Стабилизатор напряжения 12 вольт своими руками: Cтабилизатор напряжения 12 вольт для светодиодов в авто своими руками

Содержание

Стабилизатор тока для светодиодов своими руками

В настоящее время трудно представить тюнинг автомобиля без светодиодных ламп. Но порой их установка осложнена тем, что они перегорают. Чтобы избежать этой ситуации, в сеть можно включить стабилизатор тока для светодиодов своими руками. В статье приводятся примеры микросхем, по которым можно его сделать.

Схемы стабилизаторов и регуляторов тока

Всем известно, что светодиодным лампочкам необходимо питание двенадцать вольт. В сети авто это значение может доходить до 15 В. Светодиодные элементы очень чувствительны, на них такие скачки отражаются отрицательно. Светодиодные лампы могут перегореть либо некачественно светить (мигать, терять яркость и т.д.).

Чтобы светодиоды служили дольше, в электросеть автомобиля включаются драйвера (резисторы). При нестабильности в сети устанавливаются устройства, которые поддерживают постоянное значение. Существует несколько простых микросхем, по которым можно сделать стабилизатор напряжения своими руками. Все компоненты, входящие в цепь, можно приобрести в специализированных магазинах. Обладая начальными знаниями по электротехнике сделать приборы будет несложно.

На КРЕНке

Для того, чтобы сконструировать простейший стабилизатор напряжения 12 вольт своими руками, понадобится микросхема с потреблением 12 В. В этом случае подойдет регулируемый стабилизатор напряжения 12 В LM317. Он может функционировать в электросети, где входной параметр составляет до 40 В. Чтобы прибор стабильно работал, необходимого обеспечивать охлаждение.

Крены для микросхем

Стабилизатор тока на LM317требует для работы небольшой ток до 8 мА, и данное значение обычно остается неизменным, даже при большом токе, протекающем через крен LM317, или при изменении входного значения. Это реализуется с помощью компоненты R3.

Можно применять элемент R2, но пределы при этом будут небольшими. При неизменном сопротивлении LM317 ток, идущий через прибор, будет также стабильным (автор видео — Создано в Гараже).

Входное значение для кренки LM317 может составлять до 8 мА и выше. Пользуясь этой микросхемой, можно придумать стабилизатор тока для ДХО. Это устройство может выступать нагрузкой в бортовой сети или источником электричества при подзарядке аккумуляторной батареи. Сделать простой стабилизатор напряжения LM317 не составляет труда.

На двух транзисторах

На сегодняшний момент пользуются популярностью стабилизирующие устройства для бортовой сети машины на 12 В, разработанные с использованием двух транзисторов. Данную микросхему используют как стабилизатор напряжения для ДХО.

Резистор R2 является токораздающим элементом. При возрастании тока в сети увеличивается напряжение. Если оно достигает значения от 0,5 до 0,6 В, открывается элемент VT1. Открытие компонента VT1 закрывает элемент VT2. В итоге, ток, проходящий через VT2, начинает снижаться. Можно вместе с VT2 применять полевой транзистор Мосфет.

Элемент VD1 включается в цепь, когда значения находится в пределах от 8 до 15 В и настолько велики, что транзистор может выйти из строя. При мощном транзисторе допустимы показания в бортовой сети около 20 В. Не стоит забывать о том, что транзистор Мосфет откроется, если показания на затворе будут 2 В.

Если применять универсальный выпрямитель как зарядку для АКБ или других задач, то достаточно использовать резистора R1 и транзистор.

На операционном усилителе (на ОУ)

Стабилизатор напряжения для светодиодов на основе ОУ собирается при необходимости создания устройства, которое будет работать в расширенном диапазоне. В рассматриваемом случае в качестве элемента, который будет задавать выпрямляемый ток, является R7. С помощью операционного усилителя DA2.2 можно увеличить уровень напряжения в токозадающем компоненте. Задачей компонента DA 2.1 является контроль опорного напряжения.

При создании схемы следует учесть, что она рассчитана на 3А, поэтому необходим больший ток, который должен поступать на разъем ХР2. Кроме того, следует обеспечивать работоспособность всех составляющих данного устройства.

Сделанный стабилизирующий прибор для автомобиля должен иметь генератор, роль которого выполняет REF198. Чтобы правильно настроить прибор, ползунок резистора R1 нужно установить в верхнее положение, а резистором R3 задавать необходимое значение выпрямленного тока 3А. Для погашения возможных возбуждений, используются элементы R,2 R4 и C2.

На микросхеме импульсного стабилизатора

Если выпрямитель для автомобиля должен обеспечивать высокий КПД в сети, целесообразно использовать импульсные компоненты, создавая импульсный стабилизатор напряжения. Популярной является схема МАХ771.

Схема выпрямителя с импульсным выпрямителем

Импульсный стабилизатор тока характеризуется выходной мощностью 15 Вт. Элементы R1 и R2 делят показатели схемы на выходе. Если делимое напряжение превышает по показателям опорное, выпрямитель автоматически уменьшает выходное значение. В противном случае устройство будет увеличивать выходной параметр.

Сборка данного устройства целесообразна, если уровень превышает 16 В. Компоненты R3 являются токовыми. Для устранения высокого падения нагрузки на данном резисторе в схему следует включить ОУ.

Заключение

Нами были рассмотрены стабилизаторы напряжения на различных компонентах. Эти схемы можно усложнять, повышая быстродействие, улучшая другие показатели. Можно использовать готовые микросхемы, которые всегда можно усовершенствовать своими руками, создавая устройства, предназначенные для выполнения конкретных задач.

Фотогалерея «Микросхемы для самодельных выпрямителей»

1. Прибор на КРЕНке 2. На двух транзисторах 3. С операционным усилителем

Разработка микросхем для светодиодов в авто – трудоемкое и сложное дело, которое требует специальных знаний и опыта. При их отсутствии трудно будет достичь необходимого результата.

Но опыт можно приобрести, внимательно собирая несложный стабилизатор тока для светодиодов согласно приведенным схемам. Его можно использовать для дневных ходовых огней в своем автомобиле с установленными светодиодными лампами.

Видео «Выпрямитель для светодиодов своими руками»

Видео о том, как изготовить устройство, которое защитит светодиоды от перегорания (автор ролика — Яков TANK_OFF).

Стабилизатор напряжения на 5 вольт своими руками. Схемы стабилизаторов напряжения своими руками

Подборка радиолюбительских схем и конструкций стабилизаторов напряжения собранных своими руками. Часть схем рассматривают стабилизатор без защиты от КЗ в нагрузке, в других заложена возможность плавного регулирования напряжения от 0 до 20 Вольт. Ну а отличительной чертой отдельных схемы является возможность защиты от короткого замыкания в нагрузке.

Широкоугольный фокусный диапазон составляет 7 или 8 мм. Кроме того, переключатель скорости позволяет использовать специальное соединение 54-й передачи. Теперь у этих камер есть возможность подключить внешний источник питания, систему кроссовера и небольшое удовольствие в виде долгосрочной экспозиции. С очень маленьким светом все еще можно выполнять сумерки или ночные снимки. Способ заключается в следующем: Определите требуемое время экспозиции.

Это время должно быть удвоено, и теперь интервал переключения таймера должен быть выбран так, чтобы интервал для переключения изображения соответствовал приблизительно требуемому времени. Визуально эту модель камеры можно увидеть на ¾ круговом дисплее потребления пленки и черной линзе с серебряной рябью. Из этой серии у всех великих Низосов есть то, что интересно сегодня.

5 очень простых схем в основном собранных на транзисторах, одна из них, с защитой от КЗ

Очень часто бывает когда для питания вашей новодельной электронной самоделки требуется стабильное напряжение, которое не меняется от нагрузки, например, 5 Вольт или 12 Вольт для питания автомагнитолы. И чтобы сильно не заморачиваться с конструированием самодельного блока питания на транзисторах, используются так называемые микросхемы стабилизаторы напряжения. На выходе такого элемента мы получим напряжение, на которое спроектирован этот прибор

В дополнение к обозначениям на фирменной табличке эти модели также можно увидеть в том, что теперь все ручки управления сделаны из черного пластика, а рычаг для экрана сектора теперь всегда оранжевый. Взгляд на кнопки управления показывает еще два улучшения. В селекторном переключателе для дневного света или искусственного света теперь должен быть найден оптический ключ 1, который закрывает диафрагму остановкой диафрагмы при нажатии. Рекомендуется для подсветки, когда важные мотивы не должны быть слишком темными.

За ним теперь скрывается автоматическая долгосрочная экспозиция. Продолжительность длительной экспозиции, таким образом, отключается от временной интервала и не всегда автоматически до тех пор, пока интервал переключения до следующего снимка! Э. более сбалансирован в руке. В качестве замены исходной содержащей ртуть кнопочной ячейки, В качестве альтернативы, возможно наличие источника питания для контроля экспозиции в специализированной мастерской, адаптированной к другим коммерчески доступным кнопочным ячейкам.

Многие радиолюбители уже неоднократно собирали схемы стабилизаторов напряжения на специализированных микросхемах серий 78хх, 78Мхх, 78Lxx. Например, на микросхеме KIA7805 можно собрать самодельную схему рассчитаную на выходное напряжение +5 В и максимальный ток нагрузки 1 А. Но мало кто знает, что имеются узко специализированный микросхемы серии 78Rxx, которые сочитают в себе стабилизаторы напряжения положительной полярности с малым напряжением насыщения, которое не превышает 0, 5 В при токе нагрузки 1 А. Одну из этих схем мы и рассмотрим более подробно.

Отдельные ячейки с двумя кнопками опущены. Она была дополнительно разработана с целевой группой телевизионных станций в качестве альтернативы 16-миллиметровой репортажной камере из модели 801. Однако существует вероятность того, что разрыв кабеля в стыке рукоятки приведет к сбою питания блока питания. Ремонт должен быть несколько «филигранным» из-за небольшого пространства в области шарнира рукоятки. Здесь используется электронный регулятор напряжения. После этого преобразования преобразование камер осуществлялось прецизионным механиком в Хамельне, что должно быть хорошо известно на сцене.

Регулируемый трехвыводной стабилизатор положительного напряжения LM317 обеспечивает ток нагрузки 100 мА в диапазоне выходного напряжения от 1.2 до 37 В. Стабилизатор очень удобен в применении и требуют только два внешних резистора для обеспечения выходного напряжения. Кроме того, нестабильность по напряжению и току нагрузки у стабилизатора LM317L имеет лучшие показателями, чем у традиционных стабилизаторов с фиксированным значением выходного напряжения.

Результат убежден, и такое преобразование источника питания можно рекомендовать дальше. Только тонкая настройка индикатора диафрагмы для управления батареей была ограничена возможностями настройки потенциометра, так что даже когда батарея заполнена, указатель не совсем на первоначальном максимальном дисплее. Низо профессионал: Маленькая 8-контактная розетка.

Контакт 7 = базовый контакт 8 = рабочий контакт закрывается при срабатывании камеры. Низо профессионал: большая 6-контактная розетка. Если у вас нет требований к жалюзи с переменным сектором, длительной или кратковременной экспозиции или синхронизации импульсов или затухания и может обойтись без малого, может представлять интерес маленький Низос.

Для стабилизации напряжения постоянного тока достаточно большой мощности в числе других применяются компенсационные стабилизаторы непрерывного действия. Принцип действия такого стабилизатора заключается в поддержании выходного напряжения на заданном уровне за счет изменения падения напряжения на регулирующем элементе. При этом величина управляющего сигнала, поступающего на регулирующий элемент, зависит от разницы между заданным и выходным напряжениями стабилизатора.

Они атакуют линию дизайна камеральной линии, но они меньше. Поразительные внешние различия. Зеленый рокер на верхней стороне для регулировки моторизованного фокусного расстояния вместо двух одиночных кнопок.

  • Корпус обычно окрашен в алюминий.
  • Кассетный отсек открывается сбоку, а не сзади.
  • Рукоятка содержит 3 х 1, 5 батареи Миньона для полного питания камеры.
К этому добавилась кнопка 1 коррекции диафрагмы и немного более простой таймер для записи по времени. Аналогично, было выполнение с макрообъективами в виде макроса и макроса 156.

При стационарной эксплуатации аппаратуры, CD и аудиоплейеров возникают проблемы с БП. Большинство блоков питания, выпускаемых серийно отечественным производителем, (если быть точным) практически все не могут удовлетворить потребителя, так как содержат упрощенные схемы. Если говорить об импортных китайских и им подобных блоках питания, то они, вообще, представляют интересный набор деталей «купи и выброси». Эти и многие другие проблемы заставляют радиолюбителейно изготовлять блоки питания. Но и на этом этапе любители сталкиваются с проблемой выбора: конструкций опубликовано множество, но не все хорошо работают. Данная радиолюбительская разработка представлена как вариант нетрадиционного включения операционного усиителя, ранее опубликованного и вскоре забытого

Но 64-кратная картина разворота цвета теперь исчезла с рынка. Поэтому, если вы хотите использовать эти модели камер сегодня, контроль экспозиции должен быть скорректирован в специализированной мастерской. Теперь 4 отверстия для расстояний между электродами 12, 5 и 25 мм.

Проект «дополнительно для женщин, без знания электроники, без пайки». Были исправлены и обновлены следующие иллюстрации, принципиальная схема и список деталей. Абсолютно необходимо поддерживать беспрепятственное напряжение электрода, то есть без погружения в воду, около 60 вольт. Ток, измеренный непосредственно на электродах, также не погружен в воду, должен составлять около 5 мА.

Почти все радиолюбительские самоделки и конструкции имеют в своем составе стабилизированный источник питания. А если ваша конструкция работает от напряженияпять вольт, то лучшим вариантом будет использование трехвыводного интегрального стабилизатора 78L05

Стабилизатор напряжения на 220 вольт

На рисунке 7 показано это снова. Однако на фиг. 1 и фиг. 15 этот мост расположен на несколько выше. Однако, поскольку все вставные отверстия ряда электрически связаны друг с другом перпендикулярно, это не имеет никакого значения. Он работает одинаково, поэтому может оставаться таким, независимо от того, какой вариант был выбран. Рекомендуется соблюдать чертежи, которые яснее.

Хотя в индустрии женщины всегда были предпочтительнее этих прекрасных работ, потому что они просто более искусны и имеют меньшие руки. Мужчины любят говорить: «Я ничего не понимаю об электронике». Вывод этой «безымянной» версии. Немного упрощено с меньшим количеством компонентов и меньшим количеством проводных мостов. Однако, что касается функции и производительности предварительной схемы, она должна быть точно идентичной и приравниваться.

Стабилизатор напряжения на 5 вольт, речь о котором пойдет в этой статье, имеет защиту от коротких замыканий. Он предназначен для питания схем с микроконтроллерами при их разработке. Стабилизатор рассчитан на установку на беспаячную макетную плату. Стабилизатор маломощный и имеет максимальный ток нагрузки 0,15А. Разработать эту небольшую и простенькую схему заставило очередное выгорание контроллера при экспериментах. Эта схема является дополнением к лабораторному блоку питания. Схема стабилизатора показана на рисунке 1.

«Цепь без пайки» в версии теперь перестраивается несколько раз, и функция, таким образом, защищена. Однако — и это уже было ясно изложено на этапе планирования — критерий «бесплатно» требует не недооценивать меры дополнительного внимания к общей структуре «пайки с готовой печатной платой». Поэтому нелегко сосредоточиться на концентрации внимания и внимания. Но вы можете говорить о том, чего хотите. Представьте себе, если кто-то должен был ехать из Мюнхена в Мюнхен или наоборот, но никогда не был там.

И кто-нибудь всерьез полагает, что все миллионы азиатских женщин, которые были мобильными телефонами каждый день, ранее закончили степень электроники, чтобы получить квалификацию «ремесленного труда»? Трудности «тихой версии» по сравнению с одним из других «проектов самоподготовки» на этом веб-сайте с готовой к выпуску печатной плате, на которой только компоненты «по фигуре» подключены и ослаблены, примерно такие же, как и поездка на поезде С машиной. Если вы сидите только на правильном поезде, вряд ли возможно, что он будет выполнен, и вы прибудете в Париж, а не в Гамбург.

Основой схемы служит микросхема, несправедливо забытая и не дорогая, К157ХП2 , в состав которой входит стабилизатор напряжения с функцией вкл/выкл. Это 14 выводная микросхема, предназначенная для бытовой аппаратуры магнитной записи. И так схема работает следующим образом. При подаче питания на выводе 10 стабилизатора DA1, через защитный диод VD1 с барьером Шоттки, появляется напряжение. Выходное напряжение появится только в том случае, если на вывод 9 DA1 подать положительное напряжение не менее двух вольт. В первый момент это включающее напряжение формируется цепочкой R1 и конденсатора С2, пока протекает ток его заряда. За это время на выходе стабилизатора появляется напряжение пять вольт, часть которого через резистор обратной связи R2, также подается на вывод 9 DA1. Это удерживающее напряжение, необходимое для нормальной работы стабилизатора. Для удобства работы с данной приставкой в схему введены две кнопки, при помощи которых можно оперативно включать и выключать напряжение питания испытуемой схемы. При нажатии кнопки Стоп, вывод 9 DA1 шунтируется на общий провод — стабилизатор выключается, так как пропадает открывающее напряжение. При отпускании данной кнопки, стабилизатор так и останется в закрытом состоянии, потому что конденсатор С2 уже заряжен и для постоянного тока его сопротивление очень велико. То же самое будет происходить и при условии, когда выход стабилизатора находится в режиме короткого замыкания. Т.е. пропадает удерживающее напряжение и стабилизатор выключается. И так, стабилизатор находится в выключенном состоянии, для его включения необходимо нажать на кнопку Пуск. При этом на вывод 9 DA1 опять поступит открывающее напряжение через эту кнопку и резистор R1, стабилизатор включится. При отжатой данной кнопке, напряжение для поддержания рабочего режима стабилизатора будет подаваться через резистор R2.

В «бесплатной версии» вы, с другой стороны, можете многое сделать и делать все неправильно с каждым шагом процесса. Кроме того, версия плагина и без пайки не является действительно постоянной. Он не должен падать. И тот, кто преуспеет в этом, может позже легко с легкостью построить все другие проекты для самостоятельного строительства.

Также настоятельно рекомендуется выполнить воспроизведение в несколько этапов. Следуйте приведенным ниже инструкциям, чтобы сначала подобрать все мосты. Проведите первое измерение напряжения, для этого нам понадобятся подключения к источнику питания. Его не следует разрабатывать до достижения этой цели. Как только этот результат будет достигнут, его можно продолжить. В конце мы измеряем напряжение на электродных соединениях. Мультиметр на мА и измеряйте, так что держите, без страха, что-то, что нужно сломать при коротком замыкании.

На схеме не указаны выходные конденсаторы фильтра. Если в испытуемой схеме входные конденсаторы по питанию присутствуют, то их ставить не обязательно, но если их нет, то выход данного стабилизатора обязательно зашунтируйте керамическим конденсатором емкостью 0,1 и электролитическим конденсатором емкостью 100,0… 470,0 на 10 вольт. Вывод 8 микросхемы, это выход источника опорного напряжения величиной 1,3 вольта. Конденсатор С3 – фильтрующий, в это же время от его емкости зависит время включения стабилизатора. Для нашего случая емкости, указанной на схеме вполне достаточно. Резистор R4 служит для подстройки выходного напряжения. В принципе с таким же успехом можно изменять выходное напряжение и при помощи резистора R3. У меня этот стабилизатор собран непосредственно на макетной плате, но хотелось бы иметь отдельную платку, как ту, про которую я писал в статье

Ток должен составлять около 5 мА или немного больше. Синий светодиод должен загореться. Но пока это не так. Это был всего лишь обзор поэтапного процесса. Рисунок 1 Все это будет выглядеть в конце. Электролитические конденсаторы и некоторые диоды стали меньше, несколько компонентов и, прежде всего, мосты проводов по сравнению с предварительной версией. Теперь входной разъем переменного тока несколько более изящный. Цветные точки с номерами полезны, но не обязательно.

Изображение 2 Как вы можете видеть, «плагин» в основном состоит из многих маленьких отверстий, в которых есть контакты, так что провод, который подключен к нему, имеет электрическое соединение с другими вставными отверстиями. Рисунок 3 Для лучшего понимания, тот же лабораторный штекер схематично показан ниже: Дано разделение отверстий на строки. Вертикальные ряды имеют обозначение 1 слева направо. Черные линии показывают соединения внутри лабораторного штепселя, который не видно снаружи. Они нас тоже не интересуют.

Понижающие напряжение с 12в на 1в схему. Схемы простых стабилизаторов напряжения. Закон Ома при понижении напряжения

Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.


Каждый, кто захочет сможет изготовить 12 — ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник…
Шаг 1: Какие детали необходимы для сборки блока питания…
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок….
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В — 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ — 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты….
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие…


Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

Схема блока питания 12в 30А .
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку — типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

Блок питания 3 — 24в

Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

Схема блока питания на 1,5 в

Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

Схема регулируемого блока питания от 1,5 до 12,5 в

Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

Схема блока питания с фиксированным выходным напряжением

Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

Схема блока питания мощностью 20 Ватт с защитой

Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения…
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

Самодельный блок питания на 3.3v

Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

Трансформаторный блок питания на КТ808

У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

Блок питания на 1000в, 2000в, 3000в

Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы — отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А) и понижающий накальный трансформатор Т2 — ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

Еще по теме

Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.

Ремонт и доработка китайского блока питания для питания адаптера.

Стабилизаторы напряжения являются важнейшей частью всех электронных схем, они дают непрерывное, устойчивое питание компонентам системы, обеспечивая стабильность её параметров и защиту при неисправностях в схеме или в первичном источнике напряжения. 12 вольт постоянного напряжения – наиболее востребованное, применяется для питания множества устройств, используемых отдельно или встроенных в различные конструкции.

Классический стабилизатор

Большинство систем питания построено по схеме линейного стабилизатора напряжения на 12 вольт, которая может иметь несколько вариантов исполнения:

  • Параллельный – регулировка с помощью включённого параллельно управляющего элемента;
  • Последовательный – включение элемента регулировки последовательно с нагрузкой.

Простейшим стабилизатором напряжения является стабилитрон, также называемый диодом Зенера – это диод, работающий постоянно в режиме пробоя. Напряжение, при котором наступает пробой, – это напряжение стабилизации, основной параметр стабилитрона. При параллельном включении нагрузки получается элементарный стабилизатор напряжения, примерно равного напряжению стабилизации.

Балластное сопротивление R определяет ток стабилитрона, указанный в спецификации. Такое решение отличается низким коэффициентом стабилизации, зависимостью от температуры и применяется при малых токах нагрузки для питания отдельных компонентов основной схемы. Возможно значительно увеличить выходной ток, если последовательно с нагрузкой установить мощный транзистор.

В этой схеме транзистор подключён последовательно с нагрузкой как эмиттерный повторитель, весь ток течёт через его переход. Уровнем на базе управляет стабилитрон: при возрастании тока на выходе на базу подаётся большее напряжение, проводимость транзистора увеличивается, и выходное напряжение восстанавливается. Мощность такого стабилизатора определяется типом транзистора и может достигать десятков ватт.

Важно отметить! В таком виде стабилизатор не защищён от перегрузки и короткого замыкания, при котором мгновенно выходит из строя. Для практического применения схема значительно усложняется: вводятся элементы ограничения тока и различные защитные функции.

Интегральный стабилизатор

Стабилизатор напряжения 12 вольт легко может быть реализован, если применить специализированный интегральный линейный стабилизатор из серии 78ХХ с фиксированным выходным напряжением. Для выходного напряжения 12 вольт выпускаются микросхемы 7812, у разных производителей они носят наименование LM7812, L7812, K7812 и т.д.

Отечественный аналог – КР142ЕН8Б. Производятся в корпусах TO – 220, TO – 3, D2PAK с тремя выводами. Эти микросхемы можно найти в блоках питания любой аппаратуры, они практически вытеснили стабилизаторы на дискретных элементах.

Основные характеристики стабилизатора в широко распространённом корпусе TO – 220:

  • Выходное стабилизированное напряжение – от 11,5 до 12,5 В;
  • Входное напряжение – до 30 В;
  • Выходной ток – до 1А;
  • Встроенная защита от перегрузки и короткого замыкания.

Входное напряжение должно превышать выходное (12 вольт) минимум на 3 вольта во всём диапазоне выходного тока. На выходной ток до 100 мА выпускается вариант микросхемы –78L12. Типовая схема включения позволяет своими руками собрать надёжный стабилизатор напряжения 12 вольт с характеристиками, подходящими для многих задач.

Схема имеет параметры стабилизации, аналогичные применённой микросхеме.

В некоторых случаях целесообразно использование микросхем серии 1083/84/85. Это интегральные стабилизаторы с выходным током 3, 5, и 7, 5 ампер. Устройства относятся к типу Low Dropout (с низким падением напряжения) – для них разница между входным и выходным напряжением может быть 1 вольт. Схема включения полностью соответствует микросхемам типа 7812.

Видео

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.

Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Вариант №1

Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

Вариант №2

На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .

U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

Вариант №3

Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

Итак, схему в студию!


Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


Итак, что на выходе?


Почти 5.7 Вольт;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

5 частых вопросов, которые задают начинающие радиомеханики; 5 лучших транзисторов для регуляторов, тест на определение состава схемы

Регулятор электрического напряжения нужен для того, чтобы величина напряжения могла стабилизироваться. Он обеспечивает надежность работы и долговечность работы прибора.

Регулятор состоит из нескольких механизмов.

ТЕСТ:

Ответы на эти вопросы позволят узнать состав схемы регулятора напряжения 12 вольт и её сборку.
  1. Какое сопротивление должно быть у переменного резистора?
  1. Как нужно подключать провода?

a) 1 и 2 клемма – питание, 3 и 4 – нагрузка

  1. Нужно ли устанавливать радиатор?
  1. Транзистор должен быть

Ответы:

Вариант 1. Сопротивление резистора 10 кОм – это стандарт для установки регулятора, провода в схеме подключаются по принципу: 1 и 2 клемма для питания, 3 и 4 для нагрузки – ток распределится правильно по нужным полюсам, радиатор устанавливать нужно – чтобы защитить от перегрева, транзистор использован КТ 815 – такой всегда подойдет. В таком варианте построенная схема сработает, регулятор станет работать.

Вариант 2. Сопротивление 500 кОм – слишком высокое, будет нарушена плавность звука в работе, а может не сработать вообще, 1 и 3 клемма это нагрузка, 2 и 4 питание, радиатор нужен, в схеме, где стоял минус будет плюс, транзистор любой – действительно можно использовать какой угодно.Регулятор не заработает из-за того, что схема собрана, будет неправильно.

Вариант 3. Сопротивление 10кОм, провода – 1 и 2 для нагрузки, 3 и 4 для питания, резистор имеет сопротивление 2кОм, транзистор КТ 815. Прибор не сможет заработать, так как он сильно перегреется без радиатора.

Как соединить 5 частей регулятора на 12 вольт.

Переменный резистор 10кОм.

Это переменный резистор 10ком. Изменяет силу тока или напряжений в электрической цепи, увеличивает сопротивление. Именно им регулируется напряжение.

Радиатор. Нужен для того, чтобы охладить приборы в случае их перегрева.

Резистор на 1 ком. Снижает нагрузку с основного резистора.


Транзистор. Прибор, увеличивает силу колебаний. В регуляторе он нужен, чтобы получить электрические колебания высокой частоты


2 проводка. Необходимы для того, чтобы по ним шел электрический ток.

Берем транзистор и резистор. У обоих есть 3 ответвления.

Проводятся две операции:

  1. Левый конец транзистора (делаем это алюминиевой частью вниз) присоединяем к концу, который находится в середине резистора.
  2. А ответвление середины транзистора соединяем с правым у резистора. Их необходимо припаять друг к другу.

Первый провод необходимо спаять с тем, что получилось во 2 операции.

Второй нужно спаять с оставшимся концом транзистора.


Прикручиваем к радиатору соединенный механизм.

Резистор на 1кОм припаиваем к крайним ножкам переменного резистора и транзистора.

Схема готова.


Регулятор скорости двигателя постоянного тока с помощью 2 конденсаторов на 14 вольт.

Практичность таких двигателей доказана, они используются в механических игрушках, вентиляторах и др. У них малый ток потребления, поэтому требуется стабилизация напряжения. Часто возникает необходимость подстройки частоты вращения или изменения скорости двигателя для корректировки выполнения цели, представленной какому – либо типу электродвигателя любой модели.

Эту задачу выполнит регулятор напряжения, который совместим с любым типом блока питания.

Чтобы это осуществить, надо изменить выходное напряжение, не требующее большого тока нагрузки.

Необходимые детали:

  1. 2 Конденсатора
  2. 2 переменных резистора

Соединяем части:

  1. Подключаем конденсаторы к самому регулятору.
  2. Первый резистор подключается с минусом регулятора, второй на массу.

Теперь менять скорость двигателя у прибора по желанию пользователя.

Регулятор напряжения на 14 вольт готов.

Простой регулятор напряжения 12 вольт

Регулятор оборотов 12 вольт для двигателя с тормозом.

  • Реле – 12 вольт
  • Теристор КУ201
  • Трансформатор для запитки двигателя и реле
  • Транзистор КТ 815
  • Вентиль от дворников 2101
  • Конденсатор

Используется для регулировки подачи проволоки, поэтому в ней присутсвует тормоз двигателя, реализованный с помощью реле.

К реле подключаем 2 провода от блока питания. На реле подается плюс.

Всё остально подключается по принципу обычного регулятора.

Схема полностью обеспечила 12 вольт для двигателя.

Регулятор мощности на симисторе BTA 12-600

Симистор – полупроводниковый аппарат, причисляется к разновидности тиристора и используется в целях коммутации тока. Он работает на переменном напряжении в отличие от динистора и обычного тиристора. От его параметра зависит вся мощность прибора.

Ответ на вопрос. Если схема собиралась бы на тиристоре, необходим был бы диод или диодный мост.

Для удобства схему можно собрать на печатной плате.

Плюс конденсатора нужно припаять к управляющему электроду симистора, он находится справа. Минус спаять с крайним третьим выводом, который находится слева.

К управляющему электроду симистора припаять резистор с номинальным сопротивлением 12 кОм. К этому резистору нужно присоединить подстрочный резистор. Оставшийся вывод нужно припаять к центральной ножке симистора.

К минусу конденсатора, который припаян к третьему выводу симистора необходимо прикрепить минус от выпрямительного моста.

Плюс выпрямительного моста к центральному выводу симистора и к той части, к которой симистор крепится на радиатор.

1 контакт от шнура с вилкой припаиваем к необходимому прибору. А 2 контакт к входу переменного напряжения на выпрямительном мосту.

Осталось припаять оставшийся контакт прибора с последним контактом выпрямительного моста.

Идет тестирование схемы.

Включаем схему в сеть. С помощью подстрочного резистора регулируется мощность прибора.

Мощность можно развить до 12 вольт для авто.

Динистор и 4 типа проводимости.

Это устройство, называется тригерным диодом. Обладает небольшой мощностью. В его внутренности нет электродов.

Динистор открывается при наборе напряжения. Скорость набора напряжения определяется конденсатором и резисторами. Вся регулировка производится через него. Работает на постоянном и переменном токе. Его можно не покупать, он находится в энергосберегающих лампах и его легко оттуда достать.

В схемах используется не часто, но чтобы не затрачивать деньги на диоды, применяют динистор.

Он содержит 4 типа: P N P N. Это сама электрическая проводимость. Между 2 прилегающими друг к другу областями образуется электронно-дырочный переход. В динистре таких переходов 3.

Схема:

Подключаем конденсатор. Он начинает заряжаться с помощью 1 резистора, напряжение почти равно тому, что в сети. Когда напряжение в конденсаторе достигнет уровня динистора, он включится. Прибор начинает работать. Не забываем про радиатор, иначе всё перегреется.

3 важных термина.

Регулятор напряжения – прибор, позволяющий на выходе подстраивать напряжение под устройство, для которого он необходим.

Схема для регулятора – рисунок, изображающий соединение частей устройства в одно целое.

Автомобильный генератор – устройство, в котором используется стабилизатор, обеспечивает превращение энергии коленчатого вала в электрическую.

7 основных схем для сборки регулятора.


СНИП

Использование 2 транзисторов. Как собрать стабилизатор тока.

Резистор 1кОм равен стабилизатору тока для нагрузки 10Ом. Главное условие – напряжение питания было стабилизированным. Ток зависит от напряжения по закону Ома. Сопротивление нагрузки намного меньше, чем сопротивление тока ограничивающего резистора.

Резистор 5 ватт, 510 Ом

Переменный резистор ППБ-3В, 47 Ом. Потребление – 53миллиампера.

Транзистор кт 815, установленный на радиаторе ток базы данного транзистора, задан резистором номиналом 4 и 7 кОм.


СНИП


СНИП

Еще важно знать

  1. На схеме стоит знак минуса, чтобы он был и в работе, то транзистор должен быть NPN структуры. Нельзя использовать PNP так как минус будет плюсом.
  2. Напряжение нужно постоянно регулировать
  3. Какая величина тока в нагрузке, это нужно знать, чтобы регулировать напряжение и прибор не переставал работать
  4. Если разность потенциалов будет больше 12 вольт на выходе, то значительно уменьшится уровень энергии.

Топ 5 транзисторов

Разные виды транзисторов применяются для разных целей, и существует необходимость его выбирать.

  • КТ 315. Поддерживает NPN структуру. Выпущен в 1967 году, но до сих пор используется. Работает в динамическом режиме, и в ключевом. Идеален для приборов малой мощности. Больше подходит для радиодеталей.
  • 2N3055. Лучше всего подходит для звуковых механизмов, усилителей. Работает в динамическом режиме. Спокойно используется для регулятора 12 вольт. Удобно крепится на радиатор. Работает на частотах до 3 МГц. Хоть транзистор и выдерживает только до 7 ампер, он вытягивает мощные нагрузки.
  • КП501. Производитель рассчитывал его на применение в телефонных аппаратах, механизмах связи и радиоэлектронике. Через него происходит управление приборами с минимальными затратами. Преобразует уровни сигнала.
  • Irf3205. Пригоден для автомобилей, повышает высокочастотные инверторы. Поддерживает значительный уровень тока.
  • KT 815. Биполярен. Имеет структуру NPN. Работает с усилителями низкой частоты. Состоит из пластмассового корпуса. Подходит для импульсных устройств. Используется часто в генераторных схемах. Транзистор сделан давно, по сей день работает. Даже есть шанс, что он находится в обычном доме, где лежат старые приборы, нужно только их разобрать и посмотреть, есть ли там.

3 ошибки и как их избежать.

  1. Ножки транзистора и резистора спаяны друг с другом полностью. Чтобы этого избежать, нужно внимательно читать инструкцию.
  2. Хоть и поставлен радиатор, перегрелся прибор.Это связано с тем, что во время того, как детали спаиваются, происходит перегрев. Для этого нужно, ножки транзистора держать пинцетом для отвода тепла.
  3. Реле не стало работать после починки. Выгоняет проволоку после того как отпустил кнопку. Проволока по инерции тянется. Значит, не работает электротормоз. Берем реле с хорошими контактами и подключаем к кнопке. Подключить провода для питания. Когда на реле не подается напряжение, контакты становятся замкнутыми, поэтому обмотка замыкается сама на себя. Когда на реле подается напряжение(плюс), меняются контакты в схеме и напряжение подается на мотор.

Ответы на 5 часто задаваемых вопросов

  • Почему входное напряжение выше, чем выходное?

По такому принципу работают все стабилизаторы, при таком типе работы напряжение приходит в норму и не скачет от условленных ей значений.

  • Может ли убить током при неполадке или ошибке?

Нет, не убьет током, напряжение в 12 вольт слишком мало, чтобы это произошло.

  • Нужен ли постоянный резистор? И если нужен, то, для каких целей?

Не обязательно, но используется. Он нужен для того, чтобы ограничить ток базы транзистора при крайнем левом положении переменного резистора. И также при его отсутствии может сгореть переменный.

  • Можно ли использовать схему КРЕН вместо резистора?

Если вместо переменного резистора включить регулируемую схему КРЕН, которую часто используют, то тоже получится регулятор напряжения. Но есть оплошность: низкий КПД. Из-за этого высокое собственное энергопотребление и тепловыделение.

  • Резистор горит, но ничего не крутится. Что делать?

Резистор обязательно 10кОм. Желательно использовать транзисторы КТ 315 (старой модели) – они желтого или оранжевого цвета с буквенным обозначением.

Чаще всего радиотехнические устройства для своего функционирования нуждаются в стабильном напряжении, не зависящем от изменений сетевого питания и от тока нагрузки. Для решения этих задач используются компенсационные и параметрические устройства стабилизации.

Параметрический стабилизатор

Его принцип работы заключается в свойствах полупроводниковых приборов. Вольтамперная характеристика полупроводника – стабилитрона показана на графике.

Во время включения стабилитрона свойства подобны характеристике простого диода на основе кремния. Если стабилитрон включить в обратном направлении, то электрический ток сначала будет расти медленно, но при достижении некоторой величины напряжения наступает пробой. Это режим, когда малый прирост напряжения создает большой ток стабилитрона. Пробойное напряжение называют напряжением стабилизации. Во избежание выхода из строя стабилитрона, течение тока ограничивают сопротивлением. При колебании тока стабилитрона от наименьшего до наибольшего значения, напряжение не изменяется.

На схеме показан делитель напряжения, который состоит из балластного сопротивления и стабилитрона. К нему параллельно подключена нагрузка. Во время изменения величины питания меняется и ток резистора. Стабилитрон берет изменения на себя: меняется ток, а напряжение остается постоянным. При изменении резистора нагрузки ток изменится, а напряжение останется постоянным.

Компенсационный стабилизатор

Прибор, рассмотренный ранее очень простой по конструкции, но дает возможность питание прибора с током, который не превышает наибольшего тока стабилитрона. Вследствие этого используют приборы, стабилизирующие напряжение, и получившие название компенсационных. Они состоят из двух видов: параллельные и последовательные.

Называется прибор по методу подключения элементу регулировки. Обычно используются компенсационные стабилизаторы, относящиеся к последовательному виду. Его схема:

Элементом регулировки выступает транзистор, соединенный последовательно с нагрузкой. Напряжение выхода равняется разности значения стабилитрона и эмиттера, которое составляет несколько долей вольта, поэтому считается, что выходное напряжение равно стабилизирующему напряжению.

Рассмотренные приборы обоих типов имеют недостатки: невозможно получить точную величину напряжения выхода и производить регулировку во время работы. Если нужно создать возможность регулирования, то стабилизатор компенсационного вида изготавливают по схеме:

В этом приборе регулировка осуществляется транзистором. Основное напряжение выдает стабилитрон. Если напряжение выхода повышается, база транзистора получается отрицательной в отличие от эмиттера, транзистор откроется на большую величину и ток возрастет. Вследствие этого, напряжение отрицательного значения на коллекторе станет ниже, так же как и на транзисторе. Второй транзистор закроется, его сопротивление повысится, напряжение выводов повысится. Это приводит к снижению напряжения выхода и возвращению к бывшему значению.

При снижении напряжения выхода проходят подобные процессы. Отрегулировать точное напряжение выхода можно резистором настройки.

Стабилизаторы на микросхемах

Такие устройства в интегральном варианте имею повышенные характеристики параметров и свойств, которые отличаются от подобных приборов на полупроводниках. Также они обладают повышенной надежностью, небольшими габаритами и весом, а также небольшой стоимостью.

Последовательный стабилизатор

  • 1 – источник напряжения;
  • 2 – Элемент регулировки;
  • 3 – усилитель;
  • 5 – определитель напряжения выхода;
  • 6 – сопротивление нагрузки.

Элемент регулировки выступает в качестве изменяемого сопротивления, подключенного по последовательной схеме с нагрузкой. При колебании напряжения меняется сопротивление элемента регулировки так, что происходит компенсация таких колебаний. Воздействие на элемент регулировки производится по обратной связи, которая содержит элемент управления, источник основного напряжения и измеритель напряжения. Этот измеритель является потенциометром, с которого приходит часть напряжения выхода.

Обратная связь регулирует напряжение выхода, использующееся для нагрузки, напряжение выхода потенциометра становится равным основному напряжению. Колебания напряжения от основного создает некоторое падение напряжения на регулировке. Вследствие этого, измеряющим элементом в определенных границах можно осуществлять регулировку напряжения выхода. Если стабилизатор планируется изготовить на определенную величину напряжения, то измеряющий элемент создается внутри микросхемы с компенсацией температуры. При наличии большого интервала напряжения выхода, измеряющий элемент выполняется за микросхемой.

Параллельный стабилизатор

  • 1 – источник напряжения;
  • 2 –элемент регулирующий;
  • 3 – усилитель;
  • 4 – источник основного напряжения;
  • 5 – измерительный элемент;
  • 6 – сопротивление нагрузки.

Если сравнить схемы стабилизаторов, то прибор последовательного вида имеет повышенный КПД при неполной загрузке. Прибор параллельного вида расходует неизменную мощность от источника и выдает ее на элемент регулировки и нагрузку. Стабилизаторы параллельные рекомендуется использовать при неизменных нагрузках при полной загруженности. Стабилизатор параллельный не создает опасности при КЗ, последовательный вид при холостом ходе. При неизменной нагрузке оба прибора создают высокий КПД.

Стабилизатор на микросхеме с 3-мя выводами

Инновационные варианты схем стабилизаторов последовательного вида выполнены на 3-выводной микросхеме. Вследствие того, что есть всего лишь три вывода, их проще использовать в практическом применении, так как они вытесняют остальные виды стабилизаторов в интервале 0,1-3 ампера.

  1. U вх – необработанное напряжение входа;
  2. U вых –напряжение выхода.

Можно не использовать емкости С1 и С2, однако они позволяют оптимизировать свойства стабилизатора. Емкость С1 применяется для создание стабильности системы, емкость С2 нужна по той причине, что внезапное повышение нагрузки нельзя отследить стабилизатором. В таком случае поддержка тока осуществляется емкостью С2. Практически часто применяются микросхемы серии 7900 от компании Моторола, которые стабилизируют положительную величину напряжения, а 7900 – величину со знаком минус.

Микросхема имеет вид:

Для увеличения надежности и создания охлаждения стабилизатор монтируют на радиатор.

Стабилизаторы на транзисторах

На 1-м рисунке схема на транзисторе 2SC1061.

На выходе прибора получают 12 вольт, на напряжение выхода зависит прямо от напряжения стабилитрона. Наибольший допустимый ток 1 ампер.

При применении транзистора 2N 3055 наибольший допускаемый ток выхода можно повысить до 2 ампер. На 2-м рисунке схема стабилизатора на транзисторе 2N 3055, напряжение выхода, как и на рисунке 1 зависит от напряжения стабилитрона.

  • 6 В — напряжение выхода, R1=330, VD=6,6 вольт
  • 7,5 В — напряжение выхода, R1=270, VD = 8,2 вольт
  • 9 В — напряжение выхода, R1=180, Vd=10

На 3-м рисунке – адаптер для автомобиля – аккумуляторное напряжение в автомобиле равно . Для создания напряжения меньшего значения применяют такую схему.

Тематические материалы:

Обновлено: 01.08.2020

103583

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter

Автомобильный преобразователь напряжения с 12 вольт на 5 вольт ?

 Всем хорошо известно, что номинальное бортовое напряжение легковых автомобилей составляет 12 вольт.  Может в некоторых случаях оно может быть 24 вольта, поскольку аккумуляторы на такое напряжение тоже встречаются, но мы об этом не знаем:)…
Однако напряжение 12 вольт не всегда является подходящим для многих электронных устройств, где применяется цифровая логика. Исторически сложилось так, что большинство логических микросхем работают с напряжением 5 вольт. Именно это напряжение зачастую и обеспечивается в машине с помощью зарядных устройств, адаптеров, стабилизаторов… Кстати, о таком зарядном устройстве мы уже рассказывали в одной из наших статей «Зарядной устройство на 5 вольт для применения в машине». Если сказать более того, то по сути, эта статья является неким продолжением приведенной нами статьи выше, с одним лишь исключением. Здесь будут собраны все возможные варианты обеспечивающие преобразование 12 вольт в 5 вольт. То есть мы разберем и относительно бесперспективные варианты на резисторах и транзисторе и поговорим о микросборках и схемах с использованием ШИМ, для реализации преобразователей напряжения в машине с 12 на 5 вольт. Итак, начнем.

Как из 12 вольт сделать 5 вольт с помощью резисторов

Использование резистора для снижения питающего напряжения  нагрузки это один из самых «неблагодарных» способов. Такое заключение можно сделать даже из самого определения  резистора. Резистор — пассивный элемент электрической цепи, обладающий определенным сопротивлением для электрического тока. Здесь ключевым будет слово «пассивный». Действительно, такая  пассивность не позволяет гибко реагировать на изменения напряжения, обеспечивая стабилизацию питания для нагрузки.
 Второй минус резистора это его относительно небольшая мощность.  Применять резистор, более чем на 3-5 Ватт смысла нет. Если необходимо рассеять большую мощность, то резистор будет слишком большим, а ток при рассеиваемой мощности не трудно посчитать. I=P/U=3/12=0,25 А. То есть 250 мА. Этого явно не хватит ни на видеорегистратор, ни навигатору. По крайней мере, с должным запасом.
 Все же ради интереса и ради тех, кому надо небольшой ток и нестабилизированное напряжение мы посчитаем и этот вариант. Так напряжение бортовой сети машины (автомобиля) 14 вольт, а надо 5 вольт. 14-5=9 вольт, которые надо сбросить. Ток скажем ток нагрузки будет те же 0,25 А при 3 Ваттном резисторе. R=9/0.25=36 Ом.  То есть можно взять 36 Омный резистор при токе потребления нагрузки 250 мА и на ней получится питающее напряжение 5 вольт.
 Теперь давайте поговорим о более «цивилизованных» вариантах преобразователя напряжения с 12 на 5 вольт.

Как из 12 вольт сделать 5 вольт с помощью транзистора

 Эта схема на транзисторе не самая простая в производстве, но при этом самая простая в функциональности. Сейчас мы говорим о том, что схема не защищена от короткого замыкания, от перегрева. Отсутствие такой защиты является неким недостатком. Актуальность этой схемы можно отнести к еще тем временам, когда не существовало микросборок (микросхем), преобразователей. Благо сейчас энных уйма и этот вариант, как и предыдущий, можно рассматривать также как один из возможных, но не предпочтительных.  Самым большим плюсом относительно варианта с резисторами будет активное изменение сопротивления, за счет применяемого стабилитрона и транзистора.  Именно эти радиоэлементы способны обеспечит стабилизацию. Теперь обо всем подробнее.

 Первоначально транзистор закрыт и не пропускает напряжение. Но после прохождения напряжения через резистор R1 и стабилитрон VD1 он открывается на уровень соответствующий напряжению стабилитрона. Ведь именно стабилитрон обеспечивает опорное напряжение для базы транзистора. В итоге, транзистор всегда открыт (закрыт) прямо пропорционально входному напряжению. Именно так обеспечивается снижение напряжения, а также его стабилизация. Конденсаторы выполняют функцию неких «электрических буферов», в случае резких скачков и провалов. Это придает схеме больше стабильности.  Итак, схема на транзисторе вполне работоспособна и применима. Ток для питания нагрузки здесь будет уже гораздо больше. Так скажем для транзистора указанного в схеме КТ815, это ток 1,5 А. Этого уже вполне достаточно, чтобы подключить навигатор, планшет или ведеорегистратор, но не все сразу!

Как из 12 вольт сделать 5 вольт с помощью микросхемы

 На смену транзисторным сборкам пришли микросхемы. Их плюсы очевидны. Здесь и электронщиком совсем не надо быть, можно все собрать без представлений, как и что работает. Хотя даже специалист не скажет, что же вшил в корпус производитель той или иной микросхемы, коих развелось на нашем рынке великое множество. Это собственно на руку нам, мы можем выбрать лучшее, за меньшие деньги. Также плюсами микросборок будет использование всевозможных защит, которые были недоступны в предыдущих вариантах. Это защита от КЗ и от перегрева. Как правило, это по умолчанию. Теперь давайте разберем подобные примеры.

Применения таких микросборок оправдано для случая, если вам необходимо питать одно из устройств, так как питающий ток соизмерим с предыдущим вариантом, порядка 1,5 А. Однако ток также будет зависеть и от корпуса сборки. Ниже приведены те же микросхемы, но в других типах корпусов. В этих случаях ток питания будет порядка 100 мА. Это вариант для маломощных потребителей. В любом случае ставим на микросхемы радиаторы.

Итак, в случае подключения нескольких устройств, придется подключать микросборки параллельно, по одной микросхеме на каждое устройство. Согласитесь, сто это не совсем корректный вариант. Здесь лучше идти по пути увеличения выходного тока питания, и повышения КПД. Именно этот вариант нам предлагают микросхемы с ШИМ. О нем далее…

Как из 12 вольт сделать 5 вольт с помощью микросхемы с ШИМ

 Очень кратко и непрофессионально расскажем о широтно-импульсной модуляции. Вся ее суть сводится к тому, что питание осуществляется не постоянным током, а импульсами. Частота импульсов и их диапазон подбирается таким образом, чтобы питающая нагрузка воспринимала питание, словно ток постоянен, то есть не было отклонений в работе, отключений, миганий и т.д. Однако за счет того, что ток импульсный, и за счет того что он прерывистый, все элементы схемы работают уже со своеобразными «перерывам на отдых». Это позволяет сэкономить на потреблении, а также разгрузить рабочие элементы схемы. Именно из-за этого импульсные блоки питания и преобразователи такие маленькие, то такие «удаленькие».  Использование ШИМ позволяет повысить КПД схемы до 95-98 процентов. Поверьте это очень хороший показатель. Итак, приводим схему для преобразователя с 12 на 5 вольт использующего ШИМ.

Вот так она выглядит «вживую».

Более подробно об этом варианте все в той же статье про зарядное устройство на 5 вольт, которое мы упоминали ранее. 

Подводя итог о преобразователе напряжения с 12 на 5 вольт

 Все схемы и варианты преобразователей, про которые мы вам рассказали в этой статье, имеют право на жизнь. Самый простой вариант с резистором будет незаменим для варианта, когда вам необходимо подключить что-то маломощное и не требующее стабилизированного  напряжения.  Скажем пару светодиодов, подключенных последовательно. Кстати, о подключении светодиодов к 12 вольтам, вы можете узнать из статьи «Как подключить светодиод к 12 вольтам».
 Второй вариант будет уместен тогда, когда преобразователь вам нужен уже сейчас, а времени или возможности, сходить в магазин, нет. Найти транзистор и стабилитрон можно практически в любой технике под списание.
 Применение микросхем один из наиболее распространенных вариантов на сегодняшний день. Ну, а микросхемы с ШИМ это то, к чему все и идет. Именно так видятся наиболее перспективные и выгодные варианты преобразователей напряжения с 12 на 5 вольт.
 Последнее по хронологии статьи, но не по информативности нам хотелось напомнить о том, как должно подключаться питание к USB разъемам, будь то mini, micro разъемы.

Теперь вы сможете не только выбрать и собрать нужный вам вариант преобразователя, но и подключить его вашему электронному девайсу через разъем USB, ориентируясь на принятые стандарты питания.

Стоит ли собирать стабилизатор напряжения своими руками

Идеальным вариантом работы электросетей является изменение значений тока и напряжения как в сторону уменьшения, так и увеличения не более чем на 10% от номинальных 220 В. Но поскольку в реальности скачки характеризуются большими изменениями, то электроприборам, подключенным к сети напрямую, грозит потеря проектных возможностей и даже выход из строя.

Избежать неприятностей поможет использование специального оборудования. Но поскольку оно отличается весьма высокой ценой, то многие предпочитают собирать стабилизатор напряжения сделанный своими руками. Насколько оправдан такой шаг и что потребуется для его реализации?

Конструкция и принцип действия стабилизатора

Конструкция прибора

Решив собрать прибор самостоятельно придется заглянуть внутрь корпуса промышленной модели. Она состоит из нескольких основных деталей:

  • Трансформатора;
  • Конденсаторов;
  • Резисторов;
  • Кабеля для соединения элементов и подключения устройства.

Принцип действия самого простого стабилизатора основан на работе реостата. Он повышает или понижает сопротивление в зависимости от силы тока. Более современные модели обладают широким набором функций и способны в полной мере защитить бытовую технику от скачков напряжения в сети.

Виды приборов и их особенности

Виды и их применения

Классификация оборудования зависит от методов, используемых для регулировки тока. Поскольку эта величина представляет собой направленное движение частиц, то воздействовать на нее можно одним из способов:

  • Механическим;
  • Импульсным.

Первый основывается на законе Ома. Приборы, работа которых основана на нем называют линейными. Они включают в себя два колена, которые соединяются при помощи реостата. Поданное на один элемент напряжение проходит по реостату и таким образом оказывается на другом, с которого поступает к потребителям.

Приборы этого типа позволяют очень только выставлять параметры выходного тока и могут быть модернизированы дополнительными узлами. Но использовать такие стабилизаторы в сетях, где разница между входным и выходным током велика нельзя, так как они не смогут обезопасить бытовую технику от КЗ при больших нагрузках.

Смотрим видео, принцип работы импульсного прибора:

Импульсные модели работают по принципу амплитудной модуляции тока. В цепи стабилизатора используется выключатель, разрывающий ее через определенные промежутки времени. Такой подход позволяет равномерно накапливать ток в конденсаторе, а после его полной зарядки и далее на приборы.

В отличие от линейных стабилизаторов импульсные не имеют возможности задавать определенную величину. В продаже встречаются модели повышающе-понижающие – это идеальный выбор для дома.

Также стабилизаторы напряжения делятся на:

  1. Однофазные;
  2. Трехфазные.

Но так как большинство бытовых приборов работают от однофазной сети, то в жилых помещениях используют как правило оборудование, относящееся к первому типу.

Приступаем к сборке: комплектующие, инструменты

Поскольку наиболее эффективным считается симисторный аппарат, то в своей статье мы рассмотрим, как самостоятельно собрать именно такую модель. Сразу следует отметить, что этот стабилизатор напряжения, выполненный своими руками, будет выравнивать ток при условии, что входное напряжение находится в диапазоне от 130 до 270В.

Допустимая мощность приборов, подключаемых к такому оборудованию не сможет превышать 6 кВт. При этом переключение нагрузки будет осуществляться за 10 миллисекунд.

Что касается комплектующих, то для сборки такого стабилизатора понадобятся следующие элементы:

  • Блок питания;
  • Выпрямитель для измерения амплитуды напряжения;
  • Компаратор;
  • Контроллер;
  • Усилители;
  • Светодиоды;
  • Узел задержки включения нагрузки;
  • Автотрансформатор;
  • Оптронные ключи;
  • Выключатель-предохранитель.

Из инструментов буду необходимы паяльник и пинцет.

Этапы изготовления

Чтобы собрать стабилизатор напряжения 220В для дома своими руками сначала нужно подготовить печатную плату размером 115х90 мм. Она изготавливается из фольгированного стеклотекстолита. Схема размещения деталей может быть напечатана на лазерном принтере и при помощи утюга перенесена на плату.

Смотрим видео, самодельный несложный прибор:

схема электрическая принципиальная

Далее переходим к сборке трансформаторов. Для одного такого элемента потребуется:

  • магнитопровод площадью сечения 1,87 см²;
  • три кабеля ПЭВ-2.

Первый провод используется для создания одной обмотки, при этом его диаметр составляет 0,064 мм. Число витков должно равняться 8669.

Два оставшихся провода потребуются для выполнения других обмоток. Они отличаются от первого диаметром, составляющим 0,185 мм. Количество витков для этих обмоток будет равно 522.

Если хотите упростить себе задачу, то можно воспользоваться двумя готовыми трансформаторами ТПК-2-2 12В. Их соединяют последовательно.

В случае изготовления этих деталей самостоятельно после того как будет готов один из них переходят к созданию второго. Для него будет нужен тороидальный магнитопровод. Для обмотки выбирают тот же ПЭВ-2, что и в первом случае, только количество витков составит 455.

Также во втором трансформаторе придется выполнить 7 отводов. Причем для первых трех используется провод диаметром 3мм, а для остальных – шины, сечением 18 мм². Это поможет избежать нагревания трансформатора в процессе работы.

соединение двух трансформаторов

Все остальные комплектующие для прибора, создаваемого своими руками лучше приобретать в магазине. После того, как все необходимое закуплено можно приступать к сборке. Начинать лучше всего с установки микросхемы, выполняющей роль контроллера на теплоотвод, который изготавливается из алюминиевой платины площадью более 15 см². На него также монтируются симисторы. Причем теплоотвод, на который предполагается их установка должен иметь охлаждающую поверхность.

Далее необходимо установить на плату светодиоды. Причем лучше выбирать мигающие. Если не получается расположить их согласно схеме, то можно разместить на стороне, где находятся печатные проводники.

Если сборка симисторного стабилизатора напряжения 220В своими руками для вас кажется сложной, то можно остановиться на более простой линейной модели. Она будет обладать аналогичными свойствами.

Эффективность изделия, выполненного своими руками

Что толкает человека на изготовление того или иного прибора? Чаще всего – его высокая стоимость. И в этом смысле стабилизатор напряжения, собранный своими руками, конечно, превосходит фабричную модель.

К преимуществам самодельных устройств можно отнести и возможность самостоятельного ремонта. Человек, собравший стабилизатор разобрался как в его принципе действия, так и строении и поэтому сможет устранить неисправность без посторонней помощи.

Кроме того, все детали для такого прибора предварительно покупались в магазине, поэтому в случае выхода их из строя всегда можно будет найти аналогичную.

Если же сравнивать надежность стабилизатора, собранного своими руками и произведенного на предприятии, то здесь преимущество на стороне заводских моделей. В домашних условиях разработать модель, отличающуюся высокой производительностью практически невозможно, так как нет специального измерительного оборудования.

Заключение

Существуют различные типы стабилизаторов напряжения, причем некоторые из них вполне реально сделать своими руками. Но для этого придется разобраться в нюансах работы оборудования, приобрести необходимые комплектующие и выполнить их грамотный монтаж. Если вы не уверены в своих силах, то лучший вариант – приобретение устройства заводского изготовления. Стоит такой стабилизатор дороже, но и по качеству значительно превосходит модели, собираемые самостоятельно.

Как самому изготовить стабилизатор тока для светодиодов: схемы

Иногда у автолюбителей появляется необходимость ограничить ток заряда АКБ, проверить тот или иной источник питания или пропустить напряжение через диоды. Чтобы осуществить одну из этих задач, есть смысл применить стабилизатор тока для светодиодов своими руками. Подробнее о том, какие существуют схемы для разработки данного девайса, вы узнаете ниже.

Содержание

[ Раскрыть]

[ Скрыть]

Схемы стабилизаторов и регуляторов тока

Источники тока не имеют ничего общего с источниками напряжения. Предназначение первых заключается в стабилизации выходного параметра, а также возможном изменении выходного напряжения. Это происходит так, чтобы уровень ток все время был одинаковым. Источники тока используются для запитки светодиодных ламп, заряда АКБ в авто и т.д. Если у вас возникла необходимость сделать простейший импульсный стабилизатор тока ходовых огней 12в для автомобиля своими руками, то предлагаем вашему вниманию несколько схем.

На КРЕНке

Обустройство цепи на кренке

Чтобы сделать простейший автомобильный импульсный стабилизатор тока в домашних условиях, вам потребуется микросхема 12v. Для этих целей отлично подойдет lm317. Такой стабилизатор напряжения 12 в lm317 считается регулируемым и способен функционировать с токами бортовой сети до полутора ампер. При этом показатель входного напряжения может составить до 40 вольт, lm317 в состоянии рассеивать мощность до 10 ватт. Но это возможно только в том случае, если будет соблюдаться тепловой режим.

В целом потребление тока lm317 сравнительно небольшое — в районе 8 мили ампер, и данный показатель почти никогда не изменяется. Даже в том случае, если через крен lm317 проходит другой ток или меняется показатель входного напряжение. Как вы можете понять, стабилизатор 12 в lm317 для бортовой сети авто дает возможность удерживать постоянное напряжение на компоненте R3.

Кстати, этот показатель можно регулировать благодаря использованию элемента R2, но пределы будут незначительными. В устройстве lm317 компонент R3 является устройством задающего тока. Так как показатель сопротивления lm317 всегда остается на одном и том же уровне, ток, который проходит через него, также будет стабильным (автор видео — Denis T).

Что касается входа крен lm317, ток на них составит на 8 мили ампер выше. Используя вышеописанную схему, можно разработать самый простой стабилизатор напряжения для ДХО автомобиля. Такой девайс может применяться как устройство электронной нагрузки, источника тока для подзарядки АКБ и других целей. Нужно отметить, что интегральные девайсы током 3а или меньше довольно быстро реагируют на различные изменения импульса. Что касается недостатков, то такие девайсы характеризуются слишком высоким сопротивлением, в результате чего придется применять мощные компоненты.

На двух транзисторах

Довольно распространенными сегодня являются стабилизаторы для бортовой сети автомобиля 12v на двух транзисторах. Одним из основных недостатков такого устройства является плохая стабильность тока, если происходят изменения в питающем напряжении вольт. Тем не менее, данная схема для бортовой сети автомобиля 12v подходит для многих задач.

Обустройство цепи на транзисторах

Ниже вы сможете ознакомиться с самой схемой. В этом случае устройством, которое раздает ток, является резистор R2. Когда данный показатель растет, соответственно растет и напряжение на данном элементе. В том случае, если показатель составляет от 0.5 до 0.6 вольт, открывается компонент VT1. При открытии данное устройство будет закрывать элемент VT2, в результате чего ток, который проходит через VT2, начнет снижаться. При разработке схемы можно использовать полевой транзистор Мосфет вместе VT2.

Что касается компонента VD1, то он применяется на напряжение от 8 до 15 вольт и нужен в том случае, если его уровень слишком высокий и работоспособность транзистора может быть нарушена. Если транзистор мощный, то показатель напряжения в сети авто может составить около 20 вольт. Необходимо помнить о том, что транзистор Мосфет открывается в том случае, когда показатель напряжения на затворе составит 2 вольта. Если вы используете универсальный выпрямитель для заряда АКБ или других задач, то вам вполне хватит работы транзистора и резистора R1.

На операционном усилителе (на ОУ)

Механизм на операционном усилителе

Вариант сборки устройства со специальным усилителем ошибки для авто актуален в том случае, если у вас возникла необходимость разработать устройство, работающее в широких пределах. В данном случае выполнять функцию токозадающего элемента будет R7. Операционный увелитель DA2.2 позволяет усилить уровень напряжения в вольтах токозадающего элемента. Устройство DA 2.1 предназначено для сравнивания уровня опорного параметра. Помните о том, что данная схема девайса на 3а нуждается в дополнительном питании, которое должно подаваться на разъем ХР2. Уровня напряжения в вольтах должно хватить для того, чтобы обеспечить функциональность элементов всей системы.

Устройство для авто должно быть дополнено генератором, в нашем случае эту функцию выполняет элемент REF198, характеризующийся уровнем выходного напряжения в 4 вольта. Сама схема стоит достаточно дорого, так что при необходимости вместо нее можно установить кренку. Чтобы правильно произвести настройку, следует установить ползунок резистора R1 в верхнее положение, а с помощью элемента R3 выставляется нужное значение тока 3а. Чтобы предотвратить возбуждение, используются компоненты R2, C2 и R4.

На микросхеме импульсного стабилизатора

Схема механизма с применением импульсного устройства

В некоторых случаях устройство для авто должно функционировать не только в большом диапазоне нагрузок, при этом обладая высоким коэффициентом полезного действия. Тогда использование компенсационных устройств будет не целесообразным, вместо них применяются импульсные элементы.

Предлагаем ознакомиться с одной из наиболее распространенных схем МАХ771, ее особенности следующие:

  • уровень опорного напряжения — 1.5 вольт;
  • коэффициент полезного действия при нагрузке от 10 мили ампер до 1 ампера составит около 90%;
  • показатель питания составляет от 2 до 16.5 вольт;
  • мощность на выходе достигает 15 ватт (автор видео — Андрей Канаев).

Что представляет собой процедура стабилизации? Компоненты R1 и R2 — это делители выходных показателей схемы. Когда уровень делимого напряжения становится больше, чем опорное, устройство автоматически снижает выходной параметр. При обратном процессе устройство будет увеличивать данный показатель. Вы сможете получить рабочий стабилизированный источник тока в том случае, если цепи будут поменяны таким образом, что система в целом станет реагировать на выходной параметр.

Если нагрузка на устройство не особо большая, то есть менее 1.5 вольт, микросхема будет функционировать в качестве рабочего стабилизатора. Но когда этот параметр начнет резко возрастать, девайс переключится в режим стабилизации. Монтаж резистора R8 необходим только тогда, когда уровень нагрузки слишком высокий и составляет более 16 вольт.

Что касается элементы R3, то он является токораздающим. Одним из основных недостатков такого варианта является слишком высокое падение нагрузки на вышеуказанном резисторе. Если вы хотите избавиться от этого минуса, то для того, чтобы увеличить сигнал, необходимо дополнительно установить операционный усилитель.

Заключение

В этой статье мы рассмотрели несколько вариантов стабилизирующих девайсов для авто. Разумеется, такие схемы всегда можно при необходимости модернизировать, способствуя повышению показателя быстродействия и т.д. Имейте в виду, что если нужно, вы всегда можете использовать специально разработанные микросхемы в качестве регулятора. Также при возможности можно самостоятельно производить достаточно мощные регулирующие компоненты, но таких варианты более актуальны для того, чтобы решать определенные задачи.

Как вы видите, разработка схемы — дело достаточно сложное и кропотливое, к нему нельзя просто так подойти, не имея соответствующего опыта. Отсутствие определенных навыков не позволит получить необходимый результат. Чтобы своими руками сделать такую схему для авто, необходимо внимательно выполнять все действия, описанные выше.

Видео «Устройство для питания светодиодов»

Как в домашних условиях сделать стабилизатор для питания ламп в авто или других целей — узнайте из видео (автор видео — Дед Синь).

 Загрузка …

причины и устранение своими руками

В связи с нестабильным напряжением в домах и квартирах люди вынуждены устанавливать стабилизаторы напряжения (далее СН) для питания всего жилья или для работы конкретного прибора. Как и с любым другим видом электроприборов, иногда возникает ситуация, когда стабилизатор напряжения не работает (сломался). Внутренние неисправности в большинстве случаев связаны с силовыми цепями: реле, симисторы, блок управления сервоприводом и т.д. Поэтому перед тем, как приступать к анализу неисправности и причине ее возникновения, нужно понять, какой тип стабилизатор у вас вышел из строя. Популярные виды устройств и принцип их работы мы рассмотрели отдельно: https://samelectrik.ru/kakie-byvayut-stabilizatory-napryazheniya.html. В этой статье мы рассмотрим, какие бывают неисправности стабилизаторов напряжения, почему они возникают и как их устранить самостоятельно (если это возможно).

Гул и щелчки

Если стабилизатор напряжения сильно гудит, нужно проверить, чтобы питающее напряжение не было выше или ниже допустимых диапазонов. Диапазон регулировки в большинстве случае лежит в пределах 100-250 Вольт.

Внимание! Даже при исправном состоянии автотрансформатор равномерно и не слишком громко гудит. Также гул издаёт сервопривод при перемещении щеточного узла. Релейные стабилизаторы напряжения во время работы издают щелчки. Это нормально, реле (черные прямоугольники на рисунке ниже) переключают отводы от обмоток для регулировки выходного напряжения.

Если устройство громко трещит – это может свидетельствовать об искрении щетки в сервоприводных моделях, проблемах с реле и плохом контакте внутренней проводки устройства.

Выключается под нагрузкой

Стабилизатор напряжения не держит нагрузку – такая проблема случается по ряду причин. Первая среди них – это повышенная нагрузка (мощность потребителей). Если вы не меняли подключаемые устройства, значит проблема в стабилизаторе. Если он отключается не мгновенно, а через какое-то время работы, то виной этому может быть перегрев или межвитковые замыкания автотрансформатора.

Что делать: разберите прибор и произведите внешний осмотр обмоток автотрансформатора, если он не слишком сильно запылён, то проверьте, нет ли следов локальных перегревов. Если пыли много – вычистите её

Если следы перегрева и гари есть – повреждена изоляция обмоток. Это и есть межвитковое замыкание, тогда как отремонтировать стабилизатор в этом случае? Нужно перемотать либо заменить автотрансформатор на аналогичный или больший по мощности. Но стоимость такого ремонта может быть сопоставимой с покупкой нового стабилизатора напряжения.

Важно! У сервоприводных моделей ряд неисправностей может быть вызван износом щетки и загрязнением токоведущих частей графитовой стружкой. В процессе работы щетка стирается, засыпая графитом автотрансформатор. Из-за чего могут возникать замыкания между токосъемниками участками витков и перегрев. В этом случае нужно смести графит и вычистить его между витками. Убедитесь, что обмотки уложены ровно, нет обрывов. Контактную поверхность зачистите обычным канцелярским ластиком до блеска, особенно наиболее его используемый сектор.

На выходе нет 220 Вольт

Неисправность проявляется в том, что стабилизатор не выдает напряжение 220 Вольт. Это не обязательно говорит о внутренних проблемах, причина может быть в напряжении сети – оно слишком низкое, и устройство просто не вытягивает. Если питание находится в рабочем диапазоне стабилизатора, тогда приступим к ремонту.

Что делать: в сервоприводных моделях поломка может быть вызвана износом щеточного механизма или самого сервопривода. Он может не доходить до конца обмотки или щетка может не контактировать с соответствующим её сектором. В простейшем случае может быть просто загрязнена графитом. Чтобы отремонтировать его, нужно почистить поверхность контактов до металлического блеска. Иногда нужно заменить щетку.

Интересно! Бывает и так, что из-за загрязнений рабочего сектора щеточного узла графитом часто напряжение не поднимается выше определенного значения.

В релейных СН это чаще всего говорит о том, что неисправно одно или несколько электромагнитных реле или каскад управления ими. Обычно он строится на транзисторе. Реле могут иметь различное напряжение катушки, часто это 12 Вольт.

Что делать: для проверки подайте напряжение на катушку и прозвоните силовые контакты. Они должны замыкать и размыкаться, реле при этом щелкает. Если этого не происходит – либо прилипли контакты (чаще), либо сгорела катушка реле (реже). Если реле исправно – проверьте транзистор, он не должен быть пробит, а переходы эмиттер-база и коллектор-база должны прозваниваться в одну сторону, как диод. Транзисторы используйте любые маломощные аналогичной проводимости.

В симисторных и тиристорных СН диагностика поломки аналогична – нужно прозвонить на пробой полупроводниковый силовой ключ и если он вышел из строя заменить аналогичным или более мощным.

Плохая стабилизация напряжения

Если напряжение стабилизируется слишком большими шагами, а раньше всё было плавно, то поломка близка к предыдущей – вышел из строя коммутационный прибор на одной или нескольких ступенях регулировки. Алгоритм проверки неисправности стабилизатора напряжения и их устранение описаны в предыдущем пункте.

Внимание! В характеристиках каждого из стабилизаторов описан либо шаг регулировки, либо границы каждой из ступеней, а также точность поддержания номинального напряжения на выходе.

В сервоприводных стабилизаторах такое встречается при поломке в механизме редуктора двигателя, а также при загрязнениях обмоток, как это было в случаях описанных выше. Неисправности редуктора могут сопровождаться неравномерным жужжанием или потрескиванием – это проскакивают шестерни.

Что делать: нужно разобрать механизм и если все детали в норме, заменить смазку.

Еще стоит отметить, что у сервоприводных СН стабилизация может отсутствовать, работать неверно из-за выхода из строя полупроводниковых ключей управления двигателем. Тогда бегунок со щеткой перемещается в одно из крайних положений или вообще не сдвигается с места.

Не включается или выбивает автомат после отчета таймера

Большинство стабилизаторов после включения входят в рабочий режим не сразу, а после временной задержки. Но после отчета обратного таймера пуска не происходит, при этом на дисплее-индикаторе выдает букву Н. Пример ремонта устройства с такой неисправностью рассмотрен в следующих видео:

К сведению код ошибки «Н» говорит о завышенном напряжении сети и срабатывании защиты. Это действительно для приборов фирмы «Ресанта», «Luxeon» и некоторых других.

Интересно: буква «H» — значит «Высокое» или «High», а L – «низкое», «Low». Резистор, замену которого вы видели на видео, отвечает за пороги срабатывания по верхнему и нижнему уровню напряжения. Из-за неверного сопротивления плата стабилизации не справляется со своей работой и уходит в защиту.

Такие симптомы или другой код неисправности может сопровождаться выбиванием автомата питающего сам стабилизатор после отчета таймера задержки включения. В этом случае проблема решается заменой реле, при залипании которых может возникать повышенное потребление тока.

Совсем не подает признаков жизни или другие поломки

Самая пугающая неисправность – это когда после подачи напряжения ни индикаторы не зажигаются, ни напряжение на выходе не появляется, т.е. когда стабилизатор напряжения не работает вообще. В таком случае возможен выход из строя управляющей платы. Чаще всего ремонт начинают с визуального осмотра, обращают внимание на:

  • выгоревшие дорожки;
  • вздутые электролитические конденсаторы;
  • выгоревшие, треснутые или взорвавшиеся компоненты платы;
  • микротрещины на паяных контактах и холодная пайка.

Все выявленные недостатки устраняют, а если внешний осмотр не дал результатов переходят к проверке платы на обрывы дорожек и короткие замыкания мультиметром в режиме измерения сопротивления и прозвонки. Такой ремонт стабилизатора может потребовать глубоких знаний электроники, схемы электрической принципиальной, а в самых сложных случаях и использования осциллографа для проверки управляющих сигналов и логики работы схемы.

Вот и все, что мы хотели рассказать вам про неисправности стабилизаторов напряжения и способы их устранения своими руками. Надеемся, теперь вы знаете, что делать в том или ином случае и почему возникают поломки!

Будет полезно прочитать:

Как сделать 12-вольтный регулятор напряжения

Хотя уже существуют готовые устройства для регулирования низких фиксированных напряжений постоянного тока, можно создать собственное с нуля. Стабилитроны сами по себе являются хорошими низковольтными слаботочными стабилизаторами. В более мощных источниках питания они действуют как источник опорного напряжения, управляющий одним или несколькими транзисторами, которые могут выдерживать больший ток. Чтобы проиллюстрировать, как работает стабилитрон, вы можете сделать простой стабилизатор, используя стабилитрон на 12 вольт и 5 ватт, который будет обеспечивать ток до 300 миллиампер.

Обратите внимание на полосу на корпусе стабилитрона. Это отмечает катодную сторону диода. Поскольку стабилитроны регулируют обратную проводимость, вы подключаете катод к положительной мощности.

Отключите нерегулируемый источник питания. Подключите его плюс и землю к шине питания макета.

Вставьте стабилитрон в макетную плату. Вставьте резистор на 40 Ом в макетную плату так, чтобы он соединился с катодом стабилитрона. Подключите свободный (неиспользуемый) вывод резистора к положительному нерегулируемому источнику питания от шины питания макетной платы.Подключите заземление источника питания к аноду стабилитрона. Вставьте две более длинные перемычки так, чтобы конец одного соединялся с анодом стабилитрона, а другой провод — с его катодом. А пока оставьте свободные концы этих проводов неподключенными.

Настройте мультиметр на показания постоянного напряжения. Подключите положительный (красный) вывод мультиметра к длинной перемычке, идущей от катода стабилитрона, а отрицательный (черный) вывод мультиметра к проводу, идущему от анода. Включите блок питания. Вы должны показать устойчивые 12 вольт.

Вещи, которые вам понадобятся:

  • 1N5349 Стабилитрон 12 В, 5 Вт
  • Резистор на 40 Ом, 1 Вт
  • Макетная плата
  • Нерегулируемый источник питания 24 В постоянного тока
  • Мультиметр
  • Короткие кусочки перемычки 22-го калибра провод

Наконечник

Подключите держатель предохранителя последовательно с выходом регулятора и используйте предохранитель на 1/3 А. Это защитит стабилитрон в случае перегрузки или короткого замыкания регулятора. Резистор был рассчитан на работу с источником 24 В, выходом 12 В и током 300 мА.Вы можете рассчитать другие значения сопротивления по следующей формуле: R = (Vs — Vz) / Imax, где R — сопротивление в омах, Vs — напряжение нерегулируемого источника, Vz — напряжение стабилитрона, а Imax — максимальный ток, который вы хотите. Затем вам необходимо рассчитать минимальную номинальную мощность резистора по следующей формуле: P> (Vs — Vz) × Imax, где P — мощность резистора в ваттах, а Vs, Vz и Imax такие же, как и раньше. Всегда округляйте до следующего доступного значения мощности (или двух, для дополнительной безопасности). Например, если вы рассчитываете номинальную мощность в 400 милливатт, резистор на ½ Вт будет безопасным, но резистор на 1 Вт будет лучше.

Преобразователь 12В в 9В — 5 лучших схем

Ниже представлена ​​схема простых схем преобразователя 12В в 9В. Эти схемы преобразователя постоянного тока в постоянный можно использовать для преобразования всех типов источника питания 12 В в источник питания 9 В.

Эти схемы также могут использоваться для понижения или уменьшения потенциала батареи с 12 В до 9 В, чтобы использовать его с модулями микроконтроллеров или любыми ИС. Здесь в основном используются надежные линейные преобразователи мощности типа LM7809 и LM317.

Преобразователь 9В в 5В с LM7809:

LM7809 — это микросхема стабилизированного стабилизатора напряжения, которая снижает и регулирует входное напряжение в электрических цепях.

Преобразователь регулятора напряжения с 12 В на 9 В с микросхемой LM7809 реализован, как показано на схематической диаграмме ниже. Его можно использовать для слаботочных приложений, а также для тока до 2 ампер и более.

Важно:
Подключите входной конденсатор «Cin» и выходной конденсатор «Co» к IC 7809. Радиатор необходим, потому что падение напряжения в 3 вольта должно рассеиваться в виде тепла.

Существует большая вероятность выхода из строя ИС, если радиатор не подключен.Разница входного и выходного напряжения здесь составляет 3 вольта, что больше рекомендуемого значения в 2,5 вольта.

Необходимые компоненты:
Аккумулятор 12 В / источник питания 12 В, конденсатор 100 мкФ, конденсатор 0,1 мкФ, IC LM7809, радиатор, провода и разъемы.

Рабочий:

ИС имеет множество встроенных функций, таких как тепловое отключение, защита от короткого замыкания и защита безопасной рабочей зоны.

LM7809 — это ИС серии LM78xx, все ИС этой серии предназначены для различных фиксированных выходных напряжений.Эти типы ИС обычно используются в регулируемых цепях питания.

LM7809 ИС линейного трансформатора. Цифры «xx » представляют значение регулируемого напряжения o / p. Микросхема 7809 выдает 9 В постоянного тока, поскольку последняя цифра xx представляет (09).

Контакт 1 — это входной контакт . Контакт 2 — это контакт заземления . Контакт 3 — это выходной контакт .

LM317 Преобразователь 12В в 9В:

Преобразователь постоянного тока 12В в 9В также может быть изготовлен с универсальным линейным регулятором напряжения IC LM317.Это полезно для цепей среднего и высокого тока (от 1 до 1,5 ампер +) с подходящим радиатором.

Обычно LM317 находится в цепях переменного питания, которые выдают регулируемое напряжение (от 1,25 В до 37 В) при изменении напряжения на контакте № 1. Здесь схема делителя напряжения, используемая с LM317, дает фиксированное значение o / p 9 В.

Важно:
Настаивают на добавлении входного конденсатора Cin (также конденсатора o / p Co). Радиатор необходим для охлаждения ИС от тепла, выделяемого внутри ИС.

Напряжение i / p должно быть как минимум на 1,5 В выше номинального выходного напряжения, чтобы эта ИС работала, как описано.

Необходимые компоненты:
Аккумулятор 12 В / источник питания 12 В, резистор 2,2 кОм, резистор 300 Ом, конденсатор 100 мкФ, конденсатор 0,1 мкФ, IC LM317, радиатор.

Рабочий:
LM317 — это ИС регулируемого регулятора напряжения, способная обеспечивать более…

(для получения более подробной информации о регуляторе LM317 и его работе перейдите по этой ссылке)

Преобразователь 12В в 9В с использованием резисторов в качестве делителя напряжения:

Схема, показанная ниже, представляет собой схему для приложений с низким током (~ 20 мА) или для измерения опорного напряжения в схеме компаратора или схемы низкого тока светодиода.

Вы можете подключить три светодиода последовательно через вывод резистора R2, если вы используете 12-вольтовую батарею на входе.

Этот тип схемы не является эффективным, поэтому не рекомендуется для использования в проектных схемах.

Необходимые компоненты:

Одна батарея 12 В, резистор 300 Ом, резистор 1 кОм, несколько проводов.

Это просто схема делителя напряжения. Вы можете получить выходной сигнал в соответствии с вашими потребностями по следующей формуле:

Где, Vo — это напряжение o / p.Vin — напряжение источника. Выберите любое значение резистора R1 или R2 (также зависит от импеданса нагрузки) и решите другое. Затем выберите ближайший стандарт. номинал резистора.

Преобразователь 12В в 9В с использованием стабилитрона:

Схема, показанная ниже схемой стабилитрона, полезна для (1-900 мА) цепи среднего тока, например. Светодиодные индикаторы, транзисторные переключатели, Arduino и т.д.Стабилитрон 1в. На выходе вы получите около 9,1 В.

Важно:
Нагрузка должна быть подключена к выходному концу, чтобы предотвратить повреждение стабилитрона. Резистор серии
10 Ом является токоограничивающим резистором, и когда на него подается большой ток, он должен пропускать этот ток через него, поэтому необходим резистор мощностью 5 Вт.

Необходимые компоненты:
Аккумулятор 12 В, резистор 10 Ом (≥10 Ом), стабилитрон 9,1 В (5 Вт), некоторые провода или разъемы.

Рабочий:
Это наиболее распространенная схема стабилитрона в конфигурации регулятора напряжения.

Конструкция стабилизатора напряжения стабилитрона 9 вольт от источника питания 12 вольт. Максимальная номинальная мощность…

Подробный расчет и формулы можно найти в статье о преобразователе 9В в 5В на этом сайте.

Простой преобразователь постоянного тока из 12 в в 9 вольт с использованием транзистора:

Эти типы схем устарели, но все еще встречаются в некоторых периферийных устройствах.Это транзисторный стабилизатор напряжения в режиме EC:

скоро появится…

Цепи стабилизатора с малым падением напряжения 5 В, 12 В на транзисторах

Идеи транзисторных схем стабилизатора напряжения с малым падением напряжения, описанные в следующей статье, могут быть использованы для получения стабилизированное выходное напряжение от 3 В и выше, такое как 5 В, 8 В, 9 В, 12 В и т. д. с чрезвычайно низким падением напряжения 0,1 В.

Например, если вы сделаете предложенную схему LDO 5 В, она будет продолжать выдавать постоянное выходное напряжение 5 В, даже если входное напряжение составляет всего 5 В.1 В

Лучше, чем регуляторы 78XX

Мы обнаружили, что для стандартного регулятора 7805 обязательно требуется минимум 7 В для получения точного выходного напряжения 5 В и так далее. Это означает, что уровень отключения составляет 2 В, что выглядит очень высоким и нежелательным для многих приложений.

Концепции LDO, описанные ниже, могут считаться лучше, чем популярные регуляторы 78XX, такие как 7805, 7812 и т. Д., Поскольку они не требуют, чтобы входное напряжение было на 2 В выше, чем предполагаемый выходной уровень, а может работать с выходами в пределах 2% от номинального. Вход.

Фактически, для всех линейных регуляторов, таких как 78XX или LM317, 338 и т. Д., Входное напряжение должно быть на 2–3 В выше, чем интернированное стабилизированное выходное напряжение.

Проектирование стабилизатора 5 В с малым падением напряжения

ПРИМЕЧАНИЕ: ПОЖАЛУЙСТА, ДОБАВЬТЕ РЕЗИСТОР 1 КОЛЛЕКТОР МЕЖДУ ОСНОВНОЙ Q1 И КОЛЛЕКТОРОМ Q2

На рисунке выше показана простая конструкция стабилизированного стабилизатора напряжения 5 В с малым падением напряжения, которая даст вам правильный 5 V стабилизируется, даже когда входное напряжение упало до менее 5,2 В.

Работа регулятора на самом деле очень проста, Q1 и Q2 образуют простой переключатель питания с общим эмиттером с высоким коэффициентом усиления, который позволяет напряжению проходить со входа к выходу с низким падением напряжения.

Q3 в сочетании со стабилитроном и R2 работают как основная сеть обратной связи, которая регулирует выходной сигнал до значения, эквивалентного значению стабилитрона (приблизительно).

Это также означает, что, изменяя значение напряжения стабилитрона, выходное напряжение может быть соответственно изменено по желанию. Это дополнительное преимущество конструкции, поскольку она позволяет пользователю настраивать даже нестандартные выходные значения, которые недоступны для фиксированных микросхем 78XX

Разработка стабилизатора с малым падением напряжения на 12 В

ПРИМЕЧАНИЕ: ПОЖАЛУЙСТА, ДОБАВЬТЕ 1K РЕЗИСТОР МЕЖДУ БАЗОЙ Q1 И КОЛЛЕКТОРОМ Q2

Как объяснялось в предыдущем разделе, простое изменение значений стабилитрона изменяет выходной сигнал на требуемый стабилизированный уровень.В приведенной выше схеме LDO 12 В мы заменили стабилитрон на стабилитрон 12 В, чтобы получить стабилизированный выход 12 В через входы от 12,3 В до 20 В.

Характеристики тока.

Текущий выход этих конструкций LDO будет зависеть от значения R1 и текущей пропускной способности Q1, Q2. Указанное значение R1 допускает максимум 200 мА, который можно увеличить до более высоких ампер, соответствующим образом уменьшив значение R1.

Чтобы обеспечить оптимальную производительность, убедитесь, что Q1 и Q2 указаны с высоким hFE, не менее 50.Кроме того, наряду с транзистором Q1, Q2 также должен быть силовым транзистором, так как он также может немного нагреться в процессе.

Защита от короткого замыкания

Одним из очевидных недостатков описанных схем с низким падением напряжения является отсутствие защиты от короткого замыкания, которая обычно является стандартной встроенной функцией в большинстве обычных фиксированных регуляторов.

Тем не менее, функция может быть добавлена ​​путем включения каскада ограничения тока с использованием Q4 и Rx, как показано ниже:

ПРИМЕЧАНИЕ: ПОЖАЛУЙСТА, ДОБАВЬТЕ РЕЗИСТОР 1K МЕЖДУ БАЗОЙ Q1 И КОЛЛЕКТОРОМ Q2

Когда ток превышает заданный предел , падение напряжения на Rx становится достаточно большим, чтобы включить Q4, который начинает заземлять базу Q2.Это приводит к сильному ограничению проводимости Q1, Q2 и отключению выходного напряжения, пока, конечно, потребление тока не восстановится до нормального уровня.

Транзисторный стабилизатор с низким падением напряжения и плавным пуском

Этот стабилизатор напряжения с высоким коэффициентом усиления, использующий всего пару транзисторов, обладает лучшими характеристиками, чем у широко используемых вариантов с несколькими эмиттерными повторителями.

Схема была опробована в 30-ваттном стереоусилителе, который строго требовал строго регулируемого источника питания, а также выходного напряжения, которое могло медленно и постепенно повышаться от нуля вольт до максимума всякий раз, когда на схему изначально подавалось питание.

Этот план плавного пуска (около 2 секунд) для усилителей мощности помогал выходным конденсаторам 2000 мкФ заряжаться, не вызывая слишком большого тока коллектора в выходных транзисторах.

Нормальное выходное сопротивление регулятора составляет 0,1 Ом. Выходное напряжение находится путем решения уравнения:

VO = VZ — VBE1.

Время нарастания выходного напряжения вычисляется по формуле:

T = RB.C1 (1 -Vz / V).

Для ряда цифровых устройств требуется заранее заданная последовательность включения источников питания.Устанавливая правильные значения RB / C1, время нарастания выходного сигнала схемы может быть зафиксировано для обеспечения этой последовательности или интервала задержки.

Регулируемая схема LDO

Как видно на схеме, нагрузка подключена к штырю коллектора последовательного транзистора T4. Это указывает на то, что этот конкретный транзистор может быть включен до насыщения, в результате чего напряжение между эмиттером и коллектором будет очень маленьким напряжением насыщения. Этот конкретный уровень напряжения, естественно, зависит от характеристик тока и типа транзистора.

Список деталей
  • R1 = 1,2 Ом
  • R2 = 10 кОм
  • R3 = 470 Ом
  • R4 = 1,2 к
  • R5 = 560 Ом
  • R6 = 1,6 Ом
  • P1 = предустановка 500 Ом
  • C1 = 10 мкФ / 25 В
  • T1, T3 = BC557
  • T2 = BC547
  • T4 = BD438
  • Светодиод = КРАСНЫЙ 20 мА 5 мм

В случае обсуждаемой конструкции с учетом оптимального тока 0,5 А падение напряжения, вероятно, будет вряд ли 0,2 В. Добавьте к этому падение напряжения около R6, необходимое для ограничения тока.При примерно 0,5 В на R6 T3 начинает проводить и ограничивает выходной ток. Светодиод D1 выполняет несколько функций: он работает как индикатор, а также как диод опорного напряжения для ограничения опорного уровня от 1,5 В до 1,6 В на эмиттере T1.

Базовый ток возбуждения для T1 поступает от делителя напряжения, который включает R4, P1 и R5. Что касается разницы между уровнями опорного и выходного напряжения, T1 медленно начинает проводить.

Точно то же самое происходит с T2, который обеспечивает более или менее базовый привод для T4.Конденсатор C1 предназначен для фильтрации выходного каскада. Вы можете легко заменить BD 438 другими популярными брендами, например, такими как BD136, BD138 и BD140 и т. Д.

Сказав это, эти транзисторы, вероятно, могут иметь довольно повышенное напряжение насыщения. Следует отметить, что, поскольку D1 работает как эталонный источник, это должен быть светодиод красного цвета, светодиоды других цветов могут иметь другие характеристики падения напряжения.

Как правильно выбрать регулятор (ы) напряжения для вашей конструкции

В этой статье показано, как выбрать лучший тип стабилизатора напряжения для вашего конкретного электронного продукта.

Вероятно, более 90% продукции требуют регулятора напряжения того или иного типа, что делает их одними из наиболее часто используемых электрических компонентов.

Если у вас нет возможности работать напрямую от напряжения батареи или внешнего адаптера постоянного / переменного тока, требуется стабилизатор напряжения. Скорее всего, потребуется несколько регуляторов напряжения.

Эта статья — ваше руководство по выбору регуляторов напряжения, подходящих для вашей конструкции. Мы расскажем обо всем, от определения того, какой тип регулятора напряжения вам нужен, до выбора того, который соответствует вашим конкретным требованиям.

Выбор необходимого регулятора

Первым шагом в выборе правильного регулятора напряжения является определение входного напряжения, выходного напряжения и максимального тока нагрузки.

Хотя существует множество других спецификаций, эти три помогут вам начать работу и помогут сузить круг необходимого вам регулятора.

Регуляторы напряжения

можно разделить на две широкие классификации:

  • Понижающий : Выходное напряжение ниже входного
  • Повышающий : Выходное напряжение больше входного

Знание входного и выходного напряжения поможет вам легко решить, к какой группе относится ваш регулятор.

Регуляторы напряжения, которым требуется выходное напряжение меньше входного, являются наиболее распространенным типом регуляторов напряжения. Например, вы вводите 5 В и выдает 3,3 В, или вы вводите 12 В и выдает 5 В.

Вам необходимо рассмотреть два типа регуляторов:

  • Линейные регуляторы : простые, дешевые и бесшумные, но могут иметь низкую энергоэффективность. Линейные регуляторы способны только понижать напряжение.
  • Импульсные регуляторы : Высокая энергоэффективность, но более сложная и дорогая, с большим шумом на выходе.Импульсные регуляторы могут использоваться как для понижения, так и для повышения напряжения.

Если вам требуется выходное напряжение ниже входного, начните с линейного регулятора, а не импульсного регулятора.

Рисунок 1. Линейный регулятор использует транзистор и контур управления с обратной связью для регулирования выходного напряжения. Линейный регулятор может производить только выходное напряжение ниже входного.

Линейные регуляторы

намного дешевле и проще в использовании, чем импульсные регуляторы, поэтому они, как правило, должны быть вашим первым выбором.

Единственный случай, когда вы не хотите использовать линейный стабилизатор, — это если рассеиваемая мощность слишком велика или вам нужно повысить напряжение.

Определите рассеиваемую мощность

Хотя линейные регуляторы дешевы и просты в использовании, основным недостатком является то, что они могут тратить много энергии. Это может вызвать чрезмерный разряд батареи, перегрев или повреждение продукта.

Если у вас есть аккумулятор, мощность которого расходуется на тепло, аккумулятор разряжается быстрее.Если это не аккумулятор, но он по-прежнему выделяет значительное количество тепла, это может вызвать другие проблемы с вашей конструкцией.

Фактически, при определенных условиях линейный регулятор может выделять столько тепла, что фактически разрушает себя. Очевидно, вы этого не хотите.

При использовании линейного регулятора начните с определения того, сколько мощности будет рассеиваться регулятором.

Для линейных регуляторов используйте уравнение:

Мощность = (Входное напряжение — Выходное напряжение) x Ток (Уравнение 1)

Можно предположить, что выходной ток (также называемый током нагрузки) примерно такой же, как входной ток для линейных регуляторов.

На самом деле, входной ток равен выходному току плюс ток покоя, который потребляет линейный регулятор для выполнения функции регулирования.

Однако для большинства регуляторов ток покоя чрезвычайно мал по сравнению с током нагрузки, поэтому достаточно предположить, что выходной ток равен входному току.

Как видно из уравнения 1, если у вас большой перепад напряжения (Vin — Vout) на регуляторе и / или большой ток нагрузки, то ваш регулятор будет рассеивать большое количество энергии.

Например, если на входе 12 В, а на выходе 3,3 В, разность напряжений будет рассчитана как 12 В — 3,3 В = 8,7 В.

Если ток нагрузки составляет 1 ампер, это означает, что регулятор должен рассеивать 8,7 Вт мощности. Это огромная потеря мощности, с которой не справится любой линейный регулятор.

Если, с другой стороны, у вас есть высокий перепад напряжения, но вы используете ток нагрузки всего в несколько миллиампер, тогда мощность будет небольшой.

Например, в приведенном выше случае, если вы теперь используете ток нагрузки только 100 мА, рассеиваемая мощность упадет до 0,87 Вт, что гораздо более приемлемо для большинства линейных регуляторов.

При выборе линейного регулятора недостаточно просто убедиться, что входное напряжение, выходное напряжение и ток нагрузки соответствуют спецификациям регулятора.

Например, у вас есть линейный регулятор, рассчитанный на 15 В и ток 1 А. Вы думаете: «Хорошо, если это так, я могу подать на вход 12 В, взять 3.3 В на выходе и запустить его при 1 А, не так ли? »

Неправильно! Вы должны убедиться, что линейный регулятор может выдерживать даже такое количество мощности. Способ сделать это — определить, насколько сильно нагреется регулятор, в зависимости от мощности, которую он должен рассеять.

Для этого сначала вычислите, сколько мощности будет рассеивать линейный регулятор, используя уравнение 1 выше.

Во-вторых, посмотрите в таблице данных регулятора в разделе «тепловые характеристики» параметр под названием «Theta-JA», выраженный в единицах ° C / Вт (° C на ватт).

Theta-JA указывает на количество градусов, на которое микросхема будет нагреваться выше температуры окружающего воздуха, на каждый ватт мощности, которую он должен рассеять.

Просто умножьте расчетную рассеиваемую мощность на Theta-JA, и вы узнаете, насколько сильно линейный регулятор будет нагреваться при такой мощности:

Мощность x Theta-JA = Температура выше окружающей (Уравнение 2)

Допустим, ваш регулятор соответствует спецификации Theta-JA 50 ° C на ватт.Это означает, что если ваш продукт рассеивает:

  • 1 ватт, он нагреется до 50 ° C.
  • 2 Вт нагреется до 100 ° С.
  • ½ Вт нагревается до 25 ° C.

Важно отметить, что рассчитанная выше температура представляет собой разницу температур выше температуры окружающего воздуха.

Допустим, вы подсчитали, что при ваших условиях питания регулятор будет рассеивать 2 Вт мощности. Вы умножаете это на Theta-JA, и вы определяете, что он нагреется до 100 ° C.

Здесь важно не забыть добавить температуру окружающего воздуха. Комнатная температура обычно составляет 25 ° C. Следовательно, вы должны добавить 25 ° C к 100 ° C. Теперь у вас температура 125 ° C.

125 ° C — это максимальная температура, на которую рассчитано большинство электронных компонентов, поэтому вы никогда не захотите намеренно превышать 125 ° C.

Обычно вы не повредите свой продукт, пока не достигнете температуры примерно от 170 ° C до 200 ° C. К счастью, у большинства регуляторов также есть тепловое отключение, которое срабатывает при температуре около 150 ° C, поэтому они отключатся до того, как вызовут какие-либо повреждения.

Однако некоторые регуляторы не имеют теплового отключения, поэтому вы можете повредить их, если они рассеивают слишком много энергии.

В любом случае, вы не хотите, чтобы ваш продукт постоянно перегревался и ему приходилось отключаться, чтобы остыть.

Также следует учитывать, что температура воздуха не всегда может быть 25 ° C.

Допустим, ваш регулятор все еще нагревается до 100 ° C под нагрузкой, но теперь температура окружающей среды составляет 50 ° C (например, в закрытой машине в жаркий летний день).

Теперь у вас 50 ° C плюс 100 ° C и температура до 150 ° C при загрузке. Вы превысили указанную максимальную температуру и находитесь на грани срабатывания теплового отключения.

Очевидно, этого следует избегать. Эксплуатация регулятора таким образом, чтобы он регулярно превышал заданную температуру 125 ° C, может не вызвать немедленного повреждения, но может сократить срок службы компонента.

Регуляторы с малым падением напряжения (LDO)

В некоторых случаях линейные регуляторы могут быть чрезвычайно эффективными, потребляя очень мало энергии.Это происходит, когда они работают с очень низким входным напряжением к выходному напряжению.

Например, если Vin — Vout составляет всего 300 мВ, то даже при токе нагрузки 3 А рассеиваемая мощность составляет всего 0,9 Вт, что является достаточно низкой мощностью, чтобы выдерживать нагрузку большинством регуляторов.

Минимальный дифференциал Vin-Vout, с которым может работать линейный регулятор, называется падением напряжения. Если разница между Vin и Vout падает ниже напряжения отключения, то регулятор находится в режиме отключения.

Регулятор в режиме отпускания просто выглядит как небольшой резистор от входа до выхода. Это означает, что выход, по сути, просто соответствует входному питанию, и на самом деле никакое регулирование не выполняется.

В большинстве случаев вы не хотите использовать линейный регулятор в режиме отключения. Это ни в коем случае не повредит чему-либо, но вы потеряете многие преимущества регулятора.

Например, если у вас много шума на входе, он обычно отфильтровывается линейным регулятором.Однако эта фильтрация не будет происходить в режиме отключения, поэтому весь шум входного источника питания передается прямо на выходное напряжение.

Причина, по которой стабилизаторы с малым падением напряжения так полезны, заключается в том, что они позволяют управлять регулятором с очень малой рассеиваемой мощностью. Это связано с тем, что линейный регулятор наиболее эффективен, когда разница между Vin и Vout небольшая.

Многие старые линейные регуляторы имели очень высокое падение напряжения. Например, популярные стабилизаторы серии 7800 имеют паспортное напряжение 2 В.Это означает, что входное напряжение должно быть как минимум на 2 В выше выходного напряжения.

Рисунок 2 — Старые трехконтактные линейные регуляторы требуют большего перепада напряжения Vin-Vout и, следовательно, расходуют больше энергии, чем более новые регуляторы LDO.

Хотя 2 В — это не так уж и много, если вы пропускаете через этот регулятор ток в 1 ампер и у вас есть разница в 2 В, то это 2 Вт энергии, теряемой зря.

Регуляторы LDO нового поколения могут иметь очень низкое падение напряжения менее 200 мВ при полной нагрузке.

LDO, работающий только с перепадом напряжения 200 мВ, может пропускать в 10 раз больше тока при той же рассеиваемой мощности, что и линейный стабилизатор, работающий с перепадом напряжения 2 В. Таким образом, 1 ампер тока с дифференциалом Vin-Vout 200 мВ соответствует лишь 0,2 Вт рассеиваемой мощности.

Краткое описание линейных регуляторов

Линейные регуляторы полезны, если:

  • Разница между входным и выходным напряжением мала
  • У вас низкий ток нагрузки
  • Требуется исключительно чистое выходное напряжение
  • Вы должны сделать дизайн максимально простым и дешевым

Как мы обсудим дальше, импульсные стабилизаторы создают много шума на выходе и могут создавать нечеткое выходное напряжение.

Это может быть приемлемо для некоторых приложений, но во многих случаях требуется очень чистое напряжение питания. Например, при генерации напряжения питания для аналого-цифрового преобразователя или какой-либо звуковой схемы.

Таким образом, линейные регуляторы не только проще в использовании, но и обеспечивают гораздо более чистое выходное напряжение по сравнению с импульсными регуляторами, без пульсаций, всплесков или шума любого типа.

Таким образом, если рассеиваемая мощность не слишком велика или вам не требуется повышающий регулятор, линейный регулятор будет вашим лучшим вариантом.

Импульсные регуляторы

Импульсные регуляторы намного сложнее для понимания, чем линейные регуляторы. Линейный регулятор основан на силовом транзисторе, который регулирует величину тока, разрешенного для подачи на выход.

ПРИМЕЧАНИЕ: Обязательно загрузите бесплатное руководство в формате PDF 15 шагов для разработки нового электронного оборудования .

Если система управления линейного регулятора определяет, что выходное напряжение ниже, чем должно быть, то от входа к выходу может проходить больший ток.И наоборот, если обнаруживается, что выходное напряжение выше, чем должно быть, регулятор позволит меньшему току течь от входа к выходу, действуя таким образом, чтобы снизить выходное напряжение.

С другой стороны, импульсные регуляторы используют катушки индуктивности и конденсаторы для временного хранения энергии перед передачей ее на выход.

В этом уроке я проектирую печатную плату, используя простой линейный регулятор, а в этом более глубоком курсе я проектирую индивидуальную плату, используя более сложный импульсный стабилизатор.

Существует два основных типа импульсных регуляторов: повышающий и понижающий.

Понижающий импульсный стабилизатор также называется понижающим стабилизатором и, как линейный регулятор, выдает выходное напряжение ниже входного.

Рис. 3. Понижающий импульсный стабилизатор использует катушку индуктивности в качестве временного накопителя энергии для эффективного создания выходного напряжения ниже входного.

Если вы начали планировать использование линейного регулятора (понижающего), но определили, что рассеиваемая мощность слишком велика, тогда вам следует использовать понижающий импульсный стабилизатор.

В то время как повышающий импульсный стабилизатор создает выходное напряжение, превышающее входное, и называется повышающим регулятором.

Импульсные регуляторы очень эффективны, даже при очень больших разностях между входом и выходом.

КПД равен выходной мощности, деленной на входную. Это соотношение того, какая часть мощности от входа поступает на выход.

КПД = Pout / Pin = (Vout x Iout) / (Vin x Iin) (Уравнение 3)

Уравнение эффективности то же самое для линейного регулятора.Однако, поскольку выходной ток равен входному току для линейного регулятора, уравнение 3 упрощается до простого:

КПД (линейный регулятор) = Vout / Vin (уравнение 4)

Например, предположим, что у вас на входе 24 В, а на выходе необходимо 3 В при токе нагрузки 1 А. Если бы это был линейный регулятор, он работал бы с чрезвычайно низким КПД, и почти вся мощность рассеивалась бы в виде тепла.

КПД линейного регулятора будет только 3 В / 24 В = 12.5%. Это означает, что только 12,5% мощности от входа поступает на выход. Остальные 87,5% передаваемой мощности теряются в виде тепла!

С другой стороны, импульсные регуляторы обычно имеют КПД 90% или больше независимо от разницы между входным и выходным напряжениями. Для импульсного регулятора около 90% мощности передается на выход и только 10% тратится впустую.

Только когда Vin и Vout близки друг к другу, линейный регулятор может сравниться по эффективности с импульсным регулятором.

Например, если у вас входное напряжение 3,6 В (напряжение литий-полимерной батареи), а на выходе выдается 3,3 В, то линейный регулятор будет иметь КПД 3,3 В / 3,6 В = 91,7%.

Повышающие регуляторы напряжения

В большинстве случаев выходное напряжение будет ниже входного. В этом случае следует использовать линейный регулятор или понижающий импульсный стабилизатор, как обсуждалось.

Однако есть и другие случаи, когда вам может потребоваться выходное напряжение выше входного.Например, если у вас аккумулятор 3,6 В и вам нужно питание 5 В.

Рис. 4. В повышающем импульсном стабилизаторе катушка индуктивности используется в качестве временного накопительного элемента для эффективного создания выходного напряжения, превышающего входное.

Многие новички в электронике удивляются, узнав, что можно генерировать более высокое напряжение из более низкого напряжения. Для выполнения этой функции необходим импульсный регулятор, называемый повышающим регулятором.

В отличие от линейных регуляторов выходной ток импульсного регулятора не равен входному току. Вместо этого вы должны смотреть на входную мощность, выходную мощность и эффективность.

Рассчитаем входной ток для повышающего регулятора. Предположим, что входное напряжение — 3 В, выходное напряжение — 5 В, выходной ток — 1 А, а энергоэффективность — 90% (как указано в таблице данных).

Чтобы выяснить это, нам нужно использовать небольшую базовую алгебру для уравнения 3, чтобы найти входную мощность:

Pin = Pout / КПД (Уравнение 5)

Мы знаем, что эффективность составляет 90% (или 0.90), и мы знаем, что выходная мощность составляет 5 В x 1 А = 5 Вт. Мы можем рассчитать, что входная мощность составляет 5 Вт / 0,9 = 5,56 Вт.

Поскольку входная мощность составляет 5,56 Вт, а выходная мощность 5 Вт, это означает, что регулятор рассеивает только 0,56 Вт.

Далее, поскольку мы знаем, что мощность равна напряжению, умноженному на ток, это означает, что входной ток равен:

Входной ток = 5,56 Вт / Vin = 5,56 Вт / 3 В = 1,85 A (Уравнение 6)

Для повышающего регулятора входной ток всегда будет выше, чем выходной ток.С другой стороны, входной ток понижающего регулятора всегда будет меньше выходного тока.

Buck-Boost Регуляторы

Допустим, вы питаете свой продукт от двух последовательно соединенных батареек AA. При полной зарядке две батареи AA могут выдавать около 3,2 В, но когда они почти полностью разряжены, они выдают только 2,4 В.

В этом случае напряжение вашего источника питания может находиться в диапазоне от 2,4 В до 3,2 В.

Теперь предположим, что вам нужно выходное напряжение ровно 3 В независимо от состояния батарей.Когда батареи полностью заряжены (выходное напряжение 3,2 В), вам необходимо понизить напряжение батареи с 3,2 В до 3 В.

Однако, когда батареи близки к разряду (выходное напряжение 2,4 В), вам необходимо увеличить напряжение батареи с 2,4 В до 3 В.

В этом сценарии вы должны использовать так называемый повышающий-понижающий импульсный стабилизатор, который представляет собой просто комбинацию повышающего и понижающего регуляторов.

Для решения этой проблемы потенциально можно использовать отдельный понижающий регулятор, за которым следует повышающий регулятор (или наоборот).Но обычно лучше использовать одинарный понижающе-повышающий регулятор.

Импульсный регулятор + линейные регуляторы

Помните о трех преимуществах линейных регуляторов: дешевизне, простоте и чистоте выходного напряжения.

Может быть много случаев, когда вы хотите использовать линейный стабилизатор, потому что вам нужно чистое выходное напряжение, но вы не можете, потому что они тратят слишком много энергии.

В этой ситуации вы можете использовать импульсный регулятор, за которым следует линейный регулятор.

Допустим, у вас есть входное напряжение от литий-полимерной батареи, равное 3.6 В, но вам понадобится источник clean 5 В.

Для этого вы должны использовать повышающий регулятор, чтобы поднять напряжение до значения чуть выше целевого выходного напряжения. Например, вы можете использовать повышающий регулятор для повышения напряжения с 3,6 В до 5,5 В.

Затем вы следуете этому с помощью линейного регулятора, который берет 5,5 В и понижает его до 5 В, а также убирает шум и пульсации для получения чистого сигнала.

Это очень распространенный метод получения КПД импульсного регулятора и бесшумного выходного напряжения линейного регулятора.

Если вы выбрали эту опцию и специально пытаетесь отфильтровать коммутационные шумы, обязательно обратите внимание на коэффициент отклонения источника питания (PSRR) линейного регулятора.

PSSR данного линейного регулятора изменяется в зависимости от частоты. Следовательно, PSSR обычно представляется в виде графика, который показывает, как линейный регулятор подавляет любые пульсации на входном питании на различных частотах.

Рисунок 5 — Коэффициент подавления помех от источника питания (PSRR) в зависимости от частоты для TPS799 от Texas Instruments.

Чтобы использовать этот график, посмотрите на частоту переключения вашего импульсного стабилизатора (или любых других источников шума в вашей цепи). Затем посмотрите на PSSR линейного регулятора на этой конкретной частоте.

Затем вы можете рассчитать, какая часть шума импульсного регулятора будет удалена линейным регулятором.

Сводка

Чтобы выбрать регулятор напряжения для вашей системы, начните с предположения, что линейный регулятор может использоваться, если входное напряжение выше, чем выходное.

Только если при этом расходуется слишком много энергии, используйте понижающий импульсный стабилизатор.

Если вам нужно выходное напряжение выше, чем входное, используйте импульсный импульсный стабилизатор.

Если у вас есть ситуация, когда входное напряжение может быть выше или ниже выходного напряжения, вам нужен импульсный импульсный стабилизатор.

Наконец, если вам нужен чистый выходной сигнал, но требуется энергоэффективность импульсного регулятора, используйте импульсный регулятор, а затем линейный регулятор для очистки напряжения питания.

Наконец, не забудьте загрузить бесплатно PDF : Ultimate Guide to Develop and Sell Your New Electronic Hardware Product . Вы также будете получать мой еженедельный информационный бюллетень, в котором я делюсь премиальным контентом, недоступным в моем блоге.

Другой контент, который может вам понравиться:

4.8 5 голоса

Рейтинг статьи

Электрические системы на 12 В | ЛодкаUS

Регулировка напряжения

Регулятор напряжения определяет скорость и способ, которым генератор переменного тока или зарядное устройство переменного тока будет заряжать вашу батарею.Обычно мы думаем о регуляторах напряжения специально для генераторов переменного тока, но даже зарядные устройства переменного тока имеют внутренние компоненты, которые определяют скорость и способ заряда. В более совершенных устройствах эти внутренние компоненты можно отрегулировать на месте. Если зарядка не выполнена должным образом, ваши батареи могут выйти из строя, начиная от полного разряда до перегрева, выделения газов и, по сути, самоуничтожения.

Базовый регулятор напряжения генератора поддерживает напряжение на определенном уровне, согласовывая выходную мощность генератора с нагрузкой и уровнем заряда аккумулятора.Напряжение падает при включении нагрузки в систему питания или при разряде аккумулятора. Затем регулятор увеличивает выходную силу тока генератора переменного тока до тех пор, пока уровень напряжения не восстановится, а затем сужает выходную мощность до уровня, который будет поддерживать это напряжение.

У вас должен быть регулятор, который является внешним и регулируемым на месте, чтобы вы могли регулировать производительность генератора, адаптируя выходную мощность генератора к типу и размеру заряжаемых аккумуляторов. «Умный» регулятор напряжения также может быть настроен на зарядку определенных типов аккумуляторов таким образом, чтобы они не только хорошо заряжались, но и продлевали срок их службы.Хороший морской регулируемый интеллектуальный регулятор напряжения должен иметь возможность заряжать на трех этапах, часто называемых «объемным, абсорбционным и плавающим». Bulk довольно быстро вкладывает много энергии в батарею, чтобы быстро довести ее до определенного уровня. Затем регулятор переключится в режим абсорбции до того, как батарея станет слишком горячей, загазованной или поврежденной иным образом. При абсорбции зарядка происходит медленнее, чтобы обеспечить более низкий заряд в соответствии с состоянием заряда аккумулятора. Как только напряжение достигает желаемого уровня, регулятор переходит в плавающий режим, что по существу поддерживает батарею, производя настройку для использования.Некоторые регуляторы даже имеют тепловые датчики на банках (ах), чтобы они могли компенсировать этот фактор. Конечно, все это необходимо настроить под параметры вашей батареи и / или банка. Аккумуляторы разных размеров и типов (например, свинцово-кислотные, гелевые и AGM) требуют разных типов и скоростей зарядки, а также разных уровней напряжения. Обычно в этом вам поможет инструкция к регулятору напряжения.

Ваша 12-вольтовая система также может использоваться для подачи переменного тока, как у вас дома, с добавлением одобренного для морских судов инвертора, который будет преобразовывать постоянный ток (обычно получаемый из вашей аккумуляторной батареи) в переменный.Для получения дополнительной информации см. Нашу статью об инверторах.

Инверторы

увеличивают нагрузку на аккумуляторную батарею, а размер батареи и зарядка генератора должны это компенсировать. Конечно, чем больше потребление переменного тока от инвертора, тем больше инвертор потребляет постоянный ток от батареи. Кроме того, поскольку инвертор преобразует более высокий ток, его эффективность будет снижаться, что снова приведет к более высокому уровню разрядки батареи. Это делает еще более важным наличие надежного морского генератора переменного тока, управляемого внешним регулируемым регулятором напряжения.При наличии подходящего оборудования вы можете использовать переменный ток во время работы и поддерживать заряженные батареи. Если аккумуляторные батареи достаточно велики для вашего потребления и должным образом заряжены, у вас может быть тихое время на якоре с доступной мощностью переменного тока без постоянной работы генератора.

В настоящее время на рынке представлены зарядные устройства для аккумуляторов с питанием от переменного тока, которые могут заряжать и обслуживать не только разные банки, но и банки с различными конструкциями, например, свинцово-кислотные, гелевые и AGM.По сути, они прыгают от банка к банку, ощущая и делая то, что необходимо для этого банка. Конечно, вы должны настроить их в соответствии с вашей системой. Когда вы заряжаете свои батареи при наличии переменного тока (от док-станции или от бортового морского генератора) через зарядное устройство, оно должно быть рассчитано на использование в морских условиях, а также иметь «интеллектуальную» зарядку с аналогичными настройками заряда и характеристиками заряда, описанными выше, в отношении регулятор напряжения генератора.

С несколькими банками батарей многие люди предпочитают иметь устройство, которое автоматически переключает выход заряда на разные банки, чтобы ни один банк не перезаряжался.Однако многие предпочитают контролировать состояние банка вручную и использовать переключатель выбора батареи, чтобы направить зарядный ток в соответствующий банк. Отказ автоматических устройств, часто спрятанных в моторном отсеке, может привести к неправильной зарядке, ведущей к разрядке или перезарядке, которая «сожжет» аккумулятор, разрушит его и может вызвать взрыв или выброс большого количества агрессивного взрывоопасного газа.

Основы электроники: регулятор напряжения

Создание регулятора напряжения

Теория предыстории: как работает регулятор напряжения?


Название говорит само за себя: регулятор напряжения.Аккумулятор в вашем автомобиле, который заряжается от генератора, розетка в вашем доме, которая обеспечивает все необходимое электричество, сотовый телефон , который вы, вероятно, будете держать под рукой каждую минуту дня, все они требуют определенного напряжения, чтобы функция. Колеблющиеся выходы, превышающие ± 2 В, могут привести к неэффективной работе и, возможно, даже к повреждению ваших зарядных устройств. Колебания напряжения могут происходить по разным причинам: состояние электросети, включение и выключение других приборов, время суток, факторы окружающей среды и т. Д.Из-за необходимости постоянного постоянного напряжения введите регулятор напряжения.

Регулятор напряжения — это интегральная схема (ИС), которая обеспечивает постоянное фиксированное выходное напряжение независимо от изменения нагрузки или входного напряжения. Это можно сделать разными способами, в зависимости от топологии схемы внутри, но для того, чтобы этот проект оставался базовым, мы в основном сосредоточимся на линейном регуляторе. Линейный регулятор напряжения работает, автоматически регулируя сопротивление через контур обратной связи, учитывая изменения как нагрузки, так и входа, при этом сохраняя постоянное выходное напряжение.

Микросхема стабилизатора напряжения в корпусе ТО-220 С другой стороны, для импульсных регуляторов
, таких как понижающий (понижающий), повышающий (повышающий) и понижающий-повышающий (повышающий / понижающий), требуется несколько дополнительных компонентов, а также повышенная сложность как различные компоненты повлияют на результат. Импульсные регуляторы намного более эффективны с точки зрения преобразования энергии, где эффективность играет большую роль, но линейные регуляторы очень хорошо работают как регуляторы напряжения в низковольтных приложениях.

В зависимости от приложения, стабилизатору напряжения может потребоваться больше внимания для улучшения других параметров, таких как пульсирующее напряжение на выходе, переходная характеристика нагрузки, падение напряжения и выходной шум.Такие приложения, как аудиопроекты, более чувствительны к шуму и помехам, поэтому потребуется дополнительная фильтрация, особенно в импульсных регуляторах, где пульсации на выходе могут быть значительными. Большую часть информации, включая схемы, можно найти в техническом описании микросхемы стабилизатора напряжения, с которой вы работаете, в разделе «Примечания по применению».


Указания по применению для регулятора 7805T У
Afrotechmods также есть информативное видео о работе с популярным регулятором напряжения LM317T для получения регулируемого выхода.


Проект

Комплект регулятора напряжения макетной платы — отличный набор для пайки для любого новичка. Он выдает чистое 5 В постоянного тока с максимальным выходным током 500 мА. Он способен принимать входное напряжение в диапазоне 6-18 В постоянного тока и имеет контакты, размер которых идеально подходит для любой стандартной макетной платы с шагом 0,1 дюйма.

В комплект входят:

(1) Печатная плата
(1) Выключатель питания
(1) Разъем питания постоянного тока 2,1 мм
(1) Электролитический конденсатор 10 мкФ
(1) 0.Монолитный конденсатор 1 мкФ
(1) Резистор 1 кОм
(1) Красный светодиодный индикатор питания
(1) Разъемы контактов
(1) Руководство пользователя

Вам понадобятся:
• Паяльник
• Припой
• Фрезы
• Блок питания от настенного адаптера 6-18 В (Mean Well GS06U-3PIJ)


Комплект регулятора напряжения макетной платы Solarbotics 34020
Направление:

1. Резистор и конденсатор 0,1 мкФ:
Удалите ленту и согните выводы резистора, затем вставьте его в положение, обозначенное R1.Припаяйте его с другой стороны и отрежьте лишние выводы. Сделайте то же самое для конденсатора 0,1 мкФ в позиции C2. Неважно, как эти детали установлены — они не поляризованные .

2. Регулятор напряжения и цилиндрический разъем:
Припаяйте регулятор напряжения в положение V-REG. Убедитесь, что сторона табуляции выровнена с жирной линией на символе — обратное направление не сработает! Затем обрежьте лишние провода. Защелкните цилиндрический домкрат в положение B1 и припаяйте его на место.

Шаг 1 Шаг 2
3. Конденсатор 10 мкФ и индикатор питания:
Установите электролитический конденсатор 10 мкФ в положение C1. Позиционирование имеет решающее значение. Убедитесь, что более длинный провод входит в площадку, отмеченную (+). Убедитесь, что он находится в правильном положении, проверив, что полоса на стороне конденсатора находится ближе всего к этикетке PWR. Сделайте то же самое со светодиодом; более длинный вывод входит в круглую площадку. Вы можете подтвердить, что светодиод находится в правильном положении, заметив небольшую выемку на светодиоде, расположенную на стороне символа светодиода с линией (рядом с квадратной площадкой).

4. Контакты выключателя питания и макетной платы:
Выключатель питания просто устанавливается в положение PWR. С выводами на макетной плате посложнее — они идут снизу, и их сложнее удерживать при пайке. Тщательно припаяйте их как можно ровнее вручную или, если вы уверены, вставьте длинную сторону контактов в макет так, чтобы они совпадали с отверстиями в печатной плате, затем припаяйте их, пока макетная плата удерживает все на одном уровне.

Шаг 3 Шаг 4
5.Настройка Power Rails:
ЭТО ВАЖНО.
Если вы забудете это сделать, ваша доска не будет работать! Выберите, на какой стороне макета вы хотите установить плату (в этом примере мы используем левую сторону). Обратите внимание на полярность направляющих макетной платы «+» внизу и «-» вверху. Найдите, какой набор контактных площадок на плате соответствует этому расположению, и нанесите каплю припоя на маленькие полумесяцы.

Если вы планируете переключать полярность питания на направляющих, вы можете установить номер детали SWT7 на контактные площадки между контактными площадками. Не помещайте капли на подушечки, если вы это сделаете. Обратите внимание, что это не рекомендуемая модификация.

Подайте питание на плату от любого источника постоянного тока диаметром 2,1 мм с номинальным напряжением 6–18 В — не превышайте максимальное значение 35 В постоянного тока! Регулятор мощности нагревается при питании от более 12 В (это нормально). Если вы не хотите использовать его на макетной плате, используйте контактные площадки с маркировкой «+ -» на конце, ближайшем к гнезду цилиндра, для регулируемой выходной мощности 5 В.


Шаг 5
SWT7 Навесной

Вопросы для обсуждения


1.Какое влияние на выход цепи окажут тепло и шум?
2. Как конденсаторы помогают отфильтровывать помехи?
3. Каковы преимущества и недостатки линейных и импульсных регуляторов?

Как подключить регулятор напряжения трактора

by Ryan Hotchkiss

Hemera Technologies / PhotoObjects.net / Getty Images

Регулятор напряжения принимает ток от батареи с колеблющимся напряжением и выдает постоянное напряжение.Генераторы на шесть вольт и генераторы переменного тока на 12 вольт требуют напряжения при напряжении. Колебания напряжения могут повредить эти электрические механизмы. Регулятор трактора принимает напряжение, обеспечиваемое аккумулятором, регулирует его, уменьшая его, и отправляет его на генератор переменного тока с постоянным объемом, который генератор передает на катушку. К правильной клемме регулятора необходимо подключить три провода.

Шаг 1

Приварите опору регулятора к раме трактора.Приварите опору между генератором или опорой генератора и корпусом катушки. Следуйте инструкциям по установке регулятора, чтобы правильно расположить крепление. Некоторые рекомендуют вертикальное крепление, а другие требуют горизонтального размещения.

Шаг 2

Присоедините регулятор к креплению. Прикрутите или прикрутите четыре угла регулятора к креплению. Обычно для этого требуется четыре винта или болта и четыре шайбы и гайки. Не затягивайте болты слишком сильно, иначе вы повредите корпус регулятора, особенно если корпус пластиковый.

Шаг 3

Подсоедините положительный провод кабеля аккумуляторной батареи — обычно красный — к регулятору. Подключите провод к клемме с маркировкой «B» (иногда эта клемма обозначается «BATT»). Подключите генератор или провод генератора к регулятору. Соответствующая клемма для провода генератора / генератора помечена буквой «A» или «G» (иногда «ARM» или «GEN»). Подключите провод возбуждения — провод катушки возбуждения — к клемме возбуждения на регуляторе. Буквы «F» или «FIE» обозначают полевой терминал.

Добавить комментарий

Ваш адрес email не будет опубликован.