать Вашим потребностям. Скажем, для ручного фрезера будет достаточно 1000 Герц;
  5. По прочим характеристикам. Это срок гарантии, количество входов, размер (для настольных станков и ручных инструментов есть специальная приставка).

Хорошо себя зарекомендовали приборы марки Sinus, E-Sky и Pic.

При этом также нужно понимать, что есть так называемый универсальный регулятор вращения. Это частотный преобразователь для бесколлекторных двигателей.

Фото — схема регулятора для бесколлекторных двигателей

В данной схеме есть две части – одна логическая, где на микросхеме расположен микроконтроллер, а вторая – силовая. В основном такая электрическая схема используется для мощного электрического двигателя.

Видео: регулятор оборотов электродвигателя с ШИро V2

Как сделать самодельный регулятор оборотов двигателя

Можно сделать простой симисторный регулятор оборотов электродвигателя, его схема представлена ниже, а цена состоит только из деталей, продающихся в любом магазине электротехники.

Для работы нам понадобится мощный симистор типа BT138-600, её советует журнал радиотехники.

Фото — схема регулятора оборотов своими руками

В описанной схеме, обороты будут регулироваться при помощи потенциометра P1. Параметром P1 определяется фаза входящего импульсного сигнала, который в свою очередь открывает симистор. Такая схема может применяться как в полевом хозяйстве, так и в домашнем. Можно использовать данный регулятор для швейных машинок, вентиляторов, настольных сверлильных станков.

Принцип работы прост: в момент, когда двигатель немного затормаживается, его индуктивность падает, и это увеличивает напряжение в R2-P1 и C3, то в свою очередь влечет более продолжительное открытие симистора.

Тиристорный регулятор с обратной связью работает немного по-другому. Он обеспечивает обратный ход энергии в энергетическую систему, что является очень экономным и выгодным. Данный электронный прибор подразумевает включение в электрическую схемы мощного тиристора. Его схема выглядит вот так:

Здесь для подачи постоянного тока и выпрямления требуется генератор управляющего сигнала, усилитель, тиристор, цепь стабилизации оборотов.

Плавная работа двигателя, без рывков и скачков мощности – это залог его долговечности. Для контроля этих показателей используется регулятор оборотов электродвигателя на 220В, 12 В и 24 В, все эти частотники можно изготовить своими руками или купить уже готовый агрегат.

Зачем нужен регулятор оборотов

Регулятор оборотов двигателя, частотный преобразователь – это прибор на мощном транзисторе, который необходим для того, чтобы инвертировать напряжение, а также обеспечить плавную остановку и пуск асинхронного двигателя при помощи ШИМ. ШИМ – широко-импульсное управление электрическими приспособлениями. Его применяют для создания определенной синусоиды переменного и постоянного тока.

Фото — мощный регулятор для асинхронного двигателя

Самый простой пример преобразователя – это обычный стабилизатор напряжения. Но у обсуждаемого прибора гораздо больший спектр работы и мощность.

Частотные преобразователи используются в любом устройстве, которое питается от электрической энергии. Регуляторы обеспечивают чрезвычайно точный электрический моторный контроль, так что скорость двигателя можно изменять в меньшую или большую сторону, поддерживать обороты на нужном уровне и защищать приборы от резких оборотов. При этом электродвигателем используется только энергия, необходимая для работы, вместо того, чтобы запускать его на полной мощности.

Фото — регулятор оборотов двигателя постоянного тока

Зачем нужен регулятор оборотов асинхронного электродвигателя:

  1. Для экономии электроэнергии. Контролируя скорость мотора, плавность его пуска и остановки, силы и частоты оборотов, можно добиться значительной экономии личных средств. В качестве примера, снижение скорости на 20% может дать экономию энергии в размере 50%.
  2. Преобразователь частоты может использоваться для контроля температуры процесса, давления или без использования отдельного контроллера;
  3. Не требуется дополнительного контроллера для плавного пуска;
  4. Значительно снижаются расходы на техническое обслуживание.

Устройство часто используется для сварочного аппарата (в основном для полуавтоматов), электрической печки, ряда бытовых приборов (пылесоса, швейной машинки, радио, стиральной машины), домашнего отопителя, различных судомоделей и т.д.

Фото — шим контроллер оборотов

Принцип работы регулятора оборотов

Регулятор оборотов представляет собой устройство, состоящее из следующих трех основных подсистем:

  1. Двигателя переменного тока;
  2. Главного контроллера привода;
  3. Привода и дополнительных деталей.

Когда двигатель переменного тока запускается на полную мощность, происходит передача тока с полной мощностью нагрузки, такое повторяется 7-8 раз. Этот ток сгибает обмотки двигателя и вырабатывает тепло, которое будет выделяться продолжительное время. Это может значительно снизить долговечность двигателя. Иными словами, преобразователь – это своеобразный ступенчатый инвертор, который обеспечивает двойное преобразование энергии.

Фото — схема регулятора для коллекторного двигателя

В зависимости от входящего напряжения, частотный регулятор числа оборотов трехфазного или однофазного электродвигателя, происходит выпрямление тока 220 или 380 вольт. Это действие осуществляется при помощи выпрямляющего диода, который расположен на входе энергии. Далее ток проходит фильтрацию при помощи конденсаторов. Далее формируется ШИМ, за это отвечает электросхема. Теперь обмотки асинхронного электродвигателя готовы к передаче импульсного сигнала и их интеграции к нужной синусоиде. Даже у микроэлектродвигателя эти сигналы выдаются, в прямом смысле слова, пачками.

Как выбрать регулятор

Существует несколько характеристик, по которым нужно выбирать регулятор оборотов для автомобиля, станочного электродвигателя, бытовых нужд:

  1. Тип управления. Для коллекторного электродвигателя бывают регуляторы с векторной или скалярной системой управления. Первые чаще применяются, но вторые считаются более надежными;
  2. Мощность. Это один из самых важных факторов для выбора электрического преобразователя частот. Нужно подбирать частотник с мощностью, которая соответствует максимально допустимой на предохраняемом приборе. Но для низковольтного двигатель лучше подобрать регулятор мощнее, чем допустимая величина Ватт;
  3. Напряжение. Естественно, здесь все индивидуально, но по возможности нужно купить регулятор оборотов для электродвигателя, у которого принципиальная схема имеет широкий диапазон допустимых напряжений;
  4. Диапазон частот. Преобразование частоты – это основная задача данного прибора, поэтому старайтесь выбрать модель, которая будет максимально соответствовать Вашим потребностям. Скажем, для ручного фрезера будет достаточно 1000 Герц;
  5. По прочим характеристикам. Это срок гарантии, количество входов, размер (для настольных станков и ручных инструментов есть специальная приставка).

Хорошо себя зарекомендовали приборы марки Sinus, E-Sky и Pic.

При этом также нужно понимать, что есть так называемый универсальный регулятор вращения. Это частотный преобразователь для бесколлекторных двигателей.

Фото — схема регулятора для бесколлекторных двигателей

В данной схеме есть две части – одна логическая, где на микросхеме расположен микроконтроллер, а вторая – силовая. В основном такая электрическая схема используется для мощного электрического двигателя.

Видео: регулятор оборотов электродвигателя с ШИро V2

Как сделать самодельный регулятор оборотов двигателя

Можно сделать простой симисторный регулятор оборотов электродвигателя, его схема представлена ниже, а цена состоит только из деталей, продающихся в любом магазине электротехники.

Для работы нам понадобится мощный симистор типа BT138-600, её советует журнал радиотехники.

Фото — схема регулятора оборотов своими руками

В описанной схеме, обороты будут регулироваться при помощи потенциометра P1. Параметром P1 определяется фаза входящего импульсного сигнала, который в свою очередь открывает симистор. Такая схема может применяться как в полевом хозяйстве, так и в домашнем. Можно использовать данный регулятор для швейных машинок, вентиляторов, настольных сверлильных станков.

Принцип работы прост: в момент, когда двигатель немного затормаживается, его индуктивность падает, и это увеличивает напряжение в R2-P1 и C3, то в свою очередь влечет более продолжительное открытие симистора.

Тиристорный регулятор с обратной связью работает немного по-другому. Он обеспечивает обратный ход энергии в энергетическую систему, что является очень экономным и выгодным. Данный электронный прибор подразумевает включение в электрическую схемы мощного тиристора. Его схема выглядит вот так:

Здесь для подачи постоянного тока и выпрямления требуется генератор управляющего сигнала, усилитель, тиристор, цепь стабилизации оборотов.

Однофазные асинхронные двигатели питаются от обычной сети переменного напряжения 220 В.

Наиболее распространённая конструкция таких двигателей содержит две (или более) обмотки – рабочую и фазосдвигающую. Рабочая питается напрямую, а дополнительная через конденсатор, который сдвигает фазу на 90 градусов, что создаёт вращающееся магнитное поле. Поэтому такие двигатели ещё называют двухфазные или конденсаторные.

Регулировать скорость вращения таких двигателей необходимо, например, для:

  • изменения расхода воздуха в системе вентиляции
  • регулирования производительности насосов
  • изменения скорости движущихся деталей, например в станках, конвеерах

В системах вентиляции это позволяет экономить электроэнергию, снизить уровень акустического шума установки, установить необходимую производительность.

Способы регулирования

Рассматривать механические способы изменения скорости вращения, например редукторы, муфты, шестерёнчатые трансмиссии мы не будем. Также не затронем способ изменения количества полюсов обмоток.

Рассмотрим способы с изменением электрических параметров:

  • изменение напряжения питания двигателя
  • изменение частоты питающего напряжения

Регулирование напряжением

Регулирование скорости этим способом связано с изменением, так называемого, скольжения двигателя – разностью между скоростью вращения магнитного поля, создаваемого неподвижным статором двигателя и его движущимся ротором:

n1 скорость вращения магнитного поля

n2– скорость вращения ротора

При этом обязательно выделяется энергия скольжения – из-за чего сильнее нагреваются обмотки двигателя.

Данный способ имеет небольшой диапазон регулирования, примерно 2:1, а также может осуществляться только вниз – то есть, снижением питающего напряжения.

При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности.

Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.

На практике для этого применяют различные схемы регуляторов.

Автотрансформаторное регулирование напряжения

Автотрансформатор – это обычный трансформатор, но с одной обмоткой и с отводами от части витков. При этом нет гальванической развязки от сети, но она в данном случае и не нужна, поэтому получается экономия из-за отсутствия вторичной обмотки.

На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.

Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.

Преимущества данной схемы:

  • неискажённая форма выходного напряжения (чистая синусоида)
  • хорошая перегрузочная способность трансформатора

Недостатки:

  • большая масса и габариты трансформатора (зависят от мощности нагрузочного мотора)
  • все недостатки присущие регулировке напряжением

Тиристорный регулятор оборотов двигателя

В данной схеме используются ключи – два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) или симистор.

Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно «отрезается» кусок вначале или, реже в конце волны напряжения.

Таким образом изменяется среднеквадратичное значение напряжения.

Данная схема довольно широко используется для регулирования активной нагрузки – ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры).

Ещё один способ регулирования – пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно – шумы и рывки при работе.

Для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:

  • устанавливают защитные LRC-цепи для защиты силового ключа (конденсаторы, резисторы, дроссели)
  • добавляют на выходе конденсатор для корректировки формы волны напряжения
  • ограничивают минимальную мощность регулирования напряжения – для гарантированного старта двигателя
  • используют тиристоры с током в несколько раз превышающим ток электромотора

Достоинства тиристорных регуляторов:

Недостатки:

  • можно использовать для двигателей небольшой мощности
  • при работе возможен шум, треск, рывки двигателя
  • при использовании симисторов на двигатель попадает постоянное напряжение
  • все недостатки регулирования напряжением

Стоит отметить, что в большинстве современных кондиционеров среднего и высшего уровня скорость вентилятора регулируется именно таким способом.

Транзисторный регулятор напряжения

Как называет его сам производитель – электронный автотрансформатор или ШИМ-регулятор.

Изменение напряжения осуществляется по принципу ШИМ (широтно-импульсная модуляция), а в выходном каскаде используются транзисторы – полевые или биполярные с изолированным затвором (IGBT).

Выходные транзисторы коммутируются с высокой частотой (около 50 кГц), если при этом изменить ширину импульсов и пауз между ними, то изменится и результирующее напряжение на нагрузке. Чем короче импульс и длиннее паузы между ними, тем меньше в итоге напряжение и подводимая мощность.

Для двигателя, на частоте в несколько десятков кГц, изменение ширины импульсов равносильно изменению напряжения.

Выходной каскад такой же как и у частотного преобразователя, только для одной фазы – диодный выпрямитель и два транзистора вместо шести, а схема управления изменяет выходное напряжение.

Плюсы электронного автотрансформатора:

  • Небольшие габариты и масса прибора
  • Невысокая стоимость
  • Чистая, неискажённая форма выходного тока
  • Отсутствует гул на низких оборотах
  • Управление сигналом 0-10 Вольт

Слабые стороны:

  • Расстояние от прибора до двигателя не более 5 метров (этот недостаток устраняется при использовании дистанционного регулятора)
  • Все недостатки регулировки напряжением

Частотное регулирование

Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина – не было дешёвых силовых высоковольтных транзисторов и модулей.

Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие – массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.

На данный момент частотное преобразование – основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.

Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.

Однофазные двигатели могут управляться:

  • специализированными однофазными ПЧ
  • трёхфазными ПЧ с исключением конденсатора

Преобразователи для однофазных двигателей

В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей – INVERTEK DRIVES.

Это модель Optidrive E2

Для стабильного запуска и работы двигателя используются специальные алгоритмы.

При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:

f – частота тока

С – ёмкость конденсатора

В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:

Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя – в некоторых моделях это сделать довольно сложно.

Преимущества специализированного частотного преобразователя:

  • интеллектуальное управление двигателем
  • стабильно устойчивая работа двигателя
  • огромные возможности современных ПЧ:
  • возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
  • многочисленные защиты (двигателя и самого прибора)
  • входы для датчиков (цифровые и аналоговые)
  • различные выходы
  • коммуникационный интерфейс (для управления, мониторинга)
  • предустановленные скорости
  • ПИД-регулятор

Минусы использования однофазного ПЧ:

Использование ЧП для трёхфазных двигателей

Стандартный частотник имеет на выходе трёхфазное напряжение. При подключении к ему однофазного двигателя из него извлекают конденсатор и соединяют по приведённой ниже схеме:

Геометрическое расположение обмоток друг относительно друга в статоре асинхронного двигателя составляет 90°:

Фазовый сдвиг трёхфазного напряжения -120°, как следствие этого – магнитное поле будет не круговое , а пульсирующее и его уровень будет меньше чем при питании со сдвигом в 90°.

В некоторых конденсаторных двигателях дополнительная обмотка выполняется более тонким проводом и соответственно имеет более высокое сопротивление.

При работе без конденсатора это приведёт к:

  • более сильному нагреву обмотки (срок службы сокращается, возможны кз и межвитковые замыкания)
  • разному току в обмотках

Многие ПЧ имеют защиту от асимметрии токов в обмотках, при невозможности отключить эту функцию в приборе работа по данной схеме будет невозможна

Преимущества:

  • более низкая стоимость по сравнению со специализированными ПЧ
  • огромный выбор по мощности и производителям
  • более широкий диапазон регулирования частоты
  • все преимущества ПЧ (входы/выходы, интеллектуальные алгоритмы работы, коммуникационные интерфейсы)

Недостатки метода:

  • необходимость предварительного подбора ПЧ и двигателя для совместной работы
  • пульсирующий и пониженный момент
  • повышенный нагрев
  • отсутствие гарантии при выходе из строя, т.к. трёхфазные ПЧ не предназначены для работы с однофазными двигателями

Регулировка оборотов асинхронного двигателя 220в

Благодаря надежности и простоте конструкции асинхронные двигатели (АД) получили широкое распространение. В большинстве станков, промышленном и бытовом оборудовании применяются электродвигатели такого типа. Изменение скорости вращения АД производится механически (дополнительной нагрузкой на валу, балластом, передаточными механизмами, редукторами и т.д.) или электрическими способами. Электрическое регулирование более сложное, но и гораздо более удобное и универсальное.

Для многих агрегатов применяется именно электрическое управление. Оно обеспечивает точное и плавное регулирование пуска и работы двигателя. Электрическое управление производится за счет:

  • изменения частоты тока;
  • силы тока;
  • уровня напряжения.

В этой статье мы рассмотрим популярные способы, как может осуществляться регулировка оборотов асинхронного двигателя на 220 и 380В.

Изменение скорости АД с короткозамкнутым ротором

Существует несколько способов:

  1. Управление вращением за счет изменения электромагнитного поля статора: частотное регулирование и изменение числа пар полюсов.
  1. Изменение скольжения электромотора за счет уменьшения или увеличения напряжения (может применяться для АД с фазным ротором).

Частотное регулирование

В данном случае регулировка производится с помощью подключенного к двигателю устройства для преобразования частоты. Для этого применяются мощные тиристорные преобразователи. Процесс частотного регулирования можно рассмотреть на примере формулы ЭДС трансформатора:

Данное выражение означает, что для сохранения постоянного магнитного потока, означающего сохранение перегрузочной способности электромотора, следует одновременно с преобразованием частоты корректировать и уровень питающего напряжения. Если сохраняется выражение, вычисленное по формуле:

то это означает, что критический момент не изменен. А механические характеристики соответствуют рисунку ниже, если вы не понимаете, что значат эти характеристики, то в этом случае регулировка происходит без потери мощности и момента.

Достоинствами данного метода являются:

  • плавное регулирование;
  • изменение скорости вращения ротора в большую и меньшую сторону;
  • жесткие механические характеристики;
  • экономичность.

Недостаток один — необходимость в частотном преобразователе, т.е. увеличение стоимости механизма. К слову, на современном рынке представлены модели с однофазным и трёхфазным входом, стоимость которых при мощности 2-3 кВт лежит в диапазоне 100-150 долларов, что не слишком дорого для полноценной регулировки привода станков в частной мастерской.

Переключение числа пар полюсов

Данный метод применяется для многоскоростных двигателей со сложной обмоткой, позволяющей изменять число пар ее полюсов. Самое широкое применение получили двухскоростные, трехскоростные и четырехскоростные АД. Принцип регулировки проще всего рассмотреть на основе двухскоростного АД. В такой машине обмотка каждой фазы состоит из двух полуобмоток. Скорость вращения изменяется при подключении их последовательно или параллельно.

В четырехскоростном электродвигателе обмотка выполнена в виде двух независимых друг от друга частей. При изменении числа пар полюсов первой обмотки производится изменение скорости работы электромотора с 3000 до 1500 оборотов в минуту. При помощи второй обмотки производится регулировка вращения 1000 и 500 оборотов в минуту.

При изменении числа пар полюсов происходит и изменение критического момента. Для его сохранения неизменным, требуется одновременно с изменением числа пар полюсов регулировать и питающее напряжение, например, переключением схемы звезда-треугольник и их вариациями.

Достоинства данного метода:

  • жесткие механические характеристики двигателя;
  • высокий КПД.
  • ступенчатая регулировка;
  • большой вес и габаритные размеры;
  • высокая стоимость электромотора.

Способы управления скоростью АД с фазным ротором

Изменение скорости вращения АД с фазным ротором производится путем изменения скольжения. Рассмотрим основные варианты и способы.

Изменение питающего напряжения

Этот способ также применяется для АД с КЗ ротором. Асинхронный двигатель подключается через автотрансформатор или ЛАТР. Если уменьшать напряжение питания, частота вращения двигателя снизится.

Но такой режим уменьшает перегрузочную способность двигателя. Этот способ применяется для регулирования в пределах напряжения не выше номинального, так как увеличение номинального напряжения приведет к выходу электродвигателя из строя.

Активное сопротивление в цепи ротора

При использовании данного метода в цепь ротора подключается реостат или набор постоянных резисторов большой мощности. Данное устройство предназначено для плавного увеличения сопротивления.

Скольжение растет пропорционально увеличению сопротивления, а скорость вращения вала электромотора при этом снижается.

  • большой диапазон регулирования в сторону понижения скорости вращения.
  • снижение КПД;
  • увеличение потерь;
  • ухудшение механических характеристик.

Асинхронный вентильный каскад и машины двойного питания

Изменение скорости работы асинхронных электромоторов в данных случаях выполняется путем изменения скольжения. При этом скорость вращения электромагнитного поля неизменна. Напряжение подается напрямую на обмотки статора. Регулировка происходит за счет использования мощности скольжения, которая трансформируется в цепь ротора, и образует добавочную ЭДС. Такие методы используются только в специальных машинах и крупных промышленных устройствах.

Плавный пуск асинхронных электродвигателей

АД кроме безусловных преимуществ, обладают существенными недостатками. Это рывок на старте и большие пусковые токи, в 7 раз превышающие номинальные. Для мягкого старта электродвигателя используются следующие методы:

  • переключение обмоток по схеме звезда – треугольник;
  • включение электродвигателя через автотрансформатор;
  • использование специализированных устройств для плавного пуска.

В большинстве частотных регуляторов есть функция плавного пуска двигателя. Это не только снижает пусковые токи, но и уменьшает нагрузки на исполнительные механизмы. Поэтому регулирование частоты и плавный пуск довольно сильно связаны между собой.

Как сделать устройство для изменения скорости вращения электродвигателя своими руками

Для регулировки маломощных однофазных АД можно использовать диммеры. Однако этот способ ненадежен и обладает серьезными недостатками: снижением КПД, серьезным перегревом устройства и опасностью повреждения двигателя.

Для надежного и качественного регулирования оборотов электродвигателей на 220В, лучше всего подходит частотное регулирование.

Приведенная ниже схема позволяет собрать частотное устройство для регулировки электромоторов мощностью до 500 Вт. Изменение скорости вращения производится в границах от 1000 до 4000 оборотов в минуту.

Устройство состоит из задающего генератора с изменяемой частотой, состоящего из мультивибратора, собранного на микросхеме К561ЛА7, счетчика на микросхеме К561ИЕ8, полумоста регулятора. Выходной трансформатор Т1 выполняет развязку верхнего и нижнего транзисторов полумоста.

Демпфирующая цепь С4, R7 гасит всплески напряжения опасные для силовых транзисторов VT3, VT4. Выпрямитель, удвоитель напряжения питающей сети, включает в себя диодный мост VD9, с конденсатором фильтра на которых происходит удвоение напряжения питания полумоста.

Напряжение первичной обмотки: 2х12В, вторичной обмотки 12В. Первичная обмотка трансформатора управления ключами, состоит из 120 витков медного провода сечением 0,7мм, с отводом от середины. Вторичная – две обмотки, каждая по 60 витков повода сечением 0,7 мм.

Вторичные обмотки необходимо максимально надежно заизолировать друг от друга, так как разница потенциалов между ними доходит до 640 В. Подключение выходных обмоток к затворам ключей производится в противофазе.

Вот мы и рассмотрели способы регулировки оборотов асинхронных двигателей. Если возникли вопросы, задавайте их в комментариях под статьей!

Каждый из нас дома имеет какой-то электроприбор, который работает в доме не один год. Но со временем мощность техники слабеет и не выполняет своих прямых предназначений. Именно тогда стоит обратить внимание на внутренности оборудования. В основном проблемы возникают с электродвигателем, который отвечает за функциональность техники. Тогда стоит обратить свое внимание на прибор, который регулирует обороты мощности двигателя без снижения их мощности.

Виды двигателей

Регулятор оборотов с поддержанием мощности — изобретение, которое вдохнет новую жизнь в электроприбор, и он будет работать как только что приобретенный товар. Но стоит помнить о том, что двигатели бывают разных форматов и у каждого своя предельная работа.

Двигатели разные по характеристикам. Это значит то, что та или иная техника работает на разных частотах оборота вала, запускающего механизм. Мотор может быть:

В основном трехфазные электромоторы встречаются на заводах или крупных фабриках. В домашних условиях используются однофазные и двухфазные. Данного электричества хватает на работу бытовой техники.

Регулятор оборотов мощности

Принципы работы

Регулятор оборотов электродвигателя 220 В без потери мощности используется для поддержки первоначальной заданной частоты оборотов вала. Это один из основных принципов данного прибора, который называется частотным регулятором.

С помощью него электроприбор работает в установленной частоте оборотов двигателя и не снижает ее. Также регулятор скорости двигателя влияет на охлаждение и вентиляцию мотора. C помощью мощности устанавливается скорость, которую можно как поднять, так и снизить.

Вопросом о том, как уменьшить обороты электродвигателя 220 В, задавались многие люди. Но данная процедура довольно проста. Стоит только изменить частоту питающего напряжения, что существенно снизит производительность вала мотора. Также можно изменить питание двигателя, задействуя при этом его катушки. Управление электричеством тесно связано с магнитным полем и скольжением электродвигателя. Для таких действий используют в основном автотрансформатор, бытовые регуляторы, которые уменьшают обороты данного механизма. Но стоит также помнить о том, что будет уменьшаться мощность двигателя.

Вращение вала

Двигатели делят на:

Регулятор скорости вращения асинхронного электродвигателя зависит от подключения тока к механизму. Суть работы асинхронного мотора зависит от магнитных катушек, через которые проходит рамка. Она поворачивается на скользящих контактах. И когда при повороте она развернется на 180 градусов, то по данным контактам связь потечет в обратном направлении. Таким образом, вращение останется неизменным. Но при этом действии нужный эффект не будет получен. Он войдет в силу после внесения в механизм пары десятков рамок данного типа.

Коллекторный двигатель используется очень часто. Его работа проста, так как пропускаемый ток проходит напрямую — из-за этого не теряется мощность оборотов электродвигателя, и механизм потребляет меньше электричества.

Двигатель стиральной машины также нуждается в регулировке мощности. Для этого были сделаны специальные платы, которые справляются со своей работой: плата регулировки оборотов двигателя от стиральной машины несет многофункциональное употребление, так как при ее применении снижается напряжение, но не теряется мощность вращения.

Схема данной платы проверена. Стоит только поставить мосты из диодов, подобрав оптрон для светодиода. При этом еще нужно поставить симистор на радиатор. В основном регулировка двигателя начинается от 1000 оборотов.

Если не устраивает регулятор мощности и не хватает его функциональности, можно сделать или усовершенствовать механизм. Для этого нужно учитывать силу тока, которая не должна превышать 70 А, и теплоотдачу при использовании. Поэтому можно установить амперметр для регулировки схемы. Частота будет небольшой и будет определена конденсатором С2.

Далее стоит настроить регулятор и его частоту. При выходе данный импульс будет выходить через двухтактный усилитель на транзисторах. Также можно сделать 2 резистора, которые будут служить выходом для охладительной системы компьютера. Чтобы схема не сгорела, требуется специальный блокиратор, который будет служить удвоенным значением тока. Так данный механизм будет работать долго и в нужном объеме. Регулирующие приборы мощности обеспечат вашим электроприборам долгие годы службы без особых затрат.

    0 commentsПрименение Октябрь 27, 2016

С все более увеличивающимся ростом автоматизации в бытовой сфере появляется необходимость в современных системах и устройствах управления электродвигателями.

Управление и преобразование частоты в небольших по мощности однофазных асинхронных двигателях, запускаемых в работу с помощью конденсаторов, позволяет экономить электроэнергию и активирует режим энергосбережения на новом, прогрессивном уровне.

Принцип работы однофазной асинхронной машины

В основе работы асинхронного двигателя лежит взаимодействие вращающегося магнитного поля статора и токов, наводимых им в роторе двигателя. При разности частоты вращения пульсирующих магнитных полей возникает вращающий момент. Именно этим принципом руководствуются при регулировании скорости вращения асинхронного двигателя с помощью частотного преобразователя.

Электродвигатель по факту может считаться двухфазным, но у него только одна рабочая обмотка статора, вторая, расположенная относительно главной под углом в 90 о является пусковой.

Пусковая обмотка занимает в конструкции статора 1/3 пазов, на главную обмотку приходится 23 паза статора.

Ротор однофазного двигателя коротко замкнутый, помещенный в неподвижное магнитное поле статора, начинает вращаться.

Рис.№1 Схематический рисунок двигателя, демонстрирующий принцип работы однофазного асинхронного двигателя.

Основные виды однофазных электроприводов

Кондиционеры воздуха, холодильные компрессоры, электрические вентиляторы, обдувочные агрегаты, водяные, дренажные и фекальные насосы, моечные машины используют в своей конструкции асинхронный трехфазный двигатель.

Все типы частотников преобразуют переменное сетевое напряжение в постоянное напряжение. Служат для формирования однофазного напряжения с регулируемой частотой и заданной амплитудой для управления вращения асинхронных двигателей.

Управление скоростью вращения однофазных двигателей

Существует несколько способов регулирования скорости вращения однофазного двигателя.

  1. Управление скольжением двигателя или изменением напряжения. Способ актуален для агрегатов с вентиляторной нагрузкой, для него рекомендуется использовать двигатели с повышенной мощностью. Недостаток способа – нагрев обмоток двигателя.
  2. Ступенчатое регулирование скорости вращения двигателя с помощью автотрансформатора.

Рис.№2. Схема регулировки с помощью автотрансформатора.

Достоинства схемы – напряжение выхода имеет чистую синусоиду. Способность трансформатора к перегрузкам имеет большой запас по мощности.

Недостатки – автотрансформатор имеет большие габаритные размеры.

Использование тиристорного регулятора оборотов двигателя. Применяются тиристорные ключи, подключенные встречно-параллельно.

Рис. №3.Схема тиристорного регулирования однофазного асинхронного электродвигателя.

При использовании для регулирования скорости вращения однофазных асинхронных двигателей, чтобы избежать негативного влияния индукционной нагрузки производят модификацию схемы. Добавляют LRC-цепи для защиты силовых ключей, для корректировки волны напряжения используют конденсатор, минимальная мощность двигателя ограничивается, так гарантируется старт двигателя. Тиристор должен иметь ток выше тока электродвигателя.

Транзисторный регулятор напряжения

В схеме используется широтно-импульсная модуляция (ШИМ) с применением выходного каскада, построенного на использовании полевых или биполярных IGBT транзисторах.

Рис. №4. Схема использования ШИМ для регулирования однофазного асинхронного электродвигателя.

Частотное регулирование асинхронного однофазного электродвигателя считается основным способом регулирования частоты электродвигателя, мощности, эффективности использования, скорости и показателей энергосбережения.

Рис. №5. Схема управления электродвигателем без исключения из конструкции конденсатора.

Частотный преобразователь: виды, принцип действия, схемы подключения

Частотный преобразователь разрешает своему владельцу снизить энергопотребление и автоматизировать процессы в управлении оборудованием и производством.

Основные компоненты частотного преобразователя: выпрямитель, конденсатор, IGBT-транзисторы, собранные в выходной каскад.

Благодаря способности управлением параметрами выходной частоты и напряжения достигается хороший энергосберегающий эффект. Энергосбережение выражается в следующем:

  1. В двигателе поддерживается неизменный текущий момент ращения вала. Это обусловлено взаимодействием выходной частоты инверторного преобразователя с частотой вращения двигателя и соответственно, зависимостью напряжения и крутящего момента на валу двигателя. Значит, что преобразователь дает возможность автоматически регулировать напряжение на выходе при обнаружении превышающего норму значения напряжения с определенной рабочей частотой нужно для поддержания требуемого момента. Все инверторные преобразователи с векторным управлением имеют функцию поддержания постоянного вращающего момента на валу.
  2. Частотный преобразователь служит для регулировки действия насосных агрегатов (см. страницу). При получении сигнала, поступающего с датчика давления, частотник снижает производительность насосной установки. При снижении оборотов вращения двигателя уменьшается потребление выходного напряжения. Так, стандартное потребление воды насосом требует 50Гц промышленной частоты и 400В напряжения. Руководствуясь формулой мощности можно высчитать соотношение потребляемых мощностей.

Уменьшая частоту до 40Гц, уменьшается величина напряжения до 250В, означает, что уменьшается количество оборотов вращения насоса и потребление энергии снижается в 2,56 раз.

Рис. №6. Использование частотного преобразователя Speedrive для регулирования насосных агрегатов по систем CKEA MULTI 35.

Для повышения энергетической эффективности использования частотного преобразователя в управлении электродвигателем необходимо сделать следующее:

  • Частотный преобразователь должен соответствовать параметрам электродвигателя.
  • Частотник подбирается в соответствии с типом рабочего оборудования, для которого он предназначен. Так, частотник для насосов функционирует в соответствии с заложенными в программу параметрами для управления работой насоса.
  • Точные настройки параметров управления в ручном и автоматическом режиме.
  • Частотный преобразователь разрешает использовать режим энергосбережения.
  • Режим векторного регулирования позволяет произвести автоматическую настройку управления двигателем.

Преобразователь частоты однофазный

Компактное устройство преобразования частоты служит для управления однофазными электродвигателями для оборудования бытового предназначения. Большинство частотных преобразователей обладает следующими конструктивными возможностями:

  1. Большинство моделей использует в своей конструкции новейшие технологии векторного управления.
  2. Они обеспечивают улучшенный вращающий момент однофазного двигателя.
  3. Энергосбережение введено в автоматический режим.
  4. Некоторые модели частотных преобразователей используют съемный пульт управления.
  5. Встроенный PLC контроллер (он незаменим для создания устройств сбора и передачи данных, для создания систем телеметрии, объединяет устройства с различными протоколами и интерфейсами связи в общую сеть).
  6. Встроенный ПИД регулятор (контролирует и регулирует температуру, давление и технологические процессы).
  7. Напряжение выхода регулируется в автоматическом режиме.

Рис.№7. Современный преобразователь Optidrive с основными функциональными особенностями.

Важно: Однофазный преобразователь частоты, питаясь от однофазной сети напряжением 220В, выдает три линейных напряжения, величина каждого из них по 220В. То есть, линейное напряжение между 2 фазами находится в прямой зависимости от величины выходного напряжения самого частотника.

Частотный преобразователь не служит для двойного преобразования напряжения, благодаря наличию в конструкции ШИМ-регулятора, он может поднять величину напряжения не более чем на 10%.

Главная задача однофазного преобразователя частоты – обеспечить питание как одно- так и трехфазного электродвигателя. В этом случае ток двигателя будет соответствовать параметрам подключения от трехфазной сети, и оставаться постоянным

Частотное регулирование однофазных асинхронных электродвигателей

Первое на что обращаем внимание при выборе частотника для своего оборудования – это соответствие сетевого напряжения и номинального значения тока нагрузки, на который рассчитан двигатель. Способ подключения выбирается относительно рабочего тока.

Главным в схеме подключения является наличие фазосдвигающего конденсатора, он служит для сдвига напряжения, поступающего на пусковую обмотку. Она служит для пускового включения двигателя, иногда после того, как двигатель заработал, пусковая обмотка вместе с конденсатором отключается, иногда остается включенной.

Схема подключения однофазного двигателя с помощью однофазного частотного преобразователя без использования конденсатора

Выходное линейное напряжение устройства на каждой фазе равно выходному напряжению частотника, то есть на выходе будет три напряжения линии, каждое по 220В. Для запуска может использоваться только пусковая обмотка.

Рис. №8. Схема присоединения однофазного асинхронного двигателя через конденсатор

Фазосдвигающий конденсатор не может обеспечить равномерный фазовый сдвиг в пределах границ частот инвертора. Частотник обеспечит равномерный сдвиг фаз. Для того, чтобы исключить из схемы конденсатор, нужно:

  1. Конденсатор стартера С1 удаляется.
  2. Вывод обмотки двигателя присоединяем к точке выхода напряжения частотника (используется прямая проводка).
  3. Точка А присоединяется к СА; В соединяется с СВ; W соединяется к СС, таким образом электродвигатель присоединится напрямую.
  4. Для включения в обратном направлении (обратная проводка) необходимо В присоединить к СА; А присоединить к СВ; W соединить с СС.

Рис. №9. Схема подключения однофазного асинхронного двигателя без использования конденсатора.

На видео — Частотный преобразователь. Подключение трехфазного двигателя в однофазную сеть 220В.

Регулятор мощности электродвигателя 220в

Плавная работа двигателя, без рывков и скачков мощности – это залог его долговечности. Для контроля этих показателей используется регулятор оборотов электродвигателя на 220В, 12 В и 24 В, все эти частотники можно изготовить своими руками или купить уже готовый агрегат.

Зачем нужен регулятор оборотов

Регулятор оборотов двигателя, частотный преобразователь – это прибор на мощном транзисторе, который необходим для того, чтобы инвертировать напряжение, а также обеспечить плавную остановку и пуск асинхронного двигателя при помощи ШИМ. ШИМ – широко-импульсное управление электрическими приспособлениями. Его применяют для создания определенной синусоиды переменного и постоянного тока.

Фото — мощный регулятор для асинхронного двигателя

Самый простой пример преобразователя – это обычный стабилизатор напряжения. Но у обсуждаемого прибора гораздо больший спектр работы и мощность.

Частотные преобразователи используются в любом устройстве, которое питается от электрической энергии. Регуляторы обеспечивают чрезвычайно точный электрический моторный контроль, так что скорость двигателя можно изменять в меньшую или большую сторону, поддерживать обороты на нужном уровне и защищать приборы от резких оборотов. При этом электродвигателем используется только энергия, необходимая для работы, вместо того, чтобы запускать его на полной мощности.

Фото — регулятор оборотов двигателя постоянного тока

Зачем нужен регулятор оборотов асинхронного электродвигателя:

  1. Для экономии электроэнергии. Контролируя скорость мотора, плавность его пуска и остановки, силы и частоты оборотов, можно добиться значительной экономии личных средств. В качестве примера, снижение скорости на 20% может дать экономию энергии в размере 50%.
  2. Преобразователь частоты может использоваться для контроля температуры процесса, давления или без использования отдельного контроллера;
  3. Не требуется дополнительного контроллера для плавного пуска;
  4. Значительно снижаются расходы на техническое обслуживание.

Устройство часто используется для сварочного аппарата (в основном для полуавтоматов), электрической печки, ряда бытовых приборов (пылесоса, швейной машинки, радио, стиральной машины), домашнего отопителя, различных судомоделей и т.д.

Фото — шим контроллер оборотов

Принцип работы регулятора оборотов

Регулятор оборотов представляет собой устройство, состоящее из следующих трех основных подсистем:

  1. Двигателя переменного тока;
  2. Главного контроллера привода;
  3. Привода и дополнительных деталей.

Когда двигатель переменного тока запускается на полную мощность, происходит передача тока с полной мощностью нагрузки, такое повторяется 7-8 раз. Этот ток сгибает обмотки двигателя и вырабатывает тепло, которое будет выделяться продолжительное время. Это может значительно снизить долговечность двигателя. Иными словами, преобразователь – это своеобразный ступенчатый инвертор, который обеспечивает двойное преобразование энергии.

Фото — схема регулятора для коллекторного двигателя

В зависимости от входящего напряжения, частотный регулятор числа оборотов трехфазного или однофазного электродвигателя, происходит выпрямление тока 220 или 380 вольт. Это действие осуществляется при помощи выпрямляющего диода, который расположен на входе энергии. Далее ток проходит фильтрацию при помощи конденсаторов. Далее формируется ШИМ, за это отвечает электросхема. Теперь обмотки асинхронного электродвигателя готовы к передаче импульсного сигнала и их интеграции к нужной синусоиде. Даже у микроэлектродвигателя эти сигналы выдаются, в прямом смысле слова, пачками.

Как выбрать регулятор

Существует несколько характеристик, по которым нужно выбирать регулятор оборотов для автомобиля, станочного электродвигателя, бытовых нужд:

  1. Тип управления. Для коллекторного электродвигателя бывают регуляторы с векторной или скалярной системой управления. Первые чаще применяются, но вторые считаются более надежными;
  2. Мощность. Это один из самых важных факторов для выбора электрического преобразователя частот. Нужно подбирать частотник с мощностью, которая соответствует максимально допустимой на предохраняемом приборе. Но для низковольтного двигатель лучше подобрать регулятор мощнее, чем допустимая величина Ватт;
  3. Напряжение. Естественно, здесь все индивидуально, но по возможности нужно купить регулятор оборотов для электродвигателя, у которого принципиальная схема имеет широкий диапазон допустимых напряжений;
  4. Диапазон частот. Преобразование частоты – это основная задача данного прибора, поэтому старайтесь выбрать модель, которая будет максимально соответствовать Вашим потребностям. Скажем, для ручного фрезера будет достаточно 1000 Герц;
  5. По прочим характеристикам. Это срок гарантии, количество входов, размер (для настольных станков и ручных инструментов есть специальная приставка).

Хорошо себя зарекомендовали приборы марки Sinus, E-Sky и Pic.

При этом также нужно понимать, что есть так называемый универсальный регулятор вращения. Это частотный преобразователь для бесколлекторных двигателей.

Фото — схема регулятора для бесколлекторных двигателей

В данной схеме есть две части – одна логическая, где на микросхеме расположен микроконтроллер, а вторая – силовая. В основном такая электрическая схема используется для мощного электрического двигателя.

Видео: регулятор оборотов электродвигателя с ШИро V2

Как сделать самодельный регулятор оборотов двигателя

Можно сделать простой симисторный регулятор оборотов электродвигателя, его схема представлена ниже, а цена состоит только из деталей, продающихся в любом магазине электротехники.

Для работы нам понадобится мощный симистор типа BT138-600, её советует журнал радиотехники.

Фото — схема регулятора оборотов своими руками

В описанной схеме, обороты будут регулироваться при помощи потенциометра P1. Параметром P1 определяется фаза входящего импульсного сигнала, который в свою очередь открывает симистор. Такая схема может применяться как в полевом хозяйстве, так и в домашнем. Можно использовать данный регулятор для швейных машинок, вентиляторов, настольных сверлильных станков.

Принцип работы прост: в момент, когда двигатель немного затормаживается, его индуктивность падает, и это увеличивает напряжение в R2-P1 и C3, то в свою очередь влечет более продолжительное открытие симистора.

Тиристорный регулятор с обратной связью работает немного по-другому. Он обеспечивает обратный ход энергии в энергетическую систему, что является очень экономным и выгодным. Данный электронный прибор подразумевает включение в электрическую схемы мощного тиристора. Его схема выглядит вот так:

Здесь для подачи постоянного тока и выпрямления требуется генератор управляющего сигнала, усилитель, тиристор, цепь стабилизации оборотов.

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Качественный и надёжный контроллер скорости вращения для однофазных коллекторных электродвигателей можно сделать на распространённых деталях буквально за 1 вечер. Эта схема имеет встроенный модуль обнаружения перегрузки, обеспечивает мягкий пуск управляемого двигателя и стабилизатор скорости вращения мотора. Работает такой блок с напряжением как 220, так и 110 вольт.

Технические параметры регулятора

  • напряжение питания: 230 вольт переменного тока
  • диапазон регулирования: 5…99%
  • напряжение нагрузки: 230 В / 12 А (2,5 кВт с радиатором)
  • максимальная мощность без радиатора 300 Вт
  • низкий уровень шума
  • стабилизация оборотов
  • мягкий старт
  • размеры платы: 50×60 мм

Принципиальная электросхема

Схема модуля системы регулирования основана на генераторе ШИМ импульсов и симисторе управления мотором — классическая схемотехника для подобных устройств. Элементы D1 и R1 обеспечивают ограничение величины напряжения питания до значения безопасной для питания микросхемы генератора. Конденсатор C1 отвечает за фильтрацию напряжения питания. Элементы R3, R5 и P1 являются делителем напряжения с возможностью его регулирования, который используется для задания величины мощности, подаваемой в нагрузку. Благодаря применению резистора R2, непосредственно входящего в цепь поступления на м/с фазы, внутренние блоки синхронизированы с симистором ВТ139.

На следующем рисунке показано расположение элементов на печатной плате. Во время монтажа и запуска следует обратить внимание на обеспечение условий безопасной работы — регулятор имеет питание от сети 220В и его элементы непосредственно подключены к фазе.

Увеличение мощности регулятора

В испытательном варианте был применен симистор BT138/800 с максимальным током 12 А, что дает возможность управления нагрузкой более 2 кВт. Если необходимо управление ещё большими токами нагрузки — советуем тиристор установить за пределами платы на большом радиаторе. Также следует помнить о правильном выборе предохранителя FUSE в зависимости от нагрузки.

Кроме управления оборотами электромоторов, можно без каких-либо переделок использовать схему для регулировки яркости ламп.

Каждый из нас дома имеет какой-то электроприбор, который работает в доме не один год. Но со временем мощность техники слабеет и не выполняет своих прямых предназначений. Именно тогда стоит обратить внимание на внутренности оборудования. В основном проблемы возникают с электродвигателем, который отвечает за функциональность техники. Тогда стоит обратить свое внимание на прибор, который регулирует обороты мощности двигателя без снижения их мощности.

Виды двигателей

Регулятор оборотов с поддержанием мощности — изобретение, которое вдохнет новую жизнь в электроприбор, и он будет работать как только что приобретенный товар. Но стоит помнить о том, что двигатели бывают разных форматов и у каждого своя предельная работа.

Двигатели разные по характеристикам. Это значит то, что та или иная техника работает на разных частотах оборота вала, запускающего механизм. Мотор может быть:

В основном трехфазные электромоторы встречаются на заводах или крупных фабриках. В домашних условиях используются однофазные и двухфазные. Данного электричества хватает на работу бытовой техники.

Регулятор оборотов мощности

Принципы работы

Регулятор оборотов электродвигателя 220 В без потери мощности используется для поддержки первоначальной заданной частоты оборотов вала. Это один из основных принципов данного прибора, который называется частотным регулятором.

С помощью него электроприбор работает в установленной частоте оборотов двигателя и не снижает ее. Также регулятор скорости двигателя влияет на охлаждение и вентиляцию мотора. C помощью мощности устанавливается скорость, которую можно как поднять, так и снизить.

Вопросом о том, как уменьшить обороты электродвигателя 220 В, задавались многие люди. Но данная процедура довольно проста. Стоит только изменить частоту питающего напряжения, что существенно снизит производительность вала мотора. Также можно изменить питание двигателя, задействуя при этом его катушки. Управление электричеством тесно связано с магнитным полем и скольжением электродвигателя. Для таких действий используют в основном автотрансформатор, бытовые регуляторы, которые уменьшают обороты данного механизма. Но стоит также помнить о том, что будет уменьшаться мощность двигателя.

Вращение вала

Двигатели делят на:

Регулятор скорости вращения асинхронного электродвигателя зависит от подключения тока к механизму. Суть работы асинхронного мотора зависит от магнитных катушек, через которые проходит рамка. Она поворачивается на скользящих контактах. И когда при повороте она развернется на 180 градусов, то по данным контактам связь потечет в обратном направлении. Таким образом, вращение останется неизменным. Но при этом действии нужный эффект не будет получен. Он войдет в силу после внесения в механизм пары десятков рамок данного типа.

Коллекторный двигатель используется очень часто. Его работа проста, так как пропускаемый ток проходит напрямую — из-за этого не теряется мощность оборотов электродвигателя, и механизм потребляет меньше электричества.

Двигатель стиральной машины также нуждается в регулировке мощности. Для этого были сделаны специальные платы, которые справляются со своей работой: плата регулировки оборотов двигателя от стиральной машины несет многофункциональное употребление, так как при ее применении снижается напряжение, но не теряется мощность вращения.

Схема данной платы проверена. Стоит только поставить мосты из диодов, подобрав оптрон для светодиода. При этом еще нужно поставить симистор на радиатор. В основном регулировка двигателя начинается от 1000 оборотов.

Если не устраивает регулятор мощности и не хватает его функциональности, можно сделать или усовершенствовать механизм. Для этого нужно учитывать силу тока, которая не должна превышать 70 А, и теплоотдачу при использовании. Поэтому можно установить амперметр для регулировки схемы. Частота будет небольшой и будет определена конденсатором С2.

Далее стоит настроить регулятор и его частоту. При выходе данный импульс будет выходить через двухтактный усилитель на транзисторах. Также можно сделать 2 резистора, которые будут служить выходом для охладительной системы компьютера. Чтобы схема не сгорела, требуется специальный блокиратор, который будет служить удвоенным значением тока. Так данный механизм будет работать долго и в нужном объеме. Регулирующие приборы мощности обеспечат вашим электроприборам долгие годы службы без особых затрат.

«>

Безпомеховый регулятор оборотов однофазного асинхронного двигателя вентилятора ВН-2. Делаем вытяжку

Со своих первых паек с кислотным флюсом я задумывался о вентиляторе для паяльных работ. После радиомонтажной практики (там доходчиво объяснили необходимость вытяжки при пайке любым флюсом/припоем) было принято решение: вытяжке быть! Очень вовремя под руку попался вентилятор ВН-2.

Но оказалось, что при прямом включении в сеть вентилятор очень шумит, да и тягой будущей вытяжки хотелось бы управлять. Нужен регулятор!

Содержание / Contents

Немного поискав в сети, выбрал схему так называемого «беспомехового» регулятора:

Источник: cxem.net
Собрав схему, я убедился в её пригодности для регулировки оборотов однофазного асинхронного двигателя (как в ВН-2). Но после КЗ на выходе в страну вечной охоты отправляется мой единственный КТ840 и неоновая лампочка, которую я подключил без резистора. Цены на КТ840 меня совсем не обрадовали. Решив сэкономить стипендию, я подыскал транзистор-аналог из горелого компьютерного БП — D209L. С этим транзистором схему пришлось немного изменить:
Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.
Я решил добавить немного индикации, и поставил по светодиоду на вход и выход регулятора. Новую схему сначала тоже протестировал на навесном монтаже, а потом решил собирать в нормальном корпусе, который и приобрёл на радиорынке:

Сразу озаботился радиатором для транзистора. Радиатор пришлось немного подогнать с помощью ножовки и напильника:


Для крепления радиатора к корпусу применил самодельные винты М3 с широкой шляпкой (припаял по шайбе к винту):

Вот так это все будет выглядеть снаружи:

Теперь органы управления:
Примеряемся:

Сверлим отверстия и вставляем детали:

С диаметром отверстий для светодиодов немного промахнулся, пришлось упаковать в прозрачную термоусадку:

P.S.: прозрачная термоусадка — самая лучшая из всех, что я видел на киевском радиорынке, она при усаживании не вспучивается и не подгорает, а при соединении двух слоёв они сплавляются, и получается монолитная трубка.Применил малогабаритный 220/6 Вольт, 100мА. Его я тоже «упаковал» в жестяной каркас для удобства установки. Материалом для каркаса послужил корпус старого CD-Rom и проволока от шампанского (по-научному — мюзле).
Для изготовления платы сначала вырезал из картона шаблон, чтобы не ошибиться в размерах и не подгонять потом готовую плату напильником:

По шаблону вырезаю ножницами по металлу плату из текстолита:

Плату рисую вручную цапонлаком по трафарету, предварительно нанеся точки в местах будущих отверстий самодельным кернером из фрезы.



Сами дорожки рисовал с помощью «рейсфедера» из вытянутого пипеткой стержня от ручки, очень удобно (не ломается, как стеклянная пипетка). Готовые дорожки «запекаю» газовой горелкой: экспериментально установил, что мой цапонлак от такой шоковой сушки становится вообще «дубовым», что подходит для моей методики травления, о которой ниже. Процесс «обжига»:

Важно: если во время «обжига» на меди будут отпечатки пальцев/грязь, то они останутся и на вытравленной плате. Поэтому чистый текстолит я заклеиваю скотчем на время резки/кернения и отклеиваю его только когда рисую дорожки.Недавно открыл для себя просто фантастический метод травления плат: лимонной кислотой!
Рекомендуемый способ приготовления травильного раствора:
В 100 мл аптечной 3% перекиси водорода растворяется 30 г лимонной кислоты и 5 г поваренной соли. Этого раствора должно хватить для травления 100 см2 меди, толщиной 35мкм.

Соль при подготовке раствора можно не жалеть. Так как она играет роль катализатора, то в процессе травления практически не расходуется. Перекись 3% не стоит разбавлять дополнительно т.к. при добавлении остальных ингредиентов её концентрация снижается.

Чем больше будет добавлено перекиси водорода (гидроперита) тем быстрее пойдёт процесс, но не переусердствуйте — раствор не хранится, т.е. повторно не используется, а значит и гидроперит будет просто перерасходован. Избыток перекиси легко определить по обильному «пузырению» во время травления.
Однако добавление лимонной кислоты и перекиси вполне допустимо, но рациональнее приготовить свежий раствор.
Источник


Свою плату я вытравил примерно за 12 минут!

Дальше все без «самодеятельности»:
Детали вне платы «получают» провода в термоусадке, некоторые из этих деталей приходится припаивать со стороны дорожек.

Аккуратненько запихиваем все в корпус

Провод с вилкой я взял готовый и вклеил его в резиновую трубочку-неломайку от корпуса:

Последней операцией стало подпиливание крепёжных винтов трансформатора бормашиной с отрезным диском:

Готовый регулятор в корпусе:

На этом работа над регулятором заканчивается, и я планирую продолжить конструирование самой вытяжки после сессии, уже летом.
Всем спасибо за внимание!

Камрад, рассмотри датагорские рекомендации

🌼 Полезные и проверенные железяки, можно брать

Опробовано в лаборатории редакции или читателями.

 

06.05.14 изменил Datagor. Замена видео

Регулятор оборотов электродвигателя 220В | 2 Схемы

Качественный и надёжный контроллер скорости вращения для однофазных коллекторных электродвигателей можно сделать на распространённых деталях буквально за 1 вечер. Эта схема имеет встроенный модуль обнаружения перегрузки, обеспечивает мягкий пуск управляемого двигателя и стабилизатор скорости вращения мотора. Работает такой блок с напряжением как 220, так и 110 вольт.

Технические параметры регулятора

  • напряжение питания: 230 вольт переменного тока
  • диапазон регулирования: 5…99%
  • напряжение нагрузки: 230 В / 12 А (2,5 кВт с радиатором)
  • максимальная мощность без радиатора 300 Вт
  • низкий уровень шума
  • стабилизация оборотов
  • мягкий старт
  • размеры платы: 50×60 мм

Принципиальная электросхема

Схема регулятор мотора на симисторе и U2008

Схема модуля системы регулирования основана на генераторе ШИМ импульсов и симисторе управления мотором — классическая схемотехника для подобных устройств. Элементы D1 и R1 обеспечивают ограничение величины напряжения питания до значения безопасной для питания микросхемы генератора. Конденсатор C1 отвечает за фильтрацию напряжения питания. Элементы R3, R5 и P1 являются делителем напряжения с возможностью его регулирования, который используется для задания величины мощности, подаваемой в нагрузку. Благодаря применению резистора R2, непосредственно входящего в цепь поступления на м/с фазы, внутренние блоки синхронизированы с симистором ВТ139.

Печатная плата

На следующем рисунке показано расположение элементов на печатной плате. Во время монтажа и запуска следует обратить внимание на обеспечение условий безопасной работы — регулятор имеет питание от сети 220В и его элементы непосредственно подключены к фазе.

Увеличение мощности регулятора

В испытательном варианте был применен симистор BT138/800 с максимальным током 12 А, что дает возможность управления нагрузкой более 2 кВт. Если необходимо управление ещё большими токами нагрузки — советуем тиристор установить за пределами платы на большом радиаторе. Также следует помнить о правильном выборе предохранителя FUSE в зависимости от нагрузки.

Кроме управления оборотами электромоторов, можно без каких-либо переделок использовать схему для регулировки яркости ламп.

  • Вариант более доступной для сборки схемы, без дефицитных деталей, смотрите тут.


   Форум по электронике и автосхемам

Регулировка оборотов коллекторного двигателя без потери мощности


Не каждая современная дрель или болгарка оснащена заводским регулятором оборотов, и чаще всего регулировка оборотов не предусмотрена вовсе. Тем не менее, как болгарки, так и дрели построены на базе коллекторных двигателей, что позволяет каждому их владельцу, маломальски умеющему обращаться с паяльником, изготовить собственный регулятор оборотов из доступных электронных компонентов, хоть из отечественных, хоть из импортных.

В данной статье мы рассмотрим схему и принцип работы простейшего регулятора оборотов двигателя электроинструмента, и единственное условие — двигатель должен быть коллекторным — с характерными ламелями на роторе и щетками (которые порой искрят).

Приведенная схема содержит минимум деталей, и подойдет для электроинструмента мощностью до 1,8 кВт и выше, для дрели или болгарки. Похожая схема используется для регулировки оборотов в автоматических стиральных машинах, в которых стоят коллекторные высокоскоростные двигатели, а также в диммерах для ламп накаливания. Подобные схемы, в принципе, позволят регулировать температуру нагрева жала паяльника, электрического обогревателя на базе ТЭНов и т. д.

Потребуются следующие радиоэлектронные компоненты:

В основе схемы — тиристор. Тиристор представляет собой полупроводниковый элемент с тремя выводами: анод, катод, и управляющий электрод. После подачи на управляющий электрод тиристора короткого импульса положительной полярности, тиристор превращается в диод, и начинает проводить ток до тех пор, пока в его цепи этот ток не прервется или не сменит направление.

После прекращения тока или при смене его направления, тиристор закроется и перестанет проводить ток, пока не будет подан следующий короткий импульс на управляющий электрод. Ну а поскольку напряжение в бытовой сети переменное синусоидальное, то каждый период сетевой синусоиды тиристор (в составе данной схемы) станет отрабатывать строго начиная с установленного момента (в установленной фазе), и чем меньше во время каждого периода тиристор будет открыт, тем ниже будут обороты электроинструмента, а чем, соответственно, дольше тиристор будет открыт, тем выше будут обороты.

Как видите, принцип прост. Но применительно к электроинструменту с коллекторным двигателем, схема работает хитрее, и об этом мы расскажем далее.

Итак, в сеть здесь включены параллельно: измерительная цепь управления и силовая цепь. Измерительная цепь состоит из постоянного и переменного резисторов R1 и R2, из конденсатора C1, и диода VD1. Для чего нужна эта цепь? Это делитель напряжения. Напряжение с делителя, и что важно, противо-ЭДС с ротора двигателя, складываются в противофазе, и формируют импульс для открывания тиристора. Когда нагрузка постоянна, то и время открытого состояния тиристора постоянно, следовательно обороты стабилизированы и постоянны.

Как только нагрузка на инструмент, и следовательно на двигатель, увеличивается, то величина противо-ЭДС уменьшается, поскольку обороты снижаются, значит сигнал на управляющий электрод тиристора возрастает, и открывание происходит с меньшей задержкой, то есть мощность подводимая к двигателю возрастает, увеличивая упавшие обороты. Так обороты сохраняются постоянными даже под нагрузкой.

В результате совместного действия сигналов от противо-ЭДС и с резистивного делителя, нагрузка не сильно влияет на обороты, а без регулятора это влияние было бы существенным. Таким образом при помощи данной схемы достижима устойчивая регулировка оборотов в каждом положительном полупериоде сетевой синусоиды. При средних и малых скоростях вращения этот эффект более выражен.

Однако, при повышении оборотов, то есть при повышении напряжения, снимаемого с переменного резистора R2, стабильность поддержания скорости постоянной снижается.

Лучше на этот случай предусмотреть шунтирующую кнопку SA1 параллельно тиристору. Функция диодов VD1 и VD2 — обеспечение однополупериодного режима работы регулятора, так как напряжения с делителя и с ротора сравниваются лишь в отсутствие тока через двигатель.

Конденсатор C1 расширяет зону регулирования на малых скоростях, а конденсатор C2 снижает чувствительность к помехам от искрения щеток. Тиристор нужен высокочувствительный, чтобы ток менее 100 мкА смог бы его открыть.

Это устройство, предназначенное для выполнения функции плавного увеличения или уменьшения скорости вращения вала электрического двигателя. Регулировку можно осуществлять методом широтно-импульсной модуляции и методом изменения фазного напряжения.

Использование широтно-импульсной модуляции

Для управления и регулировки числа оборотов вращения электродвигателя асинхронного типа, можно использовать импульсный регулятор-стабилизатор напряжения (инвертор). Он будет выполнять функцию источника питания. В его основу положено применение импульсного ШИМ-регулятора марки ТL494. Питающее напряжение электродвигателя, выходящее после ШИМ-регулятора, будет изменяться в соответствии с изменением частоты вращения. Используя этот способ, достигается больший экономический эффект, устройство достаточно простое и при этом увеличивает эффективность регулирования.

На рисунке выше изображена схема использования ШИМ-регулятора для трехфазного асинхронного двигателя, подключенного через конденсатор к однофазной сети.

Этот способ, несмотря на свою эффективность, имеет два существенных недостатка – это:

  • невозможность реверсивного управления двигателем без использования дополнительных коммутирующих аппаратов;
  • частотные преобразователи , использованные в регуляторе, отличаются высокой стоимостью и выпускаются ограниченным числом производителей.


Блок управления и регулирования скорости вращения электродвигателей изменением фазного напряжения

Существует несколько видов блоков управления, изготовленных промышленным способом. Они используются для однофазных асинхронных двигателей, границы регулирования составляют от 25 до 100% от значения мощности, и от 1000 до 4000 об/мин. Это устройства с маркировкой РВС207, РВ600/900.

Работа блока регулировки происходит при изменении средней величины переменного напряжения на электродвигателе. Она производится с помощью метода фазового регулирования напряжения, при изменении угла открытия полупроводниковых приборов (тиристоров, симисторов и т. д.), при использовании которых осуществлена сборка схемы.

Управление блоком осуществляется посредством использования внешнего переменного резистора. В том случае, когда мощность менее 25%, двигатель отключается и переходит в дежурный режим ожидания.

Контроль за работой осуществляется при помощи светового индикатора. Отключенное состояние двигателя – изредка мигает красный цвет. Двигатель работает – скважность включения индикатора пропорциональна оборотам вращения (производительности) двигателя.

На рисунке схема подключения блока регулятора РВС 207.




Наконец, начали «доходить» руки до самодельного точильного станка. В наличии был универсальный коллекторный электродвигатель УВ 051-Ц. Скорость его 7000 об/мин, что в двое больше, чем нужно для электроточила. Вдобавок, хотелось иметь регулировку оборотов (желательно с обратной связью). Пришлось собирать схему, которая отвечала всем запросам.
Итак, как я пришел к тому, что скорость нужно снизить вдвое. На точильных камнях, обычно, есть надпись на какой максимальной скорости они могут работать. Чаще всего – это 25-30 м/с. Чтобы рассчитать необходимое количество оборотов электродвигателя для точильного станка – есть формула. Количество оборотов = (допустимые обороты на камне / диаметр точильного круга (в метрах) *3,14 )*60 секунд. Итого, максимальное количество оборотов электродвигателя для камня, который я приобрел = (25/0.15+3.14)*60, что приблизительно равно 3185 об/мин. Вывод: скорость 7000 об/мин электродвигателя УВ 051-Ц нужно снизить вдвое.

В результате поисков, наткнулся на простую схему регулятора оборотов коллекторного электродвигателя 220 вольт с обратной связью. Информации по ней было не много, т.к., возможно, мало кто ее собирал, сомневаясь в ее работоспособности, видя насколько она примитивна. Я же ее собрал на кусочке монтажной платы, произвел отладку, убедился в работоспособности.

Теперь пересказ принципа действия схемы регулятора оборотов коллекторного электродвигателя с обратной связью. R1+R2+C1 – формирует опорное напряжение, задающее скорость вращения двигателя. В момент приложения нагрузки, скорость вращения падает, снижается крутящий момент. Возникающая в двигателе и приложенная между управляющим контактом и катодом тиристора противо-ЭДС уменьшается. Пропорционально уменьшению противо-ЭДС увеличивается напряжение на управляющем контакте тиристора. Такое увеличение напряжение заставляет тиристор срабатывать при меньшем фазовом угле, и в следствии, подавать на двигатель больший ток.

Тиристор нужно подбирать в зависимости от мощности электродвигателя. Мне хватило MCR100-8, в оригинальной схеме – КУ202Н. Под тиристор подбирается сопротивление резистора R3. Если тиристор КУ202Н – R3 можно не ставить. Диоды можно заменить на любые с аналогичными параметрами Д226, 1N4007 и т.д. С1 может быть в пределах 0,1-2uF, им устраняются рывки двигателя на малых оборотах. Конденсаторы с рабочим напряжением 250 вольт.



Регулятор скорости асинхронного двигателя

Помимо образцов регуляторов, промышленных образцов регуляторов, существует возможность самостоятельного выполнения регуляторов скорости бесколлекторных двигателей, не уступающих промышленным образцам. За основу схемы берется пример регулятора промышленного производства, ее можно собрать своими силами.

На рисунке выше электрическая схема регулятора скорости вращения бесколлекторного двигателя.

Регулировать количество оборотов вращения вала бесколлекторного асинхронного электродвигателя допускается также при изменении значения переменного напряжения, подаваемого к двигателю.

В состав регулятора входит задающий генератор, он служит для изменения частоты в границах значений 50 – 200 Гц. Генератор состоит из мультивибратора, работа которого строится на микросхеме К561ЛА7 и счетчика-дешифратора марки К561ИЕ8 с коэффициентом пересчета – 8, она отвечает за формирование сигналов управления силовыми полевыми транзисторами полумоста.

В схеме присутствует выходной трансформатор Т-1. Он служит для развязки транзисторов полумоста.

Выпрямитель включает в свою конструкцию диодный мост и удваивающие напряжение питания – конденсаторы с большой емкостью.

Диодный мост подключен по нетрадиционной схеме. С4 и R7 выполняют роль демпфирующей цепи, она служит для сглаживания всплесков напряжения, которые представляют собой опасность для транзисторов VТ4.

Рекомендация

: для трансформатора управления транзисторными ключами, можно применить трансформатор от телевизионного блока питания. В этом случае, тип не играет большого значения, главное, чтобы первичная обмотка состояла из 120 витков провода 0,7 мм2, вторичная представляет собой 2 независимые друг от друга обмотки с количеством витков – 60, провод, применяемый во вторичной обмотке, аналогичен проводу первичной. Первичная обмотка имеет напряжение 2 х 12 В, вторичная обмотка – по 12 В каждая.

Необходимо помнить, что обе вторичные обмотки должны обладать хорошей изоляцией друг от друга, между обмотками присутствует высокий потенциал, он составляет 640 В, они подключаются к затворам транзисторных ключей в противофазе.

Такой регулятор может управлять вращением асинхронного двигателя с максимальным значением рабочей мощности – 500 Вт. Чтобы регулятор использовать для регулировки электродвигателей более высокой мощности, нужно применить большее количество силовых ключей, а также изменить в сторону увеличения емкость конденсаторов для питающего фильтра, это элементы схемы С3 и С4. Для регулятора достаточно использовать печатную плату размером 110 х 80 мм. Управляющий силовыми транзисторными ключами трансформатор монтируется отдельно от блока регулятора.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

Со своих первых паек с кислотным флюсом я задумывался о вентиляторе для паяльных работ. После радиомонтажной практики (там доходчиво объяснили необходимость вытяжки при пайке любым

флюсом/припоем) было принято решение: вытяжке быть! Очень вовремя под руку попался вентилятор ВН-2.

Но оказалось, что при прямом включении в сеть вентилятор очень шумит, да и тягой будущей вытяжки хотелось бы управлять. Нужен регулятор!

Схема регулятора оборотов однофазного асинхронного двигателя на транзисторе D209L

Немного поискав в сети, выбрал схему так называемого «беспомехового» регулятора:
Собрав схему, я убедился в её пригодности для регулировки оборотов однофазного асинхронного двигателя (как в ВН-2). Но после КЗ на выходе в страну вечной охоты отправляется мой единственный КТ840 и неоновая лампочка, которую я подключил без резистора. Цены на КТ840 меня совсем не обрадовали. Решив сэкономить стипендию, я подыскал транзистор-аналог из горелого компьютерного БП — D209L. С этим транзистором схему пришлось немного изменить:

Я решил добавить немного индикации, и поставил по светодиоду на вход и выход регулятора. Новую схему сначала тоже протестировал на навесном монтаже, а потом решил собирать в нормальном корпусе, который и приобрёл на радиорынке:

Сразу озаботился радиатором для транзистора. Радиатор пришлось немного подогнать с помощью ножовки и напильника: Для крепления радиатора к корпусу применил самодельные винты М3 с широкой шляпкой (припаял по шайбе к винту): Вот так это все будет выглядеть снаружи: Теперь органы управления: Примеряемся: Сверлим отверстия и вставляем детали: С диаметром отверстий для светодиодов немного промахнулся, пришлось упаковать в прозрачную термоусадку: P.S.: прозрачная термоусадка — самая лучшая из всех, что я видел на киевском радиорынке, она при усаживании не вспучивается и не подгорает, а при соединении двух слоёв они сплавляются, и получается монолитная трубка.

Регулятор оборотов электродвигателя 220в

Его можно изготовить совершенно самостоятельно, но для этого нужно будет изучить все возможные технические особенности прибора. По конструкции можно выделить сразу несколько разновидностей главных деталей. А именно:

  1. Сам электродвигатель.
  2. Микроконтроллерная система управления блока преобразования.
  3. Привод и механические детали, которые связаны с работой системы.

Перед самым началом запуска устройства, после подачи определённого напряжения на обмотки, начинается процесс вращения двигателя с максимальным показателем мощности. Именно такая особенность и будет отличать асинхронные устройства от остальных видов. Ко всему прочему происходит прибавление нагрузки от механизмов, которые приводят прибор в движение. В конечном счёте на начальном этапе работы устройства мощность, а также потребляемый ток лишь возрастают до максимальной отметки.

В это время происходит процесс выделения наибольшего количества тепла. Происходит перегрев в обмотках, а также в проводах. Использование частичного преобразования поможет не допустить этого. Если произвести установку плавного пуска, то до максимальной отметки скорости (которая также может регулироваться оборудованием и может быть не 1500 оборотов за минуту, а всего лишь 1000) двигатель начнёт разгоняться не в первый момент работы, а на протяжении последующих 10 секунд (при этом на каждую секунду устройство будет прибавлять по 100−150 оборотов). В это время процесс нагрузки на все механизмы и провода начинает уменьшаться в несколько раз.

Как сделать регулятор своими руками

Можно совершенно самостоятельно создать регулятор оборотов электродвигателя около 12 В. Для этого стоит использовать переключатель сразу нескольких положений, а также специальный проволочный резистор. При помощи последнего происходит изменение уровня напряжения питания (а вместе с этим и показателя частоты вращения). Такие же системы можно применять и для совершения асинхронных движений, но они будут менее эффективными.

Ещё много лет назад широко использовались механические регуляторы — они были построены на основе шестеренчатых приводов или же их вариаторов. Но такие устройства считались не очень надёжными. Электронные средства показывали себя в несколько раз лучше, так как они были не такими большими и позволяли совершать настройку более тонкого привода.

Для того чтобы создать регулятор вращения электродвигателя, стоит использовать сразу несколько устройств, которые можно либо купить в любом строительном магазине, либо снять со старых инвенторных устройств. Чтобы совершить процесс регулировки, стоит включить специальную схему переменного резистора. С его помощью происходит процесс изменения амплитуды входящего на резистор сигнала.

Внедрение системы управления

Чтобы значительно улучшить характеристику даже самого простого оборудования, стоит в схему регулятора оборотов двигателя подключить микроконтроллерное управление. Для этого стоит выбрать тот процессор, в котором есть подходящее количество входов и выходов соответственно: для совершения подключения датчиков, кнопок, а также специальных электронных ключей.

Для осуществления экспериментов стоит использовать особенный микроконтроллер AtMega 128 — это наиболее простой в применении и широко используемый контроллер. В свободном использовании можно найти большое число схем с его применением. Чтобы устройство совершало правильную работу, в него стоит записать определённый алгоритм действий — отклики на определённые движения. К примеру, при достижении температуры в 60 градусов Цельсия (замер будет отмечаться на графике самого устройства), должно произойти автоматическое отключение работы устройства.

Печатная плата

Для изготовления платы сначала вырезал из картона шаблон, чтобы не ошибиться в размерах и не подгонять потом готовую плату напильником: По шаблону вырезаю ножницами по металлу плату из текстолита: Плату рисую вручную цапонлаком по трафарету, предварительно нанеся точки в местах будущих отверстий самодельным кернером из фрезы. Сами дорожки рисовал с помощью «рейсфедера» из вытянутого пипеткой стержня от ручки, очень удобно (не ломается, как стеклянная пипетка). Готовые дорожки «запекаю» газовой горелкой: экспериментально установил, что мой цапонлак от такой шоковой сушки становится вообще «дубовым», что подходит для моей методики травления, о которой ниже. Процесс «обжига»: Важно
: если во время «обжига» на меди будут отпечатки пальцев/грязь, то они останутся и на вытравленной плате. Поэтому чистый текстолит я заклеиваю скотчем на время резки/кернения и отклеиваю его только когда рисую дорожки.

Травление

Недавно открыл для себя просто фантастический метод травления плат: лимонной кислотой!
Рекомендуемый способ приготовления травильного раствора:

В 100 мл аптечной 3% перекиси водорода растворяется 30 г лимонной кислоты и 5 г поваренной соли. Этого раствора должно хватить для травления 100 см2 меди, толщиной 35мкм.

Соль при подготовке раствора можно не жалеть. Так как она играет роль катализатора, то в процессе травления практически не расходуется. Перекись 3% не стоит разбавлять дополнительно т.к. при добавлении остальных ингредиентов её концентрация снижается.

Чем больше будет добавлено перекиси водорода (гидроперита) тем быстрее пойдёт процесс, но не переусердствуйте — раствор не хранится, т.е. повторно не используется, а значит и гидроперит будет просто перерасходован. Избыток перекиси легко определить по обильному «пузырению» во время травления. Однако добавление лимонной кислоты и перекиси вполне допустимо, но рациональнее приготовить свежий раствор.

Свою плату я вытравил примерно за 12 минут! Дальше все без «самодеятельности»:

Окончательная сборка регулятора

Детали вне платы «получают» провода в термоусадке, некоторые из этих деталей приходится припаивать со стороны дорожек.
Данный регулятор оборотов электродвигателя 220в

позволяет изменять частоту либо электродвигателя, рассчитанных на работу от сети 220 вольт.

Достаточно популярным регулятором оборотов для электродвигателей на 220 вольт переменного тока является схема на тиристорах. Типовой схемой является подключение электродвигателя или вентилятора в разрыв анодной цепи тиристора.

Одно не маловажное условие при использовании подобных регуляторов, это надежный контакт во всей цепи. Что нельзя сказать про коллекторные электродвигатели, поскольку у них механизм щеток создает кратковременные обрывы электроцепи. Это существенно влияет на качество работы регулятора.

Регулятор оборотов мощности

Принципы работы

Регулятор оборотов электродвигателя 220 В без потери мощности используется для поддержки первоначальной заданной частоты оборотов вала. Это один из основных принципов данного прибора, который называется частотным регулятором.

С помощью него электроприбор работает в установленной частоте оборотов двигателя и не снижает ее. Также регулятор скорости двигателя влияет на охлаждение и вентиляцию мотора. C помощью мощности устанавливается скорость, которую можно как поднять, так и снизить.

Вопросом о том, как уменьшить обороты электродвигателя 220 В, задавались многие люди. Но данная процедура довольно проста. Стоит только изменить частоту питающего напряжения, что существенно снизит производительность вала мотора. Также можно изменить питание двигателя, задействуя при этом его катушки. Управление электричеством тесно связано с магнитным полем и скольжением электродвигателя. Для таких действий используют в основном автотрансформатор, бытовые регуляторы, которые уменьшают обороты данного механизма. Но стоит также помнить о том, что будет уменьшаться мощность двигателя.

Вращение вала

Двигатели делят на:

Регулятор скорости вращения асинхронного электродвигателя зависит от подключения тока к механизму. Суть работы асинхронного мотора зависит от магнитных катушек, через которые проходит рамка. Она поворачивается на скользящих контактах. И когда при повороте она развернется на 180 градусов, то по данным контактам связь потечет в обратном направлении. Таким образом, вращение останется неизменным. Но при этом действии нужный эффект не будет получен. Он войдет в силу после внесения в механизм пары десятков рамок данного типа.

Коллекторный двигатель используется очень часто. Его работа проста, так как пропускаемый ток проходит напрямую — из-за этого не теряется мощность оборотов электродвигателя, и механизм потребляет меньше электричества.

Двигатель стиральной машины также нуждается в регулировке мощности. Для этого были сделаны специальные платы, которые справляются со своей работой: плата регулировки оборотов двигателя от стиральной машины несет многофункциональное употребление, так как при ее применении снижается напряжение, но не теряется мощность вращения.

Схема данной платы проверена. Стоит только поставить мосты из диодов, подобрав оптрон для светодиода. При этом еще нужно поставить симистор на радиатор. В основном регулировка двигателя начинается от 1000 оборотов.

Если не устраивает регулятор мощности и не хватает его функциональности, можно сделать или усовершенствовать механизм. Для этого нужно учитывать силу тока, которая не должна превышать 70 А, и теплоотдачу при использовании. Поэтому можно установить амперметр для регулировки схемы. Частота будет небольшой и будет определена конденсатором С2.

Далее стоит настроить регулятор и его частоту. При выходе данный импульс будет выходить через двухтактный усилитель на транзисторах. Также можно сделать 2 резистора, которые будут служить выходом для охладительной системы компьютера. Чтобы схема не сгорела, требуется специальный блокиратор, который будет служить удвоенным значением тока. Так данный механизм будет работать долго и в нужном объеме. Регулирующие приборы мощности обеспечат вашим электроприборам долгие годы службы без особых затрат.

Источник: instrument.guru

Описание работы схемы регулятора оборотов

Приведенная ниже схема

тиристорного
регулятора оборотов
, как раз разработана для изменения частоты вращения коллекторных
электродвигателей
(электродрель, фрезер,
вентилятор
). Первое, что следует отметить, это то, что двигатель вместе с силовым тиристором VS2 подсоединен в одну из диагоналей диодного моста VD3, на другую же подается сетевое напряжение
220 вольт
.

Помимо этого, данный тиристор контролируется достаточно широкими импульсами, благодаря которым, непродолжительные отключения активной нагрузки, которыми характеризуется работа коллекторного двигателя, не влияют на устойчивую работу данной схемы.

Для управления тиристором VS1 на транзисторе VT1, собран генератор импульсов. Питание данного генератор осуществляется трапециевидным напряжением, создающимся в результате ограничения положительных полуволн стабилитроном VD1 имеющих частоту 100 Гц. Конденсатор С1 разряжается через сопротивления R1, R2, R3. Резистором R1 осуществляется скорость разряда данного конденсатора.

При достижении на конденсаторе напряжения достаточного для открывания транзистора VT1, на управляющий вывод VS1 поступает положительный импульс. Тиристор открывается и теперь уже на управляющем выводе VS2 появляется длительный импульс управления. И уже с данного тиристора напряжение, которое фактически и влияет на величину оборотов, подается на двигатель.

Частоту оборотов вращения электродвигателя регулируют резистором R1. Так как в цепь VS2 подключена индуктивная нагрузка, то возможно спонтанное отпирание тиристора, даже при отсутствии управляющего сигнала. Поэтому для предотвращения данного нежелательного эффекта, в схему добавлен диод VD2 который подключается параллельно обмотке возбуждения L1 электродвигателя.

Настройка регулятора оборотов

Во время наладки схемы регулятора желательно применить стробоскоп, который позволяет либо стрелочный вольтметр для переменного тока, который подсоединяют параллельно двигателю.

Вращая ручку резистора R1, определяют диапазон изменения напряжения. Путем подбора сопротивления R3 устанавливают данный диапазон в районе от 90 до 220 вольт. В том случае если при минимальных оборотах двигатель вентилятора работает неустойчиво, то необходимо немного уменьшить сопротивление R2.

С все более увеличивающимся ростом автоматизации в бытовой сфере появляется необходимость в современных системах и устройствах управления электродвигателями.

Управление и преобразование частоты в небольших по мощности однофазных асинхронных двигателях, запускаемых в работу с помощью конденсаторов, позволяет экономить электроэнергию и активирует режим энергосбережения на новом, прогрессивном уровне.

Зачем нужен регулятор оборотов

Регулятор оборотов двигателя, частотный преобразователь – это прибор на мощном транзисторе, который необходим для того, чтобы инвертировать напряжение, а также обеспечить плавную остановку и пуск асинхронного двигателя при помощи ШИМ. ШИМ – широко-импульсное управление электрическими приспособлениями. Его применяют для создания определенной синусоиды переменного и постоянного тока.

Фото — мощный регулятор для асинхронного двигателя

Самый простой пример преобразователя – это обычный стабилизатор напряжения. Но у обсуждаемого прибора гораздо больший спектр работы и мощность.

Частотные преобразователи используются в любом устройстве, которое питается от электрической энергии. Регуляторы обеспечивают чрезвычайно точный электрический моторный контроль, так что скорость двигателя можно изменять в меньшую или большую сторону, поддерживать обороты на нужном уровне и защищать приборы от резких оборотов. При этом электродвигателем используется только энергия, необходимая для работы, вместо того, чтобы запускать его на полной мощности.


Фото — регулятор оборотов двигателя постоянного тока

Зачем нужен регулятор оборотов асинхронного электродвигателя:

  1. Для экономии электроэнергии. Контролируя скорость мотора, плавность его пуска и остановки, силы и частоты оборотов, можно добиться значительной экономии личных средств. В качестве примера, снижение скорости на 20% может дать экономию энергии в размере 50%.
  2. Преобразователь частоты может использоваться для контроля температуры процесса, давления или без использования отдельного контроллера;
  3. Не требуется дополнительного контроллера для плавного пуска;
  4. Значительно снижаются расходы на техническое обслуживание.

Принцип работы однофазной асинхронной машины

В основе работы асинхронного двигателя лежит взаимодействие вращающегося магнитного поля статора и токов, наводимых им в роторе двигателя. При разности частоты вращения пульсирующих магнитных полей возникает вращающий момент. Именно этим принципом руководствуются при регулировании скорости вращения асинхронного двигателя с помощью .

Пусковая обмотка занимает в конструкции статора 1/3 пазов, на главную обмотку приходится 23 паза статора.

Ротор однофазного двигателя коротко замкнутый, помещенный в неподвижное магнитное поле статора, начинает вращаться.

Рис.№1 Схематический рисунок двигателя, демонстрирующий принцип работы однофазного асинхронного двигателя.

Методы настройки оборотов

Для предотвращения отрицательного влияния во время пуска нужно уменьшить обороты электродвигателя 220 в или 380 в. Существует несколько способов достижения этой цели:

  1. Изменение значения R цепи ротора.
  2. Изменение U в обмотке статора.
  3. Изменение частоты U.
  4. Переключение полюсов.

При изменении значения R роторной части при помощи дополнительных резисторов приводит к снижению частоты вращения, но в результате этого уменьшается мощность. Следовательно, получается значительная потеря электроэнергии. Этот тип регулирования следует применять для фазного ротора.

При изменении значений U на статорной катушке возможно механическое или электрическое управление частотой вращения ротора. В этом случае используется регулятор U. Использование такого способа позволяет применять его только при вентиляторном характере нагрузки (например, регулятор оборотов вентилятора 220в). Для всех остальных случаев применяют трехфазные автоматические трансформаторы, позволяющие плавно изменять значения U, или тиристорные регуляторы.

Исходя из формулы зависимости частоты вращения от частоты питающего U можно производить регулирование количества оборотов ротора. Частота вращающегося магнитного поля статора вычисляется по формуле: Nст = 60 * f /p (f — частота тока питающей сети, p — число пар полюсов). Этот способ обеспечивает возможность плавного регулирования частоты вращения роторной части. Для получения высокого коэффициента полезного действия нужно изменять частоту и U. Этот способ является оптимальным для двигателей с короткозамкнутым ротором, так как потери мощности минимальны. Существует два метода изменения количества пар полюсов:

  1. В статор (в пазы) нужно уложить 2 обмотки с различным числом p.
  2. Обмотка состоит из двух частей, соединенных параллельно или последовательно.

Основным недостатком этого метода является поддержание ступенчатого характера изменения частоты электромотора с короткозамкнутым ротором.

Управление скоростью вращения однофазных двигателей

Существует несколько способов регулирования скорости вращения однофазного двигателя.

  1. Управление скольжением двигателя или изменением напряжения. Способ актуален для агрегатов с вентиляторной нагрузкой, для него рекомендуется использовать двигатели с повышенной мощностью. Недостаток способа – нагрев обмоток двигателя.
  2. Ступенчатое регулирование скорости вращения двигателя с помощью автотрансформатора.

Рис.№2. Схема регулировки с помощью автотрансформатора.

Достоинства схемы – напряжение выхода имеет чистую синусоиду. Способность трансформатора к перегрузкам имеет большой запас по мощности.

Недостатки – автотрансформатор имеет большие габаритные размеры.

Использование тиристорного . Применяются тиристорные ключи, подключенные встречно-параллельно.

Рис. №3.Схема тиристорного регулирования однофазного асинхронного электродвигателя.

При использовании для регулирования скорости вращения однофазных асинхронных двигателей, чтобы избежать негативного влияния индукционной нагрузки производят модификацию схемы. Добавляют LRC-цепи для защиты силовых ключей, для корректировки волны напряжения используют конденсатор, минимальная мощность двигателя ограничивается, так гарантируется старт двигателя. Тиристор должен иметь ток выше тока электродвигателя.

Транзисторный регулятор напряжения

В схеме используется широтно-импульсная модуляция (ШИМ) с применением выходного каскада, построенного на использовании полевых или биполярных IGBT транзисторах.

Рис. №4. Схема использования ШИМ для регулирования однофазного асинхронного электродвигателя.

Частотное регулирование асинхронного однофазного электродвигателя считается основным способом регулирования , мощности, эффективности использования, скорости и показателей энергосбережения.

Рис. №5. Схема управления электродвигателем без исключения из конструкции конденсатора.

Регулирование напряжением

Регулирование скорости этим способом связано с изменением, так называемого, скольжения двигателя — разностью между скоростью вращения магнитного поля, создаваемого неподвижным статором двигателя и его движущимся ротором:

n1 — скорость вращения магнитного поля

n2— скорость вращения ротора

При этом обязательно выделяется энергия скольжения — из-за чего сильнее нагреваются обмотки двигателя.

Данный способ имеет небольшой диапазон регулирования, примерно 2:1, а также может осуществляться только вниз — то есть, снижением питающего напряжения.

При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности.

Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.

На практике для этого применяют различные схемы регуляторов.

Автотрансформаторное регулирование напряжения

Автотрансформатор — это обычный трансформатор, но с одной обмоткой и с отводами от части витков. При этом нет гальванической развязки от сети, но она в данном случае и не нужна, поэтому получается экономия из-за отсутствия вторичной обмотки.

На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.

Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.

Преимущества данной схемы:

  • неискажённая форма выходного напряжения (чистая синусоида)
  • хорошая перегрузочная способность трансформатора

Недостатки:

  • большая масса и габариты трансформатора (зависят от мощности нагрузочного мотора)
  • все недостатки присущие регулировке напряжением

Тиристорный регулятор оборотов двигателя

В данной схеме используются ключи — два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) или симистор.

Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно «отрезается» кусок вначале или, реже в конце волны напряжения.

Таким образом изменяется среднеквадратичное значение напряжения.

Данная схема довольно широко используется для регулирования активной нагрузки — ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры).

Ещё один способ регулирования — пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно — шумы и рывки при работе.

Для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:

  • устанавливают защитные LRC-цепи для защиты силового ключа (конденсаторы, резисторы, дроссели)
  • добавляют на выходе конденсатор для корректировки формы волны напряжения
  • ограничивают минимальную мощность регулирования напряжения — для гарантированного старта двигателя
  • используют тиристоры с током в несколько раз превышающим ток электромотора

Достоинства тиристорных регуляторов:

Недостатки:

  • можно использовать для двигателей небольшой мощности
  • при работе возможен шум, треск, рывки двигателя
  • при использовании симисторов на двигатель попадает постоянное напряжение
  • все недостатки регулирования напряжением

Частотный преобразователь: виды, принцип действия, схемы подключения

Разрешает своему владельцу снизить энергопотребление и автоматизировать процессы в управлении оборудованием и производством.

Основные компоненты : выпрямитель, конденсатор, IGBT-транзисторы, собранные в выходной каскад.

Благодаря способности управлением параметрами выходной частоты и напряжения достигается хороший энергосберегающий эффект. Энергосбережение выражается в следующем:

  1. В двигателе поддерживается неизменный текущий момент ращения вала. Это обусловлено взаимодействием выходной частоты инверторного преобразователя с частотой вращения двигателя и соответственно, зависимостью напряжения и крутящего момента на валу двигателя. Значит, что преобразователь дает возможность автоматически регулировать напряжение на выходе при обнаружении превышающего норму значения напряжения с определенной рабочей частотой нужно для поддержания требуемого момента. Все инверторные преобразователи с векторным управлением имеют функцию поддержания постоянного вращающего момента на валу.
  2. Частотный преобразователь служит для регулировки действия насосных агрегатов (). При получении сигнала, поступающего с датчика давления, частотник снижает производительность насосной установки. При снижении оборотов вращения двигателя уменьшается потребление выходного напряжения. Так, стандартное потребление воды насосом требует 50Гц промышленной частоты и 400В напряжения. Руководствуясь формулой мощности можно высчитать соотношение потребляемых мощностей.

Уменьшая частоту до 40Гц, уменьшается величина напряжения до 250В, означает, что уменьшается количество оборотов вращения насоса и потребление энергии снижается в 2,56 раз.

Рис. №6. Использование частотного преобразователя Speedrive для регулирования насосных агрегатов по систем CKEA MULTI 35.

Для повышения энергетической эффективности использования необходимо сделать следующее:

  • Частотный преобразователь должен соответствовать параметрам электродвигателя.
  • Частотник подбирается в соответствии с типом рабочего оборудования, для которого он предназначен. Так, частотник для насосов функционирует в соответствии с заложенными в программу параметрами для управления работой насоса.
  • Точные настройки параметров управления в ручном и автоматическом режиме.
  • Частотный преобразователь разрешает использовать режим энергосбережения.
  • Режим векторного регулирования позволяет произвести автоматическую настройку управления двигателем.

Преобразователь частоты однофазный

Компактное устройство преобразования частоты служит для управления однофазными электродвигателями для оборудования бытового предназначения. Большинство частотных преобразователей обладает следующими конструктивными возможностями:

  1. Большинство моделей использует в своей конструкции новейшие технологии векторного управления.
  2. Они обеспечивают улучшенный вращающий момент однофазного двигателя.
  3. Энергосбережение введено в автоматический режим.
  4. Некоторые модели частотных преобразователей используют съемный пульт управления.
  5. Встроенный PLC контроллер (он незаменим для создания устройств сбора и передачи данных, для создания систем телеметрии, объединяет устройства с различными протоколами и интерфейсами связи в общую сеть).
  6. Встроенный ПИД регулятор (контролирует и регулирует температуру, давление и технологические процессы).
  7. Напряжение выхода регулируется в автоматическом режиме.

Рис.№7. Современный преобразователь Optidrive с основными функциональными особенностями.

Важно: Однофазный преобразователь частоты, питаясь от однофазной сети напряжением 220В, выдает три линейных напряжения, величина каждого из них по 220В. То есть, линейное напряжение между 2 фазами находится в прямой зависимости от величины выходного напряжения самого частотника.

Частотный преобразователь не служит для двойного преобразования напряжения, благодаря наличию в конструкции ШИМ-регулятора, он может поднять величину напряжения не более чем на 10%.

Главная задача однофазного преобразователя частоты – обеспечить питание как одно- так и трехфазного электродвигателя. В этом случае ток двигателя будет соответствовать параметрам подключения от трехфазной сети, и оставаться постоянным

Устройство системы

Коллекторный тип двигателя состоит главным образом из ротора, статора, а также щёток и тахогенератора.

  1. Ротор — это часть вращения, статор — это внешний по типу магнит.
  2. Щётки, которые произведены из графита — это главная часть скользящего контакта, через которую на вращающийся якорь и стоит подавать напряжение.
  3. Тахогенератор —это устройство, которое производит слежку за характеристикой вращения прибора. Если происходит нарушение в размеренности процесса вращения, то он корректирует поступающий в двигатель уровень напряжения, тем самым делая его наиболее плавным и медленным.
  4. Статор. Такая деталь может включать в себя не один магнит, а, к примеру, две пары полюсов. Вместе с этим на месте статических магнитов здесь будут находиться катушки электромагнитов. Совершать работу такое устройство способно как от постоянного тока, так и от переменного.

Схема регулятора оборотов коллекторного двигателя

В виде регуляторов оборотов электродвигателей 220 В и 380 В применяются особые частотные преобразователи. Такие устройства относят к высокотехнологическим, они и помогают совершить кардинальное преобразование характеристики тока (форму сигнала, а также частоту). В их комплектации имеются мощные полупроводниковые транзисторы, а также широтно-импульсный модулятор. Весь процесс осуществления работы устройства происходит с помощью управления специальным блоком на микроконтроллере. Изменение скорости во вращении ротора двигателей происходит довольно медленно.
Именно по этой причине частотные преобразователи применяются в нагруженных устройствах. Чем медленнее будет происходить процесс разгона, тем меньшая нагрузка будет совершена на редуктор, а также конвейер. Во всех частотниках можно найти несколько степеней защиты: по нагрузке, току, напряжению и другим показателям.

Некоторые модели частотных преобразователей совершают питание от однофазового напряжения (оно будет доходить до 220 Вольт), создают из него трехфазовое. Это помогает совершить подключение асинхронного мотора в домашних условиях без применения особо сложных схем и конструкций. При этом потребитель сможет не потерять мощность во время работы с таким прибором.

Зачем используют такой прибор-регулятор

Если говорить про двигатели регуляторов, то обороты нужны:

  1. Для существенной экономии электроэнергии. Так, не любому механизму нужно много энергии для выполнения работы вращения мотора, в некоторых случаях можно уменьшить вращение на 20−30 процентов, что поможет значительно сократить расходы на электроэнергию сразу в несколько раз.
  2. Для защиты всех механизмов, а также электронных типов цепей. При помощи преобразовательной частоты можно осуществлять определённый контроль за общей температурой, давлением, а также другими показателями прибора. В случае когда двигатель работает в виде определённого насоса, то в ёмкости, в которую совершается накачка воздуха либо жидкости, стоит вводить определённый датчик давления. Во время достижения максимальной отметки мотор попросту автоматически закончит свою работу.
  3. Для процесса плавного запуска. Нет особой необходимости применять дополнительные электронные виды оборудования — все можно осуществить при помощи изменения в настройках частотного преобразователя.
  4. Для снижения уровня расходов на обслуживание устройств. С помощью таких регуляторов оборотов в двигателях 220 В можно значительно уменьшить возможность выхода из строя приборов, а также отдельных типов механизмов.

Частотное регулирование однофазных асинхронных электродвигателей

Первое на что обращаем внимание при выборе частотника для своего оборудования – это соответствие сетевого напряжения и номинального значения тока нагрузки, на который рассчитан двигатель. Способ подключения выбирается относительно рабочего тока.

Главным в схеме подключения является наличие фазосдвигающего конденсатора, он служит для сдвига напряжения, поступающего на пусковую обмотку. Она служит для пускового включения двигателя, иногда после того, как двигатель заработал, пусковая обмотка вместе с конденсатором отключается, иногда остается включенной.

AC 220V 50 / 60Hz Однофазный регулятор скорости двигателя переменного тока Регулятор скорости электродвигателя — купить по низким ценам в платформе электронной коммерции Joom

Характеристика: Диапазон регулирования скорости регулятора двигателя составляет 90-1400 об / мин и 90-1700 об / мин соответственно при 50/60 Гц. Контроллер изготовлен из высококачественных электронных компонентов, а его характеристики стабильны и надежны. Точность управления высока, и реализовано микроконтроль скорости двигателя. Управление продуктом простое, что позволяет новичкам быстро изучить и освоить метод работы.Широко используется в производстве упаковки, печати, продуктов питания, электроники, приборов, медицинского оборудования, производственной линии швейной промышленности в качестве устройства скоростного привода.

Спецификация: Модель продукта: US-52-RED Соответствующая мощность двигателя: 300 Вт; 400Вт; 500 Вт (опционально) Рабочий источник питания: 220 В переменного тока, 50/60 Гц (диапазон колебаний напряжения ± 10% Ue) Условия использования: -10 ~ + 50 ℃ Относительная влажность: <90% Диапазон скорости: 90-1400 об / мин 50 Гц, 90-1700 об / мин 60 Гц

Список пакетов: 1 * Регулятор скорости двигателя

Примечание: Фактический цвет продукта может отличаться от фотографии из-за света.Возможны небольшие отклонения в измерениях продукта. Способ установки и использования: Контроллер имеет 6 линий, черная линия — это основная линия двигателя, красная и белая линия — вторичные линии конденсатора, две синие линии — линия обратной связи по скорости, а зеленая линия — линия заземления. Выключите питание, подключите в соответствии со схемой подключения и убедитесь, что подключение к линии правильное, не изменяйте произвольно; Перед использованием установите внешнюю ручку скорости на «0», чтобы избежать переходных высоких токов и повреждения контроллера.Этот продукт управляется напряжением обратной связи генератора, а линия управления разделена на две линии: «синюю» и «желтую». Когда регулятор подключен к двигателю и обнаруживается, что крутящий момент или скорость не соответствуют требованиям, US-52 регулирует потенциометр бокового триммера (регулировка настройки скорости). Чтобы изменить направление работы двигателя, просто замените перемычку «CCW» и «CW» на проводке на задней панели контроллера. * При изменении направления необходимо менять двигатель после того, как он полностью остановился.1) Выберите короткое замыкание COM и CW, двигатель вращается по часовой стрелке; 2) Выберите «COM» и «CCW» для короткого замыкания, затем двигатель вращается против часовой стрелки. Переключатель действия только управляет двигателем, чтобы работать или останавливаться, и не использует источник питания для прерывания. Если он не используется в течение длительного времени, отключите питание.

Тип продукта: Двигатели и контроллеры скорости

Надежный регулятор скорости вращения двигателя 220 В переменного тока для двигателей и электромобилей

Ознакомьтесь с полным ассортиментом мощных, надежных и эффективных. Контроль скорости двигателя переменного тока 220 В на Alibaba.com для обслуживания различных электрических приборов и двигателей электромобилей. Эти новаторские и продвинутые. Регулировка скорости двигателя переменного тока 220 В — это ультрасовременные продукты, которые действуют как блестящие блоки управления приборами и имеют прочную конструкцию. Файл. Регулятор скорости двигателя переменного тока 220 В. , доступные для продажи на сайте, имеют компактные размеры и оснащены всеми необходимыми стандартными функциями. Эти продукты предлагаются на сайте ведущими поставщиками и оптовиками по конкурентоспособным ценам и доступным ценам.

Опытный. Регулировка скорости двигателя переменного тока 220 В Продукты и аксессуары , выставленные на продажу на сайте, отличаются не только высоким качеством и долгим сроком службы, но и надежными с точки зрения производительности и экологичности. Они энергоэффективны и могут грамотно управлять электроприборами в соответствии с вашими требованиями. Эти. Регулировка скорости двигателя переменного тока 220 В обладают высокой масштабируемостью и могут быть полностью настроены в соответствии с требованиями заказчика. Эти. Регулировка скорости двигателя переменного тока 220 В термостойкие и могут поставляться с различными наборами напряжений, начиная с 12 В.

На Alibaba.com вы можете выбирать между несколькими разновидностями. Регулятор скорости двигателя переменного тока 220 В различных размеров, форм, цветов, характеристик и мощности в зависимости от ваших требований. Эти. Контроль скорости двигателя переменного тока 220 В идеально подходят для электромобилей и оснащены такими функциями, как нулевой джиттер, противоугонными опциями, жестким и мягким запуском и многим другим.Вы можете использовать это. Регулятор скорости двигателя переменного тока 220 В для применения как в коммерческих, так и в промышленных приложениях благодаря превосходным двигателям постоянного тока и синусоидальным технологиям.

Купите эти продукты на Alibaba.com, ознакомившись с широким спектром. Регулятор скорости двигателя 220 В переменного тока , который также соответствует вашему бюджету и требованиям. Эти сертифицированные ISO, SGS и CE продукты доступны как для OEM, так и для ODM-заказов при оптовых закупках. Вы также можете найти эти продукты, совместимые с солнечными приборами или приборами.

220v% 20ac% 20induction% 20motor% 20pwm техническое описание и примечания по применению

PMP7413 Инструменты Техаса Вход 220-400 В постоянного тока, 5 В / 100 Вт активный зажим вперед
PMP6961 Инструменты Техаса Вход 220-400 В постоянного тока, активный зажим 12 В / 100 Вт вперед
TLC0820ACDBR Инструменты Техаса 8-разрядный, параллельный выход АЦП 392 kSPS, периферийные устройства микропроцессора, отслеживание и удержание на кристалле, одноканальные 20-SSOP
TLC320AC02CPM Инструменты Техаса Одноканальный кодек — полоса пропускания независимо от частоты дискретизации 64-LQFP от 0 до 70
TLC0820ACDBG4 Инструменты Техаса 1-КАНАЛЬНЫЙ 8-РАЗРЯДНЫЙ АЦП, МЕТОД ВСПЫШКИ, ПАРАЛЛЕЛЬНЫЙ ДОСТУП, PDSO20, ЗЕЛЕНЫЙ, SSOP-20
TLC0820ACNE4 Инструменты Техаса 8-битный, параллельный выход АЦП 392 kSPS, периферийные устройства микропроцессора, отслеживание и удержание на кристалле, одноканальные 20-PDIP

Движение | Еще один сайт на WordPress

Характеристики асинхронных двигателей переменного тока

  • Асинхронный двигатель подразделяется на однофазный двигатель или трехфазный двигатель в зависимости от используемого источника питания.
  • Этот двигатель всегда использует вспомогательную обмотку и конденсатор не только при запуске, но и во время работы.
  • Пусковой момент не так велик, но конструкция проста и надежна. К тому же подключение простое.
  • Для однофазного асинхронного двигателя убедитесь, что конденсатор, указанный на паспортной табличке, должен соответствовать мощности двигателя.
  • Для однофазного асинхронного двигателя невозможно изменить направление вращения в течение короткого времени во время работы из-за инерционного момента, действующего против направления, в котором двигатель должен измениться.Таким образом, сначала остановите двигатель и измените направление вращения. В противном случае двигатель может быть поврежден.
  • Источник питания однофазного двигателя включает U (100 В, 50/60 Гц), C (200 В, 50/60 Гц, 220 В, 50/60 Гц, 230 В, 50 Гц).
  • Трехфазный асинхронный двигатель имеет более простое подключение, более высокую эффективность и надежность, чем однофазный двигатель, поскольку он может приводиться в действие напрямую от трехфазного источника питания.
  • Трехфазный двигатель популярен как двигатель общего назначения. Источник питания для трехфазного двигателя включает H (220 В 60 Гц, 230 В 50/60 Гц), M (380 В 50/60 Гц), Z (440 В / 460 В 50/60 Гц).
  • Мы предлагаем асинхронные двигатели от 6 Вт до 200 Вт в большом ассортименте.

Характеристики двигателей с регулировкой скорости (тип агрегата)

  • Используя его с регулятором скорости, можно управлять широким диапазоном скорости (50 Гц: 90 ~ 1400 об / мин, 60 Гц: 90 ~ 1700 об / мин).
  • Скорость легко регулируется с помощью регулятора скорости.
  • В зависимости от типа регулятора скорости его можно комбинировать с двигателем для различных целей, таких как регулирование скорости, торможение, медленный ход, медленная остановка и т. Д.
  • Построен в T.G. (Генератор тахометра) для управления обратной связью. Таким образом, даже если частота сети изменяется, но вращающиеся числа не меняются.
  • Когда двигатель регулирования скорости с электронным тормозом используется с регулятором скорости, мгновенное торможение и электронное торможение работают одновременно, обеспечивая высокую мощность торможения.
  • Двигатель регулирования скорости с электронным тормозом также оснащен электронным тормозом без возбуждения. Даже если питание отключено, используется торможение для поддержания торможения нагрузки.
  • Двигатели управления скоростью состоят из асинхронного двигателя, реверсивного двигателя и двигателя регулирования скорости с электронным тормозом, которые представляют собой небольшой двигатель переменного тока. Подходящий двигатель следует выбирать для соответствующего использования.
  • Выходной диапазон блока управления скоростью от 6 Вт до 180 Вт.

China Custom 104mm 250W 110V 220V Мотор-редуктор с регулятором скорости Поставщики, производители — Прямая цена с завода функции продукта стали более полными.Мы предоставляем нашим клиентам фотографии и видео о ходе обработки во время производственного процесса, чтобы наши клиенты могли чувствовать себя непринужденно после покупки. Разработка эффективной маркетинговой стратегии — ключ к расширению рынка, завоеванию рынка, увеличению объема продаж и созданию огромных экономических выгод. Мы стремимся превратить компанию в отличную компанию с передовыми технологиями и услугами в отрасли. Поэтому мы ищем увлеченных и профессиональных людей, которые присоединятся к нам и внесут свой вклад в наш успех и будущее процветание.

Введение

Принцип работы асинхронного двигателя серии YY80 основан на взаимодействии между вращающимся магнитным полем статора (синтетическим магнитным полем, создаваемым трехфазным током в обмотке статора) и током ротора (током в обмотке статора). обмотка ротора).

Шаги проверки

a, нормальное ли напряжение источника питания и сбалансировано ли трехфазное напряжение;

b, проверьте, исправно ли пусковое устройство, есть ли масляные пятна или плохой контакт, не ослаблен ли обжим провода в клемме проводки, плотно ли затянут передаточное устройство, проверните ротор двигателя и вал передачи нагрузки машины вручную, чтобы проверить, есть ли зажим вала и негибкость, а также проверить, в хорошем ли состоянии заземляющий провод корпуса двигателя и надежны ли крепежи.

Электрические характеристики

Модель

Скорость

Напряжение
(В)

Частота

(Гц)

Номинальный крутящий момент (Н-м)

Номинальная скорость
(об / мин)

Номинальная выходная мощность (Вт)

Изоляция
(Класс)

мкФ

WT8038

100

50/60

0.44 / 0,42

2780/3280

72/86

B

25

WT8045

230

230

230

2710

90

B

6

WT8050

120

60

9002

60

9002 9068

3352

134

B

25

Размеры

Наши преимущества в производстве 5 1.0003 Опыт работы

более 10 лет.

2. Мы предлагаем услуги OEM по индивидуальному заказу, производим и обрабатываем продукцию в соответствии с вашими чертежами и требованиями.

3. В наличии все виды двигателей. и т.п.

4. Поддержка услуг OEM и ODM : Мы можем настроить различное персонализированное оборудование автоматизации в соответствии с вашими требованиями, включая цвет машины, этикетки и упаковку.

FAQ

1. Q: Вы производитель, торговая компания или третье лицо?

A: Мы являемся производителем, и мы создали нашу компанию с 2008 года.

2. Q: Каков ваш минимальный объем заказа, можете ли вы прислать мне образцы?

A: Наше минимальное количество — 1 шт., Образцы доступны, однако мы можем выслать вам каталог, сердечно приветствуем вас посетить нашу компанию.

3. Вопрос: Поскольку доставка займет много времени, как убедиться, что двигатели и драйверы не сломаются?

A: Наши двигатели и приводы упакованы в поддоны, чтобы гарантировать бесперебойную доставку двигателей и приводов нашему клиенту.

Преобразователь частоты и преобразователь частоты

Опубликовано

Зак Вендт

Arrow Electronics

Зак Вендт — инженер-механик, имеющий опыт разработки потребительских товаров.Его страсть к электронике проистекает из его … Читать дальше

Почти во всех отраслях электрические двигатели играют жизненно важную роль в современных технологиях. Стремясь снизить потребление энергии электродвигателями в этих энергоемких устройствах ― и оптимизировать их эффективность ― производители использовали различные приводные технологии для изменения скорости двигателей. Эти технологии, которые включают частотно-регулируемые приводы (VFD) и частотно-регулируемые приводы (VSD), управляют двигателями в переменных условиях.

Типы электродвигателей и их применение

Электродвигатели используются в производственных процессах и системах управления в промышленных и сельскохозяйственных условиях; если он движется, скорее всего, он использует электродвигатель. В транспортном секторе электродвигатели используются в самых разных областях, например:

— Трансмиссии транспортных средств

— Гибридные моторные системы

— Подсистема управления как дворники.

В жилом секторе электродвигатели используются во всем, от кухонной техники до игрушек, с мощностью двигателя от нескольких сотен милливатт до нескольких тысяч ватт. Даже в коммерческом секторе электродвигатели используются в таких изделиях, как:

— Пылесосы в отелях

— Вилочные погрузчики у оптовиков

— Миски в ресторанах

— Строительные системы, такие как HVAC и лифты

Независимо от области применения электродвигатели потребляют поразительное количество энергии.Они потребляют 66% энергии в промышленном секторе, что составляет почти 40% мирового потребления энергии. Коммерческие вентиляционные и охлаждающие установки потребляют более 30% энергии здания, почти вся эта энергия потребляется электродвигателями.

Контроль скорости электродвигателя

Существуют две основные методологии управления электродвигателями, но их различия незначительны:

— Приводы с регулируемой скоростью (VSD) : Эти приводы изменяют скорость двигателя путем изменения входного напряжения и могут использоваться как с двигателями переменного, так и с постоянным током.

— Преобразователи частоты (ЧРП) : Преобразователи частоты также управляют скоростью двигателя, но они делают это путем изменения напряжения и частоты и, таким образом, могут использоваться только с двигателями переменного тока.

Приводы с регулируемой скоростью подают на двигатель определенную силу тока и напряжение. Если источник питания переменного тока, преобразователи частоты используют схему выпрямителя для преобразования переменного тока в постоянный с заданным напряжением и силой тока, которые может регулировать привод. Изменение напряжения постоянного тока изменяет скорость двигателя.ПЧ с двигателем постоянного тока может состоять из очень простой схемы, что делает их в целом менее дорогими, чем преобразователи частоты.

VFD контролируют частоту и напряжение сигнала переменного тока. Регулировка частоты двигателя переменного тока контролирует его скорость, а изменение напряжения изменяет крутящий момент, создаваемый двигателем. ЧРП также используются для управления скоростью пуска и замедления электродвигателей, а также для предотвращения перегрузки по току в двигателе. Эти устройства чрезвычайно эффективны для повышения эффективности двигателя в различных применениях двигателей переменного тока, где регулирование скорости является обязательным, и даже могут потребоваться в определенных приложениях, где энергосбережение является приоритетом.

Заключение

Как преобразователи частоты, так и преобразователи частоты стремятся снизить ненужное энергопотребление электродвигателя и оптимизировать эффективность и работу систем, в которых используются электродвигатели. В то время как обе технологии полагаются на управление мощностью, которую получает электродвигатель, два привода имеют критические различия, когда дело доходит до применения. Ознакомьтесь с дополнительной информацией по настройке электродвигателей и некоторых популярных продуктов.

Теги статей

Power Electronics MCQ (вопросы с несколькими вариантами ответов)

1) Какое из указанных устройств является самым быстрым коммутирующим устройством

  1. МОП-транзистор
  2. Триод
  3. BJT
  4. JEFT
Показать ответ Рабочая среда

Ответ: a

Пояснение: Термин MOSFET означает «полевой транзистор на основе оксида металла и полупроводника».Это один из самых распространенных транзисторов в цифровой электронике. Это устройство с большинством носителей заряда с самым быстрым переключением, поскольку в нем нет неосновных носителей заряда, которым требуется больше времени для стабилизации.


2) Демпферная цепь используется для

  1. Ограничение скорости нарастания напряжения на BJT
  2. Ограничение скорости нарастания напряжения на тиристоре
  3. Ограничение скорости нарастания тока через TRIAC
  4. Ограничение скорости нарастания тока через BJT
Показать ответ Рабочая среда

Ответ: b

Пояснение: Демпферная цепь относится к разновидности схемы защиты тиристора от DV / dt.Он используется для ограничения высокой скорости изменения напряжения от катода к аноду. Обычно он используется для защиты тиристора SCR от высоких напряжений DV / dt и di / dt.


3) Если максимальное значение приложенного напряжения для двухполупериодного выпрямителя с центральным ap (M-2) составляет 30 В, найдите величину пульсаций напряжения

  1. 83,88
  2. 84,52
  3. 87,62
  4. 89,59
Показать ответ Рабочая среда

Ответ: b

Пояснение:


4) Найдите коэффициент мощности смещения однофазного полностью управляемого выпрямителя, который питает постоянный постоянный ток в нагрузке, когда величина угла мощности равна 30 0

Показать ответ Рабочая среда

Ответ: c

Пояснение:

Учитывая, что ∅ = 30 0

Мы знаем,

Коэффициент смещения = cos? ∅ = cos30 0 =


5) В режиме прямой блокировки кремниевого выпрямителя тиристор равен

.
  1. В состоянии «включено»
  2. В натуральном состоянии
  3. Состояние прямого смещения
  4. В выключенном состоянии
Показать ответ Рабочая среда

Ответ: d

Пояснение: Режим прямой блокировки кремниевого выпрямителя относится к режиму, когда анод становится положительным по отношению к катоду.Это также называется выключенным состоянием.


6) Кремниевый управляемый выпрямитель включается, если анодный ток превышает

.
  1. Ток срабатывания
  2. Анодный ток
  3. Катодный ток
  4. Ток удержания
Показать ответ Рабочая среда

Ответ: c

Пояснение: SCR означает выпрямитель с кремниевым управлением. После включения SCR он будет оставаться в том же проводящем состоянии до тех пор, пока анодный ток не станет ниже, чем ток удержания.


7) Анодный ток, проходящий через кремниевый выпрямитель с проводящим управлением, равен 20 А. Если его ток затвора сделать половинным, каким будет анодный ток?

  1. 10 А
  2. 20 А
  3. 5 А
  4. 30 А
Показать ответ Рабочая среда

Ответ: b

Пояснение: Когда тиристор становится активным или включен, ток затвора не может его контролировать. Таким образом, значение тока остается неизменным.


8) Выпрямитель, управляемый кремнием, отключается, когда время его выключения составляет

.
  1. Больше времени выключения цепи
  2. Меньше времени выключения цепи
  3. Равно времени выключения цепи
  4. Ничего из этого
Показать ответ Рабочая среда

Ответ: b

Пояснение: Термин «выключен» означает, что он изменил свою форму с включенного состояния на выключенное и способен блокировать прямое напряжение.


9) Двухполупериодный выпрямитель 1 — выполнен на тиристорах. Если пиковое значение синусоидального входного напряжения составляет Vm, а значение угла задержки составляет? / 4 радиан, найдите среднее значение выходного напряжения

.
  1. 0,25 В
  2. M
  3. 0,45 ВМ
  4. 0,65 ВМ
  5. 0,85 ВМ
Показать ответ Рабочая среда

Ответ: b

Пояснение: Мы знаем, что для однофазного двухполупериодного выпрямителя


10) TRIAC такой же, как

  1. Два параллельных тиристора
  2. Два тиристора соединены встречно параллельно
  3. Один тиристор и один тиристор, подключенные параллельно
  4. Два последовательно соединенных тиристора
Показать ответ Рабочая среда

Ответ: b

Пояснение: TRIAC — это сокращение от трехконтактного переключателя переменного тока.Если разделить TRIAC, мы получим TRI ana AC. Название «TRI» предполагает, что устройство состоит из трех клемм, а «AC» означает, что устройство управляет переменным током. Это четырехуровневое двунаправленное устройство с 3 терминалами.


11) Схема однополупериодного выпрямителя, использующая идеальный диод, имеет входное напряжение 10 син? T В; найти среднее и среднеквадратичное значение выходного напряжения?

  1. 3,18 В, 5 В
  2. 3,68 В, 8 В
  3. 4,18 В, 5 В
  4. 4,68 В, 8 В
Показать ответ Рабочая среда

Ответ: a

Пояснение:

Дано;

Максимальное входное напряжение = 10 В

Мы знаем, что для схемы однополупериодного выпрямителя

А действующее значение выходного напряжения


12) Солнечный элемент на 450 В подает питание на источник переменного тока 440 В, 50 Гц через трехфазный полностью управляемый мостовой преобразователь.Индуктивность величиной 10 А подключена к цепи постоянного тока для поддержания постоянного тока. Если сопротивление солнечного элемента составляет 1 Ом, каждый тиристор будет смещен в обратном направлении на период

Ом.
  1. 148 0
  2. 138 0
  3. 128 0
  4. 118 0
Показать ответ Рабочая среда

Ответ: b

Пояснение: Дано;

ЭДС солнечного элемента = 450 В

Постоянный ток I постоянный ток = 10 А

Сопротивление солнечного элемента, элемента R = 1?

Мы знаем, что напряжение на инверторе = выходное напряжение солнечной батареи,

В выход = — (450 — 10 × 1) = -440 В

Для моста с трехфазным управлением


13) Двухполупериодный выпрямитель 1 выполнен на тиристорах.Если пиковое значение синусоидального входного напряжения Vm и угол задержки isradian, найти среднее значение выходного напряжения?

  1. 0,35 В макс.
  2. 0,45 В макс.
  3. 0,55 В макс.
  4. 0,65 В макс.
Показать ответ Рабочая среда

Ответ: c

Пояснение:


14) Какое из указанных устройств является наиболее подходящим силовым устройством для приложения переключения более высокой частоты (выше 100 кГц)

  1. SCR
  2. Силовой полевой МОП-транзистор
  3. ГТО
  4. BJT
Показать ответ Рабочая среда

Ответ: b

Пояснение: Наиболее подходящим силовым устройством для более высоких частот (выше 100 кГц) коммутации является силовой полевой МОП-транзистор, поскольку он имеет более низкие коммутационные потери.Таким образом, для приложений переключения на более низкую частоту используется BJT.


15) Какое из данного устройства является современным полупроводниковым устройством, сочетающим в себе характеристики MOSFET и BJT?

  1. SCR
  2. диод Шоттки
  3. Транзистор СВЧ
  4. БТИЗ
Показать ответ Рабочая среда

Ответ:

Пояснение: IGBT означает биполярный транзистор с изолированным затвором. Он включает в себя лучшие характеристики силовых полевых МОП-транзисторов и силовых транзисторов (BJT).Как и у полевого МОП-транзистора, он имеет низкую входную емкость и высокое входное сопротивление. В одном состоянии он имеет низкое сопротивление и высокую регулирующую способность по току, как у BJT.


16) Тиристор эквивалентный тиратронной лампе —

  1. BJT
  2. SCR
  3. TRIAC
  4. ГТО
Показать ответ Рабочая среда

Ответ: b

Пояснение: Тиристор известен как SCR, потому что это кремниевое устройство, используемое в качестве выпрямителя, и этим выпрямлением можно управлять.Он состоит из кремния только потому, что ток утечки в кремнии меньше, чем в германии. Если какое-либо устройство используется в качестве переключателя, необходимо, чтобы ток утечки был минимальным.


17) Полно-мостовой преобразователь с однофазным управлением питает высокоиндуктивную нагрузку постоянного тока. Провод питается от источника переменного тока 220 В, 50 Гц. Найдите основную частоту пульсаций напряжения на стороне постоянного тока в Гц

  1. 300 Гц
  2. 220 Гц
  3. 100 Гц
  4. 50 Гц
Показать ответ Рабочая среда

Ответ: c

Пояснение: Формула для вычисления четных гармоник представлена ​​как

= 2f S = 2 × 50 = 100 Гц


18) Однофазный полностью управляемый тиристорный мостовой преобразователь постоянного тока работает при угле включения 30 0 и угле перекрытия 20 0 постоянный выходной постоянный ток 10 А.найти основной коэффициент мощности на входе сети переменного тока?

  1. 0,968
  2. 0,766
  3. 0,163
  4. 0,586
Показать ответ Рабочая среда

Ответ: b

Пояснение:

Дано;

α = 30 0

µ = 20 0

Мы знаем, что основной коэффициент мощности или коэффициент смещения на входе сети переменного тока.


19) Найдите средний выходной сигнал полупреобразователя, подключенного к источнику питания 220 В, 50 Гц, и угол зажигания равен

.
  1. 178.52
  2. 248,05
  3. 148,55
  4. 198,49
Показать ответ Рабочая среда

Ответ: c

Пояснение:

Дано;

Угол открытия α =

Мы знаем, что среднее выходное напряжение полупроводника равно

.

20) Диод свободного хода — это фазоуправляемые выпрямители.

  1. Останавливает работу выпрямителя
  2. Повышает коэффициент мощности сети
  3. Причина дополнительных гармоник
  4. Причина внезапной поломки
Показать ответ Рабочая среда

Ответ: b

Пояснение: Диод свободного хода также называется байпасным диодом или коммутирующим диодом.Он используется для улучшения формы сигнала тока нагрузки и коэффициента мощности. Он подключен к реальности, которая управляется транзистором. Он позволяет рассеивать энергию, накопленную в индуктивности нагрузки в цепи, и обеспечивает непрерывный поток тока нагрузки, когда тиристор заблокирован.


21) В трехфазном мостовом выпрямителе максимальная проводимость каждого тиристора составляет

.
  1. 120 0
  2. 90 0
  3. 30 0
  4. 60 0
Показать ответ Рабочая среда

Ответ: a

Пояснение: В трехфазном мостовом выпрямителе максимальная проводимость каждого тиристора составляет 120 0


22) В мостовом выпрямителе с 3-фазным управлением частота пульсаций выходного напряжения зависит от

.
  1. Коэффициент мощности
  2. Частота питания
  3. Источник напряжения
  4. Угол открытия
Показать ответ Рабочая среда

Ответ: b

Пояснение: В мостовом выпрямителе с трехфазным управлением частота пульсаций выходного напряжения зависит от частоты питания.Частота пульсаций выходного напряжения

F out = общее количество импульсов × частота питания

В мостовом выпрямителе с регулируемым диаметром 3 диаметра частота пульсаций выходного напряжения в 6 раз превышает частоту питающей сети.


23) Трехфазный полный преобразователь питает чисто резистивную нагрузку при 220 В постоянного тока для угла включения 0 0 , найдите выходное напряжение для угла включения 90 0

  1. 30 В
  2. 0 В
  3. 90 В
  4. 120 В
Показать ответ Рабочая среда

Ответ: b

Пояснение: Мы это знаем,


24) Как называется преобразователь, который может работать как в 3-импульсном, так и в 6-импульсном режимах?

  1. Трехфазный двухполупериодный преобразователь
  2. Трехфазный полуволновой преобразователь
  3. Трехфазный полупреобразователь
  4. Однофазный полупреобразователь
Показать ответ Рабочая среда

Ответ: c

Пояснение: Трехфазный преобразователь имеет дополнительную особенность, заключающуюся в том, что он работает как 6-пульсный преобразователь для угла открытия α <и как трехимпульсный преобразователь для угла открытия α ≥


25) Трехфазный полностью управляемый преобразователь может работать как

  1. Преобразователь для α = 0 в 120 0
  2. Преобразователь для α = 0 в 90 0
  3. Преобразователь для α = 0 в 180 0
  4. Преобразователь для α = от 0 до 60 0
Показать ответ Рабочая среда

Ответ: c

Пояснение: Как известно, трехфазный полностью управляемый преобразователь работает только в двух квадрантах (первом и четвертом).


26) Трехфазный 6-импульсный преобразователь SCR подключен к источнику напряжения 220 В, 50 Гц, сети переменного тока и управляет приводом постоянного тока с напряжением на клеммах 210 В и номинальным значением тока 90 А. Если угол коммутации µ = 15 0 и угол зажигания α = 60, 0 , найти номинал шунтирующего компенсатора и коэффициент мощности.

  1. 1
  2. 0,5
  3. 2
  4. 1,5
Показать ответ Рабочая среда

Ответ: b

Пояснение:

Дано;

В = 210

I = 90 А

α = 60 0

Мы знаем, что компенсация шунта

= VI tan альфа;

Подставляя значения V, I и α в уравнение выше, получаем

= 210 × 90 загар 60 0

= 72, 735 VAR = 72.8 КВАР

А коэффициент мощности =

Cos α = Cos 60 0 = 0,5


27) Какой из данных регуляторов обеспечивает изменение полярности выходного напряжения без использования трансформатора.

  1. Линейный регулятор напряжения
  2. Шунтирующий регулятор напряжения
  3. Регулятор Buck-Boost
  4. Регулятор напряжения серии
Показать ответ Рабочая среда

Ответ: c

Пояснение: Понижающе-повышающий стабилизатор обеспечивает изменение полярности выходного напряжения без использования трансформатора.Понижающий-повышающий преобразователь относится к стабилизатору напряжения, используемому для регулирования источников питания постоянного тока. Может потребоваться выход с отрицательной полярностью по отношению к той же клемме входного напряжения. Выходное напряжение может быть больше или меньше входного.


28) Измельчитель преобразует

  1. от переменного тока к постоянному току
  2. AC в AC
  3. от постоянного тока до переменного тока
  4. DC в DC
Показать ответ Рабочая среда

Ответ: d

Пояснение: Прерыватели относятся к статическому переключателю, используемому для обеспечения переменного напряжения постоянного тока от источника постоянного напряжения постоянного тока.Это преобразователи постоянного тока в постоянный. Это может быть повышающий или понижающий преобразователь постоянного тока в постоянный. В повышающем преобразователе постоянного тока выходное напряжение меньше входного. Он также известен как понижающий преобразователь. В повышающем режиме преобразователь постоянного тока, который также называют повышающим преобразователем, противоположен понижающему преобразователю. Также существует конвертер, основанный на комбинации этих двух; он работает как в понижающем, так и в повышающем режиме в зависимости от условий эксплуатации; этот тип прерывателя называется повышающим преобразователем.


29) Схема прерывателя работает в режиме управления TRC на частоте 4 кГц при питании 220 В постоянного тока.Для выходного напряжения 180 В найдите периоды проводимости и блокировки тиристора в каждом цикле.

  1. 0,209 мс, 0,234 мс
  2. 0,404 мс, 0,055 мс
  3. 0,204 мс, 0,045 мс
  4. 0,704 мс, 0,897 мс
Показать ответ Рабочая среда

Ответ: c

Пояснение:

Дано;

В выход = 180 В

В с = 220 В

f = 4 кГц = 4 × 10 3

Мы знаем,


30) Четырехквадрантный измельчитель не может работать как

  1. Тиристор
  2. Циклоконвертер
  3. Одноквадрантный измельчитель
  4. Инвертор
Показать ответ Рабочая среда

Ответ: b

Пояснение: Циклоконвертер — это своего рода преобразователь переменного тока в переменный, основанный на тиристорах, который преобразует переменный ток одной частоты в переменный ток другой частоты без использования источника постоянного тока.Он используется в основном для увеличения или уменьшения частоты выходных напряжений по отношению к частоте входных напряжений, без использования каких-либо преобразователей AC-DC или DC-AC во время процесса. Сторона питания циклоконвертера считается входом, а сторона нагрузки — выходом.


31) Если повышающий прерыватель имеет напряжение источника V и рабочий цикл α, найдите выходное напряжение прерывателя.

Показать ответ Рабочая среда

Ответ: c

Пояснение:

Дано;

Напряжение источника =

В

Рабочий цикл = α

Мы знаем, что

Среднее значение выходного напряжения повышающего прерывателя равно

.

Где

В — источник напряжения, а α — рабочий цикл.


32) Сколько переключателей используется для построения трехфазного циклоконвертера в трехфазный?

  1. 10
  2. 14
  3. 18
  4. 24
Показать ответ Рабочая среда

Ответ: c

Пояснение: 18 переключателей необходимы для создания трехфазного циклоконвертера. Для трех фаз трехфазного циклоконвертера требуется три набора трехфазных полуволновых цепей, и для каждой цепи требуется 6 тиристоров.Таким образом, общее количество требуемых тиристоров составляет 18.


33) Циклопреобразователь из трехфазного в трехфазный требует

  1. 24 тиристора для 6-пульсного устройства
  2. 36 тиристоров для 6-пульсного устройства
  3. 48 тиристоров для 3-импульсного устройства
  4. 24 тиристора для 3-импульсного устройства
Показать ответ Рабочая среда

Ответ: b

Пояснение: Трехфазный циклоконвертер требует 36 тиристоров для 6-импульсных устройств.


34) В преобразователе из трехфазного в однофазный, использующем 6-импульсную мостовую схему, если входное напряжение составляет 220 В на фазу, найти значение основного среднеквадратичного значения выходного напряжения?

Показать ответ Рабочая среда

Ответ: d

Пояснение:

Дано;

Общее количество импульсов (м) = 6

Входное фазное напряжение (В P ) = 220 В

Мы знаем, что исходное значение среднеквадратичного выходного напряжения равно

.

35) Трехфазный циклоконвертер используется для нахождения однофазного переменного тока на выходе переменной частоты.Если нагрузка однофазного переменного тока составляет 240 В, 50 А при коэффициенте мощности 0,8 с запаздыванием, найдите среднеквадратичное значение входного напряжения на фазу

.
  1. 220 В
  2. 240 В
  3. 290 В
  4. 20 В
Показать ответ Рабочая среда

Ответ: c

Пояснение:

Дан,

В вых (среднеквадратичное значение) = 240 В

м = 3 (для 3 фазы)

Мы знаем, что исходное значение среднеквадратичного выходного напряжения равно

.

36) Однофазный полумостовой инвертор имеет входное напряжение 60 В постоянного тока.Если инвертор питает нагрузку 3,6 Ом, найдите среднеквадратичное выходное напряжение на основной частоте

.
  1. 188 В
  2. 168 В
  3. 158 В
  4. 178 В
Показать ответ Рабочая среда

Ответ: a

Пояснение:

Дан,

Vs = 60

Мы знаем, что основная составляющая выходного напряжения однофазного полумостового инвертора задается как


37) ШИМ-переключение используется в инверторах источника напряжения с целью

  1. Регулировка выходного тока
  2. Управляющее входное напряжение
  3. Управление входной мощностью
  4. Управление выходными гармониками и выходным напряжением.
Показать ответ Рабочая среда

Ответ: d

Пояснение: PWM означает широтно-импульсную модуляцию. Он используется в инверторе источника напряжения для управления выходным напряжением и выходными гармониками. Это метод управления средней мощностью сигнала в непрерывном диапазоне путем переключения его между включенным и выключенным состояниями. Это метод создания амплитудной модуляции. При увеличении количества импульсов за полупериод порядок частоты гармоник увеличивается, так что размер фильтра уменьшается.


38) Однофазный полномостовой инвертор напряжения (VSI) питается от источника 240 В постоянного тока. Если импульс длительностью 60 0 используется для запуска устройств в каждом полупериоде, найдите среднеквадратичное значение основной составляющей выходного напряжения.

  1. 128 v
  2. 148 В
  3. 108 В
  4. 168 В
Показать ответ Рабочая среда

Ответ: c

Пояснение:

Заданная длительность импульса (d) = 60 0

Вс = 240 В

Мы знаем, что ширина импульса равна

.

2д = 60 0

D = 30 0

Таким образом, среднеквадратичное значение основной составляющей выходного напряжения равно

.

39) Электродвигатель, развивающий пусковой момент 18 Нм, запускается с момента нагрузки 9 Нм на его валу.Если ускорение в начальной точке составляет 3 рад / сек 2 , найти момент инерции системы (без учета трения)

  1. 3 кг — м 2
  2. 9 кг — м 2
  3. 27 кг — м 2
  4. 81 кг — м 2
Показать ответ Рабочая среда

Ответ: a

Пояснение:

Дан,

Пусковой момент Испытание двигателя = 18 Нм

Момент нагрузки T L = 9 Нм

Момент ускорения Ta = Tst- T L = 18 Нм — 9 Нм = 9 Нм

Ускорение α = 3 рад / с 2

Мы знаем, что момент инерции равен

.

40) Если трехфазный полупреобразователь питается от электродвигателя постоянного тока с независимым возбуждением при постоянном токе возбуждения, электродвигатель может работать в заданных условиях.

  1. Положительная частота вращения и отрицательный момент
  2. Положительный результат и положительный ток
  3. Отрицательная скорость и положительный момент
  4. Отрицательная скорость и отрицательный момент
Показать ответ Рабочая среда

Ответ: b

Пояснение: 3-х квадрантный привод только в одном квадранте; следовательно, мото может работать только в первом квадранте, который имеет положительную скорость и положительный крутящий момент.


41) A 240 В, 1200 об. / Мин.Двигатель постоянного тока с независимым возбуждением имеет сопротивление якоря 3 Ом. Понижающий прерыватель управляет двигателем постоянного тока с частотой 1 кГц. Входное постоянное напряжение, подаваемое на прерыватель, составляет 280 В. Если рабочий цикл прерывателя для двигателя, работающего на скорости 700 об / мин, найдите номинальный крутящий момент

.
  1. 0,233
  2. 0,338
  3. 0,633
  4. 0,951
Показать ответ Рабочая среда

Ответ: b

Пояснение:

Дан,

Номинальная частота вращения (N 1 ) = 1200 об / мин

Напряжение на якоре (В a1 ) = 240 В

Ток якоря (I a ) = 30 A

Сопротивление якоря (R a ) = 3 Ом

Номинальная частота вращения (N 2 ) = 700 об / мин и V с = 280 В

Мы знаем,

Номинальная частота вращения 1200 об / мин. Напряжение на якоре двигателя,

V a1 = E b1 + I a R a

E b1 = V a1 — I a R a

= 240 — 30 × 3

= 240 — 90 = 150 В

при 700 об / мин,

При номинальном крутящем моменте ток якоря также будет номинальным, равным 30 А, потому что ток прямо пропорционален крутящему моменту

Так приложенное напряжение

В a2 = E b2 + I a R a

= 87.5 + 30 × 3

= 177,5 В

Таким образом, коэффициент заполнения,


42) Однофазный полууправляемый выпрямитель приводит в действие двигатель постоянного тока с независимым возбуждением. Постоянная противоэдс двигателя составляет 0,30 В / об / мин. Значение тока якоря 8 А без пульсаций, сопротивление якоря 3 Ом. Преобразователь работает от источника питания 240 В однофазного источника переменного тока с углом включения 60 0 . Найдите скорость двигателя постоянного тока при этом условии

  1. 120.6 об / мин
  2. 168. 7 об / мин
  3. 190,2 об / мин
  4. 240. 8 об / мин
Показать ответ Рабочая среда

Ответ: c

Пояснение:

Дан,

Постоянная противоэдс двигателя E b = 0,30 В / об / мин

Ток якоря (I a ) = 8 A

Сопротивление якоря (R a ) = 3 Ом

В макс = 240 В

Угол открытия α = 60 0

Мы знаем,

Среднее выходное напряжение однофазного полууправляемого выпрямителя равно

.

43) Ток якоря двигателя постоянного тока, питаемый от тиристорного преобразователя мощности, состоит из пульсаций.Пульсация якоря влияет на

  1. Коммутация мотора
  2. Скорость мотора
  3. Крутящий момент мотора
  4. КПД мотора
Показать ответ Рабочая среда

Ответ: a

Пояснение: Частота пульсаций относится к частоте остаточного переменного напряжения. После этого он был выпрямлен до постоянного тока в источнике питания. Из-за более высокой пульсации в двигателе на выходе преобразователя возникают проблемы с нагревом и коммутацией.Работает на высоком постоянном напряжении. Для полуволнового выпрямителя значение частоты пульсаций i совпадает с частотой переменного тока, а для двухполупериодного выпрямителя значение частоты пульсаций в два раза больше исходной частоты переменного тока.


44) Якорь двигателя питается через выпрямители с кремниевым управлением с фазовым регулированием и получает более плавную форму напряжения на

.
  1. Меньшая скорость мотора
  2. Постоянная скорость двигателя
  3. Более высокая скорость двигателя
  4. Ничего из этого
Показать ответ Рабочая среда

Ответ: c

Пояснение: Мы знаем, что напряжение прямо пропорционально скорости.Таким образом, более плавная форма напряжения достигается при более высокой скорости.


45) Крутящий момент, создаваемый однофазным асинхронным двигателем, питаемым от контроллера переменного напряжения для управления скоростью из-за

  1. Основная составляющая гармоник, а также тока
  2. Только основная составляющая гармоник
  3. Только основная составляющая тока
  4. Основная составляющая и четные гармоники
Показать ответ Рабочая среда

Ответ: c

Пояснение: Однофазные асинхронные двигатели работают от однофазного переменного тока.Имеет две обмотки; Основные обмотки и вспомогательная обмотка. Для управления скоростью однофазного асинхронного двигателя с помощью контроллера переменного напряжения, и только основная составляющая тока требуется для развития крутящего момента. Гармоники в токе двигателя могут вызвать потери мощности, что приведет к нагреву двигателя.


46) В цепь ротора подключается сопротивление 4 Ом, а в периоды выключения прерывателя дополнительно подключается сопротивление 8 Ом. Период выключения прерывателя составляет 6 мс.Найдите среднее сопротивление в цепи ротора для частоты прерывателя 200 Гц.

  1. 20,6 Ом
  2. 15,5 Ом
  3. 25,9 Ом
  4. 1,8 Ом
Показать ответ Рабочая среда

Ответ: b

Пояснение:

Дан,

Обычно резистор на 4 Ом подключается к цепи ротора в периоды выключения; r = 8 Ом дополнительно

T выкл. = 6 мс

f = 200 Гц

Мы знаем, что частота обратна периоду

Итак,


47) Когда синхронный двигатель с автоматическим управлением питается от преобразователя частоты

  1. Скорость статора определяет скорость статора
  2. Возникают проблемы со стабильностью
  3. Частота статора определяет скорость ротора
  4. Частота ротора определяет скорость ротора
Показать ответ Рабочая среда

Ответ: c

Пояснение:

Как известно,

Синхронный двигатель всегда работает с синхронной скоростью

Где,

f = частота

p = количество полюсов.

Таким образом, скорость ротора определяется частотой статора.


48) Трехфазный полностью управляемый тиристорный мостовой преобразователь используется в качестве преобразователя с линейной коммутацией для питания 60 кВт с мощностью 450 В постоянного тока в трехфазной сети переменного тока 430 В (линия), 50 Гц. Если ток в звене постоянного тока постоянный, найдите действующее значение тока тиристора.

  1. 54,68 А
  2. 76,98 А
  3. 66,08 А
  4. 16,88 А
Показать ответ Рабочая среда

Ответ: b

Пояснение:

Дан,

Ток промежуточного контура I d = Постоянный

Напряжение промежуточного контура В d = 450 В

P = 60 × 10 3

Итак, мощность, подводимая к двигателю, равна

.

P = V d I d


49) Для какого из перечисленных ниже приводов широко используется асинхронный двигатель с питанием от циклоконвертера?

  1. Привод компрессора
  2. Привод станка
  3. Привод бумажной фабрики
  4. Привод цементной мельницы
Показать ответ Рабочая среда

Ответ: b

Пояснение: Циклоконверторы в основном используются там, где требуется точное регулирование скорости.Это означает, что циклоконвертер не подходит для привода цементной мельницы, а также для привода компрессора. Бумажная фабрика требует привода с постоянной скоростью. Таким образом, привод асинхронного двигателя с питанием от циклоконвертера широко используется для привода станков.


50) Какая из приведенных конфигураций используется как для рекуперативного, так и для моторного торможения?

  1. Измельчитель первый квадрант
  2. Измельчитель четвертого квадранта
  3. Измельчитель третьего квадранта
  4. Двухквадрантный измельчитель
Показать ответ Рабочая среда

Ответ: d

Пояснение: Двухквадрантный прерыватель используется как для рекуперативного, так и для моторного торможения.


51) Прерыватель постоянного тока используется в режиме рекуперативного торможения двигателя постоянного тока. Напряжение питания постоянного тока составляет 400 В, а рабочий цикл составляет 60%. Среднее значение тока якоря составляет 80 А. Если он считается непрерывным и без пульсаций, найти значение обратной связи по мощности к источнику питания?

  1. 28200 Вт
  2. 19200 Вт
  3. 21240 Вт
  4. 19220 Вт
Показать ответ Рабочая среда

Ответ: d

Пояснение:

:

Дан,

В выход = 400 В

Рабочий цикл α = 0.6

Ток якоря I S = 80 A

Мы знаем, что в регенеративном режиме чоппер работал как повышающий прерыватель

Следовательно,

= 600 (1 — 0,6) = 240 В

Теперь поставщик электроэнергии вернулся к поставке

= V S I S = 240 × 80 = 19200 Вт


52) Силовой диод

  1. Двухконтактный полупроводниковый прибор
  2. Трехконтактный полупроводниковый прибор
  3. Четырехконтактный полупроводниковый прибор
  4. Ничего из этого
Показать ответ Рабочая среда

Ответ: a

Пояснение: Силовой диод относится к полупроводниковому устройству, которое используется для преобразования переменного тока в постоянный.Он состоит из двух выводов, катода и анода, как и у обычного диода. Силовой диод — это не что иное, как сигнальный диод с дополнительным слоем.


53) ВАХ диода лежат в диапазоне

.
  1. Первый квадрант
  2. Четвертый квадрант
  3. Третий и второй квадрант
  4. Первый и третий квадрант
Показать ответ Рабочая среда

Ответ: d

Пояснение: Вольт-амперная характеристика диода лежит в первом и третьем квадранте.Первый квадрант работает в прямой области, а третий квадрант работает в режиме обратного смещения.


54) Найдите тройную частоту шестифазного однополупериодного выпрямителя для входа 220 В, 50 Гц

  1. 150 Гц
  2. 300 Гц
  3. 50 Гц
  4. 600 Гц
Показать ответ Рабочая среда

Ответ: b

Пояснение:

В шестифазном однополупериодном выпрямителе обычно используется шесть диодов. Поскольку частота источника питания составляет 50 Гц, частота пульсаций в шесть раз больше, чем у источника питания

.

= 50 × 6 = 300 Гц


55) Если угол включения α однофазного полностью управляемого выпрямителя, питающего постоянный постоянный ток в нагрузку, равен 60 0 , Найдите коэффициент смещения выпрямителя

  1. 0
  2. 0.5
  3. 1
  4. 1,5
Показать ответ Рабочая среда

Ответ: b

Пояснение: Коэффициент смещения относится к коэффициенту мощности из-за фазового сдвига между напряжением и током на основной частоте линии.

SO,

Коэффициент смещения мощности задается как = Cos?

? 60 0

Следовательно, Cos60 0 = 0,5


56) PN-переход с прямым смещением действует как a / an

  1. Тиристор
  2. Выключатель замкнутый
  3. Усилитель
  4. Измельчитель
Показать ответ Рабочая среда

Ответ: b

Пояснение: PN переходный диод относится к диоду, который образуется, когда полупроводник p-типа сплавлен с полупроводником n-типа.Это создает потенциальный барьер на диодном переходе. В условиях прямого смещения диод PN-перехода действует как замкнутый переключатель.


57) Для конкретного транзистора, если значение бета равно 400, а ток базы равен 8 мА, найти значение тока эмиттера?

  1. 4,308
  2. 3.208 А
  3. 7.808 А
  4. 9,276 А
Показать ответ Рабочая среда

Ответ: b

Пояснение:

Дан,

Коэффициент усиления по току β = 400

Базовый ток I B = 8 мА

Коэффициент усиления постоянного тока β dc относится к отношению тока коллектора к току базы при постоянном напряжении V CE в условиях смещения постоянного тока.


58) Двухтранзисторная модель SCR, полученная

  1. Разделение тиристоров пополам по диагонали
  2. Разделение двух верхних и нижних слоев SCR пополам
  3. Разделение пополам только двух нижних слоев тринистора
  4. Разделение тиристоров пополам по горизонтали
Показать ответ Рабочая среда

Ответ: b

Пояснение: Двухтранзисторные модели SCR получаются путем разделения двух верхних и нижних слоев SCR пополам. SCR — это однонаправленное устройство, работающее как диод.Это позволяет току течь только в одном направлении.


59) В SCR характеристики затвора-катода имеют наклон 160. Если рассеиваемая мощность затвора составляет 0,8 Вт, найти значение тока затвора?

  1. 110 мА
  2. 220 мА
  3. 71 мА
  4. 31 мА
Показать ответ Рабочая среда

Ответ: c

Пояснение:

Дан,

Наклон = 160

Мы знаем, что

Мощность определяется как произведение напряжения и тока

Следовательно,

P = V г × I г = 0.8

Наклон V г / I г = 160

V г = 160 × I г

160 I 2 г = 0,8

I г = 71 мА


.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *