Сравнить моторные масла по характеристикам: ▷ Сравнение моторных масел:
Подбор масла по марке автомобиля
Выберите категорию:
Легковые автомобили
Ретро автомобили
Фургоны
Грузовики
Мотоциклы, скутеры, квадроциклы
Сельхозтехника
Индустриальная техника
Лодки, катера, яхты
Выберите марку:
Выберите марку техники
Выберите модель:
Выберите модель
Выберите тип:
Выберите тип
Все права защищены. Полное или частичное копирование информации в любом виде без предварительного письменного разрешения правообладателя категорически запрещается. Несмотря на то, что точность и полнота представленной здесь информации была проверена, мы не несем никакой ответственности за негативные последствия и ущерб любого вида, вызванный неточностями предоставленных данных. Для более точной информации пользуйтесь данными руководства по эксплуатации вашего автомобиля.
{{/unless}}
Модель: {{vehicle.model}}
Марка: {{vehicle.make}}
Тип модели: {{vehicle.type}}
Год выпуска: {{vehicle.yearrange}}
Рабочий объём: {{capacity. [0]}}
Использование: {{name}}
{{#unless use}}
{{/unless}} {{#each use}}
{{name}} вариант использования
{{/each}}
{{/each}}
{{/each}}
Подбор масла по автомобилю, моторное масло для двигателя онлайн
ПРАВИЛА ИСПОЛЬЗОВАНИЯ ПОДАРОЧНЫХ КАРТ «АВТОМАГ»
1. Подарочная Карта «АВТОМАГ» — пластиковая карта, удостоверяющая право ее предъявителя однократно выбрать и получить любой товар из ассортимента магазинов «АВТОМАГ» на территории Санкт-Петербурга, Москвы и Московской Области на сумму ее номинала.
2. Приобретать Подарочные Карты «АВТОМАГ» могут физические лица за наличный и безналичный расчет. Для Юридических лиц возможна покупка по безналичному расчету по предварительно оформленному счету или налично, с учетом ограничения размера взаиморасчетов наличными между юридическими лицами и индивидуальными предпринимателями в рамках одного договора (Указание Банка России от 07.10.2013г. № 3073-У «Об осуществлении наличных расчетов»).
3. Предъявителем Подарочной Карты может быть только физическое лицо, получающее товар исключительно для личных, семейных, домашних и иных нужд, не связанных с осуществлением предпринимательской деятельности.
4. Подарочная Карта принимается во всех магазинах «АВТОМАГ», www.amag.ru или amagspb. ru, при условии оформления заказа на самовывоз из розничной сети «АВТОМАГ» на территории Санкт-Петербурга, Москвы и Московской Области на сумму ее номинала
5. Активация Подарочной карты производится кассиром магазина в момент продажи путём сканирования штрих-кода, напечатанного на оборотной стороне Подарочной карты. Не активированная подарочная карта является недействительной и не принимается к оплате.
6. Номинал Подарочной карты подтверждается фискальным чеком продажи, который кассир выдаёт покупателю при покупке им Подарочной карты. На фискальном чеке отображается 13-значный номер Подарочной карты.
7. Подарочная карта является картой на предъявителя (не является именной). Любое физическое лицо, предъявившее Подарочную карту, может оплатить с её помощью товары и услуги в магазинах «АВТОМАГ».
8. Приобрести товар с использованием подарочной карты может как сам Приобретатель карты, так и иное лицо, которому Приобретатель карты передало подарочную карту (далее по тексту – «Держатель карты»).
ООО «Автохимия-Инвест» не несет ответственности за нарушение Приобретателем карты обязанности по предоставлению полной, исчерпывающей и достоверной информации Держателю карты об условиях ее использования, предусмотренных настоящими Правилами.9. В течение срока действия Подарочной карты ее держатель может совершить покупку на сумму в пределах номинала карты из ассортимента, представленного в магазинах сети «АВТОМАГ» по ценам, действующим на момент приобретения товара.
10.В случае утраты Подарочной карты, в том числе хищения, карта не может быть восстановлена, и денежные средства, оставшиеся на карте, не могут быть возвращены, в связи с отсутствием персонификации лица, оплатившего Подарочную карту или владевшего картой до утраты.
11.Покупателю следует сохранить фискальный чек продажи, полученный им при покупке Подарочной карты, для подтверждения её номинала в случае размагничивания, повреждения или в случае иных спорных ситуаций.
12.Проверить срок действия и баланс Подарочной карты покупатель может в кассовом узле магазина «АВТОМАГ» или по телефону Центра Обслуживания Клиентов: +7 (495) 721-33-33.
13.Подарочная Карта используется при получении товара только один раз, вне зависимости от размера ее номинала. Подарочная карта, использованная для оплаты товаров, изымается кассиром магазина «АВТОМАГ».
14.Особенности Подарочной Карты:
- Если цена выбранного товара (товаров) ниже номинала Подарочной Карты, остаток денежными средствами не выплачивается.
- Если цена выбранного товара (товаров) выше номинала Подарочной Карты, предъявитель должен доплатить недостающую сумму. Допускается суммирование номиналов нескольких Подарочных Карт.
- Подарочная Карта подлежит возврату, уплаченные за нее денежные средства возвращаются только при наличии документа, подтверждающего покупку.
- Срок действия Подарочной карты ограничен и составляет 2 года, начиная со дня активации (покупки) карты.
- Пролонгация срока действия Подарочной карты не производится.
15.При приобретении Подарочной Карты в магазине с оплатой наличными или банковской картой выдается кассовый чек.
16.При получении выбранного товара выдаются кассовые чеки, в которых содержатся данные об использованных картах, и указана сумма доплаты, если она была.
17.Подарочную Карту можно предъявлять, начиная со следующего дня после ее приобретения.
18.Владельцам Клубных Карт АВТОМАГ:
- При приобретении Подарочной Карты не возможно применение скидки и начисление/списание Баллов на сумму, оплаченную денежными средствами.
- При оплате товара Подарочной картой не возможно применение Клубной карты АВТОМАГ (начисление/списание Баллов, применение скидки).
- Не допускается оплата накопленными Баллами части суммы покупки, которая превышает номинал Подарочной Карты.
- На сумму покупки, оплаченную Баллами или Подарочной картой, Баллы не начисляются.
19.Товар, полученный по Подарочной Карте, подлежит возврату в соответствии с действующим законодательством РФ.
При наличии в чеке ККМ нескольких товаров, оплаченных Подарочной Картой и Денежными средствами (налично/безналично), при осуществлении частичного возврата товара оплаченная сумма (Подарочной Картой, наличными и безналичными Денежными средствами) распределяются пропорционально стоимости товара в чеке продажи.
20. Порядок осуществления возврата товара:
20.1. При 100% оплате Подарочной Картой покупателю выдается:
— чек с признаком расчета «Возврат прихода»,
20.2. При оплате товара Подарочной Картой и Денежными средствами (налично/безналично) и полном возврате товара по чеку:
— чек с признаком расчета «Возврат прихода»;
— новая Подарочная Карта;
— Денежные Средства (налично/безналично), равные сумме оплаты денежными средствами в чеке.
20.3. При оплате товара Подарочной Картой и Денежными средствами (налично/безналично) и частичном возврате товара из чека:
— чек с признаком расчета «Возврат прихода»;
— новая Подарочная Карта, в случае суммы возврата равной номиналу Подарочной Карты;
— начисляются баллы на клубную карту АВТОМАГ, если покупатель является участником клуба АВТОМАГ;
— при отсутствии клубной карты АВТОМАГ у покупателя, оформляется карта с начислением на нее баллов;
— при отказе покупателя от оформления карты АВТОМАГ, разница в цене денежными средствами не возвращается.
Баллы на клубную карту АВТОМАГ начисляются до 7 календарных дней.
21. При возврате товара, полученного по Подарочной Карте, сумма ее номинала не выплачивается – возможен обмен на другой товар того же артикула, либо получение новой Подарочной Карты.
22. Подарочные карты нельзя приобрести за бонусы, за покупку подарочных карт баллы на карту клуба АВТОМАГ не начисляются.
23. Компания-эмитент оставляет за собой право изменять настоящие правила. Актуальная информация – на сайте www.amag.ru или amagspb.ru
Как определить качество моторного масла
Хотя большинство моторных масел изготавливаются в соответствии с приемлемыми стандартами, их общие и специфические качества могут сильно различаться. Некачественные моторные масла часто выбрасываются на рынок по незнанию или жадности. К сожалению, для неосведомленного автовладельца качественное моторное масло и некачественное моторное масло будут выглядеть и ощущаться одинаково.
Двигатель и стендовые испытания
Двигатель всегда был конечной платформой для определения требуемого качества масла. Несмотря на то, что конструкция двигателя изменилась, чтобы соответствовать стандартам производительности, топливной эффективности и экологическим стандартам, двигатель по-прежнему остается высшим арбитром качества масла.
Однако использование двигателя для измерения качества масла при динамометрических испытаниях может оказаться дорогостоящим делом. Тем не менее, чтобы помочь контролировать затраты на гарантийное обслуживание, производители двигателей неизбежно должны разрабатывать и использовать тесты двигателей при определении качества масла, необходимого для конкретной конструкции или компонента.
Хотя это необходимо, создание воспроизводимых динамометрических испытаний двигателя может быть сложной задачей. Поскольку конструкция двигателя постепенно увеличивает мощность по сравнению с двигателями меньшего размера, сложность проведения воспроизводимых динамометрических испытаний возрастает еще быстрее. К счастью, когда уровень качества определен на динамометре или в полевых условиях, существует гораздо менее затратный подход, который можно применить для более точной оценки качества масла.
Это включает в себя использование лабораторных стендовых испытаний, предназначенных для тесной связи с испытаниями на динамометрическом стенде двигателя или полевым опытом. Эти стендовые испытания позволяют относительно недорого измерить качество масла. Однако ценность и значимость этого типа испытаний зависит от ряда факторов, включая определение конкретных потребностей двигателя, четкую и непротиворечивую информацию о двигателе либо в ходе динамометрических испытаний, либо в полевых условиях, а также понимание взаимосвязи между потребности двигателя и физические и/или химические свойства масла.
Свойства моторного масла
Для обслуживания двигателя масло должно обладать определенными физическими и химическими свойствами. Во время службы масла в двигателе возникает ряд рабочих нагрузок, которые отрицательно сказываются на долгосрочной способности масла функционировать на стабильно высоком уровне. Условия эксплуатации также могут сильно различаться в зависимости от окружающей среды и способа использования автомобиля. Следовательно, выбор моторного масла для удовлетворения конкретных потребностей и условий обслуживания требует знания нескольких важных свойств масла, включая вязкость.
Вязкость
Вязкость можно определить как сопротивление жидкости течению. Поскольку молекулы жидкости несколько притягиваются друг к другу, требуется энергия, чтобы разделить их и создать поток. Как правило, более крупные молекулы имеют большее притяжение между собой и более высокую вязкость. Энергия, необходимая для преодоления этого притяжения между молекулами и создания потока жидкости, можно рассматривать как форму трения.
Следовательно, вязкость можно определить как форму молекулярного трения. Из всех физических и химических свойств моторного масла его вязкость и вискозиметрические свойства во время использования часто считаются наиболее важными.
Вязкость и предотвращение износа
Это же молекулярное трение предотвращает слишком быструю утечку масла, когда две поверхности двигателя в относительном движении сближаются под давлением. Эта неспособность промежуточного масла быстро выйти и уровень его несжимаемости удерживает две поверхности друг от друга и предотвращает износ, процесс, который называется гидродинамической смазкой. Чем выше вязкость, тем больше притяжение молекул масла и выше защита от износа.
Класс вязкости
Вязкость смазочного материала всегда ассоциировалась с защитой от износа. В начале своей истории SAE признала вязкость важным фактором для работы двигателя и ввела систему классификации J300, которая устанавливает уровни вязкости для двигателей по ряду классов. Эти марки определяются уровнями вязкости в одной или двух температурных зонах. Сегодня классы устанавливаются для рабочих температур двигателя и для зимних температур, при которых масло влияет на запуск и прокачку.
Вязкость при рабочих условиях
В первые годы существования автомобильных двигателей масла формулировались просто и подчинялись уравнению Ньютона для вязкости: чем больше сила, используемая для движения жидкости (напряжение сдвига), тем быстрее она будет течь (скорость сдвига). По существу, отношение напряжения сдвига к скорости сдвига — вязкости — оставалось постоянным при всех скоростях сдвига. Все моторные масла того времени были практически одного сорта и не имели классификации SAE «W».
Это вискозиметрическое соотношение изменилось в 1940-х годах, когда было обнаружено, что добавление небольших количеств высокомолекулярных полимеров, по-видимому, придает маслу желаемые характеристики текучести как для низкотемпературного пуска, так и для работы двигателя при высоких температурах. Соответственно, эти полимерсодержащие масла относились по системе классификации вязкости SAE к всесезонным моторным маслам, так как удовлетворяли требованиям обеих вязкостно-температурных зон.
С тех пор большую популярность приобрели всесезонные масла (например, SAE 10W-40, 5W-30, 0W-20 и т. д.). Однако они больше не были ньютоновскими по характеристикам течения, поскольку было обнаружено, что вязкость уменьшается с увеличением скорости сдвига. Это считалось важным для смазывания двигателей, которые работали при высоких скоростях сдвига (измеряемых в миллионах обратных секунд), в отличие от нескольких сотен обратных секунд вискозиметров с низким сдвигом, которые тогда использовались для характеристики моторных масел.
Вискозиметрия при высокой скорости сдвига
Следовательно, возникла необходимость в разработке вискозиметра с высокой скоростью сдвига для измерения вязкости в двигателях при рабочих температурах. В начале 1980-х годов были разработаны прибор и методика, которые могли достигать нескольких миллионов обратных секунд при 150°C, а также обеспечивать высокие скорости сдвига при других температурах как на свежем, так и на отработанном моторном масле.
Прибор назывался вискозиметром с имитацией конического подшипника. Этот метод был принят ASTM как метод испытаний D4683 для использования при 150 ° C (и совсем недавно как D6616 для использования при 100 ° C). Это критическое стендовое испытание качества моторного масла стало известно как вязкость при высоких температурах и высокой скорости сдвига (HTHS). Затем были установлены минимальные пределы для различных марок в системе классификации вязкости SAE.
Интересно, что позже было показано, что этот инструмент был уникальным и в основном абсолютным в обеспечении измерений как крутящего момента сдвига, так и напряжения сдвига, а также скорости сдвига во время работы. Это единственный известный вискозиметр, способный это делать.
Вязкость и гелеобразование масла при низких температурах
Первоначально всесезонные моторные масла были представлены для снижения вязкости масла при низких температурах, чтобы облегчить запуск двигателя. Это важное преимущество сразу же стало очевидным, и с тех пор всесезонные масла стали самой популярной формой моторного масла во всем мире.
С облегчением пуска двигателя при низких температурах стала очевидной еще одна проблема — прокачиваемость масла. Это была значительно более серьезная проблема, так как недостаточная прокачиваемость масла могла вывести двигатель из строя. В ходе испытаний на динамометрическом стенде в холодильной камере было установлено, что существуют две формы проблемы прокачиваемости. Первый был просто связан с высокой вязкостью и назывался поведением с ограничением потока.
Второй был менее очевиден и связан с гелеобразованием масла при длительном цикле глубокого охлаждения. Это было названо «связыванием воздуха», так как масляный насос оказался связанным воздухом в результате вытягивания столба масла из поддона, и масло не заполнило эту пустоту, как показано на рис. 1.9.0003
Этих знаний и стендовых испытаний, которые изначально, казалось, предсказывали обе формы отказа, было недостаточно. Зимой 1979–1980 годов в Су-Фолс, Южная Дакота, цикл охлаждения показал, что связывание воздуха может происходить при относительно мягких условиях охлаждения. За 24 часа было выведено из строя несколько двигателей, содержащих масло.
Цикл охлаждения привел к состоянию, при котором масло стало связанным с воздухом. Дорогостоящий инцидент выявил потребность в более чувствительных стендовых испытаниях, которые могли бы точно предсказать тенденцию отказов прокачиваемости из-за связывания воздуха.
Индекс гелеобразования
Связанное с воздухом моторное масло, вызвавшее аварии в Су-Фоллс, стало серьезным примером. Были разработаны новый прибор и методика стендовых испытаний для выявления любой склонности испытуемого масла к гелеобразованию. Этот метод, предусматривавший непрерывную низкоскоростную работу цилиндрического ротора в свободно окружающем статоре, был немедленно включен в спецификации моторного масла и позже стал стандартом ASTM D5133.
Это не только показало тенденцию масла к ограничению потока, но также определило степень гелеобразования, которое может произойти в измеренном диапазоне температур (обычно от минус 5 до минус 40 градусов C). Этот параметр был назван индексом гелеобразования. Сегодня спецификации моторных масел для всесезонных масел требуют максимального индекса гелеобразования 12.9.0003
Вязкость и поглощение энергии
Несмотря на то, что вязкость полезна для двигателя в предотвращении износа за счет гидродинамической смазки, она также имеет некоторые негативные аспекты, которые могут повлиять на эффективность работы двигателя. Молекулярное трение масла, разделяющее две поверхности в относительном движении, требует энергии для его преодоления. Это значительное количество энергии от двигателя в обмен на обеспечиваемую защиту от износа. Таким образом, тщательное определение вязкости масла имеет решающее значение для владельцев транспортных средств и для правительств, устанавливающих ограничения экономии топлива.
Снижение вязкости масла может быть важным шагом в уменьшении вязкого трения для повышения эффективности использования топлива. Интересно, что за последние несколько лет увеличилось количество автомобилей, работающих на моторных маслах с более низким уровнем вязкости, что заметно улучшило эффективность их двигателей.
Десять лет назад самыми низкими классами вязкости по SAE были масла SAE 0W-20 и 5W-20, при этом SAE 20 имело минимальную вязкость при высокой скорости сдвига 2,6 сантипуаз (сП) для имитации работы двигателя при 150 °C. На рис. моторные масла, продаваемые в Северной и Южной Америке, а также моторные масла SAE 5W-30.
Японские автопроизводители недавно призвали к еще более низким классам вязкости. Как следствие, SAE ввела три новых рабочих класса, обозначенных как SAE 16 (минимум 2,3 сП при 150°C), SAE 12 (минимум 2,0 сП при 150°C) и SAE 8 (минимум 1,7 сП при 150°C). Эти требования также показаны на рис. 2 для сравнения.
Ни одно из этих масел более низкого качества еще не поступило на рынок для анализа. Поскольку вязкость напрямую связана с количеством энергии, затрачиваемой двигателем на защиту от износа за счет гидродинамической смазки, можно было бы ожидать, что такое снижение вязкости будет иметь важные преимущества с точки зрения эффективности использования топлива, но только в двигателях, предназначенных для их использования.
Индекс топливной эффективности в зависимости от вязкости
Учитывая влияние вязкости масла на двигатель, была разработана методика расчета влияния моторных масел на эффективность использования топлива. Чтобы иметь смысл, значения вязкости должны были быть получены при высоких скоростях сдвига, связанных с работой в определенных частях двигателя.
Более ранняя работа с динамометром определила процент трения и рабочую температуру пяти основных мест смазки в поршневом газовом двигателе, ответственных почти за все потери эффективности. Эта информация использовалась для разработки параметра индекса эффективности вязкого топлива (V-FEI).
При этом значении, которое находится в диапазоне от 0 до 100, чем выше V-FEI данного моторного масла, тем меньше энергии теряется из-за вязкости и, следовательно, тем более экономичным является двигатель. Хотя различные конструкции двигателей могут иметь разные уровни трения в основных смазывающих зонах, использование этих данных о трении обеспечивает сравнительную ценность моторных масел.
На Рисунке 3 показано среднее значение моторных масел SAE 0W-20 и 5W-30 на рынках Северной и Южной Америки с 2008 по 2014 год. Для сравнения среднее значение V-FEI для SAE 0W-20 и 5W-30 в более раннем исследовании было 46 и 47 соответственно.
Как и ожидалось, было установлено, что усредненные за год всесезонные масла SAE 0W-20 способствовали большей топливной экономичности двигателя, чем усредненные всесезонные масла SAE 5W-30 из-за различий в вязкости, показанных на рисунке 2. За исключением 2012 г., увеличение V-FEI эквивалентно почти 7-8 процентам эффективности использования топлива в зависимости от вязкости.
Снижение средней топливной экономичности моторных масел SAE 0W-20, собранных в 2012 году, может свидетельствовать о разработке рецептур, отвечающих опасениям автопроизводителей, что преимущества гидродинамической смазки не будут потеряны при усилиях по повышению эффективности использования топлива.
Испаряемость моторного масла
Еще один аспект, который следует учитывать при снижении вязкости в рецептурах моторных масел, заключается в том, что такое снижение чаще всего достигается за счет использования базовых масел с более высокой летучестью. Испаряющееся масло снижает количество смазочного материала, используемого в двигателе, и может содержать компоненты, загрязняющие катализатор выхлопных газов, что негативно влияет на способность катализатора уменьшать смог. Масло, оставшееся после потери более летучих компонентов, также будет более вязким и энергоемким.
На рис. 4 показана характеристика двух наиболее летучих классификаций всесезонных моторных масел. Также показана максимальная летучесть, установленная Международным комитетом по стандартизации и одобрению смазочных материалов (ILSAC).
В последние несколько лет стало очевидным, что классификационные категории SAE 0W-20 и 5W-30 были разработаны с достаточным запасом для соответствия спецификации ILSAC по летучести. Эти результаты показывают, что контроль испаряемости может быть менее требовательным при использовании недавно классифицированных всесезонных масел, обозначенных как SAE 0W-16, 0W-12 и 0W-8.
Выбросы и летучесть фосфора
Растворимые соединения фосфора, такие как диалкилдитиофосфат цинка (ZDDP), уже много лет используются в рецептурах моторных масел. Эти противоизносные и антиокислительные соединения оказали значительную поддержку конструкции современных двигателей.
В середине 1900-х поршневой двигатель был признан основным источником загрязнения воздуха. Несгоревшие или частично сгоревшие углеводороды из выхлопных газов двигателей под действием солнечного света превращались в вредные газообразные углеводороды, из-за которых в некоторых крупных городах образовывался смог.
Как следствие, в 1970-х годах были разработаны каталитические нейтрализаторы выхлопных газов для обработки выхлопных газов и преобразования их в углекислый газ и воду. К сожалению, спустя годы после разработки каталитического нейтрализатора было обнаружено, что некоторые элементы в бензине или моторном масле, включая фосфор и серу, деактивируют катализатор, покрывая его. В конечном итоге это привело к ограничениям количества этих химикатов в моторном масле и топливе.
Индекс выбросов фосфора
Тест Селби-Ноака на испаряемость был разработан в начале 1990-х годов как лучший и более безопасный подход к определению летучести моторного масла. Он собрал летучий компонент теста на летучесть для дальнейшего анализа, что помогло обнаружить фосфор и серу. При первом анализе летучих веществ, собранных в ходе стендовых испытаний, было очевидно, что фосфорсодержащие присадки в моторных маслах также производят фосфор в результате разложения присадок.
На основе этих результатов был разработан параметр, связанный с количеством фосфора, высвобождаемого во время испытания, который называется индексом выброса фосфора (PEI).
На рис. 5 показано изменение PEI за последние восемь лет. Очевидно, что был достигнут значительный прогресс в снижении разложения фосфора и/или летучести этих двух всесезонных классификаций SAE. Снижение PEI до 6-10 миллиграммов на литр моторного масла является значительным изменением в защите каталитического нейтрализатора от воздействия фосфора.
В связи с тенденцией к использованию двигателей меньшего размера, экономичных и оснащенных турбокомпрессором двигателей, генерирующих более высокие температуры во время работы, стендовые испытания, которые могут выявить тенденции выбросов фосфора в составе масла, были бы полезны при разработке смазочных материалов, наиболее подходящих для двигателя и окружающей среды.
Содержание фосфора и летучесть
Насколько сильно фосфор в моторном масле влияет на количество фосфора, улетучивающегося во время работы двигателя, является важным вопросом, влияющим на выбор присадок в рецептуре масла. На рис. 6 показано содержание фосфора в ряде моторных масел SAE 0W-20 и 5W-30 в зависимости от полученных значений PEI.
Данные показывают, что летучесть фосфора, определяемая тестом Селби-Ноака, практически не связана с количеством фосфора, присутствующего в масле в качестве присадки. Отсутствие корреляции между содержанием фосфора в моторном масле и количеством испарившегося фосфора проявляется в низких значениях коэффициента корреляции (R²).
Этот параметр был бы близок к единице, если бы концентрация фосфора влияла на его летучесть. Как показано на рисунке 6, значения, полученные на основе данных, намного ниже: R² составляет 0,05 для моторных масел SAE 0W-20 и 0,17 для моторных масел SAE 5W-30.
Данные PEI в основном сгруппированы по значениям от 2 миллиграммов на литр до примерно 30 миллиграммов на литр. Однако небольшое количество значений PEI превышает 40 миллиграммов на литр. Эти моторные масла, вероятно, более вредны для катализатора выхлопных газов. Однако, как показано на рисунке 5, уровни PEI заметно снижаются за последние несколько лет.
Несомненно, качество моторных масел будет играть гораздо большую роль в небольших и более мощных двигателях с турбонаддувом, которые выходят на автомобильный рынок. Однако определить качество моторного масла по внешнему виду практически невозможно.
Это определение может быть сделано только путем использования масла или его предварительного тестирования. Очевидно, что последний вариант является более предпочтительным для владельцев автомобилей, которые вложили значительные средства в хорошо функционирующий и надежный двигатель и нуждаются в нем.
Об авторе
Об авторе
Понимание различий в моторных маслах
Вопреки распространенному мнению, существуют большие различия между моторным маслом для легковых автомобилей (PCMO) и дизельным маслом для тяжелых условий эксплуатации. Основное отличие заключается в пакетах присадок. PCMO имеет более низкие уровни моющих и противоизносных (AW) присадок. Одна только присадка AW может нанести ущерб таким компонентам, как каталитические нейтрализаторы. Вот почему вы не хотите смешивать эти моторные масла или использовать одно вместо другого.
Пакеты присадок и каталитические нейтрализаторы
Каталитический нейтрализатор — это большая металлическая коробка, привинченная к днищу вашего автомобиля. Из него выходят две трубы, одна для «входа», а другая для «выхода». Входная труба преобразователя соединена с двигателем и вводит горячие загрязненные газы из головки блока цилиндров двигателя. Выходная труба крепится к выхлопной трубе. Когда газы от выхлопных газов двигателя движутся над катализатором, происходят химические реакции, в результате которых загрязняющие газы распадаются (расщепляются) и превращаются в другие газы, достаточно безопасные для безвредного выдувания в воздух.
36% | специалистов по смазке не могут отличить моторное масло для легковых автомобилей от моторного масла для дизельных двигателей большой мощности, согласно недавнему опросу, проведенному на сайте MachineryLubrication. com | .
Как правило, в каталитическом нейтрализаторе есть два катализатора. Один из них борется с загрязнением оксидом азота с помощью химической реакции, называемой восстановлением (удалением кислорода). Это расщепляет оксиды азота на газообразные азот и кислород, которые практически безвредны, поскольку уже присутствуют в воздухе естественным образом. Другой катализатор работает в обратном химическом процессе, называемом окислением (добавлением кислорода), и превращает монооксид углерода в диоксид углерода. Другая реакция окисления превращает несгоревшие углеводороды в выхлопных газах в углекислый газ и воду. По сути, одновременно происходят три различные химические реакции. После того, как катализатор выполнил свою работу, из выхлопных газов выделяется в основном азот, кислород, углекислый газ и вода (в виде пара).
Некоторые побочные продукты сгорания, в том числе свинец, цинк, фосфор и сера, могут серьезно подорвать способность преобразователя выполнять свою работу. В этом заключается первое существенное различие между PCMO и дизельным топливом для тяжелых условий эксплуатации. Масла для дизельных двигателей имеют более высокую противоизносную нагрузку в виде диалкилдитиофосфата цинка (ZDDP). Каталитические нейтрализаторы в дизельных системах предназначены для работы с этой добавкой, а бензиновые системы — нет. Это одна из основных причин, по которой вы не хотите использовать дизельное моторное масло в своем бензиновом двигателе.
Стандарт | Из | К | Из | К |
API | СА | серийный номер | СА | CJ-4 |
ILSAC | ГФ-1 | ГФ-5 | н/д | н/д |
АСЕА | А1 (А4) | А5 | Б1 | В5 |
Перекрестная ссылка для API, ILSAC и ACEA
Последствия замены моторных масел
Вязкость является единственным наиболее важным свойством смазочного материала. Для моторных масел выбранная вязкость должна позволять перекачивать масло при самой низкой температуре запуска, с которой может столкнуться транспортное средство, при этом защищая компоненты при рабочих температурах.
Как правило, дизельное моторное масло имеет более высокую вязкость. Если вы зальете это масло с более высокой вязкостью в бензиновый двигатель, может возникнуть несколько проблем. Первой проблемой будет выделение тепла из-за внутреннего жидкостного трения. Нагрев негативно влияет на срок службы масла. На каждые 10 градусов C повышения температуры масла вы сокращаете срок службы масла вдвое.
Еще одна проблема, связанная с этим маслом с более высокой вязкостью, заключается в его способности прокачиваться при низких температурах. Во время холодного пуска масло может быть очень густым, и масляному насосу будет трудно доставлять его к жизненно важным компонентам двигателя, таким как долина толкателя. Такой недостаток масла при запуске приведет к преждевременному износу, так как компоненты будут взаимодействовать без смазки до тех пор, пока температура двигателя не начнет увеличиваться.
Аддитивные эффекты для двигателя
Дизельное моторное масло имеет больше присадок на единицу объема. Наиболее распространены сверхщелочные моющие добавки. Эти присадки выполняют несколько функций, но основные из них заключаются в нейтрализации кислот и очистке масла в поддоне. Дизельные двигатели производят гораздо больше сажи и побочных продуктов сгорания. Через прорыв газов они попадают в картер, заставляя масло справляться с ними. Когда эта дополнительная добавка добавляется в бензиновый двигатель, эффект может быть разрушительным для производительности. Моющее средство будет работать по назначению и попытается очистить стенки цилиндра. Это может отрицательно сказаться на уплотнении между кольцами и вкладышем, что приведет к потере сжатия и эффективности.
Чтение этикеток масла
Итак, как узнать, для бензинового или дизельного двигателя было разработано масло, или даже для конкретного года выпуска автомобиля? Читая этикетку масла, ищите пончик Американского института нефти (API). В верхней части этого пончика будет обозначение службы. Это обозначение начинается либо с «S» (рабочее или искровое зажигание) для бензиновых двигателей, либо с «C» (коммерческое зажигание или воспламенение от сжатия) для дизельных двигателей. См. пример выше.
Другие организации имеют свои коды типов масел, используемых в бензиновых и дизельных двигателях. Они также соответствуют стандартам API. К ним относятся Международный комитет по стандартизации и одобрению смазочных материалов (ILSAC) и Ассоциация европейских производителей автомобилей (ACEA). API и ILSAC базируются в США, а ACEA — в Европе. Эти организации помогают определять автомобильные и дизельные моторные масла по всему миру.
Другие соображения
При выборе моторного масла для вашего автомобиля необходимо учитывать множество факторов, в том числе погодные условия, в которых будет эксплуатироваться автомобиль. Например, посреди зимы вы хотите выбрать масло, которое будет оставаться достаточно вязким, чтобы обеспечить его поступление к жизненно важным компонентам двигателя.